WO2003098785A2 - Electromagnetic retarder for a vehicle - Google Patents

Electromagnetic retarder for a vehicle Download PDF

Info

Publication number
WO2003098785A2
WO2003098785A2 PCT/FR2003/001536 FR0301536W WO03098785A2 WO 2003098785 A2 WO2003098785 A2 WO 2003098785A2 FR 0301536 W FR0301536 W FR 0301536W WO 03098785 A2 WO03098785 A2 WO 03098785A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
coil
axis
magnetic field
Prior art date
Application number
PCT/FR2003/001536
Other languages
French (fr)
Other versions
WO2003098785A3 (en
Inventor
Zeng Gang Liu
Original Assignee
Telma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telma filed Critical Telma
Publication of WO2003098785A2 publication Critical patent/WO2003098785A2/en
Publication of WO2003098785A3 publication Critical patent/WO2003098785A3/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/046Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with an axial airgap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/28Eddy-current braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to an electromagnetic retarder of a vehicle.
  • the invention aims to increase the performance of such a retarder, and to reduce the number of parts, the weight and the manufacturing cost of this retarder.
  • the invention is more particularly intended for the truck, coach and bus industry, that is to say for motor vehicles of the “heavy goods” type, but can also be applied in other fields.
  • An electromagnetic retarder makes it possible to assist a braking device of a vehicle, in particular for vehicles of the "heavy goods" type.
  • a braking device may include brake pads intended to approach against at least one disc of a hub of a wheel of a vehicle to brake the vehicle.
  • electromagnetic retarders There are several types of electromagnetic retarders.
  • An axial type electromagnetic retarder is intended to be placed on the movement transmission line between a bridge and a vehicle gearbox; the transmission shaft then being in two parts.
  • An electromagnetic retarder of the "Focal” type is intended to be placed directly on the gearbox or directly on the vehicle deck; the motion transmission shaft then being in a single part.
  • the axle of a vehicle drives at least one wheel shaft, which wheel shaft drives at least one wheel of the same vehicle.
  • An electromagnetic retarder comprises at least one inductor stator and at least one induced rotor with the presence of a small air gap between the rotor and the stator.
  • the inductor stator has a flange shape.
  • the inductor stator is intended to carry near and along a periphery, at least one coil.
  • the induced rotor is placed along a plane parallel to a plane of the inductor stator.
  • the rotor is intended to rotate around an axis of the stator due to the transmission of a rotational movement to the rotor by the transmission shaft of the vehicle.
  • the induced rotor is provided to ensure the closing of the magnetic field produced by the coils, so that, magnetically, these coils are sandwiched between the rotor and the stator.
  • the stator could however be induced and the rotor inducing.
  • the rotor would carry the coils in this case.
  • electromagnetic retarders have an even number of coils of alternating polarity.
  • the electromagnetic retarders can comprise at least six coils.
  • a coil has a hollow circular cylindrical shape. The shape can, of course, be different from a circular shape and be, for example, square, elliptical or other.
  • a coil is formed by winding an electric wire in a circular cylindrical shape.
  • the coils are formed by a copper wire covered with an electrically insulating layer. The winding of the copper wire makes it possible to define an axis of the coil perpendicular to the direction of winding of the electric wire.
  • the coils are positioned with their coil axis perpendicular to the plane of the inductor stator and to the plane of the induced rotor, and parallel to the axis of the rotor.
  • the coils are distributed uniformly and circularly with respect to the axis of the rotor.
  • the coils are each carried by a core extending perpendicular to the flange of the stator.
  • the core is integral with the stator flange and is mounted inside the coil.
  • the cores are advantageously terminated each at their end adjacent to the rotor by a polar expansion, as visible in FIG. 1, attached to said end to define a magnetic pole.
  • the axis of the core coincides with the axis of the coil.
  • the stator is pierced with a central orifice allowing the passage of an intermediate piece, such as a connecting shaft, a sleeve, a disc or a plate.
  • Axial type electromagnetic retarders generally have two rotors and two stators. The two stators are welded together on a face opposite to an insertion face of the coils and thus form a single stator advantageously connected to the chassis of the vehicle by means of elastic blocks.
  • the two rotors are assembled together by the intermediate piece passing through the stator.
  • the intermediate piece consists of a connecting shaft on the axial ends of which are fixed plates each supporting one of the rotors and allowing the connection with the concerned part of the cardan drive shaft.
  • the stator carries at its internal periphery a sleeve fitted with bearings, for example of the tapered roller type, acting radially between the connecting shaft and the sleeve.
  • Focal type electromagnetic retarders have two rotors and a single stator.
  • the stator is connected to the gearbox or axle housing.
  • the two rotors are assembled together.
  • the rotors are fixed on the axial ends of an axial intermediate piece, for example in the form of a sleeve passing through the central orifice of the stator and carrying a disc on which the transmission shaft and the drive shaft of the gearbox are mounted. of gears or driven from the bridge.
  • Electromagnetic retarders operate mainly through coils with alternating polarities.
  • the coils operate in pairs.
  • Each of the pairs of coils is intended to form a magnetic field which closes from one to the other by passing through the rotor.
  • FIG. 1 represents a pair of coils 1 and 2 placed facing the rotor 4.
  • the coils 1 and 2 are seen in a circular section, along a circular surface parallel to the axis of the rotor.
  • the sections show the sections of the conductors forming the turns of the coils.
  • a magnetic field 3 closes between the first coil 1 and the second coil 2, each of the coils being of opposite polarity. This magnetic field 3 is created when one wants to slow down the rotor 4 which rotates around the axis of the stator.
  • This magnetic field is formed by traversing the core of a first coil 1 along an axis 5 of the first coil and then enters the rotor 4, perpendicular to a plane of the rotor 4. Then the magnetic field propagates in the rotor parallel to the plane of the rotor and parallel to a direction of rotation of the rotor. The direction of rotation of the rotor is represented by an arrow in FIG. 1. Then the magnetic field joins the core of the second coil, leaving it perpendicularly from the plane of the rotor 4 and along an axis 6 of this second coil. Finally, the magnetic field forms a loop by joining the first coil again, passing from the second coil through the stator or through another part of the rotor. When the electromagnetic field crosses the plane of the rotor perpendicularly, an electric current or eddy current is created in the rotor due to the displacement of this rotor.
  • the eddy currents only arise where there is a perpendicular component of the magnetic field with respect to the direction of rotation of the rotor.
  • Such an electric current or eddy current is intended to oppose the speed of rotation of the rotor. It is this eddy current which is used to slow down the speed of rotation of the vehicle's drive shaft. Eddy currents flow so as to oppose the direction of rotation of the induced rotor and are used to slow vehicles. The more this magnetic field is perpendicular to the direction of rotation of the rotor, the more a power of this eddy current is maximum.
  • current electromagnetic retarders form magnetic fields using pairs of coils. These fields first cross the rotor perpendicularly then circulate parallel to the plane of the rotor. The magnetic field passes through two places 7 and 8 of the rotor perpendicular to the plane of the rotor, and therefore perpendicular to the direction of rotation of the rotor. In these two places, the power of the eddy current is maximum because the magnetic field is perpendicular to the direction of rotation of the rotor. Between these two places, the eddy current is zero since the magnetic field is parallel to the direction of movement of the stator. This maximum power distributed in the two places 7 and 8 of the rotor is sufficient to slow down the vehicle by braking the speed of rotation of the rotor.
  • the electromagnetic retarders cause the vehicle to brake after opposition to the rotational movement of the rotor by the perpendicular crossing of at least one magnetic field between two coils located in these two areas of the rotor.
  • the parts can be the coils which need to be manufactured beforehand.
  • the parts can also be air gaps or intermediate plates placed between the stator and the coil and between the coil and the rotor.
  • Other parts can be screws and cores so that the coils are fixed by screwing on the stator.
  • the invention provides for solving this problem while improving the performance of such electromagnetic retarders.
  • the invention provides for designing a stator in one piece so that at least one coil can be directly placed on the stator.
  • the arrangement of this coil is made in such a way that the magnetic field produced by this coil has a radial component relative to the axis of the rotor. By this radial component, the resulting magnetic field crosses the rotor always perpendicular to the direction rotor rotation.
  • An eddy current production zone thus corresponds, according to the invention, to a whole zone of the rotor traversed by the magnetic field, which magnetic field is produced in such a way that it is always perpendicular to the direction of rotation of the rotor.
  • the magnetic field creates eddy currents with maximum power.
  • the assembly provided then simplifies the manufacture of such retarders.
  • the simplification of the manufacture of such an electromagnetic retarder can result from the production of a stator provided with coils arranged radially on the stator and with respect to an axis of symmetry of the stator.
  • the arrangement of these coils according to this radial configuration forms a radial electromagnetic retarder.
  • the stator is made in such a way that it has an overall circular shape provided at a periphery with extensions or arms forming poles. Coils are engaged around these arms. These arms are made in such a way that they prevent the coil from escaping from the arm by also producing a bloom at one end of the arm.
  • the magnetic field circulates in a coil inside an arm.
  • the subject of the invention is therefore an electromagnetic retarder, in particular for a vehicle, comprising
  • the coil being carried by the stator and being intended to form a magnetic field between the rotor and the stator, the rotor being opposite the coil and rotating on its axis, characterized in that
  • the coil is arranged so that its magnetic field has in the rotor a radial component relative to the axis of the rotor.
  • stator has a monobloc shape.
  • FIG. 2 a schematic representation of an electromagnetic retarder, according to the invention
  • FIG. 3 a section of an electromagnetic retarder, according to the invention.
  • FIG. 2 represents a cross section of an electromagnetic retarder 9 of a vehicle, according to the invention.
  • the section is placed in a plane containing the axis of the rotor and an axis of symmetry of the stator.
  • This electromagnetic retarder 9 can be of the Axial type or of the "Focal" type.
  • An Axial type electromagnetic retarder can be placed between a gearbox and a bridge (not shown).
  • an electromagnetic retarder of the "Focal” type can be placed directly on the gearbox or on the bridge.
  • the electromagnetic retarder 9 of the invention may comprise at least one induced rotor, at least one inductor stator and at least one coil.
  • the electromagnetic retarder comprises a first induced rotor 10 and a second induced rotor 11, an inductor stator 12, a first coil 13 and a second coil 14.
  • the first rotor 10 and the second rotor 11 advantageously made of ferromagnetic material, form only one, they are parts of a rotor secured by the interior of the stator by means of a sleeve or a central plate as described in the document FR-A - 2,577,357 to which reference may be made for more details.
  • the stator is positioned between the first rotor 10 and the second rotor 11.
  • the stator 12 is intended to carry at least one coil.
  • the stator 12 carries two coils 13 and 14.
  • the rotor 10 faces at least one coil 13 and rotates relative to the stator 12 along an axis 16 corresponding to an axis of symmetry 15 of the stator .
  • the rotors 10 and 11 and the stator 12 are located in planes parallel to each other perpendicular to the axis of the rotor and to the axis of the stator.
  • the rotor 10 is connected to a drive shaft (not shown). This transmission shaft is connected to at least one wheel of the vehicle and is intended to transmit a rotational movement to this wheel. The rotor is thus intended to rotate around the axis of the stator 15.
  • the stator 12 is fixed. It is connected to the chassis of a vehicle not shown.
  • the rotor 10 or 11 By turning around its axis, 16 the rotor 10 or 11 presents renewed paths to the fields produced by the coils present on the stator. A magnetic field 17 can then form between the stator and the rotor via the coils.
  • the magnetic field 17 is represented by an arrow in FIG. 2.
  • the coils 13 and 14 are here circular coils, with an axis perpendicular to the axis 15. They each have an axial space where the field 17 circulates.
  • the winding of the coils 13 and 14 is such that the cross sections of their conductors are parallel to the plane of the section. The direction of the current in these sections of conductors is shown in a conventional manner by points and empennages of arrows.
  • the field is radial diverging with respect to the axis 15 inside the coils and radial converging outside (the opposite is also possible).
  • the coils do not have to be counter-rotating. On the contrary if they are in the same direction, the magnetic field in the internal space will be both oriented in the same direction for a first coil and for a second coil (circulation in dotted lines in Figure 2). These orientations in the same direction are preferred because they lead to the saturation of the magnetic material in the internal space, hence better use of the material.
  • the electromagnetic retarder operates as follows. When the vehicle is moving, braking can be started by putting the electromagnetic retarder into service. When it is put into service, the electrical circuits of the coils 13 (and or 14) are closed and or supplied electrically. By turning around its axis, the rotor collects the field produced by the coils carried by the stator. A magnetic field is created around these same coils. This magnetic field is intended to form a loop around each of the coils. To form a loop, the magnetic field is formed by propagating in the rotor and in the stator while surrounding the coil. By propagating in the rotor, the magnetic field is everywhere in the rotor perpendicular to a direction of rotation 18 of the rotor.
  • Eddy current is an electric current which can appear inside a conductor subjected to a magnetic field.
  • the conductor is the rotor, which is advantageously made of ferromagnetic material. This eddy current tends to oppose the direction of rotation of the rotor. This eddy current will tend to oppose the direction of rotation of the rotor the more the magnetic field is more and more perpendicular to the direction of rotation of the rotor.
  • the coils are arranged on the stator so that the magnetic field formed by a coil has, in the rotor, a radial configuration relative to the axis 16 of the rotor.
  • the magnetic field can cross the plane of the rotor perpendicularly, then propagate parallel to a plane of the rotor and especially the magnetic field formed by the coils according to the invention can pass through the rotor radially with respect to the direction of rotation of the rotor. Then the magnetic field again joins the stator to encircle the coil.
  • the eddy current is therefore at its maximum power during the entire length where the magnetic field crosses the rotor since the magnetic field is produced in such a way that it not only crosses the rotor perpendicular to the plane of the rotor, but that it also propagates in the rotor in a direction perpendicular to the direction of rotation of the rotor.
  • the coils are positioned, FIG. 3, on a stator, here made of magnetic material, preferably comprising a monobloc shape.
  • Figure 3 shows a sectional view of the stator provided with coils.
  • the stator has an overall circular shape.
  • the stator could however have another shape, rectangular or ellipsoidal.
  • the stator comprises a frame 20 for fixing to a fixed part of the vehicle, such as the chassis thereof, and a disc 21 contained in the frame 20.
  • the frame 20 and the disc 21 are arranged in such a way that the frame 20 is distant from the axis of the stator 15 and that the disc 21 is close to the axis of the stator.
  • the frame 20 surrounds the disc 21 and projects in the direction of the disc 21 by at least one connecting rod 22.
  • the connecting rod 22 connects pole pieces perpendicularly, covering the disc 21, to the frame 20. But it could connect them according to a completely different direction.
  • the connecting rod 22 could connect them obliquely.
  • the stator comprises six connecting rods 22, 23, 24, 25, 26 and 27.
  • the disc 21 comprises in one example a hexagonal shape defining a periphery 28 provided with six facets 29, 30, 31, 32, 33 and 34.
  • the disc 21 could have a completely different shape.
  • the disc 21 could have another regular, square or octagonal shape.
  • the disc 21 comprises at least one extension or arm 35, integral with the disc, and extending radially relative to the axis of the stator 15 in the direction of the frame 20.
  • This arm 35 is formed from 'a facet of the periphery 28 of the disc 21 while moving towards the frame 20.
  • the arm 35 has an end 36 intended to be opposite the frame 20.
  • the stator has 6 arms 35, 37 , 38, 39, 40 and 41.
  • Each of the connecting rods projects towards each of the arms of the frame 20.
  • a connecting rod is supported on an arm by the end intended to be placed opposite the frame 20.
  • An arm 35 can serve as a support element to receive a coil 42 (coil 13 in Figure 2) around this arm.
  • a coil can be placed around each of the arms.
  • the stator comprises six coils 42, 43, 44, 45, 46 and 47, each of the coils being formed around an arm 35, 37, 38, 39, 40 and 41 respectively.
  • each of the ends of each of the arms has a bloom 48, FIG. 2.
  • the bloom is formed perpendicular to an axis 55 of the arm.
  • An axis of the arm is an axis extending radially with respect to the axis of the stator. This axis of the arm corresponds to an axis of a coil.
  • the connecting rods are intended to be inserted on the opening to connect the disc 21 to the frame 20.
  • the opening can have a circular, rectangular, square or any other shape.
  • the frame 20, the arms and the openings are made of a magnetic material (and in this case the coils must be supplied) or of a magnetic material.
  • a magnetic field can form between the stator and the rotor via a coil.
  • the magnetic field is formed in a first arm of a coil. It leaves this coil through an axial end of this coil, then crosses the plane of the rotor perpendicular to this plane. Blooming is used for this purpose. Then the field propagates in the rotor parallel to the plane of the rotor but radially, that is to say perpendicular to the direction of rotation of the rotor. Then the magnetic field joins the coil passing through a second end of this coil. One of these ends is formed by blooming, at the other a comparable shape accommodates the magnetic field. The magnetic field closes by forming a loop passing through the stator.
  • poles on an arm can be made by forming at least one slot 53 on a development of an arm.
  • a slit can be produced by extending from a periphery 54 of this same opening towards the axis 55 of the arm.
  • a slot is shown in dotted lines in Figure 3.
  • the slot can be rectangular, rounded or another shape. We can thus increase the number of slots and increase the number of poles to optimize the system. It is thus possible to increase the magnetic frequency of the system. This results in an increase in performance: the brake brakes harder for the same weight or for the same overall volume.
  • an eddy current zone formed by the perpendicular direction of the magnetic field relative to the direction of rotation of the rotor concerns a zone of the rotor corresponding to a height of a coil or more exactly to a height separating two pole pieces placed radially in the stator of the electromagnetic retarder, opposite the ends of the coils.
  • FIG. 2 thus shows a coil 13 mounted on an arm 35 and a coil 14, symmetrical of the coil 13 relative to the axis 15 mounted on an arm 39 symmetrical of the arm 35 relative to the axis 15.
  • the heights of the coils 13 and 14 condition the deployment of the area 19 of action of the eddy currents.
  • the disc 21 has an internal circular face 52 with poles oriented towards the rotors.
  • the arms 35 are topped with added openings such as 48.
  • the assembly of the assembly is as follows. The disc 21 with its arms is in one piece. The coils are then engaged on these arms. Then the frame 20 whose rods maintain the openings 48 is placed around the disc 21 fitted with the coils by displacement along the axis 15. The two parts are secured by any means. Note that the assembly is static. None is meant to turn. Then the rotors are put in place. As a variant, the coils can be wound around the arms while the latter are already provided with their peripheral development.
  • FIG. 4 shows in perspective the electromagnetic retarder according to the invention.
  • the rotor is placed opposite the coils. It covers the coils to protect them from gravel projections.
  • the rotor may include a face 49 (not visible in FIG. 4 but visible in FIG. 2) intended to be opposite the coils and an opposite face 50.
  • protrusions 56 can be formed on the surface of this face 49, FIG. 2. These protrusions 56 are intended to be inserted between the opening 48 of an arm and the disc 21 so as to be opposite a coil. In this way, the magnetic field is formed not only at the surface of the rotor but also at the depth of the rotor.
  • the magnetic field can pass deep through the rotor through the protuberance of the rotor and can increase the performance of such a system.
  • the performance of such a system is also amplified due to an increase in surface area resulting from the formation of the protuberance 56.
  • the magnetic field thus crosses a larger area of the rotor by this resulting increase in surface area.
  • At least one fin 51 arranged in a radial configuration relative to the axis of the rotor 16.
  • a fin is formed by a protuberance of a surface of the rotor extending perpendicular to the plane of the rotor. The purpose of this fin is to facilitate the circulation of a cooling fluid on the rotor to cool the rotor during its operation. This fin also makes it possible to increase a cooling surface of the rotor on which the fluid can circulate.
  • the stator material is a magnetic material.
  • the rotor is placed, along the axis 16, very close to the openings of the stator.
  • the rotor can be made of magnetic and non-magnetic composite material.
  • the rotor can also be made of only conductive material. As there is better use of eddy currents, the need for magnetic flux is reduced for equal performance. Therefore the conductors of the coils can be made of aluminum, less conductive but less expensive than copper.
  • the simplification of the invention with the radial configuration makes it possible to produce retarders with small coils.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

The invention relates to an electromagnetic retarder for a vehicle. Eddy currents can form when a magnetic field (17) passes through a rotor (10, 11) of an electromagnetic retarder of a vehicle in a perpendicular manner to the direction of rotation (18) of said rotor. The aforementioned eddy currents are even stronger since the magnetic field is perpendicular to the rotation direction of the rotor. However, current electromagnetic retarders are made such that said eddy currents travel through a small area of the rotor. In order to optimise the power generated by such currents, the inventive retarder comprises an increased eddy current area (19) in the rotor, whereby at least one magnetic field-generating coil (13, 14) is disposed such that the magnetic field formed by said coil forms a radial configuration in relation to an axis of the rotor (16).

Description

Ralentisseur électromagnétique d'un véhicule Electromagnetic retarder of a vehicle
Domaine de l'inventionField of the invention
L'invention concerne un ralentisseur électromagnétique d'un véhicule.The invention relates to an electromagnetic retarder of a vehicle.
L'invention a pour but d'augmenter la performance d'un tel ralentisseur, et de réduire le nombre de pièces, le poids et le coût de fabrication de ce ralentisseur. L'invention est plus particulièrement destinée au domaine du camion, de l'autocar et de l'autobus, c'est à dire aux véhicules automobiles du type « poids lourds », mais peut également s'appliquer dans d'autres domaines.The invention aims to increase the performance of such a retarder, and to reduce the number of parts, the weight and the manufacturing cost of this retarder. The invention is more particularly intended for the truck, coach and bus industry, that is to say for motor vehicles of the “heavy goods” type, but can also be applied in other fields.
Un ralentisseur électromagnétique permet d'assister un dispositif de freinage d'un véhicule, notamment pour les véhicules du type "poids lourds". Un dispositif de freinage peut comporter des patins de frein destinés à se rapprocher contre au moins un disque d'un moyeu d'une roue d'un véhicule pour freiner le véhicule. Il existe plusieurs types de ralentisseurs électromagnétiques. Notamment, il existe des ralentisseurs électromagnétiques de type Axial et des ralentisseurs électromagnétiques de type "Focal" (marque déposée). Un ralentisseur électromagnétique de type Axial est destiné à être placé sur la ligne de transmission de mouvement entre un pont et une boîte de vitesse du véhicule ; l'arbre de transmission étant alors en deux parties. Un ralentisseur électromagnétique de type "Focal" est destiné à être placé directement sur la boîte de vitesse ou directement sur le pont du véhicule ; l'arbre de transmission de mouvement étant alors en une seule partie. Le pont d'un véhicule entraîne au moins un arbre de roue, lequel arbre de roue entraîne au moins une roue de ce même véhicule.An electromagnetic retarder makes it possible to assist a braking device of a vehicle, in particular for vehicles of the "heavy goods" type. A braking device may include brake pads intended to approach against at least one disc of a hub of a wheel of a vehicle to brake the vehicle. There are several types of electromagnetic retarders. In particular, there are electromagnetic retarders of the Axial type and electromagnetic retarders of the "Focal" type (registered trademark). An axial type electromagnetic retarder is intended to be placed on the movement transmission line between a bridge and a vehicle gearbox; the transmission shaft then being in two parts. An electromagnetic retarder of the "Focal" type is intended to be placed directly on the gearbox or directly on the vehicle deck; the motion transmission shaft then being in a single part. The axle of a vehicle drives at least one wheel shaft, which wheel shaft drives at least one wheel of the same vehicle.
Un ralentisseur électromagnétique comporte au moins un stator inducteur et au moins un rotor induit avec présence d'un faible entrefer entre le rotor et le stator. Le stator inducteur comporte une forme de flasque. Le stator inducteur est destiné à porter à proximité et le long d'une périphérie, au moins une bobine. Le rotor induit est placé selon un plan parallèle à un plan du stator inducteur. Le rotor est destiné à tourner autour d'un axe du stator du fait de la transmission d'un mouvement de rotation au rotor par l'arbre de transmission du véhicule. Le rotor induit est prévu pour assurer la fermeture du champ magnétique produit par les bobines, de telle manière que, magnétiquement, ces bobines soient prises en sandwich entre le rotor et le stator. Le stator pourrait cependant être induit et le rotor inducteur. Le rotor porterait les bobines dans ce cas.An electromagnetic retarder comprises at least one inductor stator and at least one induced rotor with the presence of a small air gap between the rotor and the stator. The inductor stator has a flange shape. The inductor stator is intended to carry near and along a periphery, at least one coil. The induced rotor is placed along a plane parallel to a plane of the inductor stator. The rotor is intended to rotate around an axis of the stator due to the transmission of a rotational movement to the rotor by the transmission shaft of the vehicle. The induced rotor is provided to ensure the closing of the magnetic field produced by the coils, so that, magnetically, these coils are sandwiched between the rotor and the stator. The stator could however be induced and the rotor inducing. The rotor would carry the coils in this case.
Etat de la techniqueState of the art
Généralement, les ralentisseurs électromagnétiques comportent un nombre pair de bobines de polarité alternée. Notamment, les ralentisseurs électromagnétiques peuvent comporter au moins six bobines. Une bobine possède une forme cylindrique circulaire creuse. La forme peut, bien entendue, être différente d'une forme circulaire et être, par exemple, carrée, elliptique ou autre. Une bobine est formée par un enroulement d'un fil électrique selon une forme cylindrique circulaire. Dans un exemple, les bobines sont formées par un fil de cuivre recouvert d'une couche électriquement isolante. L'enroulement du fil de cuivre permet de définir un axe de la bobine perpendiculaire au sens d'enroulement du fil électrique. Les bobines sont positionnées avec leur axe de bobine perpendiculaire au plan du stator inducteur et au plan du rotor induit, et parallèlement à l'axe du rotor. Les bobines sont réparties uniformément et circulairement par rapport à l'axe du rotor. Dans une forme de réalisation décrite par exemple dans le document FR A 2 577 357 (GB A 2 171 852) les bobines sont portées chacune par un noyau s'étendant perpendiculairement au flasque du stator. Le noyau est solidaire du flasque du stator et est monté à l'intérieur de la bobine. Les noyaux sont avantageusement terminés chacun à leur extrémité adjacente au rotor par un épanouissement polaire, tel que visible à la figure 1 , rapporté sur ladite extrémité pour définir un pôle magnétique. L'axe du noyau est confondu avec l'axe de la bobine. Ces noyaux ainsi que leurs épanouissements et le rotor sont dans une forme de réalisation en matériau ferromagnétique.Generally, electromagnetic retarders have an even number of coils of alternating polarity. In particular, the electromagnetic retarders can comprise at least six coils. A coil has a hollow circular cylindrical shape. The shape can, of course, be different from a circular shape and be, for example, square, elliptical or other. A coil is formed by winding an electric wire in a circular cylindrical shape. In one example, the coils are formed by a copper wire covered with an electrically insulating layer. The winding of the copper wire makes it possible to define an axis of the coil perpendicular to the direction of winding of the electric wire. The coils are positioned with their coil axis perpendicular to the plane of the inductor stator and to the plane of the induced rotor, and parallel to the axis of the rotor. The coils are distributed uniformly and circularly with respect to the axis of the rotor. In an embodiment described for example in the document FR A 2 577 357 (GB A 2 171 852) the coils are each carried by a core extending perpendicular to the flange of the stator. The core is integral with the stator flange and is mounted inside the coil. The cores are advantageously terminated each at their end adjacent to the rotor by a polar expansion, as visible in FIG. 1, attached to said end to define a magnetic pole. The axis of the core coincides with the axis of the coil. These cores as well as their openings and the rotor are in one embodiment made of ferromagnetic material.
Le stator est percé d'un orifice central permettant le passage d'une pièce intermédiaire, tel qu'un arbre de liaison, un manchon, un disque ou un plateau. Les ralentisseurs électromagnétiques de type Axial comportent généralement deux rotors et deux stators. Les deux stators sont soudés entre eux sur une face opposée à une face d'insertion des bobines et forment ainsi un seul stator relié au châssis du véhicule avantageusement par l'intermédiaire de blocs élastiques. Les deux rotors sont assemblés entre eux par la pièce intermédiaire traversant le stator. Par exemple la pièce intermédiaire consiste en un arbre de liaison sur les extrémités axiales duquel sont fixés des plateaux supportant chacun l'un des rotors et permettant la liaison avec la partie concernée de l'arbre de transmission à cardan. Le stator porte à sa périphérie interne un manchon équipé de roulements, par exemple du type à rouleaux coniques, intervenant radialement entre l'arbre de liaison et le manchon. Les ralentisseurs électromagnétiques de type Focal comportent deux rotors et un seul stator. Le stator est relié au carter de la boîte de vitesses ou du pont Les deux rotors sont assemblés entre eux. Par exemple les rotors sont fixés sur les extrémités axiales d'une pièce intermédiaire axiale par exemple en forme de manchon traversant l'orifice central du stator et portant un disque sur lequel se monte l'arbre de transmission et l'arbre menant de la boîte de vitesses ou mené du pont.The stator is pierced with a central orifice allowing the passage of an intermediate piece, such as a connecting shaft, a sleeve, a disc or a plate. Axial type electromagnetic retarders generally have two rotors and two stators. The two stators are welded together on a face opposite to an insertion face of the coils and thus form a single stator advantageously connected to the chassis of the vehicle by means of elastic blocks. The two rotors are assembled together by the intermediate piece passing through the stator. For example, the intermediate piece consists of a connecting shaft on the axial ends of which are fixed plates each supporting one of the rotors and allowing the connection with the concerned part of the cardan drive shaft. The stator carries at its internal periphery a sleeve fitted with bearings, for example of the tapered roller type, acting radially between the connecting shaft and the sleeve. Focal type electromagnetic retarders have two rotors and a single stator. The stator is connected to the gearbox or axle housing. The two rotors are assembled together. For example, the rotors are fixed on the axial ends of an axial intermediate piece, for example in the form of a sleeve passing through the central orifice of the stator and carrying a disc on which the transmission shaft and the drive shaft of the gearbox are mounted. of gears or driven from the bridge.
Les ralentisseurs électromagnétiques fonctionnent essentiellement par l'intermédiaire des bobines dont les polarités sont alternées. De préférence, les bobines fonctionnent par paires. Chacune des paires de bobines est destinée à former un champ magnétique qui se ferme de l'une sur l'autre en passant dans le rotor. La figure 1 représente une paire de bobines 1 et 2 placées en regard du rotor 4. Les bobines 1 et 2 sont vues selon une coupe circulaire, selon une surface circulaire parallèle à l'axe du rotor. Les coupes montrent les sections des conducteurs formant les spires des bobines. Un champ magnétique 3 se ferme entre la première bobine 1 et la deuxième bobine 2, chacune des bobines étant de polarité opposée. Ce champ magnétique 3 est créé lorsqu'on veut ralentir le rotor 4 qui tourne autour de l'axe du stator.Electromagnetic retarders operate mainly through coils with alternating polarities. Preferably, the coils operate in pairs. Each of the pairs of coils is intended to form a magnetic field which closes from one to the other by passing through the rotor. FIG. 1 represents a pair of coils 1 and 2 placed facing the rotor 4. The coils 1 and 2 are seen in a circular section, along a circular surface parallel to the axis of the rotor. The sections show the sections of the conductors forming the turns of the coils. A magnetic field 3 closes between the first coil 1 and the second coil 2, each of the coils being of opposite polarity. This magnetic field 3 is created when one wants to slow down the rotor 4 which rotates around the axis of the stator.
Ce champ magnétique se forme en parcourant le noyau d'une première bobine 1 selon un axe 5 de première bobine puis pénètre dans le rotor 4, perpendiculairement à un plan du rotor 4. Puis le champ magnétique se propage dans le rotor parallèlement au plan du rotor et parallèlement à un sens de rotation du rotor. Le sens de rotation du rotor est représenté par une flèche figure 1. Puis le champ magnétique rejoint le noyau de la deuxième bobine en sortant perpendiculairement du plan du rotor 4 et selon un axe 6 de cette deuxième bobine. Enfin, le champ magnétique forme une boucle en rejoignant de nouveau la première bobine en passant depuis la deuxième bobine par le stator ou par une autre partie du rotor. Lorsque le champ électromagnétique traverse perpendiculairement le plan du rotor, il se crée un courant électrique ou courant de Foucault dans le rotor du fait du déplacement de ce rotor.This magnetic field is formed by traversing the core of a first coil 1 along an axis 5 of the first coil and then enters the rotor 4, perpendicular to a plane of the rotor 4. Then the magnetic field propagates in the rotor parallel to the plane of the rotor and parallel to a direction of rotation of the rotor. The direction of rotation of the rotor is represented by an arrow in FIG. 1. Then the magnetic field joins the core of the second coil, leaving it perpendicularly from the plane of the rotor 4 and along an axis 6 of this second coil. Finally, the magnetic field forms a loop by joining the first coil again, passing from the second coil through the stator or through another part of the rotor. When the electromagnetic field crosses the plane of the rotor perpendicularly, an electric current or eddy current is created in the rotor due to the displacement of this rotor.
En effet, en application de la loi de Faraday, un conducteur électrique qui se déplace dans un champ produit à ses bornes une tension qui est le produit vectoriel de ce champ par la vitesse de déplacement. Ce produit vectoriel est maximal quand le champ est perpendiculaire à la vitesse. Tout se passe comme si une tension électrique était produite dans les parties 7 et 8, alors qu'entre elles aucune tension n'est produite. Entre les parties 7 et 8 le champ magnétique, tangentiel au rotor, est parallèle à la direction de déplacement. Les courants de Foucault qui naissent sont donc uniquement situés dans des parties 7, 8 du rotor où le champ magnétique traverse le rotor.Indeed, in application of Faraday's law, an electric conductor which moves in a field produces at its terminals a voltage which is the vector product of this field by the speed of displacement. This vector product is maximum when the field is perpendicular to the speed. Everything happens as if an electrical voltage was produced in parts 7 and 8, while between them no voltage is produced. Between parts 7 and 8 the magnetic field, tangential to the rotor, is parallel to the direction of movement. The eddy currents which arise are therefore only located in parts 7, 8 of the rotor where the magnetic field crosses the rotor.
Plus particulièrement, les courants de Foucault ne naissent qu'à l'endroit où existe une composante perpendiculaire du champ magnétique par rapport au sens de rotation du rotor. Un tel courant électrique ou courant de Foucault est destiné à s'opposer à la vitesse de rotation du rotor. C'est ce courant de Foucault qui est utilisé pour ralentir la vitesse de rotation de l'arbre de transmission du véhicule. Les courants de Foucault circulent de manière à s'opposer au sens de rotation du rotor induit et sont utilisés pour ralentir les véhicules. Plus ce champ magnétique est perpendiculaire au sens de rotation du rotor et plus une puissance de ce courant de Foucault est maximale.More particularly, the eddy currents only arise where there is a perpendicular component of the magnetic field with respect to the direction of rotation of the rotor. Such an electric current or eddy current is intended to oppose the speed of rotation of the rotor. It is this eddy current which is used to slow down the speed of rotation of the vehicle's drive shaft. Eddy currents flow so as to oppose the direction of rotation of the induced rotor and are used to slow vehicles. The more this magnetic field is perpendicular to the direction of rotation of the rotor, the more a power of this eddy current is maximum.
De ce fait, les ralentisseurs électromagnétiques actuels forment des champs magnétiques à l'aide de paires de bobines. Ces champs traversent d'abord perpendiculairement le rotor puis circulent parallèlement au plan du rotor. Le champ magnétique traverse deux endroits 7 et 8 du rotor perpendiculairement au plan du rotor, et donc perpendiculairement au sens de rotation du rotor. Dans ces deux endroits, la puissance du courant de Foucault est maximale car le champ magnétique est perpendiculaire au sens de rotation du rotor. Entre ces deux endroits, le courant de Foucault est nul puisque le champ magnétique est parallèle au sens de déplacement du stator. Cette puissance maximale répartie dans les deux endroits 7 et 8 du rotor suffit à ralentir le véhicule en freinant la vitesse de rotation du rotor.As a result, current electromagnetic retarders form magnetic fields using pairs of coils. These fields first cross the rotor perpendicularly then circulate parallel to the plane of the rotor. The magnetic field passes through two places 7 and 8 of the rotor perpendicular to the plane of the rotor, and therefore perpendicular to the direction of rotation of the rotor. In these two places, the power of the eddy current is maximum because the magnetic field is perpendicular to the direction of rotation of the rotor. Between these two places, the eddy current is zero since the magnetic field is parallel to the direction of movement of the stator. This maximum power distributed in the two places 7 and 8 of the rotor is sufficient to slow down the vehicle by braking the speed of rotation of the rotor.
En s'opposant au sens de rotation du rotor, les courants de Foucault ralentissent progressivement le véhicule, le rotor étant lié à l'arbre de transmission, l'arbre de transmission étant lui-même lié à au moins une roue du véhicule. Il apparaît ainsi dans le système actuel, que les ralentisseurs électromagnétiques entraînent le freinage du véhicule suite à une opposition au mouvement de rotation du rotor par la traversée perpendiculaire d'au moins un champ magnétique entre deux bobines situées dans ces deux zones du rotor.By opposing the direction of rotation of the rotor, the eddy currents gradually slow down the vehicle, the rotor being linked to the transmission shaft, the transmission shaft itself being linked to at least one wheel of the vehicle. It thus appears in the current system, that the electromagnetic retarders cause the vehicle to brake after opposition to the rotational movement of the rotor by the perpendicular crossing of at least one magnetic field between two coils located in these two areas of the rotor.
Cependant pour réaliser de tels ralentisseurs électromagnétiques, il est nécessaire de mettre en place un certain nombre de pièces de manière à rendre le ralentisseur électromagnétique fonctionnel. Les pièces peuvent être les bobines qui nécessitent d'être préalablement fabriquées. Les pièces peuvent être aussi des entrefers ou plaques intermédiaires placés entre le stator et la bobine et entre la bobine et le rotor. D'autres pièces peuvent être des vis et des noyaux de telle manière que les bobines soient fixées par vissage sur le stator.However, to produce such electromagnetic retarders, it is necessary to set up a certain number of parts so as to make the electromagnetic retarder functional. The parts can be the coils which need to be manufactured beforehand. The parts can also be air gaps or intermediate plates placed between the stator and the coil and between the coil and the rotor. Other parts can be screws and cores so that the coils are fixed by screwing on the stator.
Objet de l'inventionSubject of the invention
Au final, des ralentisseurs électromagnétiques classiques peuvent nécessiter la mise en place de 90 pièces entre elles. La mise en place d'un tel nombre de pièces rend évidemment la fabrication d'un tel ralentisseur électromagnétique compliquée à réaliser. De plus, le coût de fabrication d'un tel ralentisseur électromagnétique peut devenir élevé. Pour faciliter le montage et la fabrication de tels ralentisseurs électromagnétiques, l'invention prévoit de résoudre ce problème tout en améliorant la performance de tels ralentisseurs électromagnétiques. L'invention prévoit de concevoir un stator de forme monobloc de telle manière qu'au moins une bobine puisse être directement disposée sur le stator. La disposition de cette bobine est réalisée de telle manière que le champ magnétique produit par cette bobine comporte une composante radiale par rapport à l'axe du rotor. Par cette composante radiale, le champ magnétique résultant traverse le rotor toujours perpendiculairement au sens de rotation du rotor. Une zone de production de courants de Foucault correspond ainsi, selon l'invention, à toute une zone du rotor traversée par le champ magnétique, lequel champ magnétique est réalisé de telle manière qu'il est toujours perpendiculaire au sens de rotation du rotor. En traversant le rotor toujours perpendiculairement au sens de rotation du rotor, le champ magnétique crée des courants de Foucault avec un maximum de puissance. Ayant une puissance maximale pendant tout le temps où il traverse le rotor, le montage prévu permet de simplifier alors la fabrication de tels ralentisseurs. La simplification de la fabrication d'un tel ralentisseur électromagnétique peut résulter de la réalisation d'un stator muni de bobines disposées radialement sur le stator et par rapport à un axe de symétrie du stator. La disposition de ces bobines selon cette configuration radiale forme un ralentisseur électromagnétique radial. Le stator est réalisé de telle manière qu'il comporte une forme globale circulaire munie à une périphérie d'extensions ou bras formant des pôles. Des bobines sont engagées autour de ces bras. Ces bras sont réalisés de telle manière qu'ils empêchent la bobine de s'échapper du bras en réalisant par ailleurs un épanouissement à une extrémité du bras. Le champ magnétique circule dans une bobine à l'intérieur d'un bras.In the end, conventional electromagnetic retarders may require the installation of 90 parts between them. The establishment of such a number of parts obviously makes the manufacture of such an electromagnetic retarder complicated to produce. In addition, the manufacturing cost of such an electromagnetic retarder can become high. To facilitate the mounting and manufacture of such electromagnetic retarders, the invention provides for solving this problem while improving the performance of such electromagnetic retarders. The invention provides for designing a stator in one piece so that at least one coil can be directly placed on the stator. The arrangement of this coil is made in such a way that the magnetic field produced by this coil has a radial component relative to the axis of the rotor. By this radial component, the resulting magnetic field crosses the rotor always perpendicular to the direction rotor rotation. An eddy current production zone thus corresponds, according to the invention, to a whole zone of the rotor traversed by the magnetic field, which magnetic field is produced in such a way that it is always perpendicular to the direction of rotation of the rotor. By crossing the rotor always perpendicular to the direction of rotation of the rotor, the magnetic field creates eddy currents with maximum power. Having maximum power throughout the time it passes through the rotor, the assembly provided then simplifies the manufacture of such retarders. The simplification of the manufacture of such an electromagnetic retarder can result from the production of a stator provided with coils arranged radially on the stator and with respect to an axis of symmetry of the stator. The arrangement of these coils according to this radial configuration forms a radial electromagnetic retarder. The stator is made in such a way that it has an overall circular shape provided at a periphery with extensions or arms forming poles. Coils are engaged around these arms. These arms are made in such a way that they prevent the coil from escaping from the arm by also producing a bloom at one end of the arm. The magnetic field circulates in a coil inside an arm.
Puis le champ magnétique se referme par le rotor perpendiculairement au sens de rotation du rotor. Une zone du rotor traversée par le champ magnétique ou zone de courants de Foucault correspond alors à une hauteur d'un bras du rotor. L'invention a donc pour objet un ralentisseur électromagnétique, notamment pour un véhicule, comportantThen the magnetic field closes by the rotor perpendicular to the direction of rotation of the rotor. An area of the rotor crossed by the magnetic field or eddy current area then corresponds to a height of one arm of the rotor. The subject of the invention is therefore an electromagnetic retarder, in particular for a vehicle, comprising
- au moins un rotor induit,- at least one induced rotor,
- au moins un stator inducteur,- at least one inductor stator,
- au moins une bobine, la bobine étant portée par le stator et étant destinée à former un champ magnétique entre le rotor et le stator, le rotor étant en regard de la bobine et tournant sur son axe, caractérisé en ce que- at least one coil, the coil being carried by the stator and being intended to form a magnetic field between the rotor and the stator, the rotor being opposite the coil and rotating on its axis, characterized in that
- la bobine est disposée de telle manière que son champ magnétique comporte dans le rotor une composante radiale par rapport à l'axe du rotor.- The coil is arranged so that its magnetic field has in the rotor a radial component relative to the axis of the rotor.
De préférence le stator comporte une forme monobloc. Description sommaire des dessinsPreferably the stator has a monobloc shape. Brief description of the drawings
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles-ci ne sont présentées qu'à titre indicatif et nullement limitatif de l'invention. Les figures montrent :The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These are presented for information only and in no way limit the invention. The figures show:
- Figure 1 : une représentation schématique déjà commentée de la répartition des courants de Foucault dans un ralentisseur électromagnétique, avant l'invention ;- Figure 1: a schematic representation already commented on the distribution of eddy currents in an electromagnetic retarder, before the invention;
- Figure 2 : une représentation schématique d'un ralentisseur électromagnétique, selon l'invention ;- Figure 2: a schematic representation of an electromagnetic retarder, according to the invention;
- Figure 3 : une coupe d'un ralentisseur électromagnétique, selon l'invention ; et- Figure 3: a section of an electromagnetic retarder, according to the invention; and
- Figure 4 : une représentation en perspective d'un ralentisseur électromagnétique, selon l'invention. La figure 2 représente une coupe transversale d'un ralentisseur électromagnétique 9 d'un véhicule, selon l'invention. La coupe est placée dans un plan contenant l'axe du rotor et un axe de symétrie du stator. Ce ralentisseur électromagnétique 9 peut être de type Axial ou de type "Focal". Un ralentisseur électromagnétique de type Axial peut être placé entre une boîte de vitesse et un pont (non représentés). Ou bien, un ralentisseur électromagnétique de type "Focal" peut être placé directement sur la boîte de vitesse ou sur le pont.- Figure 4: a perspective representation of an electromagnetic retarder, according to the invention. FIG. 2 represents a cross section of an electromagnetic retarder 9 of a vehicle, according to the invention. The section is placed in a plane containing the axis of the rotor and an axis of symmetry of the stator. This electromagnetic retarder 9 can be of the Axial type or of the "Focal" type. An Axial type electromagnetic retarder can be placed between a gearbox and a bridge (not shown). Alternatively, an electromagnetic retarder of the "Focal" type can be placed directly on the gearbox or on the bridge.
Description de modes de réalisation préférentiels de l'inventionDescription of preferred embodiments of the invention
Le ralentisseur électromagnétique 9 de l'invention peut comporter au moins un rotor induit, au moins un stator inducteur et au moins une bobine. Dans l'exemple figure 2, le ralentisseur électromagnétique comporte un premier rotor induit 10 et un deuxième rotor induit 11, un stator inducteur 12, une première bobine 13 et une deuxième bobine 14. En fait le premier rotor 10 et le deuxième rotor 11 , avantageusement en matériau ferromagnétique, n'en forment qu'un, ils sont des parties d'un rotor solidarisé par l'intérieur du stator par l'intermédiaire d'un manchon ou d'un plateau central comme décrit dans le document FR-A- 2 577 357 auquel on se reportera pour plus de précisions. Le stator est positionné entre le premier rotor 10 et le deuxième rotor 11. Le stator 12 est destiné à porter au moins une bobine. Dans l'exemple figure 2, le stator 12 porte deux bobines 13 et 14. Le rotor 10 est en regard d'au moins une bobine 13 et tourne par rapport au stator 12 selon un axe 16 correspondant à un axe de symétrie 15 du stator. Les rotors 10 et 11 et le stator 12 sont situés dans des plans parallèles entre eux perpendiculaires à l'axe du rotor et à l'axe du stator. Le rotor 10 est relié à un arbre de transmission (non représenté). Cet arbre de transmission est relié à au moins une roue du véhicule et est destiné à transmettre un mouvement de rotation à cette roue. Le rotor est ainsi destiné à tourner autour de l'axe du stator 15. Le stator 12 est fixe. Il est relié au châssis d'un véhicule non représenté.The electromagnetic retarder 9 of the invention may comprise at least one induced rotor, at least one inductor stator and at least one coil. In the example in FIG. 2, the electromagnetic retarder comprises a first induced rotor 10 and a second induced rotor 11, an inductor stator 12, a first coil 13 and a second coil 14. In fact the first rotor 10 and the second rotor 11, advantageously made of ferromagnetic material, form only one, they are parts of a rotor secured by the interior of the stator by means of a sleeve or a central plate as described in the document FR-A - 2,577,357 to which reference may be made for more details. The stator is positioned between the first rotor 10 and the second rotor 11. The stator 12 is intended to carry at least one coil. In the example in FIG. 2, the stator 12 carries two coils 13 and 14. The rotor 10 faces at least one coil 13 and rotates relative to the stator 12 along an axis 16 corresponding to an axis of symmetry 15 of the stator . The rotors 10 and 11 and the stator 12 are located in planes parallel to each other perpendicular to the axis of the rotor and to the axis of the stator. The rotor 10 is connected to a drive shaft (not shown). This transmission shaft is connected to at least one wheel of the vehicle and is intended to transmit a rotational movement to this wheel. The rotor is thus intended to rotate around the axis of the stator 15. The stator 12 is fixed. It is connected to the chassis of a vehicle not shown.
En tournant autour de son axe, 16 le rotor 10 ou 11 présente des cheminements renouvelés aux champs produits par les bobines présentes sur le stator. Un champ magnétique 17 peut alors se former entre le stator et le rotor par l'intermédiaire des bobines. Le champ magnétique 17 est représenté par une flèche figure 2. Les bobines 13 et 14 sont ici des bobines circulaires, d'axe perpendiculaire à l'axe 15. Elles comportent chacune un espace axial où circule le champ 17. Le bobinage des bobines 13 et 14 est tel que les sections transverses de leurs conducteurs sont parallèles au plan de la coupe. Le sens du courant dans ces sections de conducteurs est montré d'une manière conventionnelle par des pointes et des empennages de flèches. Le champ est radial divergent par rapport à l'axe 15 à l'intérieur des bobines et radial convergent à l'extérieur (le contraire est possible également). II n'est pas nécessaire que les bobines soient contrarotatives. Au contraire si elles sont de même sens, le champ magnétique dans l'espace interne sera à la fois orienté dans un même sens pour une première bobine et pour une deuxième bobine (circulation en pointillée figure 2). Ces orientations dans un même sens sont préférées car elles conduisent à ne pas saturer le matériau magnétique dans l'espace interne, d'où une meilleure utilisation de la matière.By turning around its axis, 16 the rotor 10 or 11 presents renewed paths to the fields produced by the coils present on the stator. A magnetic field 17 can then form between the stator and the rotor via the coils. The magnetic field 17 is represented by an arrow in FIG. 2. The coils 13 and 14 are here circular coils, with an axis perpendicular to the axis 15. They each have an axial space where the field 17 circulates. The winding of the coils 13 and 14 is such that the cross sections of their conductors are parallel to the plane of the section. The direction of the current in these sections of conductors is shown in a conventional manner by points and empennages of arrows. The field is radial diverging with respect to the axis 15 inside the coils and radial converging outside (the opposite is also possible). The coils do not have to be counter-rotating. On the contrary if they are in the same direction, the magnetic field in the internal space will be both oriented in the same direction for a first coil and for a second coil (circulation in dotted lines in Figure 2). These orientations in the same direction are preferred because they lead to the saturation of the magnetic material in the internal space, hence better use of the material.
Le ralentisseur électromagnétique fonctionne de la manière suivante. Lors de la circulation du véhicule, un freinage peut être débuté par la mise en service du ralentisseur électromagnétique. Lors de sa mise en service, les circuits électriques des bobines 13 (et ou 14) sont fermés et ou alimentés électriquement. En tournant autour de son axe, le rotor recueille le champ produit par les bobines portées par le stator. Il se crée un champ magnétique autour de ces mêmes bobines. Ce champ magnétique est destiné à former une boucle autour de chacune des bobines. Pour former une boucle, le champ magnétique se forme en se propageant dans le rotor et dans le stator tout en encerclant la bobine. En se propageant dans le rotor, le champ magnétique est partout dans le rotor perpendiculaire à un sens de rotation 18 du rotor. Le sens de rotation du rotor est représenté par une pointe de flèche 18 (figure 2) matérialisant une direction perpendiculaire au plan de la feuille de la figure 2. A un endroit 19 où ce champ magnétique 17 dans le rotor est perpendiculaire au sens de rotation du rotor, il se crée un courant électrique ou courant de Foucault. Le courant de Foucault est un courant électrique qui peut apparaître à l'intérieur d'un conducteur soumis à un champ magnétique. Ici, le conducteur c'est le rotor, qui est avantageusement en matériau ferromagnétique. Ce courant de Foucault a tendance à s'opposer au sens de rotation du rotor. Ce courant de Foucault aura d'autant plus tendance à s'opposer au sens de rotation du rotor que le champ magnétique est de plus en plus perpendiculaire au sens de rotation du rotor.The electromagnetic retarder operates as follows. When the vehicle is moving, braking can be started by putting the electromagnetic retarder into service. When it is put into service, the electrical circuits of the coils 13 (and or 14) are closed and or supplied electrically. By turning around its axis, the rotor collects the field produced by the coils carried by the stator. A magnetic field is created around these same coils. This magnetic field is intended to form a loop around each of the coils. To form a loop, the magnetic field is formed by propagating in the rotor and in the stator while surrounding the coil. By propagating in the rotor, the magnetic field is everywhere in the rotor perpendicular to a direction of rotation 18 of the rotor. The direction of rotation of the rotor is represented by an arrowhead 18 (Figure 2) materializing a direction perpendicular to the plane of the sheet of Figure 2. At a location 19 where this magnetic field 17 in the rotor is perpendicular to the direction of rotation from the rotor, an electric current or eddy current is created. Eddy current is an electric current which can appear inside a conductor subjected to a magnetic field. Here, the conductor is the rotor, which is advantageously made of ferromagnetic material. This eddy current tends to oppose the direction of rotation of the rotor. This eddy current will tend to oppose the direction of rotation of the rotor the more the magnetic field is more and more perpendicular to the direction of rotation of the rotor.
Selon l'invention, les bobines sont disposées sur le stator de telle manière que le champ magnétique formé par une bobine comporte, dans le rotor, une configuration radiale par rapport à l'axe 16 du rotor. Par cette configuration radiale, le champ magnétique peut traverser perpendiculairement le plan du rotor, puis se propager parallèlement à un plan du rotor et surtout le champ magnétique formé par les bobines selon l'invention peut traverser le rotor radialement par rapport au sens de rotation du rotor. Puis le champ magnétique rejoint à nouveau le stator pour encercler la bobine. Le courant de Foucault est donc au maximum de sa puissance pendant toute la longueur où le champ magnétique traverse le rotor puisque le champ magnétique est réalisé de telle manière qu'il traverse non seulement le rotor perpendiculairement au plan du rotor, mais qu'il se propage aussi dans le rotor selon une direction perpendiculaire au sens de rotation du rotor.According to the invention, the coils are arranged on the stator so that the magnetic field formed by a coil has, in the rotor, a radial configuration relative to the axis 16 of the rotor. By this radial configuration, the magnetic field can cross the plane of the rotor perpendicularly, then propagate parallel to a plane of the rotor and especially the magnetic field formed by the coils according to the invention can pass through the rotor radially with respect to the direction of rotation of the rotor. Then the magnetic field again joins the stator to encircle the coil. The eddy current is therefore at its maximum power during the entire length where the magnetic field crosses the rotor since the magnetic field is produced in such a way that it not only crosses the rotor perpendicular to the plane of the rotor, but that it also propagates in the rotor in a direction perpendicular to the direction of rotation of the rotor.
Pour réaliser une telle configuration radiale de ce champ magnétique, les bobines sont positionnées, figure 3, sur un stator, ici en matière magnétique, comportant, de préférence, une forme monobloc. La figure 3 représente une vue en coupe du stator muni de bobines. Le stator comporte une forme globale circulaire. Le stator pourrait toutefois avoir une autre forme, rectangulaire ou ellipsoïdale. Le stator comporte un cadre 20 de fixation à une partie fixe du véhicule, telle que le châssis de celui-ci, et un disque 21 contenu dans le cadre 20. Le cadre 20 et le disque 21 sont disposés de telle manière que le cadre 20 est éloigné de l'axe du stator 15 et que le disque 21 est proche de l'axe du stator. Le cadre 20 entoure le disque 21 et se projette en direction du disque 21 par au moins une tige de liaison 22. La tige de liaison 22 relie perpendiculairement des pièces polaires, coiffant le disque 21 , au cadre 20. Mais elle pourrait les relier selon une toute autre direction. Par exemple, la tige de liaison 22 pourrait les relier obliquement. Selon cette coupe figure 3, le stator comporte six tiges de liaison 22, 23, 24, 25, 26 et 27.To achieve such a radial configuration of this magnetic field, the coils are positioned, FIG. 3, on a stator, here made of magnetic material, preferably comprising a monobloc shape. Figure 3 shows a sectional view of the stator provided with coils. The stator has an overall circular shape. The stator could however have another shape, rectangular or ellipsoidal. The stator comprises a frame 20 for fixing to a fixed part of the vehicle, such as the chassis thereof, and a disc 21 contained in the frame 20. The frame 20 and the disc 21 are arranged in such a way that the frame 20 is distant from the axis of the stator 15 and that the disc 21 is close to the axis of the stator. The frame 20 surrounds the disc 21 and projects in the direction of the disc 21 by at least one connecting rod 22. The connecting rod 22 connects pole pieces perpendicularly, covering the disc 21, to the frame 20. But it could connect them according to a completely different direction. For example, the connecting rod 22 could connect them obliquely. According to this section in FIG. 3, the stator comprises six connecting rods 22, 23, 24, 25, 26 and 27.
Le disque 21 comporte dans un exemple une forme hexagonale définissant une périphérie 28 munie de six facettes 29, 30, 31, 32, 33 et 34. Le disque 21 pourrait avoir une toute autre forme. Par exemple le disque 21 pourrait avoir une autre forme régulière, carrée ou octogonale. Sur chacune de ces facettes, le disque 21 comporte au moins une extension ou bras 35, solidaire du disque, et s'étendant radialement par rapport à l'axe du stator 15 en direction du cadre 20. Ce bras 35 se forme à partir d'une facette de la périphérie 28 du disque 21 en se dirigeant vers le cadre 20. Le bras 35 comporte une extrémité 36 destinée à être en regard du cadre 20. Dans l'exemple préféré figure 3, le stator comporte 6 bras 35, 37, 38, 39, 40 et 41. Chacune des tiges de liaisons se projette vers chacun des bras au cadre 20. Une tige de liaison s'appuie sur un bras par l'extrémité destinée à être placée en regard du cadre 20.The disc 21 comprises in one example a hexagonal shape defining a periphery 28 provided with six facets 29, 30, 31, 32, 33 and 34. The disc 21 could have a completely different shape. For example, the disc 21 could have another regular, square or octagonal shape. On each of these facets, the disc 21 comprises at least one extension or arm 35, integral with the disc, and extending radially relative to the axis of the stator 15 in the direction of the frame 20. This arm 35 is formed from 'a facet of the periphery 28 of the disc 21 while moving towards the frame 20. The arm 35 has an end 36 intended to be opposite the frame 20. In the preferred example of Figure 3, the stator has 6 arms 35, 37 , 38, 39, 40 and 41. Each of the connecting rods projects towards each of the arms of the frame 20. A connecting rod is supported on an arm by the end intended to be placed opposite the frame 20.
Un bras 35 peut servir d'élément de support pour accueillir une bobine 42 (bobine 13 figure 2) autour de ce bras. Ainsi une bobine peut être placée autour de chacun des bras. Dans l'exemple préféré figure 3, le stator comporte six bobines 42, 43, 44, 45, 46 et 47, chacune des bobines étant formée autour d'un bras 35, 37, 38, 39, 40 et 41 respectivement. Pour maintenir la bobine fixement autour de chacun des bras, chacune des extrémités de chacun des bras comporte un épanouissement 48, figure 2. L'épanouissement est formé perpendiculairement à un axe 55 du bras. Un axe du bras est un axe s'étendant radialement par rapport à l'axe du stator. Cet axe du bras correspond à un axe d'une bobine. Les tiges de liaison sont destinées à s'insérer sur l'épanouissement pour relier le disque 21 au cadre 20. L'épanouissement peut avoir une forme circulaire, rectangulaire, carrée ou toute autre forme. De préférence, le cadre 20, les bras et les épanouissements sont réalisés en un matériau magnétique (et dans ce cas les bobines doivent être alimentées) ou en un matériau aimanté.An arm 35 can serve as a support element to receive a coil 42 (coil 13 in Figure 2) around this arm. Thus a coil can be placed around each of the arms. In the preferred example in FIG. 3, the stator comprises six coils 42, 43, 44, 45, 46 and 47, each of the coils being formed around an arm 35, 37, 38, 39, 40 and 41 respectively. To keep the coil fixedly around each of the arms, each of the ends of each of the arms has a bloom 48, FIG. 2. The bloom is formed perpendicular to an axis 55 of the arm. An axis of the arm is an axis extending radially with respect to the axis of the stator. This axis of the arm corresponds to an axis of a coil. The connecting rods are intended to be inserted on the opening to connect the disc 21 to the frame 20. The opening can have a circular, rectangular, square or any other shape. Preferably, the frame 20, the arms and the openings are made of a magnetic material (and in this case the coils must be supplied) or of a magnetic material.
Ainsi, un champ magnétique peut se former entre le stator et le rotor par l'intermédiaire d'une bobine. Le champ magnétique se forme dans un premier bras d'une bobine. Il sort de cette bobine par une extrémité axiale de cette bobine, puis traverse le plan du rotor perpendiculairement à ce plan. Les épanouissements servent à cet effet. Puis le champ se propage dans le rotor parallèlement au plan du rotor mais radialement, c'est-à-dire perpendiculairement au sens de rotation du rotor. Puis le champ magnétique rejoint la bobine en passant par une deuxième extrémité de cette bobine. Une de ces extrémités est formée par l'épanouissement, à l'autre une forme comparable accueille le champ magnétique. Le champ magnétique se ferme en formant une boucle passant par le stator.Thus, a magnetic field can form between the stator and the rotor via a coil. The magnetic field is formed in a first arm of a coil. It leaves this coil through an axial end of this coil, then crosses the plane of the rotor perpendicular to this plane. Blooming is used for this purpose. Then the field propagates in the rotor parallel to the plane of the rotor but radially, that is to say perpendicular to the direction of rotation of the rotor. Then the magnetic field joins the coil passing through a second end of this coil. One of these ends is formed by blooming, at the other a comparable shape accommodates the magnetic field. The magnetic field closes by forming a loop passing through the stator.
Plusieurs pôles sur un bras peuvent être réalisés en formant au moins une fente 53 sur un épanouissement d'un bras. Une fente peut être réalisée en s'étendant à partir d'une périphérie 54 de ce même épanouissement vers l'axe 55 du bras. Une fente est représentée en pointillée figure 3. La fente peut être de forme rectangulaire, arrondie ou une autre forme. On peut ainsi augmenter le nombre de fente et augmenter le nombre de pôles pour optimiser le système. On peut ainsi augmenter la fréquence magnétique du système. Il en résulte une augmentation de performance: le frein freine plus fort pour un même poids ou pour un même volume global.Several poles on an arm can be made by forming at least one slot 53 on a development of an arm. A slit can be produced by extending from a periphery 54 of this same opening towards the axis 55 of the arm. A slot is shown in dotted lines in Figure 3. The slot can be rectangular, rounded or another shape. We can thus increase the number of slots and increase the number of poles to optimize the system. It is thus possible to increase the magnetic frequency of the system. This results in an increase in performance: the brake brakes harder for the same weight or for the same overall volume.
Dans cette configuration radiale, une zone de courant de Foucault formé par la direction perpendiculaire du champ magnétique par rapport au sens de rotation du rotor concerne une zone du rotor correspondant à une hauteur d'une bobine ou plus exactement à une hauteur séparant deux pièces polaires placées radialement dans le stator du ralentisseur électromagnétique, en regard des extrémités des bobines.In this radial configuration, an eddy current zone formed by the perpendicular direction of the magnetic field relative to the direction of rotation of the rotor concerns a zone of the rotor corresponding to a height of a coil or more exactly to a height separating two pole pieces placed radially in the stator of the electromagnetic retarder, opposite the ends of the coils.
La figure 2 montre ainsi une bobine 13 montée sur un bras 35 et une bobine 14, symétrique de la bobine 13 par rapport à l'axe 15 montée sur un bras 39 symétrique du bras 35 par rapport à l'axe 15. Les hauteurs des bobines 13 et 14 conditionnent le déploiement de la zone 19 d'action des courants de Foucault. Le disque 21 possède une face circulaire interne 52 avec des pôles orientés vers les rotors. Les bras 35 sont surmontés d'épanouissements rapportés tels que 48. Le montage de l'ensemble est le suivant. Le disque 21 avec ses bras est monobloc. Les bobines sont ensuite engagées sur ces bras. Puis le cadre 20 dont les tiges maintiennent les épanouissements 48 est placé autour du disque 21 équipé des bobines par déplacement le long de l'axe 15. Les deux parties sont solidarisées par tous moyens. On notera que le montage est statique. Rien n'est destiné à tourner. Puis les rotors sont mis en place. En variante, les bobines peuvent être bobinée autour des bras alors que ceux-ci sont déjà munis de leur épanouissement périphérique.FIG. 2 thus shows a coil 13 mounted on an arm 35 and a coil 14, symmetrical of the coil 13 relative to the axis 15 mounted on an arm 39 symmetrical of the arm 35 relative to the axis 15. The heights of the coils 13 and 14 condition the deployment of the area 19 of action of the eddy currents. The disc 21 has an internal circular face 52 with poles oriented towards the rotors. The arms 35 are topped with added openings such as 48. The assembly of the assembly is as follows. The disc 21 with its arms is in one piece. The coils are then engaged on these arms. Then the frame 20 whose rods maintain the openings 48 is placed around the disc 21 fitted with the coils by displacement along the axis 15. The two parts are secured by any means. Note that the assembly is static. Nothing is meant to turn. Then the rotors are put in place. As a variant, the coils can be wound around the arms while the latter are already provided with their peripheral development.
La figure 4 représente en perspective le ralentisseur électromagnétique, selon l'invention. Le rotor est placé en regard des bobines. Il recouvre les bobines pour les protéger des projections de gravillons. Le rotor peut comporter une face 49 (non visible sur la figure 4 mais visible sur la figure 2) destinée à être en regard des bobines et une face 50 opposée. Sur la face 49, des protubérances 56 peuvent être formées à la surface de cette face 49, figure 2. Ces protubérances 56 sont destinées à s'insérer entre l'épanouissement 48 d'un bras et le disque 21 pour être en regard d'une bobine. De cette manière, le champ magnétique se forme non seulement en surface du rotor mais également en profondeur du rotor. Ici, le champ magnétique peut traverser en profondeur le rotor en traversant la protubérance du rotor et peut augmenter la performance d'un tel système. La performance d'un tel système est également amplifiée du fait d'une augmentation de surface résultant de la formation de la protubérance 56. Le champ magnétique traverse ainsi une plus grande zone du rotor par cette augmentation de surface en résultant.Figure 4 shows in perspective the electromagnetic retarder according to the invention. The rotor is placed opposite the coils. It covers the coils to protect them from gravel projections. The rotor may include a face 49 (not visible in FIG. 4 but visible in FIG. 2) intended to be opposite the coils and an opposite face 50. On the face 49, protrusions 56 can be formed on the surface of this face 49, FIG. 2. These protrusions 56 are intended to be inserted between the opening 48 of an arm and the disc 21 so as to be opposite a coil. In this way, the magnetic field is formed not only at the surface of the rotor but also at the depth of the rotor. Here, the magnetic field can pass deep through the rotor through the protuberance of the rotor and can increase the performance of such a system. The performance of such a system is also amplified due to an increase in surface area resulting from the formation of the protuberance 56. The magnetic field thus crosses a larger area of the rotor by this resulting increase in surface area.
Sur la face 50 opposée du rotor peut être placée au moins une ailette 51 disposée selon une configuration radiale par rapport à l'axe du rotor 16. Une ailette est formée par une protubérance d'une surface du rotor s'étendant perpendiculairement au plan du rotor. Cette ailette a pour but de faciliter une circulation d'un fluide de refroidissement sur le rotor pour refroidir le rotor lors de son fonctionnement. Cette ailette permet également d'augmenter une surface de refroidissement du rotor sur laquelle le fluide peut circuler.On the opposite face 50 of the rotor can be placed at least one fin 51 arranged in a radial configuration relative to the axis of the rotor 16. A fin is formed by a protuberance of a surface of the rotor extending perpendicular to the plane of the rotor. The purpose of this fin is to facilitate the circulation of a cooling fluid on the rotor to cool the rotor during its operation. This fin also makes it possible to increase a cooling surface of the rotor on which the fluid can circulate.
Ce type de configuration peut être réalisé avec des ralentisseurs à aimants permanents. Dans ce cas le matériau du stator est un matériau aimanté. De préférence le rotor est placé, le long de l'axe 16, très prés des épanouissements du stator. Comme il y a de l'espace entre les pôles 48 ou passe le flux magnétique, le rotor peut être réalisé en matériau composite magnétique et non magnétique. Le rotor peut également être réalisé en matériau seulement conducteur. Comme il y a une meilleure utilisation des courants de Foucault, le besoin de flux magnétique est réduit pour une performance égale. De ce fait les conducteurs des bobines peuvent être en aluminium, moins conducteur mais moins cher que le cuivre. La simplification de l'invention avec la configuration radiale permet de réaliser des ralentisseurs avec des petites bobines. Ces petites bobines ont l'avantage de créer plus d'ampères tours avec un faible volume de conducteurs. L'augmentation de la puissance du courant de Foucault favorise la diminution du poids du ralentisseur. Bien entendu, de manière connue, un faible intervalle existe entre le rotor et le stator. This type of configuration can be carried out with permanent magnet retarders. In this case the stator material is a magnetic material. Preferably the rotor is placed, along the axis 16, very close to the openings of the stator. As there is space between the poles 48 where the magnetic flux passes, the rotor can be made of magnetic and non-magnetic composite material. The rotor can also be made of only conductive material. As there is better use of eddy currents, the need for magnetic flux is reduced for equal performance. Therefore the conductors of the coils can be made of aluminum, less conductive but less expensive than copper. The simplification of the invention with the radial configuration makes it possible to produce retarders with small coils. These small coils have the advantage of creating more ampere turns with a small volume of conductors. The increase in the power of the eddy current favors the reduction in the weight of the retarder. Of course, in known manner, a small gap exists between the rotor and the stator.

Claims

REVENDICATIONS
1 - Ralentisseur électromagnétique 9 d'un véhicule comportant1 - Electromagnetic retarder 9 of a vehicle comprising
- au moins un rotor induit (10, 11), - au moins un stator inducteur (12),- at least one induced rotor (10, 11), - at least one inductor stator (12),
- au moins une bobine (13,14), la bobine étant portée par le stator et étant destinée à former un champ magnétique (17) entre le rotor et le stator, le rotor recouvrant au moins la bobine et tournant sur le stator selon un axe du stator (15) correspondant à l'axe du rotor (16), caractérisé en ce que - la bobine est disposée de telle manière que le champ magnétique de la bobine comporte une configuration radiale par rapport à l'axe du rotor.- at least one coil (13,14), the coil being carried by the stator and being intended to form a magnetic field (17) between the rotor and the stator, the rotor covering at least the coil and rotating on the stator according to a axis of the stator (15) corresponding to the axis of the rotor (16), characterized in that - the coil is arranged in such a way that the magnetic field of the coil has a radial configuration relative to the axis of the rotor.
2 - Ralentisseur selon la revendication 1, caractérisé en ce qu'il comporte des bobines (42, 43, 44, 45, 46, 47) dont l'axe est orienté radialement par rapport à un axe de symétrie du stator. 3 - Ralentisseur selon la revendication 2, caractérisé en ce que le stator comporte un cadre (20) et un disque (21), le cadre se projetant vers le disque par au moins une tige de liaison (22, 23, 24, 25, 26, 27).2 - Retarder according to claim 1, characterized in that it comprises coils (42, 43, 44, 45, 46, 47) whose axis is oriented radially with respect to an axis of symmetry of the stator. 3 - Retarder according to claim 2, characterized in that the stator comprises a frame (20) and a disc (21), the frame projecting towards the disc by at least one connecting rod (22, 23, 24, 25, 26, 27).
4 - Ralentisseur selon la revendication 3, caractérisé en ce que le stator comporte six tiges de liaison. 5 - Ralentisseur selon la revendication 1, caractérisé en ce que le disque comporte une forme régulière, par exemple hexagonale, délimitant des facettes (29, 30, 31 , 32, 33, 34) sur lesquelles s'étendent des bras (35, 37, 38, 39, 40, 41) selon une configuration radiale par rapport à l'axe du stator. 6 - Ralentisseur selon la revendication 5 caractérisé en ce que les bras comportent une extrémité s'étendant en direction du cadre et formant un épanouissement perpendiculaire à un axe (55) du bras, lequel axe du bras correspond à un axe de la bobine et lequel épanouissement comporte au moins une fente (53) s'étendant à partir d'une périphérie (54) de ce même épanouissement vers l'axe du bras.4 - Retarder according to claim 3, characterized in that the stator has six connecting rods. 5 - Retarder according to claim 1, characterized in that the disc has a regular shape, for example hexagonal, delimiting facets (29, 30, 31, 32, 33, 34) on which extend arms (35, 37 , 38, 39, 40, 41) in a radial configuration relative to the axis of the stator. 6 - Retarder according to claim 5 characterized in that the arms have one end extending in the direction of the frame and forming a development perpendicular to an axis (55) of the arm, which axis of the arm corresponds to an axis of the coil and which blooming includes at least one slot (53) extending from a periphery (54) of the same blooming towards the axis of the arm.
7 - Ralentisseur selon la revendication 1, caractérisé en ce que le stator comporte une forme monobloc.7 - Retarder according to claim 1, characterized in that the stator has a monobloc shape.
8 - Ralentisseur selon la revendication 1 , caractérisé en ce que le rotor est en matériau composite magnétique et non magnétique. 9 - Ralentisseur selon la revendication 1 , caractérisé en ce que les conducteurs des bobines sont en aluminium.8 - Retarder according to claim 1, characterized in that the rotor is made of magnetic and non-magnetic composite material. 9 - Retarder according to claim 1, characterized in that the coil conductors are made of aluminum.
10 - Ralentisseur selon la revendication 1, caractérisé en ce que le rotor comporte une face (49) destinée à être en regard des bobines et une face (50) opposée, la face (49) destinée à être en regard des bobines comportant au moins une protubérance (56) destinée à s'insérer entre l'épanouissement (48) d'un bras et le disque (21 ) pour être en regard d'une bobine. 10 - Retarder according to claim 1, characterized in that the rotor has a face (49) intended to be opposite the coils and an opposite face (50), the face (49) intended to be opposite the coils comprising at least a protuberance (56) intended to be inserted between the opening (48) of an arm and the disc (21) so as to be opposite a coil.
PCT/FR2003/001536 2002-05-21 2003-05-21 Electromagnetic retarder for a vehicle WO2003098785A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0206162A FR2840125B1 (en) 2002-05-21 2002-05-21 ELECTROMAGNETIC RETARDER OF A VEHICLE
FR02/06162 2002-05-21

Publications (2)

Publication Number Publication Date
WO2003098785A2 true WO2003098785A2 (en) 2003-11-27
WO2003098785A3 WO2003098785A3 (en) 2004-03-11

Family

ID=29414940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001536 WO2003098785A2 (en) 2002-05-21 2003-05-21 Electromagnetic retarder for a vehicle

Country Status (2)

Country Link
FR (1) FR2840125B1 (en)
WO (1) WO2003098785A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042278A3 (en) * 2010-10-01 2013-09-26 Ets Design Ltd. Electromechanical device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171852A (en) * 1985-02-11 1986-09-03 Labavia Electric retarders
DE3530746A1 (en) * 1985-08-28 1987-03-05 Heinz Stuefer Eddy-current brake
EP0480345A1 (en) * 1990-10-04 1992-04-15 Pentar S.A. Eddy-current brake
FR2803134A1 (en) * 1999-12-22 2001-06-29 Labinal Braking motor vehicle crankshaft by using eddy current retarder which comprises inboard pulley for ancillaries and a stator and field winding coaxial with the crankshaft and located within a rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734648B2 (en) * 1987-09-28 1995-04-12 東京部品工業株式会社 Electromagnet in eddy current brake

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171852A (en) * 1985-02-11 1986-09-03 Labavia Electric retarders
DE3530746A1 (en) * 1985-08-28 1987-03-05 Heinz Stuefer Eddy-current brake
EP0480345A1 (en) * 1990-10-04 1992-04-15 Pentar S.A. Eddy-current brake
FR2803134A1 (en) * 1999-12-22 2001-06-29 Labinal Braking motor vehicle crankshaft by using eddy current retarder which comprises inboard pulley for ancillaries and a stator and field winding coaxial with the crankshaft and located within a rotor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 13, no. 317 (E-789), 19 juillet 1989 (1989-07-19) -& JP 01 085565 A (TOKYO BUHIN KOGYO KK ), 30 mars 1989 (1989-03-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042278A3 (en) * 2010-10-01 2013-09-26 Ets Design Ltd. Electromechanical device

Also Published As

Publication number Publication date
WO2003098785A3 (en) 2004-03-11
FR2840125A1 (en) 2003-11-28
FR2840125B1 (en) 2005-09-30

Similar Documents

Publication Publication Date Title
EP1646126B1 (en) Rotor for an electric motor and electric motor including the same
EP0974185B1 (en) Improved linear actuator
FR2884367A1 (en) Reluctor for polyphase rotating machine, has annular magnetic part, where reluctor is rotatably integrated in translation with rear end of shaft of electric machine via inner ring of rear ball bearing
FR2996378A1 (en) Rotor for radial flow electric machine, has radial structure whose thickness along rotation axis and/or length are strictly less than corresponding dimension of adjacent side edges of two adjacent pole pieces
FR2577357A1 (en) IMPROVEMENTS ON ELECTRIC RETARDERS
WO2020078667A1 (en) Stator tooth for an electric machine, associated yoke and stator
WO2015193562A1 (en) Electromagnetic synchronous motor with combined axial and radial magnetic fluxes
FR3004297A1 (en) ROTOR WITH PERMANENT MAGNETM THAT CAN BE GIVEN TO IT AFTER
FR2727174A1 (en) MAGNETIC BEARING WITH RE-COIL COIL
EP0321332B1 (en) Highly efficient electric motor showing low torque ripple
CH664653A5 (en) Eddy current retarder.
WO2003098785A2 (en) Electromagnetic retarder for a vehicle
EP3229348B1 (en) Rotor for an electrical machine
FR2945683A1 (en) VERNIER MACHINE WITH INSIDE MAGNETS.
WO2014122374A1 (en) Electromagnetic motor or generator with a plurality of air gaps having permanent magnets and ironless winding element
WO2003098784A1 (en) Vehicle electromagnetic retarder
WO2005057764A1 (en) Advanced electromagnetic retarder annular rotor
FR2837631A1 (en) Rotating electrical machine with modular stator and rotor for use as radiator cooling fan in motor vehicle, uses modular segments of wound teeth to form stator, with segments supported in magnetic frame
EP1609234B1 (en) Electromagnetic retarder for a vehicle
WO2019020490A1 (en) Rotor for a rotary electric machine provided with a resin layer in the cavities of permanent magnets
FR2957713A1 (en) ELECTROMAGNETIC LINEAR ACTUATOR
FR2785734A1 (en) Magnetic suspension device for rotatable body, has bearings with pole piece pairs and associated permanent magnets, in which excitation windings are arranged radially between pole pieces
FR3086118A1 (en) ROTATING ELECTRIC MACHINE WITH REDUCED MASS ROTOR
EP2584684A1 (en) Interchangeable stator of electromagnetic retarder and electromagnetic retarder equipped with such a stator
FR2833774A1 (en) Double circuit induction rotor for a rotating electric machine, such as a motor or alternator, especially for automotive vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP