WO2003104463A1 - Transgenic expression constructs and method for increasing the vitamin e content in plant organisms - Google Patents

Transgenic expression constructs and method for increasing the vitamin e content in plant organisms Download PDF

Info

Publication number
WO2003104463A1
WO2003104463A1 PCT/EP2003/005889 EP0305889W WO03104463A1 WO 2003104463 A1 WO2003104463 A1 WO 2003104463A1 EP 0305889 W EP0305889 W EP 0305889W WO 03104463 A1 WO03104463 A1 WO 03104463A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
transgenic
transgenic expression
sequence
Prior art date
Application number
PCT/EP2003/005889
Other languages
German (de)
French (fr)
Inventor
Ralf Badur
Michael Geiger
Karin Herbers
Susanne Tropf
Rainer Lemke
Klaus-Dieter Salchert
Rüdiger SCHULZ-FRIEDRICH
Original Assignee
Sungene Gmbh & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002125593 external-priority patent/DE10225593A1/en
Priority claimed from DE2002131588 external-priority patent/DE10231588A1/en
Application filed by Sungene Gmbh & Co. Kgaa filed Critical Sungene Gmbh & Co. Kgaa
Priority to AU2003245914A priority Critical patent/AU2003245914A1/en
Publication of WO2003104463A1 publication Critical patent/WO2003104463A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Definitions

  • the invention relates to transgenic expression constructs and methods for increasing the vitamin E content in plant organisms, preferably in algae, by transgenic expression of ORF S110832 from Synechocystis sp. PCC6803.
  • the invention further relates to transgenic expression constructs for the expression of ORF sll0832 in plant organisms, preferably in algae, transgenic plant organisms expressing ORF sll0832, and the use of said transgenic plant organisms for the production of foodstuffs, animal feed, seeds, pharmaceuticals or fine chemicals, especially for the production of vitamin E.
  • the eight naturally occurring compounds with vitamin E activity are derivatives of 6-chromanol (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, vitamin E).
  • the group of tocopherols (la-d) has a saturated side chain
  • the group of tocotrienols (2a-d) has an unsaturated side chain:
  • vitamin E is understood to mean all eight tocopherols and tocotrienols with vitamin E activity mentioned above.
  • Vitamin E compounds have a high economic value as additives in the food and feed sector, in pharmaceutical formulations and in cosmetic applications.
  • PCC 6803 is a unicellular, non-nitrogen fixing cyanobacterium that has been genetically well studied (Churin et al. (1995) J Bacteriol 177: 3337-3343) and can be easily transformed (Williams (1988) Methods Enzymol 167: 766-778) and has a very active homologous recombination ability.
  • the PCC 6803 strain was isolated from fresh water by R. Kunisawa as Aphanocapsa N-1 in California, USA in 1968 and is now available from the Pasteur Culture Collection of Axenic Cyanobacterial Strains (PCC), Unite de Physiologie Microbienne, Paris, France.
  • the protein was encoded by ORF sll0832 from Synechocystis sp. PCC 6803 (GenBank Acc.-No .: NP_442444; gi: 16331716; SEQ ID NO: 2) was surprisingly identified as a key factor in vitamin E biosynthesis (as a result of Tocen-1 for "tocopherol synthesis enhancing protein" -l). Tocen-1 is classified in the GenBank as an unknown protein without any functional annotation. The protein has no significant homology to other proteins of known function. Surprisingly, it was found that the transgenic expression of this protein can increase the vitamin E content in plant organisms.
  • a first object of the invention comprises methods for increasing the vitamin E content in plant organisms
  • SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the aforesaid in said plant organism or a tissue, organ, part or cell of said plant organism, and
  • the method according to the invention can be applied to all plant organisms, preferably to those which naturally produce vitamin E, very particularly preferably to those which are used for industrial production of natural vitamin E.
  • Another object of the invention relates to transgenic expression constructs for expressing a nucleic acid encoding the Tocen-1 protein encoded by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the aforementioned.
  • Plant organism or cells derived therefrom generally means any cell, tissue, part or reproductive material (such as seeds or fruits) of an organism which is capable of photosynthesis. Included in the scope of the invention are all genera and species of higher and lower plants in the plant kingdom. Annual, perennial, monocot and dicot plants are preferred. Included are mature plants, seeds, shoots and seedlings, as well as parts derived from them, propagation material (for example tubers, seeds or fruits) and cultures, for example row or callus cultures.
  • Plant in the context of the invention means all genera and species of higher and lower plants in the plant kingdom. Included under the term are the mature plants, seeds, sprouts and seedlings, as well as parts derived therefrom, worship material, plant organs, tissues, protoplasts, callus and other cultures, for example cell cultures, and all other types of groupings of plant cells to form functional or structural units. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • Plant includes all annual and perennial, monocotyledonous and dicotyledonous plants and includes, by way of example but not by way of limitation, those of the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linu, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscya us, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrallhinum, Nesisoc , Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisu, Phaseolus,
  • Plants of the following plant families are preferred: Amaranth aceae, Asteraceae, Brassicaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceaeaeae, Rosaceaeaeae, Rosaceaeaeae Tetragoniacea, Theaceae, Umbelliferae.
  • Preferred monocotyledonous plants are selected in particular from the monocotyledonous crop plants, such as, for example, the family of the Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats as well as sugar cane and all types of grass.
  • the family of the Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats as well as sugar cane and all types of grass.
  • the invention is very particularly preferably applied from dicotyledonous plant organisms.
  • Preferred dicotyledonous plants are in particular selected from the dicotyledonous crop plants, such as, for example
  • Asteraceae such as sunflower, tagetes or calendula and others
  • - Cruciferae especially the genus Brassica, especially the species napus (rape), campestris (turnip), oleracea (e.g. cabbage, cauliflower or broccoli and other types of cabbage); and the genus Arabidopsis, especially the species thaliana and cress or. Canola and others,
  • Cucurbitaceae such as melon, pumpkin or zucchini and others
  • - Leguminosae especially the genus Glycine, especially the type max (soybean) soy, as well as alfalfa, peas, beans or peanuts and others
  • Rubiaceae preferably of the subclass La iidae such as Coffea arabica or Coffea liberica (coffee bush) and others,
  • Solanaceae especially the genus Lycopersicon, especially the species esculentum (tomato) and the genus Solanum, especially the species tuberosum (potato) and melongena (eggplant) and the genus Capsicum, especially the species annum (pepper), as well as tobacco or Peppers and others,
  • Sterculiaceae preferably of the subclass Dilleniidae such as Theobroma cacao (cocoa bush) and others,
  • Theaceae preferably of the subclass Dilleniidae, such as, for example, Camellia sinensis or Thea sinensis (tea bush) and others, - Umbelliferae, especially the genus Daucus (especially the species carota (carrot)) and Apium (especially the species graveolens dulce (celery)) and others;
  • ornamental plants useful or ornamental trees, flowers, cut flowers, shrubs or lawn.
  • examples include, but are not limited to, angiosperms, bryophytes such as hepaticae (liverwort) and musci (mosses); Pteridophytes such as ferns, horsetail and lycopods; Gymnosperms such as conifers, cycads, ginkgo and gnetals, the families of rosaceae such as rose, ericaceae such as rhododendrons and azaleas, euphorbiaceae such as poinsettias and croton, caryophyllaceae such as cloves, solanaceae such as petunias, Gesneriaceae such as the Usamalsamineaeaid as the Usambaramineae , Iridaceae like gladiolus, iris, freesia and crocus, Compositae like marigold
  • Plant organisms in the sense of the invention are further photosynthetically active capable organisms, such as
  • Example algae cyanobacteria and mosses.
  • Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Synechocystis is particularly preferred.
  • the plant organism is selected from the group of oil plants consisting of Borago officinalis, Brassica campestris, Brassica napus, Brassica rapa, Cannabis sativa, Carthamus tinctorius, Cocos nucifera, Crambe abyssinica, Cuphea species, Elaeis guineensis, Ekeis oleiferu, Glycine max, Gossypium hirsitum, Gossypium barbadense, Gossypium herbaceum, Helianthus annus, Linum usitatissimum, Oenothera biennis, Ozea europea, Oryza sativa, Ricinus communis, Sesamum indicum, Triticum species, Zea maize, walnut and almond.
  • vitamin E content means the sum of the tocopherols and tocotrienols in a plant organism or a tissue, organ, part or cell of the same.
  • Tocopherols and tocotrienols preferably include the 8 compounds ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocotrienol, ⁇ -tocotrieno, ⁇ -tocotrienol and ⁇ -tocotrienol described above.
  • the vitamin E content in the seed of a plant organism is particularly preferably increased.
  • Increasing the vitamin E content means increasing the content of vitamin E in a plant organism or a part, tissue or organ thereof, preferably in the seminal organs thereof.
  • the vitamin E content is most at least 5%, preferably at least 10%, particularly preferably at least 15%, very particularly preferably at least 20%, compared to a starting plant which is not subject to the process according to the invention but is otherwise unchanged and is otherwise unchanged preferably increased at least 25%.
  • Framework conditions means all conditions relevant to the germination, cultivation or growth of the plant such as soil, climate or light conditions, fertilization, irrigation, plant protection measures etc.
  • Functional equivalents means in particular natural or artificial mutations of the Tocen-1 protein according to SEQ ID NO: 2 and homologous polypeptides from other organisms, preferably from plant organisms, which have the same essential properties.
  • Essential properties of the Tocen-1 protein described by SEQ ID NO: 2 means in particular the property of increasing the vitamin E content in the case of transgenic expression in a plant organism in comparison to an identical but not transgenic plant organism according to the definition given above.
  • at least one property selected from the following group also applies as essential properties:
  • a helical secondary structure according to computer-aided prediction, for example with the program for secondary structure prediction in GenomMax v.3.1 (InforMax, Inc.) based on the work of Qian (Qian N and Sejnowski T (1988) J Mol Biol 202: 865-884) and Sasgawa (Sasgawa F and Tajima K (1993) Cabios 9: 147-152).
  • Functional equivalents from other organisms for example from plant organisms whose genomic sequence is known in whole or in part, such as, for example, from Arabidopsis thaliana, Brassica napus, Nicotiana tabacum or Solanum tuberosum - can e.g. by database search in sequence databases such as GenBank or by screening gene or cDNA banks - e.g. using the sequence according to SEQ ID NO: 1 or a part thereof as a search sequence or probe. Mutations include substitutions, additions, deletions, inversions or insertions of one or more amino acid residues.
  • Said functional equivalents preferably have a homology of at least 50%, particularly preferably at least 65%, particularly preferably at least 80%, most preferably at least 90% of the protein with SEQ ID NO: 2.
  • the homology extends over at least 30 amino acids , preferably at least 60 amino acids, particularly preferably at least 90 amino acids, most preferably over the entire length of the Tocen-1 polypeptide according to SEQ ID NO: 2.
  • GAP Garnier ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Gap Weight 8 Length Weight: 2
  • a sequence which has a homology of at least 80% on a protein basis with the sequence SEQ ID NO: 2 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 2 has a homology of at least 80% according to the above program algorithm with the above parameter set.
  • Functional equivalents also include those proteins which are encoded by nucleic acid sequences which have a homology of at least 50%, particularly preferably at least 65%, particularly preferably at least 80%, most preferably at least 90% to the nucleic acid sequence with SEQ ID NO: 1 , The homology extends over at least 100 bases, preferably at least 200 bases, particularly preferably at least 300 bases, most preferably over the entire length of the sequence according to SEQ ID NO: 1.
  • Homology between two nucleic acid sequences is understood to mean the identity of the two nucleic acid sequences over the respective sequence length, which by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25: 3389ff) using the following parameters:
  • Gap Weight 50 Length Weight: 3
  • a sequence which has a homology of at least 80% based on nucleic acids with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set Has at least 80% homology.
  • Functional equivalents also include those proteins which are encoded by nucleic acid sequences which, under standard conditions, have one of those described by SEQ ID NO: 1
  • Standard hybridization conditions is to be understood broadly and means stringent as well as less stringent hybridization conditions. Such hybridization conditions are described, inter alia, by Sambrook J, Fritsch EF, Maniatis T et al. , in Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57) or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described.
  • the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with approximately 2X SSC at 50 ° C.) and those with high stringency (with approximately 0.2X SSC at 50 ° C., preferably at 65 ° C. C) (20X SSC: 0.3 M sodium citrate, 3 M NaCl, pH 7.0).
  • the temperature during the washing step can be raised from low stringent conditions at room temperature, about 22 ° C, to more stringent conditions at about 65 ° C. Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can also be kept constant and only the other can be varied. Denaturing agents such as for example amide or SDS can also be used during the hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • Hybridization conditions can be selected from the following conditions, for example:
  • Washing steps can be selected, for example, from the following conditions:
  • the invention further relates to transgenic expression constructs which encode a transgenic expression of the protein by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned in a plant organism or a tissue, Can ensure organ, part or cell of said plant organism.
  • a nucleic acid molecule encoding a protein described by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned preferably has a functional link to at least one genetic control element (for example a promoter) which is capable of transgenic expression a plant organism or a tissue, organ, part or cell of the same.
  • a genetic control element for example a promoter
  • a functional link is understood to mean, for example, the sequential arrangement of a promoter with the nucleic acid sequence to be expressed (for example the sequence according to SEQ ID NO: 1) and possibly other regulatory elements such as a terminator such that each of the regulatory elements has its function can meet the transgenic expression of the nucleic acid sequence. This does not necessarily require a direct link in the chemical sense. Genetic control sequences, such as, for example, enhancer sequences, can also perform their function on the target sequence from more distant positions or even from other DNA molecules. Arrangements are preferred in which the nucleic acid sequence to be expressed transgenically is positioned behind the sequence which acts as a promoter, so that both sequences are covalently linked to one another.
  • the distance between the promoter sequence and the nucleic acid sequence to be expressed transgenically is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
  • transgenic expression construct consisting of a linkage of promoter and nucleic acid sequence to be expressed, can preferably be integrated in a vector and inserted into a plant genome by, for example, transformation.
  • transgenic expression construct should also be understood to mean constructions in which the nucleic acid sequence encoding the protein is encoded by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned ones - for example by homologous recombination - after one is placed endogenous plant promoter that this ensures the transgenic expression of said nucleic acid sequence.
  • Plant-specific promoters basically means any promoter which can control the expression of genes, in particular foreign genes, in plants or parts of plants, lines, tissues or crops.
  • the expression can be constitutive, inducible or development-dependent, for example.
  • “Constitutive” promoters mean those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development (Benfey et al. (1989) EMBO J 8: 2195-2202).
  • a plant promoter or a plant virus-derived promoter is preferably used.
  • Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shew aker et al. (1985) Virology 140: 281-288; Gardner et al.
  • promoters with specificities for the anthers, ovaries, flowers, leaves, stems, roots and seeds.
  • Seed-specific promoters such as the promoter of phaseoline (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9): 839-53), of the 2S albumingen gene (Joseffson LG et al. (1987) J Biol Chem 262: 12196-12201), legumin (Shirsat A et al. (1989) Mol Gen Genet 215 (2) .326-331), USP (unknown seed protein; Baumlein H et al. (1991) Mol Gen Genet 225 (3 ): 459-67), the Napin gene (US 5,608,152; Stalberg K et al.
  • seed-specific promoters are those of the genes coding for "high molecular weight glutenin” (HMWG), gliadin, branching enzyme, ADP glucose pyrophosphate (AGPase) or starch synthase. Also preferred are promoters that allow seed-specific expression in monocots such as corn, barley, wheat, rye, rice, etc.
  • HMWG high molecular weight glutenin
  • AGPase ADP glucose pyrophosphate
  • starch synthase starch synthase.
  • promoters that allow seed-specific expression in monocots such as corn, barley, wheat, rye, rice, etc.
  • the promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, the gliadin gene, the glutelin gene, the zein gene, the kasirin gene or the secalin gene). Further seed-specific promoters are described in WO 89/03887.
  • Tuber-, storage root- or root-specific promoters such as the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato.
  • Leaf-specific promoters such as a promoter of the cytosolic FBPase from potato (WO 97/05900), the SSU promoter (s all subunit) of the Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the potato ST-LSI promoter (Stockhaus et al. (1989) EMBO J 8: 2445-2451).
  • Flower-specific promoters such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593).
  • Anther-specific promoters such as the 5126 promoter (US 5,689,049, US 5,689,051), the glob-1 promoter and the ⁇ -zein promoter.
  • the transgenic expression constructs can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the exogenous gene in the plant is controlled at a specific point in time can.
  • a chemically inducible promoter e.g. the PRPl promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), promoter inducible by salicylic acid (WO 95/19443), a promoter inducible by benzenesulfonamide (EP 0 388 186), one by Tetra - Cyclin-inducible promoter (Gatz et al.
  • promoters that are induced by biotic or abiotic stress such as the pathogen-inducible promoter of the PRPL gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducing alpha-amylase promoter from the potato (WO 96/12814), the light-inducible PPDK promoter or the wound-induced pinII promoter (EP375091).
  • pathogen-inducible promoter of the PRPL gene Ward et al. (1993) Plant Mol Biol 22: 361-366
  • the heat-inducible hsp70 or hsp80 promoter from tomato US 5,187,267
  • the cold-inducing alpha-amylase promoter from the potato
  • the light-inducible PPDK promoter or the wound-induced pinII promoter EP375091.
  • Pathogen-inducible promoters include those of genes induced by pathogen attack such as genes from PR proteins, SAR proteins, ⁇ -1, 3-glucanase, chitinase etc. (e.g. Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon (1985) Plant Mol Viral 4: 111-116; Marineau et al. (1987) Plant Mol Biol 9: 335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325-342; Somssich et al.
  • suitable promoters are, for example, fruit ripening-specific promoters, such as the fruit ripening-specific promoter from tomato (WO 94/21794, EP 409 625). Development-dependent promoters include
  • Constitutive, seed-specific and leaf-specific promoters are particularly preferred.
  • promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable transgenic expression in other plant tissues or in other organisms, such as E. coli bacteria.
  • all promoters described above can be used as plant promoters.
  • nucleic acid sequences contained in the transgenic expression constructs or transgenic expression vectors according to the invention can be functionally linked to further genetic control sequences in addition to a promoter.
  • genetic control sequences is to be understood broadly and means all those sequences which have an influence on the formation or the function of a transgenic expression construct according to the invention. Genetic control sequences modify, for example, transcription and translation in prokaryotic or eukaryotic organisms.
  • transgenic expression constructs according to the invention preferably comprise a plant-specific promoter 5'-upstream of the respective transgenic nucleic acid sequence and 3'-downstream a terminator sequence as additional genetic Control sequence, as well as, where appropriate, other customary regulatory elements, in each case functionally linked to the nucleic acid sequence to be expressed transgenically.
  • Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties.
  • tissue-specific expression can additionally depend on certain stress factors.
  • Corresponding elements are, for example, for water stress, abscisic acid (Lam E and Chua NH, J Biol Chem 1991; 266 (26): 17131 -17135) and heat stress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2- 3): 246-53).
  • control sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
  • Genetic control sequences also include the 5'-untranslated regions, introns or non-coding 3 'regions of genes such as the actin-1 intron, or the Adhl-S introns 1, 2 and 6 (general: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). It has been shown that these can play a significant role in regulating gene expression. It has been shown that 5 'untranslated sequences can increase the transient expression of heterologous genes.
  • An example of translation enhancers is the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl Acids Res 15: 8693-8711) and the like. They can also promote tissue specificity (Rouster J et al. (1998) Plant J 15: 435-440).
  • the transgenic expression construct can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically.
  • the nucleic acid sequences to be expressed transgenically can be contained in one or more copies in the gene construct.
  • Polyadenylation signals suitable as control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al. (1984) EMBO J 3: 835 ff) or functional equivalents thereof.
  • Examples of particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
  • Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or which allow removal from the genome.
  • the coding sequence of a specific endogenous gene can be specifically exchanged for the sequence coding for a dsRNA.
  • Methods such as the cre / lox technology allow tissue-specific, possibly inducible removal of the transgenic expression construct from the genome of the host organism (Sauer B (1998) Methods 14 (4): 381-92).
  • certain flanking sequences are added to the target gene (lox sequences), which later enable removal using the cre recombinase.
  • a transgenic expression construct and / or the transgenic expression vectors derived from it can contain further functional elements.
  • the term functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the transgenic expression constructs according to the invention, the transgenic expression vectors or the transgenic organisms. Examples include, but are not limited to:
  • Selection markers which are resistant to a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456), antibiotics or biocides, preferably herbicides, such as, for example, kanamycin, G 418, bleoycin, hygromycin, or phos- lend phinotricin etc.
  • herbicides such as, for example, kanamycin, G 418, bleoycin, hygromycin, or phos- lend phinotricin etc.
  • Particularly preferred selection markers are those which confer resistance to herbicides.
  • Examples include: DNA sequences that code for phosphinothricin acetyltransferases (PAT) and inactivate glutamine synthase inhibitors (bar and pat gene), 5-enolpyruvylshikimate-3-phosphate synthase genes (EPSP synthase genes) that are resistant to Glyphosat® (N- (phosphon methyl) glycine), the gox gene coding for the glyphosate ® degrading enzymes (glyphosate oxidoreductase), the deh gene (coding for a dehalogenase which inactivates dalapon), sulfonylurea and imidazolinone inactivating acetolactate synthases and bxn genes for bromoxynil encoding degrading nitrilase enzymes, the aasa gene conferring resistance to the antibiotic apectinomycin, the streptomycin phosphotransferase (SPT) gene conferring resistance
  • Reports which encode easily quantifiable proteins and which, by means of their own color or enzyme activity, ensure an assessment of the transformation efficiency or the place or time of expression.
  • Reporter proteins Schoenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (l): 29-44) such as the "green fluorescence protein” (GFP) (Sheen et al. (1995) Plant Journal 8 (5): 777-784), the chloramphenicol transferase, a luciferase (Ow et al. (1986) Science 234: 856-859), the aequorin gene (Prasher et al.
  • GFP green fluorescence protein
  • Origins of replication which ensure an increase in the transgenic expression constructs or transgenic expression vectors according to the invention in, for example, E. coli.
  • Examples are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sambrook et al .: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
  • a selectable marker which gives the successfully recombined cells resistance to a biocide (for example a herbicide), a metabolism inhibitor such as 2-deoxyglucose. 6-phosphate (WO 98/45456) or an antibiotic.
  • a biocide for example a herbicide
  • a metabolism inhibitor such as 2-deoxyglucose. 6-phosphate (WO 98/45456) or an antibiotic.
  • the selection marker permits the selection of the transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84).
  • transgenic expression constructs or transgenic expression vectors can contain nucleic acid sequences which do not code for the protein encoded by SEQ ID NO: 2, a functional equivalent thereof or a functionally equivalent part of the abovementioned, and their transgenic expression for an additional increase in vitamin E. Biosynthesis leads (as a result of pro-VitE).
  • This additionally transgenically expressed pro-VitE nucleic acid sequence can be selected - by way of example but not by way of limitation - from nucleic acids coding for homogentisate phytyltransferase, 2-methyl-6-plastoquinone methyl transferase, tocopherol cyclase, ⁇ -tocopherol methyltransferase, hydroxyphenylpyruvase dioxinase oxygenase.
  • the desired effect is ensured by overexpression.
  • a corresponding effect can also be achieved by expressing a pro-VitE nucleic acid sequence which, for example as antisense RNA or double-stranded RNA, suppresses the expression of certain genes.
  • Suitable target genes would be - here, by way of example but not restrictive - the ho ogentisate dioxyase.
  • Corresponding sequences are known to the person skilled in the art and are easily accessible from databases or corresponding cDNA banks of the respective plants. The person skilled in the art is aware that several different of the above-mentioned additional expressions of pro-VitE nucleic acid sequences can also be combined within the scope of the invention.
  • transgenic expression constructs can be, for example, plasmids, cosmids, phages, viruses or agri-bacteria.
  • the transgenic expression construct can be introduced into the vector (preferably a plasmid vector) via a suitable restriction site.
  • the resulting transgenic expression vector is first introduced into E. coli. Correctly transformed E. coli are selected, grown and the combinant vector obtained using methods familiar to the person skilled in the art. Restriction analysis and sequencing can be used to check the cloning step.
  • Preferred vectors are those which enable stable integration of the transgenic expression construct into the host genome.
  • RNA or protein is introduced into the corresponding host cell.
  • transformation or transduction or transfection
  • the DNA or RNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles.
  • the cell can also be chemically permeabilized, for example with polyethylene glycol, so that the DNA can get into the cell by diffusion.
  • the DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes.
  • Electroporation is another suitable method for introducing DNA in which the cells are reversibly permeabilized by an electrical pulse. Corresponding methods are described (for example in Bilang et al. (1991) Gene 100: 247-250; Scheid et al. (1991) Mol Gen Genet 228: 104-112; Guerche et al. (1987) Plant Science 52: 111-116; Neuhause et al. (1987) Theor Appl Genet 75: 30-36; Klein et al. (1987) Nature 327: 70-73; Howell et al.
  • Suitable methods include protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene gun, the so-called “particle bombardment” method, electroporation, the incubation of dry embryos in DNA-containing solution and microinjection.
  • a transformation can also be carried out by bacterial infection using Agrobacterium tumefaciens or Agrobacterium rhizogenes.
  • the Agrobacterium -mediated transformation is best suited for dicotyledonous plant cells. The methods are described, for example, by Horsch RB et al. (1985) Science 225: 1229f).
  • the transgenic expression construct is to be integrated into special plasmids, either into a shuttle or intermediate vector or a binary vector. If a Ti or Ri plasmid is used for trans formation is to be used, at least the right border, but mostly the right and the left border of the Ti or Ri plasmid T-DNA as flanking region is connected to the transgenic expression construct to be introduced.
  • Binary vectors are preferably used.
  • Binary vectors can replicate in both E.coli and Agrobacterium. They usually contain a selection marker gene and a linker or polylinker flanked by the right and left T-DNA restriction sequences. They can be transformed directly into Agrobacterium (Holsters et al. (1978) Mol Gen Genet 163: 181-187).
  • the selection marker gene allows selection of transformed agrobacteria and is, for example, the nptll gene which confers resistance to kanamycin.
  • the Agrobacterium which acts as the host organism in this case, should already contain a plasmid with the vir region. This is necessary for the transfer of the T-DNA to the plant cell. An Agrobacterium transformed in this way can be used to transform plant cells.
  • T-DNA for the transformation of plant cells has been intensively investigated and described (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters BV, Alblasserdam, Chapter V; An et al. (1985) EMBO J 4: 277-287).
  • Various binary vectors are known and some are commercially available, for example pBI101.2 or pBIN19 (Clontech Laboratories, Inc. USA).
  • Direct transformation techniques are suitable for every organism and cell type. In the case of injection or electroporation of DNA or RNA into plant cells, there are no special requirements for the plasmid used.
  • Simple plasmids such as the pUC series can be used. If complete plants are to be regenerated from the transformed cells, it is necessary that there is an additional selectable marker gene on the plasmid.
  • Stably transformed cells ie those which contain the inserted DNA integrated into the DNA of the host cell, can be selected from untransformed cells if a selectable marker is part of the inserted DNA.
  • Any gene that can confer resistance to antibiotics or herbicides can act as a marker (see above).
  • Transformed cells that express such a marker gene are able to survive in the presence of concentrations of an appropriate antibiotic or herbicide that kill an untransformed wild type. Examples are mentioned above and preferably comprise the bar gene which confers resistance to the herbicide phosphinotricin (Rathore KS et al.
  • the selection marker allows the selection of transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84). The plants obtained can be grown and crossed in a conventional manner. Two or more generations should be cultivated to ensure that genomic integration is stable and inheritable.
  • the above-mentioned methods are described, for example, in Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R Wu, Academic Press, p.128-143 and in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42: 205-225).
  • the expression construct to be transgenic is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al. (1984) Nucl Acids Res 12: 8711f).
  • a whole plant can be obtained using methods known to those skilled in the art. This is based on the example of callus cultures. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown.
  • Transgene means - for example with respect to a nucleic acid sequence, an expression construct or an expression vector containing said nucleic acid sequence or an organism transformed with said nucleic acid sequence, expression construct or expression vector - all such by gene technical methods of constructions, in which either
  • Natural genetic environment means the natural chromosomal locus in the organism of origin
  • the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least
  • a naturally occurring expression construct for example the naturally occurring combination of the promoter of a gene coding for a protein according to SEQ ID NO: 2 or
  • a functional equivalent thereof with its corresponding coding sequences becomes a transgenic expression construct if it is changed by non-natural, synthetic ("artificial") methods such as mutagenization.
  • Appropriate procedures are
  • transgenic expression preferably means all those expressions realized using a transgenic expression construct, transgenic expression vector or transgenic organism — according to the definitions given above.
  • Preferred host or starting organisms as transgenic organisms are, above all, plant organisms as defined above. Included within the scope of the invention are all genera and species of higher and lower plants in the plant kingdom, in particular plants which are intended for production oils such as rapeseed, sunflower, sesame, safflower, olive tree, soybean, corn, wheat and types of nuts are used. Also included are the mature plants, seeds, sprouts and seedlings, as well as parts, propagation material and cultures derived from them, for example cell cultures. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • the production of the transgenic organisms can be carried out using the processes described above for the transformation or transfection of organisms.
  • Another object of the invention relates to the use of the transgenic organisms according to the invention and the cells, cell cultures, parts derived from them - such as roots, leaves, etc. in transgenic plant organisms - and transgenic propagation material such as seeds or fruits, for the production of food - or feed, pharmaceuticals or fine chemicals, especially of vitamin E or vitamin E derivatives such as vitamin E acetate.
  • SEQ ID NO: 1 nucleic acid sequence coding for Tocen-1
  • SEQ ID NO: 2 protein sequence coding for Tocen-1
  • SEQ ID NO: 4 oligonucleotide primers sll0832-3 v
  • SEQ ID NO: 5 nucleic acid sequence coding for the
  • SEQ ID NO: 6 oligo sequence coding for the sense strand of a swal linker
  • SEQ ID NO: 7 oligo sequence coding for the antisense
  • SEQ ID NO: 8 nucleic acid sequence coding for the
  • SEQ ID NO: 10 nucleic acid sequence coding for the
  • SEQ ID NO: 13 nucleic acid sequence coding for the
  • SEQ ID NO: 14 nucleic acid sequence coding for the transgenic expression vector pSUN2 / NitP / sll0832 / ocs 35.
  • SEQ ID NO: 15 nucleic acid sequence coding for the transgenic expression vector pSUN2 / NitP / rbcS / sll0832 / ocs
  • SEQ ID NO: 19 nucleic acid sequence coding for the transgenic expression vector 5 pSUN2-ÜSP-sll0832-catT
  • MCS-OCS fragment (rbs: rbs transit peptide; MCS: multiple cloning site; OCS: 0 termination signal of the octopine synthase gene.
  • SEQ ID NO: 21 nucleic acid sequence coding for the transgenic expression vector pSUN2 / USP / rbcS / sll0832 / ocs 5
  • Fig. 1 pCR-Script / sll0832 construct card
  • A represents the DNA fragment 0 coding for Tocen-1 (456 base pairs)
  • Fig. 2 Construct card from pCR-Script / sll0832:: tn903
  • Fragment A '(268 base pairs) contains the 5' region of Tocen-1, fragment B the transposon 903 (1286 base 5 pairs) and fragment 'A (194 base pairs) the 3 V region of Tocen-1.
  • the kanamycin cassette of the tn903 inserted in pCR-Script / sll0832 in such a way that the transcription of the kanamycin resistance gene of the Tn903 runs in the opposite direction to the transcription of the open reading frame from 0 Tocen-1.
  • Fig. 3 Tocopherol production in Synechocystis / sll0832:: tn903
  • Two independent Tocen-1 knockout mutants (1 and 2) showed in comparison to the Synechocystis spec.
  • PCC 6803 5 wild-type cells (WT) showed a significant reduction in tocopherol and tocotrienol production.
  • Fragment "A” (1894 bp nitrilase-1 promoter
  • Fragment "B” (167 bp) fragment coding for the rbcS transit peptide
  • Fragment "D" (219 bp) termination signal of the octopine synthase gene
  • Fig. 6 construct card from pSUN2 / USP / sll0832 / 3 ⁇ cat
  • Fragment "A” (674 bp): promoter of the USP gene from Vicia faba fragment "B” (456 bp): open reading frame of Tocen-1 fragment "C” (229 bp): termination signal of the cathepsin D inhibitor gene.
  • Fig. 7 Construction card of pSUN2 / USP / rbcS / sll0832 / ocs
  • Fragment "A” (674 bp): promoter of the USP gene from Vicia faba Fragment "B” (174 bp): fragment coding for the rbcS
  • Transit peptide fragment C (459 bp): open reading frame of Tocen-1 fragment D (219 bp): termination signal of the octopine
  • oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • the Cloning steps carried out in the context of the present invention such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of Phage and sequence analysis of recombinant DNA are carried out as in Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6.
  • the sequencing of recombinant DNA molecules takes place with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc Natl Acad Sei USA 74: 5463- 5467).
  • the Arabidopsis thaliana plant represents a member of the higher plants (seed plants). This plant is closely related to other plant species from the cruciferous family such as Brassica napus, but also with other dicotyledonous plant families. Due to the high degree of homology of their DNA sequences or polypeptide sequences, Arabidopsis thaliana can be used as a model plant for other plant species.
  • the plants are grown either on Murashige-Skoog medium with 0.5% sucrose (Ogas et al. (1997) Science 277: 91-94) or on earth (Focks & Benning (1998) Plant Physiol 118: 91-101).
  • the seeds are stratified at 4 ° C for two days after plating or scattering on earth.
  • the pods are marked. According to the markings, pods with an age of 6 to
  • the cells of Synechocystis sp. PCC 6803 are usually grown autotrophically in BGII medium. They have a diameter of 2.3 to 2.5 ⁇ m.
  • the cyanobacterium Synechocystis sp. PCC 6803 strain from the collection of Prof. Dr. Peter Wölk and Prof. Dr. 'Lee Mclntosh (Plant Research Laboratory, Michigan State University, East Lansing,
  • the weighed substances are dissolved in 900 ml H0 and made up to 1000 ml with 100 ml of the "Trace metal mix stock" 100,000. This obtained solution serves as a stock solution.
  • the DNA coding for Tocen-1 was by means of "Polymerase Chain 5 Reaction” (PCR) from Synechocystis spec. PCC 6803 according to the method according to Crispin A. Howitt (Howitt CA (1996) BioTechniques 21: 32-34) using a sense-specific primer (sll0832-5 '; SEQ ID NO: 3) and an antisense-specific primer (sll0832-3 '; SEQ IDNO: 4) amplified. 10
  • PCR Polymerase Chain 5 Reaction
  • the PCR was carried out in a 50 ⁇ l reaction mixture which contained:
  • Step 1 5 minutes 94 ° C (denaturation)
  • Step 2 3 seconds at 94 ° C
  • Step 3 1 minute 52 ° C (annealing)
  • Step 4 1 minute 72 ° C (elongation) 35 35 repetitions of steps 2 to 4
  • Step 5 10 minutes 72 ° C (post-elongation)
  • Step 6 4 ° C (holding pattern)
  • the amplificate (468 base pairs) was cloned into the PCR cloning vector pCR-Script (Stratagene) using 40 standard methods.
  • the construct is called pCR-Script / sll0832.
  • the identity of the amplicon generated was confirmed by sequencing using the T3 and T7 primers (cf. SEQ ID NO: 1).
  • Figure 1 illustrates pCR-45 Script / sll0832, where "A" represents the Tocen-1 coding DNA fragment (456 base pairs).
  • Example 2 Generation of a Tocen-1 knock out mutant
  • a DNA construct for the generation of a deletion mutant of Tocen-1 in Synechocystis spec. PCC 6803 was created using standard cloning techniques.
  • the vector pCR-Script / sll0832 was partially digested using the restriction enzyme Ncol and the protruding ends of the restriction digest were blunt-ended using standard methods.
  • the aminoglycoside-3 'phosphotransferase of the transposon Tn903 was cloned into the blunt-ended Ncol site of the open reading frame of Tocen-1.
  • the Tn903 was isolated as an EcoRI fragment from the vector pUC4K (Vieira J and Messing J (1982) Gene 19: 259-268), the protruding ends of the restriction digest were converted into smooth ends according to standard methods and the vector pCR-Script / sll0832 ligated (Ncol with smooth ends).
  • the ligation approach was used to transform E. coli Xll Blue cells. Transformants were selected using kanamycin and ampicillin.
  • a recombinant plasmid (pCR-Script / sll0832:: tn903; see Fig. 2) was isolated and used to transform Synechocystis spec. PCC 6803 used according to the Williams method (Williams (1987) Methods Enzymol 167: 776-778).
  • the kanamycin cassette of the tn903 inserted in pCR-Script / sll0832 in such a way that the transcription of the kanamycin resistance gene of the
  • Tn903 runs in the opposite direction to the transcription of the open reading frame of Tocen-1.
  • Fragment A includes' (268 base pairs) of the 5 'region of Tocen-1, fragment B, the transposon 903 (1286 base pairs) and fragment' A (194 base pairs) the 3 ⁇ range of Tocen-1.
  • Synechocystis spec. PCC 6803 transformants were selected on Kanamycin-containing (km) BG-11 solid medium (Castenholz (1988) Methods in Enzymology page 68-93) at 28 ° C. and 30 ⁇ mol photons * (m 2 * s) - 1 . Eight independent knockout mutants were generated after five rounds of selection (passages from individual colonies to fresh BG-11km medium). The complete loss of the Tocen-1 endogen or the exchange for the recombinant Tocen-1:: tn903 DNA was confirmed by PCR analysis.
  • Example 3 Tocopherol production in Synechocystis spec. PCC 6803 wild-type cells and the Tocen-1 knockout mutants
  • the medium of the cell culture was removed by centrifugation twice at 14000 rp in an Eppendorf table centrifuge.
  • the subsequent digestion of the cells and extraction of the tocopherols and tocotrienols was carried out by incubating twice in an Eppendorf shaker at 30 ° C., 100 ° C. in 100% methanol for 15 minutes, the supernatants obtained in each case being combined. Further incubation steps resulted in no further release of tocopherols or tocotrienols.
  • the extracts obtained were analyzed immediately after extraction using a Waters Allience 2690 HPLC system.
  • Tocopherols and tocotrienols were separated on a reverse phase column (ProntoSil 200-3-C30, Bischoff) with a mobile phase of 100% methanol and identified using standards (Merck).
  • the fluorescence of the substances (excitation 295 ⁇ m, emission 320 nm) was used as the detection system, which was detected with the aid of a Jasco FP 920 fluorescence detector.
  • the Tocen-1 knockout mutants surprisingly showed in comparison to the Synechocystis spec.
  • PCC 6803 wild type cells lost tocopherol and tocotrienol production (Fig. 3).
  • Example 4 Manipulation of the tocopherol biosynthesis in Nicotiana tahacum Samsun NN, Arabidopsis thaliana and Brassica napus by transgenic expression of Tocen-1
  • Transgenic plants are generated which contain Tocen-1 on the one hand under the control of the constitutive promoter of the nitrilase-1 (nitl) gene from A. thaliana (GenBank Acc. -No.: Y07648.2, nucleotides 2456-4340, Hillebrand et al. (1996) Gene 170: 197-200) and secondly under the control of the USP's seed-specific promoter (unknown seed protein) gene from Vicia faba (Bäumlein et. al.
  • Tocen-1 is expressed as a fusion protein with the transit peptide of the rbcS protein (Guerineau et al. (1988) Nucl Acid Res 16: 11380), both constitutively and seed-specifically.
  • Derivatives of the pSUN vector serve as the expression vector.
  • the vector pSUN2 was modified using standard methods such that the ocs terminator (Gielen et al. (1984) EMBO J 3: 835-846) as a Sall PacI-ocs HindIII fragment (sequence ID No: 5) is introduced. By introducing a linker, a swal interface is also introduced into the polylinker (SEQ ID No: 6 and SEQ ID No: 7). The resulting plasmid is designated pSUN2-1 (Sequence ID NO: 8).
  • the DNA fragment coding for the rbcS transit peptide is amplified as a SacI-Swal fragment (sequence ID No: 9) and introduced into the pSUN2-1.
  • the vector is called pSUN2-2 (Sequence ID NO: 10).
  • Tocen-1 under constitutive control of the ORF is ⁇ as SwaI-PacI fragment using standard methods with the aid of primers 0832exl-5 and 0832exl-3 (SEQ ID No. 11 and SEQ ID No. 12) ⁇ amplified.
  • the resulting 462 bp fragment is cloned into the pCR4Blunt-T0P0 (Invitrogen) according to the manufacturer's instructions and sequenced using the T3 and T7 primers.
  • pSUN2-2 is cut with Swal and Pacl.
  • the vector cut in this way is ligated with the Tocen-1 fragment which, after digestion with Swal and Pacl, is isolated from pCR-Script / sll0832.
  • the nitrilase promoter SEQ ID NO: 13
  • Xhol fragment the overhanging ends of which are filled in with Klenow polymerase according to standard methods, ligated.
  • the seed-specific promoter of the USP gene from Vici faba is used, which is present as an EcoRI-Ncol fragment in a pUC derivative (SEQ ID NO: 16).
  • the open reading frame of Tocen-1 is amplified using standard PCR methods in such a way that a Bbsl interface is generated at the 5 'end and an EcoRV interface at the 3' end .
  • the following oligonucleotide primers are used for this:
  • the amplificate is cloned in pCR4Blunt-TOPO and sequenced.
  • the PCR product is ligated as a BbsI-EcoRV fragment in the vector cut with Ncol (overhanging ends compatible with 5 'overhang of the PCR product) and EcoRV.
  • the expression construct is ligated as Pmel and Afel fragments in pSUN2 cut with EcoRV.
  • the resulting plasmid is called pSun2-USP-sll0832-3 , cat (see FIG. 6, SEQ ID NO: 19).
  • the rbcS fragment is amplified together with the ocs terminator as an Ncol-HindIII fragment (SEQ ID No: 20) from pSUN2-2 and into the Cloned pUC derivative containing the USP promoter. Promoters, rbcS and ocs are cloned as Pmel-Afel fragments in pSUN2 cut with EcoRV. Tocen-1 is cloned into this expression vector as a Swal-Pacl fragment. The resulting plasmid is called pSUN2 / USP / rbcS / sll0832 / ocs (Fig. 7, SEQ ID No: 21).
  • Wild-type A. thaliana plants (Columbia) are based on the Agrobacterium tumefaciens strain (EHA105) based on a modified method (Steve Clough and Andrew Bent (1998) Plant J 16 (6): 735-743) according to the vacuum infiltration method Bechtold et al. (Bechtold N et al. (1993) CRAcad Sei Paris 1144 (2) .204-212).
  • the A. tumefaciens cells used are pre-loaded with the plasmids pSUN2 / NitP / sll0832 / ocs (SEQ ID NO: 14), pSUN2 / NitP / rbcS / sll0832 / ocs (SEQ ID NO: 15), pSUN2 / USP / sll0832 / catT (SEQ ID NO: 19) or pSUN2 / USP / rbcS / sll0832 / ocs (SEQ ID NO: 21).
  • Seeds of the Agrobacterium-transformed primary transformants are selected on the basis of antibiotic resistance.
  • Antibiotic-resistant seedlings are planted in soil and used as fully developed plants for biochemical analysis.
  • transgenic oilseed rape plants is based on a protocol from Bade JB and Damm B (in Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38), in which also shows the composition of the media and buffers used.
  • the transformations are carried out with the Agrobacterium tumefaciens strains EHA105 and GV3101.
  • Brassica napus var. Westar seeds are surface-sterilized with 70% ethanol (v / v), washed in water for 10 minutes at 55 ° C, in 1% hypochlorite solution (25% v / v tea pol, 0.1% v / v Tween 20) incubated for 20 minutes and washed six times with sterile water for 20 minutes each.
  • the seeds are dried on filter paper for three days and 10 to 15 seeds are germinated in a glass flask with 15 ml of germination medium.
  • the roots and apices are removed from several seedlings (approx. 10 cm in size) and the remaining hypocotyls are cut into pieces approx. 6 mm long.
  • the approximately 600 explants obtained in this way are washed for 30 minutes with 50 ml of basal medium and transferred to a 300 ml flask. After adding 100 ml of callus induction medium, the cultures were incubated for 24 hours at 100 rpm.
  • the callus induction medium is removed from the oilseed rape explants using sterile pipettes, 50 ml of Agrobacterium solution are added, mixed gently and incubated for 20 min. The agrobacterial suspension is removed, the oilseed rape explant is washed for 1 min with 50 ml of callus induction medium and then 100 ml of callus induction medium is added. The co-cultivation is carried out for 24 h on a rotary shaker at 100 rpm. The co-cultivation is stopped by removing the callus induction medium and the explants are washed twice for 1 min with 25 ml and twice for 60 min with 100 ml of washing medium at 100 rpm. The washing medium with the explants is transferred to 15 cm petri dishes and the medium is removed with sterile pipettes.
  • the wild-type plants from sterile culture are obtained by vegetative replication. To do this, only the tip of the plant is cut off and transferred to fresh 2MS medium in a sterile mason jar. The hair on the top of the leaf and the central ribs of the leaves are removed from the rest of the plant. The leaves are cut into approximately 1 cm 2 large pieces with a razor blade. The agrobacterial culture is transferred to a small petri dish (diameter 2 cm). The leaf pieces are briefly drawn through this solution and the underside of the leaf is placed on 2MS medium in Petri dishes (diameter 9 cm) so that they touch the medium.
  • the explants After two days in the dark at 25 ° C, the explants are transferred to plates with callus induction medium and heated to 28 ° C in the climatic chamber. The medium must be changed every 7 to 10 days. As soon as calli were formed, the explants were placed in sterile mason jars on shoot induction medium with Claforan (0.6% BiTec agar (w / v), 2.0 mg / 1 zeatin ribose,
  • the tocopherol and tocotrienol contents in leaves and seeds of the plants transformed with the described constructs were analyzed.
  • the transgenic plants are cultivated in the greenhouse and plants which express the gene coding for Tocen-1 are identified at the Northern level.
  • the tocopherol content and the tocotrienol content are determined in the leaves and seeds of these plants. In all cases, the tocopherol or tocotrienol concentration is increased compared to non-transformed plants.

Abstract

The invention relates to transgenic expression constructs and method for increasing the vitamin E content in plant organisms, preferably in algae, by means of transgenic expression of ORF s110832 from Synechocystis sp. PCC6803. The invention further relates to transgenic expression constructs for the expression of ORF s110832 in plant organisms, preferably in algae, transgenic plant organisms expressing ORF s110832 and the use of said transgenic plant organisms for the production of foodstuffs, animal foodstuffs, seed stock, pharmaceuticals or fine chemicals, in particular for the production of vitamin E.

Description

Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen OrganismenTransgenic expression constructs and methods for increasing the vitamin E content in plant organisms
Beschreibungdescription
Die Erfindung betrifft transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen, bevorzugt in Algen, durch transgene Expression von ORF S110832 aus Synechocystis sp. PCC6803. Die Erfindung betrifft ferner transgene Expressionskonstrukte zur Expression von ORF sll0832 in pflanzlichen Organismen, bevorzugt in Algen, transgene pflanzlichen Organismen exprimierend ORF sll0832, sowie die Verwendung von besagter transgener pflanzlichen Organismen zur Her- Stellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien, insbesondere zur Herstellung von Vitamin E.The invention relates to transgenic expression constructs and methods for increasing the vitamin E content in plant organisms, preferably in algae, by transgenic expression of ORF S110832 from Synechocystis sp. PCC6803. The invention further relates to transgenic expression constructs for the expression of ORF sll0832 in plant organisms, preferably in algae, transgenic plant organisms expressing ORF sll0832, and the use of said transgenic plant organisms for the production of foodstuffs, animal feed, seeds, pharmaceuticals or fine chemicals, especially for the production of vitamin E.
Die in der Natur vorkommenden acht Verbindungen mit Vitamin E- Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E) . Die Gruppe der Toco- pherole (la-d) weist eine gesättigte Seitenkette auf, die Gruppe der Tocotrienole (2a-d) eine ungesättigte Seitenkette:The eight naturally occurring compounds with vitamin E activity are derivatives of 6-chromanol (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, vitamin E). The group of tocopherols (la-d) has a saturated side chain, the group of tocotrienols (2a-d) has an unsaturated side chain:
Figure imgf000002_0001
Figure imgf000002_0001
la, α-Tocopherol : R1 = R2 = R3 = CH3 lb, ß-Tocopherol [ 148-03-8 ] : R1 = R3 = CH3 / R2 = H lc , γ-Tocopherol [ 54-28-4 ] : R1 = H, R2 = R3 = CH3 ld, δ-Tocopherol [ 119-13-1 ] : R1 = R2 = H, R3 = CH3 la, α-tocopherol: R 1 = R 2 = R 3 = CH 3 lb, ß-tocopherol [148-03-8]: R 1 = R 3 = CH 3 / R 2 = H lc, γ-tocopherol [54 -28-4]: R 1 = H, R 2 = R 3 = CH 3 id, δ-tocopherol [119-13-1]: R 1 = R 2 = H, R 3 = CH 3
Figure imgf000002_0002
2a, α-Tocotrienol [1721-51-3]: R1 = R2 = R3 = CH3 2b, ß-Tocotrienol [490-23-3]: R1 = R3 = CH3 , R2 = H 2c, γ-Tocotrienol [14101-61-2] : R1 = H, R2 = R3 = CH3 2d, δ-Tocotrienol [25612-59-3]: Ri = R2 = H, R3 = CH3
Figure imgf000002_0002
2a, α-tocotrienol [1721-51-3]: R 1 = R 2 = R 3 = CH 3 2b, β-tocotrienol [490-23-3]: R 1 = R 3 = CH 3 , R 2 = H 2c, γ-tocotrienol [14101-61-2]: R 1 = H, R 2 = R 3 = CH 3 2d, δ-tocotrienol [25612-59-3]: Ri = R 2 = H, R 3 = CH 3
In der vorliegenden Erfindung werden unter Vitamin E alle acht vorstehend erwähnten Tocopherole und Tocotrienole mit Vitamin-E- Aktivität verstanden.In the present invention, vitamin E is understood to mean all eight tocopherols and tocotrienols with vitamin E activity mentioned above.
Vitamin E-Verbindungen haben einen hohen wirtschaftlichen Wert als Zusatzstoffe im Food- und Feed-Bereich, in pharmazeutischen Formulierungen und in kosmetischen Anwendungen.Vitamin E compounds have a high economic value as additives in the food and feed sector, in pharmaceutical formulations and in cosmetic applications.
Es gibt Versuche zur Erhöhung des Stoffwechselflusses zur Steigerung des Tocopherol- bzw. Tocotrienolgehaltes in trans- genen Pflanzen durch Überexpression einzelner Tocopherol-Bio- synthesegene (WO 97/27285; WO 99/04622; WO 99/23231; WO 00/10380;There are attempts to increase the metabolic flow to increase the tocopherol or tocotrienol content in transgenic plants by overexpressing individual tocopherol bio-synthesis genes (WO 97/27285; WO 99/04622; WO 99/23231; WO 00/10380;
Shintani und Dellapenna, Science 282 (5396) :2098-2100, 1998;Shintani and Dellapenna, Science 282 (5396): 2098-2100, 1998;
Tsegaye et al . Jahrestreffen der American Society of Plant Physiologists (24.-28.07.1999, Baltimore, USA) Abstract No. 413).Tsegaye et al. Annual meeting of the American Society of Plant Physiologists (July 24-28, 1999, Baltimore, USA) Abstract No. 413).
Synechocystis sp. PCC 6803 ist ein einzelliges, nicht Stickstoff fixierendes Cyanobakterium, das genetisch gut untersucht ist (Churin et al . (1995) J Bacteriol 177: 3337- 3343), leicht transformiert werden kann (Williams (1988) Methods Enzymol 167:766-778) und ein sehr aktives homologes Rekombinations- vermögen aufweist. Der Stamm PCC 6803 wurde 1968 von R. Kunisawa als Aphanocapsa N-l in Kalifornien, USA, aus Süßwasser isoliert und ist heute über die "Pasteur Culture Collection of Axenic Cyanobacterial Strains" (PCC) , Unite de Physiologie Microbienne, Paris, Frankreich, erhältlich. Die genomische Gesamtsequenz von Synechocystis sp. PCC 6803 wurde ab 1995 veröffentlicht (Kaneko et al . (1995) DNA Research 2:153-166; Kaneko et al . (1995) DNA Research 2:191-198; Kaneko et al . (1996) DNA Research 3:109-136; Kaneko et al . (1996) DNA Research 3:185-209; Kaneko und Tabata (1997) Plant Cell Physiol 38:1171-1176; Kotani und Tabata (1998) Annu Rev Plant Physiol 49:151-171) und ist über das Internet (http://www.kazusa.or.jp/cyano/cyano.html) unter dem Namen "CyanoBase" veröffentlicht. Effektive Expressionssysteme für Synechocystis 6803 sind in der Literatur beschrieben (Mermet- Bouvier et al . (1993) Curr Microbiol 27:323-327; Mermet-Bouvier und Chauvat (1993) Curr Microbiol 28:145-148; Murphy und StevensSynechocystis sp. PCC 6803 is a unicellular, non-nitrogen fixing cyanobacterium that has been genetically well studied (Churin et al. (1995) J Bacteriol 177: 3337-3343) and can be easily transformed (Williams (1988) Methods Enzymol 167: 766-778) and has a very active homologous recombination ability. The PCC 6803 strain was isolated from fresh water by R. Kunisawa as Aphanocapsa N-1 in California, USA in 1968 and is now available from the Pasteur Culture Collection of Axenic Cyanobacterial Strains (PCC), Unite de Physiologie Microbienne, Paris, France. The overall genomic sequence of Synechocystis sp. PCC 6803 has been published since 1995 (Kaneko et al. (1995) DNA Research 2: 153-166; Kaneko et al. (1995) DNA Research 2: 191-198; Kaneko et al. (1996) DNA Research 3: 109- 136; Kaneko et al. (1996) DNA Research 3: 185-209; Kaneko and Tabata (1997) Plant Cell Physiol 38: 1171-1176; Kotani and Tabata (1998) Annu Rev Plant Physiol 49: 151-171) published on the Internet (http://www.kazusa.or.jp/cyano/cyano.html) under the name "CyanoBase". Effective expression systems for Synechocystis 6803 have been described in the literature (Mermet-Bouvier et al. (1993) Curr Microbiol 27: 323-327; Mermet-Bouvier and Chauvat (1993) Curr Microbiol 28: 145-148; Murphy and Stevens
(1992) Appl Environ Microbiol 58 1650-1655; Takeshima et al . (1994) Proc Natl Acad Sei USA 91 9685-9689; Xiaoqiang et al . (1997) Appl Environ Microbiol 63 4971-4975; Ren et al . (1998) FEMS Microbiol Lett 158:127-132). Trotz einiger Erfolge besteht weiterhin Bedarf an einer Optimierung der Vitamin E Biosynthese. Der Erfindung lag die Aufgabe zugrunde, weitere Verfahren zur Verfügung zu stellen, die die Vitamin E-Biosynthese steigern und damit zu vorteilhaften trans- genen pflanzlichen Organismen führen.(1992) Appl Environ Microbiol 58 1650-1655; Takeshima et al. (1994) Proc Natl Acad Sei USA 91 9685-9689; Xiaoqiang et al. (1997) Appl Environ Microbiol 63 4971-4975; Ren et al. (1998) FEMS Microbiol Lett 158: 127-132). Despite some success, there is still a need to optimize vitamin E biosynthesis. The object of the invention was to provide further methods which increase vitamin E biosynthesis and thus lead to advantageous transgenic plant organisms.
Diese Aufgabe wird durch die vorliegende Erfindung gelöst. Im Rahmen der Erfindung wurde das Protein kodiert durch ORF sll0832 aus Synechocystis sp. PCC 6803 (GenBank Acc.-No.: NP_442444; gi: 16331716; SEQ ID NO: 2) überraschenderweise als Schlüsselfaktor der Vitamin E-Biosynthese identifiziert (infolge Tocen-1 für "Tocopherol synthesis enhancing protein"-l) . Tocen-1 ist in der GenBank als unbekanntes Protein ohne jegliche Funktionsannotation klassifiziert. Das Protein weißt keine signifikanten Homologien zu anderen Proteinen bekannter Funktion auf. Überraschenderweise wurde festgestellt, dass die transgene Expression dieses Proteins, den Vitamin E Gehalt in pflanzlichen Organismen erhöhen kann.This object is achieved by the present invention. In the context of the invention, the protein was encoded by ORF sll0832 from Synechocystis sp. PCC 6803 (GenBank Acc.-No .: NP_442444; gi: 16331716; SEQ ID NO: 2) was surprisingly identified as a key factor in vitamin E biosynthesis (as a result of Tocen-1 for "tocopherol synthesis enhancing protein" -l). Tocen-1 is classified in the GenBank as an unknown protein without any functional annotation. The protein has no significant homology to other proteins of known function. Surprisingly, it was found that the transgenic expression of this protein can increase the vitamin E content in plant organisms.
Ein erster Gegenstand der Erfindung umfasst Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen, durchA first object of the invention comprises methods for increasing the vitamin E content in plant organisms
a) transgene Expression des Tocen-1 Proteins kodiert durcha) Transgenic expression of the Tocen-1 protein encoded by
SEQ ID NO: 2 oder eines funktionellen Äquivalentes desselben oder eines funktioneil äquivalenten Teils der vorgenannten in dem besagten pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle des besagten pflanzlichen Organismus, undSEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the aforesaid in said plant organism or a tissue, organ, part or cell of said plant organism, and
b) Auswahl von pflanzlichen Organismen, bei denen - im Unterschied oder Vergleich zum Ausgangsorganismus - der Vitamin E- Gehalt in dem besagten pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle des besagten pflanzlichen Organismus erhöht ist.b) Selection of plant organisms in which - in contrast to or compared to the starting organism - the vitamin E content in the said plant organism or in a tissue, organ, part or cell of the said plant organism is increased.
Das erfindungsgemäße Verfahren kann im Prinzip auf alle pflanzlichen Organismen angewendet werden, bevorzugt auf solche die natürlicherweise Vitamin E produzieren, ganz besonders bevorzugt auf solche die für industrielle Produktion von natürlichem Vitamin E eingesetzt werden.In principle, the method according to the invention can be applied to all plant organisms, preferably to those which naturally produce vitamin E, very particularly preferably to those which are used for industrial production of natural vitamin E.
Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskonstrukte zur Expression einer Nukleinsäurese uenz kodierend für das Tocen-1 Proteins kodiert durch SEQ ID NO: 2 oder eines funktioneilen Äquivalentes desselben oder eines funktionell äquivalenten Teils der vorgenannten. Besonders bevorzugt ist die Sequenz gemäß SEQ ID N0:1 und die aufgrund der Degeneration des genetischen Codes davon abgeleiteten Sequenzen sowie funktionell äquivalente Teile der vorgenannten.Another object of the invention relates to transgenic expression constructs for expressing a nucleic acid encoding the Tocen-1 protein encoded by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the aforementioned. The sequence according to SEQ ID N0: 1 and that based on the degeneration of the genetic code, sequences derived therefrom and functionally equivalent parts of the aforementioned.
"Pflanzlicher Organismus oder von diesem abgeleitete Zellen" meint allgemein jede Zelle, Gewebe, Teile oder Vermehrngsgut (wie Samen oder Früchte) eines Organismus, der zur Photosynthese befähigt ist. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches . Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sind bevorzugt. Eingeschlossen sind reife Pflanze, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte) und Kulturen, zum Beispiel Zeil- oder Kalluskulturen."Plant organism or cells derived therefrom" generally means any cell, tissue, part or reproductive material (such as seeds or fruits) of an organism which is capable of photosynthesis. Included in the scope of the invention are all genera and species of higher and lower plants in the plant kingdom. Annual, perennial, monocot and dicot plants are preferred. Included are mature plants, seeds, shoots and seedlings, as well as parts derived from them, propagation material (for example tubers, seeds or fruits) and cultures, for example row or callus cultures.
"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches . Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Ver- ehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktioneilen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungs- Stadium."Plant" in the context of the invention means all genera and species of higher and lower plants in the plant kingdom. Included under the term are the mature plants, seeds, sprouts and seedlings, as well as parts derived therefrom, worship material, plant organs, tissues, protoplasts, callus and other cultures, for example cell cultures, and all other types of groupings of plant cells to form functional or structural units. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
"Pflanze" umfasst alle einjährigen und mehrjährige, mono- kotyledonen und dikotyledonen Pflanzen und schließt beispielhaft jedoch nicht einschränkend solche der Gattungen Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linu , Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscya us, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Heterocallis, Nemesis, Pelar- gonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisu , Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Seeale, Triticum, Sorghum, Picea und Populus ein."Plant" includes all annual and perennial, monocotyledonous and dicotyledonous plants and includes, by way of example but not by way of limitation, those of the genera Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linu, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscya us, Lycopersicon, Nicotiana, Solanum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrallhinum, Nesisoc , Pelargonium, Panieum, Pennisetum, Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Pisu, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Seeale, Triticum, Sorghum, Picea and Populus.
Bevorzugt sind Pflanzen nachfolgender Pflanzenfamilien: Amaranth- aceae, Asteraceae, Brassicaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubia- ceae, Saxifragaceae, Scrophulariaceae, Solanacea, Sterculiaceae, Tetragoniacea, Theaceae, Umbelliferae. Bevorzugte monokotyle Pflanzen sind insbesondere ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel der Familie der Gramineae wie Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer sowie dem Zuckerrohr sowie alle Arten von Gräsern.Plants of the following plant families are preferred: Amaranth aceae, Asteraceae, Brassicaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceaeaeae, Rosaceaeaeae, Rosaceaeaeae Tetragoniacea, Theaceae, Umbelliferae. Preferred monocotyledonous plants are selected in particular from the monocotyledonous crop plants, such as, for example, the family of the Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats as well as sugar cane and all types of grass.
Die Erfindung wird ganz besonders bevorzugt aus dikotyledone pflanzliche Organismen angewendet. Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum BeispielThe invention is very particularly preferably applied from dicotyledonous plant organisms. Preferred dicotyledonous plants are in particular selected from the dicotyledonous crop plants, such as, for example
- Asteraceae wie Sonnenblume, Tagetes oder Calendula und andere mehr,- Asteraceae such as sunflower, tagetes or calendula and others,
- Compositae, besonders die Gattung Lactuca, ganz besonders die Art sativa (Salat) und andere mehr,- Compositae, especially the genus Lactuca, especially the species sativa (salad) and others,
- Cruciferae, besonders die Gattung Brassica, ganz besonders die Arten napus (Raps), campestris (Rübe), oleracea (z.B. Kohl, Blumenkohl oder Broccoli und weitere Kohlarten) ; und der Gattung Arabidopsis, ganz besonders die Art thaliana sowie Kresse oder. Canola und andere mehr,- Cruciferae, especially the genus Brassica, especially the species napus (rape), campestris (turnip), oleracea (e.g. cabbage, cauliflower or broccoli and other types of cabbage); and the genus Arabidopsis, especially the species thaliana and cress or. Canola and others,
- Cucurbitaceae wie Melone, Kürbis oder Zucchini und andere mehr,- Cucurbitaceae such as melon, pumpkin or zucchini and others,
- Leguminosae besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) Soja sowie Alfalfa, Erbse, Bohnengewächsen oder Erdnuss und andere mehr- Leguminosae especially the genus Glycine, especially the type max (soybean) soy, as well as alfalfa, peas, beans or peanuts and others
- Rubiaceae, bevorzugt der Unterklasse La iidae wie beispielsweise Coffea arabica oder Coffea liberica (Kaffeestrauch) und andere mehr,Rubiaceae, preferably of the subclass La iidae such as Coffea arabica or Coffea liberica (coffee bush) and others,
- Solanaceae besonders die Gattung Lycopersicon, ganz besonders die Art esculentum (Tomate) und die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) und die Gattung Capsicum, ganz besonders die Art annum (Pfeffer) , sowie Tabak oder Paprika und andere mehr,- Solanaceae especially the genus Lycopersicon, especially the species esculentum (tomato) and the genus Solanum, especially the species tuberosum (potato) and melongena (eggplant) and the genus Capsicum, especially the species annum (pepper), as well as tobacco or Peppers and others,
- Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Theobroma cacao (Kakaostrauch) und andere mehr,Sterculiaceae, preferably of the subclass Dilleniidae such as Theobroma cacao (cocoa bush) and others,
- Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr, - Umbelliferae, besonders die Gattung Daucus (ganz besonders die Art carota (Karotte) ) und Apium (ganz besonders die Art graveolens dulce (Sellerie) ) und andere mehr;Theaceae, preferably of the subclass Dilleniidae, such as, for example, Camellia sinensis or Thea sinensis (tea bush) and others, - Umbelliferae, especially the genus Daucus (especially the species carota (carrot)) and Apium (especially the species graveolens dulce (celery)) and others;
sowie Lein, Soja, Baumwolle, Hanf, Flachs, Gurke, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, insbesondere Banane und Kiwi .as well as flax, soybeans, cotton, hemp, flax, cucumber, spinach, carrot, sugar beet and the various types of trees, nuts and wines, in particular banana and kiwi.
Umfasst sind ferner Schmuckpflanzen, Nutz- oder Zierbäume, Blumen, Schnittblumen, Sträucher oder Rasen. Beispielhaft aber nicht einschränkend seien zu nennen Angiospermen, Bryophyten wie zum Beispiel Hepaticae (Leberblümchen) und Musci (Moose) ; Pteridophyten wie Farne, Schachtelhalm und Lycopoden; Gymnospermen wie Koniferen, Cycaden, Ginkgo und Gnetalen, die Familien der Rosaceae wie Rose, Ericaceae wie Rhododendrons und Azaleen, Euphorbiaceae wie Weihnachtssterne und Kroton, Caryophyllaceae wie Nelken, Solanaceae wie Petunien, Gesneriaceae wie das Usambaraveilchen, Balsaminaceae wie das Springkraut, Orchidaceae wie Orchideen, Iridaceae wie Gladiolen, Iris, Freesie und Krokus, Compositae wie Ringelblume, Geraniaceae wie Geranien, Liliaceae wie der Drachenbaum, Moraceae wie Ficus, Araceae wie Philodendron und andere mehr.Also included are ornamental plants, useful or ornamental trees, flowers, cut flowers, shrubs or lawn. Examples include, but are not limited to, angiosperms, bryophytes such as hepaticae (liverwort) and musci (mosses); Pteridophytes such as ferns, horsetail and lycopods; Gymnosperms such as conifers, cycads, ginkgo and gnetals, the families of rosaceae such as rose, ericaceae such as rhododendrons and azaleas, euphorbiaceae such as poinsettias and croton, caryophyllaceae such as cloves, solanaceae such as petunias, Gesneriaceae such as the Usamalsamineaeaid as the Usambaramineae , Iridaceae like gladiolus, iris, freesia and crocus, Compositae like marigold, Geraniaceae like geranium, Liliaceae like the dragon tree, Moraceae like Ficus, Araceae like Philodendron and others.
Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive befähigte Organismen, wie zumPlant organisms in the sense of the invention are further photosynthetically active capable organisms, such as
Beispiel Algen, Cyanobakterien sowie Moose. Bevorzugte Algen sind Grünalgen, wie beispielsweise Algen der Gattung Haematococcus , Phaedactylum tricornatum, Volvox oder Dunaliella. Insbesondere bevorzugt ist Synechocystis.Example algae, cyanobacteria and mosses. Preferred algae are green algae, such as algae of the genus Haematococcus, Phaedactylum tricornatum, Volvox or Dunaliella. Synechocystis is particularly preferred.
Insbesondere ist der pflanzliche Organismus ausgewählt aus der Gruppe der Ölpflanzen bestehend aus Borago officinalis, Brassica campestris, Brassica napus, Brassica rapa, Cannabis sativa, Carthamus tinctorius, Cocos nucifera, Crambe abyssinica, Cuphea Arten, Elaeis guineensis, Ekeis oleiferu, Glycine max, Gossypium hirsitum, Gossypium barbadense, Gossypium herbaceum, Helianthus annus, Linum usitatissimum, Oenothera biennis, Ozea europea, Oryza sativa, Ricinus communis, Sesamum indicum, Triticum Arten, Zea maize, Walnuss und Mandel.In particular, the plant organism is selected from the group of oil plants consisting of Borago officinalis, Brassica campestris, Brassica napus, Brassica rapa, Cannabis sativa, Carthamus tinctorius, Cocos nucifera, Crambe abyssinica, Cuphea species, Elaeis guineensis, Ekeis oleiferu, Glycine max, Gossypium hirsitum, Gossypium barbadense, Gossypium herbaceum, Helianthus annus, Linum usitatissimum, Oenothera biennis, Ozea europea, Oryza sativa, Ricinus communis, Sesamum indicum, Triticum species, Zea maize, walnut and almond.
Am meisten bevorzugt sind pflanzliche Organismen, die zur Vitamin E-Produktion geeignet sind, wie beispielsweise Raps, Sonnenblume, Sesam, Färberdistel, Ölbaum, Soja, Mais, Weizen oder verschiedene Nussarten wie beispielsweise Walnuss oder Mandel . "Vitamin E-Gehalt" meint die Summe der Tocopherole und Toco- trienole in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben. Dabei umfassen Tocopherole und Tocotrienole bevorzugt die oben beschriebenen 8 Verbindungen α-Tocopherol, ß-Tocopherol, γ-Tocopherol, δ-Tocopherol , α-Toco- trienol , ß-Tocotrieno, γ-Tocotrienol und δ-Tocotrienol . Besonders bevorzugt ist der Vitamin E-Gehalt im Samen eines pflanzlichen Organismus erhöht .Most preferred are plant organisms that are suitable for vitamin E production, such as, for example, rapeseed, sunflower, sesame, safflower, olive tree, soybeans, corn, wheat or various types of nuts such as, for example, walnut or almond. "Vitamin E content" means the sum of the tocopherols and tocotrienols in a plant organism or a tissue, organ, part or cell of the same. Tocopherols and tocotrienols preferably include the 8 compounds α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol, α-tocotrienol, β-tocotrieno, γ-tocotrienol and δ-tocotrienol described above. The vitamin E content in the seed of a plant organism is particularly preferably increased.
"Erhöhung" des Vitamin E-Gehaltes meint die Steigerung des Gehaltes an Vitamin E in einem pflanzlichen Organismus oder einem Teil, Gewebe oder Organ derselben, bevorzugt in den Samenorganen desselben. Dabei ist der Vitamin E-Gehalt im Vergleich zu einer nicht dem erfindungsgemäßen Verfahren unterworfenen, aber ansonsten unveränderten Ausgangspflanze unter ansonsten gleichen Rahmenbedingungen um mindestens 5 %, bevorzugt mindestens 10 %, besonders bevorzugt mindestens 15 %, ganz besonders bevorzugt mindestens 20 %, am meisten bevorzugt mindestens 25 % erhöht. Rahmenbedingungen meint dabei alle für die Keimung, Kultivierung oder Wachstum der Pflanze relevanten Bedingungen wir Boden-, Klima- oder Lichtverhältnisse, Düngung, Bewässerung, Pflanzenschutzmaßnahmen usw."Increasing" the vitamin E content means increasing the content of vitamin E in a plant organism or a part, tissue or organ thereof, preferably in the seminal organs thereof. The vitamin E content is most at least 5%, preferably at least 10%, particularly preferably at least 15%, very particularly preferably at least 20%, compared to a starting plant which is not subject to the process according to the invention but is otherwise unchanged and is otherwise unchanged preferably increased at least 25%. Framework conditions means all conditions relevant to the germination, cultivation or growth of the plant such as soil, climate or light conditions, fertilization, irrigation, plant protection measures etc.
Funktionelle Äquivalente meint insbesondere natürliche oder künstliche Mutationen des Tocen-1 Proteins gemäß SEQ ID NO: 2 sowie homologe Polypeptide aus anderen Organismen, bevorzugt aus pflanzlichen Organismen, die die gleichen wesentlichen Eigenschaften aufweisen.Functional equivalents means in particular natural or artificial mutations of the Tocen-1 protein according to SEQ ID NO: 2 and homologous polypeptides from other organisms, preferably from plant organisms, which have the same essential properties.
"Wesentliche Eigenschaften" des Tocen-1 Proteins beschrieben durch SEQ ID NO: 2 meint insbesondere die Eigenschaft, bei transgener Expression in einem pflanzlichen Organismus den Vitamin E Gehalt im Vergleich zu einem identischen aber nicht transgenen pflanzlichen Organismus entsprechend oben gegebener Definition zu erhöhen. In einer bevorzugten Ausführungsform gelten als wesentliche Eigenschaften ferner mindestens eine Eigenschaft ausgewählt aus nachfolgender Gruppe:"Essential properties" of the Tocen-1 protein described by SEQ ID NO: 2 means in particular the property of increasing the vitamin E content in the case of transgenic expression in a plant organism in comparison to an identical but not transgenic plant organism according to the definition given above. In a preferred embodiment, at least one property selected from the following group also applies as essential properties:
a) ein Molekulargewicht in einem Bereich von ungefähr 10 bis ungefähr 25 kDa, bevorzugt ungefähr 15 bis ungefähr 20 kDa, besonders bevorzugt ungefähr 17 kDaa) a molecular weight in a range from approximately 10 to approximately 25 kDa, preferably approximately 15 to approximately 20 kDa, particularly preferably approximately 17 kDa
b) einen theoretischen isoelektrischen Punkt in einem Bereich von ungefähr 8 bis ungefähr 9,5, bevorzugt ungefähr 8,4 bis ungefähr 9,1, besonders bevorzugt ungefähr pH 8,7 c) einen sauren Charakter bevorzugt mit einer Gesamtnettoladung bei neutralem pH in einem Bereich von ungefähr 2 bis ungefähr 3, bevorzugt ungefähr 2,2 bis ungefähr 2,8, besonders bevorzugt ungefähr 2,6,b) a theoretical isoelectric point in a range from approximately 8 to approximately 9.5, preferably approximately 8.4 to approximately 9.1, particularly preferably approximately pH 8.7 c) an acidic character, preferably with a total net charge at neutral pH in a range from approximately 2 to approximately 3, preferably approximately 2.2 to approximately 2.8, particularly preferably approximately 2.6,
d) eine helikale Sekundärstruktur gemäß computergestützter Vorhersage beispielsweise mit dem Programm zur Sekundärstrukturvorhersagen in GenomMax v.3.1 (InforMax, Inc.) basierend auf den Arbeiten von Qian (Qian N and Sejnowski T (1988) J Mol Biol 202:865-884) und Sasgawa (Sasgawa F and Tajima K (1993) Cabios 9:147-152) .d) a helical secondary structure according to computer-aided prediction, for example with the program for secondary structure prediction in GenomMax v.3.1 (InforMax, Inc.) based on the work of Qian (Qian N and Sejnowski T (1988) J Mol Biol 202: 865-884) and Sasgawa (Sasgawa F and Tajima K (1993) Cabios 9: 147-152).
Funktionelle Äquivalente aus anderen Organismen, beispielsweise aus pflanzlichen Organismen deren genomische Sequenz ganz oder teilweise bekannt ist, wie beispielsweise aus Arabi- dopsis thaliana, Brassica napus, Nicotiana tabacum oder Solanum tuberosum - können z.B. durch Datenbanksuche in Sequenzdatenbanken wie GenBank oder Durchmustern von Gen- oder cDNA-Banken - z.B. unter Verwendung der Sequenz gemäß SEQ ID NO: 1 oder eines teils derselben als Suchsequenz bzw. Sonde - aufgefunden werden. Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer A inosäurereste .Functional equivalents from other organisms, for example from plant organisms whose genomic sequence is known in whole or in part, such as, for example, from Arabidopsis thaliana, Brassica napus, Nicotiana tabacum or Solanum tuberosum - can e.g. by database search in sequence databases such as GenBank or by screening gene or cDNA banks - e.g. using the sequence according to SEQ ID NO: 1 or a part thereof as a search sequence or probe. Mutations include substitutions, additions, deletions, inversions or insertions of one or more amino acid residues.
Bevorzugt haben besagte funktionelle Äquivalente eine Homologie von mindestens 50 %, besonders bevorzugt mindestens 65 %, besonders bevorzugt mindestens 80 %, am meisten bevorzugt mindestens 90 % zu dem Protein mit der SEQ ID NO: 2. Dabei erstreckt sich die Homologie über mindestens 30 Aminosäuren, bevorzugt mindestens 60 Aminosäuren besonders bevorzugt mindestens 90 Amino- säuren, am meisten bevorzugt über die gesamt Länge des Tocen-1 Polypeptides gemäß SEQ ID NO: 2.Said functional equivalents preferably have a homology of at least 50%, particularly preferably at least 65%, particularly preferably at least 80%, most preferably at least 90% of the protein with SEQ ID NO: 2. The homology extends over at least 30 amino acids , preferably at least 60 amino acids, particularly preferably at least 90 amino acids, most preferably over the entire length of the Tocen-1 polypeptide according to SEQ ID NO: 2.
Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweilige Sequenzlänge ver- standen, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:Homology between two polypeptides means the identity of the amino acid sequence over the respective sequence length, which is determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) with the following settings Parameter is calculated:
Gap Weight: 8 Length Weight: 2Gap Weight: 8 Length Weight: 2
Average Match: 2,912 Average Mismatch:-2 , 003Average Match: 2,912 Average Mismatch: -2, 003
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.By way of example, a sequence which has a homology of at least 80% on a protein basis with the sequence SEQ ID NO: 2 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 2 has a homology of at least 80% according to the above program algorithm with the above parameter set.
Funktionelle Äquivalente umfasst auch solche Proteine, die durch Nukleinsäuresequenzen kodiert werden, die eine Homologie von mindestens 50 %, besonders bevorzugt mindestens 65 %, besonders bevorzugt mindestens 80 %, am meisten bevorzugt mindestens 90 % zu der Nukleinsäuresequenz mit der SEQ ID NO: 1 haben. Dabei erstreckt sich die Homologie über mindestens 100 Basen, bevorzugt mindestens 200 Basen besonders bevorzugt mindestens 300 Basen, am meisten bevorzugt über die gesamt Länge der Sequenz gemäß SEQ ID NO : 1.Functional equivalents also include those proteins which are encoded by nucleic acid sequences which have a homology of at least 50%, particularly preferably at least 65%, particularly preferably at least 80%, most preferably at least 90% to the nucleic acid sequence with SEQ ID NO: 1 , The homology extends over at least 100 bases, preferably at least 200 bases, particularly preferably at least 300 bases, most preferably over the entire length of the sequence according to SEQ ID NO: 1.
Unter Homologie zwischen zwei Nukleinsäuresequenzen wird die Identität der beiden Nukleinsäuresequezen über die jeweilige Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA; Altschul et al . (1997) Nucleic Acids Res . 25:3389ff) unter Einstellung folgender Parameter berechnet wird:Homology between two nucleic acid sequences is understood to mean the identity of the two nucleic acid sequences over the respective sequence length, which by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25: 3389ff) using the following parameters:
Gap Weight: 50 Length Weight: 3Gap Weight: 50 Length Weight: 3
Average Match: 10 Average Mismatch:0Average Match: 10 Average Mismatch: 0
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programm- algorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.By way of example, a sequence which has a homology of at least 80% based on nucleic acids with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set Has at least 80% homology.
Funktionelle Äquivalente umfasst auch solche Proteine, die durch Nukleinsäuresequenzen kodiert werden, die unter Standard- bedingungen mit einer der durch SEQ ID NO: 1 beschriebenenFunctional equivalents also include those proteins which are encoded by nucleic acid sequences which, under standard conditions, have one of those described by SEQ ID NO: 1
Nukleinsäuresequenz, der zu dieser komplementären Nukleinsäuresequenz oder Teilen der vorgenannten hybridisieren und die wesentlichen Eigenschaften des Proteins beschrieben durch SEQ ID NO: 2 aufweisen.Nucleic acid sequence that hybridize to this complementary nucleic acid sequence or parts of the aforementioned and have the essential properties of the protein described by SEQ ID NO: 2.
"Standardhybridisierungsbedingungen" ist breit zu verstehen und meint stringente als auch weniger stringente Hybridisierungs- bedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al . , in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben."Standard hybridization conditions" is to be understood broadly and means stringent as well as less stringent hybridization conditions. Such hybridization conditions are described, inter alia, by Sambrook J, Fritsch EF, Maniatis T et al. , in Molecular Cloning (A Laboratory Manual), 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57) or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit ungefähr 0,2X SSC bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M NaCl, pH 7,0). Darüberhinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel For amid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:By way of example, the conditions during the washing step can be selected from the range of conditions limited by those with low stringency (with approximately 2X SSC at 50 ° C.) and those with high stringency (with approximately 0.2X SSC at 50 ° C., preferably at 65 ° C. C) (20X SSC: 0.3 M sodium citrate, 3 M NaCl, pH 7.0). Furthermore, the temperature during the washing step can be raised from low stringent conditions at room temperature, about 22 ° C, to more stringent conditions at about 65 ° C. Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can also be kept constant and only the other can be varied. Denaturing agents such as for example amide or SDS can also be used during the hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C. Some exemplary conditions for hybridization and washing step are given as a result:
(1) Hybridisierungbedingungen zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:(1) Hybridization conditions can be selected from the following conditions, for example:
a) 4X SSC bei 65°C, b) 6X SSC bei 45°C, c) 6X SSC, 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA bei 68°C, f) 50 % Formamid, 4X SSC bei 42°C, h) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung) , i) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung) .a) 4X SSC at 65 ° C, b) 6X SSC at 45 ° C, c) 6X SSC, 100 μg / ml denatured, fragmented fish sperm DNA at 68 ° C, f) 50% formamide, 4X SSC at 42 ° C , h) 2X or 4X SSC at 50 ° C (weakly stringent condition), i) 30 to 40% formamide, 2X or 4X SSC at 42 ° C (weakly stringent condition).
(2) Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein:(2) Washing steps can be selected, for example, from the following conditions:
a) 0,015 M NaCl/0,0015 M Natriumeitrat/0 , 1 % SDS bei 50°C. b) 0,1X SSC bei 65°C. c) 0,1X SSC, 0,5 % SDS bei 68°C. d) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C. e) 0,2X SSC, 0,1 % SDS bei 42°C. f) 2X SSC bei 65°C (schwach stringente Bedingung) .a) 0.015 M NaCl / 0.0015 M sodium citrate / 0.1% SDS at 50 ° C. b) 0.1X SSC at 65 ° C. c) 0.1X SSC, 0.5% SDS at 68 ° C. d) 0.1X SSC, 0.5% SDS, 50% formamide at 42 ° C. e) 0.2X SSC, 0.1% SDS at 42 ° C. f) 2X SSC at 65 ° C (weakly stringent condition).
Ein weiterer Gegenstand der Erfindung betrifft transgene Expressionskonstrukte, die eine transgene Expression des Proteins kodiert durch SEQ ID NO: 2 oder eines funktioneilen Äquivalentes desselben oder eines funktioneil äquivalenten Teils der vorgenannten in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle des besagten pflanzlichen Organismus gewährleisten können.The invention further relates to transgenic expression constructs which encode a transgenic expression of the protein by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned in a plant organism or a tissue, Can ensure organ, part or cell of said plant organism.
In besagten transgenen Expressionskonstrukten steht ein Nukleinsäuremolekül kodierend für ein Protein beschrieben durch SEQ ID NO: 2 oder eines funktionellen Äquivalentes desselben oder eines funktioneil äquivalenten Teils der vorgenannten bevorzugt in funktioneller Verknüpfung mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor) , das eine transgene Expression in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben gewährleistet.In said transgenic expression constructs, a nucleic acid molecule encoding a protein described by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned preferably has a functional link to at least one genetic control element (for example a promoter) which is capable of transgenic expression a plant organism or a tissue, organ, part or cell of the same.
Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines Promotors mit der zu exprimierenden Nukleinsäuresequenz (zum Beispiel der Sequenz gemäß SEQ ID NO: 1) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der transgenen Expression der Nukleinsäuresequenz erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische KontrollSequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.A functional link is understood to mean, for example, the sequential arrangement of a promoter with the nucleic acid sequence to be expressed (for example the sequence according to SEQ ID NO: 1) and possibly other regulatory elements such as a terminator such that each of the regulatory elements has its function can meet the transgenic expression of the nucleic acid sequence. This does not necessarily require a direct link in the chemical sense. Genetic control sequences, such as, for example, enhancer sequences, can also perform their function on the target sequence from more distant positions or even from other DNA molecules. Arrangements are preferred in which the nucleic acid sequence to be expressed transgenically is positioned behind the sequence which acts as a promoter, so that both sequences are covalently linked to one another. The distance between the promoter sequence and the nucleic acid sequence to be expressed transgenically is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung eines transgenen Expressionskonstruktes kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und' Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) , in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) , in Aus- ubel FM et al . (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann das transgene Expressionskonstrukt, bestehend aus einer Verknüpfung von Promoter und zu exprimierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.The production of a functional link as well as the production of a transgenic expression construct can be realized using common recombination and cloning techniques, as described, for example, in Maniatis T, Fritsch EF and ' Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML and Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience and Gelvin et al. (1990) In: Plant Molecular Biology Manual. However, further sequences can also be positioned between the two sequences, which for example have the function of a linker with certain restriction enzyme interfaces or a signal peptide. The insertion of sequences for Expression of fusion proteins result. The transgenic expression construct, consisting of a linkage of promoter and nucleic acid sequence to be expressed, can preferably be integrated in a vector and inserted into a plant genome by, for example, transformation.
Unter einem transgenen Expressionskonstrukt sind aber auch solche Konstruktionen zu verstehen, bei denen die Nukleinsäuresequenz kodierend für das Proteins kodiert durch SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben oder ein funktioneil äquivalentes Teil der vorgenannten - zum Beispiel durch eine homologe Rekombination - so hinter einen endogenen pflanzlichen Promotor platziert wird, dass dieser die transgene Expression der besagten Nukleinsäuresequenz gewährleistet.However, a transgenic expression construct should also be understood to mean constructions in which the nucleic acid sequence encoding the protein is encoded by SEQ ID NO: 2 or a functional equivalent thereof or a functionally equivalent part of the abovementioned ones - for example by homologous recombination - after one is placed endogenous plant promoter that this ensures the transgenic expression of said nucleic acid sequence.
Pflanzenspezifische Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -Zeilen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispiels- weise konstitutiv, induzierbar oder entwicklungsabhängig sein.Plant-specific promoters basically means any promoter which can control the expression of genes, in particular foreign genes, in plants or parts of plants, lines, tissues or crops. The expression can be constitutive, inducible or development-dependent, for example.
Bevorzugt sind:Preferred are:
a) Konstitutive Promotorena) Constitutive promoters
"Konstitutive" Promotoren meint solche Promotoren, die eine Expression in zahlreichen, bevorzugt allen, Geweben über einen größeren Zeitraum der Pflanzenentwicklung, bevorzugt zu allen Zeitpunkten der Pflanzenentwicklung, gewährleisten (Benfey et al.(1989) EMBO J 8:2195-2202). Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der Promotor des 35S-Transkriptes des CaMV Blumenkohlmosaikvirus (Franck et al . (1980) Cell 21:285-294; Odell et al . (1985) Nature 313:810-812; Shew aker et al. (1985) Virology 140:281-288; Gardner et al . (1986) Plant Mol Biol 6:221- 228) oder der 19S CaMV Promotor (US 5,352,605; WO 84/02913; Benfey et al . (1989) EMBO J 8:2195-2202). Ein weiterer geeigneter konstitutiver Promotor ist der "Rubisco small subunit (SSU) "-Promotor (US 4,962,028), der LeguminB-Promotor (GenBank Acc.-Nr. X03677) , der Promotor der Nopalinsynthase aus Agrobacterium, der TR-Doppelpromotor, der OCS (Octopin Synthase) Promotor aus Agrobacterium, der Ubiquitin Promotor (Holtorf S et al. (1995) Plant Mol Biol 29:637-649), den Ubiquitin 1 Promotor (Christensen et al . (1992) Plant Mol Biol 18:675-689; Bruce et al. (1989) Proc Natl Acad Sei USA 86:9692-9696), den S as Promotor, den Cinnamylalkoholdehydrogenase-Promotor (US 5,683,439), die Promotoren der vakuolärer ATPase Untereinheiten oder der Promotor eines prolinreichen Proteins aus Weizen (WO 91/13991) , sowie weitere Promotoren von Genen, deren konstitutive Expression in Pflanzen dem Fachmann bekannt ist.“Constitutive” promoters mean those promoters which ensure expression in numerous, preferably all, tissues over a relatively long period of plant development, preferably at all times during plant development (Benfey et al. (1989) EMBO J 8: 2195-2202). In particular, a plant promoter or a plant virus-derived promoter is preferably used. Particularly preferred is the promoter of the 35S transcript of the CaMV cauliflower mosaic virus (Franck et al. (1980) Cell 21: 285-294; Odell et al. (1985) Nature 313: 810-812; Shew aker et al. (1985) Virology 140: 281-288; Gardner et al. (1986) Plant Mol Biol 6: 221-228) or the 19S CaMV promoter (US 5,352,605; WO 84/02913; Benfey et al. (1989) EMBO J 8: 2195-2202 ). Another suitable constitutive promoter is the "Rubisco small subunit (SSU)" promoter (US 4,962,028), the LeguminB promoter (GenBank Acc. No. X03677), the promoter of nopaline synthase from Agrobacterium, the TR double promoter, the OCS (Octopin synthase) promoter from Agrobacterium, the ubiquitin promoter (Holtorf S et al. (1995) Plant Mol Biol 29: 637-649), the Ubiquitin 1 promoter (Christensen et al. (1992) Plant Mol Biol 18: 675-689 ; Bruce et al. (1989) Proc Natl Acad Sei USA 86: 9692-9696), S as promoter, the cinnamyl alcohol dehydrogenase promoter (US Pat. No. 5,683,439), the promoters of the vacuolar ATPase subunits or the promoter of a proline-rich protein from wheat (WO 91/13991), and further promoters of genes whose constitutive expression in plants is known to the person skilled in the art.
Gewebespezifische PromotorenTissue-specific promoters
Bevorzugt sind ferner Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln und Samen.Also preferred are promoters with specificities for the anthers, ovaries, flowers, leaves, stems, roots and seeds.
Samenspezifische Promotoren wie zum Beispiel der Promotor des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9) :839-53) , des 2S Albumingens (Joseffson LG et al . (1987) J Biol Chem 262:12196-12201), des Legumins (Shirsat A et al. (1989) Mol Gen Genet 215 (2) .326-331) , des USP (unknown seed protein; Baumlein H et al . (1991) Mol Gen Genet 225 (3) :459-67) , des Napin Gens (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), des Saccharosebindeproteins (WO 00/26388) oder der Legu in B4-Promotor (LeB4; Baumlein H et al. (1991) Mol Gen Genet 225:121-128; Baumlein H et al . (1992) Plant J 2(2):233-9; Fiedler U et al . (1995) Biotechno- logy (NY) 13 (10) : 1090f) , der Oleosin-Promoter aus Arabidopsis (WO 98/45461), der Bce4-Promoter aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG) , Gliadin, Verzweigungsenzym, ADP Glucose Pyrophos- phatase (AGPase) oder die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des lpt2 oder lptl-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens , des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens , des Gliadin-Gens, des Glutelin-Gens, des Zein- Gens, des Kasirin-Gens oder des Secalin-Gens) . Weitere samen- spezifische Promotoren sind beschrieben in WO 89/03887.Seed-specific promoters such as the promoter of phaseoline (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1 (9): 839-53), of the 2S albumingen gene (Joseffson LG et al. (1987) J Biol Chem 262: 12196-12201), legumin (Shirsat A et al. (1989) Mol Gen Genet 215 (2) .326-331), USP (unknown seed protein; Baumlein H et al. (1991) Mol Gen Genet 225 (3 ): 459-67), the Napin gene (US 5,608,152; Stalberg K et al. (1996) L Planta 199: 515-519), the sucrose binding protein (WO 00/26388) or the Legu in B4 promoter (LeB4; Baumlein H et al. (1991) Mol Gen Genet 225: 121-128; Baumlein H et al. (1992) Plant J 2 (2): 233-9; Fiedler U et al. (1995) Biotechnology (NY) 13 (10): 1090f), the oleosin promoter from Arabidopsis (WO 98/45461), the Bce4 promoter from Brassica (WO 91/13980). Other suitable seed-specific promoters are those of the genes coding for "high molecular weight glutenin" (HMWG), gliadin, branching enzyme, ADP glucose pyrophosphate (AGPase) or starch synthase. Also preferred are promoters that allow seed-specific expression in monocots such as corn, barley, wheat, rye, rice, etc. The promoter of the lpt2 or lptl gene (WO 95/15389, WO 95/23230) or the promoters described in WO 99/16890 (promoters of the hordein gene, the glutelin gene, the oryzine gene, etc.) can be used advantageously Prolamin gene, the gliadin gene, the glutelin gene, the zein gene, the kasirin gene or the secalin gene). Further seed-specific promoters are described in WO 89/03887.
Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren wie beispielsweise der Patatin Promotor Klasse I (B33) , der Promotor des Cathepsin D Inhibitors aus Kartoffel.Tuber-, storage root- or root-specific promoters such as the patatin promoter class I (B33), the promoter of the cathepsin D inhibitor from potato.
Blattspezifische Promotoren wie Promotor der cytosolischen FBPase aus Kartoffel (WO 97/05900) , der SSU Promotor (s all subunit) der Rubisco (Ribulose-1, 5-bisphosphatcarboxylase) oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al. (1989) EMBO J 8:2445-2451).Leaf-specific promoters such as a promoter of the cytosolic FBPase from potato (WO 97/05900), the SSU promoter (s all subunit) of the Rubisco (ribulose-1, 5-bisphosphate carboxylase) or the potato ST-LSI promoter (Stockhaus et al. (1989) EMBO J 8: 2445-2451).
Blütenspezifische Promotoren wie beispielsweise der Phytoen Synthase Promotor (WO 92/16635) oder der Promotor des P-rr Gens (WO 98/22593) .Flower-specific promoters such as the phytoene synthase promoter (WO 92/16635) or the promoter of the P-rr gene (WO 98/22593).
Antheren-spezifische Promotoren wie den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-1 Promotor und den γ-Zein Promotor.Anther-specific promoters such as the 5126 promoter (US 5,689,049, US 5,689,051), the glob-1 promoter and the γ-zein promoter.
c) Chemisch induzierbare Promotorenc) Chemically inducible promoters
Die transgenen Expressionskonstrukte können auch einen chemisch induzierbaren Promotor enthalten (Übersichtsartikel: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48:89-108), durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRPl Promotor (Ward et al. (1993) Plant Mol Biol 22:361-366), durch Salicylsäure induzierbarer Promotor (WO 95/19443) , ein durch Benzolsulfon- amid-induzierbarer Promotor (EP 0 388 186) , ein durch Tetra- zyklin-induzierbarer Promotor (Gatz et al . (1992) Plant J 2:397-404), ein durch Abscisinsäure induzierbarer Promotor (EP 0 335 528) bzw. ein durch Ethanol- oder Cyclohexanon- induzierbarer Promotor (WO 93/21334) können ebenfalls verwendet werden.The transgenic expression constructs can also contain a chemically inducible promoter (review article: Gatz et al. (1997) Annu Rev Plant Physiol Plant Mol Biol 48: 89-108), by means of which the expression of the exogenous gene in the plant is controlled at a specific point in time can. Such promoters, e.g. the PRPl promoter (Ward et al. (1993) Plant Mol Biol 22: 361-366), promoter inducible by salicylic acid (WO 95/19443), a promoter inducible by benzenesulfonamide (EP 0 388 186), one by Tetra - Cyclin-inducible promoter (Gatz et al. (1992) Plant J 2: 397-404), an abscisic acid-inducible promoter (EP 0 335 528) or an ethanol- or cyclohexanone-inducible promoter (WO 93/21334) can also be used.
d) Stress- oder Pathogen-induzierbare Promotorend) stress or pathogen inducible promoters
Ferner sind Promotoren bevorzugt, die durch biotischen oder abiotischen Stress induziert werden wie beispielsweise der pathogen-induzierbare Promotor des PRPl-Gens (Ward et al . (1993) Plant Mol Biol 22:361-366), der hitzeinduzierbare hsp70- oder hsp80-Promoter aus Tomate (US 5,187,267), der kälteinduzierare alpha-Amylase Promoter aus der Kartoffel (WO 96/12814) , der licht-induzierbare PPDK Promotor oder der verwundungsinduzierte pinll-Promoter (EP375091) .Also preferred are promoters that are induced by biotic or abiotic stress, such as the pathogen-inducible promoter of the PRPL gene (Ward et al. (1993) Plant Mol Biol 22: 361-366), the heat-inducible hsp70 or hsp80 promoter from tomato (US 5,187,267), the cold-inducing alpha-amylase promoter from the potato (WO 96/12814), the light-inducible PPDK promoter or the wound-induced pinII promoter (EP375091).
Pathogen-induzierbare Promotoren umfassen die von Genen, die infolge eines Pathogenbefalls induziert werden wie beispielsweise Gene von PR-Proteinen, SAR-Proteinen, ß-1, 3-Glucanase, Chitinase usw. (beispielsweise Redolfi et al . (1983) Neth J Plant Pathol 89:245-254; Uknes, et al . (1992) The Plant Cell 4:645-656; Van Loon (1985) Plant Mol Viral 4:111-116; Marineau et al. (1987) Plant Mol Biol 9:335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2:325-342; Somssich et al. (1986) Proc Natl Acad Sei USA 83:2427-2430; Somssich et al. (1988) Mol Gen Genetics 2:93-98; Chen et al. (1996) Plant J 10:955-966; Zhang and Sing (1994) Proc Natl Acad Sei USA 91:2507-2511; Warner, et al . (1993) Plant J 3:191-201; Siebertz et al . (1989) Plant Cell 1:961-968(1989). Umfasst sind auch verwundungs-induzierbare Promotoren wie der des pinll Gens (Ryan (1990) Ann Rev Phytopath 28:425-449; Duan et al . (1996) Nat Biotech 14:494-498), des wunl und wun2-Gens (US 5,428,148), des winl- und win2-Gens (Stanford et al. (1989) Mol Gen Genet 215:200-208), des SysteminPathogen-inducible promoters include those of genes induced by pathogen attack such as genes from PR proteins, SAR proteins, β-1, 3-glucanase, chitinase etc. (e.g. Redolfi et al. (1983) Neth J Plant Pathol 89: 245-254; Uknes, et al. (1992) The Plant Cell 4: 645-656; Van Loon (1985) Plant Mol Viral 4: 111-116; Marineau et al. (1987) Plant Mol Biol 9: 335-342; Matton et al. (1987) Molecular Plant-Microbe Interactions 2: 325-342; Somssich et al. (1986) Proc Natl Acad Sei USA 83: 2427-2430; Somssich et al. (1988) Mol Gen Genetics 2: 93-98; Chen et al. (1996) Plant J 10: 955-966; Zhang and Sing (1994) Proc Natl Acad Sei USA 91: 2507-2511; Warner, et al. (1993) Plant J 3: 191-201; Siebertz et al. (1989) Plant Cell 1: 961-968 (1989). Also included are wound-inducible promoters such as that of the pinll gene (Ryan (1990) Ann Rev Phytopath 28: 425-449; Duan et al. (1996) Nat Biotech 14: 494-498), the wunl and wun2 genes (US 5,428,148), the winl and win2 genes (Stanford et al. (1989) Mol Gen Genet 215: 200-208), the systemin
(McGurl et al . (1992) Science 225:1570-1573), des WIPl-Gens (Rohmeier et al . (1993) Plant Mol Biol 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76), des MPI-Gens (Corderok et al. (1994) The Plant J 6 (2) : 141-150) und dergleichen.(McGurl et al. (1992) Science 225: 1570-1573), the WIPl gene (Rohmeier et al. (1993) Plant Mol Biol 22: 783-792; Eckelkamp et al. (1993) FEBS Letters 323: 73- 76), the MPI gene (Corderok et al. (1994) The Plant J 6 (2): 141-150) and the like.
e) Entwicklungsabhängige Promotorene) Development-dependent promoters
Weitere geeignete Promotoren sind beispielsweise frucht- reifung-spezifische Promotoren, wie beispielsweise der fruchtreifung-spezifische Promotor aus Tomate (WO 94/21794, EP 409 625) . Entwicklungsabhängige Promotoren schließt zumFurther suitable promoters are, for example, fruit ripening-specific promoters, such as the fruit ripening-specific promoter from tomato (WO 94/21794, EP 409 625). Development-dependent promoters include
Teil die Gewebespezifischen Promotoren ein, da die Ausbildung einzelner Gewebe naturgemäß entwicklungsabhängig erfolgt.Divide the tissue-specific promoters, since the formation of individual tissues is naturally development-dependent.
Besonders bevorzugt sind konstitutive, samenspezifische sowie blattspezifische Promotoren.Constitutive, seed-specific and leaf-specific promoters are particularly preferred.
Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine transgene Expression in weiteren Pflanzengeweben oder in anderen Organismen, wie zum Beispiel E. coli Bakterien ermöglichen. Als Pflanzen Promotoren kommen im Prinzip alle oben beschriebenen Promotoren in Frage .Furthermore, further promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable transgenic expression in other plant tissues or in other organisms, such as E. coli bacteria. In principle, all promoters described above can be used as plant promoters.
Die in den erfindungsgemäßen transgenen Expressionskonstrukten oder transgenen Expressionsvektoren enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen KontrollSequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion eines erfindungsgemäßen transgenen Expressions- konstruktes haben. Genetische KontrollSequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen transgenen Expressionskonstrukte 5'-strom- aufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen pflanzenspezifischen Promoter und 3 '-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz.The nucleic acid sequences contained in the transgenic expression constructs or transgenic expression vectors according to the invention can be functionally linked to further genetic control sequences in addition to a promoter. The term “genetic control sequences” is to be understood broadly and means all those sequences which have an influence on the formation or the function of a transgenic expression construct according to the invention. Genetic control sequences modify, for example, transcription and translation in prokaryotic or eukaryotic organisms. The transgenic expression constructs according to the invention preferably comprise a plant-specific promoter 5'-upstream of the respective transgenic nucleic acid sequence and 3'-downstream a terminator sequence as additional genetic Control sequence, as well as, where appropriate, other customary regulatory elements, in each case functionally linked to the nucleic acid sequence to be expressed transgenically.
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressions- steuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasser- stress, Abscisinsäure (Lam E und Chua NH, J Biol Chem 1991; 266(26): 17131 -17135) und Hitzestress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2-3) :246-53) beschrieben.Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties. By means of genetic control sequences, for example, tissue-specific expression can additionally depend on certain stress factors. Corresponding elements are, for example, for water stress, abscisic acid (Lam E and Chua NH, J Biol Chem 1991; 266 (26): 17131 -17135) and heat stress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2- 3): 246-53).
Weitere vorteilhafte KontrollSequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.Further advantageous control sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFa, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.In principle, all natural promoters with their regulatory sequences such as those mentioned above can be used for the method according to the invention. In addition, synthetic promoters can also be used advantageously.
Genetische Kontrollsequenzen umfassen ferner auch die 5'-untrans- latierte Regionen, Introns oder nichtkodierende 3 '-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adhl-S Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)) . Es ist gezeigt worden, dass diese eine signifikante Funktionen bei der Regulation der Genexpression spielen können. So wurde gezeigt, dass 5 '-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5 '-Leadersequenz aus dem Tabak- Mosaik-Virus zu nennen (Gallie et al . (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebs- spezifität fördern (Rouster J et al . (1998) Plant J 15:435-440).Genetic control sequences also include the 5'-untranslated regions, introns or non-coding 3 'regions of genes such as the actin-1 intron, or the Adhl-S introns 1, 2 and 6 (general: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)). It has been shown that these can play a significant role in regulating gene expression. It has been shown that 5 'untranslated sequences can increase the transient expression of heterologous genes. An example of translation enhancers is the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl Acids Res 15: 8693-8711) and the like. They can also promote tissue specificity (Rouster J et al. (1998) Plant J 15: 435-440).
Das transgene Expressionskonstrukt kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell ver- knüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 '-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die trans- gen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein. Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al . (1984) EMBO J 3:835 ff) oder funktioneile Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin- Synthase) -Terminator und der NOS (Nopalin-Synthase) -Terminator.The transgenic expression construct can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically. The nucleic acid sequences to be expressed transgenically can be contained in one or more copies in the gene construct. Polyadenylation signals suitable as control sequences are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACHS (Gielen et al. (1984) EMBO J 3: 835 ff) or functional equivalents thereof. Examples of particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel die kodierende Sequenz eines bestimmten endogenen Gens gegen die für eine dsRNA kodierende Sequenz gezielt ausgetauscht werden. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung des transgenen Expressionskonstruktes aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods 14 (4) : 381-92) . Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen) , die später eine Entfernung mittels der cre-Rekombinase ermöglichen.Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or which allow removal from the genome. In homologous recombination, for example, the coding sequence of a specific endogenous gene can be specifically exchanged for the sequence coding for a dsRNA. Methods such as the cre / lox technology allow tissue-specific, possibly inducible removal of the transgenic expression construct from the genome of the host organism (Sauer B (1998) Methods 14 (4): 381-92). Here certain flanking sequences are added to the target gene (lox sequences), which later enable removal using the cre recombinase.
Ein transgenes Expressionskonstrukt und/oder die von ihm abgeleiteten transgenen Expressionsvektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente, die einen Ein- fluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen transgenen Expressionskonstrukte, der transgenen Expressionsvektoren oder der transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:A transgenic expression construct and / or the transgenic expression vectors derived from it can contain further functional elements. The term functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the transgenic expression constructs according to the invention, the transgenic expression vectors or the transgenic organisms. Examples include, but are not limited to:
a) Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) , Antibiotika oder Biozide, bevorzugt Herbizide, wie zum Bei- spiel Kanamycin, G 418, Bleo ycin, Hygromycin, oder Phos- phinotricin etc. verleihen. Besonders bevorzugte Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen, die für Phosphinothricinacetyltransferasen (PAT) kodieren und Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen) , 5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthase- gene) , die eine Resistenz gegen Glyphosat® (N- (phosphono- methyl) glycin) verleihen, das für das Glyphosat® degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase) , das deh Gen (kodierend für eine Dehalogenase, die Dalapon inaktiviert) , Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphospho- transferas (NPTII) Gen, das eine Resistenz gegen Kanamycin oder Geneticidin verleiht, das Hygromycinphσsphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS) , das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS- Varianten mit z.B. der S4 und/oder Hra Mutation) .a) Selection markers which are resistant to a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456), antibiotics or biocides, preferably herbicides, such as, for example, kanamycin, G 418, bleoycin, hygromycin, or phos- lend phinotricin etc. Particularly preferred selection markers are those which confer resistance to herbicides. Examples include: DNA sequences that code for phosphinothricin acetyltransferases (PAT) and inactivate glutamine synthase inhibitors (bar and pat gene), 5-enolpyruvylshikimate-3-phosphate synthase genes (EPSP synthase genes) that are resistant to Glyphosat® (N- (phosphon methyl) glycine), the gox gene coding for the glyphosate ® degrading enzymes (glyphosate oxidoreductase), the deh gene (coding for a dehalogenase which inactivates dalapon), sulfonylurea and imidazolinone inactivating acetolactate synthases and bxn genes for bromoxynil encoding degrading nitrilase enzymes, the aasa gene conferring resistance to the antibiotic apectinomycin, the streptomycin phosphotransferase (SPT) gene conferring resistance to streptomycin, the neomycin phosphotransferase (NPTII) gene conferring resistance to kanamycin or geneticidin, the hygromycinphσsphotransferase (HPT) gene, which confers resistance to hygromycin, the acetolactate synthase gene (ALS), which confers resistance to sulfonylurea herbicides (for example mutated ALS variants with, for example, the S4 and / or Hra mutation).
b) Repor ergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressions- ortes oder -Zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(l):29-44) wie das "green fluore- scence protein" (GFP) (Sheen et al . (1995) Plant Journal 8 (5) :777-784) , die Chloramphenicoltransferase, eine Luzi- ferase (Ow et al. (1986) Science 234:856-859), das Aequorin- Gen (Prasher et al . (1985) Biochem Biophys Res Coπtmun 126 (3) :1259-1268) , die ß-Galactosidase, ganz besonders bevorzugt ist die ß-Glucuronidase (Jefferson et al . (1987) EMBO J 6:3901-3907) .b) Reports which encode easily quantifiable proteins and which, by means of their own color or enzyme activity, ensure an assessment of the transformation efficiency or the place or time of expression. Reporter proteins (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (l): 29-44) such as the "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8 (5): 777-784), the chloramphenicol transferase, a luciferase (Ow et al. (1986) Science 234: 856-859), the aequorin gene (Prasher et al. (1985) Biochem Biophys Res Coπtmun 126 (3): 1259-1268), the β-galactosidase, the β-glucuronidase being very particularly preferred (Jefferson et al. (1987) EMBO J 6: 3901-3907).
c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen transgenen Expressionskonstrukte oder transgenen Expressionsvektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication) , der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) .c) Origins of replication, which ensure an increase in the transgenic expression constructs or transgenic expression vectors according to the invention in, for example, E. coli. Examples are ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sambrook et al .: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
d) Elemente, die für eine Agrobakterium vermittelte Pflanzen- transformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.d) Elements which are required for an agrobacterium-mediated plant transformation, such as, for example, the right or left border of the T-DNA or the vir region.
Zur Selektion erfolgreich homolog rekombinierter oder auch transformierter Zellen ist es in der Regel erforderlich, einen selek- tionierbaren Marker zusätzlich einzuführen, der den erfolgreich rekombinierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid) , einen Metabolismusinhibitor wie 2-Desoxy- glucose-6-phosphat (WO 98/45456) oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al . (1986) Plant Cell Reports 5:81-84) . Zusätzlich können besagte transgene Expressionskonstrukte oder transgenen Expressionsvektoren Nukleinsäuresequenzen enthalten, die nicht für das Proteins kodiert durch SEQ ID NO: 2, ein funktionelles Äquivalent desselben oder ein funktionell äqui- valentes Teil der vorgenannten kodieren, und deren transgene Expression zu einer zusätzlichen Steigerung der Vitamin E-Biosynthese führt (infolge pro-VitE) . Diese zusätzlich transgen exprimierte pro-VitE Nukleinsäuresequenz kann - beispielhaft aber nicht einschränkend - ausgewählt sein aus Nukleinsäuren kodierend für Homogentisatphytyltransferase, 2-Methyl-6-plastochinonmethyl- transferase, Tocopherolcyclase, γ-Tocopherolmethyltransferase, Hydroxyphenylpyruvatdioxygenase, Tyrosinaminotransferase, tyrA, Geranylgeranylpyrophosphatreduktase. Bei den vorgenannten wird der erwünschte Effekt durch eine Überexpression gewährleistet. Jedoch kann ein entsprechender Effekt auch durch Expression einer einer pro-VitE Nukleinsäuresequenz erreicht werden, die z.B. als antisense RNA oder doppelsträngige RNA die Suppression der Expression bestimmter Gene bewirkt. Geeignete Zielgene wären hier - beispielhaft jedoch nicht einschränkend - die Ho ogentisatdi- oxygenase. Entsprechende Sequenzen sind dem Fachmann bekannt und aus Datenbanken oder entsprechenden cDNA-Banken der jeweiligen Pflanzen leicht zugänglich. Dem Fachmann ist bewusst, dass auch mehrere unterschiedliche der oben genannten zusätzlichen Expressionen von pro-VitE Nukleinsäuresequenzen im Rahmen der Erfindung kombiniert werden können.For the selection of successfully homologously recombined or also transformed cells, it is generally necessary to additionally introduce a selectable marker which gives the successfully recombined cells resistance to a biocide (for example a herbicide), a metabolism inhibitor such as 2-deoxyglucose. 6-phosphate (WO 98/45456) or an antibiotic. The selection marker permits the selection of the transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84). In addition, said transgenic expression constructs or transgenic expression vectors can contain nucleic acid sequences which do not code for the protein encoded by SEQ ID NO: 2, a functional equivalent thereof or a functionally equivalent part of the abovementioned, and their transgenic expression for an additional increase in vitamin E. Biosynthesis leads (as a result of pro-VitE). This additionally transgenically expressed pro-VitE nucleic acid sequence can be selected - by way of example but not by way of limitation - from nucleic acids coding for homogentisate phytyltransferase, 2-methyl-6-plastoquinone methyl transferase, tocopherol cyclase, γ-tocopherol methyltransferase, hydroxyphenylpyruvase dioxinase oxygenase. With the aforementioned, the desired effect is ensured by overexpression. However, a corresponding effect can also be achieved by expressing a pro-VitE nucleic acid sequence which, for example as antisense RNA or double-stranded RNA, suppresses the expression of certain genes. Suitable target genes would be - here, by way of example but not restrictive - the ho ogentisate dioxyase. Corresponding sequences are known to the person skilled in the art and are easily accessible from databases or corresponding cDNA banks of the respective plants. The person skilled in the art is aware that several different of the above-mentioned additional expressions of pro-VitE nucleic acid sequences can also be combined within the scope of the invention.
Die Einführung eines erfindungsgemäßen transgenen Expressions- konstruktes in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanz- liehe Zellen, Gewebe, Organe, Teile oder Samen) , kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die transgenen Expressionskonstrukte enthalten sind. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrσ- bacterien sein. Das transgene Expressionskonstrukt kann in den Vektor (bevorzugt ein Plasmidvektor) über eine geeignete Restriktionsschnittstelle eingeführt werden. Der entstandene transgene Expressionsvektor wird zunächst in E.coli eingeführt. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der ko binante Vektor mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu prüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration des transgenen Expressionskonstruktes in das Wirtsgenom ermöglichen.The introduction of a transgenic expression construct according to the invention into an organism or cells, tissues, organs, parts or seeds thereof (preferably in plants or plant-based cells, tissues, organs, parts or seeds) can advantageously be implemented using vectors in which the transgenic expression constructs are contained. Vectors can be, for example, plasmids, cosmids, phages, viruses or agri-bacteria. The transgenic expression construct can be introduced into the vector (preferably a plasmid vector) via a suitable restriction site. The resulting transgenic expression vector is first introduced into E. coli. Correctly transformed E. coli are selected, grown and the combinant vector obtained using methods familiar to the person skilled in the art. Restriction analysis and sequencing can be used to check the cloning step. Preferred vectors are those which enable stable integration of the transgenic expression construct into the host genome.
Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Expressionsvektor), RNA oder Protein in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Trans- fektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al . (1990) Methods in Enzymology 185:527-537) . So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-ent- haltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Ent- sprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al . (1991) Gene 100:247-250; Scheid et al . (1991) Mol Gen Genet 228:104-112; Guerche et al . (1987) Plant Science 52:111-116; Neuhause et al . (1987) Theor Appl Genet 75:30-36; Klein et al . (1987) Nature 327:70-73 ; Howell et al . (1980) Science 208:1265; Horsch et al.(1985) Science 227:1229-1231; DeBlock et al . (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds . ) Academic Press Inc. (1988) ; and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).The production of a transformed organism (or a transformed cell or tissue) requires that the corresponding DNA (eg the expression vector), RNA or protein is introduced into the corresponding host cell. A large number of methods are available for this process, which is referred to as transformation (or transduction or transfection) (Keown et al. (1990) Methods in Enzymology 185: 527-537). For example, the DNA or RNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles. The cell can also be chemically permeabilized, for example with polyethylene glycol, so that the DNA can get into the cell by diffusion. The DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes. Electroporation is another suitable method for introducing DNA in which the cells are reversibly permeabilized by an electrical pulse. Corresponding methods are described (for example in Bilang et al. (1991) Gene 100: 247-250; Scheid et al. (1991) Mol Gen Genet 228: 104-112; Guerche et al. (1987) Plant Science 52: 111-116; Neuhause et al. (1987) Theor Appl Genet 75: 30-36; Klein et al. (1987) Nature 327: 70-73; Howell et al. (1980) Science 208: 1265; Horsch et al. (1985) Science 227: 1229-1231; DeBlock et al. (1989) Plant Physiology 91: 694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).
Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnähme, das biolistische Verfahren mit der Genkanone, die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung und die Mikroinjektion.In plants, the methods described for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are used. Suitable methods include protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene gun, the so-called "particle bombardment" method, electroporation, the incubation of dry embryos in DNA-containing solution and microinjection.
Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden. Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen geeignet. Die Verfahren sind beispielsweise beschrieben bei Horsch RB et al . (1985) Science 225: 1229f) .In addition to these "direct" transformation techniques, a transformation can also be carried out by bacterial infection using Agrobacterium tumefaciens or Agrobacterium rhizogenes. The Agrobacterium -mediated transformation is best suited for dicotyledonous plant cells. The methods are described, for example, by Horsch RB et al. (1985) Science 225: 1229f).
Werden Agrobacterien verwendet, so ist das transgene Expressions- konstrukt in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: Shuttle or intermediate vector) oder einen binären Vektor. Wird ein Ti oder Ri Plasmid zur Trans- formation verwendet werden soll, ist zumindest die rechte Begrenzung, meistens jedoch die rechte und die linke Begrenzung der Ti oder Ri Plasmid T-DNA als flankierende Region mit dem einzuführenden transgenen Expressionskonstrukt verbunden.If Agrobacteria are used, the transgenic expression construct is to be integrated into special plasmids, either into a shuttle or intermediate vector or a binary vector. If a Ti or Ri plasmid is used for trans formation is to be used, at least the right border, but mostly the right and the left border of the Ti or Ri plasmid T-DNA as flanking region is connected to the transgenic expression construct to be introduced.
Bevorzugt werden binäre Vektoren verwendet. Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz . Sie können direkt in Agrobacterium transformiert werden (Holsters et al. (1978) Mol Gen Genet 163:181-187). Das Selektionsmarkergen erlaubt eine Selektion transformierter Agrobakteria und ist zum Beispiel das nptll Gen, das eine Resistenz gegen Kanamycin verleiht. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V. , Alblasserdam, Chapter V; An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Bei- spiel pBI101.2 oder pBIN19 (Clontech Laboratories, Inc. USA).Binary vectors are preferably used. Binary vectors can replicate in both E.coli and Agrobacterium. They usually contain a selection marker gene and a linker or polylinker flanked by the right and left T-DNA restriction sequences. They can be transformed directly into Agrobacterium (Holsters et al. (1978) Mol Gen Genet 163: 181-187). The selection marker gene allows selection of transformed agrobacteria and is, for example, the nptll gene which confers resistance to kanamycin. The Agrobacterium, which acts as the host organism in this case, should already contain a plasmid with the vir region. This is necessary for the transfer of the T-DNA to the plant cell. An Agrobacterium transformed in this way can be used to transform plant cells. The use of T-DNA for the transformation of plant cells has been intensively investigated and described (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters BV, Alblasserdam, Chapter V; An et al. (1985) EMBO J 4: 277-287). Various binary vectors are known and some are commercially available, for example pBI101.2 or pBIN19 (Clontech Laboratories, Inc. USA).
Weitere zur Expression in Pflanzen geeignet Promotoren sind beschrieben (Rogers et al . (1987) Meth in Enzymol 153:253-277; Schardl et al . (1987) Gene 61:1-11; Berger et al. (1989) Proc Natl Acad Sei USA 86:8402-8406).Further promoters suitable for expression in plants are described (Rogers et al. (1987) Meth in Enzymol 153: 253-277; Schardl et al. (1987) Gene 61: 1-11; Berger et al. (1989) Proc Natl Acad Be USA 86: 8402-8406).
Direkte Transformationstechniken eignen sich für jeden Organismus und Zelltyp. Im Falle von Injektion oder Elektroporation von DNA bzw. RNA in pflanzliche Zellen sind keine besonderen Anforderungen an das verwendete Plasmid gestellt.Direct transformation techniques are suitable for every organism and cell type. In the case of injection or electroporation of DNA or RNA into plant cells, there are no special requirements for the plasmid used.
Einfache Plasmide wie die der pUC-Reihe können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist er erforderlich, das sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet.Simple plasmids such as the pUC series can be used. If complete plants are to be regenerated from the transformed cells, it is necessary that there is an additional selectable marker gene on the plasmid.
Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionier- barer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide (wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin etc.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbizides zu überleben, die einen untransformier en Wildtyp abtöten. Beispiel sind oben genannt und umfassen bevorzugt das bar Gen, dass Resistenz gegen das Herbizid Phosphinotricin verleiht (Rathore KS et al . (1993) Plant Mol Biol 21 (5) :871-884) , das nptll Gen, dass Resistenz gegen Kanamycin verleiht, das hpt Gen, das Resistenz gegen Hygromycin verleiht, oder das EPSP-Gen, das Resistenz gegen das Herbizid Glyphosat verleiht. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCormick et al . (1986) Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.Stably transformed cells, ie those which contain the inserted DNA integrated into the DNA of the host cell, can be selected from untransformed cells if a selectable marker is part of the inserted DNA. Any gene that can confer resistance to antibiotics or herbicides (such as kanamycin, G 418, bleomycin, hygromycin or phosphinotricin etc.) can act as a marker (see above). Transformed cells that express such a marker gene are able to survive in the presence of concentrations of an appropriate antibiotic or herbicide that kill an untransformed wild type. Examples are mentioned above and preferably comprise the bar gene which confers resistance to the herbicide phosphinotricin (Rathore KS et al. (1993) Plant Mol Biol 21 (5): 871-884), the nptll gene which confers resistance to kanamycin, the hpt gene, which confers resistance to hygromycin, or the EPSP gene, which confers resistance to the herbicide glyphosate. The selection marker allows the selection of transformed cells from untransformed ones (McCormick et al. (1986) Plant Cell Reports 5: 81-84). The plants obtained can be grown and crossed in a conventional manner. Two or more generations should be cultivated to ensure that genomic integration is stable and inheritable.
Die oben genannten Verfahren sind beispielsweise beschrieben in Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S.128-143 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225). Vorzugsweise wird das zu transgene Expressionskonstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al . (1984) Nucl Acids Res 12:8711f).The above-mentioned methods are described, for example, in Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R Wu, Academic Press, p.128-143 and in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42: 205-225). The expression construct to be transgenic is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al. (1984) Nucl Acids Res 12: 8711f).
Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden.Once a transformed plant cell has been made, a whole plant can be obtained using methods known to those skilled in the art. This is based on the example of callus cultures. The formation of shoots and roots can be induced in a known manner from these still undifferentiated cell masses. The sprouts obtained can be planted out and grown.
Dem Fachmann sind such Verfahren bekannt, um aus Pflanzenzellen, Pflanzenteile und ganze Pflanzen zu regenerieren. Beispielsweise werden hierzu Verfahren beschrieben von Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al . (1994) Theor Appl Genet 89:525-533 ver- wendet.Methods are known to the person skilled in the art to regenerate from plant cells, plant parts and whole plants. For example, methods for this are described by Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14: 273-278; Jahne et al. (1994) Theor Appl Genet 89: 525-533.
"Transgen" meint - zum Beispiel bezüglich einer Nukleinsäuresequenz, einem Expressionskonstrukt oder einem Expressionsvektor enthaltend besagte Nukleinsäuresequenz oder einem Organismus transformiert mit besagter Nukleinsäuresequenz, Expressionskonstrukt oder Expressionsvektor - alle solche durch gen- technische Methoden zustandegekommene Konstruktionen, in denen sich entweder"Transgene" means - for example with respect to a nucleic acid sequence, an expression construct or an expression vector containing said nucleic acid sequence or an organism transformed with said nucleic acid sequence, expression construct or expression vector - all such by gene technical methods of constructions, in which either
a) die Nukleinsäuresequenz kodierend für ein Tocen-1 Protein 5 gemäß SEQ ID NO: 2, ein funktiσnelles Äquivalent desselben oder ein funktionell äquivalentes Teil der vorgenannten, odera) the nucleic acid sequence coding for a Tocen-1 protein 5 according to SEQ ID NO: 2, a functional equivalent thereof or a functionally equivalent part of the aforementioned, or
b) eine mit besagter Nukleinsäuresequenz unter a) funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel einb) a genetic control sequence functionally linked to said nucleic acid sequence under a), for example a
10 Promotor, oder10 promoter, or
c) (a) und (b)c) (a) and (b)
sich nicht in ihrer natürlichen, genetischen Umgebung befindenare not in their natural, genetic environment
15 oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus15 or have been modified by genetic engineering methods, the modification being, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues. Natural genetic environment means the natural chromosomal locus in the organism of origin
20 oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens20 or being in a genomic library. In the case of a genomic library, the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least
25 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommendes Expressionskonstrukt - beispielsweise die natürlich vorkommende Kombination des Promotors eines Gens kodierend für ein Protein gemäß SEQ ID NO: 2 oder25 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp. A naturally occurring expression construct - for example the naturally occurring combination of the promoter of a gene coding for a protein according to SEQ ID NO: 2 or
30 ein funktionelles Äquivalent desselben mit seinen entsprechenden kodierenden Sequenzen wird zu einem transgenen Expressionskonstrukt, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sindA functional equivalent thereof with its corresponding coding sequences becomes a transgenic expression construct if it is changed by non-natural, synthetic ("artificial") methods such as mutagenization. Appropriate procedures are
35 beschrieben (US 5,565,350; WO 00/15815; siehe auch oben).35 (US 5,565,350; WO 00/15815; see also above).
"Transgen" meint in Bezug auf eine Expression ("transgene Expression") bevorzugt all solche unter Einsatz eines transgenen Expressionskonstruktes, transgenen Expressionsvektor oder trans- 40 genen Organismus - entsprechend dem oben gegebenen Definitionen - realisierten Expressionen.In relation to expression (“transgenic expression”), “transgene” preferably means all those expressions realized using a transgenic expression construct, transgenic expression vector or transgenic organism — according to the definitions given above.
Als transgene Organismen bevorzugte Wirts- oder Ausgangsorganismen sind vor allem pflanzliche Organismen gemäß der oben 45 genannten Definition. Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches, insbesondere Pflanzen, die für die Gewinnung von Ölen verwendet werden wie beispielsweise Raps, Sonnenblume, Sesam, Färberdistel, Ölbaum, Soja, Mais, Weizen und Nussarten. Eingeschlossen sind ferner die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut und Kulturen, zum Beispiel Zellkulturen. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen EntwicklungsStadium.Preferred host or starting organisms as transgenic organisms are, above all, plant organisms as defined above. Included within the scope of the invention are all genera and species of higher and lower plants in the plant kingdom, in particular plants which are intended for production oils such as rapeseed, sunflower, sesame, safflower, olive tree, soybean, corn, wheat and types of nuts are used. Also included are the mature plants, seeds, sprouts and seedlings, as well as parts, propagation material and cultures derived from them, for example cell cultures. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
Die Herstellung der transgenen Organismen kann mit den oben beschriebenen Verfahren zur Transformation oder Transfektion von Organismen realisiert werden.The production of the transgenic organisms can be carried out using the processes described above for the transformation or transfection of organisms.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.-, und transgenes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien, insbesondere von Vitamin E oder Vitamin E- Derivaten wie beispielsweise Vitamin E Acetat. Another object of the invention relates to the use of the transgenic organisms according to the invention and the cells, cell cultures, parts derived from them - such as roots, leaves, etc. in transgenic plant organisms - and transgenic propagation material such as seeds or fruits, for the production of food - or feed, pharmaceuticals or fine chemicals, especially of vitamin E or vitamin E derivatives such as vitamin E acetate.
Sequenzensequences
1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für das Tocen-11. SEQ ID NO: 1 nucleic acid sequence coding for Tocen-1
Proteinprotein
22. SEQ ID NO: 2 Proteinsequenz kodierend für das Tocen-122. SEQ ID NO: 2 protein sequence coding for Tocen-1
Proteinprotein
23. SEQ ID NO: 3 Oligonukleotidprimer sll0832-5v 23. SEQ ID NO: 3 oligonucleotide primers sll0832-5 v
24. SEQ ID NO: 4 Oligonukleotidprimer sll0832-3 v 24. SEQ ID NO: 4 oligonucleotide primers sll0832-3 v
25. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für das25. SEQ ID NO: 5 nucleic acid sequence coding for the
Sall-PacI-ocs-Hindlll SequenzfragmentSall-PacI-ocs-HindIII sequence fragment
26. SEQ ID NO: 6 Oligosequenz kodierend für den sense-Strang eines Swal-Linkers26. SEQ ID NO: 6 oligo sequence coding for the sense strand of a swal linker
27. SEQ ID NO: 7 Oligosequenz kodierend für den antisense-27. SEQ ID NO: 7 oligo sequence coding for the antisense
Strang eines Swal-LinkersSwal linker strand
28. SEQ ID NO: 8 Nukleinsäuresequenz kodierend für den28. SEQ ID NO: 8 nucleic acid sequence coding for the
Expressionsvektor pSUN2-lExpression vector pSUN2-l
29. SEQ ID NO: 9 Nukleinsäuresequenz kodierend für das rbcS-29. SEQ ID NO: 9 nucleic acid sequence coding for the rbcS
Transitpeptidtransit peptide
30. SEQ ID NO: 10 Nukleinsäuresequenz kodierend für den30. SEQ ID NO: 10 nucleic acid sequence coding for the
Expressionsvektor pSUN2-2Expression vector pSUN2-2
31. SEQ ID NO: 11 Oligonukleotidprimer 0832exl-5, 31. SEQ ID NO: 11 oligonucleotide primer 0832exl-5 ,
32. SEQ ID NO: 12 Oligonukleotidprimer 0832exl-3'32. SEQ ID NO: 12 oligonucleotide primer 0832exl-3 '
33. SEQ ID NO: 13 Nukleinsäuresequenz kodierend für den33. SEQ ID NO: 13 nucleic acid sequence coding for the
Nitrilase-1 Promotor aus A.thalianaA. thaliana nitrilase-1 promoter
34. SEQ ID NO: 14 Nukleinsäuresequenz kodierend für den transgenen Expressionsvektor pSUN2/NitP/ sll0832/ocs 35. SEQ ID NO: 15 Nukleinsäuresequenz kodierend für den transgenen Expressionsvektor pSUN2/NitP/rbcS/sll0832/ocs34. SEQ ID NO: 14 nucleic acid sequence coding for the transgenic expression vector pSUN2 / NitP / sll0832 / ocs 35. SEQ ID NO: 15 nucleic acid sequence coding for the transgenic expression vector pSUN2 / NitP / rbcS / sll0832 / ocs
^ 36. SEQ ID NO: 16 Nukleinsäuresequenz kodierend für den ÜSP-^ 36. SEQ ID NO: 16 nucleic acid sequence coding for the ÜSP-
Promotor aus Vicia faba in pUC-VektorVicia faba promoter in pUC vector
37. SEQ ID NO: 17 Oligonukleotidprimer sll0832ex2-5 λ 037. SEQ ID NO: 17 oligonucleotide primer sll0832ex2-5 λ 0
38. SEQ ID NO: 18 Oligonukleotidprimer Sll0832ex2-3 λ 38. SEQ ID NO: 18 oligonucleotide primer Sll0832ex2-3 λ
39. SEQ ID NO: 19 Nukleinsäuresequenz kodierend für den transgenen Expressionsvektor 5 pSUN2-ÜSP-sll0832-catT39. SEQ ID NO: 19 nucleic acid sequence coding for the transgenic expression vector 5 pSUN2-ÜSP-sll0832-catT
40. SEQ ID NO: 20 Nukleinsäuresequenz kodierend für das rbcS-40. SEQ ID NO: 20 nucleic acid sequence coding for the rbcS
MCS-OCS-Fragment (rbs: rbs-Transitpeptid; MCS: Multiple Klonierungsstelle; OCS: 0 Terminationssignal des Octopin-Synthase Gens.MCS-OCS fragment (rbs: rbs transit peptide; MCS: multiple cloning site; OCS: 0 termination signal of the octopine synthase gene.
41. SEQ ID NO: 21 Nukleinsäuresequenz kodierend für den transgenen Expressionsvektor pSUN2/USP/rbcS/sll0832/ocs 541. SEQ ID NO: 21 nucleic acid sequence coding for the transgenic expression vector pSUN2 / USP / rbcS / sll0832 / ocs 5
Abbildungenpictures
Fig. 1: Konstruktkarte von pCR-Script/sll0832Fig. 1: pCR-Script / sll0832 construct card
"A" representiert das für Tocen-1 kodierende DNA-Fragment 0 (456 Basenpaare)"A" represents the DNA fragment 0 coding for Tocen-1 (456 base pairs)
Fig. 2: Konstruktkarte von pCR-Script/sll0832: :tn903Fig. 2: Construct card from pCR-Script / sll0832:: tn903
Fragment A' (268 Basenpaare) beinhaltet den 5 '-Bereich von Tocen-1, Fragment B das Transposon 903 (1286 Basen5 paare) und Fragment 'A (194 Basenpaare) den 3V -Bereich von Tocen-1. Die Kanamycin-Kassette des tn903 inserierte in pCR-Script/sll0832 derart, dass die Transkription des Kanamycinresistenzgens des Tn903 in entgegengesetzter Richtung zur Transkription des offenen Leserasters von 0 Tocen-1 verläuft.Fragment A '(268 base pairs) contains the 5' region of Tocen-1, fragment B the transposon 903 (1286 base 5 pairs) and fragment 'A (194 base pairs) the 3 V region of Tocen-1. The kanamycin cassette of the tn903 inserted in pCR-Script / sll0832 in such a way that the transcription of the kanamycin resistance gene of the Tn903 runs in the opposite direction to the transcription of the open reading frame from 0 Tocen-1.
Fig. 3: Tocopherolproduktion in Synechocystis/sll0832 : : tn903 Zwei unabhängige Tocen-1 Knockout Mutanten (1 und 2) zeigten im Vergleich zu den Synechocystis spec. PCC 6803 5 Wildtypzellen (WT) eine signifikante Verminderung in der Tocopherol- und Tocotrienolproduktion. Fig. 4: Konstrukkarte von pSUN2/NitP/sll0832/ocs (SEQ ID No: 14) Fragment "A" (1894 bp) : Nitrilase-1 Promotor Fragment "B" (456 Bp) : offenes Leseraster von Tocen-1 Fragment "C" (219 Bp) : Terminationssignal des Octopin- Synthase Gens .Fig. 3: Tocopherol production in Synechocystis / sll0832:: tn903 Two independent Tocen-1 knockout mutants (1 and 2) showed in comparison to the Synechocystis spec. PCC 6803 5 wild-type cells (WT) showed a significant reduction in tocopherol and tocotrienol production. 4: construct map of pSUN2 / NitP / sll0832 / ocs (SEQ ID No: 14) fragment "A" (1894 bp): nitrilase-1 promoter fragment "B" (456 bp): open reading frame of Tocen-1 fragment " C "(219 bp): termination signal of the octopine synthase gene.
Fig. 5: Konstruktkarte von pSÜN2/NitP/rbcS/sll0832/ocsFig. 5: pSÜN2 / NitP / rbcS / sll0832 / ocs construct map
Fragment "A" (1894 bp Nitrilase-1 PromoterFragment "A" (1894 bp nitrilase-1 promoter
Fragment "B" (167 bp) Fragment kodierend für das rbcS TransitpeptidFragment "B" (167 bp) fragment coding for the rbcS transit peptide
Fragment "C" (456 bp) offenes Leseraster von Tocen-1Fragment "C" (456 bp) open reading frame of Tocen-1
Fragment "D" (219 bp) Terminationssignal des Octopin- Synthase Gens .Fragment "D" (219 bp) termination signal of the octopine synthase gene.
Fig. 6: Konstruktkarte von pSUN2/USP/sll0832/3 ΛcatFig. 6: construct card from pSUN2 / USP / sll0832 / 3 Λ cat
Fragment "A" (674 bp) : Promotor des USP Gens aus Vicia faba Fragment "B" (456 Bp) : offenes Leseraster von Tocen-1 Fragment "C" (229 Bp) : Terminationssignal des Cathepsin D Inhibitor Gens .Fragment "A" (674 bp): promoter of the USP gene from Vicia faba fragment "B" (456 bp): open reading frame of Tocen-1 fragment "C" (229 bp): termination signal of the cathepsin D inhibitor gene.
Fig. 7: Konstrukkarte von pSUN2/USP/rbcS/sll0832/ocsFig. 7: Construction card of pSUN2 / USP / rbcS / sll0832 / ocs
Fragment "A" (674 bp) : Promotor des USP Gens aus Vicia faba Fragment "B" (174 Bp) : Fragment kodierend für das rbcSFragment "A" (674 bp): promoter of the USP gene from Vicia faba Fragment "B" (174 bp): fragment coding for the rbcS
Transitpeptiddas Fragment C (459 Bp) : offenes Leseraster von Tocen-1 Fragment D (219 Bp) : Terminationssignal des Octopin-Transit peptide fragment C (459 bp): open reading frame of Tocen-1 fragment D (219 bp): termination signal of the octopine
Synthase Gens .Synthase gene.
BeispieleExamples
Alle Chemikalien, wenn nicht anders erwähnt, stammen von den Firmen Fluka (Buchs) , Merck (Darmstadt) , Roth (Karlsruhe) , Serva (Heidelberg) und Sigma (Deisenhofen) . Restriktionsenzyme, DNA- modifizierende Enzyme und Molekularbiologie-Kits wurden von den Firmen Amersham-Pharmacia (Freiburg) , Biometra (Göttingen) , Röche (Mannheim) , New England Biolabs (Schwalbach) , Novagen (Madison, Wisconsin, USA) , Perkin-Elmer (Weiterstadt) , Qiagen (Hilden) , Stratagen (Amsterdam, Niederlande) , Invitrogen (Karlsruhe) und Ambion (Cambridgeshire, United Kingdom) . Die verwendeten Reagenzien wurden entsprechend der Angaben des Herstellers eingesetzt.Unless otherwise stated, all chemicals come from the companies Fluka (Buchs), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) and Sigma (Deisenhofen). Restriction enzymes, DNA-modifying enzymes and molecular biology kits were made by Amersham-Pharmacia (Freiburg), Biometra (Göttingen), Röche (Mannheim), New England Biolabs (Schwalbach), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Qiagen (Hilden), Stratagen (Amsterdam, Netherlands), Invitrogen (Karlsruhe) and Ambion (Cambridgeshire, United Kingdom). The reagents used were used according to the manufacturer's instructions.
Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungs- schritte wie z.B. Restriktionsspaltungen, Agarosegelelektro- phorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden wie bei Sambrook et al . (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al . (1977) Proc Natl Acad Sei USA 74:5463- 5467) .The chemical synthesis of oligonucleotides can be carried out, for example, in a known manner using the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897). The Cloning steps carried out in the context of the present invention, such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of Phage and sequence analysis of recombinant DNA are carried out as in Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6. The sequencing of recombinant DNA molecules takes place with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc Natl Acad Sei USA 74: 5463- 5467).
Beispiel 1 : Allgemeine VerfahrenExample 1: General procedures
Die Pflanze Arabidopsis thaliana repräsentiert ein Mitglied der höheren Pflanzen (Samenpflanzen) . Diese Pflanze ist eng verwandt mit anderen Pflanzenarten aus der Familie der Cruciferen wie z.B. Brassica napus, aber auch mit anderen Pflanzenfamilien der Dikotyledonen. Aufgrund des hohen Grades an Homologie ihrer DNA-Sequenzen bzw. Polypeptidsequenzen kann Arabidopsis thaliana als Modellpflanze für andere Pflanzenarten eingesetzt werden.The Arabidopsis thaliana plant represents a member of the higher plants (seed plants). This plant is closely related to other plant species from the cruciferous family such as Brassica napus, but also with other dicotyledonous plant families. Due to the high degree of homology of their DNA sequences or polypeptide sequences, Arabidopsis thaliana can be used as a model plant for other plant species.
a) Anzucht von Arabidopsis Pflanzena) Cultivation of Arabidopsis plants
Die Pflanzen werden entweder auf Murashige-Skoog Medium mit 0,5 % Saccharose (Ogas et al . (1997) Science 277:91-94) oder auf Erde gezogen (Focks & Benning (1998) Plant Physiol 118:91-101). Um einheitliche Keimungs- und Blühzeiten zu erreichen, werden die Samen nach Ausplattieren bzw. Ausstreuen auf Erde zwei Tage bei 4°C stratifiziert . Nach der Blüte werden die Schoten markiert. Entsprechend der Markierungen werden dann Schoten mit einem Alter von 6 bisThe plants are grown either on Murashige-Skoog medium with 0.5% sucrose (Ogas et al. (1997) Science 277: 91-94) or on earth (Focks & Benning (1998) Plant Physiol 118: 91-101). In order to achieve uniform germination and flowering times, the seeds are stratified at 4 ° C for two days after plating or scattering on earth. After flowering, the pods are marked. According to the markings, pods with an age of 6 to
20 Tagen nach der Blüte geerntet.Harvested 20 days after flowering.
b) Anzucht von Synechocystisb) Cultivation of Synechocystis
Die Zellen von Synechocystis sp. PCC 6803 werden in BGll-Medium normalerweise autotroph kultiviert. Sie haben einen Durchmesser von 2,3 bis 2,5 μm. Bei den hier geschilderten Untersuchungen wurde der Cyanobakterium Synechocystis sp. PCC 6803 Stamm aus der Sammlung von Prof. Dr. Peter Wölk und Prof. Dr. 'Lee Mclntosh (Plant Research Laboratory, Michigan State University, East Lansing,The cells of Synechocystis sp. PCC 6803 are usually grown autotrophically in BGII medium. They have a diameter of 2.3 to 2.5 μm. In the investigations described here, the cyanobacterium Synechocystis sp. PCC 6803 strain from the collection of Prof. Dr. Peter Wölk and Prof. Dr. 'Lee Mclntosh (Plant Research Laboratory, Michigan State University, East Lansing,
Michigan, USA) eingesetzt. Dieser ist Glukose-tolerant, d.h. er kann auch heterotroph im Dunkeln, mit nur wenigen Minuten schwacher Blaulicht-Beleuchtung pro Tag, wachsen. Diese Kulturbedingungen wurden von Anderson und Mcintosh (Anderson und Mcintosh (1991) J Bacteriol 173:2761-2767) entwickelt und "Light-activated heterotrophic growth" (LAHG) genannt. Damit ist es möglich, diese Cyanobakterien ohne laufende Photo- synthese und damit ohne Produktion von Sauerstoff zu kultivieren.Michigan, USA). This is glucose tolerant, which means that it can also be heterotrophic in the dark with just a few minutes dim blue light lighting a day, grow. These culture conditions were developed by Anderson and Mcintosh (Anderson and Mcintosh (1991) J Bacteriol 173: 2761-2767) and called "Light-activated heterotrophic growth" (LAHG). This makes it possible to cultivate these cyanobacteria without ongoing photosynthesis and thus without the production of oxygen.
BG 11 Kulturmedium für Synechocystis Stammlösung 100 x BGll:BG 11 culture medium for Synechocystis stock solution 100 x BGll:
NaN03 1,76 M = 149,58 gNaN0 3 1.76 M = 149.58 g
MgS04 x 7 H0 30,4 mM = 7,49 gMgSO 4 x 7 HO 30.4 mM = 7.49 g
CaCl2 x 2 H20 24,5 mM = 3,6 gCaCl 2 x 2 H 2 0 24.5 mM = 3.6 g
Zitronensäure 3 , 12 M = 0 , 6 g Na EDTA pH 8 0,279 mM = 0,104 gCitric acid 3.12 M = 0.6 g Na EDTA pH 8 0.279 mM = 0.104 g
Die abgewogenen Substanzen werden in 900 ml H0 gelöst und mit 100 ml des "Trace metal mix stock" lOOOx auf 1000 ml aufgefüllt. Diese gewonnene Lösung dient als Stammlösung.The weighed substances are dissolved in 900 ml H0 and made up to 1000 ml with 100 ml of the "Trace metal mix stock" 100,000. This obtained solution serves as a stock solution.
Trace metall mix stock lOOOx:Trace metal mix stock lOOOx:
H3B03 46,3 mM= 2,86 g/1H 3 B0 3 46.3 mM = 2.86 g / 1
MnCl2 x 4 H20 4,15 mM= 1,81 g/1MnCl 2 x 4 H 2 0 4.15 mM = 1.81 g / 1
ZnS04 x 7 H20 0,77mM= 0.222 g/1 Na2Mo04 x 2 H20 1,61 mM= 0,39 g/1ZnS0 4 x 7 H 2 0 0.77mM = 0.222 g / 1 Na 2 Mo0 4 x 2 H 2 0 1.61 mM = 0.39 g / 1
CuS04 x 5 H20 0,32 mM= 0,079 g/1CuS0 4 x 5 H 2 0 0.32 mM = 0.079 g / 1
Co (N03)2 x 6 H20 0,17 mM= 0,0494 g/1Co (N0 3 ) 2 x 6 H 2 0 0.17 mM = 0.0494 g / 1
Für 1 Liter BGll Kulturlösung werden folgende Lösungen benötigt:The following solutions are required for 1 liter of BGll culture solution:
1. 10 ml der Stammlösung 100 x BG 111. 10 ml of the stock solution 100 x BG 11
2. 1 ml Na2C03 (189 mM)2. 1 ml Na 2 CO 3 (189 mM)
3. 5 ml TES (1 M, pH 8)3.5 ml TES (1 M, pH 8)
4. 1 ml K2P04 (175 mM)4.1 ml K 2 P0 4 (175 mM)
Während Lösung 2. und 3. steril filtriert werden sollten, muss Lösung 4 autoklaviert werden. Die gesamte BGll Kulturlösung muß vor Gebrauch autoklaviert und anschließend mit 1 ml Eisen-Amonium-Citrat (6 mg/ml) , das zuvor steril filtriert wurde, versetzt werden. Das Eisen-Ammonium-Citrat sollte auf keinen Fall autoklaviert werden. Für Agarplatten werden 1,5 % (w/v) Bactoagar pro Liter BGll Medium zugesetzt. Beispiel 2 : Amplifikation und Klonierung von Tocen-1 aus Synechocystis spec. PCC 6803While solution 2 and 3 should be sterile filtered, solution 4 must be autoclaved. All of the BGII culture solution must be autoclaved before use and then 1 ml of iron ammonium citrate (6 mg / ml), which has previously been sterile filtered, must be added. Under no circumstances should the iron ammonium citrate be autoclaved. For agar plates, 1.5% (w / v) Bactoagar per liter of BGII medium is added. Example 2: Amplification and cloning of Tocen-1 from Synechocystis spec. PCC 6803
Die DNA kodierend für Tocen-1 wurde mittels "Polymerase Chain 5 Reaction" (PCR) aus Synechocystis spec. PCC 6803 gemäß der Methode nach Crispin A. Howitt (Howitt CA (1996) BioTechniques 21:32-34) unter Verwendung eines sense spezifischen Primers (sll0832-5'; SEQ ID NO: 3) und eines antisense spezifischen Primers (sll0832-3 ' ; SEQ IDNO: 4) amplifiziert. 10The DNA coding for Tocen-1 was by means of "Polymerase Chain 5 Reaction" (PCR) from Synechocystis spec. PCC 6803 according to the method according to Crispin A. Howitt (Howitt CA (1996) BioTechniques 21: 32-34) using a sense-specific primer (sll0832-5 '; SEQ ID NO: 3) and an antisense-specific primer (sll0832-3 '; SEQ IDNO: 4) amplified. 10
Primer sll0832-5' :Primer sll0832-5 ':
5 ' -GGATCCATGGGACGTTGGCCCACTGG-3 ' (SEQ ID NO: 3)5 '-GGATCCATGGGACGTTGGCCCACTGG-3' (SEQ ID NO: 3)
Primer sll0832-3': 15 5 ' -GTCGACCTAGCAACGGCCGCTATCC-3 ' (SEQ ID NO: 4)Primer sll0832-3 ': 15 5' -GTCGACCTAGCAACGGCCGCTATCC-3 '(SEQ ID NO: 4)
Die PCR erfolgte in einem 50 μl Reaktionsansatz in dem enthalten war:The PCR was carried out in a 50 μl reaction mixture which contained:
20 5 μl einer Synechocystis spec. PCC 6803 Zellsuspension20 5 μl of a Synechocystis spec. PCC 6803 cell suspension
0,2 mM dATP, dTTP, dGTP, dCTP0.2mM dATP, dTTP, dGTP, dCTP
1,5 mM Mg(0Ac)2 1.5 mM Mg (0Ac) 2
5 μg Rinderserum-Albumin5 μg bovine serum albumin
40 p ol Oligonukleotidprimer sll0832-5'40 p ol oligonucleotide primer sll0832-5 '
25 40 pmol Oligonukleotidprimer sll0832-3'25 40 pmol oligonucleotide primer sll0832-3 '
15 μl 3,3X rTth DNA Polymerase XLPuffer (PE Applied Biosystems)15 μl 3.3X rTth DNA Polymerase XL buffer (PE Applied Biosystems)
5U rTth DNA Polymerase XL (PE Applied Biosystems)5U rTth DNA Polymerase XL (PE Applied Biosystems)
30 Die PCR wurde unter folgenden Zyklus-Bedingungen durchgeführt:30 The PCR was carried out under the following cycle conditions:
Schritt 1: 5 Minuten 94°C (Denaturierung)Step 1: 5 minutes 94 ° C (denaturation)
Schritt 2: 3 Sekunden 94°CStep 2: 3 seconds at 94 ° C
Schritt 3: 1 Minuten 52°C (Annealing)Step 3: 1 minute 52 ° C (annealing)
Schritt 4: 1 Minuten 72°C (Elongation) 35 35 Wiederholungen der Schritte 2 bis 4Step 4: 1 minute 72 ° C (elongation) 35 35 repetitions of steps 2 to 4
Schritt 5: 10 Minuten 72°C (Post-Elongation)Step 5: 10 minutes 72 ° C (post-elongation)
Schritt 6: 4°C (Warteschleife)Step 6: 4 ° C (holding pattern)
Das Amplifikat (468 Basenpaare) wurde unter Verwendung von 40 Standardmethoden in den PCR Klonierungsvektor pCR-Script (Stratagene) kloniert. Das Konstrukt hat die Bezeichnung pCR-Script/sll0832. Die Identität des erzeugten Amplikons wurde durch Sequenzierung unter Verwendung des T3- und des T7-Primers bestätigt (vgl. SEQ ID NO: 1). Fig. 1 stellt pCR- 45 Script/sll0832 dar, wobei "A" das für Tocen-1 kodierende DNA- Fragment (456 Basenpaare) representiert. Beispiel 2 : Erzeugung einer Tocen-1 Knock out MutanteThe amplificate (468 base pairs) was cloned into the PCR cloning vector pCR-Script (Stratagene) using 40 standard methods. The construct is called pCR-Script / sll0832. The identity of the amplicon generated was confirmed by sequencing using the T3 and T7 primers (cf. SEQ ID NO: 1). Figure 1 illustrates pCR-45 Script / sll0832, where "A" represents the Tocen-1 coding DNA fragment (456 base pairs). Example 2: Generation of a Tocen-1 knock out mutant
Ein DNA Konstrukt zur Erzeugung einer Deletionsmutante von Tocen-1 in Synechocystis spec. PCC 6803 wurde unter Anwendung von Standardklonierungstechniken erzeugt. Der Vektor pCR-Script/ sll0832 wurde unter Verwendung des Restriktionsenzyms Ncol partiell verdaut und die überstehenden Enden des Restriktionsverdaus nach Standardmethoden in glatte Enden überführt. In die mit stumpfen Enden versehene Ncol Schnittstelle des offenen Lese- rasters von Tocen-1 wurde die Aminoglycosid-3 'Phosphotransferase des Transposons Tn903 kloniert. Dazu wurde das Tn903 als EcoRI Fragment aus dem Vektor pUC4K (Vieira J und Messing J (1982) Gene 19:259-268) isoliert, die überstehenden Enden des Restriktionsverdaus nach Standardmethoden in glatte Enden überführt und in den Ncol geschnittenen Vektor pCR-Script/sll0832 ligiert (Ncol mit geglätteten Enden) . Der Ligationsansatz wurde zur Transformation von E. coli Xll Blue Zellen verwendet. Transformanden wurden durch Verwendung von Kanamycin und Ampicillin selektio- niert. Ein rekombinantes Plasmid (pCR-Script/sll0832: : tn903 ; siehe Fig. 2) wurde isoliert und zur Transformation von Synechocystis spec. PCC 6803 gemäß der Methode nach Williams (Williams (1987) Methods Enzymol 167:776-778) eingesetzt.A DNA construct for the generation of a deletion mutant of Tocen-1 in Synechocystis spec. PCC 6803 was created using standard cloning techniques. The vector pCR-Script / sll0832 was partially digested using the restriction enzyme Ncol and the protruding ends of the restriction digest were blunt-ended using standard methods. The aminoglycoside-3 'phosphotransferase of the transposon Tn903 was cloned into the blunt-ended Ncol site of the open reading frame of Tocen-1. For this purpose, the Tn903 was isolated as an EcoRI fragment from the vector pUC4K (Vieira J and Messing J (1982) Gene 19: 259-268), the protruding ends of the restriction digest were converted into smooth ends according to standard methods and the vector pCR-Script / sll0832 ligated (Ncol with smooth ends). The ligation approach was used to transform E. coli Xll Blue cells. Transformants were selected using kanamycin and ampicillin. A recombinant plasmid (pCR-Script / sll0832:: tn903; see Fig. 2) was isolated and used to transform Synechocystis spec. PCC 6803 used according to the Williams method (Williams (1987) Methods Enzymol 167: 776-778).
Die Kanamycin-Kassette des tn903 inserierte in pCR-Script/sll0832 derart, dass die Transkription des Kanamycinresistenzgens desThe kanamycin cassette of the tn903 inserted in pCR-Script / sll0832 in such a way that the transcription of the kanamycin resistance gene of the
Tn903 in entgegengesetzter Richtung zur Transkription des offenen Leserasters von Tocen-1 verläuft.Tn903 runs in the opposite direction to the transcription of the open reading frame of Tocen-1.
In Fig. 2 beinhaltet Fragment A' (268 Basenpaare) den 5 '-Bereich von Tocen-1, Fragment B das Transposon 903 (1286 Basenpaare) und Fragment 'A (194 Basenpaare) den 3λ -Bereich von Tocen-1.In FIG. 2 Fragment A includes' (268 base pairs) of the 5 'region of Tocen-1, fragment B, the transposon 903 (1286 base pairs) and fragment' A (194 base pairs) the 3 λ range of Tocen-1.
Synechocystis spec. PCC 6803 Transformanden wurden auf Kanamycin haltigem (km) BG-11 Festmedium (Castenholz (1988) Methods in Enzymology Seite 68-93) bei 28°C und 30 μmol Photonen* (m2*s) -1 selektioniert . Acht unabhängige Knockout Mutanten konnten nach fünf Selektionsrunden (Passagen von Einzelkolonien auf frisches BG-llkm Medium) erzeugt werden. Der vollständige Verlust des Tocen-1 Endogens bzw. der Austausch gegen die rekombinante Tocen-1: : tn903 DNA wurde durch PCR Analysen bestätigt.Synechocystis spec. PCC 6803 transformants were selected on Kanamycin-containing (km) BG-11 solid medium (Castenholz (1988) Methods in Enzymology page 68-93) at 28 ° C. and 30 μmol photons * (m 2 * s) - 1 . Eight independent knockout mutants were generated after five rounds of selection (passages from individual colonies to fresh BG-11km medium). The complete loss of the Tocen-1 endogen or the exchange for the recombinant Tocen-1:: tn903 DNA was confirmed by PCR analysis.
Beispiel 3: Tocopherolproduktion in Synechocystis spec. PCC 6803 Wildtypzellen und den Tocen-1 Knockout MutantenExample 3: Tocopherol production in Synechocystis spec. PCC 6803 wild-type cells and the Tocen-1 knockout mutants
Die auf den BG-llkm Agarmedium kultivierten Zellen von jeweils zwei unabhängigen Synechocystis spec. PCC 6803 Tocen-1 Knockout Mutanten sowie untransformierte Wildtypzellen (auf BGll Agar- medium ohne Kanamycin) wurden zum Animpfen von Flüssigkulturen verwendet. Dazu wurden Zellen der Mutante bzw. des Wildtyps Synechocystis spec. PCC 6803 von Platte in jeweils 10 ml Flüssigkultur überführt. Diese Kulturen wurden bei 28°C und 30 μmol Photonen* (m2*s)-1 (30 μE) für ca. 3 Tage kultiviert. NachThe cells cultured on the BG-llkm agar medium from two independent Synechocystis spec. PCC 6803 Tocen-1 knockout mutants and untransformed wild-type cells (on BGll agar medium without kanamycin) were used to inoculate liquid cultures. For this purpose, cells of the mutant or the wild type Synechocystis spec. Transfer PCC 6803 from plate to 10 ml of liquid culture. These cultures were cultivated at 28 ° C. and 30 μmol photons * (m 2 * s) - 1 (30 μE) for approx. 3 days. To
Bestimmung der OD 3Q der einzelnen Kulturen, wurde die OD3o aller Kulturen durch entsprechende Verdünnungen mit BG-11 (Wildtypen) bzw. BG-llkm (Mutanten) synchronisiert. Diese auf Zelldichte synchronisierten Kulturen wurden zum Animpfen von drei Kulturen der Mutante bzw. der Wildtypkontrolle verwendet. Die biochemischen Analysen konnten somit unter Verwendung von jeweils drei unabhängig gewachsenen Kulturen einer Mutante und der entsprechenden Wildtypen durchgeführt werden. Die Kulturen wurden bis zu einer optischen Dichte von OD73o=0,3 angezogen.Determination of the OD 3 Q of the individual cultures, the OD 3 o of all cultures was synchronized by appropriate dilutions with BG-11 (wild types) or BG-11km (mutants). These cultures, which were synchronized to cell density, were used to inoculate three cultures of the mutant or the wild-type control. The biochemical analyzes could thus be carried out using three independently grown cultures of a mutant and the corresponding wild types. The cultures were grown to an optical density of OD 73 o = 0.3.
Das Medium der Zellkultur wurde durch zweimalige Zentrifugation bei 14000 rp in einer Eppendorf Tischzentrifuge entfernt. Der daran anschließende Aufschluß der Zellen und Extraktion der Tocopherole und Tocotrienole erfolgte durch zweimalige Inkubation im Eppendorfschüttler bei 30°C, lOOOrpm in 100 % Methanol für 15 Minuten, wobei die jeweils erhaltenen Überstände vereinigt wurden. Weitere Inkubationsschritte ergaben keine weitere Freisetzung von Tocopherolen oder Tocotrienolen.The medium of the cell culture was removed by centrifugation twice at 14000 rp in an Eppendorf table centrifuge. The subsequent digestion of the cells and extraction of the tocopherols and tocotrienols was carried out by incubating twice in an Eppendorf shaker at 30 ° C., 100 ° C. in 100% methanol for 15 minutes, the supernatants obtained in each case being combined. Further incubation steps resulted in no further release of tocopherols or tocotrienols.
Um Oxidation zu vermeiden, wurden die erhaltenen Extrakte direkt nach der Extraktion mit Hilfe einer Waters Allience 2690 HPLC- Anlage analysiert. Tocopherole und Tocotrienole wurden über eine Reverse Phase Säule (ProntoSil 200-3-C30, Bischoff) mit einer mobilen Phase von 100 % Methanol getrennt und anhand von Standards (Merck) identifiziert. Als Detektionssystem diente die Fluoreszenz der Substanzen (Anregung 295 um, Emmision 320 nm) , die mit Hilfe eines Jasco Fluoreszensdetektors FP 920 nachgewiesen wurde.In order to avoid oxidation, the extracts obtained were analyzed immediately after extraction using a Waters Allience 2690 HPLC system. Tocopherols and tocotrienols were separated on a reverse phase column (ProntoSil 200-3-C30, Bischoff) with a mobile phase of 100% methanol and identified using standards (Merck). The fluorescence of the substances (excitation 295 μm, emission 320 nm) was used as the detection system, which was detected with the aid of a Jasco FP 920 fluorescence detector.
Die Tocen-1 Knockout Mutanten zeigten überraschenderweise im Vergleich zu den Synechocystis spec. PCC 6803 Wildtypzellen einen Verlust der Tocopherol- und Tocotrienolproduktion (Fig. 3) .The Tocen-1 knockout mutants surprisingly showed in comparison to the Synechocystis spec. PCC 6803 wild type cells lost tocopherol and tocotrienol production (Fig. 3).
Beispiel 4: Manipulation der Tocopherol-Biosynthese in Nicotiana tahacum Samsun NN, Arabidopsis thaliana und Brassica napus durch transgene Expression von Tocen-1Example 4: Manipulation of the tocopherol biosynthesis in Nicotiana tahacum Samsun NN, Arabidopsis thaliana and Brassica napus by transgenic expression of Tocen-1
Es werden transgene Pflanzen erzeugt, die Tocen-1 zum einen unter Kontrolle des konstitutiven Promoters des Nitrilase-1 (nitl) Gens aus A. thaliana (GenBank Acc . -No. : Y07648.2, Nukleotide 2456-4340, Hillebrand et al . (1996) Gene 170:197-200) und zum anderen unter Kontrolle des samenspezifischen Promotors des USP (unknown seed protein) Gens aus Vicia faba (Bäumlein et. al.Transgenic plants are generated which contain Tocen-1 on the one hand under the control of the constitutive promoter of the nitrilase-1 (nitl) gene from A. thaliana (GenBank Acc. -No.: Y07648.2, nucleotides 2456-4340, Hillebrand et al. (1996) Gene 170: 197-200) and secondly under the control of the USP's seed-specific promoter (unknown seed protein) gene from Vicia faba (Bäumlein et. al.
(1991) Mol Gen Genet 225: 459-467) exprimieren. Darüber hinaus wird Tocen-1 als Fusionsprotein mit dem Transitpeptid des rbcS- Proteins (Guerineau et al . (1988) Nucl Acid Res 16: 11380) sowohl konstitutiv als auch samenspezifisch exprimiert. Als Expressionsvektor dienen Derivate des pSUN-Vektors (WO 02/00900) .(1991) Mol Gen Genet 225: 459-467). In addition, Tocen-1 is expressed as a fusion protein with the transit peptide of the rbcS protein (Guerineau et al. (1988) Nucl Acid Res 16: 11380), both constitutively and seed-specifically. Derivatives of the pSUN vector (WO 02/00900) serve as the expression vector.
Für die konstitutive Expression wurde der Vektor pSUN2 unter Anwendung von Standardmethoden so verändert, dass der ocs- Terminator (Gielen et al . (1984) EMBO J 3:835-846) als Sall- PacI-ocs-Hindlll Fragment (Sequenz ID No: 5) eingebracht wird. Durch Einführung eines Linkers wird zusätzlich eine Swal Schnittstelle in den Polylinker eingeführt (SEQ ID No: 6 and SEQ ID No: 7) . Das resultierende Plasmid wird mit pSUN2-l bezeichnet (Sequenz ID NO: 8) .For constitutive expression, the vector pSUN2 was modified using standard methods such that the ocs terminator (Gielen et al. (1984) EMBO J 3: 835-846) as a Sall PacI-ocs HindIII fragment (sequence ID No: 5) is introduced. By introducing a linker, a swal interface is also introduced into the polylinker (SEQ ID No: 6 and SEQ ID No: 7). The resulting plasmid is designated pSUN2-1 (Sequence ID NO: 8).
Für die Expression als Fusionsprotein mit dem rbcS-Transitpeptid wird das DNA-Fragment kodierend für das rbcS-Transitpeptid als Sacl-Swal-Fragment amplifiziert (Sequenz ID No: 9) und in den pSUN2-l eingeführt. Der Vektor wird als pSUN2-2 bezeichnet (Sequenz ID NO: 10) .For expression as a fusion protein with the rbcS transit peptide, the DNA fragment coding for the rbcS transit peptide is amplified as a SacI-Swal fragment (sequence ID No: 9) and introduced into the pSUN2-1. The vector is called pSUN2-2 (Sequence ID NO: 10).
Zur Expression von Tocen-1 unter konstitutiver Kontrolle wird der ORF als Swal-Pacl-Fragment unter Verwendung von Standardmethoden mit Hilfe der Primer 0832exl-5λ und 0832exl-3 λ (SEQ ID No. 11 und SEQ ID No. 12) amplifiziert . Das entstehende 462 bp-Fragment wird in den pCR4Blunt-T0P0 (Invitrogen) nach Angaben des Herstellers kloniert und mit Hilfe des T3- und T7-Primers sequenziert.For expression of Tocen-1 under constitutive control of the ORF is λ as SwaI-PacI fragment using standard methods with the aid of primers 0832exl-5 and 0832exl-3 (SEQ ID No. 11 and SEQ ID No. 12) λ amplified. The resulting 462 bp fragment is cloned into the pCR4Blunt-T0P0 (Invitrogen) according to the manufacturer's instructions and sequenced using the T3 and T7 primers.
Ein korrekter Klon wird mit Swal-Pacl geschnitten und unterA correct clone is cut with Swal-Pacl and under
Anwendung von Standardmethoden in einen Swal-Pacl geschnittenen pSUN2-l ligiert. In das resultierende Konstrukt, das mit Ecll36ll geschnitten wird, wird der Nitrilase-Promoter als Xhol-Fragment (SEQ ID No: 13), dessen überhängende Enden mit Klenow-Polymerase nach Standardmethoden aufgefüllt werden, kloniert. Dieses Plasmid wird mit pSUN2/NitP/sll0832/ocs bezeichnet (SEQ ID No: 14) und zur Erzeugung transgener Pflanzen verwendet (vgl. Fig. 4).Use standard methods ligated into a Swal-Pacl cut pSUN2-l. In the resulting construct, which is cut with Ecll36ll, the nitrilase promoter is cloned as an Xhol fragment (SEQ ID No: 13), the overhanging ends of which are filled in with Klenow polymerase according to standard methods. This plasmid is designated pSUN2 / NitP / sll0832 / ocs (SEQ ID No: 14) and used to generate transgenic plants (cf. FIG. 4).
Zur Konstruktion eines Plasmides, das Tocen-1 als Fusionsprotein mit dem Transitpeptid des rbcS-Proteins unter Kontrolle des konstitutiven Promoters NitP exprimiert, wird pSUN2-2 mit Swal und Pacl geschnitten. Der so geschnittene Vektor wird mit dem Tocen-1 Fragment ligiert, das nach Verdau mit Swal und Pacl aus pCR-Script/sll0832 isoliert wird. In das resultierende Plasmid, das mit Ecll36II geschnitten wird, wird der Nitrilase-Promoter (SEQ ID NO: 13) als Xhol-Fragment, dessen überhängende Enden mit Klenow-Polymerase nach Standardmethoden aufgefüllt werden, ligiert. Diese Klonierung erlaubt die Expression eines Fusionsproteins, das das Transitpeptid des rbcS-Proteins und Tocen-1 enthält (vgl. Fig. 5, SEQ ID No. 15) .To construct a plasmid that expresses Tocen-1 as a fusion protein with the transit peptide of the rbcS protein under the control of the constitutive promoter NitP, pSUN2-2 is cut with Swal and Pacl. The vector cut in this way is ligated with the Tocen-1 fragment which, after digestion with Swal and Pacl, is isolated from pCR-Script / sll0832. In the resulting plasmid, which is cut with Ecll36II, the nitrilase promoter (SEQ ID NO: 13) as Xhol fragment, the overhanging ends of which are filled in with Klenow polymerase according to standard methods, ligated. This cloning allows the expression of a fusion protein which contains the transit peptide of the rbcS protein and Tocen-1 (see FIG. 5, SEQ ID No. 15).
Zur Erzeugung eines Plasmides, welches die samenspezifische Expression von Tocen-1 in Pflanzen ermöglicht, wird der samenspezifische Promotor des USP Gens aus Vici faba verwendet, der als EcoRI-Ncol-Fragment in einem pUC-Derivat vorliegt (SEQ ID NO: 16) .To generate a plasmid which enables the seed-specific expression of Tocen-1 in plants, the seed-specific promoter of the USP gene from Vici faba is used, which is present as an EcoRI-Ncol fragment in a pUC derivative (SEQ ID NO: 16).
Für die Klonierung unter Kontrolle des USP-Promoters wird das offene Leseraster von Tocen-1 unter Verwendung von Standard-PCR- Methoden so amplifiziert, dass am 5 '-Ende eine Bbsl-Schnittstelle und am 3 '-Ende eine EcoRV-Schnittstelle generiert werden. Dazu werden nachfolgende der Oligonukleotidprimer verwendet:For the cloning under the control of the USP promoter, the open reading frame of Tocen-1 is amplified using standard PCR methods in such a way that a Bbsl interface is generated at the 5 'end and an EcoRV interface at the 3' end , The following oligonucleotide primers are used for this:
sll0832ex2-5' : (SEQ ID NO: 17) undsll0832ex2-5 ': (SEQ ID NO: 17) and
S110832ex2-3' : (SEQ ID No: 18)S110832ex2-3 ': (SEQ ID No: 18)
Das Amplifikat wird in pCR4Blunt-TOPO kloniert und sequenziert.The amplificate is cloned in pCR4Blunt-TOPO and sequenced.
Das PCR-Produkt wird als BbsI-EcoRV-Fragment in den mit Ncol (überhängende Enden kompatibel mit 5 '-Überhang des PCR-Produktes) und EcoRV geschnittenen Vektor ligiert. Das Expressionskonstrukt wird als Pmel und Afel-Fragment in den mit EcoRV geschnittenen pSUN2 ligiert. Das resultierende Plasmid heißt pSun2-USP- sll0832-3,cat (vgl. Fig.6, SEQ ID NO: 19).The PCR product is ligated as a BbsI-EcoRV fragment in the vector cut with Ncol (overhanging ends compatible with 5 'overhang of the PCR product) and EcoRV. The expression construct is ligated as Pmel and Afel fragments in pSUN2 cut with EcoRV. The resulting plasmid is called pSun2-USP-sll0832-3 , cat (see FIG. 6, SEQ ID NO: 19).
Für die Konstruktion eines Plasmides, das die samenspezifische Expression als Fusionsprotein mit dem rbcS Transitpeptid erlaubt, wird das rbcS-Fragment zusammen mit dem ocs-Terminator als Ncol- Hindlll-Fragment (SEQ ID No: 20) aus pSUN2-2 amplifiziert und in das pUC-Derivat kloniert, der den USP Promoter enthält. Promoter, rbcS und ocs werden als Pmel-Afel-Fragment in den mit EcoRV geschnittenen pSUN2 kloniert. In diesen Expressionsvektor wird Tocen-1 als Swal-Pacl-Fragment kloniert. Das resultierende Plasmid heißt pSUN2/USP/rbcS/sll0832/ocs (Fig. 7, SEQ ID No: 21) .For the construction of a plasmid which allows seed-specific expression as a fusion protein with the rbcS transit peptide, the rbcS fragment is amplified together with the ocs terminator as an Ncol-HindIII fragment (SEQ ID No: 20) from pSUN2-2 and into the Cloned pUC derivative containing the USP promoter. Promoters, rbcS and ocs are cloned as Pmel-Afel fragments in pSUN2 cut with EcoRV. Tocen-1 is cloned into this expression vector as a Swal-Pacl fragment. The resulting plasmid is called pSUN2 / USP / rbcS / sll0832 / ocs (Fig. 7, SEQ ID No: 21).
Beispiel 5: Herstellung transgener A. thaliana PflanzenExample 5: Production of transgenic A. thaliana plants
Wildtyp A. thaliana Pflanzen (Columbia) werden mit dem Agrobacterium tumefaciens Stamm (EHA105) auf Grundlage einer modifizierten Methode (Steve Clough und Andrew Bent (1998) Plant J 16(6) :735- 743) der Vacuum Infiltrationsmethode nach Bechtold et al . (Bechtold N et al. (1993) CRAcad Sei Paris 1144(2) .204-212) transformiert.Wild-type A. thaliana plants (Columbia) are based on the Agrobacterium tumefaciens strain (EHA105) based on a modified method (Steve Clough and Andrew Bent (1998) Plant J 16 (6): 735-743) according to the vacuum infiltration method Bechtold et al. (Bechtold N et al. (1993) CRAcad Sei Paris 1144 (2) .204-212).
Die verwendeten A. tumefaciens Zellen werden im Vorfeld mit den Plasmiden pSUN2/NitP/sll0832/ocs (SEQ ID NO: 14), pSUN2/NitP/ rbcS/sll0832/ocs (SEQ ID NO: 15), pSUN2/USP/sll0832/catT (SEQ ID NO: 19) bzw. pSUN2/USP/rbcS/sll0832/ocs (SEQ ID NO: 21) transformiert .The A. tumefaciens cells used are pre-loaded with the plasmids pSUN2 / NitP / sll0832 / ocs (SEQ ID NO: 14), pSUN2 / NitP / rbcS / sll0832 / ocs (SEQ ID NO: 15), pSUN2 / USP / sll0832 / catT (SEQ ID NO: 19) or pSUN2 / USP / rbcS / sll0832 / ocs (SEQ ID NO: 21).
Samen der Agrobacterium-transformierten Primärtransformanden werden auf Grundlage der Antibiotikaresistenz selektioniert . Antibiotika resistente Keimlinge werden in Erde gepflanzt und als vollentwickelte Pflanzen zur biochemischen Analyse verwendet.Seeds of the Agrobacterium-transformed primary transformants are selected on the basis of antibiotic resistance. Antibiotic-resistant seedlings are planted in soil and used as fully developed plants for biochemical analysis.
Beispiel 6: Herstellung transgener Brassica napus PflanzenExample 6: Production of transgenic Brassica napus plants
Die Herstellung transgener Raps Pflanzen orientiert sich an einem Protokoll von Bade JB und Damm B (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G. , eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) , in welchem auch die Zusammensetzung der verwendeten Medien und Puffer angegeben ist.The production of transgenic oilseed rape plants is based on a protocol from Bade JB and Damm B (in Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38), in which also shows the composition of the media and buffers used.
Die Transformationen erfolgen mit den Agrobacterium tumefaciens Stämmen EHA105 bzw. GV3101. Zur Transformation werden die Plasmide pSUN2/NitP/sll0832/ocs (SEQ ID NO: 14), pSUN2/NitP/ rbcS/sll0832/ocs (SEQ ID NO: 15), pSUN2/USP/sll0832/catT (SEQ ID NO: 19) bzw. pSUN2/USP/rbcS/sll0832/ocs (SEQ ID NO: 21) verwendet .The transformations are carried out with the Agrobacterium tumefaciens strains EHA105 and GV3101. The plasmids pSUN2 / NitP / sll0832 / ocs (SEQ ID NO: 14), pSUN2 / NitP / rbcS / sll0832 / ocs (SEQ ID NO: 15), pSUN2 / USP / sll0832 / catT (SEQ ID NO: 19 ) or pSUN2 / USP / rbcS / sll0832 / ocs (SEQ ID NO: 21).
Samen von Brassica napus var. Westar werden mit 70 % Ethanol (v/v) oberflächensteril gemacht, 10 Minuten bei 55°C in Wasser gewaschen, in l%iger Hypochlorit-Lösung (25 % v/v Teepol, 0,1 % v/v Tween 20) für 20 Minuten inkubiert und sechsmal mit sterilem Wasser für jeweils 20 Minuten gewaschen. Die Samen werden drei Tage auf Filterpapier getrocknet und 10 bis 15 Samen in einem Glaskolben mit 15 ml Keimungsmedium zur Keimung gebracht. Von mehreren Keimlingen (ca. 10 cm groß) werden die Wurzeln und Apices entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange Stücke geschnitten. Die so gewonnenen ca. 600 Explantate werden 30 Minuten mit 50 ml Basalmedium gewaschen und in einem 300 ml Kolben überführt. Nach Zugabe von 100 ml Kallusinduktions- medium wurden die Kulturen für 24 Stunden bei 100 U/min inkubiert.Brassica napus var. Westar seeds are surface-sterilized with 70% ethanol (v / v), washed in water for 10 minutes at 55 ° C, in 1% hypochlorite solution (25% v / v tea pol, 0.1% v / v Tween 20) incubated for 20 minutes and washed six times with sterile water for 20 minutes each. The seeds are dried on filter paper for three days and 10 to 15 seeds are germinated in a glass flask with 15 ml of germination medium. The roots and apices are removed from several seedlings (approx. 10 cm in size) and the remaining hypocotyls are cut into pieces approx. 6 mm long. The approximately 600 explants obtained in this way are washed for 30 minutes with 50 ml of basal medium and transferred to a 300 ml flask. After adding 100 ml of callus induction medium, the cultures were incubated for 24 hours at 100 rpm.
Vom den einzelnen mit den Plasmiden pSUN2/NitP/sll0832/ocsFrom the individual with the plasmids pSUN2 / NitP / sll0832 / ocs
(SEQ ID NO: 14), pSUN2/NitP/rbcS/sll0832/ocs (SEQ ID NO: 15), pSUN2/USP/sll0832/catT (SEQ ID NO: 19) bzw. pSUN2/USP/rbcS/ sll0832/ocs (SEQ ID NO: 21) transformierten Agrobacterien Stämmen wird jeweils eine Übernachtkultur bei 29°C in Luria Broth-Medium mit Kanamycin (20 mg/1) angesetzt, davon 2 ml in 50 ml Luria Broth-Medium ohne Kanamycin für 4 Stunden bei 29°C bis zu einer OD600 von 0,4 bis 0,5 inkubiert. Nach der Pelletierung der Kultur bei 2000 U/min für 25 min wird das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wird durch Zugabe von weiterem Basalmedium auf eine ODßoo von 0,3 eingestellt.(SEQ ID NO: 14), pSUN2 / NitP / rbcS / sll0832 / ocs (SEQ ID NO: 15), pSUN2 / USP / sll0832 / catT (SEQ ID NO: 19) or pSUN2 / USP / rbcS / sll0832 / ocs (SEQ ID NO: 21) transformed Agrobacteria strains, an overnight culture is set up at 29 ° C. in Luria Broth medium with kanamycin (20 mg / 1), of which 2 ml in 50 ml Luria Broth medium without kanamycin for 4 Incubated for hours at 29 ° C to an OD600 of 0.4 to 0.5. After pelleting the culture at 2000 rpm for 25 min, the cell pellet is resuspended in 25 ml of basal medium. The concentration of the bacteria in the solution is adjusted to an OD ß oo of 0.3 by adding further basal medium.
Aus den Raps-Explanten wird das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml Agrobacterium-Lösung hinzugefügt, vorsichtig gemischt und für 20 min inkubiert. Die Agro- bacterien-Suspension wird entfernt, die Raps-Explante für 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend 100 ml Kallus-Induktionsmedium hinzugefügt. Die Co-Kultivierung wird für 24 h auf einem Rotiationsschüttler bei 100 U/min durchgeführt. Die Co-Kultivierung wird durch Wegnahme des Kallus- Induktions ediums gestoppt und die Explante zweimal für jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 U/min gewaschen. Das Waschmedium mit den Explanten wird in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt .The callus induction medium is removed from the oilseed rape explants using sterile pipettes, 50 ml of Agrobacterium solution are added, mixed gently and incubated for 20 min. The agrobacterial suspension is removed, the oilseed rape explant is washed for 1 min with 50 ml of callus induction medium and then 100 ml of callus induction medium is added. The co-cultivation is carried out for 24 h on a rotary shaker at 100 rpm. The co-cultivation is stopped by removing the callus induction medium and the explants are washed twice for 1 min with 25 ml and twice for 60 min with 100 ml of washing medium at 100 rpm. The washing medium with the explants is transferred to 15 cm petri dishes and the medium is removed with sterile pipettes.
Zur Regeneration werden jeweils 20 bis 30 Explante in 90 mm20 to 30 explants in 90 mm each are used for regeneration
Petrischalen überführt, welche 25 ml Spross-Induktionsmedium mit Kanamycin enthalten. Die Petrischalen werden mit 2 Lagen Leukopor verschlossen und bei 25°C und 2000 lux bei Photoperioden von 16 Stunden Licht/8 Stunden Dunkelheit inkubiert. Alle 12 Tage werden die sich entwickelnden Kalli auf frische Petrischalen mit Spross-Induktionsmedium überführt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen werden wie von Bade JB und Damm B (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) beschrie- ben durchgeführt.Transfer Petri dishes containing 25 ml shoot induction medium with kanamycin. The Petri dishes are closed with 2 layers of Leukopor and incubated at 25 ° C and 2000 lux with photoperiods of 16 hours light / 8 hours dark. Every 12 days, the developing calli are transferred to fresh petri dishes with shoot induction medium. All further steps for the regeneration of whole plants are described as from Bade JB and Damm B (in Gene Transfer to Plants, Potrykus, I. and Spangenberg, G., eds, Springer Lab Manual, Springer Verlag, 1995, 30-38) carried out.
Beispiel 7 : Herstellung transgener Nicotiana tabacum PflanzenExample 7: Production of transgenic Nicotiana tabacum plants
10 ml YEB-Medium mit Antibiotikum (5 g/1 Rinder-Extrakt, 1 g/1 Hefe-Extrakt, 5 g/1 Pepton, 5 g/1 Saccharose und 2 mM MgS04.) werden mit einer Kolonie der einzelnen mit den Plasmiden pSUN2/NitP/sll0832/ocs (SEQ ID NO: 14), pSUN2/NitP/rbcS/ sll0832/ocs (SEQ ID NO: 15), pSU 2/USP/sll0832/catT (SEQ ID NO: 19) bzw. pSUN2/USP/rbcS/sll0832/ocs (SEQ ID NO: 21) transformierten Agrobacterium tumefaciens Stämme beimpft und über Nacht bei 28°C kultiviert. Die Zellen werden 20 min bei 4°C, 3500 U/min in einer Tischzentrifuge pelletiert und danach in frischem YEB-Medium ohne Antibiotika unter sterilen Bedingungen resuspendiert. Die Zellsuspension wird für die Transformation eingesetzt.10 ml of YEB medium with antibiotic (5 g / 1 beef extract, 1 g / 1 yeast extract, 5 g / 1 peptone, 5 g / 1 sucrose and 2 mM MgS0 4. ) With a colony of the individual with the Plasmids pSUN2 / NitP / sll0832 / ocs (SEQ ID NO: 14), pSUN2 / NitP / rbcS / sll0832 / ocs (SEQ ID NO: 15), pSU 2 / USP / sll0832 / catT (SEQ ID NO: 19) or Inoculated pSUN2 / USP / rbcS / sll0832 / ocs (SEQ ID NO: 21) transformed Agrobacterium tumefaciens strains and cultured overnight at 28 ° C. The cells are pelleted in a table centrifuge for 20 min at 4 ° C., 3500 rpm and then in resuspended fresh YEB medium without antibiotics under sterile conditions. The cell suspension is used for the transformation.
Die Wildtyp-Pflanzen aus Sterilkultur werden durch vegetative Replikation erhalten. Dazu wird nur die Spitze der Pflanze abgeschnitten und auf frisches 2MS-Medium in ein steriles Einweckglas überführt. Vom Rest der Pflanze werden die Haare auf der Blattoberseite und die Mittelrippen der Blätter entfernt. Die Blätter werden mit einer Rasierklinge in etwa 1 cm2 große Stücke geschnitten. Die Agrobakterienkultur wird in eine kleine Petri- schale überführt (Durchmesser 2 cm) . Die Blattstücke werden kurz durch diese Lösung gezogen und mit der Blattunterseite auf 2MS- Medium in Petrischalen (Durchmesser 9 cm) gelegt, so daß sie das Medium berührten. Nach zwei Tagen im Dunkeln bei 25°C werden die Explantate auf Platten mit Kallusinduktionsmedium überführt und in der Klimakammer auf 28°C temperiert. Das Medium muß alle 7 bis 10 Tage gewechselt werden. Sobald sich Kalli bildeten, werden die Explantate in sterile Einweckgläser auf Sprossinduktionsmedium mit Claforan (0,6 % BiTec-Agar (g/v) , 2,0 mg/1 Zeatinribose,The wild-type plants from sterile culture are obtained by vegetative replication. To do this, only the tip of the plant is cut off and transferred to fresh 2MS medium in a sterile mason jar. The hair on the top of the leaf and the central ribs of the leaves are removed from the rest of the plant. The leaves are cut into approximately 1 cm 2 large pieces with a razor blade. The agrobacterial culture is transferred to a small petri dish (diameter 2 cm). The leaf pieces are briefly drawn through this solution and the underside of the leaf is placed on 2MS medium in Petri dishes (diameter 9 cm) so that they touch the medium. After two days in the dark at 25 ° C, the explants are transferred to plates with callus induction medium and heated to 28 ° C in the climatic chamber. The medium must be changed every 7 to 10 days. As soon as calli were formed, the explants were placed in sterile mason jars on shoot induction medium with Claforan (0.6% BiTec agar (w / v), 2.0 mg / 1 zeatin ribose,
0,02 mg/1 Naphtylessigsäure, 0,02 mg/1 Gibberelinsäure, 0,25 g/ml Claforan, 1,6 % Glukose (g/v) und 50 mg/1 Kanamycin) überführt. Nach etwa einem Monat tritt Organogenese ein und die gebildeten Sprosse können abgeschnitten werden. Die Kultivierung der Sprosse wird auf 2MS-Medium mit Claforan und Selektionsmarker durchgeführt. Sobald sich ein kräftiger Wurzelballen gebildet hat, können die Pflanzen in Pikiererde getopft werden.0.02 mg / 1 naphthylacetic acid, 0.02 mg / 1 gibberelic acid, 0.25 g / ml claforan, 1.6% glucose (w / v) and 50 mg / 1 kanamycin). After about a month, organogenesis occurs and the shoots formed can be cut off. The shoots are cultivated on 2MS medium with Claforan and a selection marker. As soon as a strong root ball has formed, the plants can be potted in prickly potting soil.
Beispiel 8: Charakterisierung der transgenen PflanzenExample 8: Characterization of the transgenic plants
Um zu bestätigen, dass durch die Expression von Tocen-1 die Vitamin E-Biosynthese in den transgenen Pflanzen beeinflusst wird, werden die Tocopherol- und Tocotrienol-Gehalte in Blätter und Samen der mit den beschriebenen Konstrukten transformierten Pflanzen (Arabidopsis . thaliana, Brassica napus und Nicotiana tabacum) analysiert. Dazu werden die transgenen Pflanzen im Gewächshaus kultiviert und Pflanzen die das Gen kodierend für Tocen-1 exprimieren auf Northern-Ebene identifiziert. In Blättern und Samen dieser Pflanzen wird der Tocopherolgehalt und der Toco- trienolgehalt ermittelt. In allen Fällen ist die Tocopherol- bzw. Tocotrienol-Konzentration im Vergleich zu nicht transformierten Pflanzen erhöht. In order to confirm that the expression of Tocen-1 affects the vitamin E biosynthesis in the transgenic plants, the tocopherol and tocotrienol contents in leaves and seeds of the plants transformed with the described constructs (Arabidopsis. Thaliana, Brassica napus and Nicotiana tabacum) were analyzed. For this purpose, the transgenic plants are cultivated in the greenhouse and plants which express the gene coding for Tocen-1 are identified at the Northern level. The tocopherol content and the tocotrienol content are determined in the leaves and seeds of these plants. In all cases, the tocopherol or tocotrienol concentration is increased compared to non-transformed plants.

Claims

Patentansprüche claims
1. Verfahren zum Erhöhen des Vitamin E-Gehaltes in einem pflanz- liehen Organismus oder einem Gewebe, Organ, Teil, Zelle oder Vermehrungsgut desselben, umfassend1. A method for increasing the vitamin E content in a plant organism or a tissue, organ, part, cell or propagation material thereof, comprising
a) transgene Expression eines Proteins mit der SEQ ID NO: 2 oder eines funktionellen Äquivalentes desselben mit einer Identität von mindestens 60 % zu der Sequenz mit der SEQ ID NO: 2, unda) transgenic expression of a protein with SEQ ID NO: 2 or a functional equivalent thereof with an identity of at least 60% to the sequence with SEQ ID NO: 2, and
b) Auswahl von pflanzlichen Organismen, bei denen - im Unterschied oder Vergleich zur AusgangsOrganismus - der Vitamin E-Gehalt in dem besagten pflanzlichen Organismus oder einem Gewebe, Organ, Teil, Zelle oder Vermehrungsgut desselben erhöht ist.b) Selection of plant organisms in which - in contrast to or compared to the starting organism - the vitamin E content in the said plant organism or in a tissue, organ, part, cell or propagation material of the same is increased.
2. Verf hren nach Anspruch 1 , wobei die Pflanze eine Ölpflanze ist.2. The method of claim 1, wherein the plant is an oil plant.
3. Transgenes Expressionskonstrukt umfassend unter Kontrolle eines in einem pflanzlichen Organismus oder einem Gewebe, Organ, Teil oder Zelle desselben funktionellen Promotors eine Nukleinsäuresequenz kodierend für ein Protein mit der SEQ ID NO: 2 oder ein funktionelles Äquivalent desselben mit einer Identität von mindestens 60 % zu der Sequenz mit der SEQ ID NO: 2.3. A transgenic expression construct comprising a nucleic acid sequence coding for a protein with the SEQ ID NO: 2 or a functional equivalent thereof with an identity of at least 60% under the control of a promoter which is functional in a plant organism or a tissue, organ, part or cell the sequence with SEQ ID NO: 2.
4. Transgenes Expressionskonstrukt nach Anspruch 3, wobei die Nukleinsäuresequenz beschrieben ist durch4. The transgenic expression construct according to claim 3, wherein the nucleic acid sequence is described by
a) eine Sequenz mit der SEQ ID NO: 1 odera) a sequence with SEQ ID NO: 1 or
b) eine Sequenz, die sich entsprechend dem degenerierten genetischen Code von einer Sequenz mit der SEQ ID NO: 1 ableitet, oderb) a sequence which is derived from a sequence with SEQ ID NO: 1 in accordance with the degenerate genetic code, or
c) eine Sequenz, die eine Identität von mindestens 60 % zu der Sequenz mit der SEQ ID NO: 1 aufweist.c) a sequence which is at least 60% identical to the sequence with SEQ ID NO: 1.
5. Transgenes Expressionskonstrukt nach einem der Ansprüche 3 oder 4, wobei der Promotor ein konstitutiver oder ein samenspezifischer Promotor ist. 5. Transgenic expression construct according to one of claims 3 or 4, wherein the promoter is a constitutive or a seed-specific promoter.
6. Transgener Expressionsvektor enthaltend ein transgenes Expressionskonstrukt nach einem der Ansprüche 3 bis 5.6. Transgenic expression vector containing a transgenic expression construct according to one of claims 3 to 5.
7. Transgener pflanzlicher Organismus oder Gewebe, Organ, Teil, Zelle oder Vermehrungsgut desselben, enthaltend ein transgenes Expressionskonstrukt nach einem der Ansprüche 3 bis 5 oder einen transgenen Expressionsvektor nach Anspruch 6.7. Transgenic plant organism or tissue, organ, part, cell or propagation material thereof, containing a transgenic expression construct according to one of claims 3 to 5 or a transgenic expression vector according to claim 6.
8. Transgener pflanzlicher Organismus nach Anspruch 7, wobei der pflanzliche Organismus ausgewählt ist aus der Gruppe der Ölpflanzen bestehend aus Borago officinalis, Brassica campestris, Brassica napus, Brassica rapa, Cannabis sativa, Carthamus tinctorius, Cocos nucifera, Crambe abyssinica, Cuphea Arten, Elaeis guineensis, Ekeis oleiferu, Glycine max, Gossypium hirsitum, Gossypium barbadense, Gossypium herbaceum, Helianthus annus, Linum usitatissimum, Oenothera biennis, Ozea europea, Oryza sativa, Ricinus communis, Sesamum indicum, Triticum Arten, Zea maize, Walnuss und Mandel .8. Transgenic plant organism according to claim 7, wherein the plant organism is selected from the group of oil plants consisting of Borago officinalis, Brassica campestris, Brassica napus, Brassica rapa, Cannabis sativa, Carthamus tinctorius, Cocos nucifera, Crambe abyssinica, Cuphea species, Elaeis guineensis, Ekeis oleiferu, Glycine max, Gossypium hirsitum, Gossypium barbadense, Gossypium herbaceum, Helianthus annus, Linum usitatissimum, Oenothera biennis, Ozea europea, Oryza sativa, Ricinus communis, Sesamum indicum, Triticum species and Maizeel species, Zea species
9. Verwendung eines transgenen pflanzlichen Organismus oder Gewebe, Organ, Teil, Zelle oder Vermehrungsgut desselben nach einem der Ansprüche 8 oder 9 zur Herstellung von Vitamin E, Ölen, Fetten, freien Fettsäuren oder Derivaten der vor- genannten. 9. Use of a transgenic plant organism or tissue, organ, part, cell or propagation material of the same according to one of claims 8 or 9 for the production of vitamin E, oils, fats, free fatty acids or derivatives of the aforementioned.
PCT/EP2003/005889 2002-06-07 2003-06-05 Transgenic expression constructs and method for increasing the vitamin e content in plant organisms WO2003104463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003245914A AU2003245914A1 (en) 2002-06-07 2003-06-05 Transgenic expression constructs and method for increasing the vitamin e content in plant organisms

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10225593.8 2002-06-07
DE2002125593 DE10225593A1 (en) 2002-06-07 2002-06-07 Increasing the Vitamin E content of plants, useful e.g. in foods and animal feeds, by transgenic expression of tocopherol synthesis enhancing protein-1
DE2002131588 DE10231588A1 (en) 2002-07-11 2002-07-11 Increasing the Vitamin E content of plants, useful e.g. in foods and animal feeds, by transgenic expression of tocopherol synthesis enhancing protein-1
DE10231588.4 2002-07-11

Publications (1)

Publication Number Publication Date
WO2003104463A1 true WO2003104463A1 (en) 2003-12-18

Family

ID=29737584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005889 WO2003104463A1 (en) 2002-06-07 2003-06-05 Transgenic expression constructs and method for increasing the vitamin e content in plant organisms

Country Status (2)

Country Link
AU (1) AU2003245914A1 (en)
WO (1) WO2003104463A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010380A1 (en) * 1998-08-25 2000-03-02 University Of Nevada Manipulation of tocopherol levels in transgenic plants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010380A1 (en) * 1998-08-25 2000-03-02 University Of Nevada Manipulation of tocopherol levels in transgenic plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE EBI Database accession no. Q55417 *
KANEKO T ET AL: "Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions", DNA RESEARCH, UNIVERSAL ACADEMY PRESS, JP, vol. 3, no. 3, Q55417, 1996, pages 109 - 136, XP002084893, ISSN: 1340-2838 *
NORRIS SUSAN R ET AL: "Complementation of the arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase", PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 117, no. 4, August 1998 (1998-08-01), pages 1317 - 1323, XP002146400, ISSN: 0032-0889 *
SCHLEDZ^A M ET AL: "A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis", FEBS LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 499, no. 1-2, 15 June 2001 (2001-06-15), pages 15 - 20, XP004246978, ISSN: 0014-5793 *
SHINTANI D ET AL: "ELEVATING THE VITAMIN E CONTENT OF PLANTS THROUGH METABOLIC ENGINEERING", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE,, US, vol. 282, no. 282, 1998, pages 2098 - 2100, XP000887122, ISSN: 0036-8075 *

Also Published As

Publication number Publication date
AU2003245914A1 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
EP1487979B1 (en) Constructs and methods for the regulation of gene expression
EP1506289B1 (en) Methods for increasing oil content in plants
DE10224889A1 (en) Process for the stable expression of nucleic acids in transgenic plants
WO2003074716A2 (en) Methods for the production of unsaturated fatty acids
EP1294913B1 (en) Changing the fine chemical content in organisms by genetically modifying the shikimate pathway
WO2001062781A2 (en) Homogentisate phytyl transferase
DE10046462A1 (en) Improved procedures for vitamin E biosynthesis
WO2001012827A9 (en) Method for production of transgenic plants with increased tocopherol content
EP1711612A1 (en) Expression cassettes for the bi-directional transgenic expression of nucleic acids in plants
WO2004007733A1 (en) Transgenic expression constructs and methods for increasing the vitamin e content in plant organisms
WO2004007731A1 (en) Transgenic expression constructs and methods for increasing the vitamin e content in plant organisms
WO2003104463A1 (en) Transgenic expression constructs and method for increasing the vitamin e content in plant organisms
DE10225066A1 (en) New transgenic double-stranded RNA, useful for expressing proteins or suppressing genes in plants, contains sequences that allow replication through RNA polymerase
WO2003077643A2 (en) Methods for increasing the oil content in plants by reducing the content of one or more storage proteins
DE10225593A1 (en) Increasing the Vitamin E content of plants, useful e.g. in foods and animal feeds, by transgenic expression of tocopherol synthesis enhancing protein-1
DE10231588A1 (en) Increasing the Vitamin E content of plants, useful e.g. in foods and animal feeds, by transgenic expression of tocopherol synthesis enhancing protein-1
WO2004005504A1 (en) Methods for obtaining pathogen resistance in plants
WO2003080844A2 (en) Enhancement of vitamin e content in organisms by enhancing 2-methyl-6-phytyl hydroquinone-methyltransferase activity
DE10260871A1 (en) Process for the production of transgenic plants with increased vitamin E content by changing the serine acetyltransferase content
DE10220753A1 (en) Increasing the total oil content of plants, useful e.g. in human or animal nutrition, by expressing a yeast transgene encoding glycerol-3-phosphate dehydrogenase
DE10226413A1 (en) Increasing the total oil content of plants, useful e.g. in human or animal nutrition, by expressing a yeast transgene encoding glycerol-3-phosphate dehydrogenase
DE10030647A1 (en) Preparing fine chemicals, particularly Vitamins E and K, useful as antioxidants e.g. in foods or medicine, by growing organisms with altered shikimate biosynthesis pathway
DE10313679A1 (en) New protein from Penicillium olsonii that imparts resistance to 2-deoxyglucose, useful in a selection system for transformed organisms
DE10064454A1 (en) Preparing fine chemicals, particularly Vitamins E and K, useful as antioxidants e.g. in foods or medicine, by growing organisms with altered shikimate biosynthesis pathway

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP