WO2003098615A1 - Optical pickup device - Google Patents

Optical pickup device Download PDF

Info

Publication number
WO2003098615A1
WO2003098615A1 PCT/JP2002/008265 JP0208265W WO03098615A1 WO 2003098615 A1 WO2003098615 A1 WO 2003098615A1 JP 0208265 W JP0208265 W JP 0208265W WO 03098615 A1 WO03098615 A1 WO 03098615A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
pickup device
phase
aberration
aberration correction
Prior art date
Application number
PCT/JP2002/008265
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Kitamura
Yukio Kurata
Tetsuo Iwaki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2004506023A priority Critical patent/JP4180564B2/en
Priority to KR1020047002622A priority patent/KR100603871B1/en
Priority to US10/483,859 priority patent/US6937381B2/en
Publication of WO2003098615A1 publication Critical patent/WO2003098615A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1359Single prisms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness

Definitions

  • the present invention relates to an optical pickup device for recording and reproducing information on an optical information recording medium.
  • the technology using light has many features such as high-speed processing at optical frequency (high speed due to high frequency), spatial information processing, and phase processing. Research in various fields such as measurement and processing-development and commercialization.
  • a high-precision objective lens is used to narrow the light beam.
  • the beam spot diameter is proportional to the wavelength of light, and inversely proportional to the NA (Numerical Aperture) of the objective lens. That is, in order to narrow the beam spot diameter, it is necessary to increase the NA of the force objective lens that shortens the wavelength of light. To shorten the wavelength of light, blue laser diodes—blue or green SHG lasers have recently been developed.
  • the DVD Digital Versatile Discs
  • the objective lens with higher NA the DVD (Digital Versatile Discs) has an NA of 0.6 compared to a CD (Compact Disc) with an NA of 0.45, achieving higher density. It has been.
  • an optical pickup device using two lenses in two groups and achieving an NA of 0.85 for further densification has been disclosed in Japanese Patent Application Laid-Open Publication No. Hei 10-123. No. 10 (publication date: May 15, 1990).
  • Japanese Patent Application Publication No. JP-A-2001-143303 discloses a liquid crystal element for correcting spherical aberration. Is disclosed.
  • the liquid crystal device disclosed in the above publication has a configuration in which liquid crystal is sandwiched between electrodes formed on two glass substrates, and in order to correct spherical aberration, the orientation of the liquid crystal is changed by applying a voltage to the electrodes. The phase distribution is formed by changing the refractive index.
  • the NA of the objective lens is 0.85 and the thickness of the light transmitting layer of the optical recording medium is 0.1 mm will be described.
  • the thickness of the light transmitting layer is as thick as 0.115 mm, a phase distribution as shown in FIG. 8 is given to the liquid crystal element in order to correct the spherical aberration. This is because when there is spherical aberration corresponding to the increase in the thickness of the light transmission layer (+15 ⁇ ), the spherical aberration remaining after moving to the best image plane by the focus operation is corrected.
  • Figure 9 shows the relationship between the radius r of the liquid crystal element and the second derivative of the phase distribution indicating the amount of change (variation) in the phase tilt.
  • the value of the effective light flux at the outermost periphery is considerably large.
  • the center axes of the liquid crystal element and the objective lens do not match, and the liquid crystal element and the objective lens are displaced slightly in the radial direction, the inclination of the wavefront incident on the objective lens fluctuates greatly. Then, large aberrations occur.
  • the 1Z4 wavelength plate needs to be arranged on the optical recording medium side of the liquid crystal element, that is, on the actuator. Therefore, the weight of the components mounted on the actuator (movable part weight) Volume), high-speed driving was not possible, and it was difficult to improve the recording / reproducing speed.
  • the present invention has been made in view of the above-described conventional problems, and has as its object to achieve an aberration caused by a positional shift between a liquid crystal element and an objective lens even when an objective lens having a high NA is used.
  • An object of the present invention is to provide an optical pickup device capable of preventing deterioration of the optical pickup. Disclosure of the invention
  • an optical pickup device is an optical pickup device comprising: a light source; an objective lens and an aberration correction optical system in an optical path from the light source to the optical recording medium; In the optical system, a phase distribution is given to a light beam transmitted to correct a predetermined difference.
  • the phase amount of the aberration correction optical system is ′, and the aberration correction optical system is
  • the amount of phase imparted by the aberration correction optical system is set to increase as the distance from the point where the optical axis of the light from the light source intersects with the optical axis increases.
  • an objective lens and an aberration correction optical system are required for an actuator. There is no need to carry a car with you.
  • the phase amount of the aberration correction optical system when correcting the aberration is such that a distance from a point where the aberration correction optical system and the optical axis of the light from the light source intersect is large.
  • the configuration may be such that the amount of phase imparted by the aberration correction optical system increases within the effective radius of the aberration correction optical system.
  • the optical pickup device of the present invention in the above-described configuration, wherein r is a radius, ⁇ (r) is a phase at a radius r, and a and b are phase distribution coefficients,
  • the above-described configuration in which the phase amount of the aberration correction optical system increases as the distance from the intersection of the aberration correction optical system and the optical axis increases can be easily realized.
  • phase distribution of the above configuration can be easily realized by adjusting the voltage distribution applied to the liquid crystal element, for example, when a liquid crystal element is used as an aberration correction optical system.
  • optical pickup device of the present invention can be easily realized.
  • R is an effective radius of the aberration correction optical system
  • the phase distribution coefficients a and b are: a X b> 0,
  • the inflection point is not included in the phase distribution of the aberration correction optical system within the effective radius of the aberration correction optical system. Therefore, even if there is a misalignment between the objective lens and the aberration correction optical system, the second derivative ⁇ "(r) of the phase distribution as the amount of change in the phase gradient can be reduced to a small amount. The resulting aberrations can be reliably reduced.
  • the optical pickup device of the present invention may be configured such that:
  • the amount of aberration can be reduced to 0.3 irms or less in the NA 0.85 optical system.
  • the optical pickup device of the present invention in the above-mentioned configuration, wherein the NA of the objective lens is 0.75 or more, and the aberration correction optical system includes a liquid crystal element. It is characterized by
  • the NA of the objective lens is large, high-density recording and reproduction with a sufficiently narrowed beam spot can be performed. Further, since a liquid crystal element is used for the aberration correction optical system, aberration correction can be easily realized.
  • the optical pickup device of the present invention provides an aberration correction light for changing and outputting a wavefront as an equal phase surface of incident light.
  • the aberration correction optical element includes: an electrode formed on a substrate; and an optical medium whose refractive index for incident light changes according to a voltage applied to the electrode.
  • a driving circuit for applying a voltage to the electrode wherein the driving circuit applies a voltage to the electrode to change a refractive index of the optical medium, thereby changing a phase of a wavefront of incident light.
  • the drive circuit applies a voltage to the electrodes so as to monotonically increase or decrease the amount of phase change due to the optical medium according to the distance of the incident light from the optical axis. It is characterized by
  • the optical pickup device having the above configuration emits, for example, light incident from a light source to an objective lens via an aberration correction optical element.
  • Light passing through the objective lens is focused on, for example, a recording surface of an optical disk.
  • the information recorded on the optical disk can be reproduced.
  • the aberration correction optical element appropriately changes the wavefront of the incident light, the aberration of the light condensed on the recording surface via the objective lens can be removed.
  • the optical pickup device of the present invention further comprises, in addition to the above configuration, a distance from the optical axis of the incident light to a radius r, Assuming that R is the effective radius of the aberration correction optical system, the driving circuit has a phase at a radius r, where R>r> 0,
  • a voltage is applied to the electrodes so that a distribution represented by
  • the drive circuit further includes a center electrode disposed at a position of an optical axis of the incident light and the center position.
  • the above configuration can be easily realized by applying a voltage so that the center electrode and at least one or more annular electrodes each have a predetermined potential.
  • FIG. 1 is a Ru configuration view showing an embodiment of an optical pickup device of the present invention
  • FIG. 2 is a sectional view of the optical recording medium in FIG.
  • FIG. 3 is a configuration diagram of the aberration correction optical system in FIG.
  • FIG. 4A is a plan view showing the arrangement of electrodes in the liquid crystal device of FIG. 3
  • FIG. 4B is a cross-sectional view showing the arrangement of electrodes in the liquid crystal device of FIG. c) is a graph showing the relationship between the position in the liquid crystal element and the electric field strength.
  • FIG. 5 is a plan view showing another example of the electrode arrangement in the liquid crystal element.
  • FIG. 6 is a graph showing the phase distribution of the aberration correction optical system in FIG. 1
  • FIG. 7 is a graph showing the variation in the slope of the phase distribution of the aberration correction optical system in FIG. 1).
  • FIG. 8 is a graph showing a phase distribution of a conventional aberration correction optical system.
  • FIG. 9 is a graph showing the variation of the slope of the phase distribution in the aberration correcting optical system of the conventional example.
  • a linearly polarized laser beam emitted from an LD (Laser Diode) 1 is converted into a parallel beam by a collimator lens 2, and a shaping prism It is incident on 3.
  • the shaping prism 3 shapes the elliptical intensity distribution of the laser beam emitted from the LD 1 into a shape close to a circle.
  • the light emitted from the shaping prism 3 passes through the polarization beam splitter 4, enters the aberration correction optical system 5, and is converted into circularly polarized light by the 1/4 wavelength plate 6. Is converted. 1 Z
  • the light beam converted into circularly polarized light by the four-wavelength plate 6 is raised by a 45-degree mirror (not shown), then focused by the objective lens 7 and focused on the optical recording medium 10. You.
  • the optical recording medium 10 has a light transmission layer 8 having a thickness of about 0.1 mm (center value, average value of 0.1 mm), a recording surface 9, and a substrate 1. Consists of 1. Further, in the description using FIG. 1 described above, it has been described that the light converged by the objective lens 7 forms an image on the optical recording medium 10. More specifically, the light converged by the objective lens 7 (FIG. 1) passes through the light transmission layer 8 to form a beam spot on the recording surface 9 and is reflected by the recording surface 9. Being routed as follows.
  • the light reflected by the recording surface 9 (FIG. 2) is returned to linearly polarized light by the 1/4 wavelength plate 6.
  • the return to linearly polarized light is caused by the polarization direction of light entering the 14-wave plate 6 from the polarization beam splitter 4 and the 14-wave plate reflected by the optical recording medium 10. This is for rotating the polarization direction of the light incident on the polarization beam splitter 4 via 6 by 90 degrees.
  • the light returned to linearly polarized light by the 1 ⁇ 4 wavelength plate 6 is bent at a substantially right angle by the polarizing beam splitter 4 and passes through the condenser lens 12 and enters the light receiving unit 13.
  • the objective lens 7 is fixed to a lens holder (not shown).
  • the lens holder 1 is fixed to the optical pickup device main body (not shown) by four wires (not shown).
  • the objective lens 7 of the present embodiment has a thickness of the light transmitting layer 8 when the NA is 0.85 and parallel light flux is incident (so-called infinite conjugate). Is designed to be almost stigmatic when is 0.1 mm.
  • the wavelength of the laser beam from LD 1 is 405 ⁇
  • the effective light beam diameter is ⁇ 3
  • the focal length is 1.76 mm.
  • the aberration detection circuit calculates the amount of spherical aberration from the optical signal detected by the light receiving unit 13.
  • the liquid crystal drive circuit drives the liquid crystal element of the aberration correction optical system 5 based on the calculated signal relating to the amount of spherical aberration. This liquid crystal element will be described later.
  • the amplitude of the RF signal and the envelope itself may be observed, or a light-receiving unit may be separately arranged to detect the spherical aberration.
  • the aberration correction optical system 5 is a liquid crystal element 14 made of a nematic liquid crystal composition used for a liquid crystal display or the like. More specifically, the liquid crystal element 14 has a configuration in which the liquid crystal 15 is sandwiched between transparent electrodes facing each other, that is, for example, between transparent electrodes formed by depositing an ITO film on a glass substrate. It is. In the above configuration, the alignment state of the liquid crystal molecules in the liquid crystal 15 can be changed from the horizontal direction to the vertical direction by adjusting the applied voltage between the transparent electrodes. In addition, the liquid crystal 15 has a birefringence effect in which the refractive index differs between the optical axis direction of the liquid crystal molecules and the direction perpendicular thereto.
  • the light incident from one transparent electrode side undergoes a birefringence change in accordance with the orientation state of the liquid crystal 15 when passing through the liquid crystal, and the light is transmitted from the other transparent electrode side. Inject. Therefore, the light that has entered the liquid crystal element 14 becomes linearly polarized light having a polarization direction determined by the alignment method ′ of the liquid crystal 15.
  • the liquid crystal element 14 includes a first glass plate 16, a liquid crystal 15, and a second glass plate 17.
  • the liquid crystal 15 is the first glass plate 1 facing each other. 6 and the second glass plate 17.
  • a transparent electrode (electrode) 18, an insulating layer 19, and an alignment layer 20 are formed on the first glass plate 16.
  • a transparent electrode (electrode) 21, an insulating layer 22, and an alignment layer 23 are formed on the second glass plate 17 c.
  • the electrode 21 is a circular common electrode.
  • the liquid crystal 15 is sealed with a sealing material 27.
  • the transparent electrode 18 on the first glass plate 16 has electrodes 18a, 18b, 18c formed in concentrically divided regions. And a metal electrode 18 d formed on the center point of the electrode 18 c and the contour of each divided region. A lead wire 26a.26b.26c is connected to the metal electrode 18d.
  • the transparent electrode 21 on the second glass plate 17 is a circular common electrode.
  • the transparent electrode 18 is composed of a high-resistance transparent electrode (such as ITO) 18a to 18c and a low-resistance metal electrode (gold, aluminum, etc.) 18d. It is a combined configuration.
  • the transparent electrode 18 can form an electric field distribution as shown in FIG. 4 (c) from the central part to the peripheral part by the above configuration. As a result, a phase difference is generated in the liquid crystal 15 (FIG. 3), and the aberration is removed.
  • FIG. 5 Another configuration example of the electrode provided on the liquid crystal element 14 for changing the alignment state of the liquid crystal 15 will be described. That is, as shown in FIG. 5, a terminal 25 for voltage application is provided at the center of the circular electrode 24, and a lead wire 26 for power distribution extends from the terminal 25 to the outside. May be provided. Even with this configuration, the aberration correction optical system 5 generates a voltage distribution from the center to the periphery, so that the refractive index is low at the center and gradually increases toward the periphery. Can be configured.
  • the electrode shape and the resistance value of the electrode may be appropriately designed.
  • the above-described configuration example of the electrode is a configuration example in which the electric field distribution is generated from the center to the periphery by a combination of the high-resistance electrode and the low-resistance electrode. May be the optimal shape.
  • the optical pickup device when the average value (center value) of the thickness of the light transmitting layer 8 is 0.1 mm, the optical pickup device is set to a thickness of 0.1 mm ⁇ 0.015 mm. Recording and reproduction. That is, since the optical pickup device is compatible with a multilayer recording medium, recording and reproduction can be performed even if the thickness of a layer such as the light transmitting layer 8 deviates from a predetermined average value within a predetermined allowable range. It is configured as follows. By changing the voltage applied to the electrodes 18 a, 18 b, 18 c of the liquid crystal element 14, recording is performed in accordance with the amount of spherical aberration generated due to the difference in the thickness of the light transmitting layer 8. The amount of spherical aberration on the surface 9 can be minimized.
  • FIG. 6 shows the phase distribution of the liquid crystal element 14 for capturing the generated spherical aberration when the thickness of the light transmission layer 8 is 0.115 mm (in the case of +15 ⁇ m). Is shown.
  • the phase distribution shown in FIG. 6 is obtained by using a position r in the radial direction from the center of the liquid crystal element 14 as an aberration correction element.
  • ⁇ (r) 0.0 0 0 0 0 2 1 0 8 3 X r 4 — approximated by a polynomial of 0.0 0 1 0 3 3 X r 2 .
  • the second-order differential function ⁇ "(r), which indicates the amount of change in the slope of the phase distribution ⁇ (r), is
  • FIG. 7 shows the phase distribution ⁇ (r ) Indicates the amount of change ⁇ "(r) of the slope.
  • FIG. 7 shows a change amount ⁇ r of the slope of the conventional phase distribution.
  • the light passing through the liquid crystal element is incident on the objective lens through the phase distribution in the liquid crystal element, with the wavefront of the light as an equal phase plane being deformed.
  • a wavefront having no inclination is incident at a position on the objective lens where light is incident through the minimum value of the phase distribution described above. I do.
  • a wavefront having a tilt that occurs according to the direction of the misalignment will be incident on the same position on the objective lens. Therefore, depending on the direction of misalignment, a completely different wavefront may be incident. Therefore, for example, a large aberration may occur in this region.
  • the second-order differential value of the phase distribution in the present embodiment is sufficiently small at the position of a radius of 1.5 mm, which is the outermost periphery of the effective beam diameter of the laser beam. Even when the objective lens and the liquid crystal element are misaligned, the inclination of the wavefront incident on any position of the objective lens changes greatly. I do not know. Therefore, it is possible to suppress the deterioration of the wavefront aberration.
  • the phase distribution given by the liquid crystal element 14 according to the amount of spherical aberration is:
  • the incident angle near the effective radius R is the largest when R>r> 0. 'Therefore, if the tilt of the incident wavefront (that is, the angle of incidence) changes greatly near the effective radius, the deterioration of aberrations will also increase. ( This means that when misalignment between the objective lens and the liquid crystal element occurs, It means that the aberration deterioration becomes large.
  • ⁇ ′′ (r) in order to reduce aberration degradation, it is necessary that the value of ⁇ ′′ (r) be sufficiently small near the effective radius of the aberration correction optical system (outermost periphery).
  • the shift amount of the objective lens needs to be expected to be about 0.3 mm, in order to reduce the aberration amount to less than 0.3 irms in the NA 0.85 optical system,
  • the phase distribution of the liquid crystal element at the time of correcting the predetermined amount of spherical aberration satisfies the above condition, even if misalignment occurs between the liquid crystal element and the objective lens, the liquid crystal element exits from the liquid crystal element, and the objective lens Since the inclination of the wavefront incident on the surface does not change significantly, the aberration does not deteriorate.
  • the objective lens is used for tracking.
  • the aberration values when shifting in the track width direction are shown in Table 1 (for reference, the aberration values for the phase distribution shown in the conventional example are also shown).
  • m (milli lambda) shown as a unit of the aberration value is a ⁇ ⁇ rms (root mean square) value, and rms is omitted.
  • a liquid crystal element is used instead of the aberration correction element.
  • another element may be used as long as the above-described phase distribution can be obtained.
  • an element using a material whose refractive index can be adjusted by changing an applied voltage or another element can obtain the same effect as that of the present embodiment.
  • the spherical aberration amount is exemplified in the case where the thickness range of the light transmission layer is 15 ⁇ m of soil, but other thicknesses may be used, and the spherical surface that needs correction in each system may be used. It is determined according to the aberration.
  • an objective lens having a NA of 0.85 was used.
  • the amount of spherical aberration generated is large with respect to a change in the thickness of the light transmitting layer in two-layer recording or the like. Therefore, a large aberration correction effect can be obtained by using the liquid crystal element (error correction element) of the present embodiment.
  • the third-order spherical aberration coefficient W 40 is
  • the thickness of the interlayer is determined by the thermal interference between the recording layers, the interference of the focus servo signal, the manufacturing method of the interlayer, etc., and at least about 1 to 20 ⁇ m. It is. Due to this difference in interlayer thickness, when NA is 0.75, the amount of spherical aberration exceeds the allowable aberration value of 0.03 rms.
  • the use of the aberration correction element of the present embodiment can more effectively prevent the deterioration of aberration.
  • the characteristics of the optical pickup can be improved.
  • the present invention is an optical pickup device including an aberration correction optical element that changes the wavefront of incident light to output the optical pickup device of the present invention, wherein the aberration correction optical element is formed on a substrate.
  • An electrode an optical medium whose refractive index to incident light changes according to a voltage applied to the electrode, and a drive circuit for applying a voltage to the electrode.
  • a voltage is applied to the pole to change the refractive index of the optical medium, thereby changing and outputting the phase of the wavefront of the incident light
  • the driving circuit is configured to output the light from the optical axis of the incident light.
  • It can also be described as an optical pickup device that applies a voltage to the electrode so that the amount of phase change due to the optical medium monotonically increases or decreases according to the distance.
  • the distance from the optical axis of the incident light is a radius r
  • R is an effective radius of the aberration correction optical system.
  • the drive circuit is disposed around a center electrode disposed at a position of an optical axis of the incident light and the center position.
  • An optical pickup device that monotonically increases or monotonously decreases the amount of phase change due to the optical medium according to the distance from the optical axis of incident light by applying a voltage to the annular electrode. You can also.
  • the optical pickup device has a large tolerance for misalignment with the objective lens. Therefore, it is not necessary to mount the aberration correction element together with the objective lens on the actuator. For this reason, the actuator can be driven at high speed by reducing the weight of the actuator.
  • the optical pickup device according to the present invention is provided in an optical disk reproducing device and a recording / reproducing device, it is possible to stably reproduce and record the optical disk.
  • the optical pickup device of the present invention even when an objective lens with a high NA is used, deterioration due to misalignment between the objective lens and the liquid crystal element can be prevented. Therefore, it is suitable for increasing the information recording capacity of the optical recording medium. Also, it is possible to provide an optical pickup device capable of reducing the weight of the actuator and driving the actuator at high speed.

Abstract

An optical pickup device comprising a light source, and an object lens and an aberration correction optical system provided on an optical path extending from the light source to an optical recording medium, wherein the aberration correction optical system has phase distribution imparted to a transmitting optical flux so as to correct a specified aberration, and the phase amount of the aberration correction optical system when the aberration is to be corrected is so set that the larger a distance from the intersection between the aberration correction optical system and the optical axis, the larger a phase amount imparted in the optical system, thereby preventing aberration deterioration otherwise caused by object lens decentering with a substantial allowance permitted for the decentering.

Description

明 細 書 光ピックアップ装置 技術分野  Description Optical pickup device Technical field
本発明は、 光学的情報記録媒体に情報の記録、 再生を行う光ピックァ ップ装置に関するものである。 背景技術  The present invention relates to an optical pickup device for recording and reproducing information on an optical information recording medium. Background art
光を利用した技術は、 光周波数で高速処理が可能である (周波数が高 いので高速) 、 空間情報処理ができる、 位相処理ができる等の多く の特 徴を有しているため、 通信、 計測、 加工などの多岐に渡る分野で研究 - 開発 · 実用化が行われている。  The technology using light has many features such as high-speed processing at optical frequency (high speed due to high frequency), spatial information processing, and phase processing. Research in various fields such as measurement and processing-development and commercialization.
そのよ うな光を利用した技術においては、 光ビームを絞り込むために 高精度の対物レンズが用いられている。  In the technology using such light, a high-precision objective lens is used to narrow the light beam.
近年、 特に光を利用した画像記録装置等への要求は大きくなつており . 光情報記録媒体の大容量化へ向けての技術が大変重要になりつつある。 光情報記録媒体の大容量化のために、 記録媒体の品質向上にも増して、 ビームスポッ トの小径化、 すなわち対物レンズによるビームスポッ トの 十分な絞り込みが必要である。  In recent years, in particular, the demand for image recording devices and the like utilizing light has been increasing. Techniques for increasing the capacity of optical information recording media are becoming very important. In order to increase the capacity of the optical information recording medium, it is necessary to reduce the diameter of the beam spot, that is, to sufficiently narrow the beam spot using an objective lens, as well as to improve the quality of the recording medium.
周知のように、 ビームスポッ ト径は、 光の波長に比例し、 対物レンズ の N A ( Numer ical Aperture) に反比例する。 すなわち、 ビームスポ ッ ト径を絞り込むためには、 光の波長を短くする力 対物レンズの N A を大きくする必要がある。 光の短波長化については、 近年青色レーザダイォー ドゃ青あるいは緑 色 S HGレーザが開発されつつある。 一方、 対物レンズの高 N A化につ いては、 NAが 0. 4 5である C D (Compact Disc) に比べて、 D V D (Digital Versatile Discs) では NAが 0 . 6 と され、 高密度化 が達成されてきた。 また、 2群 2枚のレンズを用いて、 NAを 0. 8 5 と し更なる高密度化を目指した光ピックアップ装置が、 日本国の公開特 許公報 「特開平 1 0— 1 2 3 4 1 0号公報 (公開日 : 1 9 9 8年 5月 1 5 日) 」 に開示されている。 As is well known, the beam spot diameter is proportional to the wavelength of light, and inversely proportional to the NA (Numerical Aperture) of the objective lens. That is, in order to narrow the beam spot diameter, it is necessary to increase the NA of the force objective lens that shortens the wavelength of light. To shorten the wavelength of light, blue laser diodes—blue or green SHG lasers have recently been developed. On the other hand, as for the objective lens with higher NA, the DVD (Digital Versatile Discs) has an NA of 0.6 compared to a CD (Compact Disc) with an NA of 0.45, achieving higher density. It has been. In addition, an optical pickup device using two lenses in two groups and achieving an NA of 0.85 for further densification has been disclosed in Japanese Patent Application Laid-Open Publication No. Hei 10-123. No. 10 (publication date: May 15, 1990).
この様な高い N Aの対物レンズを用いた光ピックァップ装置において は、 光記録媒体の光透過層における厚さのばらつきや、 多層記録を行う 際に発生する球面収差を補正する必要がある。 たとえば、 日本国の公開 特許公報 「特開 2 0 0 1 — 1 4 3 3 0 3号公報 (公開日 : 2 0 0 1年 5 月 2 5 日) 」 では、 球面収差を捕正する液晶素子が開示されている。 前記公報の液晶素子は、 液晶を 2枚のガラス基板上に形成した電極に より挟み込む構成であり、 球面収差を捕正するために、 電極に電圧を印 加することで液晶の配向を変え、 屈折率を変化させることで位相分布を 形成している。  In an optical pickup device using such a high NA objective lens, it is necessary to correct variations in the thickness of the light transmitting layer of the optical recording medium and spherical aberration generated when performing multilayer recording. For example, Japanese Patent Application Publication No. JP-A-2001-143303 (publication date: May 25, 2001) discloses a liquid crystal element for correcting spherical aberration. Is disclosed. The liquid crystal device disclosed in the above publication has a configuration in which liquid crystal is sandwiched between electrodes formed on two glass substrates, and in order to correct spherical aberration, the orientation of the liquid crystal is changed by applying a voltage to the electrodes. The phase distribution is formed by changing the refractive index.
たとえば対物レンズの N Aが 0. 8 5で、 光記録媒体の光透過層の厚 さが 0. 1 mmである系の場合について説明する。 光透過層が、 0. 1 1 5 mmと厚くなつた時、 その球面収差を補正するために、 図 8に示す ような位相分布が液晶素子に付与される。 これは、 光透過層の厚さの増 加分 (+ 1 5 μ ηι) に相当する球面収差がある時、 フォーカス動作によ り最良像面に移動した状態で残存している球面収差を補正するために必 要な位相分布である。 すなわち、 球面収差がある時、 記録再生面と波面 収差が最も小さくなる面である最良像面とを一致させるための対物レン ズの光軸方向の移動によりフォーカス動作した状態で残存している球面 収差を補正するために必要な位相分布である。 For example, a case where the NA of the objective lens is 0.85 and the thickness of the light transmitting layer of the optical recording medium is 0.1 mm will be described. When the thickness of the light transmitting layer is as thick as 0.115 mm, a phase distribution as shown in FIG. 8 is given to the liquid crystal element in order to correct the spherical aberration. This is because when there is spherical aberration corresponding to the increase in the thickness of the light transmission layer (+15 μηι), the spherical aberration remaining after moving to the best image plane by the focus operation is corrected. This is the phase distribution necessary to perform In other words, when there is spherical aberration, the recording / reproducing surface and the wavefront This is the phase distribution necessary to correct the spherical aberration remaining in the focusing operation by moving the objective lens in the optical axis direction to match the best image plane, which is the plane where the aberration is minimized.
液晶素子の半径 r と位相傾きの変化量 (変動量) を示す位相分布の 2 階微分との関係を図 9に示す。 図 9に示すように、 この位相分布におい ては変曲点が 2つ存在している。 また、 図 9に示すように、 有効光束の 最外周部での値がかなり大きくなつている。 ここで、 この様な位相分布 を液晶素子に付与した場合には、 液晶素子と対物レンズとの中心軸が一 致しているときには問題は生じない。 しかしながら、 液晶素子と対物レ ンズとの中心軸が一致せず、 液晶素子と対物レンズとの半径方向にわず かでも位置ずれを起こしていると、 対物レンズに入射する波面の傾きが 大きく変動し、 大きな収差が発生してしまう。  Figure 9 shows the relationship between the radius r of the liquid crystal element and the second derivative of the phase distribution indicating the amount of change (variation) in the phase tilt. As shown in Fig. 9, there are two inflection points in this phase distribution. In addition, as shown in FIG. 9, the value of the effective light flux at the outermost periphery is considerably large. Here, when such a phase distribution is applied to the liquid crystal element, no problem occurs when the center axes of the liquid crystal element and the objective lens are coincident. However, if the center axes of the liquid crystal element and the objective lens do not match, and the liquid crystal element and the objective lens are displaced slightly in the radial direction, the inclination of the wavefront incident on the objective lens fluctuates greatly. Then, large aberrations occur.
したがって、 前記構成によれば、 液晶素子と対物レンズとの芯ずれに よる特性劣化が大きいという問題がある。 また、 この特性劣化を防止す るためには、 両者の位置合わせを精密に行う必要があり、 ユーザに煩雑 な作業を強いることになるという問題もある。 また、 トラッキング動作 を行うために、 ァクチユエータ上に搭載された対物レンズを光軸と直角 かつ トラックと直角方向に移動した際に、 芯ずれと して、 対物レンズに 入射する光束の中心軸と対物レンズの中心軸とのずれが生ずる。 このよ うな芯ずれは許容できないので、 ァクチユエータ上に対物レンズと液晶 素子とを一緒に搭載しなければならないという問題もある。  Therefore, according to the above configuration, there is a problem that the characteristic deterioration due to misalignment between the liquid crystal element and the objective lens is large. In addition, in order to prevent the characteristic deterioration, it is necessary to precisely align the two, and there is a problem that the user is required to perform a complicated operation. Also, when the objective lens mounted on the actuator is moved in a direction perpendicular to the optical axis and perpendicular to the track in order to perform the tracking operation, the center axis of the light beam incident on the objective lens and the objective A deviation from the center axis of the lens occurs. Since such misalignment cannot be tolerated, there is also a problem that the objective lens and the liquid crystal element must be mounted together on the actuator.
さ らに、 液晶素子に直線偏光を入射させるために、 1 Z 4波長板は液 晶素子より光記録媒体側、 すなわち、 ァクチユエータ上に配置する必要 がある。 したがって、 ァクチユエータに搭載する部品の重量 (可動部重 量) が増加し、 高速の駆動ができず、 記録再生の速度を向上させること が困難であった。 Further, in order to make the linearly polarized light incident on the liquid crystal element, the 1Z4 wavelength plate needs to be arranged on the optical recording medium side of the liquid crystal element, that is, on the actuator. Therefore, the weight of the components mounted on the actuator (movable part weight) Volume), high-speed driving was not possible, and it was difficult to improve the recording / reproducing speed.
また、 このよ うに可動部 (ァクチユエータ) に液晶素子を載せると、 液晶素子に電圧を印加するためのリ一ド線の取り回しや、 フレキシブル 基板の配置が複雑化するという問題があった。  In addition, when the liquid crystal element is mounted on the movable part (actuator) in this way, there is a problem that the arrangement of the lead wires for applying a voltage to the liquid crystal element and the arrangement of the flexible substrate are complicated.
本発明は、 前記従来の問題点に鑑みなされたものであって、 その目的 は、 高い N Aの対物レンズを用いた場合であっても、 液晶素子と対物レ ンズとの位置ずれによって発生する収差.の劣化を防止することができる 光ピックァップ装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and has as its object to achieve an aberration caused by a positional shift between a liquid crystal element and an objective lens even when an objective lens having a high NA is used. An object of the present invention is to provide an optical pickup device capable of preventing deterioration of the optical pickup. Disclosure of the invention
本発明の光ピックアップ装置は、 前記目的を達成すべく、 光源と、 前 記光源から光記録媒体に至る光路中に対物レンズと収差捕正光学系とを 具備する光ピックァップ装置において、 前記収差補正光学系は所定の収 差を補正するために透過する光束に対して位相分布が付与されており、 前記収差を補正する場合の前記収差補正光学系の位相量は'、 前記収差補 正光学系と前記光源からの光の光軸とが交わる点からの距離が大きく な るにしたがって、 前記収差補正光学系で付与する位相量が大きく なるよ うに設定されていることを特徴と している。  In order to achieve the above object, an optical pickup device according to the present invention is an optical pickup device comprising: a light source; an objective lens and an aberration correction optical system in an optical path from the light source to the optical recording medium; In the optical system, a phase distribution is given to a light beam transmitted to correct a predetermined difference. When correcting the aberration, the phase amount of the aberration correction optical system is ′, and the aberration correction optical system is And the amount of phase imparted by the aberration correction optical system is set to increase as the distance from the point where the optical axis of the light from the light source intersects with the optical axis increases.
前記構成によれば、 対物レンズと収差捕正光学系との芯ずれが生じた 場合であっても、 単調変化する位相量からごくわずかの位相の傾きの変 化量を生ずるのみである。 したがって、 芯ずれなしの状態で適切に調整 されていれば、 芯ずれしても大きな収差を発生することがない。  According to the above configuration, even when a misalignment between the objective lens and the aberration correcting optical system occurs, only a slight amount of change in the phase gradient from the monotonously changing phase amount is generated. Therefore, if the adjustment is properly performed without any misalignment, no great aberration will occur even if the misalignment occurs.
したがって、 例えばァクチユエータに対物レンズと収差補正光学系と を共に搭载する必要はない。 Therefore, for example, an objective lens and an aberration correction optical system are required for an actuator. There is no need to carry a car with you.
したがって、 ァクチユエータの重量を低減して、 ァクチユエ一タを高 速駆動することができる光ピックアツプ装置を提供することができる。  Therefore, it is possible to provide an optical pickup device capable of driving the actuator at high speed while reducing the weight of the actuator.
なお、 前記構成において、 前記収差を捕正する場合の前記収差補正光 学系の位相量は、 前記収差捕正光学系と前記光源からの光の光軸とが交 わる点からの距離が大きくなるにしたがって、 収差補正光学系の有効半 径内において、 前記収差補正光学系で付与する位相量が大きく なるよう に設定されている構成であってもよい。  In the above configuration, the phase amount of the aberration correction optical system when correcting the aberration is such that a distance from a point where the aberration correction optical system and the optical axis of the light from the light source intersect is large. The configuration may be such that the amount of phase imparted by the aberration correction optical system increases within the effective radius of the aberration correction optical system.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成において、 r を半径と し、 Φ ( r ) を半径 rにおける位相と し a、 bを位相分布係数として、 前記収差補正光学系の位相分布は、 Φ ( r ) = a X r 4 + b X r 2 Further, in order to achieve the above object, the optical pickup device of the present invention, in the above-described configuration, wherein r is a radius, Φ (r) is a phase at a radius r, and a and b are phase distribution coefficients, The phase distribution of the correction optical system is Φ (r) = a X r 4 + b X r 2
で近似されることを特徴としている。 It is characterized by being approximated by
前記構成によれば、 上述した、 収差補正光学系の位相量が、 収差補正 光学系と光軸とが交わる点からの距離が大きく なるにしたがって大きく なる構成を、 簡単に実現することができる。  According to the above configuration, the above-described configuration in which the phase amount of the aberration correction optical system increases as the distance from the intersection of the aberration correction optical system and the optical axis increases can be easily realized.
また、 前記構成の位相分布は、 例えば収差補正光学系と して液晶素子 を用いる場合に、 液晶素子に印加する電圧分布を調整することによって 簡単に実現することができる。  Further, the phase distribution of the above configuration can be easily realized by adjusting the voltage distribution applied to the liquid crystal element, for example, when a liquid crystal element is used as an aberration correction optical system.
したがって、 本発明の光ピックァップ装置を簡単に実現することがで きる。  Therefore, the optical pickup device of the present invention can be easily realized.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成において、 Rを前記収差補正光学系の有効半径と して、 位相分 布係数 a , bが a X b > 0、 In the optical pickup device of the present invention, in order to achieve the above object, in the above configuration, R is an effective radius of the aberration correction optical system, and the phase distribution coefficients a and b are: a X b> 0,
または、 a X bく 0かつ {一 b Z ( 6 X a ) } (1/2) > R Or a X b x 0 and {one b Z (6 X a)} ( 1/2) > R
を満たすことを特徴としている。  It is characterized by satisfying.
前記構成は、 収差補正光学系の有効半径内において、 収差補正光学系 の位相分布に変曲点を含まない。 したがって、 対物レンズと収差補正光 学系との芯ずれが生じた場合であっても、 位相の傾きの変化量と しての 位相分布の 2回微分 Φ" ( r ) を小さい量にできるので、 生ずる収差を 確実に小さなものにできる。  In the above configuration, the inflection point is not included in the phase distribution of the aberration correction optical system within the effective radius of the aberration correction optical system. Therefore, even if there is a misalignment between the objective lens and the aberration correction optical system, the second derivative Φ "(r) of the phase distribution as the amount of change in the phase gradient can be reduced to a small amount. The resulting aberrations can be reliably reduced.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成において、 位相分布係数 a力  In addition, in order to achieve the above object, the optical pickup device of the present invention may be configured such that:
| l 2 X a XR 2 | < 0. 0 0 2 | l 2 X a XR 2 | <0.02
を満たすことを特徴と している。 It is characterized by satisfying.
前記構成によれば、 対物レンズのシフ ト量を 0. 3 mm程度見込んだ 場合に、 NA 0. 8 5の光学系において収差量を 0. 0 3 i r m s以下 にできる。  According to the above configuration, when the shift amount of the objective lens is expected to be about 0.3 mm, the amount of aberration can be reduced to 0.3 irms or less in the NA 0.85 optical system.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成において、 前記対物レンズの NAは 0. 7 5以上であるととも に、 前記収差補正光学系に液晶素子を含むことを特徴と している。  In addition, in order to achieve the above object, the optical pickup device of the present invention, in the above-mentioned configuration, wherein the NA of the objective lens is 0.75 or more, and the aberration correction optical system includes a liquid crystal element. It is characterized by
前記構成によれば、 対物レンズの N Aが大きいので、 ビームスポッ ト を十分に絞り込んだ高密度記録再生を行うことができる。 また、 収差補 正光学系に液晶素子を用いるので、 収差補正を容易に実現することがで きる。  According to the above configuration, since the NA of the objective lens is large, high-density recording and reproduction with a sufficiently narrowed beam spot can be performed. Further, since a liquid crystal element is used for the aberration correction optical system, aberration correction can be easily realized.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 入射される光の等位相面と しての波面を変化させて出力する収差補正光 学素子を含む光ピックアツプ装置において、 前記収差捕正光学素子は、 基板上に形成された電極と、 ·入射される光に対する屈折率が前記電極に 印加される電圧に応じて変化する光学媒質と、 前記電極に電圧を印加す る駆動回路とを含み、 前記駆動回路は、 前記電極に電圧を印加して前記 光学媒質の屈折率を変化させることによって、 入射される光の波面の位 相を変化させて出力すると ともに、 前記駆動回路は、 入射される光の光 軸からの距離に応じて、 前記光学媒質による位相変化量を単調増加また は単調減少させるように、 前記電極に電圧を印加することを特徴と して レ、る。 Further, in order to achieve the above object, the optical pickup device of the present invention provides an aberration correction light for changing and outputting a wavefront as an equal phase surface of incident light. In the optical pickup device including the optical element, the aberration correction optical element includes: an electrode formed on a substrate; and an optical medium whose refractive index for incident light changes according to a voltage applied to the electrode. A driving circuit for applying a voltage to the electrode, wherein the driving circuit applies a voltage to the electrode to change a refractive index of the optical medium, thereby changing a phase of a wavefront of incident light. The drive circuit applies a voltage to the electrodes so as to monotonically increase or decrease the amount of phase change due to the optical medium according to the distance of the incident light from the optical axis. It is characterized by
前記構成の光ピックァップ装置は、 例えば光源から入射される光を、 収差補正光学素子を介して対物レンズに射出する。 対物レンズを介した 光は、 例えば光ディスクの記録面に集光される。 光ディスクからの反射 光を読取ることによって、 光ディスクに記録された情報の再生を行うこ とができる。 また、 集光する光を用いて前記記録面に記録を行う ことも できる。 前記構成において、 例えば収差補正光学素子が、 入射される光 の波面を適切に変化させると、 対物レンズを介して記録面に集光さ'れる 光の収差を取り除く ことができる。  The optical pickup device having the above configuration emits, for example, light incident from a light source to an objective lens via an aberration correction optical element. Light passing through the objective lens is focused on, for example, a recording surface of an optical disk. By reading the reflected light from the optical disk, the information recorded on the optical disk can be reproduced. Further, it is also possible to perform recording on the recording surface by using light to be condensed. In the above configuration, for example, when the aberration correction optical element appropriately changes the wavefront of the incident light, the aberration of the light condensed on the recording surface via the objective lens can be removed.
前記構成によれば、 対物レンズと収差補正光学系との芯ずれが生じた 場合であっても、 単調変化する位相量からごくわずかの位相の傾きの変 化量を生ずるのみである。 したがって、 適切に調整されて収差なしの状 態からずれて、 芯ずれを生じたと しても、 '生ずる収差をごくわずかなも のにできる。  According to the above configuration, even when a misalignment between the objective lens and the aberration correction optical system occurs, only a slight amount of change in the phase gradient from the monotonously changing phase amount occurs. Therefore, even if a misalignment occurs due to deviation from a state of being properly adjusted and having no aberration, it is possible to minimize the generated aberration.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成に加えて、 前記入射される光の光軸からの距離を半径 r と し、 Rを前記収差補正光学系の有効半径として、 前記駆動回路は、 半径 rに おける位相が、 R〉 r 〉 0において、 Further, in order to achieve the above object, the optical pickup device of the present invention further comprises, in addition to the above configuration, a distance from the optical axis of the incident light to a radius r, Assuming that R is the effective radius of the aberration correction optical system, the driving circuit has a phase at a radius r, where R>r> 0,
Φ ( r ) = a X r 4 + b X r 2 Φ (r) = a X r 4 + b X r 2
で表される分布となるように、 前記電極に電圧を印加することを特徴と している。 A voltage is applied to the electrodes so that a distribution represented by
前記構成によれば、 上述した、 入射される光の光軸からの距離に応じ て光学媒質による位相変化量を単調増加または単調減少させる構成を簡 単に実現できる。  According to the above configuration, it is possible to easily realize the above-described configuration in which the amount of phase change due to the optical medium monotonically increases or monotonically decreases according to the distance of the incident light from the optical axis.
また、 本発明の光ピックアップ装置は、 前記目的を達成するために、 前記構成に加えて、 前記駆動回路は、 前記入射される光の光軸の位置に 配置される中心電極と前記中心位置を中心と して配置される円環状電極 とに、 電圧を印加することによって、 入射される光の光軸からの距離に 応じて、 前記光学媒質による位相変化量を単調増加または単調減少させ ることを特徴と している。  In the optical pickup device of the present invention, in order to achieve the above object, in addition to the above configuration, the drive circuit further includes a center electrode disposed at a position of an optical axis of the incident light and the center position. By applying a voltage to the annular electrode arranged as the center, the amount of phase change caused by the optical medium is monotonically increased or decreased according to the distance of the incident light from the optical axis. It is characterized by
前記構成によれば、 中心電極と、 少なく とも一つ以上の円環状電極と が、 それぞれ所定の電位となるように電圧を印加して、 上述の構成を容 易に実現することができる。  According to the above configuration, the above configuration can be easily realized by applying a voltage so that the center electrode and at least one or more annular electrodes each have a predetermined potential.
本発明のさらに他の目的、 特徴、 および優れた点は、 以下に示す記载 によって十分わかるであろう。 また、 本発明の利益は、 添付図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明  Further objects, features, and advantages of the present invention will be sufficiently understood from the following description. Also, the advantages of the present invention will become apparent in the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光ピックアップ装置の一実施形態を示す構成図であ る n 図 2は、 図 1における光記録媒体の断面図である。 Figure 1 is a Ru configuration view showing an embodiment of an optical pickup device of the present invention n FIG. 2 is a sectional view of the optical recording medium in FIG.
図 3は、 図 1における収差補正光学系の構成図である。  FIG. 3 is a configuration diagram of the aberration correction optical system in FIG.
図 4 ( a ) は、 図 3の液晶素子における電極の配置を示す平面図であ り、 図 4 ( b ) は、 図 3の液晶素子における電極の配置を示す断面図で あり、 図 4 ( c ) は、 液晶素子における位置と電界強度との関係を示す グラフである。  FIG. 4A is a plan view showing the arrangement of electrodes in the liquid crystal device of FIG. 3, and FIG. 4B is a cross-sectional view showing the arrangement of electrodes in the liquid crystal device of FIG. c) is a graph showing the relationship between the position in the liquid crystal element and the electric field strength.
図 5は、 液晶素子における電極配置の他の例を示す平面図である。  FIG. 5 is a plan view showing another example of the electrode arrangement in the liquid crystal element.
図 6は、 図 1における収差補正光学系の位相分布を示すグラフである ( 図 7は、 図 1における収差補正光学系の位相分布の傾きの変動を示す グラフである。 FIG. 6 is a graph showing the phase distribution of the aberration correction optical system in FIG. 1 ( FIG. 7 is a graph showing the variation in the slope of the phase distribution of the aberration correction optical system in FIG. 1).
図 8は、 従来の収差補正光学系の位相分布を示すグラフである。  FIG. 8 is a graph showing a phase distribution of a conventional aberration correction optical system.
図 9は、 従来例の収差捕正光学系における位相分布の傾きの変動を示 すグラフである。 発明を実施するための最良の形態  FIG. 9 is a graph showing the variation of the slope of the phase distribution in the aberration correcting optical system of the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施形態について、 添付する図面を参照しつつ説明すれば 以下のとおりである。  One embodiment of the present invention will be described below with reference to the accompanying drawings.
図 1に示すように、 本実施の形態の光ピックアップ装置では、 L D ( Laser Di ode) 1から発せられた直線偏光のレーザ光が、 コリメ一タ レ ンズ 2で平行光束に変換され、 整形プリズム 3に入射する。 整形プリズ ム 3は、 L D 1を出射したレーザ光における楕円形の強度分布を、 円形 に近いものに整形するものである。  As shown in FIG. 1, in the optical pickup device of the present embodiment, a linearly polarized laser beam emitted from an LD (Laser Diode) 1 is converted into a parallel beam by a collimator lens 2, and a shaping prism It is incident on 3. The shaping prism 3 shapes the elliptical intensity distribution of the laser beam emitted from the LD 1 into a shape close to a circle.
その後、 整形プリズム 3から出射した光は、 偏光ビームスプリ ッタ 4 を透過した後、 収差補正光学系 5に入射し、 1ノ4波長板 6で円偏光に 変換される。 1 Z 4波長板 6で円偏光に変換された光線は、 4 5度ミ ラ 一 (図示しない) で立ち上げられた後、 対物レンズ 7で絞られ光記録媒 体 1 0上において結像される。 After that, the light emitted from the shaping prism 3 passes through the polarization beam splitter 4, enters the aberration correction optical system 5, and is converted into circularly polarized light by the 1/4 wavelength plate 6. Is converted. 1 Z The light beam converted into circularly polarized light by the four-wavelength plate 6 is raised by a 45-degree mirror (not shown), then focused by the objective lens 7 and focused on the optical recording medium 10. You.
なお、 図 2に示すように、 光記録媒体 1 0は、 0 . 1 m m程度 (中心 値、 平均値が 0 . 1 m m ) の厚さの光透過層 8 と、 記録面 9 と、 基板 1 1 とからなる。 また、 上述の図 1を用いた説明では、 対物レンズ 7で絞 られた光が光記録媒体 1 0において結像されることを述べた。 これをよ り具体的に説明すると、 対物レンズ 7 (図 1 ) で絞られた光は、 光透過 層 8を通って、 記録面 9上にビームスポッ トを結ぶとともに、 記録面 9 によ り反射されて以下のような経路を迪る。  As shown in FIG. 2, the optical recording medium 10 has a light transmission layer 8 having a thickness of about 0.1 mm (center value, average value of 0.1 mm), a recording surface 9, and a substrate 1. Consists of 1. Further, in the description using FIG. 1 described above, it has been described that the light converged by the objective lens 7 forms an image on the optical recording medium 10. More specifically, the light converged by the objective lens 7 (FIG. 1) passes through the light transmission layer 8 to form a beam spot on the recording surface 9 and is reflected by the recording surface 9. Being routed as follows.
すなわち、 図 1に示すように、 記録面 9 (図 2 ) により反射された光 は、 1ノ 4波長板 6により直線偏光に戻される。 なお、 このように直線 偏光に戻されるのは、 偏光ビームスプリ ッタ 4から 1 4波長板 6に入 射される光の偏光方向と、 光記録媒体 1 0にて反射されて 1 4波長板 6を介して偏光ビームスプリ ッタ 4に入射される光の偏光方向とを、 9 0度回転させるためである。  That is, as shown in FIG. 1, the light reflected by the recording surface 9 (FIG. 2) is returned to linearly polarized light by the 1/4 wavelength plate 6. The return to linearly polarized light is caused by the polarization direction of light entering the 14-wave plate 6 from the polarization beam splitter 4 and the 14-wave plate reflected by the optical recording medium 10. This is for rotating the polarization direction of the light incident on the polarization beam splitter 4 via 6 by 90 degrees.
1 X 4波長板 6により直線偏光に戻された光は、 偏光ビームスプリ ッ タ 4で略直角に曲げられ、 集光レンズ 1 2を通って受光部 1 3に入射す る。  The light returned to linearly polarized light by the 1 × 4 wavelength plate 6 is bent at a substantially right angle by the polarizing beam splitter 4 and passes through the condenser lens 12 and enters the light receiving unit 13.
なお、 対物レンズ 7は、 レンズホルダー (図示しない) に固着されて レヽる。 また、 レンズホルダ一は、 4本のワイヤ一 (図示しない) で、 光 ピックアップ装置本体 (図示しない) に固定されている。 さらに、 本実 施の形態における対物レンズ 7は、 N Aが 0 . 8 5であって、 平行光束 が入射するとき (いわゆる無限共役となるとき) で、 光透過層 8の厚さ が 0 . 1 m mのときに、 ほぼ無収差となるように設計されている。 なお、 本実施の形態において、 L D 1からのレーザ光の波長は 4 0 5 η ήιで、 有効光束径は φ 3、 焦点距離は 1 . 7 6 m mである。 Note that the objective lens 7 is fixed to a lens holder (not shown). The lens holder 1 is fixed to the optical pickup device main body (not shown) by four wires (not shown). Further, the objective lens 7 of the present embodiment has a thickness of the light transmitting layer 8 when the NA is 0.85 and parallel light flux is incident (so-called infinite conjugate). Is designed to be almost stigmatic when is 0.1 mm. In the present embodiment, the wavelength of the laser beam from LD 1 is 405 ηήι, the effective light beam diameter is φ3, and the focal length is 1.76 mm.
また、 受光部 1 3にて検出した光信号から、 収差検出回路が球面収差 量を算出する。 液晶駆動回路が、 算出された球面収差量に関する信号に 基づいて、 収差補正光学系 5の液晶素子を駆動する。 この液晶素子につ いては後述する。 なお、 球面収差を検出するために、 R F信号の振幅、 エンベロープそのものを観測してもよいし、 別途、 球面収差を検出でき るような受光部配置にしてもよい。  Also, the aberration detection circuit calculates the amount of spherical aberration from the optical signal detected by the light receiving unit 13. The liquid crystal drive circuit drives the liquid crystal element of the aberration correction optical system 5 based on the calculated signal relating to the amount of spherical aberration. This liquid crystal element will be described later. In order to detect the spherical aberration, the amplitude of the RF signal and the envelope itself may be observed, or a light-receiving unit may be separately arranged to detect the spherical aberration.
図 3に示すように、 収差補正光学系 5は、 液晶ディスプレイ等に使用 されるネマチック液晶組成物からなる液晶素子 1 4である。 より具体的 には、 液晶素子 1 4は、 液晶 1 5が、 互いに対向する透明電極の間に、 すなわち例えばガラス基板に I T O膜を蒸着したものからなる透明電極 の間に、 挟まれている構成である。 前記構成において、 透明電極間の印 加電圧を調節することによって、 液晶 1 5中の液晶分子の配向状態を水 平方向から垂直方向まで変化させることができる。 また、 液晶 1 5は、 液晶分子の光軸方向とこれに垂直な方向とでその屈折率が異なる複屈折 効果を有している。 これによつて、 一方の透明電極側から入射する光に 対して、 液晶中を通過する際に液晶 1 5の配向状態に応じた複屈折変化 を与えて、 その光を他方の透明電極側から射出する。 したがって、 液晶 素子 1 4へと入射した光は、 液晶 1 5の配向方法'によつて決まる偏光方 向の直線偏光となる。  As shown in FIG. 3, the aberration correction optical system 5 is a liquid crystal element 14 made of a nematic liquid crystal composition used for a liquid crystal display or the like. More specifically, the liquid crystal element 14 has a configuration in which the liquid crystal 15 is sandwiched between transparent electrodes facing each other, that is, for example, between transparent electrodes formed by depositing an ITO film on a glass substrate. It is. In the above configuration, the alignment state of the liquid crystal molecules in the liquid crystal 15 can be changed from the horizontal direction to the vertical direction by adjusting the applied voltage between the transparent electrodes. In addition, the liquid crystal 15 has a birefringence effect in which the refractive index differs between the optical axis direction of the liquid crystal molecules and the direction perpendicular thereto. As a result, the light incident from one transparent electrode side undergoes a birefringence change in accordance with the orientation state of the liquid crystal 15 when passing through the liquid crystal, and the light is transmitted from the other transparent electrode side. Inject. Therefore, the light that has entered the liquid crystal element 14 becomes linearly polarized light having a polarization direction determined by the alignment method ′ of the liquid crystal 15.
液晶素子 1 4は、 第 1のガラス板 1 6、 液晶 1 5、 および第 2のガラ ス板 1 7を含んでいる。 液晶 1 5は、 互いに対向する第 1のガラス板 1 6 と第 2のガラス板 1 7 との間に挟まれた構造となっている。 The liquid crystal element 14 includes a first glass plate 16, a liquid crystal 15, and a second glass plate 17. The liquid crystal 15 is the first glass plate 1 facing each other. 6 and the second glass plate 17.
第 1 のガラス板 1 6上には、 透明電極 (電極) 1 8、 絶縁層 1 9、 お よび配向層 2 0が形成されている。 一方、 第 2のガラス板 1 7には、 透 明電極 (電極) 2 1、 絶縁層 2 2、 および配向層 2 3が形成されている c この電極 2 1は、 円形の共通電極である。 また、 液晶 1 5は、 封止材 2 7により封止されている。 On the first glass plate 16, a transparent electrode (electrode) 18, an insulating layer 19, and an alignment layer 20 are formed. On the other hand, a transparent electrode (electrode) 21, an insulating layer 22, and an alignment layer 23 are formed on the second glass plate 17 c. The electrode 21 is a circular common electrode. The liquid crystal 15 is sealed with a sealing material 27.
また、 図 4 ( a ) に示すように、 第 1のガラス板 1 6上の透明電極 1 8は、 同心円状に分割された領域に形成される電極 1 8 a · 1 8 b · 1 8 c と、 電極 1 8 cの中心点および分割された各領域の輪郭線上に形成 される金属電極 1 8 d とを含んでいる。 また、 金属電極 1 8 dには、 リ ード線 2 6 a . 2 6 b · 2 6 cが接続されている。 なお、 第 2のガラス 板 1 7上の透明電極 2 1は円形の共通電極である。  Further, as shown in FIG. 4 (a), the transparent electrode 18 on the first glass plate 16 has electrodes 18a, 18b, 18c formed in concentrically divided regions. And a metal electrode 18 d formed on the center point of the electrode 18 c and the contour of each divided region. A lead wire 26a.26b.26c is connected to the metal electrode 18d. The transparent electrode 21 on the second glass plate 17 is a circular common electrode.
図 4 ( b ) に示すように、 透明電極 1 8は、 高抵抗の透明電極 ( I T O等) 1 8 a 〜 1 8 c と、 低抵抗の金属電極 (金、 アルミ等) 1 8 d と が組み合わされた構成である。 透明電極 1 8は、 前記構成によって、 中 央部から周辺部に向かう、 図 4 ( c ) に示すよ うな電界分布を作ること ができる。 これによつて、 液晶 1 5 (図 3 ) に位相差を発生させ、 収差 を除去するようになつている。  As shown in FIG. 4 (b), the transparent electrode 18 is composed of a high-resistance transparent electrode (such as ITO) 18a to 18c and a low-resistance metal electrode (gold, aluminum, etc.) 18d. It is a combined configuration. The transparent electrode 18 can form an electric field distribution as shown in FIG. 4 (c) from the central part to the peripheral part by the above configuration. As a result, a phase difference is generated in the liquid crystal 15 (FIG. 3), and the aberration is removed.
よ り詳細には、 たとえば、 各リード線 2 6 a · 2 6 b · 2 6 cにそれ ぞれ V I = 4 V、 V 2 = 2 V, V 3 = 1 Vの電圧を加えると、 図 4 ( c ) に示すように、 透明電極 1 8における中央部の電界強度が最も強く、 透明電極 1 8の外周部に近づく につれ電界強度が徐々に弱くなるよ うな 電界分布を作ることができる。 これによ り、 中央部では屈折率が低く、 周辺部に向かって徐々に屈折率が大きくなるよ うな、 収差補正光学系 5 を構成することができる。 In more detail, for example, when the voltages of VI = 4 V, V 2 = 2 V, and V 3 = 1 V are applied to each lead wire 26a, 26b, 26c, respectively, Fig. 4 As shown in (c), it is possible to create an electric field distribution in which the electric field intensity at the central portion of the transparent electrode 18 is the strongest, and the electric field intensity gradually decreases as approaching the outer peripheral portion of the transparent electrode 18. This ensures that the lower refractive index in the central portion, Una by refractive index gradually toward the peripheral portion is increased, the aberration correction optical system 5 Can be configured.
すなわち、 第 1 のガラス基板上に形成された電極 1 8 a · 1 8 b · 1 8 cの各々の電圧値を制御することにより電圧分布を形成し、 それに応 じた屈折率分布を作ることができる。 これは、 印加電圧に対して液晶の 配向方向が変化すると、 屈折率が変化するためである。 本実施の形態の 液晶素子 1 4における、 屈折率分布に対応した位相分布については、 後 述する。  That is, by controlling the voltage value of each of the electrodes 18a, 18b, 18c formed on the first glass substrate, a voltage distribution is formed, and a refractive index distribution corresponding to the voltage distribution is formed. Can be. This is because when the orientation direction of the liquid crystal changes with respect to the applied voltage, the refractive index changes. The phase distribution corresponding to the refractive index distribution in liquid crystal element 14 of the present embodiment will be described later.
液晶 1 5の配向状態を変化させるために液晶素子 1 4に設ける電極の 他の構成例について説明する。 すなわち、 図 5に示すように、 円状の電 極 2 4の中央部に電圧印加用の端子 2 5を設けるとともに、 端子 2 5か ら外部に延びるよ うに配電用のリ一ド線 2 6を配設してもよい。 この構 成によっても、 中央部から周辺に向かって電圧分布を発生させて、 中央 部では屈折率が低く、 周辺部に向かって徐々に屈折率が大きく なるよ う に、 収差捕正光学系 5を構成することができる。  Another configuration example of the electrode provided on the liquid crystal element 14 for changing the alignment state of the liquid crystal 15 will be described. That is, as shown in FIG. 5, a terminal 25 for voltage application is provided at the center of the circular electrode 24, and a lead wire 26 for power distribution extends from the terminal 25 to the outside. May be provided. Even with this configuration, the aberration correction optical system 5 generates a voltage distribution from the center to the periphery, so that the refractive index is low at the center and gradually increases toward the periphery. Can be configured.
なお、 上述した電極形状、 抵抗値などの組合せは一例に過ぎない。 補 正すべき収差は個々のピックアツプ装置によって異なるため、' 電極形状 電極の抵抗値などは適宜設計すればよい。  Note that the combinations of the above-described electrode shapes, resistance values, and the like are merely examples. Since the aberration to be corrected differs depending on the individual pickup device, the electrode shape and the resistance value of the electrode may be appropriately designed.
また、 上述した電極の構成例は、 高抵抗電極と低抵抗電極の組合せに より 中央部から周辺部に向かって電界分布を発生させる構成例であるが 透明電極の厚さを変えることで電圧分布を最適な形にしてもよレ、。  The above-described configuration example of the electrode is a configuration example in which the electric field distribution is generated from the center to the periphery by a combination of the high-resistance electrode and the low-resistance electrode. May be the optimal shape.
次に、 光記録媒体 1 0における光透過層 8の厚さが均一でない場合に おいて、 球面収差量を最小にする方法について説明する。  Next, a method for minimizing the amount of spherical aberration when the thickness of the light transmitting layer 8 in the optical recording medium 10 is not uniform will be described.
たとえば、 光透過層 8の厚さの平均値 (中心値) が 0 . 1 m mである 場合、 光ピックアップ装置は、 0 . l m m ± 0 . 0 1 5 m mの厚さに対 して記録再生を行えるように構成される。 すなわち、 光ピックアップ装 置は、 多層記録媒体に対応するため、 光透過層 8のよ うな層の厚さが所 定の平均値から所定の許容範囲内においてずれたと しても、 記録再生を 行えるよ うに構成されている。 そして、 液晶素子 1 4の電極 1 8 a · 1 8 b · 1 8 cに印加する電圧を変化させることにより、 光透過層 8の厚 さの違いにより発生する球面収差量に対応して、 記録面 9上で球面収差 量を最小にすることができる。 For example, when the average value (center value) of the thickness of the light transmitting layer 8 is 0.1 mm, the optical pickup device is set to a thickness of 0.1 mm ± 0.015 mm. Recording and reproduction. That is, since the optical pickup device is compatible with a multilayer recording medium, recording and reproduction can be performed even if the thickness of a layer such as the light transmitting layer 8 deviates from a predetermined average value within a predetermined allowable range. It is configured as follows. By changing the voltage applied to the electrodes 18 a, 18 b, 18 c of the liquid crystal element 14, recording is performed in accordance with the amount of spherical aberration generated due to the difference in the thickness of the light transmitting layer 8. The amount of spherical aberration on the surface 9 can be minimized.
次に、 球面収差を補正する際の液晶素子 1 4における位相分布につい て説明する。  Next, the phase distribution in the liquid crystal element 14 when correcting spherical aberration will be described.
図 6に、 光透過層 8の厚さが 0. 1 1 5 mm (+ 1 5 ^ mの場合) と なった場合における、 発生する球面収差を捕正するための液晶素子 1 4 の位相分布を示す。  FIG. 6 shows the phase distribution of the liquid crystal element 14 for capturing the generated spherical aberration when the thickness of the light transmission layer 8 is 0.115 mm (in the case of +15 ^ m). Is shown.
図 6に示す位相分布は、 収差捕正素子と しての液晶素子 1 4の中心か らの半径方向の位置 rを用いて、  The phase distribution shown in FIG. 6 is obtained by using a position r in the radial direction from the center of the liquid crystal element 14 as an aberration correction element.
Φ ( r ) = 0. 0 0 0 0 2 1 0 8 3 X r 4— 0. 0 0 1 0 3 3 X r 2 の多項式で近似される。 Φ (r) = 0.0 0 0 0 0 2 1 0 8 3 X r 4 — approximated by a polynomial of 0.0 0 1 0 3 3 X r 2 .
また、 位相分布 Φ ( r ) の傾きの変化量を示す 2階微分関数 Φ" ( r ) は、  The second-order differential function Φ "(r), which indicates the amount of change in the slope of the phase distribution Φ (r), is
Φ " ( r ) = 0. 0 0 0 2 5 2 9 9 6 X r 2 - 0. 0 0 2 0 6 6 と して表される。 なお、 図 7に、 本発明の位相分布 Φ ( r ) の傾きの変 化量 Φ" ( r ) を示す。 また図 7には、 従来の位相分布の傾きの変化量 ¾r 示す。 Φ "(r) = 0.0.0 00 2 5 2 9 9 6 X r 2 -0.0 0 0 2 0 6 6 Note that FIG. 7 shows the phase distribution Φ (r ) Indicates the amount of change Φ "(r) of the slope. FIG. 7 shows a change amount Δr of the slope of the conventional phase distribution.
図 7から明らかなように、 本実施形態の Φ" ( r ) は負の値しか取ら ないので、 位相分布 Φ ( r ) においては変曲点は存在しない。 ここで、 例えば図 8に示すよ うな従来の構成においては、 図 7に示す よ うに傾きの変化量が 0となる点があるため、 位相分布に変曲点が存在 する。 このため、 位相分布において、 中心 r = 0 とは異なる、 例えば r = ± 1 . 1 m m近傍の位置において、 位相分布の極小値が存在すること になる。 As is clear from FIG. 7, since Φ ″ (r) in the present embodiment takes only a negative value, there is no inflection point in the phase distribution Φ (r). Here, in the conventional configuration as shown in FIG. 8, for example, there is a point where the amount of change in the inclination becomes 0 as shown in FIG. 7, and therefore, there is an inflection point in the phase distribution. Therefore, in the phase distribution, a local minimum value of the phase distribution exists at a position different from the center r = 0, for example, at a position near r = ± 1.1 mm.
また、 液晶素子を介する光は、 液晶素子における位相分布を介して、 等位相面としての光の波面が変形されて、 対物レンズへと入射する。  In addition, the light passing through the liquid crystal element is incident on the objective lens through the phase distribution in the liquid crystal element, with the wavefront of the light as an equal phase plane being deformed.
したがって、 例えば、 対物レンズと液晶素子との芯ずれがない場合に おいては、 上述の位相分布の極小値を介して光が入射される対物レンズ 上の位置においては、 傾きのない波面が入射する。 一方、 対物レンズと 液晶素子との芯ずれが生じた場合には、 対物レンズ上の同じ位置には、 芯ずれの向きに応じて生ずるような傾きの波面が入射することになる。 したがって、 芯ずれの方向に応じて、 全く異なる逆向きの波面が入射す る可能性がある。 よって、 例えばこの領域において大きな収差が発生す る虞れがある。  Therefore, for example, when there is no misalignment between the objective lens and the liquid crystal element, a wavefront having no inclination is incident at a position on the objective lens where light is incident through the minimum value of the phase distribution described above. I do. On the other hand, if there is a misalignment between the objective lens and the liquid crystal element, a wavefront having a tilt that occurs according to the direction of the misalignment will be incident on the same position on the objective lens. Therefore, depending on the direction of misalignment, a completely different wavefront may be incident. Therefore, for example, a large aberration may occur in this region.
一方、 上述の図 7に示す構成によれば、 位相分布において変曲点は存 在しないので、 位相分布の中心以外の点において位相分布の極小値が存 在することがない。 位相分布の中心以外の点においては、 波面の傾きが 大きく異なることがなく、 したがって大きな収差を発生させる虞れがな い。 したがって、 波面収差の劣化を小さく抑えることができる。  On the other hand, according to the configuration shown in FIG. 7 described above, there is no inflection point in the phase distribution, so that no minimum value of the phase distribution exists at a point other than the center of the phase distribution. At points other than the center of the phase distribution, the inclination of the wavefront does not greatly differ, and therefore, there is no possibility of generating a large aberration. Therefore, deterioration of wavefront aberration can be suppressed to a small level.
また、 図 7に示すように、 レーザ光の有効光束径の最外周部である半 径 1 . 5 m mの位置におい" も、 本実施の形態における位相分布の 2階 微分値は十分小さい。 したがって、 対物レンズと液晶素子との芯ずれが 生じた際も、 対物レンズの任意の位置に入射する波面の傾きが大きく変 わることはない。 したがって、 波面収差の劣化を小さく抑えることがで きる。 Also, as shown in FIG. 7, the second-order differential value of the phase distribution in the present embodiment is sufficiently small at the position of a radius of 1.5 mm, which is the outermost periphery of the effective beam diameter of the laser beam. Even when the objective lens and the liquid crystal element are misaligned, the inclination of the wavefront incident on any position of the objective lens changes greatly. I do not know. Therefore, it is possible to suppress the deterioration of the wavefront aberration.
ここで、 従来の構成においては、 r == ± 0. 6 mm近傍の位置におい て、 位相分布の傾きの変化量が正負反転するボイントが存在することに なる。 例えば液晶素子に対して対物レンズが +方向 (半径の増加方向) にシフ トした場合に、 r =+ 0. 6 mmの位置では、 位相の傾きが小さ くなる。 一方、 このシフ トに対して、 r =— 0. 6 mmに対応する位置 では、 位相の傾きが増え'て逆方向となる。 これによつて大きな収差が発 生する。  Here, in the conventional configuration, at a position near r == ± 0.6 mm, there is a point where the amount of change in the slope of the phase distribution reverses the sign. For example, when the objective lens is shifted in the + direction (radius increasing direction) with respect to the liquid crystal element, the inclination of the phase becomes small at the position of r = +0.6 mm. On the other hand, with respect to this shift, at the position corresponding to r = 0.6 mm, the phase gradient increases and the direction is reversed. This causes large aberrations.
ところで、 一般に、 球面収差量に応じて液晶素子 1 4で付与される位 相分布は、  By the way, generally, the phase distribution given by the liquid crystal element 14 according to the amount of spherical aberration is:
Φ ( r ) = a X r 4 + b X r 2 Φ (r) = a X r 4 + b X r 2
で表される。 It is represented by
したがって、 Φ ( r ) の 2階微分関数 Φ" ( r ) は、  Therefore, the second derivative Φ "(r) of Φ (r) is
Φ " ( r ) = 1 2 a X r 2 + 2 X b Φ "(r) = 1 2 a X r 2 + 2 X b
と して表される。 It is represented as
ここで、 Rを収差補正光学系の有効半径とすると、 R > r > 0におい て Φ ( r ) が変曲点を持たない条件と しては、 1 > 3: > 0にぉぃて <|)" ( r ) == 0 とならないことが必要である。 すなわち、  Here, assuming that R is the effective radius of the aberration correction optical system, the condition that Φ (r) has no inflection point at R> r> 0 is 1> 3:> 0 |) "(r) == 0. That is,
a > 0力 つ b > 0、 a> 0 force b> 0,
又は、 a く 0かつ b < 0、 Or a <0 and b <0,
又は、 {— b / ( 6 X a ) } (1/2)〉 Rとなるることが必要である。 Alternatively, it is necessary to satisfy {—b / (6Xa)} ( 1/2) > R.
したがって、 a X b > 0、  Therefore, a X b> 0,
または a X bく 0の場合に {— ( 6 X a ) } (1/2) > Rであるとき、 1 〉 1: 〉 0にぉぃて ( r ) は変曲点を持たないといえる。 Or if a X b 0 0 and {— (6 X a)} (1/2) > R, 1〉 1:〉 0, it can be said that (r) has no inflection point.
また、 対物レンズにおいては、 R > r > 0において、 有効半径 R付近 での入射角度が最も大きい。' したがって、 有効半径付近で入射波面の傾 き (すなわち、 入射角度) の変化が大きいと、 収差の劣化も大きくなる ( このことは、 対物レンズと液晶素子との芯ずれが発生したときに、 収差 劣化が大きくなることを意味する。 In the objective lens, the incident angle near the effective radius R is the largest when R>r> 0. 'Therefore, if the tilt of the incident wavefront (that is, the angle of incidence) changes greatly near the effective radius, the deterioration of aberrations will also increase. ( This means that when misalignment between the objective lens and the liquid crystal element occurs, It means that the aberration deterioration becomes large.
すなわち、 収差劣化を小さくするためには、 収差補正光学系の有効半 径付近 (最外周部) にて、 Φ" ( r ) の値が十分小さいことが必要であ る。  That is, in order to reduce aberration degradation, it is necessary that the value of Φ ″ (r) be sufficiently small near the effective radius of the aberration correction optical system (outermost periphery).
こ こで、 対物レンズのシフ ト量は、 0. 3 mm程度見込む必要が有る ので、 NA 0. 8 5の光学系において収差量を 0. 0 3 i r m s以下に するためには、  Here, since the shift amount of the objective lens needs to be expected to be about 0.3 mm, in order to reduce the aberration amount to less than 0.3 irms in the NA 0.85 optical system,
I 1 2 X a XR 2 | < 0. 0 0 2 I 1 2 X a XR 2 | <0.02
を満たすことが必要である。 It is necessary to satisfy
所定の球面収差量を補正する際の液晶素子の位相分布が、 前記条件を 満たすことで、 液晶素子と対物レンズとの間に芯ずれが発生しても、 液 晶素子から出射し、 対物レンズに入射する波面の傾きが大きく変化しな いため、 収差が劣化することがない。  When the phase distribution of the liquid crystal element at the time of correcting the predetermined amount of spherical aberration satisfies the above condition, even if misalignment occurs between the liquid crystal element and the objective lens, the liquid crystal element exits from the liquid crystal element, and the objective lens Since the inclination of the wavefront incident on the surface does not change significantly, the aberration does not deteriorate.
次に、 一例と して、 1 1 5 μ mの厚さの光透過層に対して本実施の形 態の光ピックアツプ装置を用いて収差補正を行った場合に、 対物レンズ が トラッキングのために トラック巾方向にシフ ト したときの収差値を表 1に示す (参考に、 従来例に示した位相分布の場合の収差値も併記する ) 。 なお、 収差値の単位と して示す m (ミ リ ラムダ) は、 πι λ rms (root mean square)値であり、 rmsを省略して記載している。 芯ずれ 0 mm 0. 1 mm 0. 2 mm 本実施の形態 1 2 m λ 1 3 m λ 1 5 m L Next, as an example, when aberration correction is performed on the light transmission layer having a thickness of 115 μm using the optical pickup device of the present embodiment, the objective lens is used for tracking. The aberration values when shifting in the track width direction are shown in Table 1 (for reference, the aberration values for the phase distribution shown in the conventional example are also shown). In addition, m (milli lambda) shown as a unit of the aberration value is a πι λ rms (root mean square) value, and rms is omitted. Misalignment 0 mm 0.1 mm 0.2 mm Embodiment 1 2 m λ 13 m λ 15 m L
従来例 1 2 m λ 7 2 m l 1 5 1 m l 表 1 より、 本実施の形態と従来例とを比較すると、 同じ芯ずれ量に対 する収差値は、 本実施の形態の方が従来例より も十分小さいことがわか る。  Conventional example 1 2 m λ 72 ml 15 1 ml From Table 1, comparing this embodiment with the conventional example shows that the aberration value for the same amount of misalignment is higher in the present embodiment than in the conventional example. Is also small enough.
なお、 本実施の形態においては、 収差捕正.素子とレて液晶素子を用い たが、 上述した位相分布を得られるものであれば、 他のものでもよい。 たとえば、 印加電圧を変化させることにより屈折率を調節できる材料を 用いた素子や、 その他の素子でも、 本実施の形態と同様の効果を得るこ とができる。 また、 球面収差量は、 光透過層の厚さの範囲が土 1 5 μ m である場合を例にしたが、 それ以外の厚さでも良く、 各々のシステムに おいて、 補正が必要な球面収差に応じて決められる。  In the present embodiment, a liquid crystal element is used instead of the aberration correction element. However, another element may be used as long as the above-described phase distribution can be obtained. For example, an element using a material whose refractive index can be adjusted by changing an applied voltage or another element can obtain the same effect as that of the present embodiment. In addition, the spherical aberration amount is exemplified in the case where the thickness range of the light transmission layer is 15 μm of soil, but other thicknesses may be used, and the spherical surface that needs correction in each system may be used. It is determined according to the aberration.
また、 本実施の形態においては、 対物レンズと して N Aが 0 · 8 5の ものを用いた。 一般的に、, NAが 0. 7 5以上の対物レンズを用:いるピ' ックアップでは、 2層記録等における光透過層の厚さの変化に対して、 球面収差の発生量が大きい。 したがって、 本実施の形態の液晶素子 (収 差補正素子) を用いれば、 大きな収差補正効果を得ることができる。  In the present embodiment, an objective lens having a NA of 0.85 was used. Generally, in a pickup using an objective lens having an NA of 0.75 or more, the amount of spherical aberration generated is large with respect to a change in the thickness of the light transmitting layer in two-layer recording or the like. Therefore, a large aberration correction effect can be obtained by using the liquid crystal element (error correction element) of the present embodiment.
ところで、 3次球面収差係数 W 4 0は、  By the way, the third-order spherical aberration coefficient W 40 is
W4 0 = ( t / 8 ) X { ( n 2 - 1 ) /n 3 } X (N A) 4 W4 0 = (t / 8) X {(n 2 - 1) / n 3} X (NA) 4
で表される。 It is represented by
すなわち、 NAが 0. 6の場合に比べて NAが 0. 7 5の場合では、 同じ光透過層の厚さの変化に対して、 球面収差量は 2倍以上となること がわかる。 2層記释 (再生) 媒体においては、 その層間厚さは、 記録層 間の熱干渉、 フォーカスサーボ信号の干渉、 層間層の製造方法等により 決められ、 薄く とも 1 Ο〜 2 0 μ m程度である。 この層間厚さの違いに より、 N Aが 0 . 7 5である場合においては、 球面収差量が許容収差値 である 0 . 0 3 r m s を越えてしまう。 In other words, when NA is 0.75 compared to when NA is 0.6, the amount of spherical aberration is more than doubled for the same change in the thickness of the light transmission layer. I understand. In a two-layer recording (reproduction) medium, the thickness of the interlayer is determined by the thermal interference between the recording layers, the interference of the focus servo signal, the manufacturing method of the interlayer, etc., and at least about 1 to 20 μm. It is. Due to this difference in interlayer thickness, when NA is 0.75, the amount of spherical aberration exceeds the allowable aberration value of 0.03 rms.
したがって、 この様な高い N Aの光学系においては、 本実施の形態の 収差捕正素子を用いることにより、 より効果的に収差の劣化を防止でき. 光ピックアップの特性を向上させることができる。 特に N Aが 0 . 7 5 以上の対物レンズを有する光学系においては、 収差量を小さく抑える必 要があり、 本発明のような収差捕正素子が重要となる。  Therefore, in such a high NA optical system, the use of the aberration correction element of the present embodiment can more effectively prevent the deterioration of aberration. The characteristics of the optical pickup can be improved. In particular, in an optical system having an objective lens having a NA of 0.75 or more, it is necessary to keep the aberration amount small, and the aberration correction element as in the present invention is important.
また、 本発明の光ピックアップ装置を、 入射される光の波面を変化さ せて出力する収差捕正光学素子を含む光ピックアツプ装置であって、 前 記収差補正光学素子は、 基板上に形成された電極と、 入射される光に対 する屈折率が前記電極に印加される電圧に応じて変化する光学媒質と、 前記電極に電圧を印加する駆動回路とを含み、 前記駆動回路は、 前記電 極に電圧を印加して前記光学媒質の屈折率を変化させることによって、 入射される光の波面の位相を変化させて出力するとともに、 前記駆動回 路は、 入射される光の光軸からの距離に応じて、 前記光学媒質による位 相変化量を単調増加または単調減少させるよ うに、 前記電極に電圧を印 加する光ピックァップ装置である、 と表現することもできる。  Further, the present invention is an optical pickup device including an aberration correction optical element that changes the wavefront of incident light to output the optical pickup device of the present invention, wherein the aberration correction optical element is formed on a substrate. An electrode, an optical medium whose refractive index to incident light changes according to a voltage applied to the electrode, and a drive circuit for applying a voltage to the electrode. A voltage is applied to the pole to change the refractive index of the optical medium, thereby changing and outputting the phase of the wavefront of the incident light, and the driving circuit is configured to output the light from the optical axis of the incident light. It can also be described as an optical pickup device that applies a voltage to the electrode so that the amount of phase change due to the optical medium monotonically increases or decreases according to the distance.
また、 本発明の光ピックアップ装置を、 前記構成に加えて、 前記入射 される光の光軸からの距離を半径 r と し、 Rを前記収差補正光学系の有 効半径と して、 前記駆動回路は、 半径 rにおける位相が、 R > r > 0に おいて、 Φ ( r ) = a X r 4 + b X r 2 Further, in the optical pickup device of the present invention, in addition to the above configuration, the distance from the optical axis of the incident light is a radius r, and R is an effective radius of the aberration correction optical system. The circuit has a phase at radius r where R>r> 0 and Φ (r) = a X r 4 + b X r 2
で表される分布となるように、 前記電極に電圧を印加する光ピックアツ プ装置である、 と表現することもできる。 It can also be expressed as an optical pickup device that applies a voltage to the electrodes so as to have a distribution represented by
また、 本発明の光ピックアップ装置を、 前記構成に加えて、 前記駆動 回路は、 前記入射される光の光軸の位置に配置される中心電極と前記中 心位置を中心と して配置される円環状電極とに、 電圧を印加することに よって、 入射される光の光軸からの距離に応じて、 前記光学媒質による 位相変化量を単調増加または単調減少させる光ピックアップ装置である、 と表現することもできる。  Further, in the optical pickup device of the present invention, in addition to the above-described configuration, the drive circuit is disposed around a center electrode disposed at a position of an optical axis of the incident light and the center position. An optical pickup device that monotonically increases or monotonously decreases the amount of phase change due to the optical medium according to the distance from the optical axis of incident light by applying a voltage to the annular electrode. You can also.
以上のように、 本発明による光ピックアップ装置は、 対物レンズとの 芯ずれに対して許容度が大きく、 したがって、 収差補正素子を対物レン ズと共にァクチユエータ上に搭載する必要がない。 このため、 ァクチュ エータの重量を低減して、 ァクチユエータの高速駆動が可能となる。  As described above, the optical pickup device according to the present invention has a large tolerance for misalignment with the objective lens. Therefore, it is not necessary to mount the aberration correction element together with the objective lens on the actuator. For this reason, the actuator can be driven at high speed by reducing the weight of the actuator.
また、 本発明による光ピックアップ装置を、 光ディスクの再生装置、 記録再生装置に備えれば、 光ディスクの再生、 記録を安定して行う こと ができる。  Further, if the optical pickup device according to the present invention is provided in an optical disk reproducing device and a recording / reproducing device, it is possible to stably reproduce and record the optical disk.
発明を実施するための最良の形態の項においてなした具体的な実施態 様または実施例は、 あくまでも、 本発明の技術内容を明らかにするもの であって、 そのような具体例にのみ限定して狭義に解釈されるべきもの ではなく、 本発明の精神と請求の範囲に記載した事項の範囲内で、 いろ いろと変更して実施することができるものである。 また、 請求の範囲に 記載した事項や、 発明を実施するための最良の形態に記載した技術的手 段は、 適宜組み合わせることができ、 この組み合わせによって得られる 事項も本発明の技術的範囲に含まれる。 産業上の利用の可能性 The specific embodiments or examples made in the section of the best mode for carrying out the invention clarify the technical contents of the present invention, and are limited to only such specific examples. The present invention is not to be construed in a narrow sense, but can be implemented with various modifications within the spirit of the present invention and the scope of the matters described in the claims. In addition, the matters described in the claims and the technical means described in the best mode for carrying out the invention can be appropriately combined, and the matters obtained by this combination are also included in the technical scope of the present invention. It is. Industrial applicability
本発明の光ピックアップ装置によれば、 高い N Aの対物レンズを用い た場合であっても、 対物レンズと液晶素子との芯ずれによる劣化を防止 できる。 したがって、 光記録媒体における情報記録量の大容量化に適し ている。 また、 ァクチユエータの重量を低減して、 ァクチユエ一タを髙 速駆動することができる光ピックァップ装置を提供するこ.とができる。  According to the optical pickup device of the present invention, even when an objective lens with a high NA is used, deterioration due to misalignment between the objective lens and the liquid crystal element can be prevented. Therefore, it is suitable for increasing the information recording capacity of the optical recording medium. Also, it is possible to provide an optical pickup device capable of reducing the weight of the actuator and driving the actuator at high speed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光源と、 前記光源から光記録媒体に至る光路中に対物レンズと収 差捕正光学系とを具備する光ピックァップ装置において、 1. An optical pickup device comprising: a light source; and an objective lens and a difference correction optical system in an optical path from the light source to an optical recording medium,
前記収差捕正光学系は所定の収差を補正するために透過する光束に対 して位相分布が付与されており、  In the aberration correction optical system, a phase distribution is given to a light beam transmitted to correct a predetermined aberration,
前記収差を補正する場合の前記収差補正光学系の位相量は、 前記収差 捕正光学系と前記光源からの光の光軸とが交わる点からの距離が大きく なるにしたがって、 前記収差補正光学系で付与する位相量が大きく なる よ うに設定されていることを特徴とする光ピックアツプ装置。  The phase amount of the aberration correction optical system when correcting the aberration, the larger the distance from the intersection of the aberration correction optical system and the optical axis of the light from the light source, the aberration correction optical system An optical pick-up device characterized in that the amount of phase imparted by (1) is set to be large.
2. 請求項 1記載の光ピックアップ装置であって、 前記収差補正光学 系の位相分布は、 以下に示す関数で近似されることを特徴とする光ピッ クァップ装置。  2. The optical pickup device according to claim 1, wherein the phase distribution of the aberration correction optical system is approximated by the following function.
Φ ( r ) = a X r 4 + b X r 2 Φ (r) = a X r 4 + b X r 2
( Φ ( r ) : 半径 rにおける位相, r : 半径, a 、 b : 位相分布係数) (Φ (r): phase at radius r, r: radius, a, b: phase distribution coefficient)
3. 請求項 2記.載の光ピックアップ装置であって、 Rを前記収差補正 光学系の有効半径として、 位相分布係数 a , bが 3. The optical pickup device according to claim 2, wherein R is an effective radius of the aberration correction optical system, and phase distribution coefficients a and b are
a X b〉 0、 a X b> 0,
または、 a X b < 0かつ {— b / ( 6 X a ) } (1/2) > R Or a X b <0 and {— b / (6 X a)} (1/2) > R
を満たすことを特徴とする光ピックアツプ装置。 An optical pick-up device characterized by satisfying the following.
4. 請求項 3に記載の光ピックアップ装置であって、 位相分布係数 a が、  4. The optical pickup device according to claim 3, wherein the phase distribution coefficient a is
I 1 2 X a X R 2 | < 0. 0 0 2 I 1 2 X a XR 2 | <0.02
を満たすことを特徴とする光ピックアツプ装置。 An optical pick-up device characterized by satisfying the following.
5 . 請求項 1ないし 4のいずれか 1項に記載の光ピックアツプ装置に おいて、 5. In the optical pickup device according to any one of claims 1 to 4,
前記対物レンズの N Aは 0 . 7 5以上であるとともに、  The NA of the objective lens is 0.75 or more,
前記収差補正光学系に液晶素子を含むことを特徴とする光ピックアツ プ装置。  An optical pickup device, wherein the aberration correction optical system includes a liquid crystal element.
6 . 入射される光の等位相面と しての波面を変化させて出力する収差 補正光学素子を含む光ピックァップ装置において、  6. In an optical pickup device including an aberration correction optical element that changes and outputs a wavefront as an equal phase surface of incident light,
前記収差補正光学素子は、 基板上に形成された電極と、 入射される光 に対する屈折率が前記電極に印加される電圧に応じて変化する光学媒質 と、 前記電極に電圧を印加する駆動回路とを含み、  The aberration correction optical element includes: an electrode formed on a substrate; an optical medium whose refractive index with respect to incident light changes according to a voltage applied to the electrode; and a drive circuit that applies a voltage to the electrode. Including
前記駆動回路は、 前記電極に電圧を印加して前記光学媒質の屈折率を 変化させることによって、 入射される光の波面の位相を変化させて出力 するとともに、  The drive circuit changes a phase of a wavefront of incident light by applying a voltage to the electrode to change a refractive index of the optical medium, and outputs the change.
前記駆動回路は、 入射される光の光軸からの距離に応じて、 前記光学 媒質による位相変化量を単調増加または単調減少させるよ うに、 前記電 極に電圧を印加することを特徴とする光ピックアップ装置。  The drive circuit applies a voltage to the electrode so as to monotonically increase or decrease the amount of phase change due to the optical medium according to the distance of the incident light from the optical axis. Pickup device.
7 . 前記入射される光の光軸からの距離を半径 r と し、 Rを前記収差 補正光学系の有効半径と して、  7. Let the distance from the optical axis of the incident light be a radius r, and let R be the effective radius of the aberration correcting optical system,
前記駆動回路は、 半径 r における位相が、 R > r > 0において、 Φ ( r ) = a X r 4 + b X r 2 Wherein the driving circuit, the phase at the radius r is in R>r> 0, Φ ( r) = a X r 4 + b X r 2
で表される分布となるよ うに、 前記電極に電圧を印加することを特徴と する請求項 6に記載の光ピックアツプ装置。 7. The optical pickup device according to claim 6, wherein a voltage is applied to the electrodes so that a distribution represented by the following formula is obtained.
8 . 前記駆動回路は、 前記入射される光の光軸の位置に配置される中 心電極と前記中心位置を中心と して配置される円環状電極とに、 電圧を 印加することによって、 入射される光の光軸からの距離に応じて、 前記 光学媒質による位相変化量を単調増加または単調減少させることを特徴 とする請求項 6に記載の光ピックアツプ装置。 8. The driving circuit applies a voltage to a center electrode arranged at the position of the optical axis of the incident light and an annular electrode arranged around the center position. 7. The optical pickup device according to claim 6, wherein by applying the light, the amount of phase change caused by the optical medium is monotonically increased or decreased in accordance with the distance of the incident light from the optical axis.
PCT/JP2002/008265 2001-08-24 2002-08-13 Optical pickup device WO2003098615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004506023A JP4180564B2 (en) 2001-08-24 2002-08-13 Optical pickup device
KR1020047002622A KR100603871B1 (en) 2001-08-24 2002-08-13 Optical pickup device
US10/483,859 US6937381B2 (en) 2001-08-24 2002-08-13 Optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001253735 2001-08-24
JP2001-253735 2001-08-24

Publications (1)

Publication Number Publication Date
WO2003098615A1 true WO2003098615A1 (en) 2003-11-27

Family

ID=29533363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008265 WO2003098615A1 (en) 2001-08-24 2002-08-13 Optical pickup device

Country Status (5)

Country Link
US (1) US6937381B2 (en)
JP (1) JP4180564B2 (en)
KR (1) KR100603871B1 (en)
CN (1) CN1266689C (en)
WO (1) WO2003098615A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437195C (en) * 2004-06-21 2008-11-26 皇家飞利浦电子股份有限公司 Aberration correction for spectroscopic analysis

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073610A1 (en) * 2001-03-12 2002-09-19 Sony Corporation Optical head, optical device, and aberration correcting element
US7550701B2 (en) * 2003-02-25 2009-06-23 Omnivision Cdm Optics, Inc. Non-linear wavefront coding systems and methods
KR100661183B1 (en) 2004-12-22 2006-12-26 삼성전자주식회사 Optical pick-up actuator having device for compensating aberration and method for manufacturing thereof
JP2007164821A (en) * 2005-11-18 2007-06-28 Sanyo Electric Co Ltd Optical pickup device
JP2007305181A (en) * 2006-05-09 2007-11-22 Funai Electric Co Ltd Optical disk device
US8022345B1 (en) * 2008-05-19 2011-09-20 Lockheed Martin Corporation Adaptive optics systems using pixelated spatial phase shifters
US7764417B1 (en) * 2008-10-24 2010-07-27 Lockheed Martin Corporation Adaptive optics systems using pixilated microelectromechanical systems (MEMS)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261240A (en) * 1997-03-19 1998-09-29 Sony Corp Recording/reproducing device and method therefor
JP2001331964A (en) * 2000-05-24 2001-11-30 Pioneer Electronic Corp Aberration correcting unit, optical pickup device and recording/reproducing device
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2002148581A (en) * 2000-11-09 2002-05-22 Pioneer Electronic Corp Aberration correction element and aberration correction device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443226B2 (en) 1995-08-31 2003-09-02 パイオニア株式会社 Optical pickup
JP3932578B2 (en) 1996-10-24 2007-06-20 ソニー株式会社 Objective lens and optical pickup device
JP4915028B2 (en) 1999-09-02 2012-04-11 旭硝子株式会社 Optical head device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261240A (en) * 1997-03-19 1998-09-29 Sony Corp Recording/reproducing device and method therefor
JP2001331964A (en) * 2000-05-24 2001-11-30 Pioneer Electronic Corp Aberration correcting unit, optical pickup device and recording/reproducing device
JP2002109776A (en) * 2000-07-24 2002-04-12 Matsushita Electric Ind Co Ltd Optical element, optical head, optical recording/ reproducing apparatus, and optical recording/ reproducing method
JP2002148581A (en) * 2000-11-09 2002-05-22 Pioneer Electronic Corp Aberration correction element and aberration correction device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437195C (en) * 2004-06-21 2008-11-26 皇家飞利浦电子股份有限公司 Aberration correction for spectroscopic analysis

Also Published As

Publication number Publication date
US6937381B2 (en) 2005-08-30
CN1266689C (en) 2006-07-26
CN1547738A (en) 2004-11-17
KR20040032956A (en) 2004-04-17
KR100603871B1 (en) 2006-07-24
JPWO2003098615A1 (en) 2005-09-22
JP4180564B2 (en) 2008-11-12
US20040169908A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
US6320699B1 (en) Aberration correcting apparatus and optical apparatus using the same
JP2002140831A (en) Optical pickup device
KR100931278B1 (en) Optical head and optical device
JP4621964B2 (en) Optical pickup device, recording / reproducing device, and correction method of spherical aberration fluctuation in optical pickup device
WO2006092968A1 (en) Liquid crystal optical element
JP4180564B2 (en) Optical pickup device
JP2006147069A (en) Optical pickup, aberration generating method for compensation, and optical information processor using the same
US6992966B2 (en) Optical pickup device
JP2003006902A (en) Optical pickup
EP1905028A1 (en) Active compensation device, and compatible optical pickup and optical recording and/or reproducing apparatus employing the active compensation device
KR100525243B1 (en) Optical pickup and liquid crystal element
JP3904893B2 (en) Optical pickup device
JP2004342228A (en) Optical pickup device
JP2004206763A (en) Optical information reproducing device, optical information reproducing unit, optical disk and optical information recording or reproducing method
JP4581969B2 (en) Liquid crystal device and optical pickup
JP2004079117A (en) Information recording and reproducing device
JP4459714B2 (en) Liquid crystal aberration correction apparatus and optical head
JP4380339B2 (en) Phase variable aberration correcting optical element and optical pickup device
JP4212978B2 (en) Aberration correction element, optical pickup device including the same, and information recording / reproducing device including the same
JP2005267756A (en) Phase correction element, optical pickup device using same, and information recording and reproducing device
US20030090985A1 (en) Optical head and disk recording and reproducing apparatus
JP2010267353A (en) Liquid crystal optical device and optical pickup device including the same
JP2005332519A (en) Liquid crystal aberration correction element/optical pickup device and optical disk drive apparatus
JP4583444B2 (en) Aberration correction apparatus, optical pickup, and spherical aberration correction method
JPH1064115A (en) Optical pickup device, and recording and/or reproducing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004506023

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10483859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20028164873

Country of ref document: CN

Ref document number: 1020047002622

Country of ref document: KR