WO2003100405A1 - Defect classification device generation method and automatic defect classification method - Google Patents

Defect classification device generation method and automatic defect classification method Download PDF

Info

Publication number
WO2003100405A1
WO2003100405A1 PCT/JP2003/006353 JP0306353W WO03100405A1 WO 2003100405 A1 WO2003100405 A1 WO 2003100405A1 JP 0306353 W JP0306353 W JP 0306353W WO 03100405 A1 WO03100405 A1 WO 03100405A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
classification
inspection
sample
classifier
Prior art date
Application number
PCT/JP2003/006353
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Miyamoto
Hirohito Okuda
Toshifumi Honda
Yuji Takagi
Takashi Hiroi
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Publication of WO2003100405A1 publication Critical patent/WO2003100405A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/40Software arrangements specially adapted for pattern recognition, e.g. user interfaces or toolboxes therefor

Definitions

  • the present invention relates to a method for generating a defect classifier for automatically classifying foreign objects and defects generated on a sample such as a semiconductor wafer in a semiconductor manufacturing process, and to automatically classify defects using the generated defect classifier. It relates to an automatic defect classification method and its system. Background technology,
  • a semiconductor device is manufactured by performing a plurality of processes such as exposure, development, and etching on a substrate to be a substrate, and after being processed in a predetermined processing step among the plurality of processing steps, an optical or semiconductor device is manufactured.
  • Defect position and size are inspected using SEM (Scanning Electron Microscope) type foreign matter inspection equipment ⁇ panning inspection equipment.
  • SEM Sccanning Electron Microscope
  • the number of detected defects depends on the state of the manufacturing process, it can range from hundreds to thousands per wafer, and high-speed defect detection is required for these defect inspection systems.
  • the defect inspection devices that perform these defect detections are collectively referred to as defect detection devices.
  • defect detection device After inspection by the defect detection device, it is possible to perform a detailed re-inspection of the defect detected by the defect detection device using an optical or SEM type defect review device with a higher imaging magnification. is there. However, it is not practical to perform a detailed inspection of all the defect samples detected by the defect detection device due to time constraints, and a set of defects detected by the defect detection device is sampled, and a detailed inspection of the subset is performed. Done.
  • defect review devices these defect inspection devices that perform defect review inspections are collectively referred to as defect review devices. Call. Defect detection device and defect review device, scanning probe microscope
  • defect inspection equipment SPM and inspection equipment such as elemental analysis equipment are collectively referred to as defect inspection equipment.
  • the defect review device a function to automatically obtain an enlarged image of the defect based on the defect position information from the defect detection device, that is, the ADR (Automatic Defect Review) function, Products with a function to automatically classify defect types based on detailed information such as pod shape and texture (surface pattern), that is, an ADC (Automatic Defect Classification) function are being developed.
  • the ADR Automatic Defect Review
  • ADC Automatic Defect Classification
  • some defect detection devices have a simple defect coarse classification that emphasizes high-speed processing, that is, a classification function called RTADC (Real Time-ADC).
  • rule-based classification One of the classical methodologies is a method called rule-based classification.
  • various image features are extracted from the images to be classified, and the values of the image features are determined based on the rules of the “if-then” formula built into the system, thereby detecting defects.
  • the rule-based classification the defect classes and rules to be classified are fixed and cannot respond flexibly to the needs of the user, but they do not require teaching data, so they can be used from the start of the production process. There is an advantage.
  • learning-type classification Another classical methodology is a method called learning-type classification.
  • teacher images are collected in advance and learned to optimize the classification rules (eg, neural nets).
  • Learning-based classification may be able to perform flexible classification according to the user's requirements, but generally it is necessary to collect a large amount of teaching data in order to obtain good performance. There is a problem that it cannot be used practically when starting up the production process. Conversely, when only a small number of teaching data is used, it is known that the learning is over-adapted to the teaching data, which is called over-learning, and the performance is reduced.
  • Japanese Patent Application Laid-Open No. 2001-135692 discloses an automatic defect classification method that can be applied uniformly in a hybrid as a configuration using both the rule-based classification and the learning classification described above. .
  • JP-A-56480, JP-A-2001-331817, JP-A-2002-14054 and JP-A-2002-90312 are known. Disclosure of the invention
  • the classification inside the system is performed. It is not easy to correct standards.
  • the rule-based classification if the meaning of various attributes used as a classification criterion is unclear, the user performs customization such as selection of various attributes and threshold setting for his / her own classification request. It is difficult.
  • the degree of freedom of learning increases, and overfitting with a small number of teaching There is a risk of over-learning. Therefore, more teaching samples are required.
  • the attributes of the defect obtained from the defect inspection device include information on the image feature amount, defect coordinates, composition analysis results, construction history, information on the distribution of defect positions detected on the equipment QC (Quality Control) or wafer, and When the number of defects is listed, and attributes obtained from a plurality of heterogeneous defect inspection devices such as an optical or SEM foreign particle inspection device, pattern inspection device, defect review device, SPM, and elemental analysis device can be referenced. There is also. Although the automatic defect classification is performed using the above-described attributes as a criterion, it is a major issue for the user how to use these large number of attributes and generate a defect classifier that satisfies an expected defect classification standard.
  • An object of the present invention is to solve the above-described problems and to provide a defect that clarifies a user's classification requirement, generates a defect classification class, and classifies the defect into the defect classification class based on appropriate user support. It is another object of the present invention to provide a method for generating a classifier and an automatic defect classification method using the generated defect classifier, and a system therefor. To provide a defect classifier including a defect classification class for each defect inspection device, a defect automatic classification method and its system, and a method for obtaining data consistency between inspection devices ⁇ a data interpolation method Is to do.
  • the above-mentioned attributes may be independently or combined as necessary, or may be converted arbitrarily (arbitrary plural attributes).
  • a GUI Graphic User Interface
  • the attribute is at least one of image feature quantity, defect classification result, defect coordinate, composition analysis result, arrival history, apparatus QC, and information on the distribution of defect positions detected on the wafer and the number of defects. It includes the above.
  • the defect classifier according to the present invention is configured by a decision tree that classifies defect classes hierarchically by a plurality of branches.
  • the user can grasp the degree of separation of each attribute between the defect samples belonging to each defect class divided at an arbitrary branch in the decision tree by the distribution state of the visualized various attributes.
  • the degree of separation in various attributes is one of the indicators for judging whether the information is effective as a classification criterion in each branch, and based on such information, various attributes are selectively or comprehensively utilized. It decides a decision tree, selects a classification rule, or controls parameters. The contents of these processes are determined based on the defect classification request of the user.
  • the present invention provides a GUI which acquires and shares inspection information including defect images and attributes in various defect inspection apparatuses and has a simultaneous review screen of the inspection information. .
  • the user can comprehend the inspection information comprehensively based on the GUI and clarify his / her classification request.
  • a defect detection device in combination inspection using a plurality of defect inspection devices, for example, a defect detection device and a defect review device, first, inspection information obtained from both inspection devices is selectively or collectively used. Generate a defect classifier that includes the defect classification class that meets the user's classification requirements. Next, using only the inspection information obtained from the defect detection device, a defect classifier including a defect classification class in which the defect classification class meeting the user's classification request is a subset or a similar set is set. The generated defect classifier including the defect classification class is employed in the defect detection device. In this way, by setting the defect classification class of the defect detection device, it is possible to obtain hierarchical consistency between the defect classification classes. This enables effective defect classifier learning and effective review sampling in a defect review device that is performed later.
  • the same or similar type of defect sample may have different determination criteria among a plurality of defect inspection apparatuses in an attribute obtained from an arbitrary processed image.
  • a teacher pattern is generated from a processed image or an artificially generated image obtained from an arbitrary defect inspection device or a CAD data obtained from a user who has obtained a result expected by a user.
  • the same attribute can be analyzed among a plurality of defect inspection apparatuses. It can be used as a criterion for the determination.
  • a defect sample group in the defect inspection apparatus is referred to.
  • the inspection information of the defect sample of interest can be interpolated by selectively using the inspection information of the defect samples in the same class.
  • the present invention provides an inspection information acquiring step of inspecting a defect sample group on an arbitrary sample by at least an arbitrary defect inspection device to acquire sample inspection information; A display step of displaying the state of the defect attribute distribution of the defect sample group on the arbitrary sample based on the sample inspection information obtained in the inspection information obtaining step, and a display step of displaying the displayed defect attribute distribution on the screen.
  • Classification of defect samples based on condition A decision tree setting step including a classification rule setting step of setting an individual classification rule for each branch element in a decision tree in which class elements are hierarchically expanded through branch elements.
  • the present invention also provides a multi-dimensional method in which a plurality of attributes determined by a group of teaching defect samples belonging to a category classified for each branch element in the decision tree are combined as the state of the defect attribute distribution. It is characterized by a graph.
  • the present invention provides an inspection information acquiring step of inspecting a defect sample group on an arbitrary sample with a plurality of defect inspection devices to acquire a plurality of sample inspection information, and a plurality of samples acquired by the inspection information acquiring step. Inspection information is displayed almost simultaneously on the screen, and this is browsed to determine the classification class element of the defect sample group. On the screen, the classification class element is branched based on the classification class element determined by the reuse step.
  • a decision tree designating step of designating a decision tree hierarchically expanded via elements, and the designated decision based on at least one sample examination information acquired by the examination information acquiring step on a screen
  • a classification rule setting step of setting an individual classification rule for each branch element in the tree.
  • the present invention classifies the defects based on inspection information obtained by inspecting a defect generated in an inspection target in a second defect inspection device in which inspection is performed after inspection by the first defect inspection device.
  • the present invention provides a first defect inspection apparatus in which an inspection is performed before an inspection by a second defect inspection apparatus, the inspection being performed by inspecting a defect generated in an inspection target.
  • a first defect classifier for classifying the defect based on inspection information wherein the defect classification class classified by the second defect classifier in the second defect inspection apparatus is the first defect classifier.
  • the first defect classifier is generated or changed so as to be a subset of defect classification classes classified by one defect classifier or a classification similar thereto.
  • the present invention provides an inspection information acquisition step of inspecting a defect sample group on a sample by at least a combination of the first and second defect inspection devices to acquire first and second inspection information; Generating a first or second defect classifier according to the inspection order of the first and second defect inspection devices with reference to the first and second inspection information acquired in the step;
  • a defect classifier generation method comprising the steps of: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram showing an embodiment of the configuration of a data server for sharing inspection information and various defect inspection devices according to the present invention.
  • FIG. 2 is a flowchart showing one embodiment of a process of acquiring various kinds of inspection information in various kinds of defect inspection devices according to the present invention.
  • FIG. 3 is a flowchart showing one embodiment of a method for generating a defect classifier according to the present invention.
  • FIG. 4 is a view showing an embodiment of a simultaneous review of inspection information, a distribution display of various attributes of defects, and a list display window of defect classes and branches according to the present invention.
  • FIG. 5 is a diagram showing an embodiment of a decision tree structure setting and defect sample teaching window according to the present invention.
  • FIG. 6 is a diagram showing an embodiment of a procedure for setting a decision tree structure in FIG.
  • FIG. 7 is a diagram showing an embodiment of a classification rule setting window for each branch in the decision tree according to the present invention.
  • FIG. 8 is a diagram showing an embodiment of a multidimensional graph display of various attributes according to the present invention and a method of specifying a constraint condition in the graph.
  • FIG. 9 is a defect distribution map showing an embodiment of the defect sample distribution and the automatic defect classification result in each step of the defect classifier generation procedure according to the present invention.
  • FIG. 10 is a flowchart showing one embodiment of a defect classifier setting procedure and a defect classification procedure according to the present invention.
  • FIG. 11 is a diagram showing the relationship between defect classification classes in each defect inspection apparatus as shown in the defect distribution map in FIG. 9 according to the present invention.
  • FIG. 12 is a diagram showing an example of a class distribution generated when interpolating missing test information according to the present invention.
  • FIG. 13 is a diagram showing an embodiment of a procedure for matching inconsistencies between inspection information of a plurality of defect inspection apparatuses according to the present invention.
  • the present invention presupposes that at least one or more defect inspection apparatuses can acquire inspection information and that the inspection information can be referred to from any defect inspection apparatus.
  • the defect inspection apparatus 101 may be an optical or SEM type foreign object inspection apparatus, a pattern inspection apparatus, a review inspection apparatus, an element analysis apparatus, or another type of defect inspection apparatus. Includes inspection equipment with different inspection processes, or defect inspection equipment of the same or different type, regardless of the process.
  • FIG. 1 is a block diagram showing an embodiment of an automatic sample defect classification system according to the present invention and a configuration of each defect inspection apparatus used in the system, wherein 101a to: 101n.
  • the defect inspection devices A to N are the processing terminal devices that process the inspection information from each of the defect inspection devices 101a to;
  • Reference numeral 107 denotes a data server, and reference numeral 108 denotes a processing terminal device that processes information from the data server 107.
  • Information can be transmitted and received between 101, 102, 107 and 108 via the network 103.
  • Inspection information from each of the defect inspection devices 101a to 101n ' is processed by the processing terminal devices 102a to 102n' and managed by the data server 107, shared or shared with other processing terminals 102a to 102n. '.' Or directly from the processing terminal device 108 of the entire system (for the data server).
  • the inspection information is viewed or processed and analyzed at the same time as or after the inspection in the processing terminal devices 102 a to 102 n for any defect inspection device or the system processing terminal device 108. .
  • FIG. 2 is a flowchart showing an embodiment of the processing operation in the processing terminal device 102 or 108 for acquiring various inspection information (various defect classification results) using an arbitrary defect inspection device.
  • an arbitrary defect inspection apparatus 101 detects an arbitrary defect position on an inspection target such as an actual wafer and a sample inspection target (a sample for generating the defect classifier 120). Then, a stage (not shown) is moved to a defect position and a reference position, and an image signal is detected and an image signal is detected. The image signal is converted into a digital image signal, and the converted digital image signal is provided to the processing terminal device 102 or 108.
  • the processing terminal device 102 or 108 calculates various image feature amounts of the defect by comparing, for example, the captured defect image with the reference image.
  • step 205 The processing of each step in the loop 204 encircled by the dotted line is repeated in the same manner at any other defect position, and the processing terminal device 102 or 108 integrates them in step 205.
  • the defect detection in step 201 is performed by inputting defect position information detected by an external foreign matter inspection device or pattern inspection device in advance.
  • inspection equipment information such as optical, SEM, AFM (atomic force microscope), etc.
  • equipment QC Quality Control
  • construction history Information information on resolution and sensitivity, etc.
  • the processing terminal device 102 or 108 determines the defect distribution information on the sample obtained in step 205, the image feature amount for each defect obtained in step 203, and step 2. Based on inspection information obtained by combining inspection device information and wafer information, a generated defect classifier 120 according to the present invention obtained, for example, by the processing flow shown in FIG. 3, for example, by a plurality of branches Defect classification is performed using a decision tree that classifies defect classes hierarchically.
  • the inspection information includes at least one of various defect images and various attributes, and the various defect images refer to other defect inspection devices regardless of whether a defect is actually detected.
  • arbitrary image processing for example, binarized image processing, dilation, Shrinkage image processing
  • the defect image and the reference image are images obtained by moving the stage to the defect position detected on the wafer and the reference position, respectively, and the image is taken.
  • On a chip different from an existing chip for example, an adjacent chip, it refers to a position corresponding to the defect position.
  • a reference image a reference image for comparison with the defect image.
  • the processed image includes a processed image obtained by synthesizing at least two or more arbitrary image groups by arbitrary image processing.
  • the various attributes include an image feature amount, a defect classification result (result of which defect class is classified into an arbitrary defect sample), a defect coordinate, and a composition analysis result (combination of any composition of the arbitrary defect sample).
  • a defect classification result (result of which defect class is classified into an arbitrary defect sample)
  • a defect coordinate a composition analysis result (combination of any composition of the arbitrary defect sample).
  • defect distribution information information on the start of construction, history of construction, equipment QC, information on the distribution of defect positions detected on the wafer, and the number of defects. It is a thing.
  • the image feature amount refers to the color (texture, etc.), size (indicated by area or length), shape (foreign matter shape, flaw shape, etc.), or wiring pattern of a defect obtained from the various defect images.
  • Quantitative characteristics such as the positional relationship of defects (positional relationship indicated by fatal defects such as short-circuit defects and disconnection defects), or any heterogeneous defect inspection device from defect images obtained by any defect inspection device This includes all or some of the newly designed and calculated image features that are considered effective in.
  • the defect inspection apparatus 101 executes up to step 202 including the actual inspection target and the sample inspection target (sample for generating the defect classifier 120). Although the subsequent processing and the generation of the defect classifier 120 have been described as being performed by the processing terminal devices 102 and 108, the defect inspection device 101 performs steps 204, 205 and 2 06 Inspection information (actual inspection target and And sample inspection target) are obtained, and a defect classifier is used based on the inspection information.
  • the processing of generating the 120 and performing the actual defect classification based on the generated defect classifier 120 may be executed by the processing terminal devices 102 and 108. 'It is necessary that the defect classifier 120 according to the present invention be generated before classifying a defect generated on an actual inspection target.
  • defect inspection apparatuses 101 are used for automatic classification of foreign matter and defects on a semiconductor wafer (hereinafter collectively referred to as “defects” unless otherwise specified).
  • the method for simultaneously reviewing inspection information and the method for generating the defect classifier 102 according to the present invention employed in any one of the defect inspection apparatuses 101 or the processing terminal apparatuses 102 and 108 are greatly increased. Consists of two. In the following description, the generation of the defect classifier 102 is performed by one of the processing terminal devices 102 a to 102 ⁇ or the processing terminal device 108. For this purpose, in FIG.
  • each of the processing terminal devices 102 and 108 has, in each of the processing terminals 102 and 108, a calculating means having a function of a GUI 11 ° and a function of generating a defect classifier 120, It is provided with a storage means 131, a display means 132, an input means 133, and the like connected to the computer.
  • step 301 acquisition of various kinds of inspection information for generating the defect classifier 120 from the various defect inspection apparatuses 101 and the processing terminal apparatus 102 (step 301) has already been performed. You can refer to this.
  • the information that can be referred to here is not limited to the inspection information obtained from one defect inspection device 101 as described above, but may be an optical or SEM type defect inspection device, a pattern defect inspection device, a SEM.
  • a defect inspection apparatus 101 such as any defect review apparatus or elemental analysis apparatus has performed a defect inspection
  • the defect classifiers 120 obtained from the plurality of defect inspection apparatuses 101 are used.
  • Inspection information for generating the defect inspection information can also be referenced and used as needed, in which case, as shown in FIG. 1, various defect inspection devices, for example, defect inspection devices A (101a), B ( The inspection information from 101b) is processed by the processing terminal devices A (102a) and B (102b) and managed by the data server 107 using the network 103 etc. And shared system configuration. That is, with the system configuration, the processing terminal device 102 or 108 can acquire and share inspection information including defect images and attributes in various defect inspection devices in step 301. .
  • a user clarifies a defect classification standard considered to be an ideal defect classification based on system support (step 302).
  • a defect classification class is created (step 303). The details will be described later.
  • the process proceeds to the step of determining a defect classifier in the system that realizes the defect classification.
  • the defect classifier is represented by a decision tree that classifies defects hierarchically by a plurality of branches, and the design of the defect classifier 120 according to the present invention is completed by setting individual classification rules in each branch described above. I do.
  • the procedure is composed of various steps shown in a loop 304 surrounded by a dotted line.
  • the loop 304 basically consists of five steps: “Decision tree decision for defect classification (Step 300)” “Teach defect sample (Step 300)” “Evaluation of the degree of classification of defect attribute distribution (Step 300) ) ”,“ Selection of classification rules (Step 308) ”, and“ Evaluation of classification results (Step 309) ”.
  • steps 303, 307, and 309 can be freely skipped if not required. For example, to determine the classification rules For this reason, if it is not necessary to refer to the distribution of the various attributes of the defect, steps 306 and 307 are unnecessary.
  • the above five steps can be performed by changing the order as necessary. For example, it is possible to first teach defect samples for all defect classes, or to determine a decision tree based on the degree of separation of various attributes of a defect. Furthermore, some or all of the above five steps can be automated or semi-automated.
  • the function has a function of quantifying the degree of separation of the attribute distribution in step 307, and automatically determining an appropriate decision tree or classification rule based on the degree of separation, and selectively adopting the function. can do.
  • the decision tree for the defect classification step 300
  • some patterns have already been registered in the system data base, and the data is selected from the data set in the data base. The decision can be made with reference to the overnight base.
  • the loop 304 is performed a plurality of times as necessary, and when the decision tree is determined (step 310), the defect classifier (classification rule) 120 Generation ends.
  • the defect classification class generation (user determination of defect classification standard) (step 303) based on the system support by simultaneous review (step 302) will be specifically described.
  • step 303 for visually performing defect classification on some defect samples and determining a defect classification class.
  • This is a step in which the user decides what kind of defect group and what kind of defect group he or she wants to be classified as a homogeneous or heterogeneous defect class. Determine defect classification class To do so, the user must first clarify his own defect classification criteria. Also, due to the classification performance, it is not always possible to design a defect classifier that completely satisfies the user's classification criteria. In addition, inconsistencies may occur between multiple pieces of inspection information (for example, one inspection information may be judged to be a foreign matter defect and the other inspection information may be judged to be a false alarm.
  • the user may be required to make a unified decision regarding defect classification.
  • it is effective to browse the inspection information from multiple defect inspection devices at the same time to determine the defect classification class (step 302), and to check the inspection information for that purpose.
  • Window 400 shows an example of a GUI (Graphic User Interface) 110 having a simultaneous review screen.
  • GUI Graphic User Interface
  • the user can comprehensively grasp the inspection information based on the GUI 110, and Classification requirements can be clarified.
  • the integrated utilization of the multiple inspection information is effective for defect analysis and classification.
  • SEM-based defect inspection equipment has difficulty in observing defects in the lower layer of the wafer, while optical-type defect inspection equipment can observe lower-level defects relatively well.
  • VC Voltage Contrast
  • SEM type defect inspection equipment can observe better than optical defect inspection equipment.
  • a defect detector having a large field of view tends to be able to observe a defect better with respect to the VC defect and the like.
  • the inspection information obtained from each of the defect inspection apparatuses has advantageous and disadvantageous aspects depending on the type of the defect. Even for inspection information obtained from equipment, a wide variety of information obtained by different detection methods and processing methods is used for defect analysis and classification. It is effective for
  • FIG. 4 is a diagram showing an embodiment of a simultaneous review of inspection information, a distribution display of various attributes of defects, and a list display window of defect classes and branches.
  • step 302 shown in FIG. 3 a screen for simultaneous review of inspection information is provided to the user.
  • the window 400 in FIG. 4 shows an example of the GUI in the present system (for example, the processing terminal devices 102, 108) shown in FIG.
  • the present system interacts with the display device 132 through graphics and images on the display device.
  • It comprises a computer (including storage means 13 1 for storing various data) (not shown) and input means 13 3 such as a keyboard.
  • the computer also has a defect classifier 120 customized based on the inspection information according to the present invention.
  • the GUI shown in the window 400 has a function of displaying a defect distribution map in an arbitrary defect inspection apparatus. If the inspection is performed in a plurality of defect inspection apparatuses, the GUI is displayed in the window 400. Has a function of displaying a defect distribution map in each defect inspection device side by side.
  • the inspection information of the two defect inspection apparatuses defect detection apparatus A and defect review apparatus B
  • the present invention is not limited to this combination. Defect inspection equipment of different types, or defect inspection equipment of the same type that performs inspections in different steps, or any one of defect inspection equipment of the same type but different inspection equipment More than one Includes a combination of defect inspection devices. Since then, defect review equipment
  • reference numerals 408 and 409 denote defect distribution maps indicating defect distributions in the defect detection device A and the defect review device B, respectively.
  • Reference numeral 420 denotes a defect when the defect classifier according to the present invention, which is customized based on the inspection information obtained from the defect detection device A and the defect review device B, is applied and reclassification is performed.
  • 5 is a defect distribution map showing a distribution. By using the defect distribution map 420, it is possible to interactively customize the defect classifier while checking the classification result by the set defect classifier. By pressing the “map display method” button 4 17 and performing predetermined settings, the defect distribution results such as the defect classification result and various attributes of each defect sample can be displayed on the defect distribution map 4 0 8 and 4 0.
  • a function to display two-dimensionally or three-dimensionally by displaying characters, numerical values, color coding, emphasis, etc. on 9, 420 is provided, and the user can grasp the whole image of the defect distribution.
  • it has a function to display the device QC and the history of the start of construction for each defect inspection device.
  • the check boxes 411 and 412 are for displaying the equipment QC, and the check boxes 411 and 413 are for displaying the history of the start of construction.
  • the inspection information simultaneous review window 401 shown in FIG. 4 has a function of designating an arbitrary plurality of defect samples and displaying the defect images of the defect samples side by side so that they can be viewed almost simultaneously.
  • the defect samples da1 (dbl) and da2 (db2) are classified into the same class Ca2 in the defect detection device A, and are classified into different classes Cb3 and Cb2 in the defect review device B. ing.
  • the defect sample da 1 is selected, and is dragged, dropped, and dropped on the window 402 to display the defect image 404 of the defect sample da 1 acquired by the defect detection device A as shown in the figure. be able to.
  • the defect image 406 of the defect sample db 1 is automatically displayed in the window 403.
  • This function displays the defect sample da 1 or db 1 regardless of whether you drag, drop, and drop it to windows 402, 403, respectively. Things.
  • the defect image 40 5.407 can be displayed in the windows 402 and 403.
  • Defect images 404 From the simultaneous defect review images of 4 to 407, the user can determine whether the two defect samples da 1 (db 1) and da 2 (db 2) should be classified as different defect classification classes .
  • any of the defect images can be displayed by pressing the “image display method” button 416 and performing a predetermined setting.
  • the inspection information list for any defect sample specified on the defect distribution map can be displayed simultaneously.
  • ⁇ Also by pressing the "Search" button 419
  • a similar defect search can be performed. The search is performed by specifying a search range such as a defect inspection apparatus or a region on a wafer and specifying a search formula expressed by arbitrary inspection information or a combination thereof.
  • the determination of the defect classification class in step 303 is based on the simultaneous This can be performed by visual observation of the user based on the user screen 401. However, if any rule is applied, for example, "When the defect is detected by the former and not detected by the latter when the inspection is performed using the SEM and optical defect inspection devices, the defect classification result is It is possible to automate some or all of the defect classification class decisions by introducing knowledge such as “VC defect is likely to be false information”. The same applies to the generation of the defect classifier according to the present invention.
  • step 303 the designation of the defect class name and number performed in step 303 based on the user's ideal defect classification standard confirmed on the simultaneous review screen 401 will be described.
  • the defect classification standard requested by the user is a five-class classification (classes C1 to C5) as shown in the defect map 420
  • first click the "Add Class” button 450 By pressing and making the specified settings, five defect classes with arbitrary labels are added and displayed in window 4 2 4. Although six classes are displayed in the window 4 24 in the figure, the labels 4 25 of the defect class C 1 b are displayed for later explanation and are not present.
  • you want to delete a defect class you can select any defect class you want to delete in window 4 24 and remove it by pressing “Remove class” button 45 1.
  • a step of incorporating a classification criterion specified by the user here, the five-class classification
  • a classification criterion inside the system for example, the processing terminal devices 102, 108, shown in FIG. 1
  • the above five steps (305 to 309) are performed as necessary, and the results are evaluated as needed to form the entire defect classifier 120.
  • One of these processes Part or all can be automatically determined by learning, etc., but at the beginning of learning, it is effective to determine the items that can be set by humans as much as possible and to reduce the burden on system learning.
  • each of the five steps (305 to 309) will be described in detail.
  • step 105 The method of designating the defect classification decision tree in step 105 will be described with reference to FIG.
  • FIG. 5 is a diagram showing an embodiment of a setting window of a decision tree structure developed hierarchically and a teaching window of a defect sample according to the present invention.
  • the decision tree indicates a branching procedure for achieving the final classification of the defect class specified in the window 424 shown in FIG. Branch element ". Pressing the “Specify teaching sample / Class / Branch configuration” button 4 52 in Fig. 4 displays the window 500 shown in Fig. 5. Window 500 can be displayed and operated at the same time as window 400. Also, windows 400 and 500 may be displayed in the same window.
  • the class elements 503 corresponding to the number of the defect classes constituting the classification decision tree are created in the window 502.
  • a branch element 504 constituting a classification decision tree is prepared by default. Using these, the structure of the decision tree is specified in the window 501.
  • the window # 501 in FIG. 5 shows an example of a completed decision tree, which is created through the procedures shown in FIGS. 6 (a) to (c).
  • FIG. 6 is a view showing an embodiment of a window for explaining the setting procedure of the hierarchically expanded decision tree structure shown in FIG. 5, and FIG. 6 (a) shows a defect class in the first branch.
  • Fig. 6 (b) shows the case where the next branch is set in the first branch, and
  • Fig. 6 (c) shows the case where the defect class is set in the second branch. Is shown.
  • the classification start point 601 and the first branch B1 are displayed by default. If it is desired to branch the defect class C1 in the first branch B1, as shown in FIG. 5, a class element 518 having the label of the defect class C1 is transferred from the window 502 to the branch B1 (602). Drag, and drop. At this point, a copy 605 of the class element 518 is displayed below the branch B1 (602), as shown in FIG. 6 (b).
  • the branch element 504 is dragged, dropped, and dropped from the window 502 shown in FIG. 5 to the branch B1 (602).
  • a branch element B2 (603), which is a copy of the branch element 504, is displayed below the branch B1 (602).
  • the branch elements are automatically or manually marked with a serial ID each time they are copied, for example, branch Bl, B2,.... Further, when it is desired to branch the defect class C4 at the branch B2, the class element 519 having the label of the defect class C4 is similarly dragged, dropped, and dropped to the branch B2 (603). The work is performed.
  • the decision tree consisting of a combination of class elements and branch elements can be arbitrarily constructed according to the following three conditions.
  • each defect class or branch that branches from that branch is displayed with a label, such as color coding, so that it can be identified.
  • a label such as color coding
  • the class elements 605 and 607 of the same defect classes C1 and C1b are respectively placed immediately below the branch elements B1 and B2. It is possible to attach. In this case, the defect classification results are later integrated.
  • a serial ID is automatically or manually attached each time it is copied, for example, a defect class Cl, Clb, CIc,.... Further, each time the same class element is copied, the label of the defect class copied in the window 425 is added like 425.
  • branch B 1 branches to defect class C 1 and the remaining defect classes
  • branch B 2 branches to defect class C3 and the remaining defect classes
  • Hierarchical that is, branching to defect class C4, defect class C1b, and the remaining defect classes, and branching to defect class C2, defect class C3, and defect class C5 at branch B3 (604).
  • the window 500 shown in FIG. 5 is displayed. Missing in window 424 in Fig. 4 At the stage of specifying the defect class, a number of frames corresponding to the defect class are created in the window 505. In FIG. 5, six frames of the defect class are displayed. However, in the window 501 where the decision tree is generated, until the copy C 1 b of the defect class C 1 is created, the frame 508 is displayed. not exist.
  • the teaching of images to each defect class can be done by selecting one or more defect samples in the defect distribution map (408 or 409) or the image display window (402 or 403).
  • the image of the defect sample is dragged, dropped, and dropped into the frame 506 corresponding to the defect class C1.
  • Teaching to other defect classes can also be performed by similarly sending the image group of the defect sample group within the frame of each defect class, and the presence / absence of teaching and the number of sheets need to be unified between defect classes There is no. Also, images of the same defect sample can be taught in a plurality of defect class frames. Also, even if the images of the teaching samples from the heterogeneous defect inspection equipment are the same defect locations, they can be taught as different teaching samples. Can be displayed).
  • a frame for the defect class copied in the window 505 is newly created.
  • defect classes and branches are collectively referred to as categories.
  • the distribution of various attributes corresponding to the three defect classes and branches is displayed by being distinguished by a method such as color coding for each of the three defect classes and branches. 455, 46 ⁇ etc.).
  • Fig. 4 instead of being color-coded, they are shown in white, dots, and diagonal lines.
  • the feature amounts of the defect samples included in the defect distribution map 408 and the defect distribution map 409 for generating the defect classifier 120 are calculated in step 203 shown in FIG.
  • the image of the teaching defect sample in the defect class C4 is indicated in the frame of 514, and the image of the teaching defect sample in the defect class C1b is indicated in the frame of 508.
  • the feature amounts of these taught defect samples are calculated, so the taught defect samples of two defect classes are obtained from the feature amount distribution of the entire defect sample excluding the defect class C1, for example. It can be displayed separately.
  • defect sample groups corresponding to the three defect classes and branches (three categories), which are displayed in different colors, are “defect sample groups taught as defect class C 4 5 5” and “defect classes”.
  • Each of the defect sample groups 511, 513, and 517 taught as C3 and C5 '', and the distribution of these various attributes is displayed for each defect inspection apparatus from which each taught sample image was acquired. It is displayed in a separate window (455, 456) (it is also possible to combine and display).
  • the “Add defect attribute” button 4 2 2 is pressed and the specified setting is made to add a prepared attribute or design and add a new attribute. Or it is possible. Also, it is possible to delete any attribute.
  • the decision of the decision tree and the teaching of the defect sample need not be completed, and are reflected in various attribute distributions within the specified range.
  • the difference in attribute distribution between the defect class or the defect sample group taught in the lower layer of the defect class or branch can be understood for each defect class or branch (category) classified in the designated branch. The display makes it clear which attribute is effective for classification in the branch.
  • a histogram display such as 559, 460 can be considered.
  • the present invention is not limited to such a display method. 2
  • a two-dimensional or three-dimensional distribution display method using a combination of arbitrary attributes
  • an arbitrary defect sample it has a function of displaying where the attribute in the defect sample exists in the entire attribute distribution and a function of displaying its numerical value (in addition to the fact that the user
  • the function of quantifying the degree of separation and displaying the quantified value of the degree of separation for each attribute for example, 457, 458, etc.
  • Examples of the method of numerical conversion include, for example, deviation and dispersion of the average value of the attribute distribution between the defect classes.
  • step 308 a method of generating a classification rule assigned to each branch will be described.
  • an arbitrary branch to which a classification rule is to be assigned is designated from within the window 4 26.
  • the branch B 2 (4 2 7) is specified, and the classification rules inside the system shown in FIG. 1 for realizing the classification of the defect classes C 4, C lb, and the branch B 3 branching in the branch B 2 are shown. Describe how to decide. (At the stage where the branch B 2 (4 2 7) is specified, the attribute distribution list in the window 454 as described above includes the attribute of the defect class C 4, C 1 b, and the branch B 3. The distribution is displayed in different colors.) Next, when the "Classification rule designation" button 453 is pressed, the classification rule generation window 700 shown in Fig. 7 is displayed.
  • FIG. 7 is a diagram showing an embodiment of a classification rule generation window for each branch in the decision tree according to the present invention.
  • Window 700 can be displayed and operated simultaneously with windows 400 and 500 (although they may be displayed in the same window).
  • classification rules can be set according to the following two types of classifications: "rule-based classification", "learning-type classification (teaching-type classification)", and combinations thereof. If the designer has knowledge of the decision tree configuration, how to combine rule-based classification and learning-type classification, and the parameters of the rule-based and learning-type classifiers, if the designer has knowledge, it can be built-in or manual. The above setting items can be determined with. If it is not possible to assume that there is knowledge, it is conceivable to determine the above setting items by learning.
  • Rule-based classification is a classification method that generates a classification rule using a combination of preset conditional expressions (consisting of items such as attributes, relationships, and thresholds (boundary lines or boundary surfaces)).
  • a check box 701 is checked.
  • an example of a method of specifying a conditional expression in the rule-based classification will be described.
  • press the “Add Condition” button 70 2 to add at least one conditional expression.
  • three items, "attribute (709),” “relation (710),” and “threshold (711)” are specified.
  • four conditional expressions 1 to 4 (705 to 708) are generated.
  • a plurality of attributes are calculated for each defect sample, and the user selects an attribute having a high degree of separation effective for defect classification and incorporates the attribute into the conditional expression.
  • an attribute with a high degree of separation for the teaching sample is not always an effective attribute for classification, and this judgment is left to the user. It is also possible to modify the rules by subsequent additional learning.
  • the degree of separation is based on the various attribute distributions displayed in window 4 54 as described above. This can be determined based on a reference (histogram, two-dimensional or three-dimensional display) or a numerical value of the degree of separation (described in 457, 458, etc.). For example, first, “attribute (709)" is selected using a pull-down menu. It is possible to select multiple attributes.
  • FIG. 8 is a diagram showing an embodiment of a multidimensional graph display of various attributes according to the present invention and a method of designating a constraint condition in the graph.
  • the threshold Th. 1 for the attribute f1 is obtained by moving the boundary 801 on the histogram horizontally with the mouse. (802) is determined and assigned to the “threshold (711)” column shown in FIG.
  • the threshold Th. 2 (807) can be set by moving.
  • a two-dimensional graph of the selected attributes 1 and 2 may be displayed as shown in Fig. 8 (c).
  • Multiple boundaries can be specified, assuming that you want to classify the two classes displayed as white circles and black triangles.
  • a straight line 808, 810, 812 is determined by designating two points on a two-dimensional graph, and an arrow () is used to specify the direction of which area to be set by the straight line. 809, 811, 813).
  • a boundary line can be specified as a straight line or a line segment.
  • the final condition specifies AND (logical product) or OR (logical sum) of conditions specified by multiple boundaries.
  • an exceptional defect sample (for example, defect sample 814) is included in the teaching sample due to the attribute distribution, and it is determined by the user whether or not to include these in the boundary.
  • FIG. 8 (c) shows an example in which the defect sample 814 is excluded from the black triangle class. Also, as shown in Fig. 8 (d), it is possible to draw a free curve (815) with the mouse and specify the direction by using the arrow (816) to specify the condition.
  • a three-dimensional graph of attributes f1, f2, and f3 may be displayed as shown in Fig. 8 (e).
  • the attribute space can be divided using a surface equation such as a spline surface or multiple identification surfaces approximated by a set of planar patches.
  • the three-dimensional attribute space displayed on the two-dimensional screen can be displayed from different viewpoints. In addition, it has a function to color-code and display each area divided by the identification surface to help the user understand.
  • each defect sample is color-coded into white and black according to which of the two regions divided by the identification surface.
  • the book In the example, if the round defect sample is colored white and the triangular defect sample is colored black, it can be said that the surface is a good identification surface.
  • the defect sample 819 belongs to the triangular defect class, it is desirable to be colored black, but in Fig. 8 (e), it is colored white. By moving this to the opposite side of the identification surface and coloring it in black, any point 820 on the surface is moved (in some cases, any control point that does not exist on the surface is moved), and the identification surface is defective. Deform locally over sample 819. In FIG. 8 (f), the defect sample 819 is colored black. By repeatedly performing such adjustment, a good discrimination surface can be generated.
  • the degree of freedom of the identification surface can be set arbitrarily. -Next, combine the conditions 1 to 4 (705 to 708) specified by the above procedure to set the final conditional expression belonging to each defect class.
  • the combination of conditions is determined by using logical expressions (AND (*), OR (ten), NOT (not), XOR ( ⁇ ⁇ r)). If you want to take the value, write “1 * 3” in the box 713.
  • it has a function of calculating and displaying a boundary line-identification surface candidate calculated by the processing inside the system as a reference value, and the user can make detailed adjustment using this as an initial value.
  • the information of each set border and identification surface is stored internally, and can be called up and modified later.
  • Learning type classification is a classification method that basically generates classification rules by teaching.
  • the learning-based classification method is effective for attributes whose conditions are difficult to set, such as the rule-based classification, even if there are attributes considered to be effective for the classification.
  • attribute selection Instead of manual selection, it is also possible to select automatically by a method such as performing weighting according to the validity or the like for each attribute by learning. However, such automatic selection of attributes may cause over-learning if the number of training samples is not sufficient, and may have an attribute distribution with a high degree of separation only for training samples.
  • the engine to be used for classification such as the maximum likelihood estimation method or the K-NN method
  • select the engine to be used for classification such as the maximum likelihood estimation method or the K-NN method
  • There is also an automatic selection mode in this menu which has a function to automatically select an appropriate engine according to the number of learning samples.
  • This engine is basically applied when the conditional engine is not used or when the defect class is not determined in the conditional engine, but two branches in the window 501 in Fig. 5 are used. It is also possible to have a configuration in which the upper level is a learning type and the lower level is a conditional type.
  • the various attributes used in the display of the attribute distribution, the decision tree, the generation of the classification rules, and the like are: orthogonalization processing of the attributes by principal component analysis; Processing consisting of at least one combination of the compression processing of the attribute dimension by using only one or the rearrangement processing of the attribute distribution in the attribute space using the kernel function etc. (for defect samples belonging to different defect classes) It is possible to perform such processing that the attribute has a high degree of separation in the attribute space).
  • the attribute redesigned in this way is added as a new attribute to the window 454 in FIG. It has functions that can be used as well as attributes.
  • the combination of the above three processes has the advantage that defect classification can be performed using a simpler and clearer identification surface, but generally the attributes are difficult to understand physically.
  • the display function of the defect attribute distribution, the decision tree, and the determination method of the classification rule in the present invention to a certain extent, there is no knowledge about the physical meaning of the attribute. It is possible to generate a defect classifier 1 20.
  • step 309 The method of evaluating the generated defect classifier according to the present invention in step 309 will be described. This evaluation can be performed even if the decision tree for classification is not completely completed. After setting the classification rule for an arbitrary branch, by pressing the “re-classification” button 4 23 in FIG. 4, the defect classification using that branch is displayed on the map 4 20. If this result is not good, the teaching sample, decision tree structure, and classification rules are modified as appropriate, and if the result is good, the remaining classification rules are specified as in the loop in Fig. 3. The entirety of the defect classifier 12 according to the present invention is determined while performing 304 multiple times.
  • condition 310 is satisfied, and the process ends. Further, which defect inspection apparatus to use the generated defect classifier 120 according to the present invention is designated by check boxes 414 and 415 shown in FIG. In this embodiment, the setting is applied to the defect review device B.
  • a second embodiment will be described.
  • the method of generating the defect classifier 120 according to the present invention in one defect inspection apparatus has been described.
  • the problem is what kind of classification class is assigned to each inspection device, and how to generate the defect classifier 120 according to the present invention that realizes the classification.
  • a defect classification class that could not be completely classified by the defect detection device can be classified in detail by the defect review device becomes possible, a defect Review equipment It is considered that the number of defect classification classes at the time of classification can be narrowed down, and effective learning of the defect classifier can be performed.
  • the present invention provides a method of generating a defect classification class and a defect classifier for performing hierarchical defect classification according to the inspection order.
  • the method for generating a defect classification class and a defect classifier in the present invention is also effective for controlling a review sampling plan. For example, if a defect sample classified into an arbitrary defect classification class by the defect detection device is later difficult to obtain useful information on defect classification even after analysis by the defect review device, the review sample A method of reducing the number is conceivable.
  • the defect review device integrates the inspection information obtained from the defect detection device and the defect review device.
  • This paper describes how to generate defect classification classes and defect classifiers to achieve effective and detailed automatic defect classification that satisfies the user's classification requirements.
  • the defect samples inspected by the defect review device are a set sampled from the defect samples inspected by the defect detection device. Therefore, for all defect samples for which defect classification is performed by the defect review device, both inspection information obtained from the defect detection device and the defect review device can be used.
  • the analysis method for each combination of the defect detection device and the defect review device will be described in particular. However, the same analysis can be performed for any combination of three or more defect inspection devices. Fifth embodiment Described in). Similar analysis can be performed for a defect sample common to a defect detector and a defect reviewer other than the combination.
  • the defect distribution maps 91 to 903 in FIG. 9 show, as an example, the distribution of defect samples on the defect distribution map and the defect classification results at each processing stage.
  • the defect distribution map 901 shows, for example, the distribution of defect samples in the defect detection device and the result of coarse defect classification (before adjustment) by defect classification in the defect detection device. 2.
  • One defect sample is classified into three defect classification classes C a1 to C a3. However, it is not essential to perform defect classification in this step.
  • step 901 The defect sample group detected in step 901 is sampled for review inspection as necessary (this is called review sampling).
  • the defect classification class of the defect review device is determined and classified into the defect classification class. Generate a classifier.
  • the defect distribution map 902 is inspected by a defect review device as an example. This is a detailed classification result (before adjustment) in which defects are automatically classified using only the defect position where the defect was performed and the inspection information obtained from the defect review device. 2 This shows how defect samples that have been reviewed and sampled from 1 to 9 points are classified into four defect classification classes Cb1 to Cb4.
  • the defect samples da 1 and da 2 on the defect distribution map 90 1 are classified into different defect classification classes C a 2 and C a 3, whereas the defect samples da 1 and da 2 on the defect distribution map 90 2
  • the defect samples db1 and db2 corresponding to the defect samples da1 and da2 are both classified into the same defect classification class Cb3.
  • the corresponding defect samples are classified into the same classification class in the defect distribution map 901, and are classified into different classification classes in the defect distribution map 902. If defect classification is performed using the inspection information of both inspection devices for such inconsistency in the classification results between the defect inspection devices, the defect samples can be classified as the same classification class or finely classified. It is possible.
  • the defect distribution map 903 combines the inspection information obtained in 901 and 902, and is an example of the detailed classification result (after adjustment) of the defect classification optimized according to the classification requirements of the user It is.
  • defect classifiers for subclassifying defect samples da 1 (db 1) and da 2 (db 2) are used (defect sample db 3 is defect class C b5, defect sample db 4 is defect class Class Cb3), showing how defects were classified into five defect classification classes Cbl to Cb5.
  • the method of generating the defect classification class and the defect classifier in the second embodiment can be performed in the same manner as the procedure in the first embodiment.
  • the defect according to the present invention is based on the attribute information obtained from both the defect detection and review devices displayed in windows 455 and 456 shown in FIG. A classifier can be generated.
  • the setting of the defect classifier according to the present invention in the defect review device is completed. Once a defect classifier has been created, And subsequent wafer inspection is continued. However, it is possible to continuously change or additionally learn the defect classifier based on the inspection information obtained thereafter.
  • FIG. 13 is a diagram showing image processing results of a defect image of the same defect sample in the defect detection device (ordinary defect inspection device) A and the defect review device B.
  • Inspection images 1301 and 1302 indicate a reference image and a defect image captured by the defect detection device A, respectively.
  • arbitrary image processing A (1303) and B (1304) are performed on the reference image 1301 and the defect image 1302, and the binarized images of the wiring area are the binary images 1305 and 1306, respectively.
  • the defect area (indicated by a white circle in the figure) is also binarized and displayed.
  • Reference images and defect images in the defect review device B corresponding to 1301 to 1306, image processing C and D, and binarized images are 1307 to 1312, respectively.
  • the central wiring is not extracted as a binarized region.
  • the actual defect area is a highly fatal defect existing over two wirings, and is determined to be an isolated defect from the binary image 1312 in the defect review apparatus B, but is determined in the defect detection apparatus A to be an isolated defect. From the binary image 1306, Has been refused. It is necessary to change the image processing procedure or adjust the image processing parameters so as to match such differences in defect attributes.
  • the defect review device B processing such as magnification change, distortion correction, or brightness correction in the case of a grayscale image is performed, and the wiring binary image in the defect detection device A is processed.
  • the teaching pattern 1 3 1 3 is generated as the correct pattern of.
  • the image processing procedure in the image processing 1303 is changed or the image processing parameters are adjusted so that a processing result that matches or is similar to the teaching pattern 1313 is obtained in the binary image 1305. U.
  • the reference image 1301 and the defect image 1302 in the defect detection device A given as an example are different from the reference image 1307 and the defect image 13008 in the defect review device B in contrast and contrast.
  • the resolution was inferior, and setting of the image processing parameters was a difficult example.
  • the defect review device B was selected as the defect inspection device for acquiring the inspection images 1311 and 1312 that generate the teaching patterns 1313.
  • the selection of which defect inspection apparatus to generate the teaching pattern can be determined by the user from the simultaneous review screen of various inspection images, or can be automated by setting an arbitrary rule. This processing can be performed in all combinations of defect inspection devices.
  • the defect review device based on the result of the detailed inspection by the defect review device, the defect review device effectively performs defect classification.
  • the method of determining the defect classification class and defect classifier in the defect detection device, and the review sampling method are described below.
  • the defect classification class in the defect detection device be close to the defect classification standard in the defect review device. If it is possible to perform a hierarchical classification, such as performing a detailed classification with a defect review device on a defect classification class that could not be classified by a defect detection device, a defect detection device that is not subdivided in a review inspection device The number of review samples can be reduced for defect samples classified into the defect classification class.
  • the third embodiment is based on the premise that the defect classification class in the defect review device is known. However, it is not essential that the defect classifier in the defect review apparatus described in the second embodiment is customized. That is, the determination of the defect classifier of the defect detection apparatus according to the third embodiment corresponds to the defect distribution maps 93 to 95 in FIG. 3 can be carried out after the customization such as the defect distribution map 91-903 or without the customization. However, when the defect classifier in the defect review device described in the second embodiment is customized, the defect classifier in the defect detection device in the third embodiment is customized.
  • the defect classification class Cb in the defect review apparatus can be set to be a subset of the defect classification class C a in the defect detection apparatus or a set close to the subset by the evening maze.
  • the following description is based on the assumption that the defect review class was implemented following the customization of defect classifiers and defect classifiers.
  • the analysis method using a single defect detection device and defect review device will be particularly described. Similar analysis is possible for a combination of defect inspection devices.
  • the defect review device so that the defect classification class in the defect detection device (first defect inspection device) and the defect detailed classification in the defect review inspection device (second defect inspection device) performed thereafter are effectively performed.
  • the defect classification class C b in the defect review device (second defect inspection device) is a subset of the defect classification class C a in the defect detection device (first defect inspection device), or a similar subset. Set to be classified.
  • a defect detection device can be obtained based on the defect classification classes C bl to C b 5 in a defect review device.
  • a teaching pattern of a defect classification class in the defect detection device is created as a defect distribution map 904 using only the inspection information.
  • a defect classifier in the defect detection device for realizing the classification into the defect classification classes similar to the teaching pattern is generated.
  • the difference from the defect classifier in the defect review device in the second embodiment is that only the inspection information that can be used is obtained from the defect detection device. The point is that the obtained test information cannot be used.
  • the inspection information that can be used in the defect detection device of interest is only the inspection information obtained before the defect detection device of interest in the inspection order in the actual inspection.
  • the method of changing the defect classifier can be the same as the method of setting the defect classifier described in the first embodiment.
  • a defect classifier that classifies the defect classification class in the defect distribution map 904 which is a teaching classification pattern, as much as possible in a defect detection device is generated, and defect classification is performed using the generated defect classifier.
  • the result of the coarse classification (after adjustment) is the defect distribution map 905.
  • the defect distribution map This is an example in which the defect classification classes C a2 and C a5 could not be classified.
  • the defect classification classes C a2 and C a5 in the defect distribution map 904 are the defects in the defect distribution map 905.
  • Classification class C a2) and other defect classification classes C a1, C a3, and C a4 are subjected to defect classification similar to the teaching classification pattern 904.
  • the setting of the defect classifier in the defect detection device is completed. Once a classifier is created, subsequent wafer inspections are continued using the defect classifier.
  • it is possible to continuously change the defect classifier based on the inspection information obtained thereafter here, the defect detection maps shown in the defect distribution maps 91 to 95 described above, Fig. 11 summarizes the relationship between the defect classification classes for the procedure for determining each defect classification class in both review devices.
  • the vertical column shows the defect classification class in the defect detection system
  • the horizontal column shows the defect classification class in the defect review system
  • the figures in the columns indicate the defect detection class for the defect sample in the defect review system.
  • the number of classifications classified into each classification class in both the review and review equipment is shown.
  • the defect classification class name in the item column corresponds to Fig. 9.
  • Table 111 shows the defect classification class and the inclusion relationship between the defect classification classes in both defect inspection systems before the defect classifier is adjusted (the defect distribution map 901 shown in Fig. 9 and the defect distribution class). Corresponding to the relationship with the distribution map 902).
  • the area surrounded by the frame 1104 indicates that the sample classified into the defect classification class Cb3 by the defect review device is the defect classification class C a2 or C a3 by the defect detection device. Indicates that it was classified as either.
  • the defect classification class Cb in the defect review device is a subset of the defect classification class Ca in the defect detection device. As shown by 1104, one defect classification class Cb3 in the defect review equipment is missing.
  • the defect classifier is adjusted and the defect classification class is subdivided so that two or more defect classification classes C a 2 and C a 3 in the defect detection device do not correspond. At this time, an unnecessary defect classification class may be deleted, a new defect class may be added, or a defect class may be rearranged according to a user's classification request.
  • Table 1102 shows the inclusion relationship between the defect classification class in the defect review device after adjustment obtained by the above adjustment and the defect classification class in the defect detection device before adjustment (shown in Fig. 9). This corresponds to the relationship between the defect distribution map 901 and the defect distribution map 903).
  • the defect classification classes classified as defect classification class Cb3 in Table 1101 were Ca2 and Ca3. Since the defect classification class was only Ca3 in the above, for example, in response to a request to review many defects belonging to the defect classification class Ca3 in Table 1102, the defect classification class Ca2 Since the candidate is no longer a candidate of class C a3, the classification can be effectively realized by increasing the number of reviews of the defect sample classified into the defect classification class C a3.
  • the defect classification class C a in the defect detection device is adjusted to be similar to the defect classification class C b in the defect review device.
  • the defect classification classes Cb2 and Cb5 and the defect classification classes Cb3 and Cb4 in the frames 1105 and 1106, respectively should be subdivided in the defect detection device.
  • Adjust the defect classifier to However, since the defect detection device cannot use the inspection information in the defect review device, there may be a situation where the reliability of the classification cannot be obtained with respect to the defect classification performance in the defect review device. In such a case, it is conceivable to perform processing such as not dare subclassing, or increase the number of review samples to confirm even if subclassifying.
  • Table 1103 shows the inclusion relationship of defect samples belonging to the defect classification class in both defect inspection devices after the adjustment obtained by the above adjustment (No. 9). This corresponds to the relationship between the defect distribution map 903 and the defect distribution map 905 shown in the figure).
  • the defect classification class C a3 in Table 1102 is divided into defect classification classes C a3 and C a4, and the defect classification classes C b3 and C b4 are classified. It is possible. In the present embodiment, there is no change in the relationship between the defect classification classes in the frame 1105 even in the frame 1107.
  • FIG. 11 is an example of a display method showing the relationship between the defect classification classes. By displaying the number of classifications for each defect classification class, the degree of overlap between the classification classes can be known.
  • the defect classification class C b in the defect review device is set to be a subset of the defect classification class C a in the defect detection device, or a similar set, the defect detection device performs defect detection and review.
  • the need for review inspection is low for defect samples classified into the defect classification class common to both devices.
  • the defect distribution maps 903 and 905 are examples for explanation, and the total number of defect samples is extremely small, so if only the defect point da3 in the defect distribution map 905 is sampled for review, the entire defect detailed classification will be performed. This is an example where the image can be grasped, but such a case is not realistic. In practice, the number of defects is very large, and the image quality of the defect detector is generally inferior to that of the review inspection. Therefore, it is not expected that the defect detector will be classified into a detailed defect classification class. In addition, the classification results of classified defect samples are not always reliable. Therefore, in the actual inspection, defect sampling maps classified into any of the defect classification classes were subjected to review sampling at several points, and the defect distribution map was difficult to classify in detail with respect to the teaching classification pattern. For defect classification classes such as a2 (including multiple defect classification classes Cb2 and Cb5 in defect review equipment), a method of sampling more than other defect classification classes is used. Another method is to change the number of samples according to the reliability of the defect classification result.
  • the rate at which review sampling is performed can be determined for each defect classification class in the defect detection apparatus, for each defect sample, or in consideration of both. It is possible. In particular, in the judgment for each defect sample, it is effective to use the reliability of the defect classification result as a judgment factor. Regarding the reliability of the defect classification result, by defining the degree of belonging to each defect classification class, each defect sample is divided into:
  • FIG. 12 is an example of this, and the classification classes (Cal to Ca3 and Cb1 to Cb4, respectively) in the defect distribution maps 1201 and 1202 by the defect inspection devices A and B do not have a subset relationship.
  • a defect sample classified into the classification class C a 3 by the defect inspection device A is classified into either the classification class Cb 2 or Cb 3 by the defect inspection device B. It is highly possible and has the effect of narrowing down the classification class candidates.
  • defect samples classified into classification class Ca3 in the defect inspection device A configure the defect classifier as a two-class problem of Cb2 or Cb3 instead of the three-class problem in the defect inspection device B.
  • improvement in classification performance can be expected.
  • the generation of the defect classification class and the defect classifier of the defect detection and defect review device is automatically generated to some extent based on the user's final classification request using learning or the like. It is possible. However, sufficient teaching samples cannot be obtained, especially at the start-up of the process, and there is a high risk that the defect classification classes and defect classifiers specialized in the unique properties of the teaching samples will be generated. .
  • a detailed inspection information review and a defect classifier customizing method are used. This makes it possible to easily incorporate user requirements and knowledge regarding defect classification into the system, and to suppress peculiar classification rules. In addition, it is easy to change the classifier in the additional learning.
  • the decision tree is used. Even if a branch due to a difference in shape is set, such a classification rule can be canceled if the difference in shape is not an essential difference between the two classes.
  • the ratio of the detailed classification result included in the part of the defect sample groups By performing a detailed inspection on a part of the defect sample groups selected by review sampling from the defect sample group, it is possible to grasp the ratio of the detailed classification result included in the part of the defect sample groups (defect detection When random sampling is performed for each defect classification class in the apparatus, the ratio of the detailed classification result for each defect classification class can be grasped.)
  • the inspection information obtained by the review inspection cannot be directly used, but the reliability of estimation can be improved in consideration of the ratio of the detailed classification results.
  • the defect ratios of the defect classification classes C a and C b are a% and b%, respectively.
  • the defect samples are sorted with respect to any attribute classified by the defect classification classes C a and C b, and the upper a% closer to C a in the boundary cases is classified as the defect classification class C a.
  • the defect inspection devices that share the inspection information are both defect detection devices, for example, if defect detection is performed independently in the combined inspection of the optical pattern inspection device and the SEM type pattern inspection device, Partial inconsistency can occur in the defect samples detected by both.
  • the same analysis and classification as in the second or third embodiment can be performed on the portion where the defect sample is found or included. The following description will particularly describe an analysis method for a combination of two defect detection devices A and B. However, a similar analysis can be performed for a combination of three or more defect inspection devices.
  • FIG. 12 shows, as an example, the positions where the inspections were performed in the two defect inspection apparatuses A and B, respectively, on the defect distribution maps 1201 and 1202.
  • inspection is not performed by the defect inspection apparatus B on the coordinates dbl on the defect distribution map 1222 corresponding to the defect sample da1.
  • each defect sample in the defect inspection apparatus B is clustered based on the spatial distribution of defects, the defect classification result, or various types of inspection information, and, for example, a class Cbl to Cb4 is obtained. If the degree of spatial belonging belonging to the class can be defined for arbitrary coordinates on the defect distribution map, inspection information common or similar to the class can be shared within the class. Noh is considered. For example, as the inspection information at the coordinate db1 on the defect distribution map 1222, the inspection information of the defect sample db2 considered to belong to the same class Cb1 as the coordinate db1 can be used.
  • the inspection may be performed due to errors in the cluster setting, errors in the inspection information of the reference destination, or fluctuations in the inspection information.
  • the reliability of information interpolation may be impaired. Therefore, weighting is performed on the reliability of the class information, the degree of belonging to the class setting, or the reliability of the test information interpolated based on the reliability of the test information and parameters such as fluctuations, and the test information is obtained. It may be used when using.
  • the fifth embodiment a description will be given of a combination inspection using three or more defect inspection apparatuses.
  • the combination inspection of two defect inspection apparatuses has been particularly described.
  • the same analysis can be performed for the combination inspection using three or more defect inspection apparatuses.
  • Figure 10 (a) shows the defect classification class and the procedure for setting the defect classifier (generation procedure) for the combined inspection of N defect inspection devices.
  • the generation of the defect classifier 120 including the defect classification class is performed in order from the Nth defect inspection device to the first defect inspection device in reverse order of the inspection order. Will be This is because the defect classification is sequentially supplemented for defect samples that cannot be classified or whose classification is not reliable according to the inspection order. Therefore, the classification class in the (n + 1) th defect inspection device (second defect inspection device) in which inspection is performed after any n (0n ⁇ N) th is the defect inspection device in which nth inspection is performed.
  • the classification class in (first defect inspection device) or a defect class similar thereto is determined to be a subset of the classification class in (first defect inspection device) or a defect class similar thereto. That is, first, a classification class for the Nth defect inspection apparatus is generated, and thereafter, In order to limit the defect classes in the defect inspection apparatus to be inspected in advance, the classification class of the (N-1) to first defect inspection apparatus to be inspected before that is determined in order.
  • the defect classifier in the arbitrary ⁇ -th defect inspection device is the defect inspection device of the 1st to ( ⁇ -1) th defect inspection device and the ⁇ -th defect inspection device which have been inspected before that.
  • the obtained inspection information 1002 which can be used as a criterion for defect classification, is selectively and comprehensively incorporated into the classification rule, thereby setting in the ⁇ -th defect inspection apparatus.
  • a defect classifier capable of classifying the classification class is generated (step 1001).
  • the defect classification class and defect classifier can be corrected iteratively as shown in Fig. 3, and when a defect class or defect classifier in any inspection equipment is generated, any defect class or defect classifier can be modified. It is also possible to change the classifier again.
  • Fig. 10 (b) As shown in FIG. 10 (b), the actual inspection is performed sequentially from the first defect inspection apparatus using the generated defect classifier 120, and if necessary, the third inspection is performed. Inspection by the next defect inspection device is performed while sampling a defect sample as in the above embodiment.
  • Fig. 10 (b) As shown in FIG. 10 (b), the actual inspection is performed sequentially from the first defect inspection apparatus using the generated defect classifier 120, and if necessary, the third inspection is performed. Inspection by the next defect inspection device is performed while sampling a defect sample as in the above embodiment.
  • Fig. 10 (b) the actual inspection is performed sequentially from the first defect inspection apparatus using the generated defect classifier 120, and if necessary, the third inspection is performed. Inspection by the next defect inspection device is performed while sampling a defect sample as in the above embodiment.
  • Fig. 10 (b) As shown in FIG. 10 (b), the actual inspection is performed sequentially from the first defect inspection apparatus using the generated defect classifier 120, and if necessary, the third inspection is performed. Inspection by
  • the inspection information obtained from the plurality of defect inspection apparatuses can be used as a criterion of a defect classifier in the plurality of defect inspection apparatuses regardless of an inspection order.
  • Industrial applicability As described above, according to the present invention, it is possible to easily perform customization of a defect classifier, which has been difficult in the past, in response to a user-specific classification request, and perform automatic defect classification that satisfies the user's determination criteria. Mechanism can be obtained. Further, according to the present invention, when the user clarifies his or her classification request, various inspection information is displayed on the almost simultaneous review screen so that the user can review the information at almost the same time, thereby giving a unified opinion. It becomes possible.

Abstract

In order to generate a defect classification device satisfying a classification request from a user, firstly, the defect classification device is expressed by a decision tree for hierarchically classifying defect classes by a plurality of branching elements. Separate classification rules are assigned to the respective branching elements. Configuration of the decision tree and specification of the classification rules are determined according to display of distribution state of attributes of defective samples (including separation degree of each attribute between defective samples belonging to each defect class) indicated by the user for each of the branching elements. Moreover, the classification request from the user is clarified by using GUI which almost simultaneously displays various inspection information obtained from a plurality of defect inspection devices.

Description

明 細 書 欠陥分類器の生成方法および欠陥自動分類方法 技術分野  Description Defect classifier generation method and defect automatic classification method
本発明は、 半導体製造過程での半導体ウェハなどの試料上に発生する異 物や欠陥を自動分類するための欠陥分類器の生成方法並びに生成された欠 陥分類器を用いて欠陥を自動分類する欠陥自動分類方法およびそのシステ ムに関する。 背景技術 ,  The present invention relates to a method for generating a defect classifier for automatically classifying foreign objects and defects generated on a sample such as a semiconductor wafer in a semiconductor manufacturing process, and to automatically classify defects using the generated defect classifier. It relates to an automatic defect classification method and its system. Background technology,
半導体デバイスは、 基板となるゥヱハに対して、 露光 '現像 ·エツチン グ等の複数の処理を行うことにより製造され、 その複数の処理工程のうち の所定の処理工程での処理後に、光学式あるいは S E M( Scanning Electron Microscope:走査電子顕微鏡) 式の異物検査装置ゃパ夕ン検査装置を用い て欠陥位置や大きさの検査が行われる。 検出欠陥数は製造プロセスの状態 に依存するものの、 1ウェハあたり数百から数千に及ぶことがあり、 これ らの欠陥検査装置においては高速な欠陥検出が要求される。 以後、 これら の欠陥検出を行う欠陥検査装置を総称して欠陥検出装置と呼ぶ。  A semiconductor device is manufactured by performing a plurality of processes such as exposure, development, and etching on a substrate to be a substrate, and after being processed in a predetermined processing step among the plurality of processing steps, an optical or semiconductor device is manufactured. Defect position and size are inspected using SEM (Scanning Electron Microscope) type foreign matter inspection equipment ゃ panning inspection equipment. Although the number of detected defects depends on the state of the manufacturing process, it can range from hundreds to thousands per wafer, and high-speed defect detection is required for these defect inspection systems. Hereinafter, the defect inspection devices that perform these defect detections are collectively referred to as defect detection devices.
それに対し、 前記欠陥検出装置による検査後に、 より撮像倍率の高い光 学式、 あるいは S E M式の欠陥レビュー装置を用い、 欠陥検出装置におい て検出された欠陥に対し、 詳細な再検査を行うことがある。 ただし、 欠陥 検出装置において検出された欠陥サンプルを全て詳細検査することは時間 的な制約から現実的ではなく、 前記欠陥検出装置において検出された欠陥 集合をサンプリングし、 その部分集合に対し詳細検査は行われる。 以後、 これら欠陥レビュー検査を行う欠陥検査装置を総称して欠陥レビュー装置 と呼ぶ。 また、 欠陥検出装置と欠陥レビュー装置、 更に走査探針顕微鏡On the other hand, after inspection by the defect detection device, it is possible to perform a detailed re-inspection of the defect detected by the defect detection device using an optical or SEM type defect review device with a higher imaging magnification. is there. However, it is not practical to perform a detailed inspection of all the defect samples detected by the defect detection device due to time constraints, and a set of defects detected by the defect detection device is sampled, and a detailed inspection of the subset is performed. Done. Hereinafter, these defect inspection devices that perform defect review inspections are collectively referred to as defect review devices. Call. Defect detection device and defect review device, scanning probe microscope
( Scanning Probe Microscope: S P M ) や元素分析装置等の検査装置を合 わせて欠陥検査装置と総称する。 (Scanning Probe Microscope: SPM) and inspection equipment such as elemental analysis equipment are collectively referred to as defect inspection equipment.
欠陥レビュー装置においては、欠陥検出装置からの欠陥位置情報を基に、 自動的に欠陥の拡大画像を取得する機能、 すなわち、 A D R (Automatic Defect Review) 機能や、 前記の欠陥拡大画像から、 その大きさや形状、 テ クスチヤ (表面の模様) などの詳細情報を得て、 欠陥種類を自動分類する 機能、 すなわち、 A D C (Automatic Defect Classification) 機能搭載の 製品が開発されている。 一方、 欠陥検出装置においても、 処理の高速性を 重視した簡易な欠陥粗分類、 すなわち R T A D C (Real Time-ADC) と呼 ばれる分類機能を有するものがある。  In the defect review device, a function to automatically obtain an enlarged image of the defect based on the defect position information from the defect detection device, that is, the ADR (Automatic Defect Review) function, Products with a function to automatically classify defect types based on detailed information such as pod shape and texture (surface pattern), that is, an ADC (Automatic Defect Classification) function are being developed. On the other hand, some defect detection devices have a simple defect coarse classification that emphasizes high-speed processing, that is, a classification function called RTADC (Real Time-ADC).
欠陥を各種検査情報に基づいて自動分類する方法に関しては、 パ夕ン認 識の分野における多変量解析手法として、 古くから多様な手法が研究され ている。  As for the method of automatically classifying defects based on various kinds of inspection information, various methods have been studied since ancient times as multivariate analysis methods in the field of computer recognition.
古典的な方法論の一つはルールペース型分類と呼ばれる方法である。 こ の方法論においては、 分類対象である画像から各種画像特徴量を抽出し、 システムに組み込んだ "if- then"式のルールに基づいて、 画像特徴量の値 を判定することにより、 欠陥を欠陥クラスの一つに分類する。 ルールべ一 ス型分類は、 分類する欠陥クラス及びルールが固定で、 ユーザの要求に柔 軟に対応できない反面、 教示デ一夕が不要であるため、 生産プロセス立ち 上げ時より使用可能である、 という利点がある。  One of the classical methodologies is a method called rule-based classification. In this methodology, various image features are extracted from the images to be classified, and the values of the image features are determined based on the rules of the “if-then” formula built into the system, thereby detecting defects. Classify into one of the classes. In the rule-based classification, the defect classes and rules to be classified are fixed and cannot respond flexibly to the needs of the user, but they do not require teaching data, so they can be used from the start of the production process. There is an advantage.
また、 他の古典的な方法論の一つは学習型分類と呼ばれる方法である。 この方法論においては、 教師画像を事前に収集し、 これを学習することに より、 分類ルールを最適化する (ニューラルネッ ト等) 。 学習型分類はュ 一ザの要求に応じた柔軟な分類が可能となる可能性がある反面、 一般に良 好な性能を得るためには、 教示データを大量に収集する必要があるため、 生産プロセス立ち上げ時には実質的に使用できない、 という問題がある。 逆に、 少数の教示データのみを用いた場合には、 過学習と呼ばれる教示デ 一夕に対する学習の過剰適合現象が生じて性能が低下することが知られて いる。 Another classical methodology is a method called learning-type classification. In this methodology, teacher images are collected in advance and learned to optimize the classification rules (eg, neural nets). Learning-based classification may be able to perform flexible classification according to the user's requirements, but generally it is necessary to collect a large amount of teaching data in order to obtain good performance. There is a problem that it cannot be used practically when starting up the production process. Conversely, when only a small number of teaching data is used, it is known that the learning is over-adapted to the teaching data, which is called over-learning, and the performance is reduced.
また、 上述のルールベース型分類と学習型分類を併用する構成として、 特開 200 1— 1 35 69 2号公報には、 ハイプリッ ドで一様に適用可能 な自動欠陥分類法が開示されている。  Japanese Patent Application Laid-Open No. 2001-135692 discloses an automatic defect classification method that can be applied uniformly in a hybrid as a configuration using both the rule-based classification and the learning classification described above. .
更に、 欠陥分類に関する従来技術としては、 特開平 1 1一 344450 号公報、 特開 200 1— 93950号公報、 特開 20 0 1— 1 2 7 1 29 号公報、 特開 2 ,00 1— 2 5 6480号公報、 特開 2 00 1— 33 1 78 4号公報、 特開 2 002— 14054号公報及び特開 2002 - 903 1 2号公報が知られている。 発明の開示  Further, as the prior art relating to defect classification, JP-A-11-344450, JP-A-2001-93950, JP-A-201-127271, JP-A-2,001-2. JP-A-56480, JP-A-2001-331817, JP-A-2002-14054 and JP-A-2002-90312 are known. Disclosure of the invention
しかしながら、 前記ルールベース型分類、 あるいは学習型分類、 あるい はそれらの組み合わせからなる欠陥分類器が出力する分類結果が、 ユーザ の分類要求に対して一致していなかったとしても、 システム内部の分類基 準を補正することは容易でない。 すなわち、 前記ルールペース型分類にお いて、 分類の判断基準として用いられる各種属性の意味するところが不明 暸であれば、 ユーザが自身の分類要求に対し、 各種属性の選択、 閾値設定 といったカスタマイズを行うことは困難である。 また、 学習型分類におい て分類ルールを自動生成する場合においても、 不用意に多くの属性を特徴 量として用意すれば、 学習の自由度が増大し、 少数の教示デ一夕に過剰適 合した過学習が発生する危険性がある。 そのため、 より多くの教示サンプ ル数を要することになる。 ルールベース型分類と学習型分類を組み合わせ る構成においても同様の課題が存在し、 さらに前記組み合わせに関しても 適切な構成の決定方法が課題となる。 However, even if the classification result output by the defect-based classifier composed of the rule-based classification, the learning-based classification, or a combination thereof does not match the classification request of the user, the classification inside the system is performed. It is not easy to correct standards. In other words, in the rule-based classification, if the meaning of various attributes used as a classification criterion is unclear, the user performs customization such as selection of various attributes and threshold setting for his / her own classification request. It is difficult. Also, in the case of automatically generating classification rules in learning-type classification, if many attributes are carelessly prepared as feature values, the degree of freedom of learning increases, and overfitting with a small number of teaching There is a risk of over-learning. Therefore, more teaching samples are required. A similar problem exists in a configuration in which rule-based classification and learning-type classification are combined. The issue is how to determine the appropriate configuration.
欠陥検査装置から得られる欠陥の属性には、 画像特徴量をはじめ、 欠陥 座標、 組成分析結果、 着工来歴、 装置 Q C (Quality Control) あるいはゥ ェハ上において検出された欠陥位置の分布に関する情報や欠陥数等が挙げ られ、 かつ光学式あるいは S E M式の異物検査装置やパタン検査装置、 欠 陥レビュー装置、 S P M、 元素分析装置等の複数の異種欠陥検査装置から 取得された属性が参照可能な場合もある。 欠陥自動分類は前記属性を判断 基準として行うが、ユーザにとって、これら大量の属性をどのように用い、 期待する欠陥分類基準を満足する欠陥分類器を生成するかは大きな課題で ある。  The attributes of the defect obtained from the defect inspection device include information on the image feature amount, defect coordinates, composition analysis results, construction history, information on the distribution of defect positions detected on the equipment QC (Quality Control) or wafer, and When the number of defects is listed, and attributes obtained from a plurality of heterogeneous defect inspection devices such as an optical or SEM foreign particle inspection device, pattern inspection device, defect review device, SPM, and elemental analysis device can be referenced. There is also. Although the automatic defect classification is performed using the above-described attributes as a criterion, it is a major issue for the user how to use these large number of attributes and generate a defect classifier that satisfies an expected defect classification standard.
本発明の目的は、 上記課題を解決すべく、 適切なュ"ザサポートに基づ く、 ユーザの分類要求の明確化、 欠陥分類クラスの生成及び前記欠陥分類 クラスへの分類を可能とする欠陥分類器の生成方法並びに生成された欠陥 分類器を用いた欠陥自動分類方法及びそのシステムを提供することにある また、 本発明の他の目的は、 さらに、 複数の欠陥検査装置による組み合 わせ検査における各欠陥検査装置毎の欠陥分類クラスを含む欠陥分類器の 生成方法、 欠陥自動分類方法及びそのシステム、 並びに検査装置間のデ一 夕の整合性をとる方法ゃデ一夕の補間方法を提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems and to provide a defect that clarifies a user's classification requirement, generates a defect classification class, and classifies the defect into the defect classification class based on appropriate user support. It is another object of the present invention to provide a method for generating a classifier and an automatic defect classification method using the generated defect classifier, and a system therefor. To provide a defect classifier including a defect classification class for each defect inspection device, a defect automatic classification method and its system, and a method for obtaining data consistency between inspection devices ゃ a data interpolation method Is to do.
本発明に係るユーザの欠陥分類要求を満足する欠陥分類器を生成するに は、 まず、 各種属性が、 前記欠陥分類器における判断基準として有効であ るか否かを判断せねばならない。 ユーザの分類要求と各種属性の前記分類 要求に対する有効度合いとを視覚的に結びつけるための仕組みとして、 前 記属性を独立に、 あるいは必要に応じて組み合わせたり、 あるいは任意の 変換 (任意の複数の属性に対する主成分分析、 属性の次元数の圧縮処理、 力一ネル関数等による任意の変換処理等) を加えた上で、 その分布を可視 化する機能を有する G U I (Graphic User Interface) を提供する。 また、 前記属性とは、 画像特徴量、 欠陥分類結果、 欠陥座標、 組成分析結果、 着 ェ来歴、 装置 Q C、 およびウェハ上において検出された欠陥位置の分布に 関する情報や欠陥数のうち、 少なくとも一つ以上を含むものである。 In order to generate a defect classifier that satisfies the user's defect classification requirement according to the present invention, first, it must be determined whether or not various attributes are valid as criteria for the defect classifier. As a mechanism for visually associating a user's classification request with the degree of effectiveness of various attributes with respect to the classification request, the above-mentioned attributes may be independently or combined as necessary, or may be converted arbitrarily (arbitrary plural attributes). A GUI (Graphic User Interface) with the function of visualizing the distribution after adding principal component analysis, compression processing of the number of dimensions of attributes, and arbitrary conversion processing using force channel functions, etc. is provided. Also, The attribute is at least one of image feature quantity, defect classification result, defect coordinate, composition analysis result, arrival history, apparatus QC, and information on the distribution of defect positions detected on the wafer and the number of defects. It includes the above.
一方、 本発明に係る欠陥分類器は、 複数の分岐によって欠陥クラスを階 層的に分類する決定木によって構成する。 ユーザは前記決定木における任 意の分岐において分割される各欠陥クラスに属する欠陥サンプル間の各種 属性毎の分離度を、 前記可視化された各種属性の分布状態により把握する ことができる。 各種属性における分離度は、 その情報が各分岐における分 類基準として有効であるかを判断する指標の一つであり、 このような情報 に基づいて各種属性を選択的あるいは統括的に活用しながら、 決定木の決 定、 分類ルールの選択あるいはパラメ一夕の制御を行う。 これらの処理内 容は前記ユーザの欠陥分類要求に基づいて決定される。  On the other hand, the defect classifier according to the present invention is configured by a decision tree that classifies defect classes hierarchically by a plurality of branches. The user can grasp the degree of separation of each attribute between the defect samples belonging to each defect class divided at an arbitrary branch in the decision tree by the distribution state of the visualized various attributes. The degree of separation in various attributes is one of the indicators for judging whether the information is effective as a classification criterion in each branch, and based on such information, various attributes are selectively or comprehensively utilized. It decides a decision tree, selects a classification rule, or controls parameters. The contents of these processes are determined based on the defect classification request of the user.
また、 本発明は、 前記のユーザの分類要求を明確化するため、 各種欠陥 検査装置における欠陥画像や属性を含む検査情報を取得及び共有し、 前記 検査情報の同時レビュー画面を有する G U Iを提供する。 ユーザはこの G U Iに基づいて前記検査情報を総合的に把握し、 自身の分類要求を明確化 することができる。  Further, in order to clarify the user's classification request, the present invention provides a GUI which acquires and shares inspection information including defect images and attributes in various defect inspection apparatuses and has a simultaneous review screen of the inspection information. . The user can comprehend the inspection information comprehensively based on the GUI and clarify his / her classification request.
また、 本発明は、 複数の欠陥検査装置、 例えば、 欠陥検出装置、 欠陥レ ビュー装置による組み合わせ検査においては、 まず、 両検査装置から得ら れた検査情報を選択的あるいは統括的に用いて、 ュ一ザの分類要求に即し た欠陥分類クラスを含む欠陥分類器を生成する。 次に欠陥検出装置から得 られた検査情報のみを用い、 前記ュ一ザの分類要求に即した欠陥分類クラ スが部分集合あるいはそれに類似した集合となるような欠陥分類クラスを 含む欠陥分類器を生成し、 前記欠陥分類クラスを含む欠陥分類器を欠陥検 出装置において採用する。 このように、 欠陥検出装置の欠陥分類クラスを 設定することによって、 欠陥分類クラス間の階層的な整合性をとることが でき、 後に行われる欠陥レビュー装置において欠陥分類器の効果的な学習 や、 効果的なレビューサンプリングが可能となる。 Further, in the present invention, in combination inspection using a plurality of defect inspection devices, for example, a defect detection device and a defect review device, first, inspection information obtained from both inspection devices is selectively or collectively used. Generate a defect classifier that includes the defect classification class that meets the user's classification requirements. Next, using only the inspection information obtained from the defect detection device, a defect classifier including a defect classification class in which the defect classification class meeting the user's classification request is a subset or a similar set is set. The generated defect classifier including the defect classification class is employed in the defect detection device. In this way, by setting the defect classification class of the defect detection device, it is possible to obtain hierarchical consistency between the defect classification classes. This enables effective defect classifier learning and effective review sampling in a defect review device that is performed later.
また、 本発明は、 同一あるいは同種の欠陥サンプルに対し、 任意の処理 画像から得られた属性において、 複数の欠陥検査装置間で異なる判定基準 となる場合がある。 このような場合の整合方法として、 ユーザの期待する 結果が得られた任意の欠陥検査装置から得られた処理画像あるいは人工的 に生成した画像あるいは C A Dデ一夕等から教師パタンを生成し、 他の欠 陥検査装置における同一欠陥画像の処理画像が一致あるいは類似するよう に、画像処理手順あるいは画像処理パラメ一夕の調整を行うことによって、 前記属性を複数の欠陥検査装置間において同一の欠陥解析の判定基準とし て利用することが可能となる。  Further, in the present invention, the same or similar type of defect sample may have different determination criteria among a plurality of defect inspection apparatuses in an attribute obtained from an arbitrary processed image. As a matching method in such a case, a teacher pattern is generated from a processed image or an artificially generated image obtained from an arbitrary defect inspection device or a CAD data obtained from a user who has obtained a result expected by a user. By adjusting the image processing procedure or image processing parameters so that the processed images of the same defect image in the defect inspection apparatus match or become similar, the same attribute can be analyzed among a plurality of defect inspection apparatuses. It can be used as a criterion for the determination.
また、 本発明は、 複数の欠陥検査装置間において、 検査されたサンプル の違いにより、 任意の欠陥検査装置において着目する欠陥サンプルの検査 情報を参照できない場合は、前記欠陥検査装置における欠陥サンプル群を、 欠陥の空間的な分布、 あるいは欠陥分類結果、 あるいは各種検査情報を基 にいくつかのクラス夕に分類する。 欠陥分布マップ上の任意の座標に対し て前記クラス夕に属する空間的な帰属度を定義し、 同一クラス夕に共通あ るいは類似する検査情報を同クラス夕内の欠陥サンプルにおいて共通して 使用、 あるいは同一クラス夕内の欠陥サンプルの検査情報を選択的に利用 して着目する欠陥サンプルにおける検査情報を補間することができる。 また、 上記目的を達成するために、 本発明は、 任意の試料上の欠陥サン プル群を少なくとも任意の欠陥検査装置により検査してサンプル検査情報 を取得する検査情報取得ステツプと、 画面上において該検査情報取得ステ ップにより取得されたサンプル検査情報を基に前記任意の試料上における 欠陥サンプル群の欠陥属性分布の状態を表示する表示ステップと画面上に おいて該表示された欠陥属性分布の状態に基づき、 欠陥サンプル群の分類 クラス要素を分岐要素を介して階層的に展開する決定木における各分岐要 素毎に個別の分類ルールを設定する分類ルール設定ステップとを含む決定 木設定ステップとを有することを特徴とする欠陥分類器の生成方法である また、 本発明は、 前記欠陥属性分布の状態として、 前記決定木における 各分岐要素毎に分類されるカテゴリに属する教示欠陥サンプル群によって 決められる複数の属性を組み合わせた多次元グラフであることを特徴とす る。 Further, according to the present invention, when a plurality of defect inspection apparatuses cannot refer to inspection information of a defect sample of interest in an arbitrary defect inspection apparatus due to a difference in inspected samples, a defect sample group in the defect inspection apparatus is referred to. Classify into several classes based on the spatial distribution of defects, defect classification results, or various inspection information. Spatial membership belonging to the above class is defined for arbitrary coordinates on the defect distribution map, and common or similar inspection information for the same class is used commonly for defect samples in the same class. Alternatively, the inspection information of the defect sample of interest can be interpolated by selectively using the inspection information of the defect samples in the same class. Further, in order to achieve the above object, the present invention provides an inspection information acquiring step of inspecting a defect sample group on an arbitrary sample by at least an arbitrary defect inspection device to acquire sample inspection information; A display step of displaying the state of the defect attribute distribution of the defect sample group on the arbitrary sample based on the sample inspection information obtained in the inspection information obtaining step, and a display step of displaying the displayed defect attribute distribution on the screen. Classification of defect samples based on condition A decision tree setting step including a classification rule setting step of setting an individual classification rule for each branch element in a decision tree in which class elements are hierarchically expanded through branch elements. The present invention also provides a multi-dimensional method in which a plurality of attributes determined by a group of teaching defect samples belonging to a category classified for each branch element in the decision tree are combined as the state of the defect attribute distribution. It is characterized by a graph.
また、 本発明は、 任意の試料上の欠陥サンプル群を複数の欠陥検査装置 により検査して複数のサンプル検査情報を取得する検査情報取得ステップ と、 該検査情報取得ステップにより取得された複数のサンプル検査情報を 画面上においてほぼ同時に表示し、 これを閲覧して欠陥サンプル群の分類 クラス要素を決定するレビューステヅプと、 画面上において該レビユース テップで決定された分類クラス要素を基に分類クラス要素を分岐要素を介 して階層的に展開される決定木を指定する決定木指定ステップと画面上に おいて前記検査情報取得ステップにより取得された少なくとも一つのサン プル検査情報を基に前記指定された決定木における各分岐要素毎に個別の 分類ルールを設定する分類ルール設定ステップとを含む決定木設定ステツ プとを有することを特徴とする欠陥分類器の生成方法である。  Further, the present invention provides an inspection information acquiring step of inspecting a defect sample group on an arbitrary sample with a plurality of defect inspection devices to acquire a plurality of sample inspection information, and a plurality of samples acquired by the inspection information acquiring step. Inspection information is displayed almost simultaneously on the screen, and this is browsed to determine the classification class element of the defect sample group. On the screen, the classification class element is branched based on the classification class element determined by the reuse step. A decision tree designating step of designating a decision tree hierarchically expanded via elements, and the designated decision based on at least one sample examination information acquired by the examination information acquiring step on a screen A classification rule setting step of setting an individual classification rule for each branch element in the tree. A method of generating a defect classifier and having a flop.
また、 本発明は、 第一の欠陥検査装置による検査後に検査が行われる第 二の欠陥検査装置において被検査対象に発生した欠陥を検査して取得され る検査情報を基に前記欠陥を分類するための第二の欠陥分類器の生成方法 であって、 前記第二の欠陥分類器を、 前記第一および第二の欠陥検査装置 により任意の試料上の欠陥サンプル群を検査して取得されたサンプル検査 情報の一部あるいは全て用いて生成または変更することを特徴とする。 また、 本発明は、 第二の欠陥検査装置による検査前に検査が行われる第 一の欠陥検査装置において被検査対象に発生した欠陥を検査して取得され る検査情報を基に前記欠陥を分類するための第一の欠陥分類器の生成方法 であって、 前記第二の欠陥検査装置における第二の欠陥分類器により分類 される欠陥分類クラスが前記第一の欠陥分類器により分類される欠陥分類 クラスの部分集合あるいはそれに類似した分類となるように、 前記第一の 欠陥分類器を生成または変更することを特徴とする。 Further, the present invention classifies the defects based on inspection information obtained by inspecting a defect generated in an inspection target in a second defect inspection device in which inspection is performed after inspection by the first defect inspection device. A method of generating a second defect classifier for, wherein the second defect classifier is obtained by inspecting a defect sample group on an arbitrary sample by the first and second defect inspection devices It is characterized in that it is generated or changed using part or all of the sample inspection information. In addition, the present invention provides a first defect inspection apparatus in which an inspection is performed before an inspection by a second defect inspection apparatus, the inspection being performed by inspecting a defect generated in an inspection target. A first defect classifier for classifying the defect based on inspection information, wherein the defect classification class classified by the second defect classifier in the second defect inspection apparatus is the first defect classifier. The first defect classifier is generated or changed so as to be a subset of defect classification classes classified by one defect classifier or a classification similar thereto.
また、 本発明は、 少なくとも第一及び第二の欠陥検査装置の組み合わせ により試料上の欠陥サンプル群を検査して第一及び第二の検査情報を取得 する検査情報取得ステヅプと、 該検査情報取得ステップで取得された第一 及び第二の検査情報を参照して前記第一及び第二の欠陥検査装置の検査順 序に応じて第一又は第二の欠陥分類器を生成する欠陥分類器生成ステップ とを有することを特徴とする欠陥分類器の生成方法である。 図面の簡単な説明  Also, the present invention provides an inspection information acquisition step of inspecting a defect sample group on a sample by at least a combination of the first and second defect inspection devices to acquire first and second inspection information; Generating a first or second defect classifier according to the inspection order of the first and second defect inspection devices with reference to the first and second inspection information acquired in the step; A defect classifier generation method comprising the steps of: BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明による検査情報の共有のためのデ一夕サーバならびに 各種欠陥検査装置の構成の一実施例を示すブロック図である。  FIG. 1 is a block diagram showing an embodiment of the configuration of a data server for sharing inspection information and various defect inspection devices according to the present invention.
第 2図は、 本発明による各種欠陥検査装置における各種検査情報の取得 過程の一実施例を示すフローチャート図である。  FIG. 2 is a flowchart showing one embodiment of a process of acquiring various kinds of inspection information in various kinds of defect inspection devices according to the present invention.
第 3図は、 本発明による欠陥分類器の生成方法の一実施例を示すフロー チャート図である。  FIG. 3 is a flowchart showing one embodiment of a method for generating a defect classifier according to the present invention.
第 4図は、 本発明による検査情報の同時レビュー、 欠陥の各種属性の分 布表示、 及び欠陥クラス ·分岐の一覧表示ウインドウの一実施例を示す図 である。  FIG. 4 is a view showing an embodiment of a simultaneous review of inspection information, a distribution display of various attributes of defects, and a list display window of defect classes and branches according to the present invention.
第 5図は、 本発明による決定木構造の設定及び欠陥サンプルの教示ゥィ ンドウの一実施例を示す図である。  FIG. 5 is a diagram showing an embodiment of a decision tree structure setting and defect sample teaching window according to the present invention.
第 6図は、 第 5図における決定木構造の設定手順の一実施例を示す図で ある。 第 7図は、 本発明による決定木中の各分岐における分類ルール設定ウイ ンドウの一実施例を示す図である。 FIG. 6 is a diagram showing an embodiment of a procedure for setting a decision tree structure in FIG. FIG. 7 is a diagram showing an embodiment of a classification rule setting window for each branch in the decision tree according to the present invention.
第 8図は、 本発明による各種属性の多次元グラフ表示及びこのグラフ中 における制約条件の指定方法の実施例を示す図である。  FIG. 8 is a diagram showing an embodiment of a multidimensional graph display of various attributes according to the present invention and a method of specifying a constraint condition in the graph.
第 9図は、 本発明による欠陥分類器の生成手順の各ステップにおける、 欠陥サンプルの分布および欠陥自動分類結果の一実施例を示す欠陥分布マ ヅプ図である。  FIG. 9 is a defect distribution map showing an embodiment of the defect sample distribution and the automatic defect classification result in each step of the defect classifier generation procedure according to the present invention.
第 1 0図は、 本発明による欠陥分類器の設定手順と欠陥分類手順との一 実施例を示すフローチャート図である。  FIG. 10 is a flowchart showing one embodiment of a defect classifier setting procedure and a defect classification procedure according to the present invention.
第 1 1図は、 本発明による第 9図に欠陥分布マップで示す如く各欠陥検 査装置における欠陥分類クラス間の関係を示す図である。  FIG. 11 is a diagram showing the relationship between defect classification classes in each defect inspection apparatus as shown in the defect distribution map in FIG. 9 according to the present invention.
第 1 2図は、 本発明による検査情報の欠けを補間する際に生成されるク ラス夕分布の一例を示す図である。  FIG. 12 is a diagram showing an example of a class distribution generated when interpolating missing test information according to the present invention.
第 1 3図は、 本発明による複数欠陥検査装置の検査情報間の不整合を整 合する手順の一実施例を示す図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing an embodiment of a procedure for matching inconsistencies between inspection information of a plurality of defect inspection apparatuses according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る実施の形態について図面を用いて説明する。 本発明は、 少なくとも一つ以上の欠陥検査装置において検査情報を取得 し、 該検査情報を任意の欠陥検査装置から参照することができることを前 提とする。 前記欠陥検査装置 1 0 1とは、 光学式、 あるいは S E M式の異 物検査装置、 パタン検査装置、 レビュー検査装置、 あるいは元素分析装置 等の種類の異なる欠陥検査装置、 また、 同種 ·異種を問わず検査を行うェ 程が異なる検査装置、 あるいは同種 '異種、 工程を問わず、 機の異なる欠 陥検査装置である場合を含む。 第 1図は、 本発明による試料の欠陥自動分類システム及びそのシステム に用いる各欠陥検査装置の構成の一実施例を示すプロック図であり、 10 1 a〜: 101 n · · ·は各任意の欠陥検査装置 A〜N · · ■、 102 a〜 102 n■ · ·は各欠陥検査装置 101 a〜; 10 1η · · ·からの検査情 報を処理する処理端末装置 Α〜Ν · · ·、 107はデ一夕サーバ、 108 はデ一夕サーバ 107からの情報を処理する処理端末装置である。 101、 102、 107、 108間はネットワーク 103を介して情報の送受信が 可能である。 各欠陥検査装置 101 a〜101 n ' · ·からの検査情報は 処理端末装置 102 a〜102n ' · ·で処理され、 データサーバ 107 に管理 .共有され、 または他の処理処理端末 102 a〜102n ' . 'あ るいはシステム全体 (データサーバ用) の処理端末装置 108から直接参 照される。 前記検査情報の、 閲覧あるいは処理 ·解析は、 任意の各欠陥検 査装置用の処理端末装置 102 a〜 102 n · · 'あるいはシステム用処 理端末装置 108において検査と同時、 あるいはその後に行われる。 An embodiment according to the present invention will be described with reference to the drawings. The present invention presupposes that at least one or more defect inspection apparatuses can acquire inspection information and that the inspection information can be referred to from any defect inspection apparatus. The defect inspection apparatus 101 may be an optical or SEM type foreign object inspection apparatus, a pattern inspection apparatus, a review inspection apparatus, an element analysis apparatus, or another type of defect inspection apparatus. Includes inspection equipment with different inspection processes, or defect inspection equipment of the same or different type, regardless of the process. FIG. 1 is a block diagram showing an embodiment of an automatic sample defect classification system according to the present invention and a configuration of each defect inspection apparatus used in the system, wherein 101a to: 101n. The defect inspection devices A to N are the processing terminal devices that process the inspection information from each of the defect inspection devices 101a to; Reference numeral 107 denotes a data server, and reference numeral 108 denotes a processing terminal device that processes information from the data server 107. Information can be transmitted and received between 101, 102, 107 and 108 via the network 103. Inspection information from each of the defect inspection devices 101a to 101n 'is processed by the processing terminal devices 102a to 102n' and managed by the data server 107, shared or shared with other processing terminals 102a to 102n. '.' Or directly from the processing terminal device 108 of the entire system (for the data server). The inspection information is viewed or processed and analyzed at the same time as or after the inspection in the processing terminal devices 102 a to 102 n for any defect inspection device or the system processing terminal device 108. .
次に、 任意の欠陥検査装置 101及び処理端末装置 102における検査 情報の取得方法、 および、 その種類に関して詳細を述べる。 半導体デバイ ス製造の所定の処理工程での処理後に、 任意の欠陥検査装置 101による 欠陥検査が行われ、処理端末装置 102または 108から各種検査情報(各 種欠陥分類結果)が得られる。第 2図は本処理の詳細を示したものである。 即ち、 第 2図は、 任意の欠陥検査装置を用いた各種検査情報 (各種欠陥分 類結果) を取得するための処理端末装置 102または 108における処理 動作の一実施例を示すフローチャートである。 ステップ 201で、 まず、 任意の欠陥検査装置 101において実際のウェハ等の被検査対象及びサン プル検査対象 (欠陥分類器 120を生成するための試料) 上の任意の欠陥 位置を検出し、 ステップ 202で、 欠陥位置と参照位置にステージ (図示 せず) を移動してそれそれ撮像を行って画像信号を検出し、 該検出された 画像信号をデジタル画像信号に変換し、 該変換されたデジ夕ル画像信号を 処理端末装置 1 0 2または 1 0 8に提供される。 処理端末装置 1 0 2また は 1 0 8は、 ステップ 2 0 3で、 前記撮像された欠陥画像と参照画像とか ら例えば比較することによって欠陥についての各種画像特徴量の算出を行 う。 点線で囲んだループ 2 0 4内の各ステップの処理を他の任意の欠陥位 置においても繰り返し同様に行い、 処理端末装置 1 0 2または 1 0 8は、 ステップ 2 0 5で、 これらを統合して試料上における欠陥分布情報を得る。 ただし、 欠陥レビュー装置においては、 ステップ 2 0 1における欠陥検出 は、 予め外部の異物検査装置またはパタン検査装置が検出した欠陥位置情 報を入力とすることで行われる。 次に、 ステップ 2 0 6で、 別途得られる 装置 Q C (Quality Control) 、 着工来歴といった各欠陥検査装置に固有な 検査装置情報 (例えば光学式、 S E M式、 A F M (原子間力顕微鏡) 式等 の情報、 分解能および感度に関する情報等) またはウェハに固有なウェハ 情報 (被検査対象の製造工程に関する情報および回路構造 (メモリ領域や ロジック領域など) 等に関する情報) を得る。 処理端末装置 1 0 2または 1 0 8は、 ステップ 2 0 7において、 ステップ 2 0 5から得られる試料上 の欠陥分布情報やステップ 2 0 3から得られる各欠陥についての画像特徴 量、 およびステップ 2 0 6から得られる検査装置情報 · ウェハ情報を結合 した検査情報を基に、 例えば第 3図に示す処理フローによって得られる本 発明に係る生成された欠陥分類器 1 2 0、 例えば複数の分岐によって欠陥 クラスを階層的に分類する決定木を用いて欠陥分類が行われる。 ここで、 前記検査情報とは、 各種欠陥画像と各種属性のうち少なくとも一つ含むも のであり、 前記各種欠陥画像とは、 実際に欠陥が検出されたか否かを問わ ず、 他の欠陥検査装置を含めて各欠陥検査装置 1 0 1の検出器において撮 像した全ての欠陥画像 ·参照画像の他に、 前記欠陥画像 ·参照画像に対し 任意の画像処理 (例えば 2値化画像処理、 膨張 ·収縮画像処理) を施した 処理画像のうち少なくとも 1つ以上を含むものである。 前記欠陥画像 ·参 照画像とは、 ウェハ上に検出された欠陥位置と参照位置にそれそれステ一 ジを移動して撮像した画像のことであり、 前記参照位置とは、 着目する欠 陥が存在するチップと異なるチヅプ(例えば隣接するチップ)上において、 前記欠陥位置に対応する位置をさす。 ただし、 欠陥画像の部分的な周期性 を利用して欠陥画像から擬似参照画像を合成する技術が存在し、 広く参照 画像 (欠陥画像と比較するための基準画像) と総称する。 また、 前記処理 画像には、 少なくとも 2つ以上の任意の画像群を任意の画像処理により合 成して得られた処理画像を含む。 前記各種属性とは、 画像特徴量、 欠陥分 類結果(任意の欠陥サンプルがどの欠陥分類クラスに分類されたかの結果)、 欠陥座標、 組成分析結果 (任意の欠陥サンプルがどのような組成の組み合 わせになっているかの結果) 、 着工来歴、 装置 Q Cあるいはウェハ上にお いて検出された欠陥位置の分布に関する情報や欠陥数 (以下、 欠陥分布情 報と呼ぶ) のうち少なくとも 1つ以上を含むものである。 また前記画像特 徴量とは、 前記各種欠陥画像から得られる欠陥の色合い (テクスチャ等) や大きさ (面積や長さで示される) 、 形状 (異物形状、 キズ形状等) 、 配 線パタンに対する欠陥の位置関係 (短絡欠陥や断線欠陥等の致命性欠陥で 示される位置関係) 等の特徴を定量化したもの、 あるいは任意の欠陥検査 装置により得られた欠陥画像から、 任意の異種欠陥検査装置において有効 と思われる新たに設計 ·算出された画像特徴量の全て、 または一部を含む ものである。 Next, a method of acquiring inspection information in the arbitrary defect inspection apparatus 101 and the processing terminal apparatus 102 and a type thereof will be described in detail. After processing in a predetermined processing step of semiconductor device manufacturing, a defect inspection is performed by an arbitrary defect inspection apparatus 101, and various inspection information (various defect classification results) is obtained from the processing terminal apparatus 102 or. FIG. 2 shows the details of this processing. That is, FIG. 2 is a flowchart showing an embodiment of the processing operation in the processing terminal device 102 or 108 for acquiring various inspection information (various defect classification results) using an arbitrary defect inspection device. In step 201, first, an arbitrary defect inspection apparatus 101 detects an arbitrary defect position on an inspection target such as an actual wafer and a sample inspection target (a sample for generating the defect classifier 120). Then, a stage (not shown) is moved to a defect position and a reference position, and an image signal is detected and an image signal is detected. The image signal is converted into a digital image signal, and the converted digital image signal is provided to the processing terminal device 102 or 108. In step 203, the processing terminal device 102 or 108 calculates various image feature amounts of the defect by comparing, for example, the captured defect image with the reference image. The processing of each step in the loop 204 encircled by the dotted line is repeated in the same manner at any other defect position, and the processing terminal device 102 or 108 integrates them in step 205. To obtain defect distribution information on the sample. However, in the defect review device, the defect detection in step 201 is performed by inputting defect position information detected by an external foreign matter inspection device or pattern inspection device in advance. Next, in step 206, inspection equipment information (such as optical, SEM, AFM (atomic force microscope), etc.) that is unique to each defect inspection equipment, such as equipment QC (Quality Control) and construction history Information, information on resolution and sensitivity, etc. or wafer information specific to the wafer (information on the manufacturing process to be inspected and information on the circuit structure (memory area, logic area, etc.)). In step 207, the processing terminal device 102 or 108 determines the defect distribution information on the sample obtained in step 205, the image feature amount for each defect obtained in step 203, and step 2. Based on inspection information obtained by combining inspection device information and wafer information, a generated defect classifier 120 according to the present invention obtained, for example, by the processing flow shown in FIG. 3, for example, by a plurality of branches Defect classification is performed using a decision tree that classifies defect classes hierarchically. Here, the inspection information includes at least one of various defect images and various attributes, and the various defect images refer to other defect inspection devices regardless of whether a defect is actually detected. In addition to all the defect images taken by the detectors of each defect inspection apparatus 101 including the defect image and the reference image, arbitrary image processing (for example, binarized image processing, dilation, Shrinkage image processing) It contains at least one or more of the processed images. The defect image and the reference image are images obtained by moving the stage to the defect position detected on the wafer and the reference position, respectively, and the image is taken. On a chip different from an existing chip (for example, an adjacent chip), it refers to a position corresponding to the defect position. However, there is a technique for synthesizing a pseudo-reference image from a defect image using the partial periodicity of the defect image, and is generally referred to as a reference image (a reference image for comparison with the defect image). Further, the processed image includes a processed image obtained by synthesizing at least two or more arbitrary image groups by arbitrary image processing. The various attributes include an image feature amount, a defect classification result (result of which defect class is classified into an arbitrary defect sample), a defect coordinate, and a composition analysis result (combination of any composition of the arbitrary defect sample). At least one of the following: information on the start of construction, history of construction, equipment QC, information on the distribution of defect positions detected on the wafer, and the number of defects (hereinafter referred to as defect distribution information). It is a thing. In addition, the image feature amount refers to the color (texture, etc.), size (indicated by area or length), shape (foreign matter shape, flaw shape, etc.), or wiring pattern of a defect obtained from the various defect images. Quantitative characteristics such as the positional relationship of defects (positional relationship indicated by fatal defects such as short-circuit defects and disconnection defects), or any heterogeneous defect inspection device from defect images obtained by any defect inspection device This includes all or some of the newly designed and calculated image features that are considered effective in.
なお、 前記の説明では、 欠陥検査装置 1 0 1が実際の被検査対象及びサ ンプル検査対象 (欠陥分類器 1 2 0を生成するための試料) を含めてステ ヅプ 2 0 2まで実行し、 その後の処理及び欠陥分類器 1 2 0の生成は処理 端末装置 1 0 2、 1 0 8が実行するように説明したが、 欠陥検査装置 1 0 1がステップ 2 0 4、 2 0 5及び 2 0 6の検査情報 (実際の被検査対象及 びサンプル検査対象) を得るまでを実行し、 該検査情報を基に欠陥分類器In the above description, the defect inspection apparatus 101 executes up to step 202 including the actual inspection target and the sample inspection target (sample for generating the defect classifier 120). Although the subsequent processing and the generation of the defect classifier 120 have been described as being performed by the processing terminal devices 102 and 108, the defect inspection device 101 performs steps 204, 205 and 2 06 Inspection information (actual inspection target and And sample inspection target) are obtained, and a defect classifier is used based on the inspection information.
1 2 0の生成及び該生成された欠陥分類器 1 2 0に基づいて実際の欠陥分 類を行う処理を処理端末装置 1 0 2、 1 0 8で実行してもよい。 ' なお、 本発明に係る欠陥分類器 1 2 0は、 実際の被検査対象上に発生し た欠陥を分類する前に、 生成しておくことが必要となる。 The processing of generating the 120 and performing the actual defect classification based on the generated defect classifier 120 may be executed by the processing terminal devices 102 and 108. 'It is necessary that the defect classifier 120 according to the present invention be generated before classifying a defect generated on an actual inspection target.
[第一の実施の形態] (欠陥検査装置における本発明に係る欠陥分類器 1 2 0の生成)  [First Embodiment] (Generation of a defect classifier 120 according to the present invention in a defect inspection apparatus)
第一の実施の形態について説明する。 本実施の形態は、 半導体ウェハ上 の異物や欠陥 (以下、 特別の場合を除き、 これらをまとめて欠陥という) の自動分類に関して、 少なくとも一つ以上の欠陥検査装置 1 0 1から得ら れた検査情報の同時レビュー方法、 及び任意の一台の欠陥検査装置 1 0 1 あるいは処理端末装置 1 0 2、 1 0 8において採用される本発明に係る欠 陥分類器 1 0 2の生成方法の大きく 2つからなる。 なお、 以降の説明にお いては、 欠陥分類器 1 0 2の生成は、 処理端末装置 1 0 2 a〜 1 0 2 ηま たは処理端末装置 1 0 8の何れかで行うものとする。 そのために、 第 1図 においては、 各処理端末装置 1 0 2 , 1 0 8には、 G U I 1 1◦の機能と 欠陥分類器 1 2 0を生成する機能とを有する計算手段と、 該計算手段に接 続された記憶手段 1 3 1、 表示手段 1 3 2及び入力手段 1 3 3等を備えて 構成される。  The first embodiment will be described. In the present embodiment, at least one or more defect inspection apparatuses 101 are used for automatic classification of foreign matter and defects on a semiconductor wafer (hereinafter collectively referred to as “defects” unless otherwise specified). The method for simultaneously reviewing inspection information and the method for generating the defect classifier 102 according to the present invention employed in any one of the defect inspection apparatuses 101 or the processing terminal apparatuses 102 and 108 are greatly increased. Consists of two. In the following description, the generation of the defect classifier 102 is performed by one of the processing terminal devices 102 a to 102 η or the processing terminal device 108. For this purpose, in FIG. 1, each of the processing terminal devices 102 and 108 has, in each of the processing terminals 102 and 108, a calculating means having a function of a GUI 11 ° and a function of generating a defect classifier 120, It is provided with a storage means 131, a display means 132, an input means 133, and the like connected to the computer.
1 . 1 処理の流れ  1.1 Processing flow
本発明における処理の概略を第 3図を用いて説明する。 まず、 各種欠陥 検査装置 1 0 1及び処理端末装置 1 0 2からの欠陥分類器 1 2 0を生成す るための各種検査情報の取得 (ステップ 3 0 1 ) は既に行われており、 自 由にこれを参照することができる。 ただし、 ここで参照できる情報は、 前 述のように一台の欠陥検査装置 1 0 1から得られた検査情報に限らず、 光 学式あるいは S E M式の欠陥検査装置やパタン欠陥検査装置、 S E M式な どの欠陥レビュー装置、 元素分析装置等の異種欠陥検査装置 1 0 1による 欠陥検査が行われていた場合には、 これらの複数台の欠陥検査装置 1 0 1 から取得された欠陥分類器 1 2 0を生成するための検査情報も必要に応じ て参照し、 利用することができ、 その場合、 第 1図に示す如く、 各種欠陥 検査装置、 例えば欠陥検査装置 A ( 1 0 1 a ) 、 B ( 1 0 1 b ) からの検 査情報は処理端末装置 A ( 1 0 2 a ) 、 B ( 1 0 2 b ) で処理され、 ネッ トワーク 1 0 3等を利用してデータサーバ 1 0 7で管理及び共有されるシ ステム構成が考えられる。 即ち、 前記システム構成により、 処理端末装置 1 0 2又は 1 0 8は、 ステップ 3 0 1において、 各種欠陥検査装置におけ る欠陥画像や属性を含む検査情報を取得及び共有することが可能となる。 次に、 処理端末装置 1 0 2又は 1 0 8において、 前記検査情報を基にュ —ザ自身が理想的な欠陥分類と考える欠陥分類基準をシステムのサポート (ステップ 3 0 2 ) に基づき明確化し、 欠陥分類クラスを作成する (ステ ヅプ 3 0 3 ) 。 この詳細に関しては後述する。 処理端末装置 1 0 2又は 1 0 8において、 欠陥分類クラスが作成されたら、 次にその欠陥分類を実現 するシステム内部の欠陥分類器を決定する段階にはいる。 該欠陥分類器は 複数の分岐によって欠陥を階層的に分類する決定木によって表現され、 前 記各分岐において個別の分類ルールを設定することによって本発明に係る 欠陥分類器 1 2 0の設計は完了する。 The outline of the process in the present invention will be described with reference to FIG. First, acquisition of various kinds of inspection information for generating the defect classifier 120 from the various defect inspection apparatuses 101 and the processing terminal apparatus 102 (step 301) has already been performed. You can refer to this. However, the information that can be referred to here is not limited to the inspection information obtained from one defect inspection device 101 as described above, but may be an optical or SEM type defect inspection device, a pattern defect inspection device, a SEM. Formal When a defect inspection apparatus 101 such as any defect review apparatus or elemental analysis apparatus has performed a defect inspection, the defect classifiers 120 obtained from the plurality of defect inspection apparatuses 101 are used. Inspection information for generating the defect inspection information can also be referenced and used as needed, in which case, as shown in FIG. 1, various defect inspection devices, for example, defect inspection devices A (101a), B ( The inspection information from 101b) is processed by the processing terminal devices A (102a) and B (102b) and managed by the data server 107 using the network 103 etc. And shared system configuration. That is, with the system configuration, the processing terminal device 102 or 108 can acquire and share inspection information including defect images and attributes in various defect inspection devices in step 301. . Next, in the processing terminal device 102 or 108, based on the inspection information, a user clarifies a defect classification standard considered to be an ideal defect classification based on system support (step 302). Then, a defect classification class is created (step 303). The details will be described later. After the defect classification class is created in the processing terminal device 102 or 108, the process proceeds to the step of determining a defect classifier in the system that realizes the defect classification. The defect classifier is represented by a decision tree that classifies defects hierarchically by a plurality of branches, and the design of the defect classifier 120 according to the present invention is completed by setting individual classification rules in each branch described above. I do.
その手順は点線で囲んだループ 3 0 4内に示される各種ステップから構 成される。 ループ 3 0 4は基本的に 5つのステップ 「欠陥分類の決定木決 定 (ステップ 3 0 5 ) 」 「欠陥サンプル教示 (ステップ 3 0 6 ) 」 「欠陥 属性分布の分類度評価 (ステップ 3 0 7 ) 」 「分類ルールの選択 (ステツ プ 3 0 8 ) 」 「分類結果の評価 (ステップ 3 0 9 ) 」 から成る。 ただし、 これらのステップのうち、 ステップ 3 0 6、 3 0 7、 3 0 9は必要がなけ れば自由にスキップすることができる。 例えば、 分類ルールを決定するに あたって、 欠陥の各種属性の分布を参照する必要がないのであれば、 ステ ヅプ 3 0 6、 3 0 7は不要である。 また、 分類結果の評価ステップ 3 0 9 を行わずに次の決定木の決定に進むことも考えられる。 また、 前記 5つの ステップは必要に応じて順番を変更して行うことが可能である。 例えば、 最初に全欠陥クラスに対して欠陥サンプルを教示したり、 欠陥の各種属性 の分離度を基に決定木を決定するといつた手順が可能である。 さらに、 前 記 5つのステップは、 一部または全てを自動化あるいは半自動化すること が可能である。 例えば、 ステップ 3 0 7における属性分布の分離度を数値 化し、 前記分離度に基づきシステムが自動的に適切な決定木または分類ル ールを決定する機能を有し、 前記機能を選択的に採用することができる。 あるいは、 例えば、 欠陥分類の決定木決定 (ステップ 3 0 5 ) に関して既 にいくつかのパ夕ンがシステムのデ一夕ベースに登録されており、 前記デ —夕ペース中から選択、 あるいは前記デ一夕ベースを参考に決定すること ができる。 The procedure is composed of various steps shown in a loop 304 surrounded by a dotted line. The loop 304 basically consists of five steps: “Decision tree decision for defect classification (Step 300)” “Teach defect sample (Step 300)” “Evaluation of the degree of classification of defect attribute distribution (Step 300) ) ”,“ Selection of classification rules (Step 308) ”, and“ Evaluation of classification results (Step 309) ”. However, of these steps, steps 303, 307, and 309 can be freely skipped if not required. For example, to determine the classification rules For this reason, if it is not necessary to refer to the distribution of the various attributes of the defect, steps 306 and 307 are unnecessary. It is also conceivable to proceed to the next decision tree without performing step 309 for evaluating the classification results. In addition, the above five steps can be performed by changing the order as necessary. For example, it is possible to first teach defect samples for all defect classes, or to determine a decision tree based on the degree of separation of various attributes of a defect. Furthermore, some or all of the above five steps can be automated or semi-automated. For example, the function has a function of quantifying the degree of separation of the attribute distribution in step 307, and automatically determining an appropriate decision tree or classification rule based on the degree of separation, and selectively adopting the function. can do. Alternatively, for example, regarding the decision tree for the defect classification (step 300), some patterns have already been registered in the system data base, and the data is selected from the data set in the data base. The decision can be made with reference to the overnight base.
処理端末装置 1 0 2又は 1 0 8において、 ループ 3 0 4は必要に応じて 複数回数行い、 全決定木が決定した段階 (ステップ 3 1 0 ) で欠陥分類器 (分類ルール) 1 2 0の生成は終了する。 次に各ステップにおける詳細な 説明を行う。 まず、 同時レビュ一によるシステムのサポート (ステップ 3 0 2 ) に基づく、 欠陥分類クラス生成 (ユーザによる欠陥分類基準の決定) (ステップ 3 0 3 ) に関して具体的に説明する。  In the processing terminal device 102 or 108, the loop 304 is performed a plurality of times as necessary, and when the decision tree is determined (step 310), the defect classifier (classification rule) 120 Generation ends. Next, each step will be described in detail. First, the defect classification class generation (user determination of defect classification standard) (step 303) based on the system support by simultaneous review (step 302) will be specifically described.
1 . 2 同時レビューによる欠陥分類クラスの決定 (ステップ 3 0 2、 3 0 3 )  1.2 Determining defect classification class by simultaneous review (Steps 302, 303)
まずいくつかの欠陥サンプルに関して目視による欠陥分類を行い、 欠陥 分類クラスを決定するステップ 3 0 3がある。 欠陥分類上、 どのような基 準でどのような欠陥群が同種または異種欠陥クラスとして分類されること を希望するのかユーザが決定するステップである。 欠陥分類クラスを決定 するには、 まずュ一ザ自身が自身の欠陥分類基準を明確化する必要がある。 また、 分類性能上、 ユーザの分類基準を完璧に満足する欠陥分類器が設計 可能とは限らない。 さらに、 複数の検査情報間で不整合が生じる場合があ り (例えば一方の検査情報からは異物系の欠陥であると判断され、 もう一 方の検査情報からは虚報であると判断されるような不整合) 、 欠陥分類に 関して統一的な判断をユーザに求めることがある。 以上のことを考慮しな がら、 欠陥分類クラスを決定するには、 複数の欠陥検査装置からの検査情 報を同時に閲覧することが有効であり (ステップ 3 0 2 ) 、 そのための検 査情報の同時レビュー画面をユーザに提供する。 ウィンドウ 4 0 0は同時 レビュー画面を備えた G U I (Graphic User Interface) 1 1 0の一例を. 示している。 このように、 前記取得及び共有化された前記検査情報の同時 レビュー画面を有する G U Iが提供されることにより、 ユーザは、 この G U I 1 1 0に基づいて前記検査情報を総合的に把握し、 自身の分類要求を 明確化することができる。 First, there is a step 303 for visually performing defect classification on some defect samples and determining a defect classification class. This is a step in which the user decides what kind of defect group and what kind of defect group he or she wants to be classified as a homogeneous or heterogeneous defect class. Determine defect classification class To do so, the user must first clarify his own defect classification criteria. Also, due to the classification performance, it is not always possible to design a defect classifier that completely satisfies the user's classification criteria. In addition, inconsistencies may occur between multiple pieces of inspection information (for example, one inspection information may be judged to be a foreign matter defect and the other inspection information may be judged to be a false alarm. Inconsistent), the user may be required to make a unified decision regarding defect classification. In consideration of the above, it is effective to browse the inspection information from multiple defect inspection devices at the same time to determine the defect classification class (step 302), and to check the inspection information for that purpose. Provide a simultaneous review screen to the user. Window 400 shows an example of a GUI (Graphic User Interface) 110 having a simultaneous review screen. As described above, by providing the GUI having the simultaneous review screen of the acquired and shared inspection information, the user can comprehensively grasp the inspection information based on the GUI 110, and Classification requirements can be clarified.
前記複数の検査情報の統合的な活用が欠陥解析 ·分類に有効となるケ一 スは多い。 例えば、 S E M式の欠陥検査装置はウェハ下層の欠陥を観測す るのが困難であるのに対し、 光学式の欠陥検査装置は比較的良好に下層欠 陥を観測することができる。 一方、 ウェハ下層に内在する電気的欠陥であ る V C (Voltage Contrast) 欠陥に関しては、 S E M式の欠陥検査装置の 方が光学式の欠陥検査装置に比べて良好に観測することができる。 また、 前記 V C欠陥等においては、 視野の大きい (解像度の粗い) 欠陥検出装置 の方が欠陥を良好に観察できる傾向にあることが知られている。 このよう に、 前記各欠陥検査装置から取得される検査情報には、 欠陥の種類に応じ てそれぞれ有利 ·不利な側面が存在しており、 これは異種欠陥検査装置間 に限らず、 同じ欠陥検査装置から得られた検査情報であっても、 検出方法 や、 処理方法の違いによって得られる多種多様な情報は、 欠陥解析,分類 に有効である。 There are many cases where the integrated utilization of the multiple inspection information is effective for defect analysis and classification. For example, SEM-based defect inspection equipment has difficulty in observing defects in the lower layer of the wafer, while optical-type defect inspection equipment can observe lower-level defects relatively well. On the other hand, with respect to VC (Voltage Contrast) defects, which are electrical defects existing in the lower layer of the wafer, SEM type defect inspection equipment can observe better than optical defect inspection equipment. Further, it is known that a defect detector having a large field of view (coarse resolution) tends to be able to observe a defect better with respect to the VC defect and the like. As described above, the inspection information obtained from each of the defect inspection apparatuses has advantageous and disadvantageous aspects depending on the type of the defect. Even for inspection information obtained from equipment, a wide variety of information obtained by different detection methods and processing methods is used for defect analysis and classification. It is effective for
1 . 2 . 1 同時レビュー (欠陥分布マップの表示) (ステヅプ 3 0 2 ) 以下、 欠陥マップの表示方法について第 4図を参照しながら説明する。 第 4図は、 検査情報の同時レビュー、 欠陥の各種属性の分布表示、 欠陥 クラス及び分岐の一覧表示ウインドウの一実施例を示す図である。  1.2.1 Simultaneous Review (Display of Defect Distribution Map) (Step 302) Hereinafter, a method of displaying a defect map will be described with reference to FIG. FIG. 4 is a diagram showing an embodiment of a simultaneous review of inspection information, a distribution display of various attributes of defects, and a list display window of defect classes and branches.
複数の検査情報から統一的な見解を得るためには、 それらの検査情報を 同時に閲覧することが有効である。 そのため、 第 3図に示すステップ 3 0 2では、 検査情報の同時レビュー画面をユーザに提供している。 第 4図の ウィンドウ 4 0 0は第 1図に示す本システム(例えば処理端末装置 1 0 2、 1 0 8 ) における G U Iの一例を示している。 当然、 本システム (例えば 処理端末装置 1 0 2、 1 0 8 ) には、 G U I 1 2 0を実現するために、 デ イスプレイ装置 1 3 2と、 該ディスプレイ装置上の図形や画像を通じて対 話する計算機(各種デ一夕を記憶する記憶手段 1 3 1も含む) (図示せず) と、 キーボード等の入力手段 1 3 3とが備えられて構成される。 さらに、 計算機の中には、 本発明に係る検査情報を基にカス夕マイズした欠陥分類 器 1 2 0も有することになる。  In order to obtain a unified view from multiple test information, it is effective to browse those test information at the same time. Therefore, in step 302 shown in FIG. 3, a screen for simultaneous review of inspection information is provided to the user. The window 400 in FIG. 4 shows an example of the GUI in the present system (for example, the processing terminal devices 102, 108) shown in FIG. Naturally, in order to realize the GUI 120, the present system (for example, the processing terminal devices 102, 108) interacts with the display device 132 through graphics and images on the display device. It comprises a computer (including storage means 13 1 for storing various data) (not shown) and input means 13 3 such as a keyboard. Furthermore, the computer also has a defect classifier 120 customized based on the inspection information according to the present invention.
次に、 ステップ 3 0 2において参照される情報の詳細を述べる。 ウィン ドウ 4 0 0に示す G U Iは、 任意の欠陥検査装置における欠陥分布マップ を表示する機能を有しており、 複数の欠陥検査装置において検査が行われ ていた場合には、 ウィンドウ 4 0 0には、 各欠陥検査装置における欠陥分 布マップを並べて表示する機能を有している。 以後、 二つの欠陥検査装置 (欠陥検出装置 A、 欠陥レビュー装置 B ) の検査情報が共に参照できる状 況を例に挙げて説明するが、 本発明はこの組み合わせに限定されるもので はなく、 種類の異なる欠陥検査装置、 あるいは同種の欠陥検査装置であつ ても検査を行う工程が異なる欠陥検査装置、 あるいは同工程で同種の欠陥 検査装置であっても装置が異なる欠陥検査装置における任意の一つ以上の 欠陥検査装置の組み合わせを含んでいる。 また、 以後、 欠陥レビュー装置Next, details of the information referred to in step 302 will be described. The GUI shown in the window 400 has a function of displaying a defect distribution map in an arbitrary defect inspection apparatus. If the inspection is performed in a plurality of defect inspection apparatuses, the GUI is displayed in the window 400. Has a function of displaying a defect distribution map in each defect inspection device side by side. Hereinafter, an example in which the inspection information of the two defect inspection apparatuses (defect detection apparatus A and defect review apparatus B) can be referred to will be described, but the present invention is not limited to this combination. Defect inspection equipment of different types, or defect inspection equipment of the same type that performs inspections in different steps, or any one of defect inspection equipment of the same type but different inspection equipment More than one Includes a combination of defect inspection devices. Since then, defect review equipment
Bにおける欠陥分類器 1 2 0 bを設定する問題を扱うが、 これに関しても 任意の欠陥検査装置 1 0 1あるいは処理端末装置 1 0 2、 1 0 8における 欠陥分類器 1 2 0の設定が考えられる。 We will deal with the problem of setting the defect classifier 120b in B, but we also consider the setting of the defect classifier 120 in any defect inspection device 101 or processing terminal device 102, 108. Can be
本実施例において、 4 0 8、 4 0 9はそれそれ欠陥検出装置 A、 欠陥レ ビュー装置 Bにおける欠陥分布を示す欠陥分布マップである。 また、 4 2 0は、 前記欠陥検出装置 A及び欠陥レビュー装置 Bから得られた検査情報 を基にカス夕マイズした本発明に係る欠陥分類器を適用し、 再分類を行つ た際の欠陥分布を示す欠陥分布マップである。 欠陥分布マップ 4 2 0によ り、 設定した欠陥分類器による分類結果を確認しながら、 対話的に欠陥分 類器をカスタマイズすることができる。 また、 「マップ表示方法」 ボタン 4 1 7を押し、 所定の設定を行うことにより、 各欠陥サンプルに関する欠 陥分類の結果や欠陥の各種属性等の欠陥分布を欠陥分布マップ 4 0 8、 4 0 9、 4 2 0上に、 文字あるいは数値、 色分け、 強調等の表示方法で 2次 元的あるいは 3次元的に表示させる機能を有し、 ユーザは欠陥分布の全体 像を把握することができる。 さらに、 それそれの欠陥検査装置に対し、 装 置 Q Cや着工来歴を表示させる機能を有する。 チェックボックス 4 1 0、 4 1 2は装置 Q Cを、 チェックボックス 4 1 1、 4 1 3は着工来歴を表示 するためのチェックボックスである。  In this embodiment, reference numerals 408 and 409 denote defect distribution maps indicating defect distributions in the defect detection device A and the defect review device B, respectively. Reference numeral 420 denotes a defect when the defect classifier according to the present invention, which is customized based on the inspection information obtained from the defect detection device A and the defect review device B, is applied and reclassification is performed. 5 is a defect distribution map showing a distribution. By using the defect distribution map 420, it is possible to interactively customize the defect classifier while checking the classification result by the set defect classifier. By pressing the “map display method” button 4 17 and performing predetermined settings, the defect distribution results such as the defect classification result and various attributes of each defect sample can be displayed on the defect distribution map 4 0 8 and 4 0. A function to display two-dimensionally or three-dimensionally by displaying characters, numerical values, color coding, emphasis, etc. on 9, 420 is provided, and the user can grasp the whole image of the defect distribution. In addition, it has a function to display the device QC and the history of the start of construction for each defect inspection device. The check boxes 411 and 412 are for displaying the equipment QC, and the check boxes 411 and 413 are for displaying the history of the start of construction.
1 . 2 . 2 欠陥画像の表示 (ステップ 3 0 2 )  1.2.2 Display of defect image (Step 302)
第 4図に示す検査情報同時レビューウィンドウ 4 0 1には任意の複数の 欠陥サンプルを指定し、 前記欠陥サンプルの欠陥画像をほぼ同時に見れる ように例えば並べて表示する機能を有する。 一例として、 欠陥検出装置 A における欠陥分布マップ 4 0 8中の 2点の欠陥サンプル d a 1、 d a 2を 考える。 これらの欠陥は欠陥レビュー装置 Bにおいては欠陥分布マップ 4 0 9中の欠陥サンプル d b 1、 d b 2にそれぞれ対応している。 ただし、 欠陥サンプル d a 1 (db l ) 、 d a 2 ( d b 2 ) は欠陥検出装置 Aにお いては同じクラス C a 2に分類され、 欠陥レビュー装置 Bにおいては異な るクラス Cb 3、 Cb 2に分類されている。 ここで、 欠陥サンプル d a 1 を選択し、 ウィンドウ 402にドラヅグ、 アンド、 ドロップすることによ り、 欠陥検出装置 Aにおいて取得された欠陥サンプル d a 1の欠陥画像 4 04を図に示すように表示させることができる。 また欠陥サンプル d a 1 を表示させた時点で、 それに対応する欠陥レビュー装置 Bの欠陥サンプル d b 1が欠陥分布マップ 409中に存在していればウインドウ 403内に 欠陥サンプル db 1の欠陥画像 406を自動的に表示させることができる, この機能は欠陥サンプル d a 1、 db 1のどちらをそれそれウィンドウ 4 02、 403にドラッグ、 アンド、 ドロップした場合であっても、 もう片 方の欠陥サンプルが表示されるものである。 同様に欠陥サンプル d a 2、 db 2に関してもどちらかを選択することによって欠陥画像 40 5. 40 7をウィンドウ 402、 403に表示させることができる。 欠陥画像 40 4〜407の同時欠陥レビュー画像からュ一ザは 2つの欠陥サンプル d a 1 (db 1 ) , d a 2 (db 2) を異なる欠陥分類クラスとして分類すベ きか否か検討することができる。 この際、 ユーザをサポートする仕組みと して、 「画像表示方法」 ボタン 4 16を押し、 所定の設定を行うことによ り、 前記欠陥画像のいずれを表示させることも可能である。 また、 「詳細 情報」 ボタン 41 8を押すことにより、 欠陥分布マップ上で指定した任意 の欠陥サンプルにおける前記検査情報一覧を同時表示させることができる < また、 「検索」 ボタン 41 9を押すことにより、 類似欠陥検索を行うこと ができる。 検索は、 欠陥検査装置やウェハ上の領域といった検索範囲の指 定と任意の検査情報あるいはその組み合わせにより表現される検索式の指 定により行われる。 The inspection information simultaneous review window 401 shown in FIG. 4 has a function of designating an arbitrary plurality of defect samples and displaying the defect images of the defect samples side by side so that they can be viewed almost simultaneously. As an example, consider two defect samples da 1 and da 2 in the defect distribution map 408 in the defect detection device A. These defects correspond to the defect samples db1 and db2 in the defect distribution map 409 in the defect review apparatus B, respectively. However, The defect samples da1 (dbl) and da2 (db2) are classified into the same class Ca2 in the defect detection device A, and are classified into different classes Cb3 and Cb2 in the defect review device B. ing. Here, the defect sample da 1 is selected, and is dragged, dropped, and dropped on the window 402 to display the defect image 404 of the defect sample da 1 acquired by the defect detection device A as shown in the figure. be able to. When the defect sample da 1 is displayed and the corresponding defect sample db 1 of the defect review apparatus B exists in the defect distribution map 409, the defect image 406 of the defect sample db 1 is automatically displayed in the window 403. This function displays the defect sample da 1 or db 1 regardless of whether you drag, drop, and drop it to windows 402, 403, respectively. Things. Similarly, by selecting either of the defect samples da 2 and db 2, the defect image 40 5.407 can be displayed in the windows 402 and 403. Defect images 404 From the simultaneous defect review images of 4 to 407, the user can determine whether the two defect samples da 1 (db 1) and da 2 (db 2) should be classified as different defect classification classes . At this time, as a mechanism to support the user, any of the defect images can be displayed by pressing the “image display method” button 416 and performing a predetermined setting. In addition, by pressing the "Detailed information" button 418, the inspection information list for any defect sample specified on the defect distribution map can be displayed simultaneously. <Also, by pressing the "Search" button 419 A similar defect search can be performed. The search is performed by specifying a search range such as a defect inspection apparatus or a region on a wafer and specifying a search formula expressed by arbitrary inspection information or a combination thereof.
ステップ 303における欠陥分類クラス決定は、 前述のような同時レビ ュ一画面 4 0 1に基づいて、 ュ一ザの目視により行うことができる。 ただ し、 任意のルール、 例えば 「S E M式および光学式の欠陥検査装置を用い て検査を行った際に、 前者で欠陥が検出され、 後者で検出されなかったと いう組み合わせにおいては、 欠陥分類結果は V C欠陥か虚報である可能性 が高い」 といった知識を導入することにより、 欠陥分類クラス決定の一部 または全てを自動化することが可能である。 これは、 本発明に係る欠陥分 類器の生成に関しても同様である。 The determination of the defect classification class in step 303 is based on the simultaneous This can be performed by visual observation of the user based on the user screen 401. However, if any rule is applied, for example, "When the defect is detected by the former and not detected by the latter when the inspection is performed using the SEM and optical defect inspection devices, the defect classification result is It is possible to automate some or all of the defect classification class decisions by introducing knowledge such as “VC defect is likely to be false information”. The same applies to the generation of the defect classifier according to the present invention.
■1 . 2 . 3 欠陥分類クラス作成 (ステップ 3 0 3 )  ■ 1.2.3 Defect classification class creation (Step 303)
次に、 前記同時レビュー画面 4 0 1により確認されたユーザの理想的な 欠陥分類基準を基に、 ステップ 3 0 3で行う欠陥クラスの名称、 個数の指 定について説明する。  Next, the designation of the defect class name and number performed in step 303 based on the user's ideal defect classification standard confirmed on the simultaneous review screen 401 will be described.
一例としてユーザの要求する欠陥分類基準が欠陥マップ 4 2 0に示され ているような 5クラス分類 (クラス C 1 ~ C 5 ) であったとするならば、 まず 「クラス追加」 ボタン 4 5 0を押し、 所定の設定を行うことにより、 ウィンドウ 4 2 4に任意のラベルを設定した 5つの欠陥クラスを追加 ·表 示させる。図中のウィンドウ 4 2 4には 6クラスの表示がなされているが、 欠陥クラス C 1 bのラベル 4 2 5は後の説明のために表示しており、 今は ないものとする。 ちなみに欠陥クラスを削除したい場合は、 ウィンドウ 4 2 4において削除したい任意の欠陥クラスを選択後、 「クラス除去」 ボタ ン 4 5 1を押すことによって除去することができる。  As an example, if the defect classification standard requested by the user is a five-class classification (classes C1 to C5) as shown in the defect map 420, first click the "Add Class" button 450. By pressing and making the specified settings, five defect classes with arbitrary labels are added and displayed in window 4 2 4. Although six classes are displayed in the window 4 24 in the figure, the labels 4 25 of the defect class C 1 b are displayed for later explanation and are not present. By the way, if you want to delete a defect class, you can select any defect class you want to delete in window 4 24 and remove it by pressing “Remove class” button 45 1.
1 . 3 欠陥分類器 1 2 0の生成 (ループ 3 0 4 )  1.3 Generating defect classifiers 120 (loop 304)
次に、 ユーザにより指定された分類基準 (ここでは前記 5クラス分類) を第 1図に示すシステム内部 (例えば処理端末装置 1 0 2、 1 0 8 ) の分 類基準として組み込むステップを説明する。 これには前記 5つのステップ ( 3 0 5〜3 0 9 ) を必要に応じて行い、 その結果を必要に応じて随時評 価しながら、 欠陥分類器 1 2 0の全体を形成していく。 これらの処理の一 部または全てを学習等により自動的に決定することが可能であるが、 学習 初期においては人間が設定可能な事項をできる限り決定し、 システムの学 習における負担を軽減することが有効である。 次に、 前記 5つのステップ ( 3 0 5〜3 0 9 ) に関してそれそれ詳細を説明する。 Next, a step of incorporating a classification criterion specified by the user (here, the five-class classification) as a classification criterion inside the system (for example, the processing terminal devices 102, 108) shown in FIG. 1 will be described. To this end, the above five steps (305 to 309) are performed as necessary, and the results are evaluated as needed to form the entire defect classifier 120. One of these processes Part or all can be automatically determined by learning, etc., but at the beginning of learning, it is effective to determine the items that can be set by humans as much as possible and to reduce the burden on system learning. Next, each of the five steps (305 to 309) will be described in detail.
1 . 3 . 1 欠陥分類の決定木指定 (ステップ 3 0 5 )  1.3.1 Designation of decision tree for defect classification (Step 3 05)
ステップ 3 0 5における欠陥分類の決定木の指定方法について、 第 5図 を用いて説明する。  The method of designating the defect classification decision tree in step 105 will be described with reference to FIG.
第 5図は本発明による階層的に展開される決定木構造の設定及び欠陥サ ンプルの教示ウインドウの一実施例を示す図である。  FIG. 5 is a diagram showing an embodiment of a setting window of a decision tree structure developed hierarchically and a teaching window of a defect sample according to the present invention.
本実施例において、 決定木とは、 第 4図に示すウィンドウ 4 2 4内に指 定した最終的な欠陥クラスの分類を達成するための分岐手順を示すもので あり、 「クラス要素」 と 「分岐要素」 からなる。 第 4図で 「教示サンプル 指定/クラス ·分岐構成決定」 ボタン 4 5 2を押すと、 第 5図に示すウイ ンドウ 5 0 0が表示させる。 ウィンドウ 5 0 0はウィンドウ 4 0 0と同時 に表示 ·操作することが可能である。 また、 ウィンドウ 4 0 0と 5 0 0は 同一ウィンドウに表示しても良い。 ウィンドウ 4 2 4内に欠陥クラスの指 定を行った段階で、 分類の決定木を構成する欠陥クラスの個数分のクラス 要素 5 0 3がウィンドウ 5 0 2内に作成される。 また、 デフォルトで分類 の決定木を構成する分岐要素 5 0 4が用意されている。 これらを用いて、 ウィンドウ 5 0 1内に決定木の構成を指定していく。 第 5図内のウインド ゥ 5 0 1には決定木の完成形の一例が示されているが、 これは第 6図(a ) 〜 (c ) のような手順を経て作成される。  In the present embodiment, the decision tree indicates a branching procedure for achieving the final classification of the defect class specified in the window 424 shown in FIG. Branch element ". Pressing the “Specify teaching sample / Class / Branch configuration” button 4 52 in Fig. 4 displays the window 500 shown in Fig. 5. Window 500 can be displayed and operated at the same time as window 400. Also, windows 400 and 500 may be displayed in the same window. At the stage when the defect class is specified in the window 424, the class elements 503 corresponding to the number of the defect classes constituting the classification decision tree are created in the window 502. In addition, a branch element 504 constituting a classification decision tree is prepared by default. Using these, the structure of the decision tree is specified in the window 501. The window # 501 in FIG. 5 shows an example of a completed decision tree, which is created through the procedures shown in FIGS. 6 (a) to (c).
第 6図は第 5図に示す階層的に展開される決定木構造の設定手順を説明 するためのウィンドウの一実施例を示す図であり、 第 6図 (a ) は最初の 分岐に欠陥クラスを分岐させる場合を示し、 第 6図 (b ) は最初の分岐に 次の分岐を設ける場合を示し、 第 6図 (c ) は 2番目の分岐に欠陥クラス を分岐させる場合を示す。 FIG. 6 is a view showing an embodiment of a window for explaining the setting procedure of the hierarchically expanded decision tree structure shown in FIG. 5, and FIG. 6 (a) shows a defect class in the first branch. Fig. 6 (b) shows the case where the next branch is set in the first branch, and Fig. 6 (c) shows the case where the defect class is set in the second branch. Is shown.
まず、 第 6図 (a) のように、 デフォルトで分類の開始地点 601と最 初の分岐 B 1 ( 602 ) が表示されている。 最初の分岐 B 1において欠陥 クラス C 1を分岐させたい場合には、 第 5図に示すように、 欠陥クラス C 1のラベルをもつクラス要素 518を、ウィンドウ 502から分岐 B 1 ( 6 02) にドラッグ、 アンド、 ドロップする。 この時点で、 第 6図 (b) に 示すように、 クラス要素 518のコピー 605が分岐 B 1 ( 602 ) の下 層に表示される。次にクラス要素 605と並列に分岐を設けたい場合には、 分岐要素 504を、 第 5図に示すウインドウ 502から分岐 B 1 ( 602 ) にドラッグ、 アンド、 ドロップする。 この時点で、 第 6図 ( c) に示され るように、 分岐要素 504のコピーである分岐要素 B 2 ( 603 ) が分岐 B 1 (602 ) の下層に表示される。  First, as shown in Fig. 6 (a), the classification start point 601 and the first branch B1 (602) are displayed by default. If it is desired to branch the defect class C1 in the first branch B1, as shown in FIG. 5, a class element 518 having the label of the defect class C1 is transferred from the window 502 to the branch B1 (602). Drag, and drop. At this point, a copy 605 of the class element 518 is displayed below the branch B1 (602), as shown in FIG. 6 (b). Next, when it is desired to provide a branch in parallel with the class element 605, the branch element 504 is dragged, dropped, and dropped from the window 502 shown in FIG. 5 to the branch B1 (602). At this point, as shown in FIG. 6 (c), a branch element B2 (603), which is a copy of the branch element 504, is displayed below the branch B1 (602).
分岐要素は区別をつけるため、 コピーされるたびに、 例えば分岐 B l、 B 2、 …のようにシリアル I Dが自動または手動でつけられる。 さらに、 分岐 B 2において欠陥クラス C 4を分岐させたい場合には、 同様に欠陥ク ラス C 4のラベルをもつクラス要素 519を分岐 B 2 ( 603 ) にドラッ グ、 アンド、 ドロップするといつたように作業が行われる。 このクラス要 素と分岐要素の組み合わせからなる階層的に展開される決定木は、 次の 3 つの条件に従い任意の構成が可能である。  The branch elements are automatically or manually marked with a serial ID each time they are copied, for example, branch Bl, B2,…. Further, when it is desired to branch the defect class C4 at the branch B2, the class element 519 having the label of the defect class C4 is similarly dragged, dropped, and dropped to the branch B2 (603). The work is performed. The decision tree consisting of a combination of class elements and branch elements can be arbitrarily constructed according to the following three conditions.
( 1 )分類の開始地点 601の直下層には分岐要素が一つあるのみである。 (1) There is only one branch element in the layer immediately below the start point 601 of the classification.
(2) 任意の分岐要素の直下層にはクラス要素及び分岐要素共にいくつ追 加してもかまわない。 (2) Any number of class elements and branch elements may be added immediately below any branch element.
(3) クラス要素の直下層には何もつけることができない  (3) Nothing can be added immediately below the class element
(4) 同じクラス要素を異なる分岐要素の直下層にいくつ追加してもかま わない。  (4) Any number of the same class element may be added immediately below different branch elements.
ここで、 分岐要素が追加されるたびに、 分岐の一覧を表示したウィンド ゥ 426 (第 4図参照) に分岐のラベルが追加され、 その右にはその分岐 から分かれる各欠陥クラスまたは分岐が、 それそれ識別可能なように色分 け等を用い、 ラベルを添えて表示される。 一例として分岐要素 B 2 (60 3) において欠陥クラス C 4 (606) 、 〇 110 (607) 、 分岐83 (6 04 ) の 3つに分岐されているので、 ウィンドウ 426内の分岐 B 2の記 述 427においては、 分岐 B 2のラベル 448及び分岐 B 2から分かれる 3つの欠陥クラスまたは分岐に対応する枠とラベル 449が表示されてい ο Here, every time a branch element is added, a window showing a list of branches 分岐 A branch label has been added to 426 (see Fig. 4), and to the right of each branch, each defect class or branch that branches from that branch is displayed with a label, such as color coding, so that it can be identified. Is done. As an example, the branch element B 2 (603) branches into three classes of defect class C 4 (606), 〇110 (607), and branch 83 (604). In statement 427, the label 448 of branch B2 and the frames and labels 449 corresponding to the three defect classes or branches that branch off from branch B2 are displayed.
また、 前記の組み合わせ条件 (4) に関して、 第 5図に示すように、 例 えば同じ欠陥クラス C l、 C 1 bのクラス要素 605と 607をそれそれ 分岐要素 B 1と B 2の直下層につけることが可能である。 この場合、 欠陥 分類結果は後から統合される。 同クラス要素を複数作成した場合は区別を つけるため、 コピーされるたびに、 例えば欠陥クラス C l、 C l b、 C I c、 …のようにシリアル I Dが自動または手動でつけられる。 さらに、 同 クラス要素がコピ一されるたびに、 ウィンドウ 425においてコピーされ た欠陥クラスのラベルが 425のように追加される。  As shown in FIG. 5, for example, with respect to the aforementioned combination condition (4), for example, the class elements 605 and 607 of the same defect classes C1 and C1b are respectively placed immediately below the branch elements B1 and B2. It is possible to attach. In this case, the defect classification results are later integrated. In order to make a distinction when multiple same class elements are created, a serial ID is automatically or manually attached each time it is copied, for example, a defect class Cl, Clb, CIc,…. Further, each time the same class element is copied, the label of the defect class copied in the window 425 is added like 425.
以上説明したように、欠陥を階層的に展開して分類する決定木の構造が、 分岐 B 1 ( 602 ) において欠陥クラス C 1と残りの欠陥クラスとに分岐 させ、 分岐 B 2 ( 603 ) において欠陥クラス C 4と欠陥クラス C 1 bと 残りの欠陥クラスとに分岐させ、 分岐 B 3 ( 604) において欠陥クラス C2と欠陥クラス C3と欠陥クラス C 5とに分岐させるように階層的、 即 ち段階的に展開することによって、 ユーザの要求に合致した分類基準を容 易に、 短時間で、 且つ確実に設定することが可能となる。  As described above, the structure of the decision tree that hierarchically expands and classifies defects is as follows: branch B 1 (602) branches to defect class C 1 and the remaining defect classes, and branch B 2 (603) Hierarchical, that is, branching to defect class C4, defect class C1b, and the remaining defect classes, and branching to defect class C2, defect class C3, and defect class C5 at branch B3 (604). By developing in stages, it is possible to easily, quickly, and surely set a classification standard that meets the user's requirements.
1. 3. 2 欠陥サンプル教示 (ステップ 306 )  1. 3. 2 Defect sample teaching (Step 306)
ステップ 306における欠陥サンプルの教示方法について述べる。まず、 第 5図のウィンドウ 500を表示する。 第 4図のウィンドウ 424内に欠 陥クラス指定を行った段階で、 その欠陥クラスに対応する数の枠がウィン ドウ 5 0 5内に作成される。 第 5図では欠陥クラスの枠が 6つ表示されて いるが、 決定木が生成されるウィンドウ 5 0 1内において、 欠陥クラス C 1のコピ一 C 1 bを作成するまで、 枠 5 0 8は存在しない。 各欠陥クラス への画像の教示は、 欠陥分布マップ (4 0 8または 4 0 9 ) 、 あるいは画 像表示ウィンドウ ( 4 0 2または 4 0 3 ) 内の欠陥サンプルを 1つあるい は複数選択し、 該選択された欠陥サンプルを例えば欠陥クラス C 1として 教示するのであれば、 この欠陥サンプルの画像を欠陥クラス C 1に対応す る枠 5 0 6内にドラッグ、 アンド、 ドロヅプすることにより行う。 他の欠 陥クラスへの教示も、 それそれの欠陥クラスの枠内に欠陥サンプル群の画 像群を同様に送ることによって行うことができ、 教示の有無、 枚数は欠陥 クラス間で統一する必要はない。 また、 同一欠陥サンプルの画像を複数の 欠陥クラス枠内に教示することができる。 また、 異種欠陥検査装置からの 教示サンプルの画像は同一欠陥個所の欠陥サンプルであっても、 異なる教 示サンプルとして教示することができる (あとで述べる欠陥の各種属性分 布の表示においては分離して表示することができる)。また前記のとおり、 同欠陥クラス要素がウインドウ 5 0 1内にコピーされる度に、 ウィンドウ 5 0 5内にコピーされた欠陥クラス用の枠が新たに作成される。 例えば欠 陥クラス C 1とそのコピーである欠陥クラス C 1 bのクラス要素 6 0 5、 6 0 7に対して、 それそれ枠 5 0 6、 5 0 8が存在する。 これらの枠に対 して、 同一欠陥サンプル群を教示することも異なる欠陥サンプル群を教示 することも可能である。 The method of teaching the defect sample in step 306 will be described. First, the window 500 shown in FIG. 5 is displayed. Missing in window 424 in Fig. 4 At the stage of specifying the defect class, a number of frames corresponding to the defect class are created in the window 505. In FIG. 5, six frames of the defect class are displayed. However, in the window 501 where the decision tree is generated, until the copy C 1 b of the defect class C 1 is created, the frame 508 is displayed. not exist. The teaching of images to each defect class can be done by selecting one or more defect samples in the defect distribution map (408 or 409) or the image display window (402 or 403). If the selected defect sample is to be taught, for example, as the defect class C1, the image of the defect sample is dragged, dropped, and dropped into the frame 506 corresponding to the defect class C1. Teaching to other defect classes can also be performed by similarly sending the image group of the defect sample group within the frame of each defect class, and the presence / absence of teaching and the number of sheets need to be unified between defect classes There is no. Also, images of the same defect sample can be taught in a plurality of defect class frames. Also, even if the images of the teaching samples from the heterogeneous defect inspection equipment are the same defect locations, they can be taught as different teaching samples. Can be displayed). As described above, each time the defect class element is copied into the window 501, a frame for the defect class copied in the window 505 is newly created. For example, there are frames 506 and 508 for the class elements 605 and 607 of the defect class C1 and the copy of the defect class C1b. It is possible to teach the same defect sample group or different defect sample groups to these frames.
1 . 3 . 3 欠陥属性分布の分離度評価 (ステップ 3 0 7 )  1.3.3 Evaluation of Degree of Separation of Defect Attribute Distribution (Step 307)
階層的に展開される決定木の各分岐における分類ルール (前記のルール に従って作成されたクラス要素と分岐要素からなる) を決定する方法に関 して、 属性の分離度を視覚化あるいは数値化する方法に関して述べる (ス テツプ 3 0 7 ) 。 ただし、 本作業時において決定木全体が完成されている 必要はなく、 欠陥サンプルの教示も全て行われている必要はなく、 また、 本作業後に前記決定木の構成や欠陥サンプルの教示パタンを変更すること も可能であるが、 ここでは、 第 5図の 5 0 0中のウィンドウ 5 0 1に示す ように決定木構造の決定、 欠陥サンプルの教示が共に全て完了している状 態を例に説明する。 まず、 分類ルールを割り当てたい分岐を、 第 4図に示 す分岐一覧を表示したウインドウ 4 2 6内から選択する。 ここでは一例と して分岐 B 2 ( 4 2 7 ) を選択すると、 欠陥の各種属性分布一覧ウィンド ゥ 4 5 4内において分岐 B 2において分離される 3つの欠陥クラス及び分 岐 (C 4、 C l b、 B 3 ) (該欠陥クラス及び分岐を総称してカテゴリと する。 ) に対応する各種属性の分布が、 前記 3つの欠陥クラス及び分岐毎 に色分け等の方法で区別されて表示される (4 5 9、 4 6 ◦等) 。 第 4図 では、 色分けする代わりに、 白、 ドッ ト、 斜線で示している。 当然、 欠陥 分類器 1 2 0を生成するための欠陥分布マップ 4 0 8及び欠陥分布マップ 4 0 9に載っている欠陥サンプルについての例えば特徴量は第 2図に示す ステップ 2 0 3において算出されているものとする。 従って、 分岐 B 2に おいて、 欠陥クラス C 4内の教示欠陥サンプルの画像が 5 1 4の枠内に教 示され、 欠陥クラス C 1 b内の教示欠陥サンプルの画像が 5 0 8の枠内に 教示される段階で、 これらの教示欠陥サンプルの例えば特徴量が算出され ているので、 欠陥クラス C 1を除いた欠陥サンプル全体の例えば特徴量分 布から 2つの欠陥クラスの教示欠陥サンプルを区別して表示することが可 能となる。 Visualize or quantify the degree of separation of attributes in the method of determining the classification rules (consisting of class elements and branch elements created according to the above rules) for each branch of a decision tree that is expanded hierarchically Talk about the method Step 307). However, it is not necessary for the entire decision tree to be completed at the time of this work, and it is not necessary to teach all the defective samples.Also, after this work, the structure of the decision tree and the teaching pattern of the defective samples are changed. In this example, the decision tree structure and the teaching of defect samples are all completed as shown in window 501 in FIG. 5. explain. First, a branch to which a classification rule is to be assigned is selected from a window 426 displaying a branch list shown in FIG. Here, as an example, if branch B 2 (4 27) is selected, three defect classes and branches (C 4, C 4) separated at branch B 2 in the defect attribute list window ゥ 4 5 4 lb, B 3) (The defect classes and branches are collectively referred to as categories.) The distribution of various attributes corresponding to the three defect classes and branches is displayed by being distinguished by a method such as color coding for each of the three defect classes and branches. 455, 46 ◦ etc.). In Fig. 4, instead of being color-coded, they are shown in white, dots, and diagonal lines. Naturally, for example, the feature amounts of the defect samples included in the defect distribution map 408 and the defect distribution map 409 for generating the defect classifier 120 are calculated in step 203 shown in FIG. It is assumed that Therefore, in the branch B2, the image of the teaching defect sample in the defect class C4 is indicated in the frame of 514, and the image of the teaching defect sample in the defect class C1b is indicated in the frame of 508. At the stage of teaching within, for example, the feature amounts of these taught defect samples are calculated, so the taught defect samples of two defect classes are obtained from the feature amount distribution of the entire defect sample excluding the defect class C1, for example. It can be displayed separately.
ここで、 色分けされて表示される前記 3つの欠陥クラス及び分岐 ( 3つ のカテゴリ) に対応する 3つの欠陥サンプル群は 「欠陥クラス C 4として 教示された欠陥サンプル群 5 1 5」 、 「欠陥クラス C 1 bとして教示され た欠陥サンプル群 5 0 9」、 「分岐 B 3の下層に存在する欠陥クラス C 2、 C 3、 C 5として教示された各欠陥サンプル群 5 1 1、 5 1 3、 5 1 7」 であり、 かつこれらの各種属性分布の表示は各教示サンプル画像が取得さ れた欠陥検査装置ごとに別ウィンドウ ( 4 5 5、 4 5 6 ) に分けて表示さ れる (統合して表示することも可能である) 。 ウィンドウ 4 5 4に表示さ れる各種属性分布一覧の中には、 画像特徴量 (各種欠陥画像から得られる 欠陥の色合い (テクスチャ等) や大きさ (面積や長さで示される) 、 形状 (異物形状、 キズ形状等) 、 配線パタンに対する欠陥の位置関係 (短絡欠 陥や断線欠陥等の致命性欠陥で示される位置関係) 等の特徴を定量化した もの) のみならず、 例えば異種欠陥検査装置における欠陥分類結果 (任意 の欠陥サンプルがどの欠陥分類クラスに分類された結果) 、 組成分析結果Here, three defect sample groups corresponding to the three defect classes and branches (three categories), which are displayed in different colors, are “defect sample groups taught as defect class C 4 5 5” and “defect classes”. Defective sample group 509 taught as class C 1b ”,“ Defect class C 2 under branch B3, Each of the defect sample groups 511, 513, and 517 taught as C3 and C5 '', and the distribution of these various attributes is displayed for each defect inspection apparatus from which each taught sample image was acquired. It is displayed in a separate window (455, 456) (it is also possible to combine and display). In the list of various attribute distributions displayed in the window 4 5 4, image features (color (texture, etc.) and size (indicated by area and length) of defect obtained from various defect images, shape (foreign matter) Not only quantified features such as shape, scratch shape, etc.) and the positional relationship of defects with respect to the wiring pattern (the positional relationship indicated by fatal defects such as short-circuit defects and disconnection defects) Defect classification results (results of any defect sample being classified into any defect classification class), composition analysis results
(任意の欠陥サンプルがどのような組成の組み合わせになっているかの結 果) 、 欠陥マップの分布等を数値化 (例えば、 Frequency:頻度) したもの を含む。 また、 ウィンドウ 4 5 4には 「欠陥属性追加」 ボタン 4 2 2を押 し、 所定の設定を行うことにより、 用意された属性を追加したり、 あるい は新たな属性を設計し、 追加したりすることが可能である。 また、 任意の 属性を削除することも可能である。ちなみに前記のとおり、決定木の決定、 欠陥サンプルの教示は完成している必要はなく、 指定が行われた範囲内で 各種属性分布に反映される。 第 4図に示すように、 指定した分岐において 分類される欠陥クラスあるいは分岐 (カテゴリ) 毎に、 前記欠陥クラスあ るいは分岐の下層に教示された欠陥サンプル群の属性分布の違いが分かる ように表示することにより、 前記分岐において分類に有効である属性が明 らかになる。 (The result of what kind of composition of an arbitrary defect sample is combined), and the numerical value (for example, Frequency) of the distribution of the defect map, etc. are included. In the window 4 5 4, the “Add defect attribute” button 4 2 2 is pressed and the specified setting is made to add a prepared attribute or design and add a new attribute. Or it is possible. Also, it is possible to delete any attribute. Incidentally, as described above, the decision of the decision tree and the teaching of the defect sample need not be completed, and are reflected in various attribute distributions within the specified range. As shown in FIG. 4, the difference in attribute distribution between the defect class or the defect sample group taught in the lower layer of the defect class or branch can be understood for each defect class or branch (category) classified in the designated branch. The display makes it clear which attribute is effective for classification in the branch.
各種属性分布の表示方法は一例として 4 5 9、 4 6 0のようなヒストグ ラム表示が考えられるが、 本発明はこのような表示方法に限るものではな く、 「属性分布表示方法」 ボタン 4 2 1を押すことによって、 例えば任意 の属性の組み合わせによる二次元あるいは三次元的な分布表示方法等によ り、 欠陥クラスあるいは分岐毎の属性の分離度がユーザにとって明確とな る表示方法を選択することが可能である。 前記二次元あるいは三次元的な 分布表示方法の具体例に関しては後述する。 また、 任意の欠陥サンプルを 選択することによって、 前記欠陥サンプルにおける属性が全体の属性分布 中のどこに存在するかを表示する機能やその数値を表示する機能を有する ( また、 ユーザが属性の分離度を判断する指標の一つとして、 分離度を数 値化し、 前記数値化された分離度の値を各属性毎に、 例えば 4 5 7、 4 5 8等において表示する機能をもつ。 分離度を数値化する方法としては、 例 えば欠陥クラス間での属性分布の平均値のずれや、 分散等が挙げられる。 As an example of a display method of various attribute distributions, a histogram display such as 559, 460 can be considered. However, the present invention is not limited to such a display method. 2 By pressing 1, for example, a two-dimensional or three-dimensional distribution display method using a combination of arbitrary attributes In addition, it is possible to select a display method in which the degree of separation of the attribute for each defect class or branch is clear to the user. Specific examples of the two-dimensional or three-dimensional distribution display method will be described later. In addition, by selecting an arbitrary defect sample, it has a function of displaying where the attribute in the defect sample exists in the entire attribute distribution and a function of displaying its numerical value (in addition to the fact that the user As one of the indices for judging, the function of quantifying the degree of separation and displaying the quantified value of the degree of separation for each attribute, for example, 457, 458, etc., is provided. Examples of the method of numerical conversion include, for example, deviation and dispersion of the average value of the attribute distribution between the defect classes.
1 . 3 . 4 分類ルールの選択 (ステップ 3 0 8 )  1.3.4 Selecting a classification rule (Step 3 08)
次にステップ 3 0 8において、 各分岐毎に割り当てられる分類ルールの 生成方法に関して述べる。 まず、 分類ルールを割り当てる任意の分岐をゥ インドウ 4 2 6内から指定する。 ここでは一例として分岐 B 2 ( 4 2 7 ) を指定し、 前記分岐 B 2において分岐する欠陥クラス C 4、 C l b、 分岐 B 3の分類を実現する第 1図に示すシステム内部の分類ルールを決定する 方法に関して述べる。 (分岐 B 2 ( 4 2 7 ) を指定した段階で、 前記のと おりウィンドウ 4 5 4内の各種属性分布一覧には、 欠陥クラス C 4、 C 1 b、 分岐 B 3に対応する各属性の分布が色分けされて表示されている。 ) 次に 「分類ルール指定」 ボタン 4 5 3を押すと、 第 7図に示す分類ルール 生成ウィンドウ 7 0 0が表示される。  Next, in step 308, a method of generating a classification rule assigned to each branch will be described. First, an arbitrary branch to which a classification rule is to be assigned is designated from within the window 4 26. Here, as an example, the branch B 2 (4 2 7) is specified, and the classification rules inside the system shown in FIG. 1 for realizing the classification of the defect classes C 4, C lb, and the branch B 3 branching in the branch B 2 are shown. Describe how to decide. (At the stage where the branch B 2 (4 2 7) is specified, the attribute distribution list in the window 454 as described above includes the attribute of the defect class C 4, C 1 b, and the branch B 3. The distribution is displayed in different colors.) Next, when the "Classification rule designation" button 453 is pressed, the classification rule generation window 700 shown in Fig. 7 is displayed.
第 7図は本発明による決定木中の各分岐における分類ルール生成ウイン ドウの一実施例を示す図である。 ウィンドウ 7 0 0はウィンドウ 4 0 0、 5 0 0と同時に表示及び操作することが可能である (同一ウィンドウに表 示しても良い)。本ウィンドウ 7 0 0では、大きく次の 2タイプの分類「ル —ルベース型分類」 「学習型分類 (教示型分類) 」 、 及びその組み合わせ により分類ルールを設定することができる。 決定木の構成、 ルールペース型分類と学習型分類の組み合わせ方、 ルー ルベース型分類器および学習型分類器のパラメ一夕等の設定事項に関して、 設計者に知識がある場合は、 組み込み式あるいは手動で前記設定事項を決 定することができる。 また、 知識があることを前提とできない場合は、 学 習により前記設定事項を決定することが考えられる。 ただし、 システム立 ち上げ時など教示デ一夕数が十分に確保できない状況においては、 前記過 学習が生じて性能が低下する危険性がある。 そのため、 各欠陥検査装置か ら得られる欠陥画像や属性の分布を表示し、 これらの情報を基に前記設定 事項を可能な限り決定し、 学習時に決定しなければならない項目の自由度 を軽減することが有効である。 FIG. 7 is a diagram showing an embodiment of a classification rule generation window for each branch in the decision tree according to the present invention. Window 700 can be displayed and operated simultaneously with windows 400 and 500 (although they may be displayed in the same window). In this window 700, classification rules can be set according to the following two types of classifications: "rule-based classification", "learning-type classification (teaching-type classification)", and combinations thereof. If the designer has knowledge of the decision tree configuration, how to combine rule-based classification and learning-type classification, and the parameters of the rule-based and learning-type classifiers, if the designer has knowledge, it can be built-in or manual. The above setting items can be determined with. If it is not possible to assume that there is knowledge, it is conceivable to determine the above setting items by learning. However, in a situation where a sufficient number of teaching data cannot be ensured, such as when starting up the system, there is a risk that the above-mentioned over-learning occurs and the performance is reduced. Therefore, the distribution of defect images and attributes obtained from each defect inspection device is displayed, and based on such information, the setting items are determined as much as possible, and the degree of freedom of the items that must be determined during learning is reduced. It is effective.
1 . 3 . 4 . 1 ルールペース型分類  1.3.4.1 Rule-based classification
ルールべ一ス型分類は、 予め設定された条件式 (属性、 関係および閾値 (境界線若しくは境界面) 等の項目からなる) の組み合わせで、 分類ル一 ルを生成する分類方式である。 まず、 前記ルールベース型分類を採用する 場合には、 チェヅクボックス 7 0 1にチェックを入れる。 次に、 前記ルー ルペース型分類における条件式の指定方法の一例を示す。 まず「条件追加」 ボタン 7 0 2を押し、 条件式を少なくとも 1つ以上追加する。 各条件式に 関して 「属性 (7 0 9 ) 」 「関係 (7 1 0 ) 」 「閾値 (7 1 1 ) 」 の 3つ の項目を指定する。 図では一例として、 4つの条件式 1〜4 ( 7 0 5〜7 0 8 ) が生成されている。 前記のとおり各欠陥サンプルに関して複数の属 性が算出されており、 ユーザは欠陥分類に有効な分離度の高い属性を選別 し、 条件式に組み込んでいくことになる。 ただし、 教示サンプルに関して 分離度の高い属性が、 必ずしも分類に有効な属性であるとは限らず、 この 判断はユーザに委ねられる。 またその後の追加学習によりルールを修正す ることも可能である。  Rule-based classification is a classification method that generates a classification rule using a combination of preset conditional expressions (consisting of items such as attributes, relationships, and thresholds (boundary lines or boundary surfaces)). First, when the rule-based classification is adopted, a check box 701 is checked. Next, an example of a method of specifying a conditional expression in the rule-based classification will be described. First, press the “Add Condition” button 70 2 to add at least one conditional expression. For each conditional expression, three items, "attribute (709)," "relation (710)," and "threshold (711)" are specified. In the figure, as an example, four conditional expressions 1 to 4 (705 to 708) are generated. As described above, a plurality of attributes are calculated for each defect sample, and the user selects an attribute having a high degree of separation effective for defect classification and incorporates the attribute into the conditional expression. However, an attribute with a high degree of separation for the teaching sample is not always an effective attribute for classification, and this judgment is left to the user. It is also possible to modify the rules by subsequent additional learning.
分離度は、 前記のとおりウインドウ 4 5 4に表示された各種属性分布一 覧 (ヒストグラム、 二次元 '三次元表示) や数値化された分離度の値 (4 57、 458等において記載) を基に判断することができる。 例えば、 ま ず、 プルダウンメニューを用いて 「属性 ( 709 ) 」 の選択を行う。 複数 の属性を選択することも可能である。 The degree of separation is based on the various attribute distributions displayed in window 4 54 as described above. This can be determined based on a reference (histogram, two-dimensional or three-dimensional display) or a numerical value of the degree of separation (described in 457, 458, etc.). For example, first, "attribute (709)" is selected using a pull-down menu. It is possible to select multiple attributes.
(1) 「属性 ( 709 ) 」 の選択において選択した属性が 1つである場 合は、 残りの 「関係 (710)」 と 「閾値 (71 1) 」 の設定を行う。 「関 係 (7 10) 」 は例えばプルダウンメニューを用い不等号 (>、 、 =、 ≤、 <) を選択、 「閾値 (7 1 1) 」 はキーボード (図示せず) を用いて 数値入力する。 「閾値 (71 1) 」 の設定に関しては各条件欄右の 「マウ ス入力」 ボタン (712) を押すことによって、 別画面でマウスや夕ブレ ット等のイン夕フェースを用いて感覚的に設定することが可能である。 こ れを、 第 8図を用いて説明する。  (1) When only one attribute is selected in the selection of “attribute (709)”, the remaining “relation (710)” and “threshold (71 1)” are set. For "Relation (7 10)", select the inequality sign (>,, =, ≤, <) using, for example, a pull-down menu. For "Threshold (7 11 1)", enter a numerical value using a keyboard (not shown). Pressing the “mouse input” button (712) on the right side of each condition column sets the “threshold (71 1)” intuitively using a mouse or sunset screen on another screen. It is possible to set. This will be described with reference to FIG.
第 8図は、 本発明による各種属性の多次元グラフ表示及びこのグラフ中 における制約条件の指定方法の一実施例を示す図である。 例えば第 8図 (a) に示す属性 (Attribute) f 1に関する頻度 (Frequency) のグラフ 800において、 ヒストグラム上で境界線 801を水平方向にマウスで移 動させることによって属性 f 1に関する閾値 Th. 1 ( 802 )を決定し、 第 7図に示す 「閾値 (711) 」 欄に代入する。 また、 第 8図 (b) のよ うに、 属性 f 1、 f 2を二次元グラフ上に同時描画することによって、 全 体の傾向を把握しながら、 例えば属性: f 2に関して、 境界線 804を移動 させて閾値 Th. 2 ( 807)を設定したりすることができる。ちなみに、 本例は境界線 804〜806による 3つの条件式から 2クラス (第 8図 (b) において、 それそれのクラスに属するサンプルの属性分布を丸と三 角で表示) の線形分離が可能な例である。  FIG. 8 is a diagram showing an embodiment of a multidimensional graph display of various attributes according to the present invention and a method of designating a constraint condition in the graph. For example, in the graph 800 of the frequency of the attribute f1 shown in FIG. 8 (a), the threshold Th. 1 for the attribute f1 is obtained by moving the boundary 801 on the histogram horizontally with the mouse. (802) is determined and assigned to the “threshold (711)” column shown in FIG. Also, as shown in Fig. 8 (b), by simultaneously drawing the attributes f1 and f2 on a two-dimensional graph, it is possible to grasp the overall tendency, The threshold Th. 2 (807) can be set by moving. By the way, in this example, linear separation of 2 classes (in Fig. 8 (b), attribute distributions of samples belonging to each class are indicated by circles and triangles) is possible from three conditional expressions with boundary lines 804 to 806. This is a simple example.
(2) 「属性 ( 709 ) 」 の選択において選択した属性が 2つ以上であ る場合は、 残りの 「関係 (710) 」 と 「閾値 (71 1) 」 の枠をうめる ような形式では設定困難であるから、 これらは空欄として、 「マウス入力」 ボタン (712) を押し、 別画面で設定を行う。 (2) If two or more attributes are selected in “Attribute (709)” selection, fill the remaining “Relation (710)” and “Threshold (71 1)” boxes Since setting is difficult in such a format, leave these blank and press the “mouse input” button (712) to make settings on another screen.
例えば、 2つの属性を選択した場合、 第 8図 (c) のように選択した属 性 1と 2の二次元グラフを表示することが考えられる。 白い丸と黒い 三角で表示された 2クラスを分類したいという状況を想定して、 境界線を 複数指定することができる。 各境界線は、 例えば二次元グラフ上で 2点の 指定により直線 ( 808、 810、 812) を決定した後、 その直線によ つて分割されたどちらの領域を設定するかの方向指定を矢印 ( 809、 8 11、 813) を行う。 境界線は直線または線分の指定が可能である。 ま た、 最終的な条件は複数の境界線により指定される条件の AND (論理積) または OR (論理和) を指定する。 教示サンプルの中には属性分布上、 例 外的な欠陥サンプル (例えば欠陥サンプル 814) が含まれていることが あり、 これらを境界内に含めるか否かの判断はユーザによって行われる。 第 8図(c)は欠陥サンプル 814を黒三角クラスから除外した例である。 また、 第 8図 (d) のように、 マウスで自由曲線 (815) を描き、 方向 指定を矢印 (8 16) を行って条件を指定する機能を持たせることもでき For example, when two attributes are selected, a two-dimensional graph of the selected attributes 1 and 2 may be displayed as shown in Fig. 8 (c). Multiple boundaries can be specified, assuming that you want to classify the two classes displayed as white circles and black triangles. For each boundary line, for example, a straight line (808, 810, 812) is determined by designating two points on a two-dimensional graph, and an arrow () is used to specify the direction of which area to be set by the straight line. 809, 811, 813). A boundary line can be specified as a straight line or a line segment. The final condition specifies AND (logical product) or OR (logical sum) of conditions specified by multiple boundaries. In some cases, an exceptional defect sample (for example, defect sample 814) is included in the teaching sample due to the attribute distribution, and it is determined by the user whether or not to include these in the boundary. FIG. 8 (c) shows an example in which the defect sample 814 is excluded from the black triangle class. Also, as shown in Fig. 8 (d), it is possible to draw a free curve (815) with the mouse and specify the direction by using the arrow (816) to specify the condition.
Ό o Ό o
3つの属性を選択した場合、 第 8図 (e) のように属性 f 1、 f 2、 f 3の三次元グラフを表示することが考えられる。 丸と三角で表示された 2 クラスを分類したいという状況を想定して、 スプライン曲面等の曲面式あ るいは平面パッチの集合で近似された識別面を複数用いて属性空間を分割 することができる。 二次元画面上に表示される三次元の属性空間は視点を 変えて表示させることが可能である。 また、 ユーザの理解を助けるため識 別曲面によって分割された領域ごとに色分けして表示する機能を有する。 第 8図 (e ) では識別曲面によって分割された 2つの領域のどちらに属す るかに応じて白と黒に各欠陥サンプルが色分けされている。 すなわち、 本 例では丸い欠陥サンプルが白に、 三角の欠陥サンプルが黒に色分けされれ ば良好な識別曲面であるといえる。 次に識別曲面の調整方法の一例を説明 する。 欠陥サンプル 819は三角の欠陥クラスに属するものであるから黒 に色分けされることが望ましいが、 第 8図 (e) では白に色分けされてい る。 これを識別面の反対側に移動させて黒に色分けするため、 曲面上の任 意の点 820を移動させ (曲面上に存在しない任意の制御点を移動させる 場合もある) 、 識別曲面を欠陥サンプル 8 19をまたいで局所的に変形さ せる。 第 8図 (f ) では欠陥サンプル 819は黒に色分けされている。 こ のような調整を繰り返し試行することによって、 良好な識別面を生成する ことができる。 また、 識別曲面の自由度は任意に設定可能である。 - 次に前記の手順により指定された条件 1〜4 (705〜708) を組み 合わせて、 各欠陥クラスに属する最終的な条件式を設定する。 条件の組み 合わせは論理式 (AND (*) 、 OR (十) 、 NOT (no t) , XOR (χ ο r) ) を用いて、 例えば欠陥クラス C4に属する条件として条件 1 と条件 3の ANDをとりたい場合には枠 7 13内に「1 * 3」と記述する。 また、 参考値として前記システム内部の処理によって算出した境界線 -識 別面の候補を算出、 表示させる機能をもち、 ユーザはこれを初期値として 詳細な調整を行うことができる。 設定した各境界線 ·識別面の情報は内部 に保存され、 後から呼び出し、 修正することが可能である。 When three attributes are selected, a three-dimensional graph of attributes f1, f2, and f3 may be displayed as shown in Fig. 8 (e). Assuming a situation where it is desired to classify the two classes indicated by circles and triangles, the attribute space can be divided using a surface equation such as a spline surface or multiple identification surfaces approximated by a set of planar patches. . The three-dimensional attribute space displayed on the two-dimensional screen can be displayed from different viewpoints. In addition, it has a function to color-code and display each area divided by the identification surface to help the user understand. In Fig. 8 (e), each defect sample is color-coded into white and black according to which of the two regions divided by the identification surface. That is, the book In the example, if the round defect sample is colored white and the triangular defect sample is colored black, it can be said that the surface is a good identification surface. Next, an example of a method for adjusting the identification surface will be described. Since the defect sample 819 belongs to the triangular defect class, it is desirable to be colored black, but in Fig. 8 (e), it is colored white. By moving this to the opposite side of the identification surface and coloring it in black, any point 820 on the surface is moved (in some cases, any control point that does not exist on the surface is moved), and the identification surface is defective. Deform locally over sample 819. In FIG. 8 (f), the defect sample 819 is colored black. By repeatedly performing such adjustment, a good discrimination surface can be generated. Also, the degree of freedom of the identification surface can be set arbitrarily. -Next, combine the conditions 1 to 4 (705 to 708) specified by the above procedure to set the final conditional expression belonging to each defect class. The combination of conditions is determined by using logical expressions (AND (*), OR (ten), NOT (not), XOR (χ ο r)). If you want to take the value, write “1 * 3” in the box 713. In addition, it has a function of calculating and displaying a boundary line-identification surface candidate calculated by the processing inside the system as a reference value, and the user can make detailed adjustment using this as an initial value. The information of each set border and identification surface is stored internally, and can be called up and modified later.
1. 3. 4. 2 学習型分類 (教示型分類)  1. 3. 4. 2 Learning type classification (teaching type classification)
学習型分類は、 基本的に教示によって分類ルールを生成する分類方式で ある。 学習型分類方式は、 分類に有効と考えられる属性が存在したとして も、 前記ルールベース型分類のような条件設定が困難であるような属性に 対し有効である。 この方式の分類ルールを採用する場合には、 第 7図のチ エックボックス 716にチェックを入れる。 次にウィンドウ 717におい て、学習型エンジンに用いる属性を複数選択する。属性の選択に関しては、 手動で選択しなくとも、 学習によって前記属性毎にその有効度等に応じた 重み付けを行う等の方法によって自動で選択することも可能である。 ただ し、 この様な属性の自動選択は、 学習サンプル数が十分に確保できない場 合、 過学習を引き起こす可能性があること、 また、 学習サンプルに関して のみ分離度が高い属性分布である可能性があること等から、 手動による属 性の選択と学習とを組み合わせて行える機能を有する。 次に 7 1 8のプル ダウンメニューから最尤推定法、 K一 N N法等、 分類に使用するエンジン を選択する。 本メニューの中には自動選択モードもあり、 学習サンプル数 に応じて適切なエンジンを自動選択させる機能を有する。 本エンジンは基 本的に条件型エンジンを用いない場合、 あるいは条件型エンジンにおいて 欠陥クラスが定まらなかった欠陥サンプルに対して適用されるが、 第 5図 のウィンドウ 5 0 1内で分岐を 2つつなげ、 上位を学習型、 下位を条件型 とする構成も可能である。 Learning type classification is a classification method that basically generates classification rules by teaching. The learning-based classification method is effective for attributes whose conditions are difficult to set, such as the rule-based classification, even if there are attributes considered to be effective for the classification. When adopting this type of classification rule, check the check box 716 in FIG. Next, in a window 717, a plurality of attributes used for the learning engine are selected. Regarding attribute selection, Instead of manual selection, it is also possible to select automatically by a method such as performing weighting according to the validity or the like for each attribute by learning. However, such automatic selection of attributes may cause over-learning if the number of training samples is not sufficient, and may have an attribute distribution with a high degree of separation only for training samples. For some reasons, it has a function that can be combined with manual attribute selection and learning. Next, select the engine to be used for classification, such as the maximum likelihood estimation method or the K-NN method, from the pull-down menu of 718. There is also an automatic selection mode in this menu, which has a function to automatically select an appropriate engine according to the number of learning samples. This engine is basically applied when the conditional engine is not used or when the defect class is not determined in the conditional engine, but two branches in the window 501 in Fig. 5 are used. It is also possible to have a configuration in which the upper level is a learning type and the lower level is a conditional type.
また、 前記属性分布の表示及び決定木、 分類ルール生成等において使用 される各種属性は、 任意の複数属性に対し、 主成分分析等による属性の直 交化処理、 前記直交化された上位主要成分のみを用いることによる属性次 元数の圧縮処理、 またはカーネル関数等を用いた属性空間上における属性 分布の再配置処理の少なくとも一つ以上の組み合わせからなる処理 (異な る欠陥クラスに属する欠陥サンプルにおける属性が、 属性空間上において 高い分離度となるような処理) を行うことが可能であり、 そのように再設 計された属性を新規属性として第 4図のウインドウ 4 5 4に加え、 他の属 性と同等に利用できる機能を有する。 前記、 3つの処理の組み合わせによ つて、 より単純で明快な識別面を用いて欠陥分類が可能となる等の利点が あるが、 一般にその属性が物理的に意味するところは難解となる。 本発明 における欠陥属性分布の表示機能、 及び決定木、 分類ルールの決定法にお いては、 属性の物理的意味に関する知見はなくとも、 ある程度、 良好な欠 陥分類器 1 2 0を生成することが可能となる。 The various attributes used in the display of the attribute distribution, the decision tree, the generation of the classification rules, and the like are: orthogonalization processing of the attributes by principal component analysis; Processing consisting of at least one combination of the compression processing of the attribute dimension by using only one or the rearrangement processing of the attribute distribution in the attribute space using the kernel function etc. (for defect samples belonging to different defect classes) It is possible to perform such processing that the attribute has a high degree of separation in the attribute space). The attribute redesigned in this way is added as a new attribute to the window 454 in FIG. It has functions that can be used as well as attributes. The combination of the above three processes has the advantage that defect classification can be performed using a simpler and clearer identification surface, but generally the attributes are difficult to understand physically. In the display function of the defect attribute distribution, the decision tree, and the determination method of the classification rule in the present invention, to a certain extent, there is no knowledge about the physical meaning of the attribute. It is possible to generate a defect classifier 1 20.
1 . 3 . 5 分類結果評価 (ステップ 3 0 9 )  1.3.5 Classification result evaluation (Step 309)
ステップ 3 0 9における前記生成した本発明に係る欠陥分類器の評価方 法について説明する。 この評価は分類の決定木が完全に完成していなくて も、 行うことが可能である。 任意の分岐における分類ルール設定後、 第 4 図の 「再分類」 ボタン 4 2 3を押すことによって、 その分岐を用いた欠陥 分類をゥヱハマップ 4 2 0上に表示する。 この結果が良好でなければ、 教 示サンプル、 決定木構造及び分類ルールを適宜修正し、 結果が良好であれ ば、 残りの分類ルールを指定していくといつたように、 第 3図のループ 3 0 4を複数回試行しながら本発明に係る欠陥分類器 1 2ひの全体を決定し ていく。  The method of evaluating the generated defect classifier according to the present invention in step 309 will be described. This evaluation can be performed even if the decision tree for classification is not completely completed. After setting the classification rule for an arbitrary branch, by pressing the “re-classification” button 4 23 in FIG. 4, the defect classification using that branch is displayed on the map 4 20. If this result is not good, the teaching sample, decision tree structure, and classification rules are modified as appropriate, and if the result is good, the remaining classification rules are specified as in the loop in Fig. 3. The entirety of the defect classifier 12 according to the present invention is determined while performing 304 multiple times.
全ての決定木,分類ルールが決定したら、 条件 3 1 0を満たし、 処理は 終了する。 また、 ここで生成された本発明に係る欠陥分類器 1 2 0をどの 欠陥検査装置において用いるかを、第 4図に示すチェックボックス 4 1 4、 4 1 5において指定する。 本実施例では、 欠陥レビュー装置 Bにおいて適 用する設定となっている。  When all decision trees and classification rules have been determined, condition 310 is satisfied, and the process ends. Further, which defect inspection apparatus to use the generated defect classifier 120 according to the present invention is designated by check boxes 414 and 415 shown in FIG. In this embodiment, the setting is applied to the defect review device B.
[第二の実施の形態] (欠陥レビュー装置における本発明に係る欠陥分 類器 1 2 0の生成)  [Second embodiment] (Generation of defect classifier 120 according to the present invention in defect review apparatus)
第二の実施の形態について説明する。 第一の実施の形態においては、 一 台の欠陥検査装置における本発明に係る欠陥分類器 1 2 0の生成方法に閧 して述ぺたが、 複数の欠陥検査装置による組み合わせ検査においては、 各 欠陥検査装置毎にどのような分類クラスを割り当てるか、 またその分類を 実現する本発明に係る欠陥分類器 1 2 0の生成方法が課題となる。例えば、 欠陥検出装置、 欠陥レビュー装置による組み合わせ検査において、 欠陥検 出装置で分類し切れなかった欠陥分類クラスを、 欠陥レビュー装置で詳細 分類するといつた階層的な欠陥分類が可能となれば、 欠陥レビュー装置の 分類時における欠陥分類クラス数を絞り込み、 欠陥分類器の効果的な学習 が可能となると考えられる。 しかし従来、 両欠陥検査装置における欠陥分 類基準はそれぞれ個別に設定されており、 統一的な分類基準に基づいた階 層的な欠陥分類クラスが割振られているわけではない。 そこで、 本発明で は検査順序に応じて、 階層的な欠陥分類を行うための欠陥分類クラス、 欠 陥分類器の生成方法を提供する。 A second embodiment will be described. In the first embodiment, the method of generating the defect classifier 120 according to the present invention in one defect inspection apparatus has been described. The problem is what kind of classification class is assigned to each inspection device, and how to generate the defect classifier 120 according to the present invention that realizes the classification. For example, in a combination inspection using a defect detection device and a defect review device, if a defect classification class that could not be completely classified by the defect detection device can be classified in detail by the defect review device becomes possible, a defect Review equipment It is considered that the number of defect classification classes at the time of classification can be narrowed down, and effective learning of the defect classifier can be performed. Conventionally, however, the defect classification standards for both defect inspection systems have been set individually, and hierarchical defect classification classes based on unified classification standards have not been allocated. Therefore, the present invention provides a method of generating a defect classification class and a defect classifier for performing hierarchical defect classification according to the inspection order.
本発明における欠陥分類クラス、 及び欠陥分類器の生成方法は、 レビュ 一サンプリングプランの制御にも効果的である。 例えば、 欠陥検出装置に より任意の欠陥分類クラスに分類された欠陥サンプルに関して、 その後、 欠陥レビュー装置による解析を行っても、 新たに欠陥分類に関する有益な 情報が得られにくい場合には、 レビューサンプル数を減らすという方式が 考えられる。  The method for generating a defect classification class and a defect classifier in the present invention is also effective for controlling a review sampling plan. For example, if a defect sample classified into an arbitrary defect classification class by the defect detection device is later difficult to obtain useful information on defect classification even after analysis by the defect review device, the review sample A method of reducing the number is conceivable.
本実施の形態では、 既に任意の欠陥検出装置において欠陥検出が行われ ていることを前提とし、 欠陥レビュー装置において、 前記欠陥検出装置と 欠陥レビュー装置からそれそれ得られた検査情報を統合して、 よりユーザ の分類要求を満足する効果的、 詳細な欠陥自動分類を実現するための欠陥 分類クラスと欠陥分類器の生成方法に関して述べる。 欠陥レビュー装置に おいて検査された欠陥サンプルは、 前記欠陥検出装置において検査された 欠陥サンプルからサンプリングされた集合となっている。 したがって、 欠 陥レビュー装置において欠陥分類を行う全欠陥サンプルに関して、 欠陥検 出装置、 欠陥レビュー装置から得られた両検査情報を利用することができ る状況である。  In the present embodiment, assuming that defect detection has already been performed in any defect detection device, the defect review device integrates the inspection information obtained from the defect detection device and the defect review device. This paper describes how to generate defect classification classes and defect classifiers to achieve effective and detailed automatic defect classification that satisfies the user's classification requirements. The defect samples inspected by the defect review device are a set sampled from the defect samples inspected by the defect detection device. Therefore, for all defect samples for which defect classification is performed by the defect review device, both inspection information obtained from the defect detection device and the defect review device can be used.
2 . 1 処理の流れ  2.1 Processing flow
以下の説明はそれそれ一台の欠陥検出装置、 欠陥レビュー装置の組み合 わせにおける解析方法に関して特に述べるが、 三台以上の任意の欠陥検査 装置の組み合わせに関しても同様の解析が可能である (第五の実施の形態 において説明) 。 また、 欠陥検出装置、 欠陥レビュー装置の組み合わせ以 外に関しても、 欠陥サンプルが共通している場合、 同様の解析が可能であ る。 第 9図の欠陥分布マップ 9 0 1〜9 0 3は各処理段階における欠陥分 布マップ上の欠陥サンプルの分布と欠陥分類結果を一例として示したもの である。 In the following description, the analysis method for each combination of the defect detection device and the defect review device will be described in particular. However, the same analysis can be performed for any combination of three or more defect inspection devices. Fifth embodiment Described in). Similar analysis can be performed for a defect sample common to a defect detector and a defect reviewer other than the combination. The defect distribution maps 91 to 903 in FIG. 9 show, as an example, the distribution of defect samples on the defect distribution map and the defect classification results at each processing stage.
( 1 ) まず、 半導体デバイス製造の所定の処理工程での処理後に、 欠陥 検出装置による検査を行う。 前記検査により得られた検査情報は必要に応 じてデ一夕サーバ 1 0 7あるいは処理端末装置 1 0 8に送られる。 欠陥分 布マップ 9 0 1は、 一例として欠陥検出装置における欠陥サンプルの分布 と欠陥検出装置における欠陥分類による欠陥粗分類結果 (調整前) を示し たものである。 2 1点の欠陥サンプルが 3つの欠陥分類クラス C a 1 ~ C a 3に分類されている。 ただし、 本ステップにおいて欠陥分類を行うこと は必須でない。  (1) First, after processing in a predetermined processing step of semiconductor device manufacturing, inspection by a defect detection device is performed. The inspection information obtained by the inspection is sent to the data server 107 or the processing terminal device 108 as needed. The defect distribution map 901 shows, for example, the distribution of defect samples in the defect detection device and the result of coarse defect classification (before adjustment) by defect classification in the defect detection device. 2. One defect sample is classified into three defect classification classes C a1 to C a3. However, it is not essential to perform defect classification in this step.
( 2 ) ステップ 9 0 1で検出された欠陥サンプル群を、 必要に応じてレ ビュー検査用にサンプリングする(これをレビューサンプリングと呼ぶ)。  (2) The defect sample group detected in step 901 is sampled for review inspection as necessary (this is called review sampling).
( 3 ) レビューサンプリングされた欠陥サンプル群に対し、 欠陥レビュ 一装置による検査を行う。 ただし、 ここでレビューが行われる半導体デバ イス製造の処理工程は、 ステップ 9 0 1において検査された処理工程と同 一である必要はない。 ここで得られた検査情報は必要に応じてデ一夕サ一 ノ、' 1 0 7あるいは処理端末装置 1 0 8に送られる。  (3) Inspect the defect sample group subjected to the review sampling with a defect review device. However, the processing steps of the semiconductor device manufacturing to be reviewed here need not be the same as the processing steps inspected in step 91. The inspection information obtained here is sent to the data server, '107 or the processing terminal device 108 as necessary.
( 4 ) ( 1 ) および (2 ) においてそれぞれ得られた欠陥検出装置、 欠 陥レビュー装置における両検査情報を基に欠陥レビュー装置における欠陥 分類クラスの決定及び前記欠陥分類クラスへの分類を行う欠陥分類器の生 成を行う。 前記欠陥検出 · レビュー両装置の検査情報を利用することによ り、 欠陥レビュー装置単独では分類困難であった欠陥分類が可能となりう る。 欠陥分布マヅプ 9 0 2は、 一例として欠陥レビュー装置において検査 が行われた欠陥位置と欠陥レビュー装置から得られた検査情報のみを用い て欠陥自動分類した詳細分類結果 (調整前) である。 2 1点から 9点にレ ビューサンプリングされた欠陥サンプルが 4つの欠陥分類クラス C b 1〜、 C b 4に分類された様子を示す。 ここで、 欠陥分布マップ 9 0 1上の欠陥 サンプル d a 1、 d a 2はそれそれ異なる欠陥分類クラス C a 2、 C a 3 に分類されているのに対し、 欠陥分布マップ 9 0 2上において前記欠陥サ ンプル d a 1、 d a 2に対応する欠陥サンプル d b 1、 d b 2は共に同一 欠陥分類クラス C b 3に分類されている。 また逆に、 対応する欠陥サンプ ルが、 欠陥分布マップ 9 0 1においては同一分類クラスに分類され、 欠陥 分布マップ 9 0 2においては異なる分類クラスに分類されているケースも ある。 このような欠陥検査装置間における分類結果の不整合に対し、 両検 査装置の検査情報を用いて欠陥分類を行えば、 前記欠陥サンプルを同一分 類クラスとして分類することも細分類することも可能である。 欠陥分布マ ヅプ 9 0 3は 9 0 1、 9 0 2で得られた検査情報を組み合わせ、 ュ一ザの 分類要求に沿って最適化された欠陥分類の詳細分類結果 (調整後) の一例 である。 例えば欠陥サンプル d a 1 ( d b 1 ) 、 d a 2 ( d b 2 ) に関し ては細分類する欠陥分類器が採用され (欠陥サンプル d b 3は欠陥分類ク ラス C b 5に、 欠陥サンプル d b 4は欠陥分類クラス C b 3にそれぞれ分 類) 、 欠陥が 5つの欠陥分類クラス C b l〜C b 5に分類された様子を示 す。 本第二の実施の形態における欠陥分類クラス及び欠陥分類器の生成方 法は、第一の実施の形態における手順と同様に行うことができる。ただし、 本第二の実施の形態においては、 第 4図に示すウィンドウ 4 5 5、 4 5 6 に表示された欠陥検出 · レビュー両装置から得られた属性情報を基に本発 明に係る欠陥分類器を生成することができる。 (4) Based on the inspection information obtained by the defect detection device and the defect review device obtained in (1) and (2), respectively, the defect classification class of the defect review device is determined and classified into the defect classification class. Generate a classifier. By using the inspection information of both the defect detection and review devices, it is possible to perform defect classification that was difficult to classify using the defect review device alone. The defect distribution map 902 is inspected by a defect review device as an example. This is a detailed classification result (before adjustment) in which defects are automatically classified using only the defect position where the defect was performed and the inspection information obtained from the defect review device. 2 This shows how defect samples that have been reviewed and sampled from 1 to 9 points are classified into four defect classification classes Cb1 to Cb4. Here, the defect samples da 1 and da 2 on the defect distribution map 90 1 are classified into different defect classification classes C a 2 and C a 3, whereas the defect samples da 1 and da 2 on the defect distribution map 90 2 The defect samples db1 and db2 corresponding to the defect samples da1 and da2 are both classified into the same defect classification class Cb3. Conversely, in some cases, the corresponding defect samples are classified into the same classification class in the defect distribution map 901, and are classified into different classification classes in the defect distribution map 902. If defect classification is performed using the inspection information of both inspection devices for such inconsistency in the classification results between the defect inspection devices, the defect samples can be classified as the same classification class or finely classified. It is possible. The defect distribution map 903 combines the inspection information obtained in 901 and 902, and is an example of the detailed classification result (after adjustment) of the defect classification optimized according to the classification requirements of the user It is. For example, defect classifiers for subclassifying defect samples da 1 (db 1) and da 2 (db 2) are used (defect sample db 3 is defect class C b5, defect sample db 4 is defect class Class Cb3), showing how defects were classified into five defect classification classes Cbl to Cb5. The method of generating the defect classification class and the defect classifier in the second embodiment can be performed in the same manner as the procedure in the first embodiment. However, in the second embodiment, the defect according to the present invention is based on the attribute information obtained from both the defect detection and review devices displayed in windows 455 and 456 shown in FIG. A classifier can be generated.
以上の手順に従い、 欠陥レビュー装置における本発明に係る欠陥分類器 の設定は終了する。 一旦欠陥分類器が生成された後は、 前記欠陥分類器を 用いてその後のウェハ検査が継続される。 ただし、 その後得られる検査情 報を基にして継続的に前記欠陥分類器の変更あるいは追加学習を行うこと が可能である。 According to the above procedure, the setting of the defect classifier according to the present invention in the defect review device is completed. Once a defect classifier has been created, And subsequent wafer inspection is continued. However, it is possible to continuously change or additionally learn the defect classifier based on the inspection information obtained thereafter.
2. 2 画像処理手順の変更あるいは画像処理パラメ一夕の調整 欠陥検査装置間において検査情報を統合して利用する際、 それらの検査 情報間の整合性が問題となることがある。 整合がとれていない場合とは、 例えば、 同一欠陥サンプルにおける配線領域の認識結果、 あるいは欠陥領 域と前記配線領域の位置関係 (孤立ノ単線/跨線判定) 、 あるいは欠陥の 大きさや高さ、 あるいは欠陥の成膜との上下関係 (膜上 Z膜下判定) とい つた欠陥属性が複数の欠陥検査装置間で異なる場合である。 以下、 前記整 合方法の一実施例について説明する。  2.2 Change of image processing procedure or adjustment of image processing parameters When integrating and using inspection information between defect inspection equipment, consistency between the inspection information may become a problem. The case where the matching is not achieved is, for example, the recognition result of the wiring region in the same defect sample, the positional relationship between the defective region and the wiring region (isolated single line / overlay judgment), the size and height of the defect, Or, there is a case where the defect attributes such as the vertical relationship with the film formation of the defect (determination on the film under the Z film) differ among a plurality of defect inspection apparatuses. Hereinafter, an embodiment of the matching method will be described.
第 13図は、 欠陥検出装置 (通常の欠陥検査装置) A、 および欠陥レビ ユー装置 Bにおける同一欠陥サンプルの欠陥画像の画像処理結果を示す図 である。 検査画像 1301、 1302はそれそれ欠陥検出装置 Aにおいて 撮像された参照画像及び欠陥画像を示す。 また、 参照画像 1301、 欠陥 画像 1302に対して任意の画像処理 A ( 1303) 、 B ( 1304) を 行い、 配線領域を二値化した画像がそれそれ二値画像 1305、 1306 である。 ただし、 二値化画像 1306においては、 欠陥領域 (図中では白 丸で示してある) も二値化して表示している。 1301〜1306に対応 する欠陥レビュー装置 Bにおける参照画像及び欠陥画像、 画像処理 C及び D、 並びに二値化画像がそれそれ 1307〜13 12である。 ここで、 二 値画像 1305および 1306においては一例として配線認識に失敗し、 中央の配線が二値化領域として抽出されていない例を示した。 実際の欠陥 領域は二つの配線に跨って存在する致命性の高い欠陥であり、 欠陥レビュ 一装置 Bにおいては二値画像 1312から孤立欠陥であると判断されてい るが、 欠陥検出装置 Aにおいては二値画像 1306から断線欠陥として判 断されている。 このような欠陥属性の違いを整合するように画像処理手順 の変更あるいは画像処理パラメ一夕の調整を行う必要がある。 FIG. 13 is a diagram showing image processing results of a defect image of the same defect sample in the defect detection device (ordinary defect inspection device) A and the defect review device B. Inspection images 1301 and 1302 indicate a reference image and a defect image captured by the defect detection device A, respectively. Also, arbitrary image processing A (1303) and B (1304) are performed on the reference image 1301 and the defect image 1302, and the binarized images of the wiring area are the binary images 1305 and 1306, respectively. However, in the binarized image 1306, the defect area (indicated by a white circle in the figure) is also binarized and displayed. Reference images and defect images in the defect review device B corresponding to 1301 to 1306, image processing C and D, and binarized images are 1307 to 1312, respectively. Here, as an example, in the binary images 1305 and 1306, wiring recognition has failed, and an example has been shown in which the central wiring is not extracted as a binarized region. The actual defect area is a highly fatal defect existing over two wirings, and is determined to be an isolated defect from the binary image 1312 in the defect review apparatus B, but is determined in the defect detection apparatus A to be an isolated defect. From the binary image 1306, Has been refused. It is necessary to change the image processing procedure or adjust the image processing parameters so as to match such differences in defect attributes.
そこで、 欠陥レビュー装置 Bにおいて得られた二値画像 1 3 1 1から、 倍率変更、 あるいは歪み補正、 あるいは濃淡画像の場合は明度補正等の処 理を行い、 欠陥検出装置 Aにおける配線二値画像の正解パタンとして教示 パタン 1 3 1 3を生成する。 次に、 教示パタン 1 3 1 3と一致あるいは類 似する処理結果が二値画像 1 3 0 5において得られるように画像処理 1 3 0 3における画像処理手順の変更あるいは画像処理パラメータの調整を行 う。 欠陥画像に関しても同様であるが、 欠陥画像においては配線領域のみ ならず、 欠陥領域の大きさも整合させることが考えられる。 そもそも、 一 例としてあげた欠陥検出装置 Aにおける参照画像 1 3 0 1、 欠陥画像 1 3 0 2は、 欠陥レビュー装置 Bにおける参照画像 1 3 0 7、 欠陥画像 1 3 0 8に対し、 コントラストや解像度の面において劣っており、 画像処理パラ メ一夕の設定は困難な例であった。 前述の手順に基づき、 複数検査装置間 における検査情報の整合のみならず、 設定困難な各種画像処理パラメ一夕 の設定も可能になる。  Therefore, from the binary image 1311 obtained by the defect review device B, processing such as magnification change, distortion correction, or brightness correction in the case of a grayscale image is performed, and the wiring binary image in the defect detection device A is processed. The teaching pattern 1 3 1 3 is generated as the correct pattern of. Next, the image processing procedure in the image processing 1303 is changed or the image processing parameters are adjusted so that a processing result that matches or is similar to the teaching pattern 1313 is obtained in the binary image 1305. U. The same applies to a defect image, but in the defect image, not only the wiring area but also the size of the defect area may be matched. In the first place, the reference image 1301 and the defect image 1302 in the defect detection device A given as an example are different from the reference image 1307 and the defect image 13008 in the defect review device B in contrast and contrast. The resolution was inferior, and setting of the image processing parameters was a difficult example. Based on the above-described procedure, not only matching of inspection information among a plurality of inspection apparatuses but also setting of various image processing parameters which are difficult to set can be performed.
本実施例においては教示パタン 1 3 1 3を生成する検査画像 1 3 1 1、 1 3 1 2を取得する欠陥検査装置として欠陥レビュー装置 Bを選択した。 どの欠陥検査装置から教示パタン生成するかの選択は、 ユーザが各種検査 画像の同時レビュー画面から判断することも、 任意のルールを設定するこ とによって自動化することも可能である。 また、 本処理は、 全ての欠陥検 査装置の組み合わせにおいて実施することが可能である。  In the present embodiment, the defect review device B was selected as the defect inspection device for acquiring the inspection images 1311 and 1312 that generate the teaching patterns 1313. The selection of which defect inspection apparatus to generate the teaching pattern can be determined by the user from the simultaneous review screen of various inspection images, or can be automated by setting an arbitrary rule. This processing can be performed in all combinations of defect inspection devices.
[第三の実施の形態] (欠陥検出装置 (通常の欠陥検査装置) における 本発明に係る欠陥分類器 1 2 0の生成)  [Third Embodiment] (Generation of a defect classifier 120 according to the present invention in a defect detection device (ordinary defect inspection device))
この第三の実施の形態においては、 欠陥レビュー装置による詳細検査の 結果を基に、 前記欠陥レビュー装置における欠陥分類を効果的に行うため の、 欠陥検出装置における欠陥分類クラスと欠陥分類器の決定方法、 およ びレビュ一サンプリング方法に関して述べる。 欠陥レビュー装置における 欠陥分類が効果的に行われるためには、 欠陥検出装置における欠陥分類ク ラスが欠陥レビュ一装置における欠陥分類基準に近い分類となることが望 ましい。 欠陥検出装置において分類しきれなかった欠陥分類クラスに関し て欠陥レビュー装置で詳細分類を行うといった階層的な分類が可能となれ ば、 レビュー検査装置において細分化されることのない欠陥検出装置にお ける欠陥分類クラスに分類された欠陥サンプルに関してはレビューサンプ ル数を抑えることできる。 また、 欠陥レビュー装置においては欠陥分類ク ラス数を抑え、 欠陥分類器の効果的な学習が可能となる。 本第三の実施の 形態は欠陥レビュー装置における欠陥分類クラスが既知であることが前提 となっている。 ただし、 第二の実施の形態で述べた欠陥レビュー装置にお ける欠陥分類器のカス夕マイズが行われていることは必須ではない。 すな わち、 本第三の実施の形態における欠陥検出装置の欠陥分類器の決定は、 第 9図の欠陥分布マップ 9 0 3〜9 0 5に相当するが、 前記欠陥分布マツ プ 9 0 3は欠陥分布マップ 9 0 1 - 9 0 3のようなカス夕マイズ後に実施 することも、 カス夕マイズ無しで実施することも可能である。 しかし、 第 二の実施の形態で述べた欠陥レビュー装置における欠陥分類器のカス夕マ ィズが行われている場合は、 本第三の実施の形態における欠陥検出装置に おける欠陥分類器をカス夕マイズにより、 前記欠陥レビュー装置における 欠陥分類クラス C bは、 前記欠陥検出装置における欠陥分類クラス C aの 部分集合、 もしくはそれに近い集合になるように設定できることが期待で きる。 以下の説明は欠陥レビュー装置における欠陥分類クラスならびに欠 陥分類器のカス夕マイズに続いて実施されたことを前提として説明する。 以下の説明は第二の実施の形態と同様、 それそれ一台の欠陥検出装置、 欠 陥レビュー装置による解析方法に関して特に述べるが、 三台以上の任意の 欠陥検査装置の組み合わせに関しても同様の解析が可能である。 In the third embodiment, based on the result of the detailed inspection by the defect review device, the defect review device effectively performs defect classification. The method of determining the defect classification class and defect classifier in the defect detection device, and the review sampling method are described below. In order for defect classification in a defect review device to be performed effectively, it is desirable that the defect classification class in the defect detection device be close to the defect classification standard in the defect review device. If it is possible to perform a hierarchical classification, such as performing a detailed classification with a defect review device on a defect classification class that could not be classified by a defect detection device, a defect detection device that is not subdivided in a review inspection device The number of review samples can be reduced for defect samples classified into the defect classification class. In the defect review system, the number of defect classification classes can be reduced, and effective learning of the defect classifier becomes possible. The third embodiment is based on the premise that the defect classification class in the defect review device is known. However, it is not essential that the defect classifier in the defect review apparatus described in the second embodiment is customized. That is, the determination of the defect classifier of the defect detection apparatus according to the third embodiment corresponds to the defect distribution maps 93 to 95 in FIG. 3 can be carried out after the customization such as the defect distribution map 91-903 or without the customization. However, when the defect classifier in the defect review device described in the second embodiment is customized, the defect classifier in the defect detection device in the third embodiment is customized. It is expected that the defect classification class Cb in the defect review apparatus can be set to be a subset of the defect classification class C a in the defect detection apparatus or a set close to the subset by the evening maze. The following description is based on the assumption that the defect review class was implemented following the customization of defect classifiers and defect classifiers. In the following description, as in the second embodiment, the analysis method using a single defect detection device and defect review device will be particularly described. Similar analysis is possible for a combination of defect inspection devices.
3 . 1 欠陥分類クラスの決定  3.1 Determination of defect classification class
欠陥検出装置 (第一の欠陥検査装置) における欠陥分類クラスを、 その 後に行われる欠陥レビュー検査装置 (第二の欠陥検査装置) における欠陥 詳細分類が効果的に行われるように、 前記欠陥レビュー装置における欠陥 分類クラスに類似したクラスになるように設定する。 ここでは、 欠陥レビ ュ一装置 (第二の 陥検査装置) における欠陥分類クラス C bが、 欠陥検 出装置 (第一の欠陥検査装置) における欠陥分類クラス C aの部分集合、 もしくはそれに類似した分類となるように設定する。 一例として欠陥分布 マヅプ 9 0 3に示すように欠陥レビュー装置における欠陥分類クラス C b l〜C b 5が与えられたとして、 該欠陥分類クラス C b l〜C b 5を基に 欠陥検出装置から得られる検査倩報だけを用いて欠陥検出装置における欠 陥分類クラスの教示パタンを欠陥分布マップ 9 0 4として作成する。 次に 前記教示パタンに類似した欠陥分類クラスへの分類を実現する欠陥検出装 置における欠陥分類器を生成する。 ここで、 第二の実施の形態における欠 陥レビュー装置における欠陥分類器のカス夕マイズと異なる点は、 利用で きる検査情報は欠陥検出装置から得られたものだけであり、 欠陥レビュー 装置から得られた検査情報は利用することができないという点である。 す なわち、 着目する欠陥検出装置において利用できる検査情報は、 実際の検 査における検査順序において前記着目する欠陥検出装置の以前に得られた 検査情報のみである。 欠陥分類器の変更の方法に関しては、 第一の実施の 形態において述べた欠陥分類器の設定方法と同様に行うことができる。 一 例として、 教示分類パタンである欠陥分布マップ 9 0 4における欠陥分類 クラスを欠陥検出装置において極力分類する欠陥分類器を生成し、 前記生 成された欠陥分類器を用いて欠陥分類を行った粗分類結果 (調整後) が、 欠陥分布マップ 9 0 5である。 本実施例は欠陥分布マップ 9 0 4における 欠陥分類クラス C a 2と C a 5を分類することができなかった例であるが (欠陥分布マヅプ 9 0 4における欠陥分類クラス C a 2、 C a 5は欠陥分 布マップ 9 0 5における欠陥分類クラス C a 2に統合されている) 、 他の 欠陥分類クラス C a 1、 C a 3、 C a 4に関しては教示分類パタン 9 0 4 に近い欠陥分類が行われている。 以上の手順に従い、 欠陥検出装置におけ る欠陥分類器の設定は終了する。 一旦分類器が生成された後は、 前記欠陥 分類器を用いてその後のウェハ検査が継続される。 ただし、 その後得られ る検査情報を基に継続的に前記欠陥分類器の変更を行うことが可能である ( ここで、 以上述べた欠陥分布マップ 9 0 1〜9 0 5に示した欠陥検出、 レビュー両装置における各欠陥分類クラスの決定手順に関して、 各欠陥分 類クラス間の関係をまとめたものが第 1 1図である。 第 1 1図における各 表 1 1 0 1〜 1 1 0 3において縦の項目は欠陥検出装置における欠陥分類 クラスを、 横の項目は欠陥レビュー装置における欠陥分類クラスを示して いる。 また、 欄内の数字は、 欠陥レビュー装置における欠陥サンプルに関 して、 欠陥検出及びレビュー両装置における各分類クラスに分類された分 類数を示している。 項目欄の欠陥分類クラス名は第 9図と対応している。The defect review device so that the defect classification class in the defect detection device (first defect inspection device) and the defect detailed classification in the defect review inspection device (second defect inspection device) performed thereafter are effectively performed. Set to be a class similar to the defect classification class in. Here, the defect classification class C b in the defect review device (second defect inspection device) is a subset of the defect classification class C a in the defect detection device (first defect inspection device), or a similar subset. Set to be classified. As an example, as shown in a defect distribution map 903, assuming that defect classification classes C bl to C b 5 in a defect review device are given, a defect detection device can be obtained based on the defect classification classes C bl to C b 5 A teaching pattern of a defect classification class in the defect detection device is created as a defect distribution map 904 using only the inspection information. Next, a defect classifier in the defect detection device for realizing the classification into the defect classification classes similar to the teaching pattern is generated. Here, the difference from the defect classifier in the defect review device in the second embodiment is that only the inspection information that can be used is obtained from the defect detection device. The point is that the obtained test information cannot be used. That is, the inspection information that can be used in the defect detection device of interest is only the inspection information obtained before the defect detection device of interest in the inspection order in the actual inspection. The method of changing the defect classifier can be the same as the method of setting the defect classifier described in the first embodiment. As an example, a defect classifier that classifies the defect classification class in the defect distribution map 904, which is a teaching classification pattern, as much as possible in a defect detection device is generated, and defect classification is performed using the generated defect classifier. The result of the coarse classification (after adjustment) is the defect distribution map 905. In this embodiment, the defect distribution map This is an example in which the defect classification classes C a2 and C a5 could not be classified. (The defect classification classes C a2 and C a5 in the defect distribution map 904 are the defects in the defect distribution map 905.) Classification class C a2) and other defect classification classes C a1, C a3, and C a4 are subjected to defect classification similar to the teaching classification pattern 904. According to the above procedure, the setting of the defect classifier in the defect detection device is completed. Once a classifier is created, subsequent wafer inspections are continued using the defect classifier. However, it is possible to continuously change the defect classifier based on the inspection information obtained thereafter ( here, the defect detection maps shown in the defect distribution maps 91 to 95 described above, Fig. 11 summarizes the relationship between the defect classification classes for the procedure for determining each defect classification class in both review devices. The vertical column shows the defect classification class in the defect detection system, the horizontal column shows the defect classification class in the defect review system, and the figures in the columns indicate the defect detection class for the defect sample in the defect review system. The number of classifications classified into each classification class in both the review and review equipment is shown.The defect classification class name in the item column corresponds to Fig. 9.
①表 1 1 0 1は、 欠陥分類クラスならびに欠陥分類器が調整前の両欠陥 検査装置における欠陥分類クラス間の包含関係を示している (第 9図に示 す欠陥分布マップ 9 0 1と欠陥分布マップ 9 0 2との関係に対応) 。 例え ば、 枠 1 1 0 4で囲まれた領域は、 欠陥レビュー装置において欠陥分類ク ラス C b 3に分類されたサンプルは、 欠陥検出装置においては欠陥分類ク ラス C a 2あるいは C a 3のいずれかに分類されていたことを示す。まず、 始めに行う欠陥レビュー装置における欠陥分類クラスの調整では、 最終的 に欠陥レビュー装置における欠陥分類クラス C bが、 欠陥検出装置におけ る欠陥分類クラス C aの部分集合となるように、 例えば 1 1 0 4で示すよ うに、 欠陥レビュー装置における一つの欠陥分類クラス C b 3に対し、 欠 陥検出装置における二つ以上の欠陥分類クラス C a 2、 C a 3が対応しな いように、 欠陥分類器を調整し欠陥分類クラスを細分する。 このときユー ザの分類要求に応じて不要な欠陥分類クラスの削除、 あるいは新たな欠陥 クラスの追加、 あるいは欠陥クラスの組替えを行っても構わない。 (1) Table 111 shows the defect classification class and the inclusion relationship between the defect classification classes in both defect inspection systems before the defect classifier is adjusted (the defect distribution map 901 shown in Fig. 9 and the defect distribution class). Corresponding to the relationship with the distribution map 902). For example, the area surrounded by the frame 1104 indicates that the sample classified into the defect classification class Cb3 by the defect review device is the defect classification class C a2 or C a3 by the defect detection device. Indicates that it was classified as either. First, in the first adjustment of the defect classification class in the defect review device, for example, the defect classification class Cb in the defect review device is a subset of the defect classification class Ca in the defect detection device. As shown by 1104, one defect classification class Cb3 in the defect review equipment is missing. The defect classifier is adjusted and the defect classification class is subdivided so that two or more defect classification classes C a 2 and C a 3 in the defect detection device do not correspond. At this time, an unnecessary defect classification class may be deleted, a new defect class may be added, or a defect class may be rearranged according to a user's classification request.
②表 1 1 0 2は、 前記調整により得られた調整後の欠陥レビュー装置に おける欠陥分類クラスと調整前の欠陥検出装置における欠陥分類クラスと の包含関係を示している (第 9図に示す欠陥分布マップ 9 0 1と欠陥分布 マップ 9 0 3との関係に対応) 。 表 1 1 0 1と比較した際、 表 1 1 0 1に おいて欠陥分類クラス C b 3に分類される欠陥分類クラスが C a 2と C a 3であったのが、 表 1 1 0 2において欠陥分類クラスが C a 3のみになつ たことから、 例えば表 1 1 0 2における欠陥分類クラス C a 3に属する欠 陥を多くレビューしたいという要求に対し、 欠陥分類クラス C a 2は欠陥 分類クラス C a 3の候補から外れたため、 欠陥分類クラス C a 3に分類さ れた欠陥サンプルのレビュー数を増やすことで効果的に分類が実現される ようになる。  ② Table 1102 shows the inclusion relationship between the defect classification class in the defect review device after adjustment obtained by the above adjustment and the defect classification class in the defect detection device before adjustment (shown in Fig. 9). This corresponds to the relationship between the defect distribution map 901 and the defect distribution map 903). When compared with Table 1101, the defect classification classes classified as defect classification class Cb3 in Table 1101 were Ca2 and Ca3. Since the defect classification class was only Ca3 in the above, for example, in response to a request to review many defects belonging to the defect classification class Ca3 in Table 1102, the defect classification class Ca2 Since the candidate is no longer a candidate of class C a3, the classification can be effectively realized by increasing the number of reviews of the defect sample classified into the defect classification class C a3.
次に欠陥検出装置における欠陥分類クラス C aを、 欠陥レビュー装置に おける欠陥分類クラス C bと類似するように調整する。 具体的には枠 1 1 0 5、 1 1 0 6においてそれそれ欠陥分類クラス C b 2と C b 5、 欠陥分 類クラス C b 3.と C b 4を、 欠陥検出装置において細分類するように欠陥 分類器を調整する。 ただし、 欠陥検出装置においては、 欠陥レビュー装置 における検査情報を利用することができないため、 前記欠陥レビュー装置 における欠陥分類性能に対し、分類の信頼性が得られない状況もありうる。 そのような場合は、 あえて細分類しない、 あるいは細分類してもレビュー サンプル数を増やして確認する等の処理が考えられる。  Next, the defect classification class C a in the defect detection device is adjusted to be similar to the defect classification class C b in the defect review device. Specifically, the defect classification classes Cb2 and Cb5 and the defect classification classes Cb3 and Cb4 in the frames 1105 and 1106, respectively, should be subdivided in the defect detection device. Adjust the defect classifier to However, since the defect detection device cannot use the inspection information in the defect review device, there may be a situation where the reliability of the classification cannot be obtained with respect to the defect classification performance in the defect review device. In such a case, it is conceivable to perform processing such as not dare subclassing, or increase the number of review samples to confirm even if subclassifying.
③表 1 1 0 3は、 前記調整により得られた調整後の両欠陥検査装置にお ける欠陥分類クラスに属する欠陥サンプルの包含関係を示している (第 9 図に示す欠陥分布マップ 9 0 3と欠陥分布マップ 9 0 5との関係に対応)。 表 1 1 0 2と比較した際、 表 1 1 0 2において欠陥分類クラス C a 3が欠 陥分類クラス C a 3、 C a 4に分割され、 欠陥分類クラス C b 3、 C b 4 を分類可能となっている。 本実施例においては、 枠 1 1 0 5内の欠陥分類 クラスの関係に関して、 枠 1 1 0 7においても変更はない。 これは、 そも そも欠陥検出装置から得られた検査情報のみからでは分類困難であつた場 合と、前述したように分類の信頼性から故意に行った場合とが考えられる。 この結果、 欠陥分類クラスの対応のみに着目すると、 欠陥検出器において 欠陥分類クラス C a 2に分類された欠陥サンプルのみレビュー検査を行え ば最終的な詳細分類が可能ということになる。 実際には、 レビューサンプ リングの割合を欠陥分類クラス C a 2において増すといった処理方法が考 えられる。 ③ Table 1103 shows the inclusion relationship of defect samples belonging to the defect classification class in both defect inspection devices after the adjustment obtained by the above adjustment (No. 9). This corresponds to the relationship between the defect distribution map 903 and the defect distribution map 905 shown in the figure). When compared with Table 1102, the defect classification class C a3 in Table 1102 is divided into defect classification classes C a3 and C a4, and the defect classification classes C b3 and C b4 are classified. It is possible. In the present embodiment, there is no change in the relationship between the defect classification classes in the frame 1105 even in the frame 1107. This is considered to be the case where it is difficult to classify only from the inspection information obtained from the defect detection device in the first place, or the case where the classification is performed intentionally due to the reliability of the classification as described above. As a result, focusing only on the correspondence of the defect classification classes, the final detailed classification is possible if the defect detector performs the review inspection only on the defect samples classified into the defect classification class C a 2. In practice, a processing method is conceivable in which the ratio of review sampling is increased in defect classification class C a 2.
また、 欠陥分類クラスの決定においては、 ユーザに複数の欠陥検査装置 における欠陥分類クラス間の関係を分かりやすく示すことが有効である。 . 第 1 1図は前記欠陥分類クラス間の関係を示す表示方法の一例である。 各 欠陥分類クラスへの分類数を表示することにより、 各分類クラス間の重複 度合いを知ることができる。  In determining the defect classification class, it is effective to clearly show the user the relationship between the defect classification classes in a plurality of defect inspection apparatuses. FIG. 11 is an example of a display method showing the relationship between the defect classification classes. By displaying the number of classifications for each defect classification class, the degree of overlap between the classification classes can be known.
3 . 2 レビューサンプリング方法  3.2 Review sampling method
次にレビューサンプリングの方法に関して述べる。 前述のように、 欠陥 レビュー装置における欠陥分類クラス C bが、 欠陥検出装置における欠陥 分類クラス C aの部分集合、 あるいはそれに類似した集合になるように設 定すると、 欠陥検出装置において欠陥検出及びレビュー両装置に共通な欠 陥分類クラスに分類された欠陥サンプルに関してはレビュ一検査の必要性 は低いということになる。 逆にレビュー検査において更に詳細クラスへと 分類される欠陥分類クラスに分類された欠陥サンプルに関してはレビュー 検査を行う必要性が高い。 すなわち、 前記レビュー検査の必要性に応じて サンプリング数を制御することが考えられる。 欠陥分布マップ 9 0 3、 9 0 5は説明用の例であり、 欠陥サンプル総数が極めて少ないため、 欠陥分 布マップ 9 0 5中の欠陥点 d a 3のみレビューサンプリングすれば欠陥詳 細分類の全体像を把握することができる例であるが、 このようなケースは 現実的ではない。 実際には、 欠陥点数は非常に多く、 また欠陥検出装置の 画質はレビュ一検査のそれに比べ一般に劣るので、 欠陥検出装置において 詳細な欠陥分類クラスへの分類されることはあまり期待できない。 また、 分類された欠陥サンプルに関しても、 その分類結果が常に信頼できるわけ ではない。 そのため実際の検査においてはどの欠陥分類クラスに分類され た欠陥サンプル群に対しても、 数点のレビューサンプリングを行い、 教示 分類パタン関して詳細分類が困難であった欠陥分布マップ 9 0 5中 C a 2 のような欠陥分類クラス (欠陥レビュ一装置における複数の欠陥分類クラ ス C b 2、 C b 5が含まれている) に関しては特に他の欠陥分類クラスよ り多めにサンプリングを行うといった方法や、 欠陥分類結果の信頼性に応 じてサンプリング数を変化させる方法が考えられる。 Next, the review sampling method is described. As described above, if the defect classification class C b in the defect review device is set to be a subset of the defect classification class C a in the defect detection device, or a similar set, the defect detection device performs defect detection and review. The need for review inspection is low for defect samples classified into the defect classification class common to both devices. Conversely, it is highly necessary to conduct a review inspection on defect samples classified into a defect classification class that is further classified into a detailed class in the review inspection. That is, according to the necessity of the review inspection It is conceivable to control the number of samplings. The defect distribution maps 903 and 905 are examples for explanation, and the total number of defect samples is extremely small, so if only the defect point da3 in the defect distribution map 905 is sampled for review, the entire defect detailed classification will be performed. This is an example where the image can be grasped, but such a case is not realistic. In practice, the number of defects is very large, and the image quality of the defect detector is generally inferior to that of the review inspection. Therefore, it is not expected that the defect detector will be classified into a detailed defect classification class. In addition, the classification results of classified defect samples are not always reliable. Therefore, in the actual inspection, defect sampling maps classified into any of the defect classification classes were subjected to review sampling at several points, and the defect distribution map was difficult to classify in detail with respect to the teaching classification pattern. For defect classification classes such as a2 (including multiple defect classification classes Cb2 and Cb5 in defect review equipment), a method of sampling more than other defect classification classes is used. Another method is to change the number of samples according to the reliability of the defect classification result.
レビューサンプリングをどの程度の割合で行うかは、 前述のように欠陥 検出装置における欠陥分類クラス毎に判定することも、 欠陥サンプル毎に 判定することも、 あるいはそれらを共に考慮して判定することも可能であ る。 特に欠陥サンプル毎の判定においては前記欠陥分類結果の信頼性を判 断要素とするのが有効である。 前記欠陥分類結果の信頼性に関しては、 各 欠陥分類クラスへの帰属度を定義することによって、 各欠陥サンプルを大 ぎく、  As described above, the rate at which review sampling is performed can be determined for each defect classification class in the defect detection apparatus, for each defect sample, or in consideration of both. It is possible. In particular, in the judgment for each defect sample, it is effective to use the reliability of the defect classification result as a judgment factor. Regarding the reliability of the defect classification result, by defining the degree of belonging to each defect classification class, each defect sample is divided into:
( 1 ) 任意の欠陥分類クラスに分類される欠陥  (1) Defects classified into any defect classification class
( 2 ) 任意の複数の欠陥分類クラス間で帰属度が均衡した境界欠陥 (判定 困難)  (2) Boundary defects in which the degree of membership is balanced among arbitrary multiple defect classification classes (difficult to determine)
( 3 ) 学習時には存在しなかった未知欠陥 の三つに分類することが可能となる。 前記 (2) 、 (3) に関してはレビ ュ一検査の必要性大とし、 (1) に関してもその帰属度が低い場合はレビ ユー検査の必要性大とする方式が考えられる。 以上のように欠陥検出装置 における欠陥分類クラスおよび欠陥分類器 120の生成を行い、 前記欠陥 分類クラスに応じてサンプリング点数を制御することによって、 複数検査 装置間において階層的な整合性をもち、 かつ効果的な欠陥検査を行うこと ができる。 (3) Unknown defects that did not exist at the time of learning It becomes possible to classify into three. For (2) and (3) above, it is conceivable that the need for review inspection is large, and for (1), when the degree of belonging is low, the need for review inspection is large. As described above, by generating the defect classification class and the defect classifier 120 in the defect detection device and controlling the number of sampling points according to the defect classification class, the plurality of inspection devices have hierarchical consistency, and Effective defect inspection can be performed.
ところで、 欠陥レビュー装置における欠陥分類クラス Cbが、 欠陥検出 装置における欠陥分類クラス C aの部分集合になるような欠陥分類器が設 定困難な場合もありうる。 第 12図はその一例であり、 欠陥検査装置 A、 Bによる欠陥分布マヅプ 1201、 1202おける分類クラス (それぞれ Ca l~Ca3、 Cb l〜Cb4) が、 部分集合の関係になっていない。 しかしそのような場合であっても、 例えば欠陥検査装置 Aにおいて分類ク ラス C a 3に分類された欠陥サンプルは欠陥検査装置 Bにおいては分類ク ラス Cb 2か Cb 3のいずれかに分類される可能性が高く、 分類クラスの 候補を絞り込む効果がある。 そのため、 欠陥検査装置 Aにおいて分類クラ ス C a 3に分類された欠陥サンプルに関しては、 欠陥検査装置 Bにおいて 3クラス問題ではなく、 Cb 2か Cb 3の 2クラス問題として欠陥分類器 を構成することにより、 分類性能の向上が期待できる。  By the way, it may be difficult to set a defect classifier such that the defect classification class Cb in the defect review device is a subset of the defect classification class C a in the defect detection device. FIG. 12 is an example of this, and the classification classes (Cal to Ca3 and Cb1 to Cb4, respectively) in the defect distribution maps 1201 and 1202 by the defect inspection devices A and B do not have a subset relationship. However, even in such a case, for example, a defect sample classified into the classification class C a 3 by the defect inspection device A is classified into either the classification class Cb 2 or Cb 3 by the defect inspection device B. It is highly possible and has the effect of narrowing down the classification class candidates. Therefore, for defect samples classified into classification class Ca3 in the defect inspection device A, configure the defect classifier as a two-class problem of Cb2 or Cb3 instead of the three-class problem in the defect inspection device B. As a result, improvement in classification performance can be expected.
また、 第二、 三の実施の形態において、 欠陥検出及び欠陥レビュー装置 の欠陥分類クラス、 欠陥分類器の生成をユーザの最終的な分類要求に基づ き、 学習等を用いてある程度自動生成することが可能である。 しかしなが ら、 特にプロセス立ち上げ時においては十分な教示サンプルを得ることが できず、 教示サンプルの特異な性質に特化した前記欠陥分類クラス、 欠陥 分類器が生成されてしまう危険性が高い。 第一の実施の形態において、 詳 細を述べた検査情報のレビュー、 及び欠陥分類器のカスタマイズ方法によ り、 欠陥分類に関するユーザの要求や知見を容易にシステムに取り込むこ とが可能となり、 特異な分類ルールを抑制することが可能となる。 また、 追加学習における分類器の変更も容易である。 例えば、 教示サンプルに関 して、 たまたま、 欠陥クラス C aに属するサンプルには形状の丸い欠陥が 多く、 欠陥クラス C bに属するサンプルには形状の四角い欠陥が多いとい つた状況において、決定木で形状の違いによる分岐が設定されたとしても、 形状の違いが両クラスの本質的な違いでないならば、 このような分類ル一 ルをキャンセルすることができる。 また、 追加学習時において、 複数の欠 陥検査装置における属性分布の変移を同時観察することにより、 本質的な 違いでない属性の欠陥クラス間における分離度が悪化する傾向が観測でき ることが期待される。 Further, in the second and third embodiments, the generation of the defect classification class and the defect classifier of the defect detection and defect review device is automatically generated to some extent based on the user's final classification request using learning or the like. It is possible. However, sufficient teaching samples cannot be obtained, especially at the start-up of the process, and there is a high risk that the defect classification classes and defect classifiers specialized in the unique properties of the teaching samples will be generated. . In the first embodiment, a detailed inspection information review and a defect classifier customizing method are used. This makes it possible to easily incorporate user requirements and knowledge regarding defect classification into the system, and to suppress peculiar classification rules. In addition, it is easy to change the classifier in the additional learning. For example, regarding the teaching sample, in a situation where a sample belonging to the defect class C a happens to have many round defects and a sample belonging to the defect class C b has many square defects, the decision tree is used. Even if a branch due to a difference in shape is set, such a classification rule can be canceled if the difference in shape is not an essential difference between the two classes. In addition, it is expected that during additional learning, by simultaneously observing changes in attribute distribution in multiple defect inspection devices, it is possible to observe a tendency for the degree of separation between defect classes of attributes that are not essentially different to deteriorate. You.
次に、 欠陥検出装置において検出された欠陥サンプル群に関して、 前記 欠陥サンプル群の一部をレビュ一検査し、 詳細分類することにより前記欠 陥サンプル群全体の詳細分類結果を推定する方法に関して、 詳細分類結果 の割合を利用する方法について述べる。 前記欠陥サンプル群からレビュー サンプリングにより選択された一部の欠陥サンプル群に関して詳細検査を 行うことにより、 前記一部の欠陥サンプル群において含まれる詳細分類結 果の割合を把握することができる (欠陥検出装置における欠陥分類クラス 毎にランダムサンプリングを行った場合、 前記欠陥分類クラス毎の詳細分 類結果の割合を把握することができる) 。 レビュー検査が行われなかった 欠陥サンプルに関しては、 レビュ一検査による検査情報を直接利用するこ とはできないが、 前記詳細分類結果の割合を考慮して推定の信頼性を向上 させることができる。 例えば、 欠陥分類クラス C aと C bの欠陥割合がそ れそれ a %、 b %であるとする。 欠陥分類クラス C aと C bの分類する任 意の属性に関して欠陥サンプルをソートし、 境界的な事例中 C a寄りの上 位 a %を欠陥分類クラス C aとして分類する。 [第四の実施の形態] Next, regarding a defect sample group detected by the defect detection device, a method of estimating a detailed classification result of the entire defect sample group by performing a review inspection of a part of the defect sample group and performing detailed classification is described in detail. The method of using the ratio of the classification results is described. By performing a detailed inspection on a part of the defect sample groups selected by review sampling from the defect sample group, it is possible to grasp the ratio of the detailed classification result included in the part of the defect sample groups (defect detection When random sampling is performed for each defect classification class in the apparatus, the ratio of the detailed classification result for each defect classification class can be grasped.) For a defect sample for which a review inspection has not been performed, the inspection information obtained by the review inspection cannot be directly used, but the reliability of estimation can be improved in consideration of the ratio of the detailed classification results. For example, assume that the defect ratios of the defect classification classes C a and C b are a% and b%, respectively. The defect samples are sorted with respect to any attribute classified by the defect classification classes C a and C b, and the upper a% closer to C a in the boundary cases is classified as the defect classification class C a. [Fourth embodiment]
この第四の実施の形態においては、 検査情報を共有する複数の欠陥検査 装置におけるそれそれの欠陥サンプル群がお互い部分的に参照できない場 合の検査方法に関して述べる。 検査情報を共有する欠陥検査装置が共に欠 陥検出装置であった場合、 例えば、 光学式のパタン検査装置と S E M式の パ夕ン検査装置の組み合わせ検査において、独立に欠陥検出を行った場合、 両者が検出した欠陥サンプルには部分的な不一致が起こりうる。 本実施例 においても欠陥サンプルがー致あるいは包含されている個所に関しては、 第二、 あるいは第三の実施の形態と同様の解析 ·分類が可能である。 以下 の説明は二台の欠陥検出装置 A、 Bの組み合わせにおける解析方法に関し て特に述べるが、 三台以上の任意の欠陥検査装置の組み合わせに関しても 同様の解析が可能である。 また、 欠陥検出装置同士以外の組み合わせに関 しても、 欠陥サンプルに不一致がある場合、 同様の解析が可能である。 参照したい欠陥サンプルにおける検査情報に抜けがあつた場合、 前記検 査情報を同類の他の欠陥サンプルにおける検査情報で補間する方法に関し て説明する。 第 1 2図は一例として二つの欠陥検査装置 A、 Bにおいて検 査が行われた位置を、 それそれ欠陥分布マップ 1 2 0 1、 1 2 0 2に表示 したものである。 ここで、 欠陥検査装置 Aにおいて検査が行われた欠陥分 布マップ 1 2 0 1上の欠陥サンプル d a 1における欠陥分類を考える。 た だし、 前記欠陥サンプル d a 1に対応する欠陥分布マップ 1 2 0 2上の座 標 d b lにおいては、 欠陥検査装置 Bによる検査が行われていない。 そこ で、 欠陥検査装置 Bにおける各欠陥サンプルを欠陥の空間的な分布、 ある いは欠陥分類結果、 あるいは各種検査情報を基にクラスタリングを行い、 例えば、 クラス夕 C b l〜C b 4を得る。 欠陥分布マップ上の任意の座標 に対し、 前記クラス夕に属する空間的な帰属度が定義できる場合、 同クラ ス夕に共通あるいは類似する検査情報を同クラス夕内で共有することが可 能と考えられる。 例えば、 欠陥分布マップ 1 2 0 2上の座標 d b 1におけ る検査情報として、 座標 d b 1と同クラス夕 C b 1に属すると考えられる 欠陥サンプル d b 2の検査情報を利用することができる。 同クラス夕 C b 1に属する他の欠陥サンプル群から検査情報を補間することも可能である ところで、 クラスタ設定の誤り、 あるいは参照先の検査情報の誤りや検査 情報の揺らぎ等の理由により、 検査情報の補間の信頼性が損なわれる危険 性がある。そこで、 クラス夕形成の信頼性、あるいはクラス夕への帰属度、 あるいは検査情報の信頼性や揺 ぎ等のパラメ一夕を基に補間した検査情 報の信頼性に関する重み付けを行い、 前記検査情報を利用する際に利用す ることが考えられる。 In the fourth embodiment, a description will be given of an inspection method in a case where respective defect sample groups in a plurality of defect inspection apparatuses sharing inspection information cannot partially refer to each other. If the defect inspection devices that share the inspection information are both defect detection devices, for example, if defect detection is performed independently in the combined inspection of the optical pattern inspection device and the SEM type pattern inspection device, Partial inconsistency can occur in the defect samples detected by both. In the present embodiment, the same analysis and classification as in the second or third embodiment can be performed on the portion where the defect sample is found or included. The following description will particularly describe an analysis method for a combination of two defect detection devices A and B. However, a similar analysis can be performed for a combination of three or more defect inspection devices. Similar analysis is also possible for combinations other than the defect detection devices if there is a mismatch in the defect samples. A method of interpolating the inspection information with the inspection information of another similar defect sample when the inspection information of the defect sample to be referred to is missing will be described. FIG. 12 shows, as an example, the positions where the inspections were performed in the two defect inspection apparatuses A and B, respectively, on the defect distribution maps 1201 and 1202. Here, consider the defect classification of the defect sample da1 on the defect distribution map 1201 inspected by the defect inspection apparatus A. However, inspection is not performed by the defect inspection apparatus B on the coordinates dbl on the defect distribution map 1222 corresponding to the defect sample da1. Therefore, each defect sample in the defect inspection apparatus B is clustered based on the spatial distribution of defects, the defect classification result, or various types of inspection information, and, for example, a class Cbl to Cb4 is obtained. If the degree of spatial belonging belonging to the class can be defined for arbitrary coordinates on the defect distribution map, inspection information common or similar to the class can be shared within the class. Noh is considered. For example, as the inspection information at the coordinate db1 on the defect distribution map 1222, the inspection information of the defect sample db2 considered to belong to the same class Cb1 as the coordinate db1 can be used. It is also possible to interpolate the inspection information from other defect sample groups belonging to the same class Cb1.However, the inspection may be performed due to errors in the cluster setting, errors in the inspection information of the reference destination, or fluctuations in the inspection information. There is a risk that the reliability of information interpolation may be impaired. Therefore, weighting is performed on the reliability of the class information, the degree of belonging to the class setting, or the reliability of the test information interpolated based on the reliability of the test information and parameters such as fluctuations, and the test information is obtained. It may be used when using.
[第五の実施の形態]  [Fifth embodiment]
この第五の実施の形態においては、 3台以上の欠陥検査装置による組み 合わせ検査に関して述べる。 第二、 三、 四の実施の形態では、 二台の欠陥 検査装置の組み合わせ検査について特に述べたが、 三台以上の欠陥検査装 置による組み合わせ検査に関しても同様の解析が可能である。 一例として In the fifth embodiment, a description will be given of a combination inspection using three or more defect inspection apparatuses. In the second, third, and fourth embodiments, the combination inspection of two defect inspection apparatuses has been particularly described. However, the same analysis can be performed for the combination inspection using three or more defect inspection apparatuses. As an example
N台の欠陥検査装置の組み合わせ検査に関して欠陥分類クラス及び欠陥分 類器の設定手順 (生成手順) を示したものが第 1 0図 (a ) である。 第 1 0図 (a ) に示すように、 欠陥分類クラスを含む欠陥分類器 1 2 0の生成 は、 検査順序と逆に N番目の欠陥検査装置から順に第 1番目の欠陥検査装 置まで行われる。 それは、 検査順序に従って、 分類できない或は分類が信 頼できない欠陥サンプルについて欠陥の分類を順次補完するためである。 そこで、 任意の n ( 0 n ^ N ) 番目の後に検査が行われる n + 1番目の 欠陥検査装置 (第二の欠陥検査装置) における分類クラスが、 n番目に検 査が行われる欠陥検査装置 (第一の欠陥検査装置) における分類クラスの 部分集合、 またはそれに類似した欠陥クラスとなるように決定する。 すな わち、 最初に N番目の欠陥検査装置における分類クラスを生成し、 その後 に検査が行われる欠陥検査装置における欠陥クラスを限定するように、 そ の前に検査が行われる (N— 1 ) 〜 1番目の欠陥検査装置の分類クラスを 順に決定していく。 また、 任意の η番目に検査が行われる欠陥検査装置に おける欠陥分類器は、 それ以前に検査が行われた 1〜 (η— 1 ) 番目の欠 陥検査装置と η番目の欠陥検査装置において得られた検査情報 1 0 0 2で 欠陥分類の判断基準として利用可能なものを選択的、 統括的に分類ルール に組み込んでいくことにより、 前記 η番目に検査が行われる欠陥検査装置 において設定した分類クラスを分類可能な欠陥分類器を生成する (ステツ プ 1 0 0 1 ) 。 ただし、 欠陥分類クラスや欠陥分類器を作成する際、 第一 の実施の形態において述べた同時レビュー画面を用いて全ての欠陥検査装 置から得られた検査情報を参考にしながら決定することは可能である。 欠 陥分類クラスや欠陥分類器は第 3図のように繰り返し修正することが可能 であり、 また、 任意の検査装置における欠陥クラスや欠陥分類器を生成し た時点で、任意の欠陥クラスや欠陥分類器を変更し直すことも可能である。 実際のデ一夕に関して分類が行われる際の処理の流れを示したものが第Figure 10 (a) shows the defect classification class and the procedure for setting the defect classifier (generation procedure) for the combined inspection of N defect inspection devices. As shown in FIG. 10 (a), the generation of the defect classifier 120 including the defect classification class is performed in order from the Nth defect inspection device to the first defect inspection device in reverse order of the inspection order. Will be This is because the defect classification is sequentially supplemented for defect samples that cannot be classified or whose classification is not reliable according to the inspection order. Therefore, the classification class in the (n + 1) th defect inspection device (second defect inspection device) in which inspection is performed after any n (0n ^ N) th is the defect inspection device in which nth inspection is performed. It is determined to be a subset of the classification class in (first defect inspection device) or a defect class similar thereto. That is, first, a classification class for the Nth defect inspection apparatus is generated, and thereafter, In order to limit the defect classes in the defect inspection apparatus to be inspected in advance, the classification class of the (N-1) to first defect inspection apparatus to be inspected before that is determined in order. In addition, the defect classifier in the arbitrary η-th defect inspection device is the defect inspection device of the 1st to (η-1) th defect inspection device and the η-th defect inspection device which have been inspected before that. The obtained inspection information 1002, which can be used as a criterion for defect classification, is selectively and comprehensively incorporated into the classification rule, thereby setting in the η-th defect inspection apparatus. A defect classifier capable of classifying the classification class is generated (step 1001). However, when creating defect classification classes and defect classifiers, it is possible to make decisions while referring to the inspection information obtained from all defect inspection equipment using the simultaneous review screen described in the first embodiment. It is. The defect classification class and defect classifier can be corrected iteratively as shown in Fig. 3, and when a defect class or defect classifier in any inspection equipment is generated, any defect class or defect classifier can be modified. It is also possible to change the classifier again. The process flow when classification is performed for actual data
1 0図 (b ) である。 第 1 0図 (b ) に示すように、 実際の検査は、 1番 目の欠陥検査装置から前記生成された欠陥分類器 1 2 0を用いて順に行わ れ、 必要に応じて第三の実施の形態のような欠陥サンプルのサンプリング を行いながら、 次の欠陥検査装置での検査が行われる。 ただし、 第 1 0図Fig. 10 (b). As shown in FIG. 10 (b), the actual inspection is performed sequentially from the first defect inspection apparatus using the generated defect classifier 120, and if necessary, the third inspection is performed. Inspection by the next defect inspection device is performed while sampling a defect sample as in the above embodiment. However, Fig. 10
( a ) ( b ) において例外的な場合として、 任意の組み合わせの複数の欠 陥検査装置による検査後に前記複数の欠陥検査装置から得られた検査情報 を用いて欠陥分類を行ったり、 サンプリングを行う場合は、 前記複数の欠 陥検査装置から取得された検査情報を検査順序には関係なく前記複数の欠 陥検査装置における欠陥分類器の判断基準として用いることができる。 産業上の利用の可能性 以上述べたように、 本発明によれば、 ユーザに固有な分類要求に対し、 従来困難であった欠陥分類器のカス夕マイズを容易に行い、 ユーザの判断 基準を満足する欠陥自動分類を行うための仕組みを得ることができる。 また、 本発明によれば、 ユーザが自身の分類要求を明確化させる際、各種 検査情報をほぼ同時レビュー画面に表示してほぼ同時にレビューできるよ うにしたことにより、 統一的な見解を与えることが可能となる。 As an exceptional case in (a) and (b), after inspection with a plurality of defect inspection devices in any combination, defect classification is performed or sampling is performed using the inspection information obtained from the plurality of defect inspection devices. In such a case, the inspection information obtained from the plurality of defect inspection apparatuses can be used as a criterion of a defect classifier in the plurality of defect inspection apparatuses regardless of an inspection order. Industrial applicability As described above, according to the present invention, it is possible to easily perform customization of a defect classifier, which has been difficult in the past, in response to a user-specific classification request, and perform automatic defect classification that satisfies the user's determination criteria. Mechanism can be obtained. Further, according to the present invention, when the user clarifies his or her classification request, various inspection information is displayed on the almost simultaneous review screen so that the user can review the information at almost the same time, thereby giving a unified opinion. It becomes possible.
また、 本発明によれば、 複数の欠陥検査装置による組み合わせ検査にお いて、 階層的な欠陥分類器を実現し、 欠陥分類器の効果的な学習及び効果 的なレビューサンプリングを実現することが可能となる。  Further, according to the present invention, it is possible to realize a hierarchical defect classifier in combination inspection by a plurality of defect inspection devices, and to realize effective learning and effective review sampling of the defect classifier. Becomes

Claims

請求の範囲 The scope of the claims
1 . 任意の欠陥検査装置において被検査対象に発生した欠陥を検査して取 得される検査情報を基に前記欠陥を分類するための欠陥分類器の生成方法 であって、 1. A method of generating a defect classifier for classifying the defect based on inspection information obtained by inspecting a defect generated in an object to be inspected by an arbitrary defect inspection apparatus,
任意の試料上の欠陥サンプル群を少なくとも任意の欠陥検査装置により 検査してサンプル検査情報を取得する検査情報取得ステツプと、  An inspection information acquisition step of inspecting a defect sample group on an arbitrary sample by at least an arbitrary defect inspection device and acquiring sample inspection information;
画面上において該検査情報取得ステップにより取得されたサンプル検査 情報を基に前記任意の試料上における欠陥サンプル群の欠陥属性分布の状 態を表示する表示ステップと、 画面上において該表示された欠陥属性分布 の状態に基づき、 欠陥サンプル群の分類クラス要素を分岐要素を介して階 層的に展開する決定木における各分岐要素毎に個別の分類ルールを設定す る分類ルール設定ステップとを含む決定木設定ステツプとを有することを 特徴とする欠陥分類器の生成方法。  A display step of displaying a state of a defect attribute distribution of a defect sample group on the arbitrary sample on the screen based on the sample inspection information obtained in the inspection information obtaining step on the screen; and the displayed defect attribute on the screen. A classification rule setting step of setting an individual classification rule for each branch element in a decision tree in which the classification class elements of the defect sample group are hierarchically expanded via the branch elements based on the distribution state. A method for generating a defect classifier, comprising setting steps.
2 . 前記表示ステップにおいて、 前記欠陥属性分布の状態における欠陥属 性として、 画像特徴量、 欠陥分類結果、 欠陥座標、 組成分析結果、 着工来 歴、装置 Q C、ウェハ上において検出された欠陥位置の分布に関する情報、 および欠陥数の少なくとも一つまたは二つ以上の組み合わせから成ること を特徴とする請求項 1記載の欠陥分類器の生成方法。 2. In the displaying step, the defect attributes in the state of the defect attribute distribution include an image feature amount, a defect classification result, a defect coordinate, a composition analysis result, a construction history, an apparatus QC, and a defect position detected on a wafer. The method for generating a defect classifier according to claim 1, comprising information on distribution and a combination of at least one or two or more of the number of defects.
3 . 前記表示ステップにおいて、 前記欠陥属性分布の状態として、 少なく とも欠陥分布マツプ及び特徴量と頻度との関係を示すグラフであることを 特徴とする請求項 1記載の欠陥分類器の生成方法。 3. The method for generating a defect classifier according to claim 1, wherein, in the displaying step, the state of the defect attribute distribution is a graph showing at least a defect distribution map and a relationship between a feature amount and frequency.
4 . 前記表示ステップにおいて、 前記欠陥属性分布の状態として、 前記決 定木における各分岐要素毎に分類されるカテゴリに属する教示欠陥サンプ ル群によって決められる複数の属性を組み合わせた多次元グラフであるこ とを特徴とする請求項 1記載の欠陥分類器の生成方法。 4. In the displaying step, the state of the defect attribute distribution is a multidimensional graph in which a plurality of attributes determined by a group of teaching defect samples belonging to a category classified for each branch element in the decision tree are combined. 2. The method for generating a defect classifier according to claim 1, wherein:
5 . 少なくとも一つの欠陥検査装置において被検査対象に発生した欠陥を 検査して取得される検査情報を基に前記欠陥を分類するための欠陥分類器 の生成方法であって、 5. A method of generating a defect classifier for classifying the defect based on inspection information obtained by inspecting a defect generated in an object to be inspected by at least one defect inspection apparatus,
任意の試料上の欠陥サンプル群を複数の欠陥検査装置により検査して複 数のサンプル検査情報を取得する検査情報取得ステップと、  An inspection information acquisition step of inspecting a defect sample group on an arbitrary sample with a plurality of defect inspection devices to acquire a plurality of sample inspection information;
該検査情報取得ステツプにより取得された複数のサンプル検査情報を画 面上においてほぼ同時に表示し、 これを閲覧して欠陥サンプル群の分類ク ラス要素を決定するレビューステヅプと、  A review step of displaying a plurality of sample inspection information acquired by the inspection information acquisition step almost simultaneously on a screen and browsing the same to determine a classification class element of the defect sample group;
画面上において該レビューステップで決定された分類クラス要素を基に 分類クラス要素を分岐要素を介して階層的に展開される決定木を指定する 決定木指定ステツプと、 画面上において前記検査情報取得ステツプにより 取得された少なくとも一つのサンプル検査情報を基に前記指定された決定 木における各分岐要素毎に個別の分類ルールを設定する分類ルール設定ス テツプとを含む決定木設定ステップとを有することを特徴とする欠陥分類 器の生成方法。  A decision tree designating step for designating a decision tree that is hierarchically expanded through the branching elements based on the classification class element determined in the review step on the screen, and the examination information obtaining step on the screen And a classification rule setting step of setting an individual classification rule for each branch element in the designated decision tree based on at least one sample test information obtained by Method of generating defect classifiers.
6 . 前記レビューステップにおいて、 前記ほぼ同時に閲覧される複数のサ ンプル検査情報として、 少なくとも複数の欠陥分布マップおよび該各欠陥 分布マップ上において指定された欠陥サンプルの欠陥画像であることを特 徴とする請求項 5記載の欠陥分類器の生成方法。  6. The review step is characterized in that the plurality of sample inspection information viewed at substantially the same time is at least a plurality of defect distribution maps and a defect image of a defect sample designated on each of the defect distribution maps. 6. The method for generating a defect classifier according to claim 5, wherein:
7 . 前記分類ルール設定ステップにおいて、 前記一つのサンプル検査情報 として、 前記決定木における各分岐要素毎に分類されるカテゴリに属する 教示欠陥サンプル群によって決められる複数の属性を組み合わせた多次元 グラフであることを特徴とする請求項 5記載の欠陥分類器の生成方法。  7. The classification rule setting step is a multidimensional graph in which a plurality of attributes determined by a group of teaching defect samples belonging to a category classified for each branch element in the decision tree are combined as the one sample inspection information. 6. The method for generating a defect classifier according to claim 5, wherein:
8 . 前記検査情報取得ステップにおいて、 前記任意の欠陥検査装置は、 光 学式あるいは S E M式の異物検査装置やパタン検査装置、 欠陥レビュー装 置、 走査探針顕微鏡、 および元素分析装置の少なくとも一つまたは二つ以 上の組み合わせから成ることを特徴とする請求項 1記載の欠陥分類器の生 成方法。 8. In the inspection information acquiring step, the optional defect inspection apparatus is at least one of an optical or SEM type foreign substance inspection apparatus and a pattern inspection apparatus, a defect review apparatus, a scanning probe microscope, and an element analysis apparatus. Or two or more 2. The method for generating a defect classifier according to claim 1, wherein the method includes the above combination.
9 . 前記決定木設定ステップにおいて、 さらに前記画面上において前記決 定木における各分岐要素毎において分離される各分類クラスに属する欠陥 サンプル群間の属性空間上での属性の分離度を可視化して評価する欠陥属 性分布の分離度評価ステップを含むことを特徴とする請求項 1記載の欠陥 分類器の生成方法。  9. In the decision tree setting step, further, on the screen, the degree of attribute separation in an attribute space between defect sample groups belonging to each classification class separated for each branch element in the decision tree is visualized. 2. The method for generating a defect classifier according to claim 1, further comprising a step of evaluating a degree of separation of a defect attribute distribution to be evaluated.
1 0 . 前記決定木設定ステップにおいて、 さらに前記画面上において前記 決定木における各分岐要素毎に分類されるカテゴリに属する教示欠陥サン プル群を教示して表示できる教示ステップを含むことを特徴とする請求項 1記載の欠陥分類器の生成方法。  10. The decision tree setting step further includes a teaching step of teaching and displaying a group of teaching defect samples belonging to a category classified for each branch element in the decision tree on the screen. A method for generating a defect classifier according to claim 1.
1 1 . 前記分類ルール設定ステップにおいて、 前記決定木における各分岐 要素毎に個別の分類ルールがルールベース型分類又は/及び教示型分類で あることを特徴とする請求項 1記載の欠陥分類器の生成方法。  11. The defect classifier according to claim 1, wherein in the classification rule setting step, an individual classification rule for each branch element in the decision tree is a rule-based classification and / or a teaching type classification. Generation method.
1 2 . 前記分類ルール設定ステップにおいて、 前記決定木におけるある分 岐要素の分類ルールがルールペース型分類の場合、 前記画面上においてル ールベース型分類をするための複数の属性が満たす条件文を設定できるよ うにしたことを特徴とする請求項 1記載の欠陥分類器の生成方法。  12. In the classification rule setting step, if the classification rule of a certain branch element in the decision tree is rule-based classification, a condition sentence that is satisfied by a plurality of attributes for rule-based classification on the screen is set. The method according to claim 1, wherein the defect classifier is generated.
1 3 . 前記分類ルール設定ステップにおいて、 前記決定木におけるある分 岐要素の分類ルールが教示型分類の場合、 前記画面上において教示型分類 をするための属性を指定できることを特徴とする請求項 1記載の欠陥分類 器の生成方法。  13. In the classification rule setting step, when a classification rule of a certain branch element in the decision tree is a teaching type classification, an attribute for performing the teaching type classification can be designated on the screen. How to generate the described defect classifier.
1 4 . 任意の試料上の欠陥サンプル群を複数の欠陥検査装置により検査し て複数のサンプル検査情報を取得する検査情報取得ステップと、  14. An inspection information acquisition step of inspecting a defect sample group on an arbitrary sample with a plurality of defect inspection devices to acquire a plurality of sample inspection information;
画面上において、 該検査情報取得ステップにより取得された複数のサン プル検査情報の各々から得られる複数の欠陥分布状態を示すマップをほぼ 同時に並べて表示し、 さらに前記マップ上において指定された複数の欠陥 サンプルに対する欠陥画像および属性をほぼ同時に並べて表示する表示ス テツプとを有することを特徴とする欠陥レビュー方法。 On the screen, a map showing a plurality of defect distribution states obtained from each of the plurality of sample inspection information obtained in the inspection information obtaining step is substantially displayed. A display step of displaying the defect images and the attributes of a plurality of defect samples specified on the map at the same time side by side at the same time.
1 5 . 第一の欠陥検査装置による検査後に検査が行われる第二の欠陥検査 装置において被検査対象に発生した欠陥を検査して取得される検査情報を 基に前記欠陥を分類するための第二の欠陥分類器の生成方法であって、 前記第二の欠陥分類器を、 前記第一および第二の欠陥検査装置により任 意の試料上の欠陥サンプル群を検査して取得されたサンプル検査情報の一 部あるいは全て用いて生成または変更することを特徴とする欠陥分類器の 生成方法。  15. The second defect inspection apparatus, which performs inspection after the inspection by the first defect inspection apparatus, inspects the defect generated in the inspection target for the defect, and classifies the defect based on the inspection information obtained. A method of generating a second defect classifier, wherein the second defect classifier is inspected by the first and second defect inspection devices for a defect sample group on an arbitrary sample. A method for generating a defect classifier characterized by being generated or changed using part or all of the information.
1 6 . 第二の欠陥検査装置による検査前に検査が行われる第一の欠陥検査 装置において被検査対象に発生した欠陥を検査して取得される検査情報を 基に前記欠陥を分類するための第一の欠陥分類器の生成方法であって、 前記第二の欠陥検査装置における第二の欠陥分類器により分類される欠 陥分類クラスが、 前記第一の欠陥分類器により分類される欠陥分類クラス の部分集合あるいはそれに類似した分類となるように、 前記第一の欠陥分 類器を生成または変更することを特徴とする欠陥分類器の生成方法。  16. The first defect inspection device, which is inspected before inspection by the second defect inspection device, inspects the defect generated in the inspected object and classifies the defect based on the inspection information obtained. A method of generating a first defect classifier, wherein a defect classification class classified by a second defect classifier in the second defect inspection device is a defect classification classified by the first defect classifier. A method of generating a defect classifier, comprising generating or changing the first defect classifier so as to be a subset of a class or a classification similar thereto.
1 7 . 前記欠陥分類器が、 分類クラス要素を分岐要素で展開される決定木 で構成されることを特徴とする請求項 1 5記載の欠陥分類器の生成方法。  17. The method for generating a defect classifier according to claim 15, wherein the defect classifier is constituted by a decision tree in which a classification class element is expanded by a branch element.
1 8 . 前記欠陥分類器が、 分類クラス要素を分岐要素で展開される決定木 で構成されることを特徴とする請求項 1 6記載の欠陥分類器の生成方法。 18. The method for generating a defect classifier according to claim 16, wherein the defect classifier comprises a decision tree in which a classification class element is expanded by a branch element.
1 9 . 少なくとも第一及び第二の欠陥検査装置の組み合わせにより試料上 の欠陥サンプル群を検査して第一及び第二の検査倩報を取得する検査情報 取得ステツプと、 19. An inspection information acquisition step of inspecting a defect sample group on a sample by at least a combination of the first and second defect inspection devices to obtain first and second inspection information.
該検査情報取得ステップで取得された第一及び第二の検査情報を参照し て前記第一及び第二の欠陥検査装置の検査順序に応じて第一又は第二の欠 陥分類器を生成する欠陥分類器生成ステツプとを有することを特徴とする 欠陥分類器の生成方法。 Referring to the first and second inspection information acquired in the inspection information acquiring step, the first or second defect information is determined according to the inspection order of the first and second defect inspection apparatuses. A defect classifier generating step of generating a defect classifier.
2 0 . 前記欠陥分類器生成ステップにおいて、 前記第一又は第二の欠陥分 類器を生成する際、 前記試料上の欠陥サンプル群に対する前記第一の欠陥 検査装置における欠陥分類クラスと前記第二の欠陥検査装置における欠陥 分類クラスとの間の包含関係を図あるいは表で表示する表示ステップを含 むことを特徴とする請求項 1 9記載の欠陥分類器の生成方法。  20. In the defect classifier generation step, when the first or second defect classifier is generated, the defect classification class in the first defect inspection apparatus for the defect sample group on the sample and the second 20. The method according to claim 19, further comprising a display step of displaying, in a diagram or a table, an inclusive relation between the defect class and the defect class in the defect inspection apparatus.
2 1 .前記欠陥分類器生成ステップにおける前記検査情報の参照において、 前記検査情報が得られていない欠陥サンプルに関して、 前記検査情報を他 の欠陥サンプルにおける検査情報で代用あるいは補間することを特徴とす る請求項 1 9記載の欠陥分類器の生成方法。 21. In referring to the inspection information in the defect classifier generation step, for the defect sample for which the inspection information has not been obtained, the inspection information is substituted or interpolated by the inspection information of another defect sample. 21. A method for generating a defect classifier according to claim 19.
2 2 . 前記他の欠陥サンプルは、 欠陥サンプル群の空間的な分布、 または 欠陥分類結果あるいは各種検査情報を基に行われるクラス夕リングょり得 られた各クラス夕と、 前記検査情報が得られていない欠陥サンプルとの帰 属度に基づいて選択されることを特徴とする請求項 2 1記載の欠陥分類器 の生成方法。  22. The other defect samples are obtained from the spatial distribution of the defect sample group, or from each class obtained based on the defect classification result or various inspection information, and from the inspection information. 22. The method according to claim 21, wherein the selection is made based on the degree of attribution to a defect sample that has not been determined.
2 3 . 欠陥検出装置により被検査試料上の欠陥サンプル群を検査して第一 のサンプル検査情報を取得する第一の検査情報取得ステツプと、  23. A first inspection information obtaining step of obtaining a first sample inspection information by inspecting a defect sample group on a sample to be inspected by a defect detection device;
該第一の検査情報取得ステップで取得された第一のサンプル検査情報を 基に欠陥サンプル群を調整前の粗欠陥分類器により調整前の第一の欠陥分 類クラスに分類する調整前粗欠陥分類ステップと、 ' 欠陥レビュー装置により前記試料上の欠陥サンプル群から選ばれたレビ ユー用欠陥サンプル群を検査して第二のサンプル検査情報を取得する第二 の検査情報取得ステツプと、  A pre-adjustment coarse defect in which a defect sample group is classified into a pre-adjustment first defect classification class by a pre-adjustment coarse defect classifier based on the first sample inspection information acquired in the first inspection information acquisition step; A second inspection information acquisition step of inspecting a review defect sample group selected from the defect sample group on the sample by a defect review device to acquire second sample inspection information;
該第二の検査情報取得ステップで取得された第二のサンプル検査情報を 基にレビュー用欠陥サンプル群を調整前の詳細欠陥分類器により調整前の 第二の欠陥分類クラスに分類する調整前詳細欠陥分類ステップと、 前記第一及び第二の検査情報取得ステツプで取得された第一及び第二の サンプル検査情報を基に、 前記調整前詳細欠陥分類ステップで分類された 調整前の第二の欠陥分類クラスを前記調整前粗欠陥分類ステップで分類さ れた調整前の第一の欠陥分類クラスに対応するように調整して教示用の欠 陥分類クラスを作成する教示用作成ステツプと、 Based on the second sample inspection information acquired in the second inspection information acquiring step, the defect sample group for review is subjected to the pre-adjustment detailed defect classifier by the pre-adjustment detailed defect classifier. A pre-adjustment detailed defect classification step of classifying the defect into a second defect classification class; and the pre-adjustment detailed defect based on the first and second sample inspection information obtained in the first and second inspection information obtaining steps. A defect for teaching by adjusting the second defect classification class before adjustment classified in the classification step so as to correspond to the first defect classification class before adjustment classified in the coarse defect classification step before adjustment. A creation step for teaching to create a classification class;
調整前粗欠陥分類ステップで分類される調整前の第一の欠陥分類クラス が前記教示用作成ステップで作成された教示用の欠陥分類クラスになるよ うに調整して調整後の粗欠陥分類器を生成する粗欠陥分類器生成ステップ とを有することを特徴とする欠陥分類器の生成方法。  The coarse defect classifier after adjustment is adjusted by adjusting the first defect classification class before adjustment classified in the coarse defect classification step before adjustment to be the defect classification class for teaching created in the creating step for teaching. Generating a coarse defect classifier for generating a coarse defect classifier.
2 4 . 第一の欠陥検査装置によって被検査対象を検査し、 その後第二の欠 陥検査装置によって被検査対象を検査して被検査対象に発生した欠陥を分 類する欠陥自動分類方法であって、  24. An automatic defect classification method for inspecting an object to be inspected by a first defect inspection device, and then inspecting the object to be inspected by a second defect inspection device to classify defects occurring in the object to be inspected. ,
前記第一の欠陥検査装置における第一の欠陥分類器により分類される欠 陥分類クラスと前記第二の欠陥検査装置における第二の欠陥分類器により 分類される欠陥分類クラスとの関係を基に、 前記第一の欠陥検査装置にお ける各欠陥分類クラス毎に検査サンプルをサンプリングする割合を決定す る検査サンプル決定ステツプと、  Based on the relationship between the defect classification class classified by the first defect classifier in the first defect inspection device and the defect classification class classified by the second defect classifier in the second defect inspection device. An inspection sample determination step for determining a sampling rate of an inspection sample for each defect classification class in the first defect inspection apparatus;
該検査サンプル決定ステップで各欠陥分類クラス毎に決定したサンプリ ングする割合に応じた検査サンプルを第二の欠陥検査装置において検査し て欠陥を分類する検査ステップとを有することを特徴とする欠陥自動分類 方法。  An inspection step of inspecting an inspection sample in accordance with the sampling ratio determined for each defect classification class in the inspection sample determination step with a second defect inspection apparatus to classify defects. Classification method.
2 5 . 第一の欠陥検査装置によって被検査対象を検査し、 その後第二の欠 陥検査装置によって被検査対象を検査して被検査対象に発生した欠陥を分 類する欠陥自動分類方法であって、  25. An automatic defect classification method for inspecting an object to be inspected by a first defect inspection apparatus, and then inspecting the object to be inspected by a second defect inspection apparatus to classify defects occurring in the object to be inspected. ,
前記第一の欠陥検査装置における第一の欠陥分類器により検査サンプル に対する分類される各欠陥分類クラスへの信頼性に応じて各欠陥分類クラ ス毎に検査サンプルをサンプリングする割合を決定する検査サンプル決定 ステップと、 Inspection sample by the first defect classifier in the first defect inspection device Determining an inspection sample rate for each defect class according to the reliability of each defect class classified into
該検査サンプル決定ステップで被検査対象に対する各欠陥分類クラス毎 に決定したサンプリングする割合に応じた検査サンプルを第二の欠陥検査 装置において検査して欠陥を分類する検査ステップとを有することを特徴 とする欠陥自動分類方法。  An inspection step of inspecting an inspection sample according to a sampling rate determined for each defect classification class for the inspection target in the inspection sample determination step for each defect classification class in a second defect inspection apparatus to classify defects. Automatic defect classification method.
2 6 . 任意の試料上の欠陥サンプル群を少なくとも任意の欠陥検査装置に より検査してサンプル検査情報を取得する検査情報取得ステップと、 画面 上において該検査情報取得ステップにより取得されたサンプル検査情報を 基に前記任意の試料上における欠陥サンプル群の欠陥属性分布の状態を表 示する表示ステツプと画面上において該表示された欠陥属性分布の状態に 基づき、 欠陥サンプル群の分類クラス要素を分岐要素を介して階層的に展 閧する決定木における各分岐要素毎に個別の分類ルールを設定する分類ル ール設定ステップとを含む決定木設定ステップとを有し、 欠陥分類器を生 成する欠陥分類器生成過程と、  26. An inspection information acquisition step of inspecting a defect sample group on an arbitrary sample by at least an arbitrary defect inspection apparatus to acquire sample inspection information, and a sample inspection information acquired by the inspection information acquisition step on a screen. Based on the display step for displaying the state of the defect attribute distribution of the defect sample group on the arbitrary sample based on the above-mentioned sample and the state of the displayed defect attribute distribution on the screen, the classification class element of the defect sample group is divided into branch elements. A decision rule setting step including a classification rule setting step of setting an individual classification rule for each branch element in a decision tree hierarchically arranged via a tree, and generating a defect classifier. Classifier generation process,
該欠陥分類器生成過程で生成された欠陥分類器を用いて任意の欠陥検査 装置において被検査対象に発生した欠陥を検査して取得される検査情報を 基に前記欠陥を分類する欠陥分類過程とを有することを特徴とする欠陥自 動分類方法。  A defect classifying step of classifying the defect based on inspection information obtained by inspecting a defect generated in an object to be inspected by an arbitrary defect inspection apparatus using the defect classifier generated in the defect classifier generating step; A defect automatic classification method characterized by having a defect.
2 7 . 任意の試料上の欠陥サンプル群を複数の欠陥検査装置により検査し て複数のサンプル検査情報を取得する検査情報取得ステップと、 該検査情 報取得ステップにより取得された複数のサンプル検査情報を画面上におい てほぼ同時に表示し、 これを閲覧して欠陥サンプル群の分類クラス要素を 決定するレビューステップと、 画面上において該レビューステップで決定 された分類クラス要素を基に分類クラス要素を分岐要素を介して階層的に 展開される決定木を指定する決定木指定ステップと、 画面上において前記 検査情報取得ステップにより取得された少なくとも一つのサンプル検査情 報を基に前記指定された決定木における各分岐要素毎に個別の分類ルール を設定する分類ルール設定ステツプとを含む決定木設定ステツプとを有し、 欠陥分類器を生成する欠陥分類器生成過程と、 27. An inspection information obtaining step of obtaining a plurality of sample inspection information by inspecting a defect sample group on an arbitrary sample by a plurality of defect inspection apparatuses, and a plurality of sample inspection information obtained by the inspection information obtaining step. Are displayed almost simultaneously on the screen, and are reviewed to determine the classification class element of the defect sample group, and the classification class element is branched on the screen based on the classification class element determined in the review step. Hierarchically through elements A decision tree designating step of designating a decision tree to be expanded; and an individual decision element for each branch element in the designated decision tree based on at least one sample test information acquired by the test information acquiring step on a screen. A decision tree setting step including a classification rule setting step of setting a classification rule, and a defect classifier generating step of generating a defect classifier;
該欠陥分類器生成過程で生成された欠陥分類器を用いて少なくとも一つ の欠陥検査装置において被検査対象に発生した欠陥を検査して取得される 検査情報を基に前記欠陥を分類する欠陥分類過程とを有することを特徴と する欠陥自動分類方法。  A defect classifier that classifies the defect based on inspection information obtained by inspecting a defect generated in an object to be inspected by at least one defect inspection apparatus using the defect classifier generated in the defect classifier generation process; Automatic defect classification method characterized by having a process.
2 8 . 同一あるいは同種の欠陥サンプルに対して複数の欠陥検査装置間で 同一の欠陥解析の基準となるように、 少なくとも一つの欠陥検査装置にお いて前記欠陥サンプルから得られる画像に対して画像処理手順あるいは画 像処理パラメ一夕を調整し、 該調整された画像を基に欠陥分類器により欠 陥を分類することを特徴とする欠陥自動分類方法。  28. At least one of the defect samples must be an image of at least one defect inspection device so that the same defect analysis sample for the same or the same type of defect sample becomes the same defect analysis reference. An automatic defect classification method, comprising: adjusting a processing procedure or image processing parameters; and classifying defects by a defect classifier based on the adjusted image.
PCT/JP2003/006353 2002-05-23 2003-05-21 Defect classification device generation method and automatic defect classification method WO2003100405A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002148980 2002-05-23
JP2002-148980 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100405A1 true WO2003100405A1 (en) 2003-12-04

Family

ID=29561198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006353 WO2003100405A1 (en) 2002-05-23 2003-05-21 Defect classification device generation method and automatic defect classification method

Country Status (1)

Country Link
WO (1) WO2003100405A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111920A (en) * 2013-04-16 2014-10-22 华为技术有限公司 Decision-making tree based prediction method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000057349A (en) * 1998-08-10 2000-02-25 Hitachi Ltd Method for sorting defect, device therefor and method for generating data for instruction
JP2000097871A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Review device
JP2001509619A (en) * 1997-07-03 2001-07-24 トライパス イメージング インコーポレイテッド Incremental simultaneous learning method and apparatus in automatic defect classification of semiconductor wafer and liquid crystal display
JP2001250852A (en) * 2000-03-02 2001-09-14 Hitachi Ltd Manufacturing method of semiconductor device, inspection condition obtaining method, selection method thereof, and inspection device and method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001509619A (en) * 1997-07-03 2001-07-24 トライパス イメージング インコーポレイテッド Incremental simultaneous learning method and apparatus in automatic defect classification of semiconductor wafer and liquid crystal display
JP2000057349A (en) * 1998-08-10 2000-02-25 Hitachi Ltd Method for sorting defect, device therefor and method for generating data for instruction
JP2000097871A (en) * 1998-09-25 2000-04-07 Hitachi Ltd Review device
JP2001250852A (en) * 2000-03-02 2001-09-14 Hitachi Ltd Manufacturing method of semiconductor device, inspection condition obtaining method, selection method thereof, and inspection device and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111920A (en) * 2013-04-16 2014-10-22 华为技术有限公司 Decision-making tree based prediction method and device
CN104111920B (en) * 2013-04-16 2018-03-09 华为技术有限公司 A kind of Forecasting Methodology and device based on decision tree

Similar Documents

Publication Publication Date Title
JP4118703B2 (en) Defect classification apparatus, automatic defect classification method, defect inspection method, and processing apparatus
US7602962B2 (en) Method of classifying defects using multiple inspection machines
KR101144545B1 (en) Flexible hybrid defect classification for semiconductor manufacturing
US11568531B2 (en) Method of deep learning-based examination of a semiconductor specimen and system thereof
US8428336B2 (en) Inspecting method, inspecting system, and method for manufacturing electronic devices
US7583832B2 (en) Method and its apparatus for classifying defects
US20060078188A1 (en) Method and its apparatus for classifying defects
CN104024838B (en) The storage medium of GUI, sorter, sorting technique, program and storage sort program
TWI733425B (en) Dimension measuring device, dimension measuring program and semiconductor manufacturing system
JP2012026982A (en) Inspection device
CN107004123A (en) Iterative defect filters out technique
JP2001156135A (en) Method and device for sorting defective image and manufacturing method of semiconductor device using them
US20220222806A1 (en) Machine learning-based classification of defects in a semiconductor specimen
US20230288345A1 (en) Automatic optimization of an examination recipe
JP7254921B2 (en) Classification of defects in semiconductor specimens
US11915406B2 (en) Generating training data usable for examination of a semiconductor specimen
TW202142833A (en) Image generation system
JP7404817B2 (en) Learning device, detection device, learning method, and learning program
JP2001134763A (en) Method for sorting defect on basis of picked-up image and method for displaying the result
WO2003100405A1 (en) Defect classification device generation method and automatic defect classification method
WO2022172470A1 (en) Image inspection device, image inspection method, and trained model generation device
CN116597233A (en) Evaluation method of welded work based on semantic segmentation
CN115410194A (en) Chromosome image analysis method and system based on progressive segmentation and focus classification
JP2005092291A (en) Data classification supporting method and device, program and recording medium with its program recorded thereon

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase