WO2003101579A1 - Method for removing water contained in solid using liquid material - Google Patents

Method for removing water contained in solid using liquid material Download PDF

Info

Publication number
WO2003101579A1
WO2003101579A1 PCT/JP2003/006989 JP0306989W WO03101579A1 WO 2003101579 A1 WO2003101579 A1 WO 2003101579A1 JP 0306989 W JP0306989 W JP 0306989W WO 03101579 A1 WO03101579 A1 WO 03101579A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
water
liquefied
solid
coal
Prior art date
Application number
PCT/JP2003/006989
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Kanda
Hiromi Shirai
Original Assignee
Central Research Institute Of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute Of Electric Power Industry filed Critical Central Research Institute Of Electric Power Industry
Priority to US10/516,160 priority Critical patent/US7537700B2/en
Priority to AU2003241902A priority patent/AU2003241902B2/en
Priority to JP2004508926A priority patent/JP4291772B2/en
Priority to EP03733265.7A priority patent/EP1524019B1/en
Priority to CA002487641A priority patent/CA2487641C/en
Publication of WO2003101579A1 publication Critical patent/WO2003101579A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/005Drying solid materials or objects by processes not involving the application of heat by dipping them into or mixing them with a chemical liquid, e.g. organic; chemical, e.g. organic, dewatering aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/028Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0292Treatment of the solvent
    • B01D11/0296Condensation of solvent vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D12/00Displacing liquid, e.g. from wet solids or from dispersions of liquids or from solids in liquids, by means of another liquid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10FDRYING OR WORKING-UP OF PEAT
    • C10F5/00Drying or de-watering peat

Definitions

  • the present invention relates to dehydration from water-containing solids, and more particularly, to a method and a system for dewatering water-containing solids at an operating temperature close to the outside air temperature and with a small required power. .
  • Dehydration treatment with an inert gas is required.
  • the apparent capacity can be reduced by increasing the number of circulations, but the total gas throughput is not significantly reduced. This problem applies not only to the case where the dehydration target is a liquid as shown in this publication but also to the case where the dehydration target is a solid.
  • the object to be dehydrated is a substance that can be heated to 100 ° C or more
  • dry Heating to more than ° C and increasing the saturated vapor pressure of water vapor to more than 101325 Pa reduces the amount of gas (hot air drying method).
  • the method of evaporating moisture in solids by the hot air drying method requires a heat source to heat the inert gas to 100 ° C or more and a heat source to evaporate the moisture.
  • the latent heat of vaporization of the water vapor evaporated in the inert gas is used. It is important to collect efficiently.
  • the vapor evaporating from the solid is diluted into the inert gas, so that the density of the latent heat of vapor contained in the vapor is significantly reduced (entropy is increased).
  • the decrease in temperature cannot be avoided thermodynamically.
  • coal is assumed as the water-containing solid, and the water-containing solid slurried in oil is heated at 150 ° C or more to reduce the water content.
  • the water content of the contained solid is evaporated. Since only water is selectively evaporated by using liquid oil, which hardly evaporates at the operating temperature, as the heating medium, the steam is not diluted, and the density of the latent heat of evaporation of the steam does not decrease. For this reason, the latent heat of vaporization of the steam can be efficiently recovered by the in-oil reforming method.
  • solvent replacement which assumes coal as a water-containing solid and does not use the latent heat of evaporation of water, does not evaporate the water of the water-containing solid and dehydrates the water while keeping the water in liquid form.
  • polar solvents have high water solubility even at normal temperature and normal pressure, it is possible to dissolve the water in the water-containing solid without raising the temperature, but a distillation operation is required to separate the completely mixed polar solvent and water. . A great deal of heat energy is consumed in this distillation operation. This can be regarded as dehydration energy replaced by distillation energy, and is not a drastic measure to reduce dehydration energy.
  • non-polar solvents hardly dissolve water at room temperature, but when heated under high pressure while maintaining the liquid state without evaporating the non-polar solvent, a small amount of water is dissolved.
  • the process also requires heating of the solvent and recovery of the heat released during cooling.
  • the heating pipe and the cooling pipe of the solvent are connected by a heat exchanger, even if the solvent is ideally heated without considering heat loss, the temperature rise on the heating side corresponding to the approach temperature of the heat exchanger. It is essential.
  • This heating energy is the product of the amount of solvent, the heat exchange approach temperature, and the heat capacity at constant pressure of the solvent.
  • the approach temperature is the temperature difference between the two tubes to transfer heat from the cooling tubes (high-temperature medium) to the heating tubes (low-temperature medium) in the heat exchanger.
  • the inventors estimated the required energy when using tetralin, which was assumed as the nonpolar solvent in the above literature, to be 2284 kJ / kg—water. In this estimation, a small value at 25 ° C was used for the solvent's molar heat capacity at constant pressure instead of the value at the actual operating temperature of 145-150 ° C, and heat loss was not considered. Energy is bigger than this.
  • the method using this tetralin exceeded the required energy of the whole process of the in-oil reforming process of 2100 kJ / kg—water by heat exchange alone. In addition to heat exchange, energy is also required to circulate the solvent in the process, and this non-polar solvent method cannot reduce the energy required for water removal.
  • the present invention provides dewatering under temperature conditions close to the outside air temperature, that is, approximately 0 ° (: up to 50 ° C), and efficiently recovers chemical substances used for dehydration.
  • a dewatering method that requires less energy and requires less energy, and that is suitable for performing the method of the present invention, and that is excellent in heat exchange and work recovery. To provide.
  • a liquefied substance of a substance which is a gas at 25 ° C. and 1 atm (hereinafter referred to as “substance D”) is brought into contact with the moisture-containing solid to dissolve the solid-containing moisture in the liquefied substance of the substance D.
  • substance D a substance which is a gas at 25 ° C. and 1 atm
  • the present invention provides a substance which is a gas at 25 ° C. and 1 atm (hereinafter referred to as a substance D), a compressor for pressurizing the gas of the substance D, and a gas for the pressurized substance D.
  • a condenser that condenses to a liquefied substance
  • a dehydrator that contacts the liquefied substance of substance D with a water-containing solid to dissolve and dehydrate water
  • a substance that vaporizes substance D from a liquefied substance of dissolved substance D Evaporator, a separator for separating the vaporized substance D and water, and an expander for expanding the vaporized substance D are connected in series, and this expander is connected to the compressor to form a circuit.
  • the substance D is circulated through this circuit, the condenser and the evaporator are connected by a heat exchanger, and the work performed to the outside in the expander is recovered.
  • This work is one of the power of the compressor. Characterized in that it is configured to be charged as a part
  • the present invention provides a water removal system.
  • a degassing tower for degassing the substance D from the water separated by the separator is connected, and the degassing tower is connected to the circuit described above, and the degassed substance D is Preferably, it is configured to be recovered and returned to the circuit.
  • the substance which is a gas at 25 ° C. and 1 atm is preferably one or a mixture of two or more selected from dimethyl ether, ethyl methyl ether, formaldehyde, ketene, and acetoaldehyde.
  • the contact between the liquefied substance of the substance D and the water-containing solid is not particularly limited, but it is preferable to make the countercurrent contact. More preferably, the amount of the liquefied substance of the substance D that comes into contact with the water-containing solid is not particularly limited, but is preferably a stoichiometric amount in order to suppress the extraction of components other than water from the solid.
  • the water removal method of the present invention is suitable for removing solids containing a large amount of moisture at an operating temperature close to the outside air temperature and with a small amount of required power, and is applicable to all types of moisture-containing solids.
  • the moisture-containing solid is preferably lignite or subbituminous coal, which enables to achieve the combustion performance and transportation cost equivalent to high-grade coal. Further, the lignite or subbituminous coal dewatered according to the present invention is suppressed from rewetting, so that it is not necessary to take measures such as adding heavy oil to suppress rewetting.
  • the dehydrating medium a liquefied substance of a substance having a high mutual solubility with water, which is a gas at atmospheric pressure and at a temperature close to the outside temperature is used, so that the liquefied substance is evaporated after dehydration.
  • water which is a gas at atmospheric pressure and at a temperature close to the outside temperature
  • the liquefied substance is evaporated after dehydration.
  • it can be easily separated from moisture, and dehydration can be performed at an operating temperature close to the outside air temperature as compared with the conventional technology.
  • there is no need to evaporate the water for the separation of the water and there is no need to collect the latent heat of evaporation of the water.
  • the liquefied gas can be efficiently recovered and circulated for use.
  • latent heat of vaporization can be recovered and effectively used by the heat exchanger, and work due to expansion can be recovered efficiently. And further energy savings can be achieved. That is, according to this system, after the water content of coal is dissolved in liquefied dimethyl ether, the temperature and pressure are slightly changed to selectively evaporate only dimethyl ether from the liquid mixture of liquefied dimethyl ether and water, Water and dimethyl ether can be easily separated, and the water can be removed from the coal without evaporating, and the evaporated dimethyl ether can be liquefied and recycled.
  • FIG. 1 is a schematic diagram of an example of the system of the present invention.
  • FIG. 2 is a schematic diagram showing temperature and pressure conditions of an example of the system of the present invention.
  • Figure 3 is a graph showing the power required for the second compressor with respect to the heat insulation efficiency of the expander and the heat insulation efficiency of the compressor.
  • Figure 4 shows the results of the dehydration experiment.
  • Figure 5 is a graph showing the relationship between the water content of Roy Young coal and the relative humidity.
  • Figure 6 shows the amount of liquefied dimethyl ether that was circulated, the amount of water removed, and the amount of precipitated dimethyl ether. It is a graph which shows the relationship with the combustible content of lignite.
  • a liquid that is a gas that is liquefied at 25 ° C. and 1 atm is used as a liquid to be brought into contact with a solid containing water.
  • the solvent replacement method using a non-polar solvent which is one of the conventional water removal methods, uses the property that the solubility of water is increased by raising the temperature of the solvent. It is characterized by the fact that the solubility of water is significantly changed by utilizing the gas-liquid phase transition phenomenon of the solvent in order to save energy in the law. That is, a substance in a gaseous state at room temperature is pressurized or cooled to a liquid state, and this is used as a replacement solvent. If the temperature and pressure are changed slightly after dissolving the water in the solid in the liquefied solvent, only the solvent is selectively evaporated and the water and solvent gases are easily separated.
  • a substance having high mutual solubility with water and having high mutual solubility with water in a liquefied state is desirable.
  • the boiling point of the solvent is higher than room temperature, a high-temperature energy source is required to evaporate the solvent when separating from water, and it is expected that the energy required for dehydration will increase.
  • the boiling point of the solvent is preferably around room temperature or lower. Therefore, in the present invention, a substance that is a gas at 25 ° C. and 1 atm is liquefied and used. Even more preferred are substances that are gaseous at 0 ° C. and 1 atm. Substances that are gaseous at 25 ° C and 1 atmosphere include dimethyl ether, ethynolemethyl ether, formaldehyde, ketene, and acetoaldehyde.
  • dimethyl ether and dimethyl ether which are easy to handle without toxicity are preferable.
  • Butane and propane are also substances that are gaseous at 25 ° C and 1 atm. These do not have the ability to dissolve water by themselves, but can be mixed with one or more mixtures selected from dimethyl / ether, ethyl methyl ether, formaldehyde, ketene, acetoaldehyde, etc. it can. Since butane and propane are components of natural gas and the like, they are easily available and can be easily liquefied because they have a boiling point close to that of liquefied dimethyl ether.
  • a liquefied substance of such a substance is brought into contact with a water-containing solid, and water in the solid, that is, pores on the outer surface of the solid, between the solid particles, and in some cases, inside the solid particles
  • the water in the water-containing solid is dissolved in the liquefied material by contact with the water present in the water, and the water-containing solid is dehydrated.
  • the contacting method may be any method used in a normal dehydration method, such as immersion or flowing a liquefied substance to a solid.
  • the liquefied material having a high moisture content can be easily separated from the liquefied material by vaporizing only the liquefied material. Evaporation can be performed by increasing the temperature or the pressure.
  • the liquefied material used in the present invention is a gaseous substance at a temperature close to the outside air temperature, so depending on the pressure at the time of the vaporization operation, it does not require much heating to vaporize and can be vaporized at around normal temperature. .
  • the vaporization temperature is preferably 0 ° C. to 50 ° C., although it depends on the liquefied material used.
  • the pressure of the liquefied material during vaporization is naturally determined by this temperature.
  • the vaporized liquefied matter is collected, liquefied, and brought into contact with a solid containing water again to be used for water removal.
  • the liquefaction is performed by pressurization, cooling, or a combination of pressurization and cooling, and advantageous conditions are appropriately selected in consideration of the boiling point of the substance to be used. If the substance has a boiling point of 0 ° C or less at 1 atm, if liquefaction is performed by cooling only without applying pressure, the temperature of the liquefied substance will be 0 ° C or less and dehydration will not be possible. It is necessary to liquefy at a higher temperature, and liquefaction is performed by a combination of pressurization and cooling.
  • liquefaction is preferably performed at a temperature equal to or higher than the boiling point. This is because below the normal boiling point, the saturated vapor pressure of substance D is less than 1 atmosphere, which causes the internal pressure of the equipment to be less than 1 atmosphere, which increases the manufacturing cost of the equipment and makes handling difficult. is there.
  • the temperature of the liquefied material is preferably between 0 ° C. and 50 ° C., from which the pressure is determined. From the above, in the method of the present invention, by changing the pressure and temperature, a series of dehydration operations can be performed in a temperature range of about 0 ° C. to 50 ° C. Can be.
  • the method of the present invention can be applied to moisture removal of any solid including coal.
  • a liquid is used as a medium for dehydration
  • the difference between the saturated solubility of water and the concentration of water in the liquefied product is the driving force for dehydration.
  • the theoretical maximum amount of water that can be dissolved in the liquefied product is proportional to the saturated solubility of water, the density of water, and the volume of the liquefied product. Comparing this with the theoretical maximum value of the amount of water that can evaporate in a dry inert gas as described in the section of the prior art, the saturated solubility of water is approximately 6% around 20 ° C. Very high relative to the saturated vapor pressure partial pressure of water vapor in the air (approximately 2%).
  • FIG. 1 is a schematic diagram showing the configuration of an example of the water removal system of the present invention.
  • dimethyl ether is used as the substance D which is a gas at 25 ° C and 1 atm, and that coal is dehydrated as a water-containing solid, but the system of the present invention is not limited to this. Not something.
  • Dimethyl ether has a boiling point of about ⁇ 25 ° C. at 1 atm and is in a gaseous state at an atmospheric pressure of 0 ° C. to 50 ° C. As described above, since it is in a gaseous state at around room temperature and under atmospheric pressure, it is necessary to operate under pressure to obtain dimethyl ether in a liquid state.
  • JP-A-11-303074 JP-A-10-195009, JP-A-10-195008, JP-A-10-182535 to JP-A-10-182527.
  • a dehydrator 3 for dehydrating and an evaporator 4 for evaporating dimethyl ether from liquefied dimethyl ether containing water by dehydration are connected in this order.
  • the condenser 2 and the evaporator 4 are connected by a heat exchanger 5. I have.
  • a separator 6 for dimethyl ether vapor and water, and an expander 7 for adiabatically expanding the dimethyl ether vapor separated by the separator 6 are connected in series by piping, and the expander 7 is further connected to a compressor. 1 and form a closed circuit (circulation path).
  • dimethyl ether circulates while changing the state of gas and liquid, repeating dehydration and separation of water.
  • 4 'in Fig. 1 is a cooler and 4 "is a pressure reducing valve, which adjusts the temperature and pressure when vaporizing liquefied dimethyl ether and is considered to be part of the evaporator.
  • the separator 6 is connected to a degassing tower 8 for degassing the dimethyl ether dissolved in the water separated by the separator 6.
  • a degassing tower 8 In the degassing tower 8, the pressure inside the degassing tower is controlled by a pressure-holding valve 8 '.
  • the degassing tower 8 is connected to the circuit described above, and the recovered dimethyl ether is returned to the circuit again by a piping (not shown).
  • the work performed in the outside world is collected here, and this work is used as a part of the power of the compressor 1 that pressurizes the dimethyl ether.
  • the compressor has two stages, the first compressor 1 and the expander 7 are connected, and the work performed by the expander 7 is collected and used as the power for the first compressor 1.
  • Reference numeral 9 denotes an electric motor, and external work is input only to the second compressor 1 '.
  • the work performed to the outside world in the expander 7 includes a force S mainly indicating a work performed by the dimethyl ether gas in accordance with the volume expansion, and also includes a work described below.
  • the superheated gas of dimethyl ether that has exited the evaporator 4 may be mixed with droplets that are entrapped in the flow of the superheated gas. For this reason, in the expander 7, work may be obtained by vaporization of the mixed droplets.
  • the work performed by the expander 7 includes not only the work due to the volume expansion of the superheated gas but also the work. Further, since the condenser 2 and the evaporator 4 are connected by the heat exchanger 5, the latent heat of vaporization of the liquefied dimethyl ether is recovered and used effectively.
  • a cooler 10 may be installed in the system of the present invention as shown in FIG. This is installed as necessary depending on the conditions of the liquefied gas to be used and the like, and adjusts the temperature of the gas discharged from the expander 7 to the optimum temperature at the inlet of the compressor 1.
  • This system involves three types of water-containing solids: coal, water, and liquefied dimethyl ether. Focusing on each substance, the flow of this system is described.
  • the water-containing solid coal is charged into the dehydrator 3 and is removed from the container after being dehydrated by liquefied dimethyl ether.
  • the flow is indicated by a dotted line.
  • the water whose flow is indicated by a double line in FIG. 1 is supplied from the dehydrator 3 to the system as moisture of the moisture-containing solid. First, it is eluted into liquefied dimethyl ether by the dehydrator 3 and then reaches the evaporator 4 in a form dissolved in the liquefied dimethyl ether. Most of the liquefied dimethyl ether is vaporized in the evaporator 4, and the water dissolved in the liquefied dimethyl ether is separated. It is separated into dimethyl ether vapor and water by the gas-liquid separator 6, and the water remains as wastewater.
  • a degassing tower 8 is used as the dedimethylether tower. Is configured. Further, by heating the water with a heating can 8a provided at the lower part of the degassing tower 8, the recovery of dimethyl ether can be improved. The degassed water is discharged as bottoms, and the dimethyl ether vapor separated from the wastewater can be returned to the circuit of the dehydration system and used again.
  • the dimethyl ether gas whose flow is shown by a solid line in FIG. 1 is pressurized by the compressors 1 and 1 ′ to become a superheated gas, and then becomes a supercooled liquid in the condenser 2.
  • Liquefied dimethi The supercooled liquid of the luter is supplied to the dehydrator 3 to dissolve the water of the water-containing solid, and flows to the evaporator 4.
  • the liquefied dimethyl ether is separated from water in the evaporator 4 and becomes a superheated gas again.
  • the condenser 2 and the evaporator 4 are connected by the heat exchanger 5, the latent heat of vaporization of the liquefied dimethyl ether is recovered and effectively used.
  • the superheated gas of dimethyl ether leaving the evaporator 4 works in the expander 7 and is recovered as a part of the compressor power.
  • the dimethyl ether gas exiting the expander 7 is sent again to the compressor 1 and circulates through the system.
  • FIG. 2 shows an example of setting the phase state, pressure, temperature, and saturation temperature when dimethyl ether is used in one example of the system of the present invention.
  • the degassing tower 8 for dimethyl ether gas from water was omitted, and it was assumed that water and dimethyl ether could be completely separated by the gas-liquid separator 6. It was also assumed that the water-containing solid treated in the dehydrator 3 did not contain dimethyl ether.
  • the temperature and pressure conditions were set with the temperature at the inlet of the first compressor 1 as a starting point.
  • the temperature at the inlet ⁇ of the first compressor is 25 ° C and it is overheated by 10 ° C from the saturation temperature (b.p.l 5 ° C)
  • the pressure becomes 0.44 MPa.
  • the degree of superheat is smaller, the pressure in the first compressor 1 increases, and the power of the compressor 1 decreases.
  • dimethyl ether gas is cooled by outside air and condensed at the stage just before the compressor inlet. The danger increases.
  • the heat capacity ratio of dimethyl ether is as small as 1.11, the temperature does not easily rise during adiabatic compression.
  • the degree of superheat at the compressor outlets 1 and 3 at the first compressor 1 and the second compressor 1 ' is smaller than the superheat at the compressor inlet.
  • the pressure at the outlet 3 of the second compressor 1 ′ is determined by the temperature of the cooling water used for the cooler 4 ′ before the evaporator 4.
  • the outside air temperature is 20 ° C and the temperature of the cooling water is equal to the outside air temperature.
  • the approach temperature at cooler 4 ' is 5 ° C
  • the temperature of liquefied dimethyl ether at the outlet (evaporator inlet) 6 of cooler 4 is 25 ° C.
  • the temperature at the outlet ⁇ of the condenser 2 is 30 ° C.
  • the saturation temperature of the evaporator 4 is 30 ° C, it is necessary to reduce the pressure at the inlet ⁇ ⁇ ⁇ ⁇ of the evaporator 4 to the saturation pressure at 30 ° C.
  • the saturation pressure here is the saturation pressure of a mixture of water and liquefied dimethyl ether, and is 0.62 MPa. Since the temperature difference ⁇ between the condenser 2 and the evaporator 4 is 5 ° C, the temperature at the outlet (expander inlet) ⁇ of the evaporator 4 is 38 ° C. Since the degree of superheat here is 8 ° C, the heat loss within the energy required to heat the dimethyl ether gas at 8 ° C is reduced from the outlet of the second compressor 1 ′ to the inlet of the expander 7. Is acceptable.
  • the expander 7 After separating dimethyl ether gas from water by the gas-liquid separator 6, the expander 7 adiabatically expands the water.
  • the pressure at the outlet ⁇ of the expander 7 is equal to the pressure at the inlet of the first compressor 1.
  • the dimethyl ether gas is cooled to 26 ° C by adiabatic expansion. Cooling is necessary because the temperature is 1 ° C higher than the inlet of the first compressor 1.
  • energy is recovered and used as power for the first compressor. Assuming that the adiabatic efficiency of the expander 7 and the first compressor 1 is 80%, the temperature at the outlet of the first compressor is 32 ° C and the pressure is 0.55 MPa.
  • the required power in the second compressor 1 ' is calculated by variously changing the adiabatic efficiency in the expander 7 and the two compressors 1 and 1' in accordance with the temperature and pressure settings already determined.
  • the total work required by the two compressors 1, 1 'is (theoretical work required by the two compressors 1, 1') ⁇ (adiabatic efficiency).
  • the work collected by the expander 7 and input as power for the first compressor 1 is (theoretical work performed by the expansion) X (adiabatic efficiency). Therefore, the work required for the second compressor 1 'is (theoretical work required for the two compressors 1, 1') ⁇ (adiabatic efficiency) Theoretical work performed by one expansion) X (adiabatic efficiency).
  • this work needs to be introduced in the form of power, assuming that the conversion efficiency is 0.35, the work required by the second compressor 1 ') ⁇ 0.35 requires the second compressor 1' Total energy. This conversion rate is the same value as the conversion efficiency of the compression power for latent heat recovery of steam, which was used in the power estimation of the in-oil reforming method.
  • the required power of this system will be 948kJ / kg water.
  • the compression efficiency is based on the compression efficiency of the compressor used for estimating the latent heat of steam used in the power estimation of the in-oil reforming method. Technology (1997)].
  • lignite has bulk water condensed on the outer surface and between particles of lignite particles, and capillary condensate and surface adsorbed water inside the lignite pores. Of these, bulk water is the easiest to desorb.
  • capillary condensate has a strong capillary suction force, and therefore has a strong water retention capacity.
  • surface adsorbed water is water directly adsorbed on the surface of the brown coal pore wall, and is most difficult to dehydrate.
  • liquefied DME packed in a stainless steel container was extruded through a column packed with granular Royen's charcoal with a water content adjusted to a constant value of 5 mm or less using compressed nitrogen of 0.7 to 0.9 MPa to flow.
  • the procedure was performed by collecting the liquefied DME in an empty closed container that stores the liquefied DME, which is arranged at the subsequent stage of the column. While passing through the column, the water of the Roy Young coal is dehydrated by dissolving in the liquefied DME.
  • the experiment was performed at room temperature, and the flow rate of the liquefied DME was 10 ml / min.
  • the purity of the liquefied DME used in the experiment was over 99%.
  • the saturated vapor pressure of liquefied DME at 20 ° C is 0.51 MPa, and the saturated solubility of water in liquefied DME at 20 ° C is 6.7 wt%, which is the minimum amount required for dissolving water lg (hereinafter referred to as theoretical amount).
  • DME is 14.9g.
  • a dehydration experiment was conducted in which 194 wt% of liquefied DME was passed through the column to clarify the characteristics of the dehydration phenomenon.
  • the liquefied DME discharged from the column is brownish brown and transparent, and it is considered that some of the combustible components of the royal coal have been dissolved.
  • the liquefied DME was evaporated, and impurities contained in the obtained DME gas were measured by gas chromatography. As impurities other than the DME gas, only trace amounts of water vapor and nitrogen were detected. From this, it was confirmed that the evaporated DME contained almost no impurities and was recyclable.
  • a brownish turbid wastewater and a brown solid (hereinafter referred to as a precipitate), which is considered to be a combustible component of brown coal, were deposited.
  • the precipitate was soluble in ethanol and flammable.
  • the water removed from the coal in the above-mentioned dehydration experiment that is, the drainage weight was 4.23 g.
  • the moisture content of the royal coal before dehydration can be measured by the usual moisture measurement method, because DME adsorbed on the dehydrated coal evaporates at 107 ° C, making it impossible to measure only the moisture of the dehydrated coal. It is. Therefore, the calculation was performed using the water content (53.2%) obtained using the same lot of charcoal subjected to the same wet operation.
  • the calculated water content before dehydration of the charcoal was 4.43 g. Therefore, the difference of 0.20 g was defined as the water content of the dehydrated coal.
  • the moisture content of the dewatered coal was 4.7% of the total weight of 4.74 g, and that the royal coal could be dewatered as much as bituminous coal.
  • the total weight of dehydrated coal, wastewater, and precipitates is 9.43 g, which is l.l lg heavier than the wet weight of the royal coal before dehydration, but this is DME adsorbed on the dehydrated coal.
  • the weight loss when the dehydrated coal was heated at 107 for 1 hour was 0.59 g, and the remaining 0.52 g had not evaporated, so about half of the adsorbed DME was strongly bound to Roy Young coal. It turned out to be DME.
  • the weight of the precipitate is 12% by weight of the dry weight of the royal coal before dehydration. Upon heating and evaporation, a brown solid corresponding to a concentration of 1500-2000 ppm precipitated.
  • Figure 6 shows the results.
  • the amount of wastewater on the vertical axis is standardized based on the water content of the royal coal before dehydration, and the amount of liquefied DME flowing on the horizontal axis is standardized based on the theoretical amount.
  • the dashed line in the figure is the amount of wastewater when lignite moisture is dissolved and dissolved in liquefied DME.
  • Fig. 6 also shows the relationship between the amount of liquefied DME and the amount of precipitation (Hatoshi).
  • the weight of the precipitates on the vertical axis is standardized by the dry weight (combustible content weight) of the Roy Young coal before dehydration.
  • the weight of the precipitate is proportional to the amount of DME flowing Therefore, it is preferable to dehydrate with a stoichiometric amount of liquefied DME in order to prevent the flammable content of Roy Young coal from decreasing. For this reason, the contact between the royal coal and the liquefied DME by countercurrent contact is preferred.
  • the water molecules must dissolve into the DME molecular population adsorbed on the surface of the dehydrated coal in order for the dehydrated coal to re-wet.
  • the saturated solubility of water in liquefied DME is about 6.7 wt%, and it is considered that the re-wetting of the dehydrated carbon is suppressed because water at or above the saturated solubility does not dissolve.
  • the existing method requires measures such as adding heavy oil to control rewet, whereas the method of the present invention does not require special measures to control rewet. have.
  • the method for removing solid-containing moisture according to the present invention is suitable for removing moisture from a solid containing a large amount of moisture with low power.
  • the method for removing functional groups on the surface of coal from lignite or sub-bituminous coal It is useful as a technology that can remove the water in the coal that is strongly bound with low power and dewater it to the water content equivalent to bituminous coal.
  • lignite and sub-bituminous coal which is low-ash and low-sulfur coal, has low water content and low combustion cost due to its low water content and high flammability. Combustion performance and transportation costs can be realized. This is effective in reducing power generation costs when comprehensively assessing from mining of coal to treatment after power generation.
  • the present invention can be expected to achieve highly efficient dehydration from a water-containing solid other than coal such as lignite at a room temperature of around 0.5 MPa and operating under extremely easy conditions with low power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

A method for removing the water contained in a solid, which comprises contacting a solid containing water with a liquefied material which is a gas at 25°C under 1 atm. (hereinafter referred to as the material D) to allow the liquefied material D to dissolve the water contained in the solid, to produce a liquefied material D having a high water content and simultaneously remove the water from the solid, vaporizing the material D in the liquefied material D having a high water content, to thereby separate water from a gaseous material D, recovering the gaseous material D, and liquefying the gaseous material D by pressuring, cooling, or a combination thereof, for reuse; and a system for practicing the method. The method can be suitably employed for removing water from a solid having a high water content such as a high water content coal with a reduced energy consumption.

Description

明 細 書  Specification
液化物質を用いた固体含有水分の除去方法  Method for removing solid-containing water using liquefied substance
技術分野  Technical field
本発明は、 水分を含有する固体からの脱水に関するものであり、 さらに詳しく は、 外気温度に近い操作温度で、 少ない所要動力で、 水分を含有する固体から脱 水する方法並びにシステムに関するものである。  The present invention relates to dehydration from water-containing solids, and more particularly, to a method and a system for dewatering water-containing solids at an operating temperature close to the outside air temperature and with a small required power. .
背景技術  Background art
従来より、 水分含有固体の水分除去の方法としては、 含有されている水分を蒸 発させて取り除く方法があるが、 近年、 水の蒸発潜熱を使わない目的で、 水分を 蒸発させることなく、 水の形態を液状に保持したまま脱水する溶剤置換法も試み られている。  Conventionally, there has been a method of removing water from a water-containing solid by evaporating the contained water, but in recent years, without using the latent heat of evaporation of water, water has not been evaporated. A solvent replacement method of dehydrating while keeping the form in a liquid state has also been attempted.
水分を蒸発させて取り除く方法としては、 例えば、 特開平 10-338653号のよう な乾燥不活性気体を用いた脱水法がある。 この方法では水分の飽和蒸気圧と乾燥 不活性気体中の水蒸気圧の差が脱水のドライビングフォースとなる。 そして、 乾 燥不活性気体中に蒸発しうる水分量の理論最大値は、 水分の飽和蒸気圧 ·水蒸気 の密度 ·乾燥不活性気体の体積に比例すると推測されるが、 室温付近では水分の 飽和蒸気圧は 101325 P aより著しく低く、 また、 水蒸気の密度は液体状の水に 比して極めて小さいため、 この公報に記載されている不活性気体の脱水装置で は、 必然的に大容量の不活性気体による脱水処理が必要である。 循環回数を増や すことで見掛けの容量を小さくすることは可能だが、 気体の通算処理量はさほど 軽減されない。 この問題は、 この公報に示されているような脱水対象が液体の場 合に限らず、 固体の場合にもあてはまる。  As a method for evaporating and removing water, for example, there is a dehydration method using a dry inert gas as disclosed in JP-A-10-338653. In this method, the difference between the saturated vapor pressure of water and the water vapor pressure in the dry inert gas is the driving force for dehydration. The theoretical maximum amount of water that can evaporate into the dry inert gas is estimated to be proportional to the saturated vapor pressure of water, the density of water vapor, and the volume of the dry inert gas. Since the vapor pressure is significantly lower than 101325 Pa, and the density of water vapor is extremely small as compared with liquid water, the inert gas dehydrator described in this publication necessarily has a large capacity. Dehydration treatment with an inert gas is required. The apparent capacity can be reduced by increasing the number of circulations, but the total gas throughput is not significantly reduced. This problem applies not only to the case where the dehydration target is a liquid as shown in this publication but also to the case where the dehydration target is a solid.
この問題のうち、 室温付近では水分の飽和蒸気圧が 101325 P aより著しく低 い点を解決するため、 脱水対象が 100 °C以上への加熱が可能な物質の場合、 乾燥 不活性気体を 100 °C以上に加熱し、 水蒸気の飽和蒸気圧を 101325 P a以上に増 大させて、 気体の量を減らす手法 (熱風乾燥法) がとられる。 しかしながら、 熱 風乾燥法によって固体中の水分を蒸発させる手法では、 不活性気体を 100 °C以上 に加熱するための熱源と、 水分を蒸発させるための熱源が必要であり、 少ないェ ネルギ一で脱水を行うには、 不活性気体中に蒸発した水蒸気が有する蒸発潜熱を 効率的に回収することが重要になる。 しかしながら、 熱風乾燥法では固体から蒸 発した水蒸気が不活性気体中に希釈されるので、 水蒸気が有する蒸発潜熱の密度 が著しく低下する (エントロピーが増大する) ため、 これにともなう蒸発潜熱の 回収効率の低下が熱力学的に避けられないという問題がある。 In order to solve the problem that the saturated vapor pressure of water near room temperature is significantly lower than 101325 Pa, if the object to be dehydrated is a substance that can be heated to 100 ° C or more, dry Heating to more than ° C and increasing the saturated vapor pressure of water vapor to more than 101325 Pa reduces the amount of gas (hot air drying method). However, the method of evaporating moisture in solids by the hot air drying method requires a heat source to heat the inert gas to 100 ° C or more and a heat source to evaporate the moisture. To perform dehydration, the latent heat of vaporization of the water vapor evaporated in the inert gas is used. It is important to collect efficiently. However, in the hot-air drying method, the vapor evaporating from the solid is diluted into the inert gas, so that the density of the latent heat of vapor contained in the vapor is significantly reduced (entropy is increased). However, there is a problem that the decrease in temperature cannot be avoided thermodynamically.
これに対して、 油中改質法 (特開 2000-290673号) では、 水分含有固体として 石炭を想定し、 油中スラリー化した水分含有固体を 150 °C以上で加熱処理するこ とで水分含有固体の水分を蒸発させる。 操作温度では殆ど蒸発しない液体状の油 を加熱媒体とすることで水だけが選択的に蒸発するため、 水蒸気が希釈されるこ とはなく、 水蒸気が有する蒸発潜熱の密度は低下しない。 このため、 油中改質法 では、 水蒸気が有する蒸発潜熱を効率的に回収可能である。 とりわけ、 石炭の脱 水に関しては、 既存の方法のうち、 油中改質法の所要エネルギーが最も小さいと 考えられている 〔財団法人エネルギー総合工学研究所 新エネルギーの展望 低 品位炭の改質技術 (1997)〕。 しかしながら、 油中改質法では、 脱水後の固体とス ラリーの油分とを分離するのに、 遠心分離や加熱操作が必要であるため、 何らか のエネルギーの投入が必要である。 なお、 このプロセス全体の所要エネルギーは On the other hand, in the in-oil reforming method (JP-A-2000-290673), coal is assumed as the water-containing solid, and the water-containing solid slurried in oil is heated at 150 ° C or more to reduce the water content. The water content of the contained solid is evaporated. Since only water is selectively evaporated by using liquid oil, which hardly evaporates at the operating temperature, as the heating medium, the steam is not diluted, and the density of the latent heat of evaporation of the steam does not decrease. For this reason, the latent heat of vaporization of the steam can be efficiently recovered by the in-oil reforming method. In particular, regarding the dewatering of coal, it is considered that the energy required for the in-oil reforming method is the smallest among the existing methods. [The Institute of Energy Engineering, New Energy Outlook Low-grade coal reforming technology (1997)]. However, in the oil-in-oil reforming method, centrifugation and heating operations are required to separate the dewatered solid from the slurry oil, so some kind of energy input is required. Note that the energy required for the entire process is
2100kJ/kg 一水である 〔財団法人エネルギー総合工学研究所、 新エネルギーの展 望 低品位炭の改質技術 (1997) p268 の熱収支 ·物質収支に関する表 5 · 2 9 より算出〕。 2100 kJ / kg water (Institute for Advanced Energy Engineering, prospects for new energies Low-rank coal reforming technology (1997), p268, heat and mass balances calculated from Tables 5 and 29).
これに対して、 水分含有固体として石炭を想定し、 水の蒸発潜熱を使用しない という目的で、 水分含有固体の水分を蒸発させることなく、 水の形態を液状に保 持したまま脱水する溶剤置換法 〔 K.Miura,K.Mae,R.Ashida,T.Tamaura and T.Ihara,The 7th Cnina- Japan Symposium on Coal and CI Chemistry Proceedings p351 (2001) ) の試みがある。 この溶剤置換法では、 無極性溶剤と極性溶剤を用いる 2 つのケースがある。  On the other hand, solvent replacement, which assumes coal as a water-containing solid and does not use the latent heat of evaporation of water, does not evaporate the water of the water-containing solid and dehydrates the water while keeping the water in liquid form. Method [K. Miura, K. Mae, R. Ashida, T. Tamaura and T. Ihara, The 7th Cnina-Japan Symposium on Coal and CI Chemistry Proceedings p351 (2001)). In this solvent displacement method, there are two cases using a non-polar solvent and a polar solvent.
極性溶剤では、 常温常圧でも水の溶解度が大きいため、 昇温することなく水分 含有固体の水分を溶解することができるが、 完全混合した極性溶剤と水を分離す る蒸留操作が必要になる。 この蒸留操作に膨大な熱エネルギーが消費される。 こ れは脱水エネルギーが蒸留エネルギーに置き換わったとみなすことができ、 脱水 エネルギーを低減する抜本策にはならない。 一方、 無極性溶剤は常温では殆ど水を溶解しないが、 高圧下、 無極性溶剤を蒸 発させずに液体状態を保持したまま昇温すると水を微量ながら溶解する。 この性 質を応用し、 高温高圧の無極性溶剤に水分含有固体の水分を溶解せさた後、 無極 性溶剤を常温に冷却して、 無極性溶剤に溶けきれない水分を分離する。 このよう にして水分の蒸発を伴わずに脱水するため、 所要エネルギーはこれまで以上に低 減できる可能性があるが、 水分含有固体と液状の有機溶剤との分離操作をしなく てはならず、 この為のエネルギーが必要である。 Since polar solvents have high water solubility even at normal temperature and normal pressure, it is possible to dissolve the water in the water-containing solid without raising the temperature, but a distillation operation is required to separate the completely mixed polar solvent and water. . A great deal of heat energy is consumed in this distillation operation. This can be regarded as dehydration energy replaced by distillation energy, and is not a drastic measure to reduce dehydration energy. On the other hand, non-polar solvents hardly dissolve water at room temperature, but when heated under high pressure while maintaining the liquid state without evaporating the non-polar solvent, a small amount of water is dissolved. Applying this property, after dissolving the moisture of the water-containing solid in a high-temperature, high-pressure nonpolar solvent, the nonpolar solvent is cooled to room temperature to separate water that cannot be dissolved in the nonpolar solvent. In this way, dehydration without evaporating water may reduce the required energy even more than before, but the operation of separating the water-containing solid from the liquid organic solvent must be performed. We need energy for this.
また、 このプロセスでは溶剤の加熱と、 冷却時に放出される熱の回収が必要で ある。 溶剤の加熱管と冷却管を熱交換器で連結するかぎり、 仮に熱損失を考慮し ない理想的な溶剤の加熱であっても、 熱交換器のアプローチ温度に相応する加熱 側での昇温が不可欠である。 この加熱エネルギーは、 溶剤の量、 熱交換アブロー チ温度、 溶剤の定圧モル熱容量の積となる。 ここでアプローチ温度とは、 熱交換 器において冷却管 (高温媒体) から加熱管 (低温媒体) に熱を伝導するために、 両管の間に設ける温度差のことである。  The process also requires heating of the solvent and recovery of the heat released during cooling. As long as the heating pipe and the cooling pipe of the solvent are connected by a heat exchanger, even if the solvent is ideally heated without considering heat loss, the temperature rise on the heating side corresponding to the approach temperature of the heat exchanger. It is essential. This heating energy is the product of the amount of solvent, the heat exchange approach temperature, and the heat capacity at constant pressure of the solvent. Here, the approach temperature is the temperature difference between the two tubes to transfer heat from the cooling tubes (high-temperature medium) to the heating tubes (low-temperature medium) in the heat exchanger.
上記の文献において無極性溶剤として想定されたテトラリンを用いた場合の所 要エネルギーを、 本発明者らが概算したところ、 2284kJ/kg —水となった。 この 概算において、 溶剤の定圧モル熱容量に実際の使用温度 145〜 150 °Cの値でなく 25 °Cにおける小さな値を用いたこと、 また、 熱損失も考慮していないことか ら、 実際の所要エネルギーはこれよりも更に大きレ、。 このテトラリンを使用した 方法は、 熱交換のみでも、 油中改質法のプロセス全体の所要エネルギー 2100kJ/kg —水を超えていた。 熱交換の他にも、 プロセス内に溶剤を循環させる ためのエネルギーも必要であり、 この無極性溶剤を使用する方法でも、 水分除去 の所要エネルギーを低減することはできない。  The inventors estimated the required energy when using tetralin, which was assumed as the nonpolar solvent in the above literature, to be 2284 kJ / kg—water. In this estimation, a small value at 25 ° C was used for the solvent's molar heat capacity at constant pressure instead of the value at the actual operating temperature of 145-150 ° C, and heat loss was not considered. Energy is bigger than this. The method using this tetralin exceeded the required energy of the whole process of the in-oil reforming process of 2100 kJ / kg—water by heat exchange alone. In addition to heat exchange, energy is also required to circulate the solvent in the process, and this non-polar solvent method cannot reduce the energy required for water removal.
上記の従来の技術に述べたように、 所要エネルギーの最も小さい油中改質法で も、 水分含有固体から水分を蒸発させるため加熱をしなくてはならず、 100 °cを 超える高温での脱水操作が必要になり、 装置コス ト、 装置のランニングコス トが 大きいという問題がある。  As described in the above-mentioned conventional technology, even in the oil reforming method requiring the minimum energy, heating must be performed to evaporate water from the water-containing solid, and the heating at a high temperature exceeding 100 ° C is required. A dehydration operation is required, and there is a problem that the equipment cost and the running cost of the equipment are large.
本発明は、 外気温度に近い温度条件、 即ち、 おおよそ 0 ° (:〜 50 °Cの範囲で脱 水を行うとともに、 脱水に使用する化学物質を効率的に回収することにより、 装 置コス ト、 ランニングコス トを低減させた、 所要エネルギーが少ない脱水方法、 および本発明の方法を行うのに適し、 さらに熱交換、 仕事の回収に優れた、 省ェ ネルギ一の水分除去システムを提供するものである。 The present invention provides dewatering under temperature conditions close to the outside air temperature, that is, approximately 0 ° (: up to 50 ° C), and efficiently recovers chemical substances used for dehydration. A dewatering method that requires less energy and requires less energy, and that is suitable for performing the method of the present invention, and that is excellent in heat exchange and work recovery. To provide.
発明の開示  Disclosure of the invention
本発明は、 水分含有固体に、 2 5 °C、 1気圧で気体である物質 (以下、 物質 D と称する) の液化物を接触させて、 この物質 Dの液化物に固体含有水分を溶解さ せて高含水の物質 Dの液化物とすることによって固体の水分を除去するととも に、 この高含水の物質 Dの液化物中の物質 Dを気化することによって、 物質 Dの 気体と水分を分離し、 分離した物質 Dの気体を回収し、 回収した気体を加圧、 あ るいは冷却、 あるいは加圧と冷却の併用によって液化させ、 再び水分含有固体の 水分の除去に使用することを特徴とする液化物質を用いた固体含有水分の除去方 法を提供するものである。  According to the present invention, a liquefied substance of a substance which is a gas at 25 ° C. and 1 atm (hereinafter referred to as “substance D”) is brought into contact with the moisture-containing solid to dissolve the solid-containing moisture in the liquefied substance of the substance D. To remove the solid water by converting it into a liquefied substance of high water content D, and separating the gas and water of substance D by vaporizing substance D in the liquefied substance of high water content D Then, the separated gas of substance D is recovered, and the recovered gas is liquefied by pressurization, cooling, or a combination of pressurization and cooling, and used again for removing the water of the water-containing solid. It is intended to provide a method for removing solid-containing moisture using a liquefied substance.
更に、 本発明は、 2 5 °C、 1気圧で気体である物質 (以下、 物質 Dと称する) と、 この物質 Dの気体を加圧する圧縮機と、 この加圧された物質 Dの気体を凝縮 して液化物にする凝縮器と、 物質 Dの液化物が水分含有固体と接触し水分を溶解 して脱水を行う脱水器と、 水分を溶解した物質 Dの液化物から物質 Dを気化させ る蒸発器と、 気化した物質 Dと水を分離する分離器、 および気化した物質 Dを膨 張させる膨張機とが直列に連結され、 この膨張機が前記の圧縮機に連結されて回 路が形成され、 この回路を物質 Dが循環し、 且つ、 凝縮器と蒸発器が熱交換器で 接続されているとともに、 膨張機において外界に行う仕事が回収され、 この仕事 が圧縮機の動力の一部として投入されるように構成されていることを特徴とする 水分含有固体の水分除去システムを提供するものである。 ここで、 分離器から は、 分離器で分離された水から物質 Dを脱気するための脱気塔が連結され、 脱気 塔が前記の回路に連結されて、 脱気された物質 Dが回収され前記回路に戻される ように構成されることが好ましい。  Further, the present invention provides a substance which is a gas at 25 ° C. and 1 atm (hereinafter referred to as a substance D), a compressor for pressurizing the gas of the substance D, and a gas for the pressurized substance D. A condenser that condenses to a liquefied substance; a dehydrator that contacts the liquefied substance of substance D with a water-containing solid to dissolve and dehydrate water; and a substance that vaporizes substance D from a liquefied substance of dissolved substance D Evaporator, a separator for separating the vaporized substance D and water, and an expander for expanding the vaporized substance D are connected in series, and this expander is connected to the compressor to form a circuit. The substance D is circulated through this circuit, the condenser and the evaporator are connected by a heat exchanger, and the work performed to the outside in the expander is recovered. This work is one of the power of the compressor. Characterized in that it is configured to be charged as a part The present invention provides a water removal system. Here, from the separator, a degassing tower for degassing the substance D from the water separated by the separator is connected, and the degassing tower is connected to the circuit described above, and the degassed substance D is Preferably, it is configured to be recovered and returned to the circuit.
ここで、 2 5 °C、 1気圧で気体である物質としては、 ジメチルエーテル、 ェチ ルメチルエーテル、 ホルムアルデヒ ド、 ケテン、 ァセトアルデヒ ドから選ばれる 1種または 2種以上の混合物であることが好ましい。 また、 物質 Dの液化物と水 分含有固体との接触は特に限定されるものではないが、 向流接触させることが好 ましく、 更に水分含有固体と接触する物質 Dの液化物の量も特に限定されないが 理論量であることが固体からの水分以外の成分の抽出分を抑制する上で好まし レ、。 この発明の水分除去方法は、 水分を多く含む固体から外気温度に近い操作温 度でかつ少なレ、所要動力で除去するのに好適であり、 あらゆる水分含有固体に適 用可能であるが、 中でも水分含有固体が褐炭あるいは亜瀝青炭であることが好ま しく、 高品位炭並の燃焼性能と輸送コストを実現することを可能とする。 更に、 この発明によつて脱水された褐炭あるいは亜瀝青炭は再湿潤が抑制されて再湿潤 の抑制に重質油を添加するなどの対策が不要となる。 Here, the substance which is a gas at 25 ° C. and 1 atm is preferably one or a mixture of two or more selected from dimethyl ether, ethyl methyl ether, formaldehyde, ketene, and acetoaldehyde. The contact between the liquefied substance of the substance D and the water-containing solid is not particularly limited, but it is preferable to make the countercurrent contact. More preferably, the amount of the liquefied substance of the substance D that comes into contact with the water-containing solid is not particularly limited, but is preferably a stoichiometric amount in order to suppress the extraction of components other than water from the solid. The water removal method of the present invention is suitable for removing solids containing a large amount of moisture at an operating temperature close to the outside air temperature and with a small amount of required power, and is applicable to all types of moisture-containing solids. The moisture-containing solid is preferably lignite or subbituminous coal, which enables to achieve the combustion performance and transportation cost equivalent to high-grade coal. Further, the lignite or subbituminous coal dewatered according to the present invention is suppressed from rewetting, so that it is not necessary to take measures such as adding heavy oil to suppress rewetting.
本発明によれば、 脱水媒体として、 水との相互溶解性の高い、 大気圧下、 外気 温度に近い温度で気体である物質の液化物を用いたので、 脱水後この液化物を蒸 発させることにより容易に水分と分離することができ、 従来の技術に比して、 外 気温度に近い操作温度で脱水ができる。 しかも、 水分の分離のために水分を蒸発 させる必要がなく、 水分の蒸発潜熱の回収が全く不要であり、 省エネルギーでの 脱水が可能となる。 また、 液化物ガスを効率的に回収しこれを循環して使用する ことができ、 システムにおいて、 熱交換器により蒸発潜熱が回収され有効利用で き、 膨張による仕事を効率的に回収することができ、 さらなる省エネルギーが達 成できる。 即ち、 本システムによれば、 液化ジメチルエーテルに石炭の水分を溶 出させた後、 温度と圧力を僅かに変化させることで、 液化ジメチルエーテルと水 分の混合液からジメチルエーテルだけを選択的に蒸発させ、 水分とジメチルエー テルを容易に分離すると同時に、 水分を蒸発させることなく石炭から除去した上 で、 蒸発したジメチルエーテルを液化してリサイクルすることができる。  According to the present invention, as the dehydrating medium, a liquefied substance of a substance having a high mutual solubility with water, which is a gas at atmospheric pressure and at a temperature close to the outside temperature is used, so that the liquefied substance is evaporated after dehydration. As a result, it can be easily separated from moisture, and dehydration can be performed at an operating temperature close to the outside air temperature as compared with the conventional technology. In addition, there is no need to evaporate the water for the separation of the water, and there is no need to collect the latent heat of evaporation of the water. In addition, the liquefied gas can be efficiently recovered and circulated for use.In the system, latent heat of vaporization can be recovered and effectively used by the heat exchanger, and work due to expansion can be recovered efficiently. And further energy savings can be achieved. That is, according to this system, after the water content of coal is dissolved in liquefied dimethyl ether, the temperature and pressure are slightly changed to selectively evaporate only dimethyl ether from the liquid mixture of liquefied dimethyl ether and water, Water and dimethyl ether can be easily separated, and the water can be removed from the coal without evaporating, and the evaporated dimethyl ether can be liquefied and recycled.
さらに、 分離された排水を脱気処理することにより、 液化物が簡単に取り除か れ、 環境への負荷も軽減できた。  Furthermore, by degassing the separated wastewater, liquefied matter was easily removed and the burden on the environment was reduced.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明のシステムの一例の概略図である。 図 2は本発明のシステムの一 例の温度圧力条件を示す概略図である。 図 3は膨張機の断熱効率と圧縮機の断熱 効率に対する第 2圧縮機に要す動力を示すグラフである。 図 4は脱水実験の結果 を示す図である。 図 5はロイヤング炭の含水量と相対湿度との関係を示すグラフ である。 図 6は流通させた液化ジメチルエーテルの量と除去水量並びに析出した 褐炭の可燃分量との関係を示すグラフである。 FIG. 1 is a schematic diagram of an example of the system of the present invention. FIG. 2 is a schematic diagram showing temperature and pressure conditions of an example of the system of the present invention. Figure 3 is a graph showing the power required for the second compressor with respect to the heat insulation efficiency of the expander and the heat insulation efficiency of the compressor. Figure 4 shows the results of the dehydration experiment. Figure 5 is a graph showing the relationship between the water content of Roy Young coal and the relative humidity. Figure 6 shows the amount of liquefied dimethyl ether that was circulated, the amount of water removed, and the amount of precipitated dimethyl ether. It is a graph which shows the relationship with the combustible content of lignite.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明では、 水分を除去するために、 水分を含有している固体に接触させる液 体として、 2 5 °C、 1気圧で気体である物質を液化したものを用いる。  In the present invention, in order to remove water, a liquid that is a gas that is liquefied at 25 ° C. and 1 atm is used as a liquid to be brought into contact with a solid containing water.
従来の水分除去法の一つである無極性溶剤を用いた溶剤置換法では、 溶剤を昇 温することで、 水の溶解度が増大する性質が用いられているが、 本発明では、 溶 剤置換法の省エネルギー化を図るため、 溶剤の気液相転移現象を利用して、 水の 溶解度を著しく変化させることに特徴がある。 即ち、 常温で気体状態の物質を加 圧或いは冷却して液体状態とし、 これを置換溶剤として用いる。 液化された溶剤 に固体中の水分を溶解させた後、 温度と圧力を僅かに変化させると、 溶剤だけが 選択的に蒸発し、 水と溶剤の気体が容易に分離されるのである。  The solvent replacement method using a non-polar solvent, which is one of the conventional water removal methods, uses the property that the solubility of water is increased by raising the temperature of the solvent. It is characterized by the fact that the solubility of water is significantly changed by utilizing the gas-liquid phase transition phenomenon of the solvent in order to save energy in the law. That is, a substance in a gaseous state at room temperature is pressurized or cooled to a liquid state, and this is used as a replacement solvent. If the temperature and pressure are changed slightly after dissolving the water in the solid in the liquefied solvent, only the solvent is selectively evaporated and the water and solvent gases are easily separated.
したがって、 本発明に使用される溶剤としては、 水との相互溶解性が高く、 液 化された状態で水との相互溶解度が高い物質が望ましい。  Therefore, as the solvent used in the present invention, a substance having high mutual solubility with water and having high mutual solubility with water in a liquefied state is desirable.
また、 溶剤の沸点が常温より高いと、 水と分離する際に溶剤を蒸発するために 高温のエネルギー源が必要となり、 脱水に要するエネルギーが増大することが予 想されるので、 好ましくない。 少ない所要エネルギーでの脱水を可能にするに は、 溶剤の沸点が常温付近もしくはそれ以下が好ましい。 そこで、 本発明では、 2 5 °C、 1気圧で気体である物質を液化して用いる。 更に好ましいのは、 0 °C、 1気圧で気体である物質である。 2 5 °C、 1気圧で気体である物質としては、 ジ メチルエーテル、 ェチノレメチルエーテル、 ホルムアルデヒ ド、 ケテン、 ァセトァ ルデヒ ドなどが挙げられる。 これらは 1種で用いても、 または 2種以上混合して 用いてもよい。 中でも好ましいのは毒性もなく扱い易いジメチルェ一テル、 ジメ チルエーテルである。 また、 2 5 °C、 1気圧で気体である物質として、 ブタン及 びプロパンも挙げられる。 これらは単独では水を溶解する能力はないが、 ジメチ /レエ一テル、 ェチルメチルエーテノレ、 ホルムアルデヒ ド、 ケテン、 ァセトアルデ ヒ ドなどから選ばれる 1種または 2種以上の混合物と混合させることができる。 ブタン及びプロパンは、 天然ガスなどの成分であることから、 容易に入手可能で あるし、 液化ジメチルェ一テルと沸点が近く容易に液化できる。 しかも、 液化ジ メチルエーテルなどと混合して用いても、 若干、 脱水性能が落ちるだけで、 既存 方法と比べて十分に優位な性能を得られることから、 液化ジメチルエーテルなど の使用量を減らすことができる。 Further, if the boiling point of the solvent is higher than room temperature, a high-temperature energy source is required to evaporate the solvent when separating from water, and it is expected that the energy required for dehydration will increase. In order to enable dehydration with a small amount of required energy, the boiling point of the solvent is preferably around room temperature or lower. Therefore, in the present invention, a substance that is a gas at 25 ° C. and 1 atm is liquefied and used. Even more preferred are substances that are gaseous at 0 ° C. and 1 atm. Substances that are gaseous at 25 ° C and 1 atmosphere include dimethyl ether, ethynolemethyl ether, formaldehyde, ketene, and acetoaldehyde. These may be used alone or as a mixture of two or more. Among them, dimethyl ether and dimethyl ether which are easy to handle without toxicity are preferable. Butane and propane are also substances that are gaseous at 25 ° C and 1 atm. These do not have the ability to dissolve water by themselves, but can be mixed with one or more mixtures selected from dimethyl / ether, ethyl methyl ether, formaldehyde, ketene, acetoaldehyde, etc. it can. Since butane and propane are components of natural gas and the like, they are easily available and can be easily liquefied because they have a boiling point close to that of liquefied dimethyl ether. Moreover, even if it is used by mixing with liquefied methyl ether, etc., the dehydration performance is slightly reduced. Since it is possible to obtain sufficiently superior performance compared to the method, it is possible to reduce the use of liquefied dimethyl ether and the like.
本発明の方法では、 このような物質の液化物を、 水分含有固体に接触させ、 固 体中の水分、 即ち、 固体の外表面、 固体粒子間、 場合によっては固体粒子の内側 にある細孔に存在する水に接触させることにより、 水分含有固体中の水分を液化 物に溶解させて、 水分含有固体の脱水をする。 接触させる方法は、 浸漬、 固体に 液化物を流すなど通常の脱水法で採られるどのような方法でもよい。  In the method of the present invention, a liquefied substance of such a substance is brought into contact with a water-containing solid, and water in the solid, that is, pores on the outer surface of the solid, between the solid particles, and in some cases, inside the solid particles The water in the water-containing solid is dissolved in the liquefied material by contact with the water present in the water, and the water-containing solid is dehydrated. The contacting method may be any method used in a normal dehydration method, such as immersion or flowing a liquefied substance to a solid.
高水分となった液化物は液化物だけを気化することによって、 容易に液化物と 水分を分離することができる。 気化は、 温度おょぴ Zまたは圧力を上げることに より行うことができる。 本発明に使用する液化物は、 外気温に近い温度では気体 の物質なので、 気化操作をする際の圧力にもよるが、 気化する為に加熱があまり 必要なく、 常温付近で気化することができる。 気化する温度としては、 使用する 液化物にもよるが、 0 °C〜5 0 °Cが好ましい。 気化時の液化物の圧力は、 この温 度により自ずから決まってくる。 気化した液化物は回収し、 液化して再び水分含 有固体に接触させ水分除去に利用する。 液化は、 加圧、 冷却、 加圧と冷却の併用 で行われ、 使用する物質の沸点などから考慮して、 適宜有利な条件が選択され る。 1気圧での沸点が 0 °C以下の物質の場合、 加圧せず冷却のみで液化を行う と、 液化物の温度が 0 °C以下となってしまい、 脱水ができなくなるので、 0 °Cよ り高い温度で液化する必要があり、 加圧と冷却を組み合わせて液化を行う。 ま た、 1気圧での沸点が 0 °Cを超える物質の場合は、 沸点以上の温度で液化を行う ことが好ましい。 これは標準沸点以下では、 物質 Dの飽和蒸気圧が 1気圧未満で あり、 これが原因で装置の内部圧力が 1気圧未満となるため、 装置の製造コスト の増大や、 ハンドリングが困難になるためである。 液化物の温度は 0 °C〜5 0 °C が好ましく、 これから、 圧力が決められる。 以上のことから、 本発明の方法で は、 圧力や温度を変えることにより、 0 °C〜 5 0 °C位の温度範囲で一連の脱水操 作をすることができ、 少ないエネルギーで脱水することができる。  The liquefied material having a high moisture content can be easily separated from the liquefied material by vaporizing only the liquefied material. Evaporation can be performed by increasing the temperature or the pressure. The liquefied material used in the present invention is a gaseous substance at a temperature close to the outside air temperature, so depending on the pressure at the time of the vaporization operation, it does not require much heating to vaporize and can be vaporized at around normal temperature. . The vaporization temperature is preferably 0 ° C. to 50 ° C., although it depends on the liquefied material used. The pressure of the liquefied material during vaporization is naturally determined by this temperature. The vaporized liquefied matter is collected, liquefied, and brought into contact with a solid containing water again to be used for water removal. The liquefaction is performed by pressurization, cooling, or a combination of pressurization and cooling, and advantageous conditions are appropriately selected in consideration of the boiling point of the substance to be used. If the substance has a boiling point of 0 ° C or less at 1 atm, if liquefaction is performed by cooling only without applying pressure, the temperature of the liquefied substance will be 0 ° C or less and dehydration will not be possible. It is necessary to liquefy at a higher temperature, and liquefaction is performed by a combination of pressurization and cooling. In addition, in the case of a substance having a boiling point of more than 0 ° C. at 1 atm, liquefaction is preferably performed at a temperature equal to or higher than the boiling point. This is because below the normal boiling point, the saturated vapor pressure of substance D is less than 1 atmosphere, which causes the internal pressure of the equipment to be less than 1 atmosphere, which increases the manufacturing cost of the equipment and makes handling difficult. is there. The temperature of the liquefied material is preferably between 0 ° C. and 50 ° C., from which the pressure is determined. From the above, in the method of the present invention, by changing the pressure and temperature, a series of dehydration operations can be performed in a temperature range of about 0 ° C. to 50 ° C. Can be.
本発明の方法は、 石炭を始めとしてどのような固体の水分除去にでも応用する ことができる。  The method of the present invention can be applied to moisture removal of any solid including coal.
本発明の水分除去法では、 脱水の媒体として液体を使用するので、 液化物への 水の飽和溶解度と、 液化物中の水分濃度の差が脱水のドライビングフォースとな る。 そして、 液化物中に溶解しうる水分量の理論最大値は、 水分の飽和溶解度 · 水の密度 ·液化物の体積に比例する。 これを従来の技術の項で述べた、 乾燥不活 性気体中に蒸発しうる水分量の理論最大値と比較すると、 水分の飽和溶解度は 2 0 °C近辺でおよそ 6 %であり、 同温度での空気中の水蒸気の飽和蒸気圧分圧 (お よそ 2 %) に対して非常に高い。 このような極めて高い混合比率は気体では不可 能であるとともに、 液体を脱水の媒体として用いる特色がここにある。 また、 水 の密度は水蒸気の密度に対して非常に大きいので、 少量の液化物での脱水が可能 となる。 In the water removal method of the present invention, a liquid is used as a medium for dehydration, The difference between the saturated solubility of water and the concentration of water in the liquefied product is the driving force for dehydration. The theoretical maximum amount of water that can be dissolved in the liquefied product is proportional to the saturated solubility of water, the density of water, and the volume of the liquefied product. Comparing this with the theoretical maximum value of the amount of water that can evaporate in a dry inert gas as described in the section of the prior art, the saturated solubility of water is approximately 6% around 20 ° C. Very high relative to the saturated vapor pressure partial pressure of water vapor in the air (approximately 2%). Such extremely high mixing ratios are not possible with gases, and here is the feature of using liquids as a medium for dehydration. Also, since the density of water is much higher than the density of water vapor, dehydration with a small amount of liquefied material is possible.
また、 乾燥不活性気体で脱水する場合、 この気体中に混合した水蒸気は希釈さ れるため、 蒸発潜熱の密度が小さくなり、 蒸発潜熱を回収することが困難にな る。 大量の物質を脱水するプロセスの実用化においては、 蒸発潜熱の効果的な回 収こそが重要であり、 気体を媒体として脱水する方法が用いられるのは小規模な プロセスに限られる。  Also, when dehydrating with a dry inert gas, the water vapor mixed in this gas is diluted, so that the density of latent heat of vaporization is reduced, making it difficult to recover latent heat of vaporization. In the practical application of the process for dehydrating a large amount of substances, effective recovery of latent heat of vaporization is important, and the dehydration method using gas as a medium is limited to small-scale processes.
しかしながら、 本発明のように、 脱水の媒体として液体を用いると水分を蒸発 させることなく除去可能となり, 蒸発潜熱の回収自体が全く不要となる。 また、 外気温付近、 常圧下では気体の物質なので、 液化物と水分との分離が容易であ り、 省エネルギーでの脱水が可能である。  However, when a liquid is used as a dehydrating medium as in the present invention, water can be removed without evaporating, and the recovery of the latent heat of evaporation itself becomes completely unnecessary. In addition, since it is a gaseous substance at around ambient temperature and under normal pressure, it is easy to separate liquefied matter and moisture, and dehydration with energy saving is possible.
本発明の水分除去方法を実践するのに適した脱水システムを以下に示す。 図 1 は本発明の水分除去システムの一例の構成を示す概略図である。  A dehydration system suitable for practicing the water removal method of the present invention is shown below. FIG. 1 is a schematic diagram showing the configuration of an example of the water removal system of the present invention.
本例では、 2 5 °C、 1気圧で気体である物質 Dとしてジメチルエーテルを用 レ、、 水分含有固体として石炭を脱水する場合を想定しているが、 本発明のシステ ムはこれに限定されるものではない。 ジメチルエーテルは、 1気圧における沸点 がおよそ— 2 5 °Cであり、 0 °C〜5 0 °Cの大気圧において気体状態である。 この ように、 室温付近、 大気圧下において、 気体状態であるため、 液体状態のジメチ ルエーテルを得るためには加圧下での操作が必要である。 また、 高効率なジメチ ルエーテルの製造方法、 製造装置は、 例えば特開平 1 1-130714 号、 特開平 10-195009 号、 特開平 10-195008 号、 特開平 10-182535 号から特開平 10-182527 号、 特開平 09-309852号から特開平 09-309850号、 特開平 09-286754号、 特開平 09-173863号、 特開平 09-173848号、 特開平 09-173845号などに開示されており、 容易に得ることができる。 In this example, it is assumed that dimethyl ether is used as the substance D which is a gas at 25 ° C and 1 atm, and that coal is dehydrated as a water-containing solid, but the system of the present invention is not limited to this. Not something. Dimethyl ether has a boiling point of about −25 ° C. at 1 atm and is in a gaseous state at an atmospheric pressure of 0 ° C. to 50 ° C. As described above, since it is in a gaseous state at around room temperature and under atmospheric pressure, it is necessary to operate under pressure to obtain dimethyl ether in a liquid state. Also, a highly efficient method and apparatus for producing dimethyl ether are described in, for example, JP-A-11-303074, JP-A-10-195009, JP-A-10-195008, JP-A-10-182535 to JP-A-10-182527. JP-A-09-309852 to JP-A-09-309850, JP-A-09-286754, These are disclosed in JP-A-09-173863, JP-A-09-173848, JP-A-09-173845, etc., and can be easily obtained.
ジメチルエーテル蒸気を加圧するための圧縮機 1、 1 '、 加圧された蒸気を液 化するための凝縮器 2、 液化されたジメチルエーテルを水分含有固体中の水分と 接触させ、 水分を溶解することによって脱水を行う脱水器 3、 脱水して水分を含 有した液化ジメチルエーテルからジメチルエーテルを気化させる蒸発器 4がこの 順序で連結されていて、 凝縮器 2と蒸発器 4は熱交換器 5で接続されている。 蒸 発器 4の次にジメチルエーテル蒸気と水との分離器 6、 分離器 6で分離されたジ メチルエーテル蒸気を断熱膨張する膨張機 7が配管により直列に連結され、 膨張 機 7は更に圧縮機 1に連結され、 閉回路 (循環路) を形成している。 この回路 を、 ジメチルエーテルが、 気体、 液体の状態変化をしながら循環し、 脱水と水と の分離を繰り返している。 尚、 図 1の 4 ' は冷却器、 4 " は減圧弁であるが、 こ れは、 液化ジメチルエーテルを気化させる際の温度、 圧力を調整するものであ り、 蒸発器の一部と考えられる。 分離器 6には、 分離器 6で分離された水に溶存 するジメチルエーテルを脱気する脱気塔 8が連結されている。 脱気塔 8では、 保 圧弁 8 ' で脱気塔内部の圧力を下げ、 ジメチルエーテルを気化させ回収してい る。 脱気塔 8は、 前記の回路に連結され、 回収されたジメチルエーテルは、 図示 していない配管により再び回路に戻される。  Compressor 1, 1 'for pressurizing dimethyl ether vapor, Condenser 2 for liquefying pressurized vapor, Contacting liquefied dimethyl ether with water in solid containing water to dissolve water A dehydrator 3 for dehydrating and an evaporator 4 for evaporating dimethyl ether from liquefied dimethyl ether containing water by dehydration are connected in this order.The condenser 2 and the evaporator 4 are connected by a heat exchanger 5. I have. Next to the evaporator 4, a separator 6 for dimethyl ether vapor and water, and an expander 7 for adiabatically expanding the dimethyl ether vapor separated by the separator 6 are connected in series by piping, and the expander 7 is further connected to a compressor. 1 and form a closed circuit (circulation path). In this circuit, dimethyl ether circulates while changing the state of gas and liquid, repeating dehydration and separation of water. In addition, 4 'in Fig. 1 is a cooler and 4 "is a pressure reducing valve, which adjusts the temperature and pressure when vaporizing liquefied dimethyl ether and is considered to be part of the evaporator. The separator 6 is connected to a degassing tower 8 for degassing the dimethyl ether dissolved in the water separated by the separator 6. In the degassing tower 8, the pressure inside the degassing tower is controlled by a pressure-holding valve 8 '. The degassing tower 8 is connected to the circuit described above, and the recovered dimethyl ether is returned to the circuit again by a piping (not shown).
膨張機 7においては、 ここで外界に行う仕事を回収してこの仕事をジメチルェ —テルを加圧する圧縮機 1の動力の一部として利用している。 図 1のシステムで は圧縮機を 2段とし、 第 1圧縮機 1と膨張機 7を連結して膨張機 7で行われた仕 事を回収し第 1圧縮機 1の動力とし使用している。 9は電動機であり、 外部から の仕事の投入は第 2圧縮機 1 ' に対してのみ行われる。 膨張機 7において外界に 行う仕事とは、 ジメチルエーテルガスが体積膨張に伴って行うものを主に指す 力 S、 以下に示すような仕事も含まれる。 蒸発器 4を出たジメチルエーテルの過熱 ガスには、 過熱ガスの流れに卷き込まれた飛沫の混入があり得る。 このため、 膨 張機 7では、 混入した飛沫の気化による仕事が得られる場合もある。 本発明にお いて、 膨張機 7にて行われる仕事とは、 過熱ガスの体積膨張による仕事だけでな く、 これをも含むものである。 また、 凝縮器 2と蒸発器 4は熱交換器 5で接続されているので、 液化ジメチル エーテルの蒸発潜熱が回収され有効利用されている。 In the expander 7, the work performed in the outside world is collected here, and this work is used as a part of the power of the compressor 1 that pressurizes the dimethyl ether. In the system of Fig. 1, the compressor has two stages, the first compressor 1 and the expander 7 are connected, and the work performed by the expander 7 is collected and used as the power for the first compressor 1. . Reference numeral 9 denotes an electric motor, and external work is input only to the second compressor 1 '. The work performed to the outside world in the expander 7 includes a force S mainly indicating a work performed by the dimethyl ether gas in accordance with the volume expansion, and also includes a work described below. The superheated gas of dimethyl ether that has exited the evaporator 4 may be mixed with droplets that are entrapped in the flow of the superheated gas. For this reason, in the expander 7, work may be obtained by vaporization of the mixed droplets. In the present invention, the work performed by the expander 7 includes not only the work due to the volume expansion of the superheated gas but also the work. Further, since the condenser 2 and the evaporator 4 are connected by the heat exchanger 5, the latent heat of vaporization of the liquefied dimethyl ether is recovered and used effectively.
また、 本発明のシステムには図 1のように、 冷却器 1 0を設置してもよい。 こ れは、 使用する液化ガスの条件等により必要に応じて設置されるものであり、 膨 張機 7から出た気体温度を圧縮機 1の入口の最適温度に調整するものである。 本システムには、 水分含有固体としての石炭、 水、 液化ジメチルエーテルの 3 つが関与する。 各物質に着目して、 本システムのフローを記す。  In addition, a cooler 10 may be installed in the system of the present invention as shown in FIG. This is installed as necessary depending on the conditions of the liquefied gas to be used and the like, and adjusts the temperature of the gas discharged from the expander 7 to the optimum temperature at the inlet of the compressor 1. This system involves three types of water-containing solids: coal, water, and liquefied dimethyl ether. Focusing on each substance, the flow of this system is described.
水分含有固体の石炭は、 脱水器 3に充填され、 液化ジメチルエーテルによって 脱水された後に容器から取り出される。 図 1においてフローが点線で示されてい る。  The water-containing solid coal is charged into the dehydrator 3 and is removed from the container after being dehydrated by liquefied dimethyl ether. In FIG. 1, the flow is indicated by a dotted line.
図 1においてフローが二重線で示されている水は、 水分含有固体の水分とし て、 脱水器 3からシステムに供給される。 まず、 脱水器 3で液化ジメチルエーテ ル中に溶出した後、 液化ジメチルエーテル中に溶存する形態で蒸発器 4に到達す る。 蒸発器 4で大部分の液化ジメチルエーテルが気化し、 液化ジメチルエーテル 中に溶存していた水が分離される。 気液分離器 6でジメチルエーテル蒸気と水に 分けられ、 水は排水として残る。 気液分離器 6の内部の圧力は大気圧よりも高い ので、 気液分離器 6で分離した水相にはジメチルエーテルガスが溶存する。 この 水をそのまま排出すると環境への負荷が大きく、 さらにジメチルエーテルの損失 量を大きくする。 そこで、 環境への負荷並びにジメチルエーテルの損失量を最小 限にするため、 脱ジメチルエーテル塔を設けてジメチルエーテルを回収する必要 がある。 脱ジメチルエーテル塔としては本実施形態の場合には脱気塔 8が用いら れ、 その入口に保圧弁 8 ' を設け、 脱気塔 8の内部の圧力を下げることで、 ジメ チルエーテルを回収するように構成されている。 さらに、 脱気塔 8の下部に設け た加熱缶 8 aで水を加熱することでジメチルエーテルの回収率を向上することも できる。 脱気された水は缶出液として排出されるが、 この排水から分離されたジ メチルエーテル蒸気は再び、 脱水システムの回路内に戻し使用することができ る。  The water whose flow is indicated by a double line in FIG. 1 is supplied from the dehydrator 3 to the system as moisture of the moisture-containing solid. First, it is eluted into liquefied dimethyl ether by the dehydrator 3 and then reaches the evaporator 4 in a form dissolved in the liquefied dimethyl ether. Most of the liquefied dimethyl ether is vaporized in the evaporator 4, and the water dissolved in the liquefied dimethyl ether is separated. It is separated into dimethyl ether vapor and water by the gas-liquid separator 6, and the water remains as wastewater. Since the pressure inside the gas-liquid separator 6 is higher than the atmospheric pressure, dimethyl ether gas is dissolved in the aqueous phase separated by the gas-liquid separator 6. If this water is discharged as it is, the burden on the environment will be great, and the loss of dimethyl ether will increase. Therefore, in order to minimize the burden on the environment and the loss of dimethyl ether, it is necessary to install a de-dimethyl ether column to recover dimethyl ether. In the case of the present embodiment, a degassing tower 8 is used as the dedimethylether tower. Is configured. Further, by heating the water with a heating can 8a provided at the lower part of the degassing tower 8, the recovery of dimethyl ether can be improved. The degassed water is discharged as bottoms, and the dimethyl ether vapor separated from the wastewater can be returned to the circuit of the dehydration system and used again.
図 1においてフローが実線で示されているジメチルエーテルガスは圧縮機 1、 1 ' で加圧されて過熱ガスになった後、 凝縮器 2で過冷却液になる。 液化ジメチ ルェ一テルの過冷却液は脱水器 3に供給されて水分含有固体の水分を溶解し、 蒸 発器 4へと向かう。 蒸発器 4で液化ジメチルエーテルは水と分離され再び過熱ガ スとなる。 この際、 凝縮器 2と蒸発器 4は熱交換器 5で連結されているので、 液 化ジメチルエーテルの蒸発潜熱が回収され有効利用される。 蒸発器 4を出たジメ チルエーテルの過熱ガスは膨張機 7にて仕事をし、 圧縮機動力の一部として回収 される。 膨張機 7を出たジメチルエーテルガスは再び圧縮機 1へと送られ、 シス テム内を循環する。 The dimethyl ether gas whose flow is shown by a solid line in FIG. 1 is pressurized by the compressors 1 and 1 ′ to become a superheated gas, and then becomes a supercooled liquid in the condenser 2. Liquefied dimethi The supercooled liquid of the luter is supplied to the dehydrator 3 to dissolve the water of the water-containing solid, and flows to the evaporator 4. The liquefied dimethyl ether is separated from water in the evaporator 4 and becomes a superheated gas again. At this time, since the condenser 2 and the evaporator 4 are connected by the heat exchanger 5, the latent heat of vaporization of the liquefied dimethyl ether is recovered and effectively used. The superheated gas of dimethyl ether leaving the evaporator 4 works in the expander 7 and is recovered as a part of the compressor power. The dimethyl ether gas exiting the expander 7 is sent again to the compressor 1 and circulates through the system.
図 2に本発明のシステムの 1例における、 ジメチルエーテルを用いた場合の相 状態、 圧力、 温度、 飽和温度の設定例を示す。 圧力と温度の設計を簡便化するた め、 水からのジメチルエーテルガスの脱気塔 8を省略し, 気液分離器 6で水とジ メチルエーテルとが完全に分離できると仮定した。 また、 脱水器 3で処理された 水分含有固体はジメチルエーテルを含まないと仮定した。  FIG. 2 shows an example of setting the phase state, pressure, temperature, and saturation temperature when dimethyl ether is used in one example of the system of the present invention. To simplify the design of pressure and temperature, the degassing tower 8 for dimethyl ether gas from water was omitted, and it was assumed that water and dimethyl ether could be completely separated by the gas-liquid separator 6. It was also assumed that the water-containing solid treated in the dehydrator 3 did not contain dimethyl ether.
まず、 第 1圧縮機 1の入口での温度を起点として、 温度、 圧力条件を設定し た。 第 1圧縮機入口①での温度が 2 5 °Cで、 飽和温度 (b.p. l 5 °C) より 1 0 °C 過熱された時、 圧力は 0.44 M P aとなる。 過熱度が小さいほど第 1圧縮機 1で の圧力が上がるため、 圧縮機 1の動力が減少するが、 その反面、 圧縮機入口①ょ り前の段階で、 外気によってジメチルエーテルガスが冷やされて凝縮する危険性 が増す。 また、 ジメチルエーテルの熱容量比は 1 . 1 1と小さいので、 断熱圧縮 時に温度が上昇しにくい。 このため、 第 1圧縮機 1及び第 2圧縮機 1 ' でのそれ ぞれの圧縮機出口②、 ③における過熱度は、 圧縮機入口の過熱度よりも小さくな る。 本システムにおいては、 圧縮機入口の過熱度を決める際には、 圧縮機出口に おける過熱度にも注意する必要がある。  First, the temperature and pressure conditions were set with the temperature at the inlet of the first compressor 1 as a starting point. When the temperature at the inlet 第 of the first compressor is 25 ° C and it is overheated by 10 ° C from the saturation temperature (b.p.l 5 ° C), the pressure becomes 0.44 MPa. As the degree of superheat is smaller, the pressure in the first compressor 1 increases, and the power of the compressor 1 decreases.On the other hand, dimethyl ether gas is cooled by outside air and condensed at the stage just before the compressor inlet. The danger increases. In addition, since the heat capacity ratio of dimethyl ether is as small as 1.11, the temperature does not easily rise during adiabatic compression. For this reason, the degree of superheat at the compressor outlets 1 and 3 at the first compressor 1 and the second compressor 1 'is smaller than the superheat at the compressor inlet. In this system, when determining the superheat at the compressor inlet, it is necessary to pay attention to the superheat at the compressor outlet.
第 2圧縮機 1 ' の出口③の圧力は、 蒸発器 4の手前の冷却器 4 ' に用いられる 冷却水の温度から決まる。 ここで、 外気温を 2 0 °Cとし、 冷却水の温度が外気温 に等しいとする。 冷却器 4 ' でのアプローチ温度を 5 °Cとすると、 冷却器 4, の 出口 (蒸発器入口) ⑥での液化ジメチルエーテルの温度は 2 5 °Cとなる。 さらに 凝縮器 2と蒸発器 4とのアプローチ温度を 5 °Cとすると、 凝縮器 2の出口④での 温度は 3 0 °Cとなる。 脱水器 3内でのジメチルエーテルが液体として安定に存在 できるよう、 凝縮器 2の出口 (脱水器 3の入口及び脱水器 3内) で 5 °Cの過冷却 度を設けると、 凝縮器 2の操作圧力 (圧縮機出口の圧力) がきまる。 この場合、 飽和温度が 35°Cなので、 凝縮器 2の出口④および圧縮機 1 ' の出口 (凝縮器入 口) ③は 0.78 MP aとなる。 また、 断熱圧縮を仮定すると、 第 2圧縮機 1 ' の 出口③の温度は 43°Cとなり、 圧縮機出口でジメチルエーテルの飽和温度を上回 ることを確認した。 The pressure at the outlet ③ of the second compressor 1 ′ is determined by the temperature of the cooling water used for the cooler 4 ′ before the evaporator 4. Here, it is assumed that the outside air temperature is 20 ° C and the temperature of the cooling water is equal to the outside air temperature. Assuming that the approach temperature at cooler 4 'is 5 ° C, the temperature of liquefied dimethyl ether at the outlet (evaporator inlet) ⑥ of cooler 4 is 25 ° C. Further, if the approach temperature between the condenser 2 and the evaporator 4 is 5 ° C, the temperature at the outlet の of the condenser 2 is 30 ° C. Subcooling at 5 ° C at the outlet of condenser 2 (inlet of dehydrator 3 and in dehydrator 3) so that dimethyl ether in dehydrator 3 can be stably present as a liquid When the pressure is set, the operating pressure of the condenser 2 (pressure at the compressor outlet) is determined. In this case, since the saturation temperature is 35 ° C, the outlet (2) of the condenser 2 and the outlet (condenser inlet) (3) of the compressor 1 'are 0.78 MPa. Also, assuming adiabatic compression, the temperature at the outlet ③ of the second compressor 1 'was 43 ° C, confirming that the temperature exceeds the saturation temperature of dimethyl ether at the compressor outlet.
蒸発器 4の飽和温度は 30°Cであるので、 蒸発器 4の入口⑥で 30°Cにおける 飽和圧力まで減圧する必要がある。 ここでの飽和圧力とは、 水と液化ジメチルェ 一テルの混合液の飽和圧力であり、 0.62MP aである。 また、 凝縮器 2と蒸発器 4の温度差 ΔΤが 5 °Cであるので、 蒸発器 4の出口 (膨張器入口) ⑦の温度は 3 8°Cである。 ここでの過熱度は 8°Cであるので、 ジメチルエーテルガスを 8 °C加 熱するのに要するエネルギーの範囲内での熱損失を第 2圧縮機 1 ' の出口以降、 膨張機 7の入口手前の範囲で許容できる。  Since the saturation temperature of the evaporator 4 is 30 ° C, it is necessary to reduce the pressure at the inlet に お け る of the evaporator 4 to the saturation pressure at 30 ° C. The saturation pressure here is the saturation pressure of a mixture of water and liquefied dimethyl ether, and is 0.62 MPa. Since the temperature difference ΔΤ between the condenser 2 and the evaporator 4 is 5 ° C, the temperature at the outlet (expander inlet) 入口 of the evaporator 4 is 38 ° C. Since the degree of superheat here is 8 ° C, the heat loss within the energy required to heat the dimethyl ether gas at 8 ° C is reduced from the outlet of the second compressor 1 ′ to the inlet of the expander 7. Is acceptable.
気液分離器 6でジメチルエーテルガスを水から分離した後、 膨張機 7で断熱膨 張する。 膨張機 7の出口⑧の圧力は、 第 1圧縮機 1入口での圧力に等しい。 断熱 膨張によりジメチルエーテルガスは 26 °Cに冷却される。 第 1圧縮機 1の入口に 比して 1°C温度が高いため、 冷却が必要である。 膨張機 7ではエネルギーが回収 されて、 第 1圧縮機の動力として用いられる。 膨張機 7と第 1圧縮機 1における 断熱効率を 80%と仮定すると、 第 1圧縮機出口の温度は 32 °C、 圧力は 0.55 MP aと定まる。  After separating dimethyl ether gas from water by the gas-liquid separator 6, the expander 7 adiabatically expands the water. The pressure at the outlet の of the expander 7 is equal to the pressure at the inlet of the first compressor 1. The dimethyl ether gas is cooled to 26 ° C by adiabatic expansion. Cooling is necessary because the temperature is 1 ° C higher than the inlet of the first compressor 1. In the expander 7, energy is recovered and used as power for the first compressor. Assuming that the adiabatic efficiency of the expander 7 and the first compressor 1 is 80%, the temperature at the outlet of the first compressor is 32 ° C and the pressure is 0.55 MPa.
さらに、 すでに定めた温度圧力設定に従い、 膨張機 7と 2つの圧縮機 1, 1 ' における断熱効率を様々に変えて、 第 2圧縮機 1 ' における所要動力を計算す る。  Furthermore, the required power in the second compressor 1 'is calculated by variously changing the adiabatic efficiency in the expander 7 and the two compressors 1 and 1' in accordance with the temperature and pressure settings already determined.
まず、 2つの圧縮機 1, 1 ' が必要とする仕事の合計は (2つの圧縮機 1, 1 ' が要する理論仕事) ÷ (断熱効率) である。 一方、 膨張機 7が回収し、 第 1圧 縮機 1の動力として投入される仕事は、 (膨張が行う理論仕事) X (断熱効率) である。 従って、 第 2圧縮機 1 ' に要する仕事は、 (2つの圧縮機 1, 1 ' が要 する理論仕事) ÷ (断熱効率) 一膨張が行う理論仕事) X (断熱効率) である。 更に、 この仕事は動力の形で導入する必要があるので、 その変換効率を 0.35 と すると、 第 2圧縮機 1 ' が必要とする仕事) ÷ 0.35 が第 2圧縮機 1 ' が必要と する総エネルギーとなる。 なお、 この変換率は、 油中改質法の動力推算で用いら れた、 水蒸気の潜熱回収のための圧縮動力の変換効率と同じ値である。 First, the total work required by the two compressors 1, 1 'is (theoretical work required by the two compressors 1, 1') ÷ (adiabatic efficiency). On the other hand, the work collected by the expander 7 and input as power for the first compressor 1 is (theoretical work performed by the expansion) X (adiabatic efficiency). Therefore, the work required for the second compressor 1 'is (theoretical work required for the two compressors 1, 1') ÷ (adiabatic efficiency) Theoretical work performed by one expansion) X (adiabatic efficiency). Furthermore, since this work needs to be introduced in the form of power, assuming that the conversion efficiency is 0.35, the work required by the second compressor 1 ') ÷ 0.35 requires the second compressor 1' Total energy. This conversion rate is the same value as the conversion efficiency of the compression power for latent heat recovery of steam, which was used in the power estimation of the in-oil reforming method.
ここでジメチルエーテルを理想気体と近似し、 断熱圧縮を仮定すると、 膨張機 7の断熱効率と圧縮機 1の断熱効率に対して、 図 3に示すような第 2圧縮機 1 ' に要する動力が得られる。  Here, assuming that dimethyl ether is an ideal gas and adiabatic compression is assumed, the power required for the second compressor 1 ′ as shown in Fig. 3 is obtained for the adiabatic efficiency of the expander 7 and the adiabatic efficiency of the compressor 1. Can be
圧縮機 1と膨張機 7の断熱効率がともに 0.8 の場合、 本システムの所要動力は 948kJ/kg 一水となる。 なお、 この圧縮効率は、 油中改質法の動力推算で用いられ た水蒸気の潜熱回収のための圧縮機の圧縮効率 〔財団法人エネルギー総合工学研 究所 新エネルギーの展望 低品位炭の改質技術 (1997)〕 と同じである。  If the insulation efficiency of both compressor 1 and expander 7 is 0.8, the required power of this system will be 948kJ / kg water. The compression efficiency is based on the compression efficiency of the compressor used for estimating the latent heat of steam used in the power estimation of the in-oil reforming method. Technology (1997)].
この推算結果に示されるように、 発明が解決しようとする課題である所要エネ ルギ一の小さい脱水が達成できるとレヽうことを理論的に確認できた。  As shown in the estimation results, it was theoretically confirmed that it was possible to achieve a small dehydration of required energy, which is a problem to be solved by the invention.
(実施例 1 )  (Example 1)
また、 本発明の水分除去方法に対応する以下の実験を行った。 水分含有固体と して、 褐炭であるオーストラリア産ロイヤング炭を用いた。 水分 60 %以上の極 めて高い含水率を再現するため、 純水中に浸したロイヤング炭をァスピレーター で減圧し、 細孔内の空気を水で置換した後、 このロイヤング炭を充分水切りし、 試料炭を作製した。 試料炭の湿潤重量は 5.9 gであった (乾燥重量 1.8 g、 水分 重量 4.1 g )。 この後、 予め _ 75 °Cに冷却した透明な容器に湿潤したロイヤング 炭と液化ジメチルエーテル (以下、 D M Eと略称する) 55.0 g (純度 99 %以 上) を封入し、 該容器ごと恒温水槽内に沈めて 30 °C—定の温度条件下で 1時間 静置して、 ロイヤング炭と液化 DM Eを接触させた。 この後、 大気圧下で容器内 の D M Eを気化したところ、 容器の底部に、 ロイヤング炭から水 1.2 gが分離さ れていた。 図 4にこの結果を示す。 尚、 分離された水分量は、 処理前のロイヤン グ炭が含有する水分量の 29wt%であった。 このように、 液化 D M Eを用いて、 外気温に近い温度条件で、 容易に水分を除去できることが確認できた。  Further, the following experiment corresponding to the water removal method of the present invention was performed. As the moisture-containing solid, Australian brown coal, which is brown coal, was used. In order to reproduce the extremely high water content of 60% or more of moisture, the royal charcoal immersed in pure water was depressurized with an aspirator, and the air in the pores was replaced with water. A sample coal was prepared. The wet weight of the sample coal was 5.9 g (1.8 g dry weight, 4.1 g water weight). After that, 55.0 g (purity: 99% or more) of moistened royal charcoal and liquefied dimethyl ether (hereinafter abbreviated as DME) are sealed in a transparent container cooled to _75 ° C in advance, and the container is placed in a thermostatic water bath. Submerged and allowed to stand for 1 hour at a constant temperature of 30 ° C to bring the royal coal into contact with liquefied DME. Thereafter, when DME in the vessel was vaporized under atmospheric pressure, 1.2 g of water was separated from the royal coal at the bottom of the vessel. Figure 4 shows the results. The separated water content was 29 wt% of the water content of the royal coal before treatment. Thus, it was confirmed that water could be easily removed using liquefied DME under temperature conditions close to the outside air temperature.
(実施例 2 )  (Example 2)
更に、 オーストラリア産のロイヤング褐炭 (灰分 0.3 wt%と、 水分 53.2 wt%、 揮発成分 27.1wt%、 カーボン 19.3wt%) と液化 DMEを用いて、 脱水現象、 脱水炭 の含水率、 脱水性能、 可燃分の析出現象、 脱水炭の再湿潤特性について明らかに した。 因みに、 ロイヤング炭を瀝青炭並みに乾燥させるためには、 図 5に示す 25 °Cにおけるロイヤング炭への水蒸気の吸着等温線から明らかなように、 湿度 10 % 程度での乾燥が必要である。 このように、 ロイヤング炭は極めて脱水し難いもの である。 これは、 褐炭には、 褐炭粒子の外表面や粒子間に凝縮しているバルク水 と、 褐炭の細孔の内部の毛管凝縮水と表面吸着水が存在するためである。 この 内、 バルク水は最も脱離し易い。 続いて、 毛管凝縮水では、 毛管吸引力が強く働 くため、 水分を保持する力が強い。 また、 表面吸着水は、 褐炭の細孔壁の表面 に、 直接的に吸着した水分であり、 最も脱水し難い。 Furthermore, dehydration phenomenon, moisture content of dehydrated carbon, dehydration performance, flammability using royal brown coal from Australia (ash content 0.3 wt%, moisture 53.2 wt%, volatile component 27.1 wt%, carbon 19.3 wt%) and liquefied DME Clarification of sedimentation phenomena and rewetting characteristics of dehydrated coal did. Incidentally, in order to dry the royal coal to the same level as bituminous coal, it is necessary to dry at a humidity of about 10%, as is apparent from the adsorption isotherm of water vapor on the royal coal at 25 ° C shown in Fig. 5. Thus, Roy Young coal is extremely difficult to dehydrate. This is because lignite has bulk water condensed on the outer surface and between particles of lignite particles, and capillary condensate and surface adsorbed water inside the lignite pores. Of these, bulk water is the easiest to desorb. Next, capillary condensate has a strong capillary suction force, and therefore has a strong water retention capacity. In addition, surface adsorbed water is water directly adsorbed on the surface of the brown coal pore wall, and is most difficult to dehydrate.
1 . 実験方法  1. Experimental method
ロイヤング炭は、 含水量を一定に調整して実験に供するため、 底面に水を張つ た容器の上部に静置し、 容器ごと恒温水槽に沈めることで、 温度 25 。(:相対湿度 100 %の雰囲気下でロイヤング炭を 1日以上湿潤させた。 湿潤したロイヤング炭の 水分は、 実験毎に多少異なったものの、 52 ± 2 %の範囲内であった。 尚、 入手し たロイヤング炭は粒径 5mm 以下の粒状の状態であり、 実験には粒状のまま用い た。  In order to adjust the water content of the royal coal to a constant level and use it for experiments, the coal was left standing at the top of a container with water on the bottom, and submerged in a constant temperature water bath at a temperature of 25. (: Loyal coal was moistened in an atmosphere of 100% relative humidity for 1 day or more. The moisture of the moistened Roy Young coal was in the range of 52 ± 2%, although it varied slightly from experiment to experiment. The royal coal thus obtained was in a granular state with a particle size of 5 mm or less, and was used as it was in the experiment.
脱水実験は、 含水量が一定に調整された粒径 5mm以下の粒状のロイヤング炭を 充填したカラムに、 ステンレス容器に充填された液化 DMEを、 0.7 〜 0.9MPa の 圧縮窒素で押し出して流通させてから、 カラムの後段に配置した液化 DMEを溜 める空の密閉容器で液化 DM Eを回収することによって行った。 カラムを通過す る間にロイヤング炭の水分が液化 D M Eに溶解することにより脱水される。  In the dehydration experiment, liquefied DME packed in a stainless steel container was extruded through a column packed with granular Royen's charcoal with a water content adjusted to a constant value of 5 mm or less using compressed nitrogen of 0.7 to 0.9 MPa to flow. The procedure was performed by collecting the liquefied DME in an empty closed container that stores the liquefied DME, which is arranged at the subsequent stage of the column. While passing through the column, the water of the Roy Young coal is dehydrated by dissolving in the liquefied DME.
実験は室温下で行い、 液化 DM Eの流通速度は lOml/minであった。 実験に用い た液化 DM Eの純度は 99 %以上であった。 なお、 20 °Cにおける液化 DMEの飽和 蒸気圧は 0.51MPa、 20 °Cにおける液化 DM Eに対する水の飽和溶解度は 6.7wt % であり、 水 lgの溶解に必要な最少量 (以後、 理論量と呼ぶ) の DM Eは 14.9gで ある。  The experiment was performed at room temperature, and the flow rate of the liquefied DME was 10 ml / min. The purity of the liquefied DME used in the experiment was over 99%. The saturated vapor pressure of liquefied DME at 20 ° C is 0.51 MPa, and the saturated solubility of water in liquefied DME at 20 ° C is 6.7 wt%, which is the minimum amount required for dissolving water lg (hereinafter referred to as theoretical amount). DME is 14.9g.
2 . 脱水現象  2. Dehydration phenomenon
理論量の 194wt %の液化 DMEをカラムに流通する脱水実験を行って、 脱水現 象の特徴を明らかにした。  A dehydration experiment was conducted in which 194 wt% of liquefied DME was passed through the column to clarify the characteristics of the dehydration phenomenon.
液化 DMEの通液の結果、 得られた脱水炭の体積は、 脱水前の約 70 %であつ た。 また、 脱水炭を 107 °Cで加熱すると重量が減少し、 更に蒸発した気体の成分 を、 ガスクロマトグラフィーで測定したところ多量の DM Eが検出された。 この こと力 ら、 脱水炭には多量の DM Eが吸着していることが明らかになった。 しか しながら、 この液化 DMEはそれ自体が燃料であるため、 石炭中に残留しても、 石炭の燃焼時にはほとんど問題とはならない。 Liquefaction The volume of dehydrated charcoal obtained as a result of passing DME is about 70% of that before dehydration. Was. Heating the dehydrated charcoal at 107 ° C reduced its weight, and when the components of the evaporated gas were measured by gas chromatography, a large amount of DME was detected. From this, it became clear that a large amount of DME was adsorbed on the dehydrated coal. However, since the liquefied DME itself is a fuel, even if it remains in the coal, there is almost no problem when burning the coal.
ここで、 カラムから出た液化 D M Eは茶褐色透明であり、 ロイヤング炭の可燃 分の一部を溶解していると考えられる。 この液化 DM Eを蒸発させ、 得られた D MEガスに含まれる不純物をガスクロマトグラフィ一で測定したところ、 DM E ガス以外の不純物としては、 微量の水蒸気と窒素だけが検出された。 このことか ら、 蒸発された DM Eに不純物の混入はほとんどなく、 リサイクル可能であるこ とが確認された。  Here, the liquefied DME discharged from the column is brownish brown and transparent, and it is considered that some of the combustible components of the royal coal have been dissolved. The liquefied DME was evaporated, and impurities contained in the obtained DME gas were measured by gas chromatography. As impurities other than the DME gas, only trace amounts of water vapor and nitrogen were detected. From this, it was confirmed that the evaporated DME contained almost no impurities and was recyclable.
また、 カラムから出た液化 D M Eを蒸発させた跡には、 茶褐色に濁った排水 と、 褐炭の可燃分と思われる茶褐色固体 (以後、 析出物と呼ぶ) が析出した。 析 出物は、 エタノールに可溶であるとともに可燃性であった。  Also, on the trace of evaporation of the liquefied DME from the column, a brownish turbid wastewater and a brown solid (hereinafter referred to as a precipitate), which is considered to be a combustible component of brown coal, were deposited. The precipitate was soluble in ethanol and flammable.
3 . 脱水炭の含水率および脱水前後の物質収支  3. Moisture content of dehydrated coal and material balance before and after dehydration
また、 上述の脱水実験により石炭から除去された水分、 即ち排水重量は 4.23g であった。 ここで、 脱水前のロイヤング炭が含有する水分の測定は、 通常の水分 測定方法では、 107 °Cで脱水炭に吸着した DM Eが蒸発し、 脱水炭の水分のみを 測定することが不可能である。 そこで、 同じ湿潤操作を経た同一ロットのロイャ ング炭を用いて求めた水分(53.2 %)を用いて計算した。 計算より求まったロイャ ング炭の脱水前の水分は 4.43gであった。 そこで、 これらの差 0.20gを、 脱水炭の 水分含有量とした。 その結果、 脱水炭の総重量 4.74g に占める水分は 4.3%であ り、 ロイヤング炭を瀝青炭並みに脱水可能であることが明らかになった。  The water removed from the coal in the above-mentioned dehydration experiment, that is, the drainage weight was 4.23 g. Here, the moisture content of the royal coal before dehydration can be measured by the usual moisture measurement method, because DME adsorbed on the dehydrated coal evaporates at 107 ° C, making it impossible to measure only the moisture of the dehydrated coal. It is. Therefore, the calculation was performed using the water content (53.2%) obtained using the same lot of charcoal subjected to the same wet operation. The calculated water content before dehydration of the charcoal was 4.43 g. Therefore, the difference of 0.20 g was defined as the water content of the dehydrated coal. As a result, it was found that the moisture content of the dewatered coal was 4.7% of the total weight of 4.74 g, and that the royal coal could be dewatered as much as bituminous coal.
また、 脱水炭と排水と析出物の重量の総和 9.43g は、 脱水前のロイヤング炭の 湿潤重量より l.l lg重いが、 これは脱水炭に吸着した DM Eである。 このうち、 脱水炭を 107 でで 1 時間加熱したときの、 重量減量は、 0.59g であり、 残りの 0.52g が蒸発していないことから、 吸着した DMEの約半分はロイヤング炭に強く 結合した DMEであることが明らかになった。  In addition, the total weight of dehydrated coal, wastewater, and precipitates is 9.43 g, which is l.l lg heavier than the wet weight of the royal coal before dehydration, but this is DME adsorbed on the dehydrated coal. Of these, the weight loss when the dehydrated coal was heated at 107 for 1 hour was 0.59 g, and the remaining 0.52 g had not evaporated, so about half of the adsorbed DME was strongly bound to Roy Young coal. It turned out to be DME.
析出物の重量は、 脱水前のロイヤング炭の乾燥重量の 12wt %であり、 排水を加 熱して蒸発させたところ、 濃度 1500 〜 2000ppm に相当する茶褐色固体が析出し た。 The weight of the precipitate is 12% by weight of the dry weight of the royal coal before dehydration. Upon heating and evaporation, a brown solid corresponding to a concentration of 1500-2000 ppm precipitated.
4 . 脱水性能  4. Dehydration performance
次に、 液化 DMEの流通量を様々に変え、 ロイヤング炭の脱水実験を行った。 その結果を図 6に示す。 尚、 縦軸の排水量は、 脱水前のロイヤング炭の含有水分 量で規格化しており、 横軸の液化 DM E流通量は、 理論量で規格化している。 図 中の破線は、 液化 DMEに褐炭水分が飽和溶解した場合の排水量である。  Next, we conducted various experiments on dehydration of royal coal with varying the amount of liquefied DME. Figure 6 shows the results. The amount of wastewater on the vertical axis is standardized based on the water content of the royal coal before dehydration, and the amount of liquefied DME flowing on the horizontal axis is standardized based on the theoretical amount. The dashed line in the figure is the amount of wastewater when lignite moisture is dissolved and dissolved in liquefied DME.
図 6に示されるのように、 液化 DM Eの流通量が少なく、 ロイヤング炭から脱 水が進行していない場合、 液化 DM Eに褐炭水分が飽和溶解し、 液化 DM Eの流 通量に対して、 最大量の石炭水分が除去された。 これは、 ロイヤング炭の水分の うち、 脱離し易いバルク水から液化 DMEに溶解したためと考えられる。  As shown in Fig. 6, when the flow rate of liquefied DME is small and dewatering from the royal coal is not progressing, the brown coal moisture is saturated and dissolved in the liquefied DME, The largest amount of coal moisture was removed. This is considered to be due to the fact that, of the moisture of the royal coal, the bulk water, which is easily desorbed, was dissolved in liquefied DME.
液化 DM Eの流通量を増加させると、 ロイヤング炭の初期水分の約 80 %が除去 されるまで、 流通量に比例して排水量が増加した。 ロイヤング炭の初期水分のう ち約 80 %が除去されると、 急激に脱水に必要な液化 DMEの量が増大した。 これ は、 液化 D M Eが水分で飽和せずに、 カラムから排出されるためであり、 理論量 の約 6倍の液化 DM E (点線) を要した。 これは、 ロイヤング炭の細孔内部に毛 管凝縮水や吸着水が残っており、 これらの水と平衡な、 液化 DM E中の水分濃度 が低いためと考えられる。  Increasing the flow of liquefied DME increased the amount of wastewater in proportion to the flow until about 80% of the initial water content of the royal coal was removed. When about 80% of the initial water content of Roy Young coal was removed, the amount of liquefied DME required for dehydration increased rapidly. This was because the liquefied DME was discharged from the column without being saturated with water, and required about 6 times the theoretical amount of liquefied DME (dotted line). This is probably because capillary condensed water and adsorbed water remain inside the pores of the royal coal, and the water concentration in the liquefied DME, which is in equilibrium with these waters, is low.
このように、 ロイヤング炭のバルタ水が多い脱水初期の段階では、 液化 DM E に飽和量の水分を溶解可能であるので、 既に水分を多量に含む液化 DM Eを脱水 に用いることが可能である。 一方、 ロイヤング炭の脱水が進み、 毛管凝縮水や吸 着水のみが残存する状態では、 水分濃度が低い液化 D M Eを用いる必要がある。 このことから、 向流接触方式の脱水器を採用すれば、 液化 D M Eの流通量を理論 量に留めつつ、 瀝青炭並みに脱水することが可能であることを明らかにした。  As described above, in the initial stage of dehydration of the royal coal, which contains a large amount of Balta water, a saturable amount of water can be dissolved in the liquefied DME. . On the other hand, if the dewatering of Roy Young coal progresses and only the capillary condensed water and adsorption water remain, it is necessary to use liquefied DME with a low water concentration. From this, it was clarified that if a countercurrent contact type dehydrator was adopted, it would be possible to dehydrate as much as bituminous coal while keeping the liquefied DME flow rate at the theoretical level.
5 . 可燃分の析出現象  5. Precipitation of combustibles
図 6に、 液化 DMEの流通量と析出量との関係を併記する (秦印)。 縦軸の析出 物の重量は、 脱水前のロイヤング炭の乾燥重量 (可燃分重量) で規格化されてい る。 図 6に示すように、 脱水性能を上げるためには液化 D M Eの量を理論量より も増やすことが望ましいが、 その反面、 析出物の重量は D M Eの流通量に比例す ることから、 ロイヤング炭の可燃分が減少することを防ぐために、 理論量の液化 DM Eで脱水することが好ましレ、。 このことからも、 向流接触によるロイヤング 炭と液化 DMEとの接触が好ましい。 Fig. 6 also shows the relationship between the amount of liquefied DME and the amount of precipitation (Hatoshi). The weight of the precipitates on the vertical axis is standardized by the dry weight (combustible content weight) of the Roy Young coal before dehydration. As shown in Fig. 6, it is desirable to increase the amount of liquefied DME beyond the theoretical amount in order to improve the dewatering performance, but on the other hand, the weight of the precipitate is proportional to the amount of DME flowing Therefore, it is preferable to dehydrate with a stoichiometric amount of liquefied DME in order to prevent the flammable content of Roy Young coal from decreasing. For this reason, the contact between the royal coal and the liquefied DME by countercurrent contact is preferred.
6 . 脱水炭の再湿潤特性  6. Rewetting characteristics of dehydrated coal
脱水炭を温度 25 °C相対湿度 80 %の雰囲気下に 24時間放置したところ、 24時間 後の脱水炭の水分は 7.1 %までしか増加しなかった。 図 2に示すように、 脱水処理 前のロイヤング炭を温度 25 °C相対湿度 78 %の雰囲気下に 24時間放置すると、 水 分 29 %に湿潤したことから、 脱水炭の再湿潤が抑制されていることが明らかにな つた。  When the dehydrated coal was left in an atmosphere at a temperature of 25 ° C and a relative humidity of 80% for 24 hours, the moisture content of the dehydrated coal after 24 hours increased only to 7.1%. As shown in Fig. 2, if the royal coal before the dehydration treatment was left for 24 hours in an atmosphere at a temperature of 25 ° C and a relative humidity of 78%, it was wetted to 29% water, and the rewet of the dehydrated coal was suppressed. It became clear that there was.
この理由としては、 脱水炭が再湿潤するには、 脱水炭の表面に吸着した D ME の分子集団の中に、 水分子が溶けこむ必要がある点が考えられる。 前述のよ.う に、 液化 DM Eへの水分の飽和溶解度は約 6.7wt%であり、 飽和溶解度以上の水分 が溶解しないため、 脱水炭の再湿潤が抑制されていると考えられる。  One possible reason for this is that the water molecules must dissolve into the DME molecular population adsorbed on the surface of the dehydrated coal in order for the dehydrated coal to re-wet. As described above, the saturated solubility of water in liquefied DME is about 6.7 wt%, and it is considered that the re-wetting of the dehydrated carbon is suppressed because water at or above the saturated solubility does not dissolve.
このように、 既存の方法で再湿潤の抑制に重質油を添加するなどの対策が必要 であるのに対して、 本発明方法では、 再湿潤抑制への特別な対策が不要である利 点を有している。  As described above, the existing method requires measures such as adding heavy oil to control rewet, whereas the method of the present invention does not require special measures to control rewet. have.
産業上の利用分野  Industrial applications
以上のように、 本発明にかかる固体含有水分の除去方法は、 水分を多く含む固 体から低動力で水分を除去するのに適しており、 特に褐炭や亜瀝青炭から石炭表 面の官能基と強く結合している石炭中の水分を低動力で除去して、 瀝青炭並の含 有水分に脱水可能な技術として有用である。  As described above, the method for removing solid-containing moisture according to the present invention is suitable for removing moisture from a solid containing a large amount of moisture with low power. In particular, the method for removing functional groups on the surface of coal from lignite or sub-bituminous coal. It is useful as a technology that can remove the water in the coal that is strongly bound with low power and dewater it to the water content equivalent to bituminous coal.
したがって、 低灰分 '低硫黄分の炭種でありながら、 含有水分が多いため、 輸 送コス トや燃焼性が悪くなり山元以外では利用されてこなかつた褐炭や亜瀝青炭 を、 高品位炭並の燃焼性能と輸送コス トを実現することが可能となる。 このこと は、 石炭の採掘から発電後の処理までを総合的に判断すると、 発電コス トの低減 に効果的である。 勿論、 本発明は、 褐炭などの石炭以外の水分含有固体からの室 温 0.5MPa付近での低動力で極めて実現容易な条件で動作する高効率な脱水が期待 できるものである。  Therefore, lignite and sub-bituminous coal, which is low-ash and low-sulfur coal, has low water content and low combustion cost due to its low water content and high flammability. Combustion performance and transportation costs can be realized. This is effective in reducing power generation costs when comprehensively assessing from mining of coal to treatment after power generation. Of course, the present invention can be expected to achieve highly efficient dehydration from a water-containing solid other than coal such as lignite at a room temperature of around 0.5 MPa and operating under extremely easy conditions with low power.

Claims

請 求 の 範 囲 The scope of the claims
1 . 水分含有固体に、 2 5 °C、 1気圧で気体である物質 (以下、 物質 Dと称す る) の液化物を接触させて、 この物質 Dの液化物に固体含有水分を溶解させて高 含水の物質 Dの液化物とすることによって固体の水分を除去するとともに、 この 高含水の物質 Dの液化物中の物質 Dを気化することによって、 物質 Dの気体と水 分を分離し、 分離した物質 Dの気体を回収し、 回収した気体を加圧、 あるいは冷 却、 あるいは加圧と冷却の併用によって液化させ、 再び水分含有固体の水分の除 去に使用することを特徴とする液化物質を用いた固体含有水分の除去方法。 1. Contact a liquefied substance of a substance that is gaseous at 25 ° C and 1 atm (hereinafter referred to as “substance D”) with the water-containing solid to dissolve the solid-containing moisture in the liquefied substance of substance D. By removing solid water by making it a liquefied substance of highly hydrated substance D, vaporizing substance D in the liquefied substance of highly hydrated substance D separates gas and water from substance D, A liquefaction characterized by collecting the separated substance D gas, liquefying the collected gas by pressurizing or cooling, or by using a combination of pressurizing and cooling, and using it again for removing the water content of the water-containing solid. A method for removing solid-containing moisture using a substance.
2 . 2 5 °C、 1気圧で気体である物質がジメチルエーテル、 ェチルメチルエー テル、 ホルムアルデヒ ド、 ケテン、 ァセトアルデヒ ドから選ばれる 1種または 2 種以上の混合物である請求の範囲第 1項記載の方法。 2. The method according to claim 1, wherein the substance that is gaseous at 25 ° C. and 1 atm is one or a mixture of two or more selected from dimethyl ether, ethyl methyl ether, formaldehyde, ketene, and acetoaldehyde.
3 . 前記水分含有固体は褐炭あるいは亜瀝青炭である請求の範囲第 1項記載の 方法。  3. The method according to claim 1, wherein the water-containing solid is lignite or subbituminous coal.
4 . 前記物質 Dの液化物と前記水分含有固体とが向流接触する請求の範囲第 1 項記載の方法。  4. The method according to claim 1, wherein the liquefied substance of the substance D and the water-containing solid are in countercurrent contact with each other.
5 . 前記水分含有固体と接触する物質 Dの液化物が理論量である請求の範囲第 1項記載の方法。  5. The method according to claim 1, wherein the liquefied substance of the substance D in contact with the water-containing solid is in a stoichiometric amount.
6 . 前記物質 Dの液化物は 0 ° (:〜 5 0 °Cの温度範囲で一連の脱水操作が行われ る請求の範囲第 1記載の方法。  6. The method according to claim 1, wherein the liquefied substance of the substance D is subjected to a series of dehydration operations in a temperature range of 0 ° (: to 50 ° C).
7 . 請求の範囲第 1項記載の固体含有水分の除去方法によって脱水された褐炭 あるいは亜瀝青炭。  7. Lignite or sub-bituminous coal dehydrated by the method for removing solid-containing moisture according to claim 1.
8 . 2 5 °C、 1気圧で気体である物質 (以下、 物質 Dと称する) と、 前記物質 Dの気体を加圧する圧縮機と、 この加圧された前記物質 Dの気体を凝縮して液化 物にする凝縮器と、 前記物質 Dの液化物が水分含有固体と接触し水分を溶解して 脱水を行う脱水器と、 水分を溶解した前記物質 Dの液化物から前記物質 Dを気化 させる蒸発器と、 気化した前記物質 Dと水を分離する分離器、 および気化した前 記物質 Dを膨張させる膨張機とが直列に連結され、 この膨張機が前記圧縮機に連 結されて回路が形成され、 この回路を前記物質 Dが循環し、 且つ、 前記凝縮器と 前記蒸発器が熱交換器で接続されているとともに、 前記膨張機において外界に行 う仕事が回収され、 この仕事が前記圧縮機の動力の一部として投入されるように 構成されていることを特徴とする水分含有固体の水分除去システム。 8. A substance which is a gas at 25 ° C. and 1 atm (hereinafter referred to as a substance D), a compressor for pressurizing the gas of the substance D, and condensing the pressurized gas of the substance D A condenser for converting the substance D into a liquefied substance; a dehydrator for contacting the liquefied substance of the substance D with a water-containing solid to dissolve water to perform dehydration; and vaporizing the substance D from a liquefied substance of the substance D in which the water is dissolved. An evaporator, a separator for separating the vaporized substance D and water, and an expander for expanding the vaporized substance D are connected in series, and the expander is connected to the compressor to form a circuit. The substance D circulates through this circuit, and the condenser and the evaporator are connected to each other by a heat exchanger. A work removal system, wherein the work is collected as a part of the power of the compressor.
9 . 前記分離器からは、 前記分離器で分離された水から物質 Dを脱気するため の脱気塔が連結され、 前記脱気塔が前記回路に連結されて、 脱気された前記物質 Dが回収され前記回路に戻されるように構成されている請求の範囲第 8項記載の 水分含有固体の水分除去システム。  9. The separator is connected to a degassing tower for degassing the substance D from the water separated by the separator, and the degassing tower is connected to the circuit to degas the substance. 9. The moisture removal system for moisture-containing solids according to claim 8, wherein D is collected and returned to said circuit.
1 0 . 前記脱水器は前記物質 Dの液化物と前記水分含有固体とを向流接触させ るものである請求の範囲第 8項記載の水分含有固体の水分除去システム。  10. The moisture removal system for a moisture-containing solid according to claim 8, wherein said dehydrator brings a liquefied substance of said substance D and said moisture-containing solid into countercurrent contact.
PCT/JP2003/006989 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material WO2003101579A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/516,160 US7537700B2 (en) 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material
AU2003241902A AU2003241902B2 (en) 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material
JP2004508926A JP4291772B2 (en) 2002-06-03 2003-06-03 Method for removing moisture contained in solid using liquefied substance
EP03733265.7A EP1524019B1 (en) 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material
CA002487641A CA2487641C (en) 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002161575 2002-06-03
JP2002-161575 2002-06-03

Publications (1)

Publication Number Publication Date
WO2003101579A1 true WO2003101579A1 (en) 2003-12-11

Family

ID=29706581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006989 WO2003101579A1 (en) 2002-06-03 2003-06-03 Method for removing water contained in solid using liquid material

Country Status (7)

Country Link
US (1) US7537700B2 (en)
EP (1) EP1524019B1 (en)
JP (1) JP4291772B2 (en)
CN (1) CN100350996C (en)
AU (2) AU2003241902B2 (en)
CA (1) CA2487641C (en)
WO (1) WO2003101579A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130421A (en) * 2004-11-05 2006-05-25 Central Res Inst Of Electric Power Ind Method and system for removing moisture contained in solid using liquefied material
WO2008111483A1 (en) * 2007-03-09 2008-09-18 Central Research Institute Of Electric Power Industry Hydrous matter treating system
US7803253B2 (en) 2005-09-20 2010-09-28 Central Research Institute Of Electric Power Industry Method for dehydrating water-containing substance using liquefied matter
JP2010240609A (en) * 2009-04-08 2010-10-28 Central Res Inst Of Electric Power Ind Oil extraction method, method of producing oily material and deoiling system
JP2014113578A (en) * 2012-12-12 2014-06-26 Mitsubishi Heavy Ind Ltd Apparatus and method for dehydrating treatment of water-containing oil and wind power generator
JP2014193440A (en) * 2013-03-29 2014-10-09 Kubota Corp Method of dehydrating organic sludge
US10245527B2 (en) 2015-01-28 2019-04-02 Hitachi Ltd. Solid-liquid separation device
US10589189B2 (en) 2013-08-02 2020-03-17 Hitachi, Ltd. Solid/liquid separation apparatus, and method for same
US10646794B2 (en) 2015-01-23 2020-05-12 Hitachi, Ltd. Solid-liquid separation device
US11364452B2 (en) 2017-11-13 2022-06-21 Hitachi, Ltd. Extraction device and method for same
US11612832B2 (en) 2018-05-31 2023-03-28 Hitachi, Ltd. Extracting apparatus, and extracting-unit manufacturing method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537700B2 (en) 2002-06-03 2009-05-26 Central Research Institute Of Electric Power Industry Method for removing water contained in solid using liquid material
JP4734406B2 (en) * 2006-03-24 2011-07-27 財団法人電力中央研究所 Method for removing ice from ice-containing material using liquefied material
AU2008210818B2 (en) * 2007-01-31 2010-12-02 Central Research Institute Of Electric Power Industry Process for treatment of water-containing substance
AU2011213789B8 (en) * 2007-08-16 2013-01-24 Central Research Institute Of Electric Power Industry Dewatering system for water containing material and method of dewatering the same
JP5731733B2 (en) * 2008-06-04 2015-06-10 一般財団法人電力中央研究所 Sludge treatment method
JP5314558B2 (en) * 2009-10-05 2013-10-16 日本エア・リキード株式会社 Apparatus and method for removing moisture in organic solvent
IT1396896B1 (en) * 2009-12-16 2012-12-20 Garella HIGH EFFICIENCY SOLUTION-LIQUID EXTRACTION AND PROCEDURE
CN102091440B (en) * 2010-12-14 2012-09-26 山东科技大学 Dewatering material for removing water dissolved in oil and preparation method thereof
CN102600704B (en) * 2012-03-22 2013-12-25 南京航空航天大学 Mechanical vapour-recompression low-temperature air drier and method thereof
US9029615B2 (en) 2012-09-05 2015-05-12 Dynasep Inc. Energy efficient method and apparatus for the extraction of lower alcohols from dilute aqueous solution
US9630894B2 (en) 2012-09-05 2017-04-25 Dynasep Inc. Energy efficient method and apparatus for the extraction of biomolecules from dilute aqueous solution
US10436389B2 (en) * 2014-06-23 2019-10-08 Eminent Technologies, Llc Processing system
CN105457331A (en) * 2014-09-04 2016-04-06 通用电气公司 Devices and methods of extracting solute from solute containing substances
WO2016120952A1 (en) 2015-01-26 2016-08-04 株式会社日立製作所 Solid-liquid separation system
CN104645662B (en) * 2015-03-12 2016-08-17 浙江天草生物科技股份有限公司 Heat exchange reinforced plant extract tank
CN106546067B (en) * 2015-09-18 2022-08-19 海南椰国食品有限公司 Low-temperature integrated drying method for replacing bacterial cellulose gel film
US9777235B2 (en) 2016-04-04 2017-10-03 Allard Services Limited Fuel oil compositions and processes
KR20180124021A (en) 2016-04-04 2018-11-20 에이알큐 아이피 리미티드 Solid-liquid crude oil composition and fractionation method thereof
EP4263051A4 (en) * 2020-12-16 2024-06-12 The Regents of the University of California Pretreating metal oxide catalysts for alkane dehydrogenation
US11840462B2 (en) 2021-01-04 2023-12-12 Massachusetts Institute Of Technology Switchable system for high-salinity brine desalination and fractional precipitation
WO2024081760A1 (en) * 2022-10-12 2024-04-18 Battelle Energy Alliance, Llc Systems and methods for removing aqueous liquids from a solid porous material via solvent displacement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733478A (en) * 1985-10-07 1988-03-29 Kawasaki Jukogyo Kabushiki Kaisha Method of dewatering brown coal
US4811494A (en) * 1987-01-07 1989-03-14 Frank Miller Removal of water from carbonaceous solids by use of methyl formate
US5346630A (en) * 1990-05-08 1994-09-13 Unilever Patent Holdings B.V. Coal dewatering
JPH08173704A (en) * 1994-12-28 1996-07-09 Nihon Dennetsu Kk Method for dehydration
JP2002143789A (en) * 2000-11-14 2002-05-21 Koyo Seiko Co Ltd Method and apparatus for water replacement

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE450659C (en) 1924-06-26 1927-10-13 Fritz Caspari Dr Process for drying water-containing bulk goods of all kinds with the help of the extraction process
US3367501A (en) * 1965-04-14 1968-02-06 Head Wrightson & Co Ltd Dry-cleaning of large or small coal or other particulate materials containing components of different specific gravities
US3454095A (en) * 1968-01-08 1969-07-08 Mobil Oil Corp Oil recovery method using steam stimulation of subterranean formation
AU514167B2 (en) * 1977-03-12 1981-01-29 Kobe Steel Limited Thermal dehydration of brown coal
JPS55145506A (en) 1979-05-01 1980-11-13 Electric Power Dev Co Ltd Treatment for dehydration of coal-water slurry
JPS5667394A (en) 1979-11-06 1981-06-06 Mitsui Eng & Shipbuild Co Ltd Dehydrating treatment of coal-water slurry
US4498289A (en) * 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
JPS6146202A (en) 1984-08-09 1986-03-06 Mitsubishi Kakoki Kaisha Ltd Drying method of difficult-to-dry substance or heat-sensitive substance
US5379902A (en) * 1993-11-09 1995-01-10 The United States Of America As Represented By The United States Department Of Energy Method for simultaneous use of a single additive for coal flotation, dewatering, and reconstitution
US5458786A (en) * 1994-04-18 1995-10-17 The Center For Innovative Technology Method for dewatering fine coal
JPH09173848A (en) 1995-12-28 1997-07-08 Nkk Corp Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JPH09173863A (en) 1995-12-28 1997-07-08 Nkk Corp Catalyst for producing dimethyl ether, production thereof and production of dimethyl ether
JPH09173845A (en) 1995-12-28 1997-07-08 Nkk Corp Catalyst for manufacturing dimethyl ether, manufacture thereof and manufacture of dimethyl ether
JP3421900B2 (en) 1996-04-23 2003-06-30 ジェイエフイーホールディングス株式会社 Dimethyl ether production equipment
JP3865148B2 (en) 1996-05-21 2007-01-10 ジェイエフイーホールディングス株式会社 Reactor for synthesis of dimethyl ether
JP3421902B2 (en) 1996-05-22 2003-06-30 ジェイエフイーホールディングス株式会社 Method for producing dimethyl ether
US6051421A (en) * 1996-09-09 2000-04-18 Air Liquide America Corporation Continuous processing apparatus and method for cleaning articles with liquified compressed gaseous solvents
JPH10182535A (en) 1996-12-26 1998-07-07 Nkk Corp Production of dimethyl ether
JPH10195009A (en) 1996-12-30 1998-07-28 Nkk Corp Apparatus for production of dimethyl ether
JPH10338653A (en) 1997-06-06 1998-12-22 Jiyunsei Kagaku Kk Dehydration of liquid
JP3484663B2 (en) 1997-10-24 2004-01-06 ジェイエフイーホールディングス株式会社 Method for producing dimethyl ether
US6098306A (en) * 1998-10-27 2000-08-08 Cri Recycling Services, Inc. Cleaning apparatus with electromagnetic drying
JP2000290673A (en) 1999-04-09 2000-10-17 Kobe Steel Ltd Modified low-grade coal, its production and coal-water slurry
US6526675B1 (en) * 1999-06-07 2003-03-04 Roe-Hoan Yoon Methods of using natural products as dewatering aids for fine particles
US6855260B1 (en) * 1999-06-07 2005-02-15 Roe-Hoan Yoon Methods of enhancing fine particle dewatering
GB0027047D0 (en) 2000-11-06 2000-12-20 Ici Plc Process for reducing the concentration of undesired compounds in a composition
US7537700B2 (en) 2002-06-03 2009-05-26 Central Research Institute Of Electric Power Industry Method for removing water contained in solid using liquid material
JP4489756B2 (en) * 2003-01-22 2010-06-23 ヴァスト・パワー・システムズ・インコーポレーテッド Energy conversion system, energy transfer system, and method of controlling heat transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733478A (en) * 1985-10-07 1988-03-29 Kawasaki Jukogyo Kabushiki Kaisha Method of dewatering brown coal
US4811494A (en) * 1987-01-07 1989-03-14 Frank Miller Removal of water from carbonaceous solids by use of methyl formate
US5346630A (en) * 1990-05-08 1994-09-13 Unilever Patent Holdings B.V. Coal dewatering
JPH08173704A (en) * 1994-12-28 1996-07-09 Nihon Dennetsu Kk Method for dehydration
JP2002143789A (en) * 2000-11-14 2002-05-21 Koyo Seiko Co Ltd Method and apparatus for water replacement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1524019A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130421A (en) * 2004-11-05 2006-05-25 Central Res Inst Of Electric Power Ind Method and system for removing moisture contained in solid using liquefied material
JP4601396B2 (en) * 2004-11-05 2010-12-22 財団法人電力中央研究所 Method and system for removing water containing solid using liquefied substance
US7803253B2 (en) 2005-09-20 2010-09-28 Central Research Institute Of Electric Power Industry Method for dehydrating water-containing substance using liquefied matter
US8246789B2 (en) 2007-03-09 2012-08-21 Central Research Institute Of Electric Power Industry Hydrous matter treatment system
AU2008225537B2 (en) * 2007-03-09 2010-08-12 Central Research Institute Of Electric Power Industry Hydrous matter treating system
WO2008111483A1 (en) * 2007-03-09 2008-09-18 Central Research Institute Of Electric Power Industry Hydrous matter treating system
JP5346800B2 (en) * 2007-03-09 2013-11-20 一般財団法人電力中央研究所 Water content treatment system
JP2010240609A (en) * 2009-04-08 2010-10-28 Central Res Inst Of Electric Power Ind Oil extraction method, method of producing oily material and deoiling system
JP2014113578A (en) * 2012-12-12 2014-06-26 Mitsubishi Heavy Ind Ltd Apparatus and method for dehydrating treatment of water-containing oil and wind power generator
JP2014193440A (en) * 2013-03-29 2014-10-09 Kubota Corp Method of dehydrating organic sludge
US10589189B2 (en) 2013-08-02 2020-03-17 Hitachi, Ltd. Solid/liquid separation apparatus, and method for same
US10646794B2 (en) 2015-01-23 2020-05-12 Hitachi, Ltd. Solid-liquid separation device
US10245527B2 (en) 2015-01-28 2019-04-02 Hitachi Ltd. Solid-liquid separation device
US11364452B2 (en) 2017-11-13 2022-06-21 Hitachi, Ltd. Extraction device and method for same
US11612832B2 (en) 2018-05-31 2023-03-28 Hitachi, Ltd. Extracting apparatus, and extracting-unit manufacturing method

Also Published As

Publication number Publication date
CA2487641A1 (en) 2003-12-11
EP1524019A1 (en) 2005-04-20
AU2008250084A1 (en) 2008-12-18
CN1658937A (en) 2005-08-24
EP1524019B1 (en) 2013-10-23
EP1524019A4 (en) 2006-09-20
US20050210701A1 (en) 2005-09-29
JPWO2003101579A1 (en) 2005-09-29
CN100350996C (en) 2007-11-28
US7537700B2 (en) 2009-05-26
CA2487641C (en) 2009-08-04
AU2003241902A1 (en) 2003-12-19
AU2003241902B2 (en) 2008-08-28
JP4291772B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
WO2003101579A1 (en) Method for removing water contained in solid using liquid material
JP6629431B2 (en) Conversion of waste heat of gas processing plant to electric power based on organic Rankine cycle
CN111108178A (en) Conversion of natural gas condensate fractionation plant waste heat to cooling capacity using a kalina cycle
JP5607884B2 (en) Treatment method for hydrous substances
JP4365442B1 (en) Coal reforming method
JP5361401B2 (en) Sludge drying apparatus and sludge drying method
JP6568114B2 (en) Solid-liquid separator
WO2018198825A1 (en) Solid-liquid separation system and solid-liquid separation method
JP6568109B2 (en) Solid-liquid separator
JP5346800B2 (en) Water content treatment system
JP4542517B2 (en) Deoiling method of oil-containing substance using liquefied product
KR101889896B1 (en) High performance dehydration and drying system for high moisture sludge
RU2400282C2 (en) New method of alcohol dehydration and device to this end
US9511323B2 (en) Dehydration of gases with liquid desiccant
WO2009004307A1 (en) Process for the separation of pressurised carbon dioxide from steam
WO2013137186A1 (en) Organic solvent dehydration device
CN108778440B (en) High performance chromatographic separation process
AU2014298348A1 (en) Process for capturing a heavy metal contained in a wet gas incorporating a heat pump for cooling the gas before removal of the water
JPH06304453A (en) Pervaporation membrane separator using low temperature cooling medium
JP4734406B2 (en) Method for removing ice from ice-containing material using liquefied material
RU2820185C2 (en) Hydrocarbon gas dehydration method
Wilson et al. Switchable system for high-salinity brine desalination and fractional precipitation
JP2009286959A (en) Method for producing solid fuel and device for the same
JPH0141678B2 (en)
JPS59145462A (en) Method of generating cold air and (or) heat using absorptioncycle containing at least two absorption process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508926

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2487641

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10516160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038127776

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003733265

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003241902

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003733265

Country of ref document: EP