WO2003103088A1 - Antenne multi-frequence integree pour telephone mobile - Google Patents

Antenne multi-frequence integree pour telephone mobile Download PDF

Info

Publication number
WO2003103088A1
WO2003103088A1 PCT/FR2003/001624 FR0301624W WO03103088A1 WO 2003103088 A1 WO2003103088 A1 WO 2003103088A1 FR 0301624 W FR0301624 W FR 0301624W WO 03103088 A1 WO03103088 A1 WO 03103088A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
edge
antenna
zone
radiative
Prior art date
Application number
PCT/FR2003/001624
Other languages
English (en)
Other versions
WO2003103088A9 (fr
Inventor
Christian Leray
Original Assignee
Sagem Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagem Sa filed Critical Sagem Sa
Priority to EP03756023A priority Critical patent/EP1509966A1/fr
Publication of WO2003103088A1 publication Critical patent/WO2003103088A1/fr
Publication of WO2003103088A9 publication Critical patent/WO2003103088A9/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means

Definitions

  • the present invention relates to an integrated multi-frequency antenna for mobile telephone.
  • FIG. la An antenna of this type is already described in a document entitled “Dual-Frequency Planar Inverted-F Antenna” published in IEEE Transcations on antennas and Propagation, vol 45, No 10 of October 1997 in the name of Zi Dong Liu and ail.
  • One such antenna shown in FIG. la, consists of a planar radiative element 100 electrically conductive placed at a distance d from a ground plane M also electrically conductive substantially parallel thereto.
  • the radiative element 100 is divided by a slot 200 into two separate zones 101 and 102 each of which is supplied by a supply pad 101a and 102a crossing the ground plane M.
  • each zone 101, 102 of the radiative element 100 is connected to the ground plane M by a conductive pad 101b, 102b hereinafter called the ground pad.
  • the resonance mode of such an antenna is a quarter wave mode. Therefore, we can say that the high frequency is determined by the dimensions of the area 101 while the low frequency is determined by the dimensions of the area
  • the distance d between the radiant element 100 and the ground plane M is a parameter in determining the bandwidth at each resonant frequency while the distance which separates a supply pad 101a, 102a from the ground pad corresponding is another parameter in determining the antenna impedance at each resonant frequency.
  • C is the speed of light
  • a and b the width and length of the rectangular planar radiative element considered
  • ⁇ r is the permittivity of the medium which is between the radiative element and the ground plane.
  • each zone 101 and 102 of the radiative element 100 of the antenna which is shown in FIG. 1 a, this relationship is approximate because distortions are introduced therein in particular because the zones 101 and 102 are coupled together at the level of the slot 200, coupling which depends among other things on the width of the slot 200.
  • Such an antenna poses the problem of tuning it to each of the resonant frequencies because it is the position of the slot 200 in the radiative element 10, the lengths of branches which constitute this slot 200 as well as its width which determine its resonant frequencies. . We therefore sought to improve this type of antenna so as to facilitate its tuning.
  • An antenna according to the invention is therefore a PIFA type multi-frequency antenna comprising a radiative element placed at a distance from a ground plane, said radiative element comprising at least one connection to said ground plane and a feed point and being provided with at least one slot, one end of which is on an edge of said radiative element, the other end of which is inside said radiative element and the shape of which is such that it delimits on said radiative element a convex region , said antenna then being the seat of several resonance frequencies.
  • said or each slot comprises at least one protuberance.
  • said or each slot comprises at its end which is inside said radiating element, a protrusion of dimension greater than the width of said slot.
  • said protuberance has an edge which is substantially parallel to the edge closest to said radiative element.
  • An antenna according to the invention can also be as defined above but of the same type, the radiating element of which is of substantially rectangular shape, said or at least one slot comprising, on the one hand, a short branch which is substantially perpendicular to an edge of the radiating element and one end of which is on said edge and, on the other hand, a longer branch which is substantially parallel to said edge of the radiating element and which is connected to the other end of the part short.
  • said slot comprises at its end which is located inside said radiative element, a protuberance of which one edge is substantially parallel to the edge of the radiative element adjacent to the edge where the first end of said is located. slot.
  • said protuberance is of substantially rectangular, even square, shape.
  • said or at least one slit comprises a protuberance in the form of a slit extending from the first slit in a zone complementary to said convex zone delimited by said slit .
  • said antenna is of said type of which said or at least one slot comprising, on the one hand, a short branch which is substantially perpendicular to an edge of the radiating element and one end of which is on said edge and, on the other hand , a longer branch which is substantially parallel to said edge of the radiating element and which connects to the other end of the short part, it is then characterized in that said slot comprises a protuberance in the form of a slot extending from the intersection between the short and long portions of the slot.
  • An antenna according to the invention is also of the type whose ground point is close to the through end of the slot on a part of said radiative element opposite with respect to the slot to said convex zone delimited by said slot, said point of power supply located at a distance from the ground point so as to adapt the impedance of said antenna.
  • Figs. la and lb are perspective views of the PIFA type antenna according to the state of the art
  • FIGs. 2a to 2c are plan views of three embodiments of multifrequency PIFA type antennas according to the present invention
  • FIG. 3 is a graph showing the influence of the surface of a protuberance at the end of a slot of an antenna according to the present invention
  • Fig. 4 is a graph showing the influence of a dimension of a protuberance at the end of a slot of an antenna according to the present invention
  • Fig. 5 is a graph showing the influence of a dimension of a protuberance in the form of another slot extending from the slot of an antenna according to the present invention
  • Fig. 6 is another embodiment of the present invention in which the radiative element is oval, even ovoid, and Fig. 7 is another embodiment of the present invention with multiple slots.
  • the antennas which are shown in Figs. 2a to 2c essentially consist of a radiative element 10 electrically conductive plane which is mounted parallel to a ground plane (not shown) also electrically conductive at a distance therefrom determined in particular as a function of the passband which is desired for each resonant frequency.
  • a dielectric can be placed between the radiative element 10 and the ground plane.
  • the radiative element 10 is in the embodiment shown substantially rectangular. It is divided by means of a slot 20 consisting of an electrical insulator (here the absence of the conductive material constituting the radiative element 10).
  • This slot 20 has a short part 20a which is substantially perpendicular to an edge 10a of the radiating element 10 and one end of which opens onto this edge 10a. It also has a longer part 20b which is substantially parallel to the edge 10a of the radiative element 10 and which is connected to the other end of the short part 20a by forming an elbow 20c.
  • the zone 11 must be a convex zone, the zone 12 being complementary to the zone 11.
  • the antenna shown has its slot 20 which comprises, at its end which is inside said radiating element 10, a protuberance 40 of dimension larger than the width of said slot.
  • the zone 13 common to the two zones 11 and 12 is in a way pinched by the protuberance 40. It has been possible to obtain good results with various shapes for the protuberance 40, but the best results are obtained when the protuberance 40 has a shape with a side 40d parallel to the edge 10b closest to the radiative element 10.
  • a rectangular shape, even square is advantageous because in particular relatively simple to produce.
  • this square is such that two of its sides 40a and 40b extend in the direction of the branch 20b, the other two 40c and 40d in a direction perpendicular to the branch 20b, but parallel to a edge 10b of the radiating element 10.
  • the object of this protuberance 40 is to lower the highest frequency as can be seen in FIG. 3. Without protuberance, the high frequency is approximately 1.15F o where Fo is an arbitrary reference frequency while it is always lower in the presence of such protrusion 40.
  • the dimension of this zone 13 which extends from the convex zone 11 to the complementary zone 12 is called "length of the common zone 13" and "thickness of the common zone 13" the dimension which extends between the edge 10b of the radiative element 10 and the protuberance 40. It is believed that the effect of this protuberance 40 is to modify, according to its shapes and dimensions, the value of the self that constitutes the common area 13 and thus to modify the high frequency antenna resonance.
  • Fig. 2b there is shown another embodiment of an antenna according to the invention.
  • the slot 20 of the antenna comprises a protuberance 50 in the form of a slit which extends from the first slit 20 inside the zone 12 delimited by the slit 20 and complementary to the convex zone 11.
  • the slot 50 extends inside the zone 12 along the bisector of the angle formed by the short 20a and long 20b parts of the slot 20.
  • FIG. 5 a curve showing the influence of the length of the projection slot 50 on the low resonance frequency of an antenna according to the embodiment of FIG. 2b. It is noted that the greater the length of this projection slot 20, the greater the decrease in the low frequency of the antenna.
  • FIG. 2c an embodiment of the invention which combines the protuberances 40 and 50 of the embodiments of FIGS. 2a and 2b respectively.
  • this pinched common area 13 for example by modifying the diameter of the circle forming the projection 40 ′ and on the thickness of this common area 13 (for example either by playing on the diameter of the circle forming the protrusion 40 ′ either by varying the position of the protrusion 40 ′ along the length of the slot 20) the high resonance frequency of the antenna can be adjusted.
  • ground point 32 and the feed point 31 of the antenna which are in the part of the complementary zone 12 opposite the convex zone 1 1.
  • the feed point 31 is in the part the most distant from the convex zone 1 1 while the ground point 32 is located in the part of the zone 12 close to the through end of the slot 20.
  • FIG. 7 Another embodiment of an antenna according to the invention.
  • the radiative element 10 is rectangular (but it could also be, like the embodiment of Fig. 6, oval or other) and has two slots 20 'and 20 "which delimit on the radiative element 10 two convex zones 11 'and 11 "of different dimensions as well as three other zones 14, 15 and 16.
  • Zone 14 is located between the two slots 20' and 20", zones 15 and 16 being the zones which respectively connect the zone 14 to the convex zones 11 'and 11 ".
  • the power and ground points 31 and 32 are also shown.
  • the ground point is close to the through ends of each of said slots 20 'and 20 "on a part 14 of said radiating element 10 opposite with respect to each slot 20' and 20" to the convex zones 11 ', 11 "respectively delimited by the slots 20 'and 20 ", said feed point 31 being located at a distance from the ground point 32 so as to adapt the impedance of said antenna.
  • Such an antenna has four resonant frequencies.
  • the lowest frequency is mainly determined by the dimensions of zones 14, 15 and 11 ".
  • the second resonant frequency is mainly determined by the dimensions of zones 14, 16 and 11 '.
  • the third resonant frequency is mainly determined by the dimensions of the 11 "convex area and the fourth resonant frequency is mainly determined by the dimensions of the convex zone 11 '.
  • the slots 20 'and 20 "respectively have protrusions 40' and 50 ', on the one hand, and 40" and 50 ", on the other hand.
  • the protrusion 40 makes it possible to adjust the highest resonant frequency
  • the protrusion 40 "makes it possible to adjust the third resonant frequency
  • the protrusion 50' makes it possible to adjust the second resonant frequency and that the 50 "protrusion allows the lowest resonant frequency to be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Waveguide Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

La présente invention concerne une antenne multi-fréquence du type PIFA comprenant un élément radiatif (10) placé à distance d'un plan de masse, ledit élément radiatif (10) comportant au moins une liaison audit plan de masse (32) et un point d'alimentation (31) et étant pourvu d'au moins une fente (20, …) dont une extrémité se trouve sur un bord (10a) dudit élément radiatif (10), don’t l'autre extrémité se trouve à l'intérieur dudit élément radiatif (10) et dont la forme est telle qu'elle délimite sur ledit élément radiatif (10) une zone (11) convexe, ladite antenne étant alors le siège de plusieurs fréquences de résonance. Selon l'invention, elle est caractérisée en ce que ladite ou chaque fente (20) comprend au moins une excroissance (40,…, 50,…).

Description

Antenne multi-fréquence intégrée pour téléphone mobile
La présente invention concerne une antenne multi-fréquence intégrée pour téléphone mobile.
Une antenne de ce type est déjà décrite dans un document intitulé "Dual- Frequency Planar Inverted-F Antenna " publié dans IEEE Transcations on antennas and Propagation, vol 45, No 10 d'octobre 1997 au nom de Zi Dong Liu and ail. Une telle antenne, montrée à la Fig. la, est constituée d'un élément radiatif plan 100 conducteur électrique placé à distance d d'un plan de masse M également conducteur électrique sensiblement parallèlement à celui-ci. L'élément radiatif 100 est divisé par une fente 200 en deux zones distinctes 101 et 102 dont chacune d'elles est alimentée par un plot d'alimentation 101a et 102a traversant le plan de masse M. Par ailleurs, chaque zone 101, 102 de l'élément radiatif 100 est reliée au plan de masse M par un plot conducteur 101b, 102b dit par la suite plot de masse.
Le mode de résonance d'une telle antenne est un mode quart d'onde. Par conséquent, on peut dire que la fréquence haute est déterminée par les dimensions de la zone 101 alors que la fréquence basse est déterminée par les dimensions de la zone
C PÎU BB €OMFimâATiQM 102. La distance d entre l'élément radiatif 100 et le plan de masse M est un paramètre dans la détermination de la bande passante à chaque fréquence de résonance alors que la distance qui sépare un plot d'alimentation 101a, 102a au plot de masse correspondant est un autre paramètre dans la détermination de l'impédance de l'antenne à chaque fréquence de résonance.
On a pu montrer que la fréquence de résonance d'un élément radiatif plan rectangulaire est approximativement donnée par la relation :
f =
4(a + b)
où C est la célérité de la lumière, a et b les largeur et longueur de l'élément radiatif plan rectangulaire considéré et εr est la permittivité du milieu qui se trouve entre l'élément radiatif et le plan de masse.
En ce qui concerne chaque zone 101 et 102 de l'élément radiatif 100 de l'antenne qui est représentée à la Fig. 1 a, cette relation est approximative car des distorsions y sont introduites notamment parce que les zones 101 et 102 sont couplées entre elles au niveau de la fente 200, couplage qui dépend entre autre de la largeur de la fente 200.
Dans le même document, il est également mentionné une antenne du même type que précédemment mais qui ne comporte qu'un seul plot d'alimentation. Une telle antenne est représentée à la Fig. lb où l'on peut voir que, du fait que la fente 200 ne débouche que sur un seul bord de l'élément radiatif 100, les zones 101 et 102 ont une partie commune 103 où sont prévus, d'une part, les plots de masse 101b et 102b et, d'autre part, l'unique plot d'alimentation 103a.
On notera qu'une telle antenne pourrait ne comporter qu'un seul plot de masse au lieu de deux.
Dans le document mentionné ci-dessus, il est montré qu'une telle antenne présente les mêmes caractéristiques que celle qui est représentée à la Fig. la.
On a également pu montrer que pour une telle antenne, les emplacements du plot d'alimentation et du ou des plots de masse sont relativement indifférents sur son fonctionnement. Ce qui ne l'est pas, par contre, c'est la distance qui sépare le plot d'alimentation du ou des plots de masse et qui est déterminante dans la valeur de l'impédance de l'antenne à chaque fréquence de résonance.
On notera que différentes formes peuvent être envisagées à l'élément radiatif 100 ainsi qu'à la fente 200 sans pour que cela altère radicalement son fonctionnement. Par exemple, l'élément radiatif 100 pourrait être circulaire, ovale, voire ovoïde, etc. et la fente 200 pourrait être simplement droite, ou courbée, ou autre.
Une telle antenne pose le problème de son accord à chacune des fréquences de résonance car ce sont la position de la fente 200 dans l'élément radiatif 10, les longueurs de branches qui constituent cette fente 200 ainsi que sa largeur qui déterminent ses fréquences de résonance. On a donc cherché à améliorer ce type d'antenne de manière à faciliter son accord.
Une antenne selon l'invention est donc une antenne multi-fréquence du type PIFA comprenant un élément radiatif placé à distance d'un plan de masse, ledit élément radiatif comportant au moins une liaison audit plan de masse et un point d'alimentation et étant pourvu d'au moins une fente dont une extrémité se trouve sur un bord dudit élément radiatif, dont l'autre extrémité se trouve à l'intérieur dudit élément radiatif et dont la forme est telle qu'elle délimite sur ledit élément radiatif une zone convexe, ladite antenne étant alors le siège de plusieurs fréquences de résonance. Pour résoudre le problème mentionné ci-dessus, elle est caractérisée en ce que ladite ou chaque fente comprend au moins une excroissance.
Dans un premier mode de réalisation de l'invention, ladite ou chaque fente comprend à son extrémité qui se trouve à l'intérieur dudit élément radiatif, une excroissance de dimension plus importante que la largeur de ladite fente. Avantageusement, ladite excroissance présente un bord qui est sensiblement parallèle au bord le plus proche dudit élément radiatif.
Une antenne selon l'invention peut également être comme définie ci-dessus mais dudit type aussi dont l'élément radiatif est de forme sensiblement rectangulaire, ladite ou au moins une fente comportant, d'une part, une branche courte qui est sensiblement perpendiculaire à un bord de l'élément radiatif et dont une extrémité se trouve sur ledit bord et, d'autre part, une branche plus longue qui est sensiblement parallèle audit bord de l'élément radiatif et qui se raccorde à l'autre extrémité de la partie courte.
Elle est alors caractérisée en ce que ladite fente comprend à son extrémité qui se trouve à l'intérieur dudit élément radiatif, une excroissance dont un bord est sensiblement parallèle au bord de l'élément radiatif adjacent au bord où se trouve la première extrémité de ladite fente.
Avantageusement, ladite excroissance est de forme sensiblement rectangulaire, voire carrée. Dans un second mode de réalisation de l'invention, ladite ou au moins une fente comprend une excroissance se présentant sous la forme d'une fente s'étendant à partir de la première fente dans une zone complémentaire de ladite zone convexe délimitée par ladite fente. Lorsque ladite antenne est dudit type dont ladite ou au moins une fente comportant, d'une part, une branche courte qui est sensiblement perpendiculaire à un bord de l'élément radiatif et dont une extrémité se trouve sur ledit bord et, d'autre part, une branche plus longue qui est sensiblement parallèle audit bord de l'élément radiatif et qui se raccorde à l'autre extrémité de la partie courte, elle est alors caractérisée en ce que ladite fente comprend une excroissance se présentant sous la forme d'une fente s'étendant à partir de l'intersection entre les parties courte et longue de la fente.
Une antenne selon l'invention est également du type dont le point de masse est proche de l'extrémité débouchante de la fente sur une partie dudit élément radiatif opposée par rapport à la fente à ladite zone convexe délimitée par ladite fente, ledit point d'alimentation se trouvant à distance du point de masse de manière à adapter l'impédance de ladite antenne.
Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels :
Les Figs. la et lb sont des vues en perspective d'antenne du type PIFA selon l'état de la technique,
Les Figs. 2a à 2c sont des vues en plan de trois modes de réalisation d'antennes du type PIFA multifréquences selon la présente invention, La Fig. 3 est un graphe montrant l'influence de la surface d'une excroissance à l'extrémité d'une fente d'une antenne selon la présente invention,
La Fig. 4 est un graphe montrant l'influence d'une dimension d'une excroissance à l'extrémité d'une fente d'une antenne selon la présente invention,
La Fig. 5 est un graphe montrant l'influence d'une dimension d'une excroissance se présentant sous la forme d'une autre fente s'étendant à partir de la fente d'une antenne selon la présente invention,
La Fig. 6 est un autre mode de réalisation de la présente invention où l'élément radiatif est ovale, voire ovoïde, et La Fig. 7 est un autre mode de réalisation de la présente invention à plusieurs fentes.
Les antennes qui sont représentées aux Figs. 2a à 2c sont essentiellement constituées d'un élément radiatif 10 plan conducteur électrique qui est monté parallèlement à un plan de masse (non représenté) également conducteur électrique à une distance de celui-ci déterminée en fonction notamment de la bande passante qui est désirée pour chaque fréquence de résonance. Un diélectrique peut être placé entre l'élément radiatif 10 et le plan de masse.
L'élément radiatif 10 est dans l'exemple de réalisation représenté sensiblement rectangulaire. Il est divisé au moyen d'une fente 20 constituée d'un isolant électrique (ici l'absence du matériau conducteur constituant l'élément radiatif 10). Cette fente 20 comporte une partie courte 20a qui est sensiblement perpendiculaire à un bord 10a de l'élément radiatif 10 et dont une extrémité débouche sur ce bord 10a. Elle comporte encore une partie plus longue 20b qui est sensiblement parallèle au bord 10a de l'élément radiatif 10 et qui se raccorde à l'autre extrémité de la partie courte 20a en formant un coude 20c.
La fente 20 délimite, sur l'élément plan radiatif 10, une zone 11 sensiblement circonscrite par la fente 20 et un bord 10a de l'élément radiatif 10 et une zone 12 délimitée par les trois autres bords 10b à lOd de l'élément radiatif 10 et la fente 20. Les zones 11 et 12 ont une zone commune 13.
De manière générale, pour un bon fonctionnement d'une antenne selon l'invention, la zone 11 devra être une zone convexe, la zone 12 étant complémentaire de la zone 11.
L'élément radiatif 10 est relié au plan de masse par un plot de masse 32 situé en un point de l'élément radiatif 10 proche de l'extrémité débouchante de la fente 20 et opposé, par rapport à la fente 20, à la zone convexe 11 de l'élément radiatif 10 circonscrite par la fente 20. Il est également alimenté par un plot d'alimentation 31 situé en un point de la zone 12 de l'élément radiatif 10 relativement voisin du plot de masse 32, également voisin du coin de l'élément radiatif 10 opposé à la zone convexe 11.
Dans cette configuration du plot de masse 32 et du plot d'alimentation, on a pu montrer que une telle antenne est une antenne bi-fréquence dont la fréquence basse est essentiellement déterminée par les dimensions des zones 11 et 12 alors que la fréquence haute est essentiellement déterminée par les dimensions de la seule zone 11. Dans le premier mode de réalisation représenté à la Fig. 2a, l'antenne représentée a sa fente 20 qui comporte, à son extrémité qui se trouve à l'intérieur dudit élément radiatif 10, une excroissance 40 de dimension plus importante que la largeur de ladite fente. Ainsi, la zone 13 commune aux deux zones 11 et 12 est en quelque sorte pincée par l'excroissance 40. On a pu obtenir de bons résultats avec diverses formes pour l'excroissance 40, mais les meilleurs résultats sont obtenus lorsque l'excroissance 40 présente une forme avec un côté 40d parallèle au bord 10b le plus proche de l'élément radiatif 10. Plus particulièrement, une forme rectangulaire, voire carrée, est avantageuse car notamment relativement simple à réaliser. Dans l'exemple de réalisation représenté, ce carré est tel que deux de ses côtés 40a et 40b s'étendent dans la direction de la branche 20b, les deux autres 40c et 40d dans une direction perpendiculaire à la branche 20b, mais parallèlement à un bord 10b de l'élément radiatif 10.
L'objet de cette excroissance 40 est d'abaisser la fréquence la plus haute comme cela est visible sur la Fig. 3. Sans excroissance, la fréquence haute est d'environ 1,15Fo où Fo est une fréquence de référence arbitraire alors qu'elle est toujours inférieure en présence d'une telle excroissance 40.
On peut également constater sur cette Fig. 3 que plus la surface de cette excroissance est importante, plus la diminution de fréquence l'est. A la Fig. 4, on peut constater également que plus la dimension de l'excroissance qui est perpendiculaire à la fente est forte, plus l'abaissement de fréquence est important.
On a pu constater que, de manière générale, plus la longueur de la zone 13 communes aux deux zones 11 et 12 délimitées par la fente 20 est importante et plus son épaisseur est faible, plus important est l'abaissement de la seule fréquence haute de l'antenne. On appelle "longueur de la zone commune 13" la dimension de cette zone 13 qui s'étend de la zone convexe 11 à la zone complémentaire 12 et "épaisseur de la zone commune 13" la dimension qui s'étend entre le bord 10b de l'élément radiatif 10 et l'excroissance 40. On pense que l'effet de cette excroissance 40 est de modifier, selon ses formes et dimensions, la valeur de la self que constitue la zone commune 13 et d'ainsi modifier la fréquence haute de résonance de l'antenne.
A la Fig. 2b, on a représenté un autre mode de réalisation d'une antenne selon l'invention. La fente 20 de l'antenne, selon ce mode de réalisation, comprend une excroissance 50 se présentant sous la forme d'une fente qui s'étend à partir de la première fente 20 à l'intérieur de la zone 12 délimitée par la fente 20 et complémentaire de la zone convexe 11.
Dans l'exemple de réalisation représenté, la fente 20 comporte, a l'instar de l'exemple de réalisation précédent, une partie courte 20a dont une extrémité débouche sur ce bord 10a et une partie plus longue 20b qui se raccorde à l'autre extrémité de la partie courte 20a en formant un coude 20c.
A la Fig. 2b, l'excroissance 50 se présente donc sous la forme d'une fente qui s'étend à l'intérieur de la zone complémentaire 12 à partir du coude 20c formé à l'intersection entre la partie courte 20a et la partie longue 20b de la fente 20.
Dans l'exemple de réalisation représenté à la Fig. 2b, la fente 50 s'étend à l'intérieur de la zone 12 selon la bissectrice de l'angle formé par les parties courte 20a et longue 20b de la fente 20.
On a représenté à la Fig. 5 une courbe montrant l'influence de la longueur de la fente d'excroissance 50 sur la fréquence de résonance basse d'une antenne selon le mode de réalisation de la Fig. 2b. On constate que plus la longueur de cette fente d'excroissance 20 est importante et plus la diminution de la fréquence basse de l'antenne est importante.
Enfin, on a représenté à la Fig. 2c, un mode de réalisation de l'invention qui combine les excroissances 40 et 50 des modes de réalisation des Figs. 2a et 2b respectivement. Ainsi, il est possible d'ajuster les fréquences de résonance haute et basse en modifiant les dimensions des excroissances 40 et 50 comme il vient d'être expliqué.
A la Fig. 6, on a montré un autre mode de réalisation de la présente invention. Dans ce mode de réalisation, l'élément radiatif 10 est ellipsoïdal, la fente 20 est courbe et s'étend d'un bord 10a de l'élément radiatif 10 vers l'intérieur dudit élément radiatif 10 de manière à former une zone convexe 11 et une zone complémentaire 12. L'extrémité interne de la fente 20 présente une excroissance 40' qui est ici circulaire. On constate que la zone commune 13 est en quelque sorte pincée par l'excroissance 40'. On comprendra qu'en jouant sur la longueur d'extension de cette zone commune 13 pincée (par exemple en modifiant le diamètre du cercle formant l'excroissance 40' et sur l'épaisseur de cette zone commune 13 (par exemple soit en jouant sur le diamètre du cercle formant l'excroissance 40' soit en jouant sur la position de l'excroissance 40' sur la longueur de la fente 20) on pourra ajuster la fréquence haute de résonance de l'antenne.
La fente 20 comporte également une fente 50' qui s'étend à l'intérieur de la zone complémentaire 12 et dont la longueur permet d'ajuster la fréquence basse de résonance de l'antenne.
On notera les positions du point de masse 32 et du point d'alimentation 31 de l'antenne qui se trouvent dans la partie de la zone complémentaire 12 opposée à la zone convexe 1 1. Le point d'alimentation 31 se trouve dans la partie la plus éloignée de la zone convexe 1 1 alors que le point de masse 32 se trouve dans la partie de la zone 12 proche de l'extrémité débouchante de la fente 20.
Comme précédemment, dans cette configuration du plot de masse 32 et du plot d'alimentation, on a pu montrer que une telle antenne est une antenne bi-fréquence dont la fréquence basse est essentiellement déterminée par les dimensions des zones 11 et 12 alors que la fréquence haute est essentiellement déterminée par les ' dimensions de la seule zone 11.
On a représenté à la Fig. 7 un autre mode de réalisation d'une antenne selon l'invention. L'élément radiatif 10 est rectangulaire (mais il pourrait être aussi, a l'instar de l'exemple de réalisation de la Fig. 6, ovale ou autre) et comporte deux fentes 20' et 20" qui délimitent sur l'élément radiatif 10 deux zones convexes 11' et 11" de dimensions différentes ainsi que trois autres zones 14, 15 et 16. La zone 14 se trouve entre les deux fentes 20' et 20", les zones 15 et 16 étant les zones qui relient respectivement la zone 14 aux zones convexes 11' et 11 ". Les points d'alimentation et de masse 31 et 32 sont également représentés. On peut constater que le point de masse est proche des extrémités débouchantes de chacune desdites fentes 20' et 20" sur une partie 14 dudit élément radiatif 10 opposée par rapport à chaque fente 20' et 20" aux zones convexes 11', 11 " respectivement délimitées par les fentes 20' et 20", ledit point d'alimentation 31 se trouvant à distance du point de masse 32 de manière à adapter l'impédance de ladite antenne.
Une telle antenne présente quatre fréquences de résonance. La fréquence la plus basse est principalement déterminée par les dimensions des zones 14, 15 et 11". La seconde fréquence de résonance est principalement déterminée par les dimensions des zones 14, 16 et 11'. La troisième fréquence de résonance est principalement déterminée par les dimensions de la zone convexe 11" et la quatrième fréquence de résonance est principalement déterminée par les dimensions de la zone convexe 11'.
Les fentes 20' et 20" présentent respectivement des excroissances 40' et 50', d'une part, et 40" et 50", d'autre part.
On comprendra que l'excroissance 40' permet d'ajuster la fréquence de résonance la plus haute, l'excroissance 40" permet d'ajuster la troisième fréquence de résonance, l'excroissance 50' permet d'ajuster la seconde fréquence de résonance et que l'excroissance 50" permet d'ajuster la fréquence de résonance la plus basse.

Claims

REVENDICATIONS
1) Antenne multi-fréquence du type PIFA comprenant un élément radiatif (10) placé à distance d'un plan de masse, ledit élément radiatif (10) comportant au moins une liaison audit plan de masse (32) et un point d'alimentation (31) et étant pourvu d'au moins une fente (20, 20') dont une extrémité se trouve sur un bord (10a) dudit élément radiatif (10), dont l'autre extrémité se trouve à l'intérieur dudit élément radiatif (10) et dont la forme est telle qu'elle délimite sur ledit élément radiatif (10) une zone (11) convexe, ladite antenne étant alors le siège de plusieurs fréquences de résonance, caractérisée en ce que ladite ou au moins une fente (20) comprend une excroissance (50) se présentant sous la forme d'une fente s'étendant à partir de la première fente (20) dans une zone complémentaire de ladite zone convexe délimitée par ladite fente (20).
2) Antenne selon la revendication 1 , ladite antenne étant dudit type dont ladite - ou au moins une fente (20) comportant, d'une part, une branche courte (20a) qui est sensiblement perpendiculaire à un bord (10a) de l'élément radiatif (10) et dont une extrémité se trouve sur ledit bord (10a) et, d'autre part, une branche plus longue (20b) qui est sensiblement parallèle audit bord (10a) de l'élément radiatif (10) et qui se raccorde à l'autre extrémité de la partie courte (20a), caractérisée en ce que ladite fente (20) comprend une excroissance (50) se présentant sous la forme d'une fente s'étendant à partir de l'intersection entre les parties courte (20a) et longue (20b) de la fente (20).
3) Antenne selon la revendication 1 ou 2, caractérisée en ce que ladite ou chaque fente (20, 20') comprend à son extrémité qui se trouve à l'intérieur dudit élément radiatif (10), une excroissance (40, 40') de dimension plus importante que la largeur de ladite fente (20).
4) Antenne selon la revendication 3, caractérisée en ce que ladite excroissance (40, 40') présente un bord (40d, 40'd) qui est sensiblement parallèle au bord le plus proche (10b) dudit élément radiatif (10).
5) Antenne selon la revendication 1, ladite antenne étant dudit type dont l'élément radiatif (10) est de forme sensiblement rectangulaire, ladite ou au moins une fente (20) comportant, d'une part, une branche courte (20a) qui est sensiblement perpendiculaire à un bord (10a) de l'élément radiatif (10) et dont une extrémité se trouve sur ledit bord (10a) et, d'autre part, une branche plus longue (20b) qui est sensiblement parallèle audit bord (10a) de l'élément radiatif (10) et qui se raccorde à l'autre extrémité de la partie courte (20a), caractérisée en ce que ladite fente (20) comprend à son extrémité qui se trouve à l'intérieur dudit élément radiatif (10), une excroissance (40) dont un bord (40d) est sensiblement parallèle au bord (10b) de l'élément radiatif (10) adjacent au bord (10a) où se trouve la première extrémité de ladite fente (20).
6) Antenne selon la revendication 5, caractérisée en ce que ladite excroissance (40) est de forme sensiblement rectangulaire, voire carrée.
7) Antenne selon une des revendications précédentes, caractérisée en ce que le point de masse (32) est proche de l'extrémité débouchante de la fente (20) sur une partie dudit élément radiatif (10) opposée par rapport à la fente (20) à ladite zone convexe (11) délimitée par ladite fente (20), ledit point d'alimentation (31) se trouvant à distance du point de masse (32) de manière à adapter l'impédance de ladite antenne.
PCT/FR2003/001624 2002-05-31 2003-05-28 Antenne multi-frequence integree pour telephone mobile WO2003103088A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03756023A EP1509966A1 (fr) 2002-05-31 2003-05-28 Antenne multi-frequence integree pour telephone mobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/07041 2002-05-31
FR0207041A FR2840457B1 (fr) 2002-05-31 2002-05-31 Antenne multi-frequence integree pour telephone mobile

Publications (2)

Publication Number Publication Date
WO2003103088A1 true WO2003103088A1 (fr) 2003-12-11
WO2003103088A9 WO2003103088A9 (fr) 2005-10-06

Family

ID=29559047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001624 WO2003103088A1 (fr) 2002-05-31 2003-05-28 Antenne multi-frequence integree pour telephone mobile

Country Status (4)

Country Link
EP (1) EP1509966A1 (fr)
CN (1) CN100563060C (fr)
FR (1) FR2840457B1 (fr)
WO (1) WO2003103088A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753081A1 (fr) * 2005-08-12 2007-02-14 Hirschmann Car Communication GmbH Antenne radiotéléphonique mobile pour un véhicule
EP2026407A1 (fr) * 2007-08-14 2009-02-18 Mobinnova Hong Kong Limited Antenne planaire multibande de type PIFA

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892459A1 (fr) 1997-07-08 1999-01-20 Nokia Mobile Phones Ltd. Structure d'antenne à double résonance pour plusieurs gammes de fréquences
EP1079462A2 (fr) 1999-08-25 2001-02-28 Filtronic LK Oy Structure d'antenne plane
EP1187255A2 (fr) 2000-08-31 2002-03-13 Nokia Corporation Dispositif d'antenne pour un terminal de communication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6650295B2 (en) * 2002-01-28 2003-11-18 Nokia Corporation Tunable antenna for wireless communication terminals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892459A1 (fr) 1997-07-08 1999-01-20 Nokia Mobile Phones Ltd. Structure d'antenne à double résonance pour plusieurs gammes de fréquences
EP1079462A2 (fr) 1999-08-25 2001-02-28 Filtronic LK Oy Structure d'antenne plane
EP1187255A2 (fr) 2000-08-31 2002-03-13 Nokia Corporation Dispositif d'antenne pour un terminal de communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1509966A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1753081A1 (fr) * 2005-08-12 2007-02-14 Hirschmann Car Communication GmbH Antenne radiotéléphonique mobile pour un véhicule
DE102005038196A1 (de) * 2005-08-12 2007-02-22 Hirschmann Car Communication Gmbh Flachbauende Mobilfunkantenne für ein Fahrzeug
EP2026407A1 (fr) * 2007-08-14 2009-02-18 Mobinnova Hong Kong Limited Antenne planaire multibande de type PIFA

Also Published As

Publication number Publication date
EP1509966A1 (fr) 2005-03-02
FR2840457B1 (fr) 2006-04-28
CN1781212A (zh) 2006-05-31
FR2840457A1 (fr) 2003-12-05
CN100563060C (zh) 2009-11-25
WO2003103088A9 (fr) 2005-10-06

Similar Documents

Publication Publication Date Title
EP1407512B1 (fr) Antenne
FR2860927A1 (fr) Antenne interne de faible volume
FR2555369A1 (fr) Antenne en cornet a variation progressive avec canal de piegeage
EP2156511A1 (fr) Antenne volumique omnidirectionnelle
FR2556510A1 (fr) Antenne periodique plane
EP0961344A1 (fr) Dispositif de radiocommunication et antenne à fente en boucle
EP2564466A1 (fr) Element rayonnant compact a cavites resonantes
FR2843832A1 (fr) Antenne large bande a resonateur dielectrique
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
FR2698212A1 (fr) Source élémentaire rayonnante pour antenne réseau et sous-ensemble rayonnant comportant de telles sources.
FR2625616A1 (fr) Antenne plane
WO1995007557A1 (fr) Antenne fil-plaque monopolaire
FR2856525A1 (fr) Alimentation pour une antenne a reflecteur.
FR2830131A1 (fr) Antenne a large bande ou multi-bandes
EP1516392B1 (fr) Antenne a brins
WO2003103088A1 (fr) Antenne multi-frequence integree pour telephone mobile
EP2817850B1 (fr) Dispositif à bande interdite électromagnétique, utilisation dans un dispositif antennaire et procédé de détermination des paramètres du dispositif antennaire
EP1181744A1 (fr) Antenne a polarisation verticale
EP0642189A1 (fr) Antenne pour appareil radio portatif
EP1701406B1 (fr) Antenne planaire dont les dimensions du plan de masse sont modifiables
WO2007054582A1 (fr) Systeme d'antenne plate a acces direct en guide d'ondes
FR3083373A1 (fr) Dispositif de transmission radiofrequence comportant un element de fixation formant une portion rayonnante d’une antenne
EP0991135B1 (fr) Antenne sélective à commutation en fréquence
EP1525641A2 (fr) Antenne a plaque de faible epaisseur
FR2980647A1 (fr) Antenne ultra-large bande

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003756023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003812615X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003756023

Country of ref document: EP

COP Corrected version of pamphlet

Free format text: PAGE 3/5 OF DRAWINGS, REPLACED BY CORRECT PAGE 3/5