WO2003100144A1 - Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof - Google Patents

Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof Download PDF

Info

Publication number
WO2003100144A1
WO2003100144A1 PCT/JP2003/006438 JP0306438W WO03100144A1 WO 2003100144 A1 WO2003100144 A1 WO 2003100144A1 JP 0306438 W JP0306438 W JP 0306438W WO 03100144 A1 WO03100144 A1 WO 03100144A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic synthetic
biocompatible
synthetic polymer
silk
fiber
Prior art date
Application number
PCT/JP2003/006438
Other languages
French (fr)
Japanese (ja)
Inventor
Kozo Tsubouchi
Hideki Ishikawa
Original Assignee
National Institute Of Agrobiological Sciences
Shinwa Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Agrobiological Sciences, Shinwa Corp. filed Critical National Institute Of Agrobiological Sciences
Priority to AU2003242411A priority Critical patent/AU2003242411A1/en
Publication of WO2003100144A1 publication Critical patent/WO2003100144A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the present invention relates to a synthetic fiber produced from a thermoplastic synthetic polymer containing silk powder, and particularly to a synthetic fiber having excellent biocompatibility and excellent durability and moldability.
  • silk has an extremely high gloss and soft texture, and also has excellent moisture absorption and desorption properties.Therefore, it cannot be used as a high-grade clothing material. It can be called a material.
  • the surface of products such as synthetic fibers, non-woven fabrics and films may contain silk proteins.
  • a method of imparting silk properties by chemically modifying it with a treating agent, a method of adding silk powder to a thermoplastic synthetic polymer, and imparting the properties of silk to a molded article of the thermoplastic synthetic polymer, etc. has been proposed.
  • a silk protein aqueous solution in which the surface of a product such as synthetic fiber, non-woven fabric, or film is chemically modified with a silk protein-containing treating agent to impart silk properties, a silk protein aqueous solution (A) is, for example,
  • Examples of using a dispersion of a silk protein aqueous solution with a binder added as a treating agent include:
  • examples of using a mixture of silk powder with a binder or paint as a treating agent include: For example,
  • the properties of silk protein can be generally imparted to the material surface, but in the method using a silk protein aqueous solution (dispersion solution) as a treating agent, silk protein uses fibers. It has the drawback that it easily falls off during or during cleaning and has poor durability.
  • Silk fabric has no thermoplastic properties and will decompose and carbonize until heated when heated, but as mentioned earlier, silk has excellent luster, texture, moisture absorption, moisture absorption, etc. In particular, it has biocompatibility as a property not found in thermoplastic synthetic polymers.
  • silk protein has the property of promoting the growth of human-derived skin cells as one of the functions of biocompatibility.
  • the silk protein in the method in which the silk protein is contained in the thermoplastic synthetic polymer, the loss of the silk protein during use or washing is reduced, but the contained silk protein becomes a mechanical weak point. However, it causes a decrease in the strength of the fiber.
  • thermoplastic synthetic polymer examples include, for example,
  • Japanese Patent Application Laid-Open No. H10-212124 / 17 discloses that the surface of a silk powder having an average particle diameter of 20 to 50 ⁇ m has an average particle diameter of 0.2 to improve the heat resistance of the silk powder. M0.3 m of titanium oxide was pressed and adhered, mixed with thermoplastic resin, spun at a spinning temperature of 270 ° C, and the titanium oxide-containing silk powder was evenly distributed in the fiber. Can get synthetic fiber Points are shown.
  • the fiber used for ordinary clothes has a diameter of 100 m or less, especially 30 m or less.
  • the presence of silk powder having a large average particle diameter of 20 to 50 m significantly lowers the tensile strength of the fibers, making them virtually unusable as fibers. You can only get what you can.
  • the above spinning temperature of 270 ° C is much higher than the decomposition temperature of silk protein, and at such a temperature, the silk protein is carbonized, so that the original characteristics of silk protein can be utilized. There is a problem that you can not.
  • An object of the present invention is to provide a new material excellent in biocompatibility, particularly a fiber, which has a silky luster, texture, moisture retention and the like, and is mainly composed of a thermoplastic synthetic polymer.
  • Another object of the present invention is to provide a new biocompatible material that can withstand practical use with a small decrease in the strength of the synthetic fiber even when the synthetic fiber made of a thermoplastic synthetic polymer contains silk powder. .
  • the present invention also develops a low-cost fiber having both functions by using a high-priced biocompatible silk protein and a low-priced thermoplastic synthetic polymer having excellent durability and moldability.
  • the purpose is to: Disclosure of the invention
  • thermoplastic synthetic polymer As a result of extensive research into obtaining biocompatible synthetic fibers that can fully demonstrate the properties of the silk protein and that are durable, as a result of at least the core-sheath structure and silk powder The present inventors have found that the particle size and the melting point of the thermoplastic synthetic polymer are important factors, and have completed the present invention based on this finding.
  • the core material is made of a thermoplastic synthetic polymer
  • the sheath material is a silk powder substantially free from powder particles having a particle diameter exceeding 10 ⁇ m, and the melting point is 200 °. It is a biocompatible core-sheath composite fiber made of a thermoplastic synthetic polymer of C or less.
  • thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are present in the same thermoplastic synthetic polymer as the biocompatible core-sheath composite fiber.
  • thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are present in biocompatible core-sheath type composite fibers which are different thermoplastic synthetic polymers.
  • the powder is made of a silk powder substantially free of particles having a particle diameter exceeding 10 m and a thermoplastic synthetic polymer having a melting point of 200 ° C. or less. Present in synthetic fibers.
  • thermoplastic synthetic polymer is an olefin polymer
  • a biocompatible core-sheath composite fiber or a biocompatible synthetic fiber having a fiber diameter of 5 to 100 m, preferably 10 to 30 m.
  • a biocompatible core-sheath composite fiber obtained by subjecting a core material made of a thermoplastic synthetic polymer and a sheath material made of silk powder and a thermoplastic synthetic polymer to core-sheath composite spinning and stretching. Lies in the manufacturing method.
  • a core material comprising a thermoplastic synthetic polymer; a silk powder substantially free from powder particles having a particle diameter of more than 10 ⁇ m; and a thermoplastic material having a melting point of 200 ° C. or less.
  • the present invention relates to a method for producing a biocompatible core-in-sheath type composite fiber in which a sheath material made of a synthetic polymer is subjected to core-sheath composite spinning and stretching.
  • a powder having substantially no particle diameter exceeding 10 nm, a silk powder substantially free from particles, and a thermoplastic synthetic polymer having a melting point of 200 ° C. or less are mixed, heated and kneaded. And then spinning and stretching.
  • the present invention also employs a configuration combining two or more selected from the above 1 to 5, 6 to 8, 9 to 11, and 12 to 15 as long as the purpose is met. It is possible.
  • the biocompatible core-sheath type composite fiber and the biocompatible synthetic fiber of the present invention have silk-like luster, texture, moisturizing property, etc., and are excellent in durability, and are suitable for clothing materials and medical materials. Useful. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a photomicrograph of the double-layered fiber of Example 3 of the present invention.
  • FIG. 2 shows a polarizing microscopic photograph of a fiber having a two-layer structure of Example 3 of the present invention.
  • the raw material of silk protein is cocoon thread, raw silk, silk woven or knitted fabric, silk thread (fiproin fiber), their remaining yarn or their unscrambled, semi-scrambled, refined It can be applied to kneaded materials, and fibers, powders, films, etc. made from them, protein fibers spun by silkworms such as silkworms and wild silkworms, and all of their remnants.
  • Liquid silk consists of fibrin and sericin (these are called silk powders), and liquid fiber mouth has a molecular weight of about 370,000 [Tasiro Yutak and Otsuki Eiichi, Journal of Cell Biology, Vol. 46, P. 1 (1
  • a fiber mouth with a molecular weight of about 370,000 is divided into a molecular weight of about 350,000 (H chain) and about 25,000 (L chain).
  • Cocoons (consisting of so-called cocoons and pupae) are formed when silkworms spit liquid silk during cocoon production.
  • cocoon contains fibrin at the center and sericin around it, and the abundance ratio is (70-80% fibrous mouth): 30-20% (sericin). Have been.
  • raw silk is made by assembling several to several tens of cocoons, and a woven fabric made of raw silk is called raw woven.
  • the process of removing sericin from cocoon, raw silk or raw weave is called scouring, and the fibers after scouring are silk or fiproin fibers.
  • the silk thread is produced by first drying the grown cocoon and then winding it after boiled cocoon to produce raw silk.
  • raw silk or raw weave is refined to obtain silk yarn or silk fabric.
  • the waste generated in these steps is the residual yarn.
  • Crystalline silk powder The crystalline silk powder is produced, for example, according to a method for producing a crystalline silk ultrafine powder as disclosed in JP-A-2001-48989.
  • the particle size of silk powder is generally represented by the average particle size, but there is a distribution in the particle size, and the size of the powder is such that particles having a smaller average particle size and larger particles are widely distributed.
  • the average particle diameter is also focused on the value of the maximum particle diameter in consideration of the fact that the larger the powder, the lower the tensile strength.
  • the desired silk powder-containing resin cannot be spun, especially drawn.
  • the powder obtained by the production method of the aforementioned Japanese Patent Application Laid-Open No. 2001-48989 is pulverized and classified to obtain a powder having a particle diameter of more than 10 m, more preferably 5 i / Those exceeding m are separated and removed.
  • powders having a particle size of more than 10 ⁇ m, more preferably powders having a particle size of more than 5 ⁇ m are not included.
  • the particle diameter is preferably 110 or less of the fiber diameter (that is, the fiber formed by spinning and drawing).
  • the powder is likely to be buried in the fiber, and it is true that the buried powder does not function as a silk powder.
  • the particle diameter of the powder is preferably 0.1 m or more, and more preferably 0.5 / m or more.
  • the diameter of the silk powder is preferably 0.5 m or more and 5 m or less.
  • Non-crystalline silk powder is disclosed in Japanese Patent Application Laid-Open No. 11-170160 (Wound dressing material containing silk fiplin and silk sericin as a main component and a method for producing the same). — 1 639 9 9 (Method of producing functional silk fiproin and its use), Japanese Patent Application Laid-Open No. 2002-122628 (1) Sericin-containing material, method of its production and It is manufactured according to a method such as that described in Japanese Patent Application No. 2001-180169 (a method for producing and using a functional polypeptide derived from silk fibrin).
  • the non-crystalline silk powder is also crushed and classified like the above-mentioned crystalline silk powder to obtain a powder having a particle diameter of more than 10 ⁇ m, preferably a powder having a particle diameter of more than 5 removed.
  • the minimum particle size of the powder is preferably 0.1 m or more, more preferably 0.5 / m or more.
  • the maximum particle size of the powder does not substantially include a powder having a particle size exceeding 10 m, and more preferably does not include a powder having a particle size exceeding 5 ⁇ m. To do.
  • particles of 10 ⁇ m or more may be included, but the degree does not matter.
  • the minimum particle diameter of the powder is preferably 0.1 m or more, more preferably 0.5 m or more, as described above, from the viewpoint of being easily buried in the fiber. .
  • the biocompatibility of the silk powder in the present invention means that the silk powder does not adversely affect the growth of human skin cells.
  • Such silk powder is said to be excellent in biocompatibility, it is easily decomposed by heat, light, acid, alkali, etc., and its molecular weight is reduced. Incidentally, such a decrease in molecular weight leads to a decrease in the viability of human cells, and an extremely decrease in the molecular weight also causes inhibition of cell growth.
  • thermoplastic synthetic polymer constituting the biocompatible core-sheath type composite fiber or the biocompatible synthetic fiber of the present invention
  • examples of the thermoplastic synthetic polymer constituting the biocompatible core-sheath type composite fiber or the biocompatible synthetic fiber of the present invention include polyethylene (PE) and polypropylene (melting point: 200 ° C. or less).
  • Polyolefin-based (co) polymers such as PP) and aliphatic polyesters can be used.
  • polyethylene-based copolymer examples include a copolymer of ethylene and —olefin having 3 to 20 carbon atoms, an ethylene-acrylic acid ester copolymer, and a copolymer of ethylene and ⁇ -carbon having 3 to 20 carbon atoms.
  • comonomer «— olefins examples include propylene, butene
  • comonomer ⁇ -olefins may be used alone or in combination of two or more.
  • Aliphatic polyesters include polylactic acid, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-13-hydroxybutyrate, poly- ⁇ -force prolact Among them, polylactic acid, which is a biodegradable polymer, is particularly preferred.
  • the lower limit of the melting point of the aliphatic polyester is 70 ° C. from the viewpoint of ensuring sufficient heat resistance and maintaining good spinnability.
  • polyesters such as polyethylene phthalate and polyethylene terephthalate
  • condensation polymers such as nylon and polyurethane may be added with other low-softening point polymers and plasticizers. It can be used as a polymer composition having a softening point of 0 ° C or less.
  • thermoplastic synthetic polymers may include, if necessary, antibacterial agents, antifungal agents, light stabilizers such as ultraviolet absorbers and infrared absorbers, antioxidants, dewatering agents, and antistatic agents.
  • antibacterial agents such as ultraviolet absorbers and infrared absorbers
  • light stabilizers such as ultraviolet absorbers and infrared absorbers
  • antioxidants such as antioxidants, dewatering agents, and antistatic agents.
  • Various additives such as a flame retardant, a colorant, a dye, and a conductive agent may be contained.
  • a pellet is made by mixing silk powder and a thermoplastic synthetic polymer.
  • the mixing ratio of the silk powder (the weight ratio of the thermoplastic synthetic polymer of the silk powder) is 5 to 50% by weight, preferably 10 to 30% by weight.
  • the weight percentage of silk powder is If it is more than 50% by weight, it is difficult to mix with each other at the time of mixing, so that kneading cannot be performed.
  • the proportion of the silk powder is less than about 5% by weight, the function of the silk powder does not work sufficiently.
  • spinning method examples include a wet spinning method, a dry spinning method, and a melt spinning method. In the present invention, it is desirable to use a melt spinning method.
  • thermoplastic synthetic polymers have the appropriate spinning temperature, respectively.Since silk powder is too hot, it decomposes to lower molecular weight, so it has a lower melting point than PE and PP among thermoplastic synthetic polymers.
  • the resin is particularly desirable.
  • thermoplastic synthetic polymer In spinning a thermoplastic synthetic polymer, the heat of the spinning solution causes decomposition of the silk powder.
  • the yellowed or brownish silk powder inhibits human skin cell growth.
  • the maximum temperature is usually about 3 to 6 minutes, so it is preferable to adopt a temperature range that does not cause any problem even if heating is performed for at least 6 minutes.
  • Silk powder adversely affects human skin cell growth due to melting and heating during spinning The effect begins when the heat treatment is performed at a temperature not exceeding 200 ° C, which is a temperature range in which heating for 6 minutes does not cause any problem.
  • thermoplastic synthetic polymer having a melting point of 200 ° C. or less is preferable.
  • the temperature is low, yellowing and thermal decomposition can be avoided. For example, it is about 20 minutes at 180 ° C and about 60 minutes at 150 ° C.
  • the fiber having a double-layered structure having a core and a sheath maintains the tensile strength and is made of silk. This enabled the powder to be localized near the fiber surface.
  • the tensile strength of the fiber can be sufficiently borne by the core, and the decrease in strength due to the inclusion of the silk powder can be minimized.
  • a silk powder containing no powder particles exceeding at least 10 ⁇ m it is preferable to use a silk powder containing no powder particles exceeding at least 10 ⁇ m.
  • a silk powder containing no powder particles of at least 10 m it is preferable to use a silk powder containing no powder particles of at least 10 m.
  • the silk powder in the sheath portion is more Localization is more effective because it comes to the surface.
  • the silk powder is physically retained by being immobilized on the surface of the fiber by the thermoplastic synthetic polymer and does not fall off during use.
  • a pellet is prepared by mixing a thermoplastic synthetic polymer and silk powder, and this pellet is used as a sheath, and is spun at the same time as the core thermoplastic synthetic polymer.
  • the diameter of the synthetic fiber is a + 2b when the diameter of the core is a and the thickness corresponding to the sheath is, but the ratio of a to 2b is 5 ⁇ 95 to 95-5, preferably 30-80 to 70-20.
  • thermoplastic synthetic polymers of the core and sheath may be the same or different.
  • the silkworm silk is boiled for one hour in a 0.1% aqueous sodium carbonate solution 50 times the volume of the silkworm and refined to obtain fibrin fibers (silk thread). g, add 5 g of sodium carbonate, and add approximately 120 ° C (2 Pressure) for 2 hours, washed with water and dried.
  • this silk material is ground with a stirring and crushing device (Ishikawa type), and then crushed with a rotary impact crusher [Sample Mill KI-1 manufactured by Fuji Electric Industries Co., Ltd.]. It was pulverized with a current grinder [current jet CJ-10 manufactured by Nisshin Flour Milling Co., Ltd.].
  • the obtained silk powder (A) was distributed in the range of 0.3 ⁇ m to 9.3 ⁇ , and the average particle size was 3.2 ⁇ m.
  • the silk powder (B) was distributed from 0.8 ⁇ m to 4.6 ⁇ m, and the average particles were The diameter was 2.5 / m.
  • the silk powder (B) obtained in Example 1 was subjected to dry heat treatment.
  • Dry heat treatment was performed using Clsuzu Manufacturing (Thenno-Regulator)] at (2) 180 ° C and (3) 190. C, (4) 200 ° C, (5) 210. At each temperature of C, the silk powder placed in a petri dish was placed for 6 minutes and subjected to a dry heat treatment.
  • the silk powder dried and heat-treated at 210 ° C. turned yellow.
  • the powder not subjected to the dry heat treatment was (1) brought to room temperature.
  • the cell viability of (1) to (5) was measured as follows. 0.5 mg of each of the silk powders (1) to (5) was placed in a 2 ml cell culture medium, and about 70,000 cells were inoculated into the medium and cultured for 3 days.
  • the cells used were normal human adult skin fibroblasts [KF-410 (Kurashiki Spinning Co., Ltd.)], and the medium used was a low serum freezing medium for fibroblast proliferation [M edium 106 S, LSGS, PSA solution (manufactured by Kurashiki Boseki Co., Ltd.)] was used.
  • Cultivation is performed on a single culture dish containing the silk powder of (1) to (5). 2 ml of the culture medium was added, and 70,000 cells were inoculated therein and cultured for 3 days.
  • the number of cells was determined by adding 2 ml of medium and 0.1 ml of Alama Blue (IWAKI) per dish to the plate, and calculating the absorbance at 570 nm and 600 nm after 2 hours at 37 ° C. The amount of reduction was defined as the number of viable cells.
  • IWAKI Alama Blue
  • a petri dish without silk powder was used as a control (100%), and the cell growth number of the petri dish with silk powder was measured. The results are shown in Table 1.
  • the silk powder has cell viability in the untreated state (1), but the cell viability decreases as the temperature of the dry heat treatment increases, and at 200 ° C., the cell viability almost disappears. At 210 ° C, cell viability is rather inhibited.
  • Table 1 shows the relationship between the dry heat treatment temperature of silk powder and the cell growth rate.
  • the silk powder (B) of Example 1 was put into a PE together with a plasticizer, and the mixture was applied to the silk powder and PE at 145 ° C and 25 minutes using Laboplastomil [Toyo Seiki Seisakusho]. Was kneaded and kneaded to produce spinning chips.
  • the weight ratio of silk powder to PE in this chip is 2 to 8.
  • unstretched yarn was prepared by spinning such that PP became the core and PE containing the silk powder became the sheath.
  • the undrawn yarn is drawn at room temperature to about 4 times the length (drawn yarn, see Fig. 1)
  • the portion that appears to be small and shiny is the silk powder, and it can be seen that the silk powder is localized near the fiber surface (see Fig. 2).
  • the tensile strength of the drawn fiber was about 11.5 that of the PE / PP double-layered fiber when the silk powder was not mixed.
  • Silk powder is often buried in the unstretched sheath.
  • the undrawn yarn becomes thinner by drawing (the thickness of the sheath becomes thinner), but since the silk powder is not drawn, the silk powder buried in the sheath resin is retained on the resin and remains on the fiber surface. Appear.
  • the resin of the sheath is partially divided by the silk powder in the fiber axis direction (arrow in FIG. 1), and in this case, the fiber itself has a unique touch. Some powders appear on the fiber surface.
  • FIG. 1 shows a micrograph of a double-layered fiber containing silk powder in a sheath.
  • FIG. 2 is a polarizing microscope photograph.
  • the core-sheath fiber (B) of PPZPE without silk powder was used as a control for comparison.
  • the filament is clamped with a crimper, cut into a length of 51 mm, and a cotton-like fiber of 10 g each.
  • A is 6.6 d (tex)
  • B is 6.3 d (tex)
  • the questionnaire was for 13 women in their 20s, 2 men, 3 women in their 30s, 2 men, 3 men in their 40s, 2 women in their 50s, and 2 men. I asked her name and asked her to choose between A and B.
  • Hydrophobic polymers such as PE and PP, have no hygroscopic properties, so they are slicked, but the moisture-absorbing silk powder in them gives a slimy feel ⁇ )
  • the silk powder (B) of Example 1 was put into PE together with a plasticizer, and kneaded with a laboplast mill (Toyo Seiki Seisakusho) at 145 ° C for 25 minutes. The yarn was kneaded to make a chip for spinning.
  • a laboplast mill Toyo Seiki Seisakusho
  • the weight ratio of silk powder to PE in this chip is 1.5 to 8.5.
  • the raw silk of silkworm is boiled with a 50% volume of 0.1% aqueous sodium carbonate solution for one hour and scoured to make fibroin fiber (silk thread). Then, 8 g of sodium carbonate was added, and the mixture was boiled at normal pressure for 5 hours, washed with water and dried.
  • the silk material is ground with a stirring and crushing device (Ishikawa type), and then crushed with a rotary impact crusher [Sample Mill KI-1 manufactured by Fuji Electric Industries Co., Ltd.].
  • the mixture was pulverized with a pulverizer (current jet CJ-10 manufactured by Nisshin Flour Milling Co., Ltd.).
  • the particle size of the obtained silk powder is 0! ⁇ 1 2.
  • the average particle size was 5.3 m.
  • the resin as a raw material of the synthetic fiber and the silk powder did not mix well and did not flow smoothly, so that many defective products were produced.
  • the present invention relates to a synthetic fiber produced from a thermoplastic synthetic polymer containing silk powder, and particularly relates to a synthetic fiber excellent in biocompatibility and also excellent in durability and moldability. As long as the principle is not deviated, it can be applied to clothing, medical materials, etc., and similar effects can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

A biocompatible core-shell composite fiber, wherein its core material comprises a thermoplastic synthetic polymer and its shell material comprises a silk powder being substantially free of particles having a particle diameter of more than 10 μm and a thermoplastic synthetic polymer having a melting point of 200°C or lower; and a biocompatible fiber which comprises a silk powder being substantially free of particles having a particle diameter of more than 10 μm and a thermoplastic synthetic polymer having a melting point of 200°C or lower. The fiber contains a thermoplastic synthetic polymer as its main component and exhibits excellent biocompatibility and silk-like gloss, feeling, moisture holding property and the like. Although it contains a considerable amount of a silk powder, it is reduced in the lowering of strength and exhibits satisfactory strength in practical use.

Description

明 細 書 生体適合性芯鞘型複合繊維、 生体適合性合成繊維及びその製造方法 技術分野  Description Biocompatible core-sheath composite fiber, biocompatible synthetic fiber and method for producing the same
(発明の属する技術分野)  (Technical field to which the invention belongs)
本発明は、 絹粉末を含有させた熱可塑性合成重合体から製造され る合成繊 '維であって、 特に生体適合性に優れ、 かつ耐久性や成形性 にも優れた合成繊維に関する。 背景技術  TECHNICAL FIELD The present invention relates to a synthetic fiber produced from a thermoplastic synthetic polymer containing silk powder, and particularly to a synthetic fiber having excellent biocompatibility and excellent durability and moldability. Background art
(従来の技術)  (Conventional technology)
一般的に、 絹は、 極めて優れた光沢や柔らかな風合いを持ち、 且 つ吸 ·放湿性等にも優れていることから、 高級志向の衣料用素材と しては、 他の追従を許さない材料といえる。  In general, silk has an extremely high gloss and soft texture, and also has excellent moisture absorption and desorption properties.Therefore, it cannot be used as a high-grade clothing material. It can be called a material.
また生体適合性を有していることなどから、 縫合糸など医療用素 材ゃ化粧品と しても新しい用途が広まっている。  In addition, due to its biocompatibility, new uses are spreading for medical materials such as sutures and cosmetics.
しかし、 現在、 絹は、 その供給量が限られ、 コス ト面でも非常に 割高となつていることから、 その需要に十分応えられないのが現状 である。  However, at present, the supply of silk is limited and the cost is very expensive, so it is impossible to meet the demand at present.
このよ うな状況から、 近年、 絹と極めて近い特性を有する繊維、 フィ ルム等の、 代替材料を得るための研究開発が盛んになされてい る  Under these circumstances, research and development to obtain alternative materials, such as fibers and films, which have properties very close to silk, have been actively conducted in recent years.
そのような研究開発については、 合成繊維ゃフィ ルムの機械的処 理により絹様の肌触り等の特性を付与する方法がある。  For such research and development, there is a method of imparting silky-feeling properties and the like by mechanical treatment of synthetic fiber / film.
また、 合成繊維、 不織布、 フィ ルム等の製品表面を絹タ ンパク含 有処理剤を用いて化学的に修飾して絹の特性を付与する方法や、 熱 可塑性合成重合体に絹粉末を含有させ、 熱可塑性合成重合体の成形 体に絹の特性を付与する方法などが提案されている。 In addition, the surface of products such as synthetic fibers, non-woven fabrics and films may contain silk proteins. A method of imparting silk properties by chemically modifying it with a treating agent, a method of adding silk powder to a thermoplastic synthetic polymer, and imparting the properties of silk to a molded article of the thermoplastic synthetic polymer, etc. Has been proposed.
後者の合成繊維、 不織布、 フィ ルム等の製品表面を絹タ ンパク含 有処理剤を用いて化学的に修飾して絹の特性を付与する方法におい て、 処理剤と して絹タ ンパク水溶液 (分散液) を用いた例は、 例えば、  In the latter method, in which the surface of a product such as synthetic fiber, non-woven fabric, or film is chemically modified with a silk protein-containing treating agent to impart silk properties, a silk protein aqueous solution ( An example using (dispersion) is, for example,
特開平 3 — 1 2 3 5 6 1号公報、  Japanese Patent Application Laid-Open No. Hei 3 — 1 2 3 5 6 1
特開平 4 — 1 0 0 9 7 5号公報、  Japanese Patent Application Laid-Open No. Hei 4 — 009975,
実開平 6 — 3 7 3 9 7号公報、  Japanese Utility Model Publication No. 6 — 3 7 3 9 7
特開平 9 — 1 3 7 3 8 1号公報、  Japanese Patent Application Laid-Open No. Hei 9 — 1 3 7 3 8 1,
特開平 9 — 1 4 3 8 7 6号公報、  Japanese Patent Application Laid-Open No. 9-144, 876,
特開平 9 — 1 8 8 9 7 2号公報、  Japanese Patent Application Laid-Open No. 9-1889872,
特開平 9 — 3 1 3 2 4 8号公報、  Japanese Patent Application Laid-Open No. 9-311 428,
特開平 9 — 3 2 2 9 1 1号公報、  Japanese Patent Application Laid-Open No. Hei 9 — 3 2 291 1
特開平 1 0 - 1 8 7 2号公報  Japanese Patent Application Laid-Open No. 10-18772
等がある。  Etc.
処理剤として絹タンパク水溶液にバインダーを添加した分散液を 用いた例には、  Examples of using a dispersion of a silk protein aqueous solution with a binder added as a treating agent include:
例えば、  For example,
特開平 9 — 3 1 8 4 7号公報、  Japanese Patent Application Laid-Open No. 9-31 8 4 7
特開平 9 — 1 2 4 7 9 6号公報、  Japanese Patent Application Laid-Open No. Hei 9 — 1 2 4 7 9 6
特開平 1 0 - 2 1 2 4 5 6号公報  Japanese Patent Application Laid-Open No. H10-212124456
等がある。 Etc.
また、 処理剤と して絹粉末をバイ ンダーや塗料に混合したものを 使用した例には、 例えば、 In addition, examples of using a mixture of silk powder with a binder or paint as a treating agent include: For example,
特開平 3 - 5 1 3 7 0号公報、  Japanese Patent Laid-Open No. 3-513070,
特開平 5 — 7 8 9 7 9号公報、  Japanese Patent Application Laid-Open No. Hei 5 — 7 8 9 7 9
特開平 6 — 1 5 8 5 4 5号公報、  Unexamined Japanese Patent Publication No.
特開平 6 — 3 0 6 7 7 2号公報、  JP-A-6-370672,
特開平 7 — 5 4 2 7 7号公報、  Japanese Patent Application Laid-Open No. Hei 7 — 5 4 2 7 7
特開平 7 - 2 7 9 0 5 3号公報、  Japanese Patent Application Laid-Open No. 7-2790953,
特開平 9 一 1 1 8 8 4 6号公報、  Japanese Patent Application Laid-Open No. Hei 9-111188,
特開平 9 — 2 1 7 0 2 9号公報、  Japanese Patent Application Laid-Open No. Hei 9 — 217092,
特開 2 0 0 0 — 4 4 5 9 8号公報  Japanese Patent Application Laid-Open No. 2000-4404598
等がある。 Etc.
以上に挙げた方法においては、 総じて、 絹タンパクの性質を材料 表面に付与することができるものの、 処理剤と して絹タンパク水溶 液 (分散液) を用いた方法では、 絹タンパクは繊維の使用中または 洗浄中に脱落し易く、 耐久性に乏しいという欠点がある。  In the methods described above, the properties of silk protein can be generally imparted to the material surface, but in the method using a silk protein aqueous solution (dispersion solution) as a treating agent, silk protein uses fibers. It has the drawback that it easily falls off during or during cleaning and has poor durability.
処理剤と して絹タンパクをバイ ンダ一や塗料と混合した場合は、 絹タンパクの材料表面からの脱落を防止でき耐久性は改善されるも のの、 バイ ンダ一や塗料が絹タンパクを覆つてしま うために絹夕ン パクの機能を充分に発揮することができないという問題が生ずる。 絹夕ンパクには熱可塑性の性質はなく、 加熱すると熱溶融するま での間に分解し炭化してしま うが、 先述したように、 絹は光沢や風 合い、 吸 ·放湿性等に優れ、 特に熱可塑性合成重合体にはない性質 として、 生体適合性を有している。  When silk protein is mixed with a binder or paint as a treating agent, the silk protein is prevented from falling off the material surface and durability is improved, but the binder or paint covers the silk protein. As a result, there is a problem that the function of the silk screen cannot be fully exhibited. Silk fabric has no thermoplastic properties and will decompose and carbonize until heated when heated, but as mentioned earlier, silk has excellent luster, texture, moisture absorption, moisture absorption, etc. In particular, it has biocompatibility as a property not found in thermoplastic synthetic polymers.
因みに、 最近になって生体適合性の機能の一つと して、 絹タンパ クはヒ ト由来の皮膚細胞を生育促進する性質のあることも分かって きた。 一方、 絹タンパクを熱可塑性合成重合体中に含有させる方法にお いては、 使用中または洗浄中に絹タンパクが脱落することは少なく なるが、 含有された絹タ ンパクの部分が力学的弱点となり、 繊維と しての強度低下の原因となる。 Incidentally, it has recently been found that silk protein has the property of promoting the growth of human-derived skin cells as one of the functions of biocompatibility. On the other hand, in the method in which the silk protein is contained in the thermoplastic synthetic polymer, the loss of the silk protein during use or washing is reduced, but the contained silk protein becomes a mechanical weak point. However, it causes a decrease in the strength of the fiber.
特に、 引張りに対する強度低下が大き く なるため、 絹タンパクの 粒子を極端に小さ くする必要がある。  In particular, it is necessary to reduce the size of the silk protein particles extremely, since the decrease in strength with respect to tensile strength is large.
従来は、 絹タ ンパク粒子が大き過ぎて、 引張強度低下が激しく、 これまで絹タンパク含有熱可塑性合成重合体は利用されていなかつ た。  Conventionally, silk protein particles are too large, and the tensile strength is drastically reduced. So far, silk protein-containing thermoplastic synthetic polymers have not been used.
この熱可塑性合成重合体に絹粉末を含有させ、 熱可塑性合成重合 体の成形体に絹の特性を付与する方法の具体的な例と しては、 例えば、  Specific examples of the method of adding silk powder to the thermoplastic synthetic polymer and imparting the properties of silk to the molded article of the thermoplastic synthetic polymer include, for example,
特開平 2 - 1 0 9 5 7 0号公報、  Japanese Patent Application Laid-Open No. 2-195095,
特開平 7 — 2 7 8 4 4 1号公報、  Japanese Patent Application Laid-Open No. Hei 7 — 2 7 8 4 41,
特開平 9 一 1 1 8 7 5 6号公報、  JP-A-9-1118756, JP,
特開平 9 一 2 7 8 9 3 9号公報、  JP-A-9-12798939,
特開平 1 0 — 2 1 2 4 1 7号公報  Japanese Patent Application Laid-Open No. H10-10-2 1 2 4 17
等が挙げられる。 And the like.
これらは、 主としてフィルム或いはシ一 ト状の成形体に関するも のであるが、 上記特開平 1 0 - 2 1 2 4 1 7号公報にのみ、 溶融紡 糸法等により繊維を製造すものである。  These are mainly concerned with a film or sheet-like molded body, but only in the above-mentioned Japanese Patent Application Laid-Open No. 10-212417, a fiber is produced by a melt spinning method or the like.
この特開平 1 0 — 2 1 2 4 1 7号公報には、 平均粒子径 2 0〜 5 0 μ mの絹粉末の表面に、 絹粉末の耐熱性向上のために、 平均粒子 径 0. 2〜 0. 3 mの酸化チタンを押し付けて付着させ、 これを 熱可塑性樹脂と混合し、 2 7 0 °Cの紡糸温度で紡糸して、 酸化チタ ン配合絹粉末を繊維内に均一に分布した合成繊維を得ることができ る点が示されている。 Japanese Patent Application Laid-Open No. H10-212124 / 17 discloses that the surface of a silk powder having an average particle diameter of 20 to 50 μm has an average particle diameter of 0.2 to improve the heat resistance of the silk powder. M0.3 m of titanium oxide was pressed and adhered, mixed with thermoplastic resin, spun at a spinning temperature of 270 ° C, and the titanium oxide-containing silk powder was evenly distributed in the fiber. Can get synthetic fiber Points are shown.
しかし、 平均粒子径 2 0〜 5 0 mという粒子径の大きい絹粉末 を使用するものであることから、 通常の衣服に使用する繊維である 直径が 1 0 0 m以下、 特に 3 0 m以下の合成繊維を製造する場 合には、 平均粒子径 2 0〜 5 0 mという粒子径の大きい絹粉末の 存在により、 繊維の引張強度が著し く低下し、 実質的に繊維と して 利用不可能なものしか得ることができない。  However, since silk powder, which has a large average particle diameter of 20 to 50 m, is used, the fiber used for ordinary clothes has a diameter of 100 m or less, especially 30 m or less. In the case of producing synthetic fibers, the presence of silk powder having a large average particle diameter of 20 to 50 m significantly lowers the tensile strength of the fibers, making them virtually unusable as fibers. You can only get what you can.
また、 上記の 2 7 0 °Cの紡糸温度は絹タンパクの分解温度を遙か に超えており、 このような温度では絹タンパクが炭化してしまうた め、 絹タ ンパクの本来の特性を生かすことができないという問題が ある。  In addition, the above spinning temperature of 270 ° C is much higher than the decomposition temperature of silk protein, and at such a temperature, the silk protein is carbonized, so that the original characteristics of silk protein can be utilized. There is a problem that you can not.
(発明が解決しょう とする課題) (Problems to be solved by the invention)
本発明の目的は、 絹様の光沢、 風合い、 保湿性等を有し、 熱可塑 性合成重合体を主成分とする生体適合性に優れた新素材、 特に繊維 を提供することにある。  An object of the present invention is to provide a new material excellent in biocompatibility, particularly a fiber, which has a silky luster, texture, moisture retention and the like, and is mainly composed of a thermoplastic synthetic polymer.
本発明は、 また、 熱可塑性合成重合体からなる合成繊維に絹粉末 を含有させても、 合成繊維の強度低下が少なく、 実用に耐えること ができる生体適合性の新素材を提供することにある。  Another object of the present invention is to provide a new biocompatible material that can withstand practical use with a small decrease in the strength of the synthetic fiber even when the synthetic fiber made of a thermoplastic synthetic polymer contains silk powder. .
本発明は、 また、 高価格で生体適合性を有する絹タンパクと低価 格で耐久性、 成形性に優れた熱可塑性合成重合体とを用い、 両者の 機能を併せ持つ低価格の繊維を開発することを目的とする。 発明の開示  The present invention also develops a low-cost fiber having both functions by using a high-priced biocompatible silk protein and a low-priced thermoplastic synthetic polymer having excellent durability and moldability. The purpose is to: Disclosure of the invention
(課題を解決するための手段)  (Means for solving the problem)
上記課題を解決するために、 本発明者らは、 熱可塑性合成重合体 に絹粉末を含有させ、 その絹タ ンパクの特性を十分に発揮でき、 し かも耐久性のある生体適合性合成繊維を得るべく鋭意、 研究を重ね た結果、 少なく とも、 芯鞘構造や絹粉末の粒子の大きさや熱可塑性 合成重合体の融点が重要な要素であることを見出し、 この知見によ り本発明を完成するに至ったものである。 In order to solve the above problems, the present inventors have developed a thermoplastic synthetic polymer. As a result of extensive research into obtaining biocompatible synthetic fibers that can fully demonstrate the properties of the silk protein and that are durable, as a result of at least the core-sheath structure and silk powder The present inventors have found that the particle size and the melting point of the thermoplastic synthetic polymer are important factors, and have completed the present invention based on this finding.
すなわち、 本発明は、 ( 1 ) 、 芯材料が熱可塑性合成重合体から なり、 鞘材料は実質的に粒子径が 1 0 β mを超える粉末粒子を含ま ない絹粉末及び融点が 2 0 0 °C以下の熱可塑性合成重合体からなる 生体適合性芯鞘型複合繊維に存する。  That is, according to the present invention, (1) the core material is made of a thermoplastic synthetic polymer, the sheath material is a silk powder substantially free from powder particles having a particle diameter exceeding 10 βm, and the melting point is 200 °. It is a biocompatible core-sheath composite fiber made of a thermoplastic synthetic polymer of C or less.
そして、 ( 2 ) 、 鞘材料における絹粉末の含有量が、 該絹粉末及 び熱可塑性合成重合体の合計量の 5〜 5 0重量%である生体適合性 芯鞘型複合繊維に存する。  (2) The biocompatible core-sheath composite fiber in which the content of the silk powder in the sheath material is 5 to 50% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer.
そしてまた、 ( 3 ) 、 鞘材料における絹粉末の含有量が、 該絹粉 末及び熱可塑性合成重合体の合計量の 1 0〜 3 0重量%である生体 適合性芯鞘型複合繊維に存する。  Also, (3) the biocompatible core-sheath type conjugate fiber in which the content of the silk powder in the sheath material is 10 to 30% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer. .
そしてまた、 ( 4 ) 、 芯材料を構成する熱可塑性合成重合体及び 鞘材料を構成する熱可塑性合成重合体が、 同一の熱可塑性合成重合 体である生体適合性芯鞘型複合繊維に存する。  Further, (4) the thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are present in the same thermoplastic synthetic polymer as the biocompatible core-sheath composite fiber.
そしてまた、 ( 5 ) 、 芯材料を構成する熱可塑性合成重合体及び 鞘材料を構成する熱可塑性合成重合体が、 相異なる熱可塑性合成重 合体である生体適合性芯鞘型複合繊維に存する。  (5) The thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are present in biocompatible core-sheath type composite fibers which are different thermoplastic synthetic polymers.
そしてまた、 ( 6 ) 、 実質的に粒子径が 1 0 mを超える粉末 粒子を含まない絹粉末及び融点が 2 0 0 °C以下の熱可塑性合成重合 体からなることを特徵とする生体適合性合成繊維に存する。  And (6) a biocompatibility characterized in that the powder is made of a silk powder substantially free of particles having a particle diameter exceeding 10 m and a thermoplastic synthetic polymer having a melting point of 200 ° C. or less. Present in synthetic fibers.
そしてまた、 ( 7 ) 、 絹粉末の含有量が、 該絹粉末及び熱可塑性 合成重合体の合計量の 5〜 5 0重量%である生体適合性合成繊維に 存する。 (7) The biocompatible synthetic fiber having a silk powder content of 5 to 50% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer. Exist.
そしてまた、 ( 8 ) 、 絹粉末の含有量が、 該絹粉末及び熱可塑性 合成重合体の合計量の 1 0〜 3 0重量%である生体適合性合成繊維 に存する。  (8) The biocompatible synthetic fiber wherein the content of the silk powder is 10 to 30% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer.
そしてまた、 ( 9 ) 、 熱可塑性合成重合体がォレフィ ン系重合体 である生体適合性芯鞘型複合繊維又は生体適合性合成繊維に存する o  And (9) the biocompatible core-sheath type composite fiber or the biocompatible synthetic fiber in which the thermoplastic synthetic polymer is an olefin polymer.
そしてまた、 ( 1 0 ) 、 ォレフィ ン系重合体がポリエチレ ン、 ポ リプロピレン又はこれらを主体とした共重合体である生体適合性芯 鞘型複合繊維又は生体適合性合成繊維に存する。  Also, (10) the biocompatible core-in-sheath type composite fiber or the biocompatible synthetic fiber in which the olefin-based polymer is polyethylene, polypropylene or a copolymer mainly composed of these.
そしてまた、 ( 1 1 ) 、 繊維の直径が 5〜 1 0 0 ^ m、 好ま しく は 1 0〜 3 0 mである生体適合性芯鞘型複合繊維、 又は生体適合 性合成繊維に存する。  Also, (11) a biocompatible core-sheath composite fiber or a biocompatible synthetic fiber having a fiber diameter of 5 to 100 m, preferably 10 to 30 m.
そしてまた、 ( 1 2 ) 、 熱可塑性合成重合体からなる芯材料と、 絹粉末及び熱可塑性合成重合体からなる鞘材料とを芯鞘複合紡糸し 、 延伸する生体適合性芯鞘型複合繊維の製造方法に存する。  And (12) a biocompatible core-sheath composite fiber obtained by subjecting a core material made of a thermoplastic synthetic polymer and a sheath material made of silk powder and a thermoplastic synthetic polymer to core-sheath composite spinning and stretching. Lies in the manufacturing method.
そしてまた、 ( 1 3 ) 、 熱可塑性合成重合体からなる芯材料と、 実質的に粒子径が 1 0 μ mを超える粉末粒子を含まない絹粉末及び 融点が 2 0 0 °C以下の熱可塑性合成重合体からなる鞘材料とを芯鞘 複合紡糸し、 延伸する生体適合性芯鞘型複合繊維の製造方法に存す o  (13) a core material comprising a thermoplastic synthetic polymer; a silk powder substantially free from powder particles having a particle diameter of more than 10 μm; and a thermoplastic material having a melting point of 200 ° C. or less. The present invention relates to a method for producing a biocompatible core-in-sheath type composite fiber in which a sheath material made of a synthetic polymer is subjected to core-sheath composite spinning and stretching.
そしてまた、 ( 1 4 ) 、 実質的に粒子径が 1 0 n mを超える粉末 粒子を含まない絹粉末、 及び融点が 2 0 0 °C以下の熱可塑性合成重 合体を混合し、 加熱、 練成し、 次いで紡糸、 延伸することからなる 生体適合性合成繊維の製造方法に存する。  Further, (14) a powder having substantially no particle diameter exceeding 10 nm, a silk powder substantially free from particles, and a thermoplastic synthetic polymer having a melting point of 200 ° C. or less are mixed, heated and kneaded. And then spinning and stretching.
そしてまた、 ( 1 5 ) 、 絹粉末及び熱可塑性合成重合体を混合し 、 加熱、 練成し、 次いで溶融紡糸する際に、 溶融して紡糸口金より 押出しする工程を 2 0 0 °C以下の温度、 6分以下の時間で行う こと 生体適合性芯鞘型複合繊維又は生体適合性合成繊維の製造方法に存 する。 And (15) mixing silk powder and thermoplastic synthetic polymer. When heating, kneading, and then melt-spinning, the step of melting and extruding from a spinneret should be performed at a temperature of 200 ° C or less and for a time of 6 minutes or less. A method for producing biocompatible synthetic fibers.
本発明は、 その目的に沿ったものであれば、 上記 1〜 5、 6 〜 8 、 9〜 1 1、 及び 1 2〜 1 5の中から選ばれた 2つ以上を組合わせ た構成も採用可能である。  The present invention also employs a configuration combining two or more selected from the above 1 to 5, 6 to 8, 9 to 11, and 12 to 15 as long as the purpose is met. It is possible.
(発明の効果) (The invention's effect)
本発明の生体適合性芯鞘型複合繊維および生体適合性合成繊維は 、 絹様の光沢、 風合い、 保湿性等を有し、 かつ耐久性にも優れてお り、 衣服材料や医療用素材と して有用である。 図面の簡単な説明  The biocompatible core-sheath type composite fiber and the biocompatible synthetic fiber of the present invention have silk-like luster, texture, moisturizing property, etc., and are excellent in durability, and are suitable for clothing materials and medical materials. Useful. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明における、 実施例 3の二層構造の繊維を顕微鏡 写真で示す。  FIG. 1 is a photomicrograph of the double-layered fiber of Example 3 of the present invention.
第 2図は、 本発明における実施例 3の二層構造の繊維を偏光顕微 鏡写真で示す。  FIG. 2 shows a polarizing microscopic photograph of a fiber having a two-layer structure of Example 3 of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(発明の実施の形態)  (Embodiment of the invention)
本発明を具体的に実施するための各原料の種類 ·特性、 製造条件 等について以下に説明する。  The types and characteristics of each raw material, the manufacturing conditions, and the like for specifically implementing the present invention will be described below.
〔 1〕 絹粉末原料  [1] Silk powder raw material
絹夕 ンパクの原料物質は繭糸、 生糸、 絹織編物、 絹糸 (フィ プロ ィ ン繊維) 、 それらの残糸またはそれらの未精練物、 半精練物、 精 練物、 およびそれらを原料と した繊維、 粉末、 フィ ルム等、 家蚕お よび野蚕等の絹糸虫類が吐糸する蛋白質繊維及びそれらの残糸すベ てを対象とすることができる。 The raw material of silk protein is cocoon thread, raw silk, silk woven or knitted fabric, silk thread (fiproin fiber), their remaining yarn or their unscrambled, semi-scrambled, refined It can be applied to kneaded materials, and fibers, powders, films, etc. made from them, protein fibers spun by silkworms such as silkworms and wild silkworms, and all of their remnants.
一般に、 蚕は体内の絹糸腺腔に絹を分泌し、 この絹は液状絹と言 われる。  In general, silkworms secrete silk into the silk gland cavity of the body, and this silk is called liquid silk.
液状絹はフィ ブロイ ンとセリ シンから成り (これらを絹粉末とい う。 ) 、 液状フイ ブ口イ ンは分子量約 3 7万である 〔Tasiro Yutak a and Otsuki Ei ichi , Journal of Cel l Biology, Vol. 46, P. 1 ( 1 Liquid silk consists of fibrin and sericin (these are called silk powders), and liquid fiber mouth has a molecular weight of about 370,000 [Tasiro Yutak and Otsuki Eiichi, Journal of Cell Biology, Vol. 46, P. 1 (1
970) ) o 970)) o
また分子量約 3 7万のフイ ブ口イ ンは分子量約 3 5万 (H鎖) と 約 2 . 5万 ( L鎖) に分けられる。  In addition, a fiber mouth with a molecular weight of about 370,000 is divided into a molecular weight of about 350,000 (H chain) and about 25,000 (L chain).
繭 (いわゆる繭糸と蛹で構成) は、 蚕が営繭時に液状絹を吐糸す ることで形成される。  Cocoons (consisting of so-called cocoons and pupae) are formed when silkworms spit liquid silk during cocoon production.
繭糸には中心部にフィ ブロイ ン、 周囲にセリ シンが存在し、 存在 比は ( 7 0 ~ 8 0 %フイ ブ口イ ン) : 3 0〜 2 0 % (セリ シン) で あることが知られている。  It is known that the cocoon contains fibrin at the center and sericin around it, and the abundance ratio is (70-80% fibrous mouth): 30-20% (sericin). Have been.
因みに、 生糸は繭糸を数本から数 1 0本集合することで作られ、 また生糸で織った織物は生織といわれている。  By the way, raw silk is made by assembling several to several tens of cocoons, and a woven fabric made of raw silk is called raw woven.
繭糸、 生糸又は生織からセリ シンを除去する工程は精練といわれ ており、 精練後の繊維が絹糸又はフィ プロイ ン繊維である。  The process of removing sericin from cocoon, raw silk or raw weave is called scouring, and the fibers after scouring are silk or fiproin fibers.
絹糸は、 まず、 生育された繭を乾繭、 煮繭後に繰糸して生糸を作 製する。  The silk thread is produced by first drying the grown cocoon and then winding it after boiled cocoon to produce raw silk.
次いで、 生糸又は生織の精練を行い、 絹糸また絹織物とする。 尚、 これらの工程で生じる屑が残糸である。  Next, raw silk or raw weave is refined to obtain silk yarn or silk fabric. The waste generated in these steps is the residual yarn.
〔 2〕 絹粉末  [2] Silk powder
( 1 ) 結晶性絹粉末 結晶性絹粉末は、 例えば特開 2 0 0 1 一 4 8 9 8 9号公報に示さ れているような結晶性絹超微粉末の製造方法に従って製造する。 絹粉末の粒子径は、 一般に平均粒子径で表されるが、 粒子径には 分布があり、 粉末の大きさは平均粒子径ょり小さい粒子や大きい粒 子が広く分布している。 (1) Crystalline silk powder The crystalline silk powder is produced, for example, according to a method for producing a crystalline silk ultrafine powder as disclosed in JP-A-2001-48989. The particle size of silk powder is generally represented by the average particle size, but there is a distribution in the particle size, and the size of the powder is such that particles having a smaller average particle size and larger particles are widely distributed.
例えば、 平均粒子径 5 mであつても、 2 0 m程度の大きい粉 末が僅かに入っているのが普通である。  For example, even if the average particle size is 5 m, it is normal that a large powder of about 20 m is slightly contained.
本発明の場合においては、 大きい粉末が含まれているほど引張強 度は低下することを考慮し、 平均粒子径ょり も最大粒子径の値に着 目している。  In the case of the present invention, the average particle diameter is also focused on the value of the maximum particle diameter in consideration of the fact that the larger the powder, the lower the tensile strength.
特にある限度以上の粒子径の大きい粒子を分離しなければ、 所望 する絹粉末含有樹脂の紡糸、 特に延伸ができない。  Unless particles having a particle diameter exceeding a certain limit are separated, the desired silk powder-containing resin cannot be spun, especially drawn.
この観点から、 前述の特開 2 0 0 1 — 4 8 9 8 9号公報の製造方 法で得た粉末を粉砕分級して、 粒子径 1 0 mを越えるもの、 更に 好ま しく は 5 i/ mを越えるものを分離除去する。  From this viewpoint, the powder obtained by the production method of the aforementioned Japanese Patent Application Laid-Open No. 2001-48989 is pulverized and classified to obtain a powder having a particle diameter of more than 10 m, more preferably 5 i / Those exceeding m are separated and removed.
すなわち、 粒子径が 1 0 μ mを越える粉末を、 更に好ま しく は、 粒子径が 5 μ mを越える粉末を含まないようにする。  That is, powders having a particle size of more than 10 μm, more preferably powders having a particle size of more than 5 μm are not included.
また、 粒子径は、 繊維直径 (すなわち紡糸延伸されてできる繊維 ) の 1 1 0以下が好ま しい。  Further, the particle diameter is preferably 110 or less of the fiber diameter (that is, the fiber formed by spinning and drawing).
一方、 粒子径が小さ過ぎると粉末が繊維の中に埋もれ易いため、 埋もれた粉末は絹粉末と しての機能が作用しにく いことは事実であ o  On the other hand, if the particle size is too small, the powder is likely to be buried in the fiber, and it is true that the buried powder does not function as a silk powder.
この観点から、 最小粒子径については、 粉末の粒子径は 0 . 1 m以上とすることが好ま しく、 更に好ま しく は 0 . 5 / m以上であ る。  From this viewpoint, regarding the minimum particle diameter, the particle diameter of the powder is preferably 0.1 m or more, and more preferably 0.5 / m or more.
このようなことから、 粉砕 ·分級のしゃすさを考慮して、 平均粒 子径は、 0 . 5 m以上、 5 m以下の絹粉末とすることが好ま し い。 From this, the average grain size is considered in consideration of the sharpness of grinding and classification. The diameter of the silk powder is preferably 0.5 m or more and 5 m or less.
( 2 ) 非結晶性絹粉末  (2) Amorphous silk powder
非結晶性絹粉末は、 特開平 1 1 一 7 0 1 6 0号公報 (絹フィ プロ ィ ンおよび絹セリ シンを主成分とする創傷被覆材並びにその製造方 法) 、 特開 2 0 0 1 — 1 6 3 8 9 9号公報 (機能性絹フィ プロイ ン の製造方法とその利用) 、 特開 2 0 0 2 — 1 2 8 6 9 1号公報 (セ リ シン含有素材、 その製造方法及びその使用方法) 、 特願 2 0 0 1 — 1 8 0 1 6 9号 (絹フイ ブロイ ン由来機能性ポリぺプチ ドの製造 方法及びその利用) 等の方法に従って製造する。  Non-crystalline silk powder is disclosed in Japanese Patent Application Laid-Open No. 11-170160 (Wound dressing material containing silk fiplin and silk sericin as a main component and a method for producing the same). — 1 639 9 9 (Method of producing functional silk fiproin and its use), Japanese Patent Application Laid-Open No. 2002-122628 (1) Sericin-containing material, method of its production and It is manufactured according to a method such as that described in Japanese Patent Application No. 2001-180169 (a method for producing and using a functional polypeptide derived from silk fibrin).
非結晶性絹粉末についても、 上記結晶性絹粉末のように、 粉砕 · 分級し、 粒子径 1 0 β mを越える粉末、 好ま しく は 5 を越える 粉末を除去した絹粉末とする。  The non-crystalline silk powder is also crushed and classified like the above-mentioned crystalline silk powder to obtain a powder having a particle diameter of more than 10 βm, preferably a powder having a particle diameter of more than 5 removed.
また、 粉末の最小粒子径は 0 . 1 m以上とすることが好ま し く、 更に好ま しく は 0 . 5 / m以上である。  The minimum particle size of the powder is preferably 0.1 m or more, more preferably 0.5 / m or more.
( 3 ) 絹粉末粒子径  (3) Silk powder particle size
前述したように、 粉末の最大粒子径について、 紡糸性の観点から 、 実質的に粒子径が 1 0 mを超える粉末を含まず、 更に好ま しく は粒子径が 5 μ mを越える粉末を含まないようにする。  As described above, regarding the maximum particle size of the powder, from the viewpoint of spinnability, it does not substantially include a powder having a particle size exceeding 10 m, and more preferably does not include a powder having a particle size exceeding 5 μm. To do.
なお、 粉砕 · 分級する際、 極わずかに 1 0 β m以上の粒子が含ま れることもあるが、 その程度は支障とならない。  In the case of pulverization and classification, particles of 10 β m or more may be included, but the degree does not matter.
一方、 粉末の最小粒子径について、 前述したように、 繊維の中に 埋もれ易い観点から、 実質的に粒子径は 0 . 1 m以上が好ま し く 、 更に好ま しく は 0 . 5 m以上とする。  On the other hand, the minimum particle diameter of the powder is preferably 0.1 m or more, more preferably 0.5 m or more, as described above, from the viewpoint of being easily buried in the fiber. .
( 4 ) 絹粉末の生体適合性  (4) Biocompatibility of silk powder
本発明の底流にはスキンケア素材の開発の意図があることから、 本発明における絹粉末の生体適合性とは、 絹粉末がヒ 卜皮膚細胞の 生育に悪影響を及ぼさないことをいう。 Since there is an intention of developing skin care materials in the underflow of the present invention, The biocompatibility of the silk powder in the present invention means that the silk powder does not adversely affect the growth of human skin cells.
すでに、 本発明者らは、 絹粉末に関する生化学的研究を行ってき た中で、 絹フイ ブ口イ ンにはヒ 卜の細胞を生育促進する作用のある ことを突きとめ、 これを創傷被覆材等に利用することを提案した ( 特開平 9 一 1 9 2 2 1 0号公報、 特開平 1 1 一 2 5 3 1 5 5号公報 The present inventors have already conducted a biochemical study on silk powder, and found that silk fiber mouth has an effect of promoting the growth of human cells. (Japanese Patent Application Laid-Open Nos. 9-1192210 and 111-125315)
) o ) o
そ して、 その作用は、 絹フイ ブ口イ ンを構成するフイ ブ口イ ン H 鎖と L鎖にあることを明らかにした (特開 2 0 0 1 一 1 6 3 8 9 9 号公報、 特願 2 0 0 1 — 1 8 0 1 6 9号) 。  It has been clarified that the action is present in the H-chain and the L-chain of the fiber mouth constituting silk fiber mouth (Japanese Patent Application Laid-Open No. 2001-169389). , Japanese Patent Application No. 2001-1801.169).
また、 絹セリ シンの成分にヒ 卜細胞成育促進性のあることを明ら かにした( 特開 2 0 0 2 — 1 2 8 6 9 1号公報) 。  Further, it has been clarified that a component of silk sericin has a human cell growth promoting property (Japanese Patent Application Laid-Open No. 2002-128691).
このような絹粉末は生体適合性に優れていると言われている もの の、 熱、 光、 酸、 アルカ リ等で容易に分解して分子量が低下する。 因みに、 このような分子量低下はヒ 卜細胞の生育性低下につなが り、 極端な分子量低下は細胞生育を阻害する原因にもなる。  Although such silk powder is said to be excellent in biocompatibility, it is easily decomposed by heat, light, acid, alkali, etc., and its molecular weight is reduced. Incidentally, such a decrease in molecular weight leads to a decrease in the viability of human cells, and an extremely decrease in the molecular weight also causes inhibition of cell growth.
〔 3〕 熱可塑性合成重合体  [3] Thermoplastic synthetic polymer
本発明の生体適合性芯鞘型複合繊維又は生体適合性合成繊維を構 成する熱可塑性合成重合体と しては、 融点が 2 0 0 °C以下のポリエ チレン ( P E ) 、 ポリ プロ ピレン ( P P ) 等のポリオ レフイ ン系 ( 共) 重合体や脂肪族ポリエステル等を使用することができる。  Examples of the thermoplastic synthetic polymer constituting the biocompatible core-sheath type composite fiber or the biocompatible synthetic fiber of the present invention include polyethylene (PE) and polypropylene (melting point: 200 ° C. or less). Polyolefin-based (co) polymers such as PP) and aliphatic polyesters can be used.
ポリエチレン系共重合体としては、 エチレンと炭素数 3〜 2 0の —ォレフィ ンとの共重合体、 エチレン—アク リル酸エステル共重 合体などが挙げられ、 エチレンと炭素数 3 ~ 2 0 の α —ォレフィ ン との共重合体、 好ま しく はエチレンと炭素数 3〜 1 0 の 一才レフ ィ ンとの共重合体が使用される。 コモノマーの《 —ォレフィ ンの例と しては、 プロ ピレン、 ブテンExamples of the polyethylene-based copolymer include a copolymer of ethylene and —olefin having 3 to 20 carbon atoms, an ethylene-acrylic acid ester copolymer, and a copolymer of ethylene and α-carbon having 3 to 20 carbon atoms. —A copolymer with ethylene, and preferably a copolymer of ethylene and a one-year-old fin having 3 to 10 carbon atoms is used. Examples of comonomer «— olefins include propylene, butene
— 1 、 ペンテン一 1、 へキセン一 1、 4 ーメチルペンテン一 1、 へ プテン— 1 、 ォクテン一 1 、 デセン— 1 などが挙げられるが、 これ らの中で、 ブテン— 1 、 へキセン— 1、 — 1, pentene-1, hexene-1, 4-methylpentene1-1, heptene-1, octene1-1, decene-1, etc. Of these, butene-1, hexene-1,
これらのコモノマーの α —ォレフィ ンは単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。  These comonomer α-olefins may be used alone or in combination of two or more.
脂肪族ポリエステルとしては、 ポリ乳酸、 ポリ 一 3 —ヒ ドロキシ プロ ピオネー ト、 ポリ 一 3 — ヒ ドロキシブチレ一 ト、 ポリ 一 3 — ヒ ドロキシブチレ一卜ノく リ レ一 卜、 ポリ 一 ε —力プロラク ト ン等が挙 げられるが、 特に生分解性重合体であるポリ乳酸が好ま しい。  Aliphatic polyesters include polylactic acid, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, poly-13-hydroxybutyrate, poly-ε-force prolact Among them, polylactic acid, which is a biodegradable polymer, is particularly preferred.
なお、 耐熱性を十分なものとし、 且つ製糸性を良好に保つという 観点から脂肪族ポリエステルの融点の下限は 7 0 °Cである。  The lower limit of the melting point of the aliphatic polyester is 70 ° C. from the viewpoint of ensuring sufficient heat resistance and maintaining good spinnability.
その他、 ポリ エチレンプチレー ト、 ポリエチレンテレフタ レ一 ト などのポリエステル、 ナイ ロン、 ポリ ウ レタン等の縮合系重合体で も、 他の軟化点の低い重合体や可塑剤を添加し、 2 0 0 °C以下の軟 化点の重合体組成物と して使用することが可能である。  In addition, polyesters such as polyethylene phthalate and polyethylene terephthalate, and condensation polymers such as nylon and polyurethane may be added with other low-softening point polymers and plasticizers. It can be used as a polymer composition having a softening point of 0 ° C or less.
また、 以上の例示した熱可塑性合成重合体中には、 必要に応じて 抗菌剤、 防黴剤、 紫外線吸収剤や赤外線吸収剤などの光安定剤、 酸 化防止剤、 潑水剤、 帯電防止剤、 難燃剤、 着色剤、 染色剤、 導電剤 などの各種添加剤を含有させてもよい。  In addition, the above-mentioned thermoplastic synthetic polymers may include, if necessary, antibacterial agents, antifungal agents, light stabilizers such as ultraviolet absorbers and infrared absorbers, antioxidants, dewatering agents, and antistatic agents. Various additives such as a flame retardant, a colorant, a dye, and a conductive agent may be contained.
〔 4〕 絹粉末含有べレッ 卜  [4] Silk powder-containing belt
絹粉末含有繊維を作るには、 まず、 絹粉末と熱可塑性合成重合体 を混合したペレ ッ 卜を作る。  To make silk powder-containing fibers, first, a pellet is made by mixing silk powder and a thermoplastic synthetic polymer.
絹粉末混合割合 (絹粉末の熱可塑性合成重合体重量割合) は、 5 〜 5 0重量%、 好ま しく は 1 0〜 3 0重量%である。  The mixing ratio of the silk powder (the weight ratio of the thermoplastic synthetic polymer of the silk powder) is 5 to 50% by weight, preferably 10 to 30% by weight.
混合ペレツ 卜を作る場合、 絹粉末の重量割合が熱可塑性合成重合 体に対し 5 0重量%以上では混合時に相互に混ざり合い難く、 混練 ができない。 When making mixed pellets, the weight percentage of silk powder is If it is more than 50% by weight, it is difficult to mix with each other at the time of mixing, so that kneading cannot be performed.
一方、 絹粉末の割合が 5重量%程度より少ないと絹粉末の機能が 十分に作用しない。  On the other hand, if the proportion of the silk powder is less than about 5% by weight, the function of the silk powder does not work sufficiently.
〔 5〕 紡糸方法  [5] Spinning method
( 1 ) 紡糸法と しては湿式紡糸法、 乾式紡糸法、 溶融紡糸法等が あるが、 本発明では溶融紡糸法を用いることが望ま しい。  (1) Examples of the spinning method include a wet spinning method, a dry spinning method, and a melt spinning method. In the present invention, it is desirable to use a melt spinning method.
一般に、 紡糸温度が高温になるほど熱可塑性合成重合体の曳糸性 は良好となるが、 高温過ぎると熱可塑性合成重合体は熱分解する。 つまり、 熱可塑性合成重合体には、 それぞれ適正な紡糸温度があ 絹粉末も高温過ぎると熱分解し、 低分子化するので、 熱可塑性合 成重合体の中でも、 P Eや P Pのように低融点の樹脂が特に望ま し い。  Generally, the higher the spinning temperature is, the better the spinnability of the thermoplastic synthetic polymer is. However, if the temperature is too high, the thermoplastic synthetic polymer is thermally decomposed. In other words, thermoplastic synthetic polymers have the appropriate spinning temperature, respectively.Since silk powder is too hot, it decomposes to lower molecular weight, so it has a lower melting point than PE and PP among thermoplastic synthetic polymers. The resin is particularly desirable.
熱可塑性合成重合体の紡糸においては、 紡糸液の熱により絹粉末 の分解が起こる。  In spinning a thermoplastic synthetic polymer, the heat of the spinning solution causes decomposition of the silk powder.
例えば、 1気圧の空気中においては、 2 0 0 °Cを越えると 6分程 度で黄変し易く なり、 また 2 3 0 °C程度以上では 5分程度で黄色か ら茶色に変色し、 2 5 0 °C程度以上では 5分以内に容易に炭化が始 まる。  For example, in air at 1 atm, yellowing tends to occur in about 6 minutes above 200 ° C, and from yellow to brown in about 5 minutes above 230 ° C, Above about 250 ° C, carbonization starts easily within 5 minutes.
黄変や茶褐色となつた絹粉末はヒ 卜皮膚細胞生育を阻害するよう になる。  The yellowed or brownish silk powder inhibits human skin cell growth.
紡糸する場合は、 最高温度にあるのは、 通常 3〜 6分程度の時間 であるため、 少なく とも、 6分間加熱されても支障のない温度範囲 が採用されることが好ま しい。  In the case of spinning, the maximum temperature is usually about 3 to 6 minutes, so it is preferable to adopt a temperature range that does not cause any problem even if heating is performed for at least 6 minutes.
紡糸の際の溶融加熱により、 絹粉末がヒ 卜皮膚細胞生育性に悪影 響を及ぼし始めるのは、 6分間加熱されても支障のない温度範囲と して、 2 0 0 °Cを越えない温度で熱処理したときである。 Silk powder adversely affects human skin cell growth due to melting and heating during spinning The effect begins when the heat treatment is performed at a temperature not exceeding 200 ° C, which is a temperature range in which heating for 6 minutes does not cause any problem.
従って、 熱可塑性合成重合体の融点が 2 0 0 °C以下のものが好ま しいことが理解されよう。  Therefore, it is understood that a thermoplastic synthetic polymer having a melting point of 200 ° C. or less is preferable.
温度が低いと黄変や熱分解が避けられるために、 例えば、 1 8 0 °Cで 2 0分程度、 1 5 0 °Cで 6 0分程度である。  If the temperature is low, yellowing and thermal decomposition can be avoided. For example, it is about 20 minutes at 180 ° C and about 60 minutes at 150 ° C.
( 2 ) 溶融紡糸法で絹粉末含有熱可塑性合成重合体を紡糸する場 合、 紡糸した繊維と しての使用性を担保するために、 引張強度低下 を防止する必要がある。  (2) When spinning a silk-powder-containing thermoplastic synthetic polymer by a melt spinning method, it is necessary to prevent a decrease in tensile strength in order to ensure the usability as a spun fiber.
一方、 スキンケアの作用は繊維の表面に存在する絹粉末のみが寄 与し、 繊維の表面に現われない小さい絹粉末はむしろ引張強度低下 の原因になるのみであるため、 繊維表面に現われない粉末は少ない 方が好ま しい。  On the other hand, only the silk powder present on the surface of the fiber contributes to skin care, and small silk powder that does not appear on the surface of the fiber only causes a decrease in tensile strength. Less is preferred.
このような、 繊維の引張強度を低下させないこと及び絹粉末を繊 維表面付近に局在させるという観点から、 芯と鞘を有する 2層構造 の繊維とすることで、 引張強度を保ち且つ、 絹粉末を繊維表面付近 に局在させることができることとなったのである。  From the viewpoint of not lowering the tensile strength of the fiber and localizing the silk powder near the fiber surface, the fiber having a double-layered structure having a core and a sheath maintains the tensile strength and is made of silk. This enabled the powder to be localized near the fiber surface.
繊維の引張強度は芯の部分で十分負担させることができ、 絹粉末 を含有したことによる強度低下を極力小さ くできる。  The tensile strength of the fiber can be sufficiently borne by the core, and the decrease in strength due to the inclusion of the silk powder can be minimized.
そして、 更に念のために、 絹粉末を含む鞘部分における強度の低 下も極力防止する観点から、 少なく とも 1 0 β mを超える粉末粒子 を含まない絹粉末とするとよい。  Further, just in case, from the viewpoint of minimizing a decrease in the strength of the sheath portion containing the silk powder, it is preferable to use a silk powder containing no powder particles exceeding at least 10 βm.
因みに、 芯と鞘よりなる 2層構造を有しない単一構造のものにお いても、 少なく とも 1 0 mを超える粉末粒子を含まない絹粉末と するとよい。  Incidentally, even in the case of a single structure having no two-layer structure consisting of a core and a sheath, it is preferable to use a silk powder containing no powder particles of at least 10 m.
本発明では、 紡糸の後の延伸により、 鞘の部分の絹粉末は、 より 表面に出てく るために局在がより効果的となる。 In the present invention, the silk powder in the sheath portion is more Localization is more effective because it comes to the surface.
絹粉末は、 熱可塑性合成重合体により繊維の表面に着床状態とな つて、 物理的に保持され、 使用時に脱落することがない。  The silk powder is physically retained by being immobilized on the surface of the fiber by the thermoplastic synthetic polymer and does not fall off during use.
二層構造繊維の紡糸方法と しては、 熱可塑性合成重合体と絹粉末 を混合したペレツ 卜を作り、 このペレツ トを鞘と し、 芯の熱可塑性 合成重合体と同時に紡糸する。  As a method of spinning a two-layer structure fiber, a pellet is prepared by mixing a thermoplastic synthetic polymer and silk powder, and this pellet is used as a sheath, and is spun at the same time as the core thermoplastic synthetic polymer.
芯には勿論、 絹粉末を混入しない。  Of course, no silk powder is mixed into the core.
〔 6〕 合成繊維  [6] Synthetic fiber
本発明では、 一般に衣服と して使われている直径 5〜 1 0 0 i m 、 好ま しく は  In the present invention, a diameter of 5 to 100 im, which is generally used as clothing, is preferable.
1 0〜 3 0 m程度の合成繊維を製造する。  Manufacture synthetic fibers of about 10 to 30 m.
芯鞘の 2層構造を有する合成繊維において、 芯の直径を a、 鞘に 相当する厚さを とした場合の合成繊維の直径は a + 2 b となるが 、 a と 2 bの比は 5 ~ 9 5対 9 5〜 5、 好ま しく は 3 0〜 8 0対 7 0〜 2 0、 である。  In a synthetic fiber having a two-layer structure of a core-sheath, the diameter of the synthetic fiber is a + 2b when the diameter of the core is a and the thickness corresponding to the sheath is, but the ratio of a to 2b is 5 ~ 95 to 95-5, preferably 30-80 to 70-20.
芯鞘の熱可塑性合成重合体は同一のものであっても、 異なるもの であってもよい。  The thermoplastic synthetic polymers of the core and sheath may be the same or different.
以下、 本発明の実施例について述べるが、 本発明はそれらの実施 例にのみ限定される ものではない。  Hereinafter, examples of the present invention will be described, but the present invention is not limited only to those examples.
[ 実施例 1 ] [Example 1]
〔絹粉末の製造〕  (Production of silk powder)
特開 2 0 0 1 - 4 8 9 8 9号公報 (結晶性絹超微粉末の製造方法 ) の方法を用いて、 次のようにして絹粉末を作った。  Using the method described in Japanese Patent Application Laid-Open No. 2001-48989 (a method for producing ultrafine crystalline silk), a silk powder was produced as follows.
家蚕の生糸を生糸の 5 0倍量の 0 . 1 %炭酸ソ―ダ水溶液で 1時 間煮沸して精練し、 フィ ブロイ ン繊維 (絹糸) と し、 この絹糸 2 0 g を水 5 0 0 gに入れ、 炭酸ソ一ダ 5 gを加え、 約 1 2 0 °C ( 2気 圧) で 2時間処理し、 水洗乾燥した。 The silkworm silk is boiled for one hour in a 0.1% aqueous sodium carbonate solution 50 times the volume of the silkworm and refined to obtain fibrin fibers (silk thread). g, add 5 g of sodium carbonate, and add approximately 120 ° C (2 Pressure) for 2 hours, washed with water and dried.
次いで、 この絹物質を攪拌擂漬装置 (石川式) で摩砕した後に、 回転式衝撃粉砕機 〔不二電気工業 (株) 製サンプルミ ル K I - 1〕 で打砕し、 さ らに気流式粉砕機 〔日清製粉 (株) 製カ レン 卜ジェ ッ ト C J — 1 0〕 で粉砕した。  Next, this silk material is ground with a stirring and crushing device (Ishikawa type), and then crushed with a rotary impact crusher [Sample Mill KI-1 manufactured by Fuji Electric Industries Co., Ltd.]. It was pulverized with a current grinder [current jet CJ-10 manufactured by Nisshin Flour Milling Co., Ltd.].
得られた絹粉末 (A ) は 0 . 3 ^ m〜 9 . 3 μ τηに分布し、 平均 粒子径は 3 . 2 μ mであった。  The obtained silk powder (A) was distributed in the range of 0.3 ^ m to 9.3 μτη, and the average particle size was 3.2 μm.
これを再度気流式粉砕機で粉砕 ·分級するこ とによって 5 / m以 上の粒子を除外したところ、 絹粉末 ( B ) は 0 . 8 〃 m〜 4 . 6 μ mに分布し、 平均粒子径は 2 . 5 / mであった。  When the particles were crushed and classified again by an air-flow crusher to remove particles of 5 / m or more, the silk powder (B) was distributed from 0.8 μm to 4.6 μm, and the average particles were The diameter was 2.5 / m.
[ 実施例 2 ] [Example 2]
〔絹粉末の熱処理と細胞生育促進性〕  (Heat treatment of silk powder and promotion of cell growth)
実施例 1 で得られた絹粉末 (B ) を乾熱処理した。  The silk powder (B) obtained in Example 1 was subjected to dry heat treatment.
乾熱処理は Clsuzu 製作所(Thenno-Regulator)〕 を用い、 ( 2 ) 1 8 0 °C、 ( 3 ) 1 9 0。C、 ( 4 ) 2 0 0 °C、 ( 5 ) 2 1 0。Cの各 温度に、 シャーレに入れた絹粉末を 6分置き、 乾熱処理した。  Dry heat treatment was performed using Clsuzu Manufacturing (Thenno-Regulator)] at (2) 180 ° C and (3) 190. C, (4) 200 ° C, (5) 210. At each temperature of C, the silk powder placed in a petri dish was placed for 6 minutes and subjected to a dry heat treatment.
2 1 0 °Cで乾熱処理した絹粉末は黄色に黄変していた。  The silk powder dried and heat-treated at 210 ° C. turned yellow.
乾熱処理をしていない粉末を ( 1 ) 室温と した。  The powder not subjected to the dry heat treatment was (1) brought to room temperature.
( 1 ) 〜 ( 5 ) の細胞生育性については次のように測定した。 ( 1 ) 〜 ( 5 ) の各絹粉末 0 . 5 m gを 2 m 1 の細胞培養液に入 れ、 また、 約 7万の細胞を培地に接種し、 3 日間培養した。  The cell viability of (1) to (5) was measured as follows. 0.5 mg of each of the silk powders (1) to (5) was placed in a 2 ml cell culture medium, and about 70,000 cells were inoculated into the medium and cultured for 3 days.
細胞と しては、 正常ヒ ト成人皮膚繊維芽細胞 〔K F - 4 1 0 9 ( 倉敷紡績株式会社製) 〕 を使用し、 培地と しては、 繊維芽細胞増殖 用低血清凍結培地 〔M e d i u m 1 0 6 S、 L S G S、 P S A溶液 (倉敷紡績株式会社製) 〕 を使用した。  The cells used were normal human adult skin fibroblasts [KF-410 (Kurashiki Spinning Co., Ltd.)], and the medium used was a low serum freezing medium for fibroblast proliferation [M edium 106 S, LSGS, PSA solution (manufactured by Kurashiki Boseki Co., Ltd.)] was used.
培養は ( 1 ) 〜 ( 5 ) の絹粉末を入れた培養用のシャーレ 1枚に つき培地 2 m lを入れ、 ここに 7万の細胞を接種して 3日間培養し た。 Cultivation is performed on a single culture dish containing the silk powder of (1) to (5). 2 ml of the culture medium was added, and 70,000 cells were inoculated therein and cultured for 3 days.
細胞数の測定はシャーレ 1枚につき培地 2 m 1、 アラマブルー ( I W A K I ) 0. 1 1 m lを入れ、 3 7 °Cで 2時間後に 5 7 0 n m 、 6 0 0 nmの吸光度から計算した色素の還元量を生育細胞数とし た。  The number of cells was determined by adding 2 ml of medium and 0.1 ml of Alama Blue (IWAKI) per dish to the plate, and calculating the absorbance at 570 nm and 600 nm after 2 hours at 37 ° C. The amount of reduction was defined as the number of viable cells.
絹粉末を混入しなかったシャーレを対照区 ( 1 0 0 %) と し、 絹 粉末を混入したシャーレの細胞生育数を測定し、 表 1に示した。  A petri dish without silk powder was used as a control (100%), and the cell growth number of the petri dish with silk powder was measured. The results are shown in Table 1.
その結果、 絹粉末は無処理の状態 ( 1 ) では細胞生育性があるが 、 乾熱処理温度が高温になるほど細胞生育性が低下し、 2 0 0 °Cで は細胞生育性は殆ど無く なり、 2 1 0 °Cではむしろ細胞生育性を阻 害するようになる。  As a result, the silk powder has cell viability in the untreated state (1), but the cell viability decreases as the temperature of the dry heat treatment increases, and at 200 ° C., the cell viability almost disappears. At 210 ° C, cell viability is rather inhibited.
表 1に絹粉末の乾熱処理温度と細胞生育率の関係を示す。  Table 1 shows the relationship between the dry heat treatment temperature of silk powder and the cell growth rate.
表 1 絹粉末の乾熱処理と細胞生育率 コントロール (対照区) 100% Table 1 Dry heat treatment of silk powder and cell growth rate Control (control) 100%
(1) 室 温 183% (1) Room temperature 183%
(2) 180。C 152% (2) 180. C 152%
(3) 190。C 138% (3) 190. C 138%
(4) 200°C 101% (4) 200 ° C 101%
(5) 210°C 45% [ 実施例 3 ] (5) 210 ° C 45% [Example 3]
〔二層構造繊維の紡糸〕  (Spinning of double-layered fiber)
まず、 実施例 1 の絹粉末 ( B ) を P Eに可塑剤とともに入れ、 ラ ボプラス ト ミ ル 〔 (株) 東洋精機製作所〕 を用いて、 1 4 5 °C、 2 5分で絹粉末と P Eを混練、 練成し、 紡糸用チップを作った。  First, the silk powder (B) of Example 1 was put into a PE together with a plasticizer, and the mixture was applied to the silk powder and PE at 145 ° C and 25 minutes using Laboplastomil [Toyo Seiki Seisakusho]. Was kneaded and kneaded to produce spinning chips.
このチップにおける絹粉末対 P Eの重量割合は 2対 8である。 次に、 P Pが芯になり、 且つ絹粉末入り P Eが鞘になるように紡 糸して未延伸糸を作成した。  The weight ratio of silk powder to PE in this chip is 2 to 8. Next, unstretched yarn was prepared by spinning such that PP became the core and PE containing the silk powder became the sheath.
このとき、 ラボプラス ト ミルにおいて最高温度 1 8 0 °Cを 5分で 通過するようにした。  At this time, it was made to pass the maximum temperature of 180 ° C in 5 minutes in the Laboplasto mill.
未延伸糸を室温で延伸し約 4倍の長さにした (延伸糸、 図 1参照 The undrawn yarn is drawn at room temperature to about 4 times the length (drawn yarn, see Fig. 1)
) o ) o
延伸糸における絹粉末粒子が確認できるように偏光顕微鏡下で撮 京 した。  Images were taken under a polarizing microscope so that the silk powder particles in the drawn yarn could be confirmed.
延伸糸において、 小さ く光っているように見える部分が絹粉末で あり、 絹粉末は繊維表面付近に局在しているのが分かる (図 2参照 In the drawn yarn, the portion that appears to be small and shiny is the silk powder, and it can be seen that the silk powder is localized near the fiber surface (see Fig. 2).
) o ) o
延伸繊維 (第 2図) の引張強度は絹粉末を混合しない場合の P E / P P二層構造繊維の 1 1 . 5程度であつた。  The tensile strength of the drawn fiber (FIG. 2) was about 11.5 that of the PE / PP double-layered fiber when the silk powder was not mixed.
未延伸の鞘の部分では、 絹粉末が埋没している場合が多い。  Silk powder is often buried in the unstretched sheath.
未延伸糸は延伸することで細くなる (鞘部分の厚さは薄くなる) が、 絹粉末は延伸されないため、 鞘の樹脂に埋まっていた絹粉末は 樹脂に保持されたまま、 繊維の表面に現われる。  The undrawn yarn becomes thinner by drawing (the thickness of the sheath becomes thinner), but since the silk powder is not drawn, the silk powder buried in the sheath resin is retained on the resin and remains on the fiber surface. Appear.
又、 このとき鞘の樹脂は絹粉末によって繊維軸方向に、 部分的に 分割され (第 1図の矢印) 、 この場合は、 繊維自体が特有の肌触り となる。 繊維表面に現われてく る粉末もある。 At this time, the resin of the sheath is partially divided by the silk powder in the fiber axis direction (arrow in FIG. 1), and in this case, the fiber itself has a unique touch. Some powders appear on the fiber surface.
第 1図は、 鞘に絹粉末を含有した二層構造の繊維の顕微鏡写真を 示す。  FIG. 1 shows a micrograph of a double-layered fiber containing silk powder in a sheath.
第 2図は、 その偏光顕微鏡写真である。  FIG. 2 is a polarizing microscope photograph.
〔実施例 4〕  (Example 4)
〔絹粉末入り合成繊維の評価〕  (Evaluation of synthetic fibers containing silk powder)
実施例 3で得られた P Eの鞘に絹粉末を含有した、 P P / P E芯 鞘繊維 (A) の風合い、 手触り等についてアンケー ト調査を行なつ た。  A questionnaire survey was conducted on the texture, feel, etc., of the PP / PE core-sheath fiber (A) containing the silk powder in the PE sheath obtained in Example 3.
絹粉末の入っていない P PZP Eの芯鞘繊維 ( B ) を比較の対照 と した。  The core-sheath fiber (B) of PPZPE without silk powder was used as a control for comparison.
いづれもフィ ラメ ン 卜をク リ ンパーでク リ ンプを付け、 5 1 mm の長さにカツ 卜 し、 綿状と した各 1 0 g の繊維についてのァンケー 卜である。  In each case, the filament is clamped with a crimper, cut into a length of 51 mm, and a cotton-like fiber of 10 g each.
繊維の太さは、 Aは 6. 6 d ( t e x ) 、 Bは 6. 3 d ( t e x A is 6.6 d (tex), B is 6.3 d (tex)
) である。 ).
アンケー トは 2 0歳代女性 1 3名、 男性 2名、 3 0歳代女性 3名 、 男性 2名、 4 0歳代男性 3名、 5 0歳代女性 2名、 男性 1名の 2 6名に問診し、 Aと Bのどちらかを選んでもらった。  The questionnaire was for 13 women in their 20s, 2 men, 3 women in their 30s, 2 men, 3 men in their 40s, 2 women in their 50s, and 2 men. I asked her name and asked her to choose between A and B.
その結果を表 2 に示す。  The results are shown in Table 2.
P Eや P Pのように疎水性の重合体は吸湿性がないため、 さらつ と しているが、 これに吸湿性の絹粉末が入ることでぬめり感が現わ れ^ )  Hydrophobic polymers, such as PE and PP, have no hygroscopic properties, so they are slicked, but the moisture-absorbing silk powder in them gives a slimy feel ^)
また、 絹の生体適合性のため肌触りが優れていると感じられ、 総 合的に高級感に優れている結果となった。 In addition, it was felt that the touch was excellent due to the biocompatibility of the silk, and the overall result was excellent in luxury.
絹粉末入り合成繊維のアンケート評価 Questionnaire evaluation of synthetic fibers containing silk powder
問診項目 風合い さらつと感 ぬめり感 肌触り 高級感 Interview items Texture Softness and slickness Skin feel Luxury
A繊維を選んだ人数 2 2 8 2 4 2 5 2 3A 2 2 8 2 4 2 5 2 3
B繊維を選んだ人数 4 1 8 2 1 3 Number of people who chose B fiber 4 1 8 2 1 3
C 実施例 5 ] C Example 5]
〔一層構造繊維の紡糸〕  [Spinning of single-layer structural fibers]
まず、 実施例 1 の絹粉末 ( B ) を P Eに可塑剤とともに入れ、 ラ ボプラス 卜 ミル 〔 (株) 東洋精機製作所〕 を用いて、 1 4 5 °C、 2 5分で絹粉末を混練、 練糸し、 紡糸用チップを作った。  First, the silk powder (B) of Example 1 was put into PE together with a plasticizer, and kneaded with a laboplast mill (Toyo Seiki Seisakusho) at 145 ° C for 25 minutes. The yarn was kneaded to make a chip for spinning.
このチップにおける絹粉末対 P Eの重量割合は 1 . 5対 8 . 5で ある。  The weight ratio of silk powder to PE in this chip is 1.5 to 8.5.
次に、 このチップを紡糸した (未延伸糸) 。  Next, this chip was spun (undrawn yarn).
このとき、 ラボプラス 卜 ミルにおける最高温度 1 7 0 °Cを 6分で 通過するようにした。  At this time, it was made to pass through the maximum temperature of 170 ° C in the laboratory plastic mill in 6 minutes.
未延伸糸を室温で延伸したところ約 4倍の長さになった。  When the undrawn yarn was drawn at room temperature, it became about 4 times as long.
延伸糸の絹粉末粒子を偏光顕微鏡下で観察したところ、 絹粉末は 繊維全体に分散して見え、 繊維表面に多く の粒子が現われていた。  When the silk powder particles of the drawn yarn were observed under a polarizing microscope, the silk powder appeared to be dispersed throughout the fiber, and many particles appeared on the fiber surface.
[ 比較例 1 ]  [Comparative Example 1]
粒子径が 10 // D1 以上の粒子を含んだ絹粉末の紡糸  Spinning of silk powder containing particles with particle size of 10 // D1 or more
特開 2 0 0 1 - 4 8 9 8 9号公報 (結晶性絹超微粉末の製造方法 ) の方法を用い、 次ぎのようにして絹粉末を作った。  Using the method described in Japanese Patent Application Laid-Open No. 2001-48989 (a method for producing ultrafine crystalline silk powder), a silk powder was produced as follows.
家蚕の生糸を生糸の 5 0倍量の 0 . 1 %炭酸ソ―ダ水溶液で一時 間煮沸して精練し、 フイ ブロイ ン繊維 (絹糸) と し、 この絹糸 2 0 gを水 5 0 0 gに入れ、 炭酸ソ一ダ 8 gを加え、 常圧で 5時間煮沸 処理し、 水洗乾燥した。  The raw silk of silkworm is boiled with a 50% volume of 0.1% aqueous sodium carbonate solution for one hour and scoured to make fibroin fiber (silk thread). Then, 8 g of sodium carbonate was added, and the mixture was boiled at normal pressure for 5 hours, washed with water and dried.
次いで、 この絹物質を攪拌擂漬装置 (石川式) で摩砕した後に、 回転式衝撃粉砕機 〔不二電気工業 (株) 製サンプルミル K I - 1〕 で打砕し、 さ らに気流式粉砕機 〔日清製粉 (株) 製カ レン 卜ジェッ 卜 C J 一 1 0〕 で粉砕した。  Next, the silk material is ground with a stirring and crushing device (Ishikawa type), and then crushed with a rotary impact crusher [Sample Mill KI-1 manufactured by Fuji Electric Industries Co., Ltd.]. The mixture was pulverized with a pulverizer (current jet CJ-10 manufactured by Nisshin Flour Milling Co., Ltd.).
得られた絹粉末の粒子径は 0 . ! 〜 1 2 . に分布し、 平均粒子径は 5 . 3 m であった。 The particle size of the obtained silk powder is 0! ~ 1 2. The average particle size was 5.3 m.
この場合、 粉砕' 分級は行なわなかった。  In this case, no crushing or classification was performed.
この粉末を用いて [ 実施例 3 ] と同様に二層構造繊維の紡糸を試 みたが、 紡糸できなかつた。  Using this powder, spinning of a two-layer structure fiber was attempted in the same manner as in [Example 3], but could not be spun.
まず、 絹粉末を含有させた鞘用のペレツ 卜の紡糸では、 合成繊維 の原料の樹脂と絹粉末がよく混ざらず、 スムーズに流動しないため 、 不良品が多く できた。  First, in the spinning of a sheath pellet containing silk powder, the resin as a raw material of the synthetic fiber and the silk powder did not mix well and did not flow smoothly, so that many defective products were produced.
次に、 得られたペレツ トを用い、 二層構造繊維の紡糸を行ったが 、 ペレツ トの曳糸性が低いため繊維状に紡糸できなかった。 産業上の利用可能性  Next, the obtained pellets were used to spin a two-layer structure fiber. However, the spinnability of the pellets was low, and thus the fibers could not be spun into fibers. Industrial applicability
本発明は、 絹粉末を含有させた熱可塑性合成重合体から製造され る合成繊維であって、 特に生体適合性に優れ、 かつ耐久性や成形性 にも優れた合成繊維に関するものであるが、 その原理を逸脱しない 限り、 衣料品、 医療用素材等に適用可能であり、 同様な効果を期待 できるものである。  The present invention relates to a synthetic fiber produced from a thermoplastic synthetic polymer containing silk powder, and particularly relates to a synthetic fiber excellent in biocompatibility and also excellent in durability and moldability. As long as the principle is not deviated, it can be applied to clothing, medical materials, etc., and similar effects can be expected.

Claims

請 求 の 範 囲 The scope of the claims
1 . 芯材料が熱可塑性合成重合体からなり、 鞘材料は実質的に粒 子径が 1 0 mを超える粉末粒子を含まない絹粉末及び融点が 2 01. The core material is made of a thermoplastic synthetic polymer, and the sheath material is a silk powder substantially free from powder particles having a particle diameter of more than 10 m and a melting point of 20%.
0 °C以下の熱可塑性合成重合体からなることを特徴とする生体適合 性芯鞘型複合繊維。 A biocompatible core-sheath composite fiber comprising a thermoplastic synthetic polymer having a temperature of 0 ° C or lower.
2 . 鞘材料における絹粉末の含有量が、 該絹粉末及び熱可塑性合 成重合体の合計量の 5〜 5 0重量%であることを特徴とする請求項 1に記載の生体適合性芯鞘型複合繊維。  2. The biocompatible core sheath according to claim 1, wherein the content of the silk powder in the sheath material is 5 to 50% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer. Type composite fiber.
3 . 鞘材料における絹粉末の含有量が、 該絹粉末及び熱可塑性合 成重合体の合計量の 1 0〜 3 0重量%であることを特徴とする請求 項 1 に記載の生体適合性芯鞘型複合繊維。  3. The biocompatible core according to claim 1, wherein the content of the silk powder in the sheath material is 10 to 30% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer. Sheath type composite fiber.
4 . 芯材料を構成する熱可塑性合成重合体及び鞘材料を構成する 熱可塑性合成重合体が、 同一の熱可塑性合成重合体であるこ とを特 徴とする請求項 1 に記載の生体適合性芯鞘型複合繊維。  4. The biocompatible core according to claim 1, wherein the thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are the same thermoplastic synthetic polymer. Sheath type composite fiber.
5 . 芯材料を構成する熱可塑性合成重合体及び鞘材料を構成する 熱可塑性合成重合体が、 相異なる熱可塑性合成重合体であるこ とを 特徴とする請求項 1に記載の生体適合性芯鞘型複合繊維。  5. The biocompatible core / sheath according to claim 1, wherein the thermoplastic synthetic polymer constituting the core material and the thermoplastic synthetic polymer constituting the sheath material are different thermoplastic synthetic polymers. Type composite fiber.
6 . 実質的に粒子径が 1 0 mを超える粉末粒子を含まない絹粉 末及び融点が 2 0 0 °C以下の熱可塑性合成重合体からなることを特 徴とする生体適合性合成繊維。  6. A biocompatible synthetic fiber comprising silk powder substantially free from powder particles having a particle size exceeding 10 m and a thermoplastic synthetic polymer having a melting point of 200 ° C or less.
7 . 絹粉末の含有量が、 該絹粉末及び熱可塑性合成重合体の合計 量の 5〜 5 0重量%であることを特徵とする請求項 6 に記載の生体 適合性合成繊維。  7. The biocompatible synthetic fiber according to claim 6, wherein the content of the silk powder is 5 to 50% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer.
8 . 絹粉末の含有量が、 該絹粉末及び熱可塑性合成重合体の合計 量の 1 0〜 3 0重量%であることを特徴とする請求項 6に記載の生 体適合性合成繊維。 8. The raw material according to claim 6, wherein the content of the silk powder is 10 to 30% by weight of the total amount of the silk powder and the thermoplastic synthetic polymer. Biocompatible synthetic fibers.
9 . 熱可塑性合成重合体がォレフィ ン系重合体であるこ とを特徴 とする請求項 1又は 6に記載の生体適合性芯鞘型複合繊維又は生体 適合性合成繊維。  9. The biocompatible core-sheath composite fiber or the biocompatible synthetic fiber according to claim 1 or 6, wherein the thermoplastic synthetic polymer is an olefin polymer.
1 0 . ォレフィ ン系重合体がポリエチレン、 ポリプロピレン又は これらを主体と した共重合体であることを特徴とする請求項 9 に記 載の生体適合性芯鞘型複合繊維又は生体適合性合成繊維。  10. The biocompatible core-sheath type composite fiber or the biocompatible synthetic fiber according to claim 9, wherein the olefin-based polymer is polyethylene, polypropylene or a copolymer based on these.
1 1 . 繊維の直径が 5〜 1 0 0 m、 好ま しく は 1 0〜 3 O ^ mで あることを特徵とする請求項 1又は 6 に記載の生体適合性芯鞘型複 合繊維、 又は生体適合性合成繊維。  11. The biocompatible core-sheath composite fiber according to claim 1 or 6, characterized in that the fiber has a diameter of 5 to 100 m, preferably 10 to 3 O ^ m. Biocompatible synthetic fibers.
1 2 . 熱可塑性合成重合体からなる芯材料と、 絹粉末及び熱可塑 性合成重合体からなる鞘材料とを芯鞘複合紡糸し、 延伸するこ とを 特徴とする生体適合性芯鞘型複合繊維の製造方法。  12. Core-sheath composite spinning of core material made of thermoplastic synthetic polymer and sheath material made of silk powder and thermoplastic synthetic polymer, and stretching, characterized in that Fiber manufacturing method.
1 3 . 熱可塑性合成重合体からなる芯材料と、 実質的に粒子径が 1 0 mを超える粉末粒子を含まない絹粉末及び融点が 2 0 0 °C以 下の熱可塑性合成重合体からなる鞘材料とを芯鞘複合紡糸し、 延伸 することを特徴とする生体適合性芯鞘型複合繊維の製造方法。  13. A core material composed of a thermoplastic synthetic polymer, a silk powder substantially free from powder particles having a particle diameter exceeding 10 m, and a thermoplastic synthetic polymer having a melting point of 200 ° C or lower. A method for producing a biocompatible core-in-sheath type composite fiber, comprising subjecting a sheath material to a core-in-sheath composite spinning and stretching.
1 4 . 実質的に粒子径が 1 0 mを超える粉末粒子を含まない絹 粉末、 及び融点が 2 0 0 °C以下の熱可塑性合成重合体を混合し、 加 熱、 練成し、 次いで紡糸、 延伸することからなることを特徴とする 生体適合性合成繊維の製造方法。  14. Mix silk powder substantially free from powder particles having a particle size exceeding 10 m and a thermoplastic synthetic polymer having a melting point of 200 ° C or less, heat, knead, and then spun. And a method for producing a biocompatible synthetic fiber.
1 5 . 絹粉末及び熱可塑性合成重合体を混合し、 加熱、 練成し、 次いで溶融紡糸する際に、 溶融して紡糸口金より押出しする工程を 2 0 0 °C以下の温度、 6分以下の時間で行うことを特徴とする請求 項 1 4に記載の生体適合性芯鞘型複合繊維又は生体適合性合成繊維 の製造方法。  15. Mixing silk powder and thermoplastic synthetic polymer, heating, kneading, and then melt-spinning, the process of melting and extruding from a spinneret at a temperature of 200 ° C or less, 6 minutes or less The method for producing a biocompatible core-in-sheath type composite fiber or a biocompatible synthetic fiber according to claim 14, wherein the method is carried out for a period of time.
PCT/JP2003/006438 2002-05-23 2003-05-23 Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof WO2003100144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242411A AU2003242411A1 (en) 2002-05-23 2003-05-23 Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002148849A JP3855162B2 (en) 2002-05-23 2002-05-23 Biocompatible core-sheath composite fiber and method for producing the same
JP2002-148849 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100144A1 true WO2003100144A1 (en) 2003-12-04

Family

ID=29561195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006438 WO2003100144A1 (en) 2002-05-23 2003-05-23 Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof

Country Status (3)

Country Link
JP (1) JP3855162B2 (en)
AU (1) AU2003242411A1 (en)
WO (1) WO2003100144A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4875305B2 (en) * 2005-02-10 2012-02-15 有限会社プロライフ Modified fabric
CN102071488B (en) * 2010-12-17 2012-05-30 北京中纺优丝特种纤维科技有限公司 Sheath-core antibacterial colored polypropylene fiber and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530169U (en) * 1991-09-26 1993-04-20 セーレン株式会社 Natural sericin fiber
JPH06322610A (en) * 1993-05-14 1994-11-22 Toray Ind Inc Production of polyolefin fiber
JPH10212417A (en) * 1997-01-29 1998-08-11 Ain Kosan Kk Molding material, its production, synthetic fiber made of the molding material, synthetic film made of the molding material and synthetic fiber spinning chip made of the molding material
JPH1121724A (en) * 1997-07-01 1999-01-26 Kuraray Co Ltd Modified composite fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0530169U (en) * 1991-09-26 1993-04-20 セーレン株式会社 Natural sericin fiber
JPH06322610A (en) * 1993-05-14 1994-11-22 Toray Ind Inc Production of polyolefin fiber
JPH10212417A (en) * 1997-01-29 1998-08-11 Ain Kosan Kk Molding material, its production, synthetic fiber made of the molding material, synthetic film made of the molding material and synthetic fiber spinning chip made of the molding material
JPH1121724A (en) * 1997-07-01 1999-01-26 Kuraray Co Ltd Modified composite fiber

Also Published As

Publication number Publication date
AU2003242411A1 (en) 2003-12-12
JP3855162B2 (en) 2006-12-06
JP2003342835A (en) 2003-12-03
AU2003242411A8 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
KR102566516B1 (en) Biodegradable Textiles, Masterbatches, and Methods of Making Biodegradable Fibers
KR101119051B1 (en) Nanofiber aggregate, hybrid fiber, fibrous structures, and processes for production of them
WO2010074015A1 (en) Polymer alloy fiber and fiber structure
JP4100327B2 (en) Composite fiber
AU2014279790A1 (en) Porous polyolefin fibers
JP2004162244A (en) Nano-fiber
WO1997043472A1 (en) Spontaneously degradable fibers and goods made by using the same
TWI708750B (en) Antibacterial fiber and method for producing antibacterial fiber
CN100363541C (en) Nanofiber aggregate, polymer alloy fiber, hybrid fiber, fibrous structures, and processes for production of them
CN107002305A (en) The manufacture methods of bristles comprising Biodegradable resin and utilize its toothbrush
JPH0977907A (en) Synthetic resin composition
EP3650588A1 (en) Antimicrobial fiber and method of manufacturing antimicrobial fiber
WO2003100144A1 (en) Biocompatible core-shell composite fiber, biocompatible synthetic fiber and method for production thereof
CN101182654B (en) Anti-ultraviolet ray PTT short fibre and production process thereof
JP4238929B2 (en) Polymer alloy fiber, method for producing the same, and fiber product using the same
Rijavec et al. Novel fibres for the 21st Century
EP4209627A1 (en) Heat-bondable composite fiber, manufacturing method for same, and non-woven fabric using heat-bondable composite fiber
KR102182612B1 (en) Functional fabric incluing illite and manufacturing method of the same
JP2003155400A (en) Polyester composition and fiber and method for producing the same
CN110499554A (en) A kind of natural feather composite material and preparation method and application
KR102710684B1 (en) Bristle manufactured from polyester resin comprising reduced graphene and manufacturing method thereof
US20240141138A1 (en) Plastic resin composite comprising metal oxide nanorods and preparation method therefor
JP4270202B2 (en) Nanofiber assembly
KR20220055743A (en) Process of producing sheath/core type polyester fiber containing sericite
Ramesh et al. Surface modification of animal-based fibers and their composites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase