WO2003097903A1 - Method and device for producing high-purity metal - Google Patents

Method and device for producing high-purity metal Download PDF

Info

Publication number
WO2003097903A1
WO2003097903A1 PCT/JP2003/001113 JP0301113W WO03097903A1 WO 2003097903 A1 WO2003097903 A1 WO 2003097903A1 JP 0301113 W JP0301113 W JP 0301113W WO 03097903 A1 WO03097903 A1 WO 03097903A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
purity
solvent extraction
purity metal
impurities
Prior art date
Application number
PCT/JP2003/001113
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichiro Shindo
Kouichi Takemoto
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Publication of WO2003097903A1 publication Critical patent/WO2003097903A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method and an apparatus for producing a high-purity metal by electrolytic extraction, which can dissolve and extract a raw material metal using a single electrolytic cell.
  • high-purity metals such as nickel, cobalt, iron, indium, and copper are required to reduce alkali metals, radioactive elements, transition metal elements, and gas components as much as possible. It is widely used, especially as a sputtering target material, for forming compound semiconductors or magnetic thin films.
  • Alkali metals such as Na and K easily move in the gate insulating film and cause deterioration of the MOS-LSI interface characteristics.
  • Radioactive elements such as U and Th cause the soft error of the device due to the emitted ⁇ -rays.
  • transition metal elements such as Fe may cause troubles at interface junctions.
  • gas components such as carbon and oxygen are also undesirable because they cause particles to be generated during sputtering.
  • the solution is purified by ion exchange or solvent extraction, and then purified by electrowinning or electrolytic refining.
  • a method of preceding the solvent extraction step has a problem that the step is complicated and requires a special solvent, so that it is not efficient.
  • high-purity metals such as nickel, cobalt, iron, indium, and copper at the 5N level
  • it is considered to be a relatively simple method to produce them by electrolysis using these metal-containing solutions.
  • separation was difficult due to the large amount of other metal elements (mainly iron) contained in the electrolyte, which was not always efficient. Disclosure of the invention
  • the present invention provides a simple method of electrolyzing a metal raw material such as nickel, cobalt, iron, indium, and copper containing a large amount of other metal elements, carbon, oxygen, and the like, using the metal-containing solution.
  • the purpose of the present invention is to provide a technology for efficiently producing a high-purity metal having a purity of 5 N (99.99.99 wt%) or more from the same raw material.
  • the anode and cathode are separated by an anion exchange membrane, and anolyte is extracted intermittently or continuously and introduced into a solvent extraction tank.
  • a method for producing a high-purity metal characterized in that impurities are removed in the solvent extraction tank, and the high-purity metal electrolyte solution after the removal of the impurities is intermittently or continuously introduced into a power source side.
  • the present invention also provides
  • High-purity metal production equipment by electrolysis including an anode basket containing metal raw materials, an anion-exchange membrane separating the anode and the power source, a cathode for depositing high-purity metal, and impurities from the metal solution (anolyte).
  • a solvent extraction tank a device that intermittently or continuously withdraws anolyte and introduces it into the solvent extraction tank, and intermittently or continuously introduces the high-purity metal electrolyte obtained by solvent extraction to the cathode side
  • High-purity metal characterized by comprising a device
  • the apparatus for producing a high-purity metal according to any one of the above items 5 to 7, further comprising an apparatus for circulating a liquid of ananolite and a catholyte.
  • FIG. 1 is a diagram showing an outline of the electrolysis process.
  • a bulk metal material 2 of 4 N level is put into an anode basket 3 to form an anode 5, and a metal similar to the highly purified metal or another metal material is used for a force sword 4.
  • Perform electrolysis Metal raw materials contain many impurities such as metal elements, carbon, oxygen, etc., other than those of high purity.
  • the bath temperature 1 0 to 7 0 C the metal concentration 2 0 ⁇ : L 2 0 gZL, carried out at a current density 0. 1 ⁇ 1 0 AZdm 2.
  • the productivity will be poor, and if it is too high, for example, if it exceeds 10 AZdm 2 , nodules will tend to occur. Therefore, it is usually desirable that the current density be in the range of 0.1 to 10 A / dm 2 .
  • the anode 5 and the force sword 4 are separated by an anion exchange membrane 6, and intermittently or continuously extracted while circulating an anolyte 7.
  • Catholyte is separated from the outer liquid (anolyte) via the anion exchange membrane 6.
  • the extracted anolyte 7 is introduced into a solvent extraction tank 8.
  • the concentration of other metal elements in the electrolyte can be reduced to approximately 1 mg / L or less.
  • the highly purified metal electrolyte is introduced intermittently or continuously into the power source side, and used as catholyte 9 for electrolytic sampling.
  • the highly purified metal electrolyte may be applied to a filter (not shown) such as activated carbon, if necessary.
  • a filter such as activated carbon
  • the activated carbon filter has an effect of removing impurities from an organic solvent or an organic substance derived from an ion exchange membrane.
  • An electrolyte storage tank 9 for temporarily storing a high-purity metal electrolyte from which impurities such as other metal elements have been removed in a solvent extraction tank is provided and circulated.
  • the highly purified metal electrolyte after the solvent extraction is once stored in the electrolyte storage tank 9, and then intermittently or continuously introduced into the power source from there, and used as the catholyte 9. Collect.
  • the current efficiency is 80 to 100%.
  • an electrodeposited metal having a purity of 5 N or more (precipitated on a power source) can be obtained. That is, excluding gas components, it is 4 N (99.99 wt%) or more, depending on the material, it is 5 N (99.999 wt%) or more, and O: 100 wt ppm or less as an impurity (depending on the material). Is 0: 3 O wtppm or less), and each of C, N, S, and H can be set to 10 wtppm or less.
  • the electrodeposited metal obtained by electrolysis can be subjected to vacuum melting such as electron beam melting.
  • vacuum melting alkali metals such as Na and K and other volatile impurities and gas components can be effectively removed. Examples and comparative examples
  • Electrolysis was performed using 1 kg of 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a power source.
  • Table 1 shows the content of impurities in the raw materials.
  • Nickel raw materials mainly contain large amounts of iron, carbon, oxygen, and the like.
  • Bath temperature 50 ° (:.., Using a sulfuric acid-based electrolyte, pH 2, was carried out at a current density of 2A / dm 2 electrolysis Initially, N i concentration in the anode side is 20 GZL After the electrolysis, N i concentration 100 GZL Extract as
  • the extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. Thus, the concentration of iron in the electrolyte could be reduced to 1 mg / L or less.
  • this solution was intermittently introduced into the power source side, and used as catholyte for electrowinning.
  • the Ni concentration on the force side is 100 gZL, but the Ni concentration after electrolysis is 20 gZL.
  • Electrodeposited nickel (deposited on a force sword) About lkg was obtained. Purity achieved 5N. That is, it was 5N (99.999 wt%) or more, excluding gas components, O: 30 wt ppm or less as impurities, and C, N, S, respectively, could be 10 wt ppm or less.
  • the above results are compared with the raw materials, and w t p p m
  • electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a power source.
  • Table 1 shows the content of impurities in the raw materials.
  • the bath temperature was 50 ° (: using a sulfuric acid-based electrolyte, the nickel concentration was 60 g / L, and the current density was 2 AZ dm 2 .
  • Example 1 the raw material iron was 50 wtp pm to 2 wtp pm, oxygen was 200 wtp pm to less than 10 wtp pm, carbon was 50 wt ppm to less than 10 wt ppm, and N 10 wtppm or less, Slw tp pm or less, Na and K could each be less than 0.1 wtppm c
  • C and N were each less than 10 wtp pm
  • S lw tp pm, and Na and K were each less than 0.1 lw tp pm, but iron 50 w tp pm, cobalt 20 w tp pm, oxygen 60 wt pm, and oxygen
  • the purification effect was inferior to that of, and it was particularly difficult to remove iron and cobalt.
  • Example 1 electrolysis was performed using an electrolytic cell as shown in Fig. 1, using 1 kg of 90 wt% pure cobalt scrap raw material as the anode, and using a 2N level cobalt plate as the power source. went.
  • Table 2 shows the impurity contents of the raw materials.
  • the cobalt raw material mainly contained a large amount of tungsten, titanium, iron, carbon, oxygen and the like.
  • Bath temperature 50 ° (: Using a sulfuric acid-based electrolyte, pH 2 and current density 2 A / dm 2. At the beginning of electrolysis, the C 0 concentration on the anode side was 20 g / L. After electrolysis , With a CO concentration of 100 g / L.
  • the extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as iron and tungsten in the electrolyte could be reduced to 1 mgZL or less. After removal of the impurities, this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning.
  • the Co concentration on the cathod side was 100 gZL, but the Co concentration after electrolysis was less than 20 g / L.
  • Example 1 electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 2N-level massive iron raw material as an anode, and using a 2N-level iron plate as a power source.
  • Table 3 shows the content of impurities in the raw materials.
  • Iron raw materials mainly contained large amounts of aluminum, arsenic, boron, cobalt, chromium, nickel, zinc, copper, carbon, oxygen, and the like.
  • the test was performed at a bath temperature of 50 ° C., a sulfuric acid-based electrolyte, and at a pH of 2 and a current density of 2 A / dm 2 .
  • the iron concentration on the anode side is 20 gZL.
  • extract with an iron concentration of 100 g / L was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as nickel and cobalt in the electrolyte could be reduced to 1 mg / L or less.
  • this solution was intermittently introduced into the power source side, and used as catholyte for electrowinning.
  • the iron concentration on the force sword side was 100 g / L, but the iron concentration after electrolysis was less than 20 gZL each.
  • Electrodeposited iron (precipitated on a force sword) About lkg was obtained. Purity achieved 5 N. That is, except for gas components, the content is 5 N (99.99 wt%) or more, and as impurities, O: 20 w tp pm and C, N, and S can be each set to 10 wt pm or less.
  • Table 3 compares the above results with the raw materials.
  • Example 1 electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of indium scrap raw material having a purity of 90 wt% level as an anode, and using a 2 N level indium plate as a power source. went.
  • Table 4 shows the content of impurities in the raw materials.
  • the indium raw material mainly contained a large amount of bismuth, antimony, lead-iron, zinc, silver, copper, aluminum, carbon, oxygen, and the like.
  • the indium concentration on the anode side is 20 gZL ( after electrolysis, the indium concentration is extracted as 100 g / L. 0
  • the extracted anolyte was introduced into the solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. From the above, the concentration of metal element impurities in the electrolyte could be reduced to 1 mg / L or less.
  • this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning.
  • the indium concentration on the kaleid side was 100 gZL
  • the indium concentration after electrolysis was less than 20 gZL each.
  • Electrodeposited indium (deposited on a force sword) was obtained in an amount of about lkg. Purity achieved 4 N. That is, excluding gas components, it was 4 N (9.99.9 wt%) or more, and 0: 20 wt p pm and C, N, and S, respectively, as impurities could be reduced to 10 wt p pm or less. Table 4 compares the above results with the raw materials.
  • Example 4 2 3 ⁇ 1 2 1 ⁇ 1 ⁇ 1 ⁇ 1 w t p pm (other than% display) 4Z2
  • Example 4 20 10 10 10 10 10 (Example 5)
  • Example 1 electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 4 N-level pure copper raw material as an anode, and using a 2N-level copper plate as a power source.
  • Table 5 shows the content of impurities in the raw materials. Copper raw materials mainly contained large amounts of iron, chromium, nickel, silver, aluminum, antimony, selenium, silicon, sulfur, oxygen, and the like.
  • the test was performed at a bath temperature of 50 ° C and a nitric acid-based electrolyte at a pH of 2 and a current density of 2 A / dm 2 .
  • the copper concentration on the anode side is 20 gZL.
  • the extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as the precipitate were removed using an activated carbon filter. From the above, the concentration of metal element impurities in the electrolyte could be reduced to 1 mgZL or less.
  • this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning.
  • the copper concentration on the force sword side was 100 g / L, but the copper concentration after electrolysis was less than 20 gZL each.
  • Electrodeposited copper (deposited on force sword) Approximately lkg was obtained. Purity achieved 6N. That is, the content was 6 N (99.9999 wt%) or more, excluding gas components, and as impurities, ⁇ , S: lw tp pm or less, and C, N, S could each be 10 wt ppm or less. Table 5 compares the above results with the raw materials.
  • Example 4 From the above, the anode and the force sword of the present invention were separated by an anion exchange membrane, and the anolyte was extracted intermittently or continuously. Removal of impurities such as elements, and further removal of impurities using a filter, and intermittently or continuously placing the removed liquid on the power source side for electrolytic sampling, remove impurities such as metal elements. It can be seen that this is a simple and very effective method for effectively removing and obtaining high-purity metals. The invention's effect
  • a high-purity metal-containing solution is used as the electrolytic solution, and a metal raw material containing a large amount of other metal elements, non-metals, carbon, oxygen, etc., is used for electrowinning using the metal-containing solution for electrolysis.
  • Purity 4 N (99.99 wt%) or 5 N (99.99 wt%) from the same raw material by improving the simple manufacturing process It has a remarkable effect that the above high-purity metals can be produced efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

A method of producing a high-purity metal characterized by comprising the step of, when metal-containing solution is used as an electrolyte in electrolyzing, partitioning an anode from a cathode by an negative ion exchange membrane, intermittently or continuously extracting an anolyte for introduction into a solvent extraction tank, and intermittently or continuously introducing toward the cathode a high-purity metal electrolyte having impurities such as iron removed in the solvent extraction tank. A simple method of effecting electrolysis from a metal material containing large amounts of iron, carbon and oxygen by using a metal-containing solution, the method capable of efficiently producing a high-purity metal having a purity of at least 4N (99.99 wt.%) or at least 5N (99.999 wt.%).

Description

明 細 書 高純度金属の製造方法及び装置 技術分野  Description Manufacturing method and equipment for high-purity metal
この発明は、 単一の電解槽を用いて原料金属の溶解と採取を行うことの できる電解採取による高純度金属の製造方法及び装置に関する。 背景技術  The present invention relates to a method and an apparatus for producing a high-purity metal by electrolytic extraction, which can dissolve and extract a raw material metal using a single electrolytic cell. Background art
一般に、 ニッケル、 コバルト、 鉄、 インジウム、 銅等の高純度金属は、 アルカリ金属、 放射性元素、 遷移金属元素、 ガス成分を極力減少させるこ とが要求されており、 V L S Iの電極及び配線の形成、 化合物半導体用あ るいは磁性薄膜を形成するための、 特にスパッタリングターゲット材とし て広範囲に使用されている。  Generally, high-purity metals such as nickel, cobalt, iron, indium, and copper are required to reduce alkali metals, radioactive elements, transition metal elements, and gas components as much as possible. It is widely used, especially as a sputtering target material, for forming compound semiconductors or magnetic thin films.
N a、 K等のアルカリ金属はゲート絶縁膜中を容易に移動し、 M O S— L S I界面特性の劣化原因となる。 U, T h等の放射性元素は、 放出する α線によって素子のソフトエラ一の原因となる。  Alkali metals such as Na and K easily move in the gate insulating film and cause deterioration of the MOS-LSI interface characteristics. Radioactive elements such as U and Th cause the soft error of the device due to the emitted α-rays.
一方、 ニッケル、 コバルト、 銅等の材料が半導体の配線材料等として使 用する場合、 すなわち使用される場所によっては、 F e等の遷移金属元素 が界面接合部のトラブルの原因となる場合もある。  On the other hand, when materials such as nickel, cobalt, and copper are used as wiring materials for semiconductors, etc., that is, depending on the place where they are used, transition metal elements such as Fe may cause troubles at interface junctions. .
さらに、 炭素、 酸素などのガス成分も、 スパッタリングの際のパ一ティ クル発生原因となるため好ましくないと云われている。  Further, it is said that gas components such as carbon and oxygen are also undesirable because they cause particles to be generated during sputtering.
一般に、 5 Nレベルのニッケル、 コバルト、 鉄、 インジウム、 銅等の高 純度金属を製造する場合には、 イオン交換や溶媒抽出等で溶液を精製し、 これをさらに電解採取又は電解精製によって高純度化を行うことが普通で あるが、 このように溶媒抽出工程を先行させる方法は、 工程が複雑であり、 また特殊な溶媒を必要とすることから効率的でないという問題があった。 また、 5 Nレベルのニッケル、 コバルト、 鉄、 インジウム、 銅等の高純 度金属を製造する場合に、 これらの金属含有溶液を用いて電解により製造 するのが、 比較的簡単な方法と考えられるのであるが、 例えば高純度ニッ ゲルを電解により製造しょうとした場合、 電解液中に他の金属元素 (主に 鉄) が多量に含有され分離が難しく、 必ずしも効率的とは言えなかった。 発明の開示 Generally, when producing high-purity metals such as nickel, cobalt, iron, indium, and copper at the 5N level, the solution is purified by ion exchange or solvent extraction, and then purified by electrowinning or electrolytic refining. However, such a method of preceding the solvent extraction step has a problem that the step is complicated and requires a special solvent, so that it is not efficient. Also, when producing high-purity metals such as nickel, cobalt, iron, indium, and copper at the 5N level, it is considered to be a relatively simple method to produce them by electrolysis using these metal-containing solutions. However, for example, when attempting to produce high-purity nigels by electrolysis, separation was difficult due to the large amount of other metal elements (mainly iron) contained in the electrolyte, which was not always efficient. Disclosure of the invention
本発明は、 他の金属元素、 炭素、 酸素等が多く含有されるニッケル、 コ バルト、 鉄、 インジウム、 銅等の金属原料から、 該金属含有溶液を用いて 電解する簡便な方法を提供するものであり、 同原料から純度 5 N ( 9 9 . 9 9 9 w t % ) 以上の高純度金属を効率的に製造する技術を提供すること を目的としたものである。  The present invention provides a simple method of electrolyzing a metal raw material such as nickel, cobalt, iron, indium, and copper containing a large amount of other metal elements, carbon, oxygen, and the like, using the metal-containing solution. The purpose of the present invention is to provide a technology for efficiently producing a high-purity metal having a purity of 5 N (99.99.99 wt%) or more from the same raw material.
上記問題点を解決するため、 金属含有溶液のァノライ トから他の金属元 素、 その他の不純物を溶媒抽出により除去し、 除去後の液をカソライトと して使用することにより、 効率良く高純度金属を製造できるとの知見を得 た。  In order to solve the above-mentioned problems, other metal elements and other impurities are removed from the anolyte of the metal-containing solution by solvent extraction, and the liquid after the removal is used as catholyte to efficiently and highly purify the metal. The knowledge that can be manufactured.
この知見に基づき、 本発明は Based on this finding, the present invention
1 . 電解液として高純度化用金属を含有する溶液を用いて電解する際に、 アノードとカソードを陰イオン交換膜で仕切り、 ァノライトを間歇的又は 連続的に抜き出して溶媒抽出槽に導入して、 該溶媒抽出槽にて不純物を除 去し、 この不純物除去後の高純度金属電解液を力ソード側に、 間歇的又は 連続的に導入することを特徴とする高純度金属の製造方法 1. When performing electrolysis using a solution containing a metal for purification as an electrolyte, the anode and cathode are separated by an anion exchange membrane, and anolyte is extracted intermittently or continuously and introduced into a solvent extraction tank. A method for producing a high-purity metal, characterized in that impurities are removed in the solvent extraction tank, and the high-purity metal electrolyte solution after the removal of the impurities is intermittently or continuously introduced into a power source side.
2 . 単一の電解槽内において、 金属原料の溶解と金属の採取を同時に行な い、 かつイオン交換膜で分離されていることを特徴とする上記 1記載の高 純度金属の製造方法 3 . 溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留し, 高純度金属電解液をカソード側に間歇的又は連続的に導入することを特徴 とする上記 1又は 2記載の高純度金属の製造方法 2. The method for producing a high-purity metal as described in 1 above, wherein the melting of the metal raw material and the collection of the metal are simultaneously performed in a single electrolytic cell, and the metal is separated by an ion exchange membrane. 3. The high-purity metal electrolyte from which impurities have been removed in a solvent extraction tank is temporarily stored, and the high-purity metal electrolyte is intermittently or continuously introduced into the cathode side. Of high purity metal
4 . ァノライ ト及びカソライ トの液を循環させることを特徴とする上記 1 〜 3のそれぞれに記載の高純度金属の製造方法  4. The method for producing a high-purity metal according to any one of the above items 1 to 3, wherein the anolyte and the catholyte are circulated.
を提供するものである。  Is provided.
本発明はまた、  The present invention also provides
5 . 電解による高純度金属の製造装置であって、 金属原料を入れたァノー ドバスケッ ト、 アノードと力ソードを仕切る陰イオン交換膜、 高純度金属 を析出させるカゾード、 金属溶解液 (ァノライト) から不純物を除去する 溶媒抽出槽、 ァノライ トを間歇的又は連続的に抜き出して溶媒抽出槽に導 入する装置及び溶媒抽出によって得られた高純度金属電解液をカソード側 に間歇的又は連続的に導入する装置からなることを特徴とする高純度金属  5. High-purity metal production equipment by electrolysis, including an anode basket containing metal raw materials, an anion-exchange membrane separating the anode and the power source, a cathode for depositing high-purity metal, and impurities from the metal solution (anolyte). A solvent extraction tank, a device that intermittently or continuously withdraws anolyte and introduces it into the solvent extraction tank, and intermittently or continuously introduces the high-purity metal electrolyte obtained by solvent extraction to the cathode side High-purity metal characterized by comprising a device
6 . 金属原料の溶解と金属の採取が単一の電解槽内であり、 かつイオン交 換膜で分離されていることを特徴とする上記 5記載の高純度金属の製造装 置 6. The apparatus for producing a high-purity metal as described in 5 above, wherein the dissolution of the metal raw material and the collection of the metal are performed in a single electrolytic cell and separated by an ion exchange membrane.
7 . 溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留す る電解液貯槽を備えていることを特徴とする上記 5又は 6記載の高純度金  7. The high-purity gold according to the above item 5 or 6, further comprising an electrolyte storage tank for temporarily storing the high-purity metal electrolyte from which impurities have been removed in the solvent extraction tank.
8 . ァノライ ト及びカソライ トの液を循環させる装置を備えていることを 特徴とする上記 5〜 7のそれぞれに記載の高純度金属の製造装置 8. The apparatus for producing a high-purity metal according to any one of the above items 5 to 7, further comprising an apparatus for circulating a liquid of ananolite and a catholyte.
を提供するものである。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 電解工程の概要を示す図である。 発明の実施の形態  FIG. 1 is a diagram showing an outline of the electrolysis process. Embodiment of the Invention
図 1に示す電解槽 1を用い、 4 Nレベルの塊状の金属原料 2をアノード バスケット 3に入れてアノード 5とし、 力ソード 4に高純度化金属と同種 の金属又はその他の金属材料を使用して電解を行う.。 金属原料には、 高純 度化する以外の金属元素、 炭素、 酸素等の不純物が多く含有されている。 電解に際しては、 電解する金属によって異なるが、 概ね浴温 1 0〜 7 0 C、 金属濃度 2 0〜: L 2 0 gZL、 電流密度 0. 1〜 1 0 AZdm2 で実施する。 電流密度が低い場合、 例えば 0. 1 A/dm2未満では生産 性が悪くなり、 また高すぎると、 例えば 1 0 AZdm2を超える場合には ノジュールが発生し易くなるという傾向がある。 したがって、 通常電流密 度は 0. 1〜 1 0 A/dm2の範囲とするのが望ましい。 Using an electrolytic cell 1 shown in Fig. 1, a bulk metal material 2 of 4 N level is put into an anode basket 3 to form an anode 5, and a metal similar to the highly purified metal or another metal material is used for a force sword 4. Perform electrolysis. Metal raw materials contain many impurities such as metal elements, carbon, oxygen, etc., other than those of high purity. In electrolysis varies depending metal electrolyte, generally the bath temperature 1 0 to 7 0 C, the metal concentration 2 0~: L 2 0 gZL, carried out at a current density 0. 1~ 1 0 AZdm 2. If the current density is low, for example, less than 0.1 A / dm 2 , the productivity will be poor, and if it is too high, for example, if it exceeds 10 AZdm 2 , nodules will tend to occur. Therefore, it is usually desirable that the current density be in the range of 0.1 to 10 A / dm 2 .
しかし、 上記のように電解する金属によって、 その条件を変えることが できるので、 必ずしも上記の範囲に制限する必要はない。  However, since the conditions can be changed depending on the metal to be electrolyzed as described above, it is not always necessary to limit to the above range.
前記アノード 5と力ソード 4は陰イオン交換膜 6で仕切り、 ァノライト 7を循環させながら間歇的又は連続的に抜き出す。 カソライトは、 陰ィォ ン交換膜 6を介して外側の液 (ァノライ卜) と分離している。 抜き出した ァノライト 7は、 溶媒抽出槽 8に導入する。  The anode 5 and the force sword 4 are separated by an anion exchange membrane 6, and intermittently or continuously extracted while circulating an anolyte 7. Catholyte is separated from the outer liquid (anolyte) via the anion exchange membrane 6. The extracted anolyte 7 is introduced into a solvent extraction tank 8.
溶媒抽出槽 8において、 電解液中の他の金属元素やその他の不純物を除 去する。 これによつて、 電解液中の他の金属元素濃度を概ね 1 mg/L以 下とすることができる。  In the solvent extraction tank 8, other metal elements and other impurities in the electrolytic solution are removed. As a result, the concentration of other metal elements in the electrolyte can be reduced to approximately 1 mg / L or less.
溶媒抽出後の高純度化された金属電解液は、 力ソード側に間歇的又は連 続的に導入し、 カソライト 9として使用し、 電解採取する。  After the solvent extraction, the highly purified metal electrolyte is introduced intermittently or continuously into the power source side, and used as catholyte 9 for electrolytic sampling.
溶媒抽出後の高純度化された金属電解液は、 必要に応じて活性炭等の フィルター (図示せず) にかけても良い。 活性炭のフィルタ一は、 有機溶媒又はイオン交換膜に由来する有機物か らの不純物を除去する効果がある。 After the solvent extraction, the highly purified metal electrolyte may be applied to a filter (not shown) such as activated carbon, if necessary. The activated carbon filter has an effect of removing impurities from an organic solvent or an organic substance derived from an ion exchange membrane.
また、 溶媒抽出槽にて他の金属元素等の不純物を除去した高純度金属電 解液を一時的に貯留する電解液貯槽 9を設け、 循環させる。 この場合、 溶 媒抽出後の高純度化された金属電解液は、 一旦電解液貯槽 9に貯留させ、 そこから力ソード側に間歇的又は連続的に導入し、 カソライト 9として使 用し、 電解採取する。  An electrolyte storage tank 9 for temporarily storing a high-purity metal electrolyte from which impurities such as other metal elements have been removed in a solvent extraction tank is provided and circulated. In this case, the highly purified metal electrolyte after the solvent extraction is once stored in the electrolyte storage tank 9, and then intermittently or continuously introduced into the power source from there, and used as the catholyte 9. Collect.
電流効率は 8 0〜 1 0 0 %となる。 以上によって、 純度 5 N以上の電析 金属 (力ソードに析出) が得られる。 すなわち、 ガス成分を除き 4 N ( 9 9 . 9 9 w t % ) 以上、 材料によっては 5 N ( 9 9 . 9 9 9 w t % ) 以上 であり、 不純物として O : 1 0 0 w t p p m以下 (材料によっては 0 : 3 O w t p p m以下) 、 C, N , S , Hをそれぞれ 1 0 w t p p m以下とす ることができる。  The current efficiency is 80 to 100%. As a result, an electrodeposited metal having a purity of 5 N or more (precipitated on a power source) can be obtained. That is, excluding gas components, it is 4 N (99.99 wt%) or more, depending on the material, it is 5 N (99.999 wt%) or more, and O: 100 wt ppm or less as an impurity (depending on the material). Is 0: 3 O wtppm or less), and each of C, N, S, and H can be set to 10 wtppm or less.
さらに、 電解によって得られた電析金属を電子ビーム溶解等の真空溶解 を行うことができる。 この真空溶解によって、 N a、 K等のアルカリ金属 やその他の揮発性不純物及びガス成分を効果的に除去できる。 実施例及び比較例  Further, the electrodeposited metal obtained by electrolysis can be subjected to vacuum melting such as electron beam melting. By this vacuum melting, alkali metals such as Na and K and other volatile impurities and gas components can be effectively removed. Examples and comparative examples
次に、 本発明の実施例について説明する。 なお、 本実施例はあくまで一 例であり、 この例に制限されるものではない。 すなわち、 本発明の技術思 想の範囲内で、 実施例以外の態様あるいは変形を全て包含するものである ( (実施例 1 ) Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, within the scope of the technical idea of the present invention, all aspects or modifications other than the examples are included ( (Example 1)
図 1に示すような電解槽を用い、 3 Nレベルの塊状のニッケル原料 1 k gをアノードとし、 力ソードに 2 Nレベルのニッケル板を使用して電解を 行った。 原料の不純物の含有量を表 1に示す。 ニッケル原料には、 主とし て鉄、 炭素、 酸素等が多く含有されている。 浴温 50 ° (:、 硫酸系電解液を使用し、 pH2、 電流密度 2A/dm2 で実施した。 電解当初、 アノード側の N i濃度は 20 gZLである。 電解 後、 N i濃度 100 gZLとして抜き出す。 Using an electrolytic cell as shown in Fig. 1, electrolysis was performed using 1 kg of 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a power source. Table 1 shows the content of impurities in the raw materials. Nickel raw materials mainly contain large amounts of iron, carbon, oxygen, and the like. Bath temperature 50 ° (:.., Using a sulfuric acid-based electrolyte, pH 2, was carried out at a current density of 2A / dm 2 electrolysis Initially, N i concentration in the anode side is 20 GZL After the electrolysis, N i concentration 100 GZL Extract as
抜き出したァノライ トを溶媒抽出槽に導入した。 さらに、 この沈殿物等 の不純物を、 活性炭フィルターを使用して除去した。 以上によって、 電解 液中の鉄の濃度を 1 mg/L以下とすることができた。  The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. Thus, the concentration of iron in the electrolyte could be reduced to 1 mg / L or less.
不純物の除去後、 この液を力ソード側に間歇的に導入し、 カソライ トと して使用して電解採取した。 力ソード側の N i濃度は 1 00 gZLである が、 電解後 N i濃度は 20 gZLとなる。  After removing the impurities, this solution was intermittently introduced into the power source side, and used as catholyte for electrowinning. The Ni concentration on the force side is 100 gZL, but the Ni concentration after electrolysis is 20 gZL.
電析ニッケル (力ソードに析出) 約 l k gを得た。 純度は 5Nを達成し た。 すなわち、 ガス成分を除き 5N (99. 999 w t %) 以上であり、 不純物として O: 30 w t p pm以下、 C, N, Sをそれぞれ 10 w t p pm以下とすることができた。 以上の結果を原料と対比して、 表 1に示す w t p p m  Electrodeposited nickel (deposited on a force sword) About lkg was obtained. Purity achieved 5N. That is, it was 5N (99.999 wt%) or more, excluding gas components, O: 30 wt ppm or less as impurities, and C, N, S, respectively, could be 10 wt ppm or less. The above results are compared with the raw materials, and w t p p m
Figure imgf000008_0001
Figure imgf000008_0001
(比較例 1) (Comparative Example 1)
図 1に示すような電解槽を用いた。 但し、 陰イオン交換膜を使用せず、 また溶媒抽出も実施しなかった。  An electrolytic cell as shown in Fig. 1 was used. However, no anion exchange membrane was used and no solvent extraction was performed.
そして、 3 Nレベルの塊状のニッケル原料 1 k gをアノードとし、 力 ソードに 2 Nレベルのニッケル板を使用して電解を行った。 原料の不純物 の含有量を表 1に示す。 浴温 5 0 ° (:、 硫酸系電解液を使用し、 ニッケル濃度 6 0 g/L、 電流 密度 2 AZ dm2で実施した。 Then, electrolysis was performed using 1 kg of a 3N-level massive nickel raw material as an anode and a 2N-level nickel plate as a power source. Table 1 shows the content of impurities in the raw materials. The bath temperature was 50 ° (: using a sulfuric acid-based electrolyte, the nickel concentration was 60 g / L, and the current density was 2 AZ dm 2 .
液の pHを 2は調節した。 この時、 ァノライトを抜き出さず、 そのまま 電解を続けた。 そして、 電析ニッケル (力ソードに析出) 約 l k gを得た: 以上の結果を、 同様に表 1に示す。  The pH of the solution was adjusted for 2. At this time, electrolysis was continued without extracting anolyte. Then, about 1 kg of electrodeposited nickel (deposited on a force sword) was obtained: The above results are also shown in Table 1.
表 1に示すように、 実施例 1では、 原料の鉄 5 0 w t p pmを 2 w t p pmに、 酸素 2 00 w t p pmを 1 0 w t p pm未満に、 炭素 5 0 w t p p mを 1 0 w t p p m未満に、 その他 N 1 0 w t p p m未満、 S lw t p pm未満、 N a, Kをそれぞれ 0. 1 w t p p m未満とすることができた c これに対し、 比較例 1では、 C, Nをそれぞれ 1 0 w t p pm未満に、 S lw t p pm未満、 N a, Kをそれぞれ 0. lw t p pm未満とするこ とができたが、 鉄 5 0w t p pm、 コバルト 2 0w t p pm、 酸素 6 0 w t p pmで、 実施例 1に比べ精製効果が劣り、 特に鉄とコバルトの除去が 困難であった。 As shown in Table 1, in Example 1, the raw material iron was 50 wtp pm to 2 wtp pm, oxygen was 200 wtp pm to less than 10 wtp pm, carbon was 50 wt ppm to less than 10 wt ppm, and N 10 wtppm or less, Slw tp pm or less, Na and K could each be less than 0.1 wtppm c In contrast, in Comparative Example 1, C and N were each less than 10 wtp pm , S lw tp pm, and Na and K were each less than 0.1 lw tp pm, but iron 50 w tp pm, cobalt 20 w tp pm, oxygen 60 wt pm, and oxygen The purification effect was inferior to that of, and it was particularly difficult to remove iron and cobalt.
(実施例 2)  (Example 2)
実施例 1 と同様に、 図 1に示すような電解槽を用い、 9 0 w t %レベル の純度のコバルトスクラップ原料 1 k gをアノードとし、 力ソードに 2 N レベルのコバルト板を使用して電解を行った。 原料の不純物の含有量を表 2に示す。 コバルト原料には、 主としてタングステン、 チタン、 鉄、 炭素, 酸素等が多く含有されていた。  As in Example 1, electrolysis was performed using an electrolytic cell as shown in Fig. 1, using 1 kg of 90 wt% pure cobalt scrap raw material as the anode, and using a 2N level cobalt plate as the power source. went. Table 2 shows the impurity contents of the raw materials. The cobalt raw material mainly contained a large amount of tungsten, titanium, iron, carbon, oxygen and the like.
浴温 5 0 ° (:、 硫酸系電解液を使用し、 pH 2、 電流密度 2 A/dm2 で実施した。 電解当初、 アノード側の C 0濃度は 2 0 g/Lである。 電解 後、 C o濃度 1 00 g/Lとして抜き出す。 Bath temperature 50 ° (: Using a sulfuric acid-based electrolyte, pH 2 and current density 2 A / dm 2. At the beginning of electrolysis, the C 0 concentration on the anode side was 20 g / L. After electrolysis , With a CO concentration of 100 g / L.
抜き出したァノライトを溶媒抽出槽に導入した。 さらに、 この沈殿物等 の不純物を、 活性炭フィルターを使用して除去した。 以上によって、 電解 液中の鉄、 タングステン等の金属元素不純物濃度をそれぞれ 1 mgZL以 下とすることができた。 不純物の除去後、 この液を力ソード側に間歇的に導入し、 カソライトと して使用して電解採取した。 カゾード側の C o濃度は 1 O O gZLである が、 電解後 C o濃度はそれぞれ 20 g/L以下となった。 The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as iron and tungsten in the electrolyte could be reduced to 1 mgZL or less. After removal of the impurities, this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning. The Co concentration on the cathod side was 100 gZL, but the Co concentration after electrolysis was less than 20 g / L.
電析コバルト (力ソードに析出) 約 l k gを得た。 純度は 5 Nを達成し た。 すなわち、 ガス成分を除き 5 N ( 9 9. 9 9 9 w t %) 以上であり、 不純物として〇 : l Ow t p pm以下、 C , N, Sもそれぞれ l Ow t p pm以下とすることができた。 以上の結果を原料と対比して、 表 2に示す < 表 2  About lkg of deposited cobalt (precipitated on a force sword) was obtained. Purity achieved 5 N. That is, excluding gas components, it was 5 N (9.99.99 wt%) or more, and as impurities, 〇: l Ow tp pm or less, and C, N, and S could each be l Ow tp pm or less. . Table 2 shows the results compared with the raw materials.
w t p p m (%表示以外) 2/ 1  w t p p m (other than% display) 2/1
Figure imgf000010_0001
w t p p m (%表示以外) 2/2
Figure imgf000010_0001
wtppm (other than% display) 2/2
Figure imgf000010_0002
(実施例 3 )
Figure imgf000010_0002
(Example 3)
実施例 1と同様に、 図 1に示すような電解槽を用い、 2 Nレベルの塊状 鉄原料 1 k gをアノードとし、 力ソードに 2 Nレベルの鉄板を使用して電 解を行った。 原料の不純物の含有量を表 3に示す。 鉄原料には、 主として アルミニウム、 砒素、 硼素、 コバルト、 クロム、 ニッケル、 亜鉛、 銅、 炭 素、 酸素等が多く含有されていた。  As in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 2N-level massive iron raw material as an anode, and using a 2N-level iron plate as a power source. Table 3 shows the content of impurities in the raw materials. Iron raw materials mainly contained large amounts of aluminum, arsenic, boron, cobalt, chromium, nickel, zinc, copper, carbon, oxygen, and the like.
浴温 5 0 ° C、 硫酸系電解液を使用し、 pH 2、 電流密度 2 A/dm2 で実施した。 電解当初、 アノード側の鉄濃度は 2 0 gZLである。 電解後, 鉄濃度 1 0 0 g/Lとして抜き出す。 抜き出したァノライトを溶媒抽出槽に導入した。 さらに、 この沈殿物等 の不純物を、 活性炭フィルターを使用して除去した。 以上によって、 電解 液中のニッケル、 コバルト等の金属元素不純物濃度をそれぞれ 1 mg/L 以下とすることができた。 The test was performed at a bath temperature of 50 ° C., a sulfuric acid-based electrolyte, and at a pH of 2 and a current density of 2 A / dm 2 . At the beginning of the electrolysis, the iron concentration on the anode side is 20 gZL. After electrolysis, extract with an iron concentration of 100 g / L. The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. As described above, the concentration of metal element impurities such as nickel and cobalt in the electrolyte could be reduced to 1 mg / L or less.
不純物の除去後、 この液を力ソード側に間歇的に導入し、 カソライ トと して使用して電解採取した。 力ソード側の鉄濃度は 1 0 0 g/Lであるが、 電解後鉄濃度はそれぞれ 20 gZL以下となった。  After removing the impurities, this solution was intermittently introduced into the power source side, and used as catholyte for electrowinning. The iron concentration on the force sword side was 100 g / L, but the iron concentration after electrolysis was less than 20 gZL each.
電析鉄 (力ソードに析出) 約 l k gを得た。 純度は 5 Nを達成した。 す なわち、 ガス成分を除き 5 N ( 9 9. 9 9 9 w t %) 以上であり、 不純物 として O : 2 0w t p pm、 C, N, Sもそれぞれ 1 0 w t p pm以下と することができた。 以上の結果を原料と対比して、 表 3に示す。  Electrodeposited iron (precipitated on a force sword) About lkg was obtained. Purity achieved 5 N. That is, except for gas components, the content is 5 N (99.99 wt%) or more, and as impurities, O: 20 w tp pm and C, N, and S can be each set to 10 wt pm or less. Was. Table 3 compares the above results with the raw materials.
表 3  Table 3
w t p p m  w t p p m
Figure imgf000011_0001
Figure imgf000011_0001
(実施例 4) (Example 4)
実施例 1と同様に、 図 1に示すような電解槽を用い、 9 0w t %レベル の純度のインジウムスクラップ原料 1 k gをアノードとし、 力ソードに 2 Nレベルのインジウム板を使用して電解を行った。 原料の不純物の含有量 を表 4に示す。 インジウム原料には、 主としてビスマス、 アンチモン、 鉛- 鉄、 亜鉛、 銀、 銅、 アルミニウム、 炭素、 酸素等が多く含有されていた。 浴温 5 0 ° C、 塩酸系電解液を使用し、 pH 2、 電流密度 2AZdm2 で実施した。 電解当初、 アノード側のインジウム濃度は 2 0 gZLである ( 電解後、 インジウム濃度 1 0 0 g/Lとして抜き出す。 0 抜き出したァノライ トを溶媒抽出槽に導入した。 さらに、 この沈殿物等 の不純物を、 活性炭フィルターを使用して除去した。 以上によって、 電解 液中の金属元素不純物の濃度をそれぞれ 1 mg/L以下とすることができ た。 As in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of indium scrap raw material having a purity of 90 wt% level as an anode, and using a 2 N level indium plate as a power source. went. Table 4 shows the content of impurities in the raw materials. The indium raw material mainly contained a large amount of bismuth, antimony, lead-iron, zinc, silver, copper, aluminum, carbon, oxygen, and the like. Bath temperature 5 0 ° C, using hydrochloric acid electrolytic solution, pH 2, was carried out at a current density 2AZdm 2. At the beginning of electrolysis, the indium concentration on the anode side is 20 gZL ( after electrolysis, the indium concentration is extracted as 100 g / L. 0 The extracted anolyte was introduced into the solvent extraction tank. Further, impurities such as this precipitate were removed using an activated carbon filter. From the above, the concentration of metal element impurities in the electrolyte could be reduced to 1 mg / L or less.
不純物の除去後、 この液を力ソード側に間歇的に導入し、 カソライトと して使用して電解採取した。 カリード側のインジウム濃度は 1 0 0 gZL であるが、 電解後ィンジゥム濃度はそれぞれ 2 0 gZL以下となった。 電析インジウム (力ソードに析出) 約 l k gを得た。 純度は 4 Nを達成 した。 すなわち、 ガス成分を除き 4 N ( 9 9. 9 9 w t %) 以上であり、 不純物として 0 : 2 0w t p pm、 C, N, Sもそれぞれ 1 0 w t p pm 以下とすることができた。 以上の結果を原料と対比して、 表 4に示す。  After removal of the impurities, this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning. Although the indium concentration on the kaleid side was 100 gZL, the indium concentration after electrolysis was less than 20 gZL each. Electrodeposited indium (deposited on a force sword) was obtained in an amount of about lkg. Purity achieved 4 N. That is, excluding gas components, it was 4 N (9.99.9 wt%) or more, and 0: 20 wt p pm and C, N, and S, respectively, as impurities could be reduced to 10 wt p pm or less. Table 4 compares the above results with the raw materials.
表 4  Table 4
w t p p m (%表示以外) 4/ 1  w t p p m (other than% display) 4/1
Bi Sb Pb Fe Cu Zn Mn Ag Al  Bi Sb Pb Fe Cu Zn Mn Ag Al
In原料 500 600 80 5¾ 1% 40 8 5 2%  In raw material 500 600 80 5¾ 1% 40 8 5 2%
実施例 4 5 2 3 <1 2 1 <1 <1 <1 w t p pm (%表示以外) 4Z2  Example 4 5 2 3 <1 2 1 <1 <1 <1 w t p pm (other than% display) 4Z2
0 C N s H  0 C N s H
In原料 1% 0.1% 100 0.1% く 10  In raw material 1% 0.1% 100 0.1%
実施例 4 20 く 10 く 10 く 10 く 10 (実施例 5) Example 4 20 10 10 10 10 (Example 5)
実施例 1と同様に、 図 1に示すような電解槽を用い、 4 Nレベルの純度 の銅原料 1 k gをアノードとし、 力ソードに 2Nレベルの銅板を使用して 電解を行った。 原料の不純物の含有量を表 5に示す。 銅原料には、 主とし て鉄、 クロム、 ニッケル、 銀、 アルミニウム、 アンチモン、 セレン、 シリ コン、 硫黄、 酸素等が多く含有されていた。  As in Example 1, electrolysis was performed using an electrolytic cell as shown in FIG. 1, using 1 kg of a 4 N-level pure copper raw material as an anode, and using a 2N-level copper plate as a power source. Table 5 shows the content of impurities in the raw materials. Copper raw materials mainly contained large amounts of iron, chromium, nickel, silver, aluminum, antimony, selenium, silicon, sulfur, oxygen, and the like.
浴温 50° C、 硝酸系電解液を使用し、 pH2、 電流密度 2A/dm2 で実施した。 電解当初、 アノード側の銅濃度は 20 gZLである。 電解後、 銅濃度 100 g/Lとして抜き出す。 The test was performed at a bath temperature of 50 ° C and a nitric acid-based electrolyte at a pH of 2 and a current density of 2 A / dm 2 . At the beginning of electrolysis, the copper concentration on the anode side is 20 gZL. After electrolysis, extract with a copper concentration of 100 g / L.
抜き出したァノライ トを溶媒抽出槽に導入した。 さらに、 この沈殿物等 の不純物を、 活性炭フィルタ一を使用して除去した。 以上によって、 電解 液中の金属元素不純物の濃度をそれぞれ 1 mgZL以下とすることができ た。  The extracted anolyte was introduced into a solvent extraction tank. Further, impurities such as the precipitate were removed using an activated carbon filter. From the above, the concentration of metal element impurities in the electrolyte could be reduced to 1 mgZL or less.
不純物の除去後、 この液を力ソード側に間歇的に導入し、 カソライトと して使用して電解採取した。 力ソード側の銅濃度は 1 00 g/Lであるが、 電解後銅濃度はそれぞれ 20 gZL以下となった。  After removal of the impurities, this solution was intermittently introduced to the power source side, and used as a catholyte for electrowinning. The copper concentration on the force sword side was 100 g / L, but the copper concentration after electrolysis was less than 20 gZL each.
電析銅 (力ソードに析出) 約 l k gを得た。 純度は 6Nを達成した。 す なわち、 ガス成分を除き 6 N ( 99. 9999 w t %) 以上であり、 不純 物として〇, S : lw t p pm以下、 C, N, Sもそれぞれ 10 w t p p m以下とすることができた。 以上の結果を原料と対比して、 表 5に示す。 Electrodeposited copper (deposited on force sword) Approximately lkg was obtained. Purity achieved 6N. That is, the content was 6 N (99.9999 wt%) or more, excluding gas components, and as impurities, 〇, S: lw tp pm or less, and C, N, S could each be 10 wt ppm or less. Table 5 compares the above results with the raw materials.
表 5 Table 5
w t p p m 5  w t p p m 5
Fe Cr Ni Ag Al Sb As Se Si Fe Cr Ni Ag Al Sb As Se Si
Cu原料 20 1 2 4 5 7 4 8 2 実施例 4 く 0.1 〈0.1 <0.1 0.1 く 0.1 く 0.1 く 0.1 0.4 く 0.1 w t p p m 5/ '2 Cu raw material 20 1 2 4 5 7 4 8 2 Example 4 0.1 <0.1 <0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.1 w t p p m 5 / '2
0 C N S H  0 C N S H
Cu原料 20 10 10 5 く 10  Cu raw material 20 10 10 5 ku 10
実施例 4 ぐ 1 く 10 く 10 <1 く 10 以上から、 本発明の、 アノードと力ソードを陰イオン交換膜で仕切り、 該ァノライトを間歇的又は連続的に抜き出し、 これを有機溶媒にて金属元 素等の不純物を除去し、 さらにフィルターを使用して不純物を除去し、 除 去後の液を力ソード側に間歇的又は連続的に入れて電解採取することは、 金属元素等の不純物を効果的に除去し、 高純度金属を得る上で、 簡便な方 法であり、 かつ極めて有効であることが分かる。 発明の効果  Example 4 From the above, the anode and the force sword of the present invention were separated by an anion exchange membrane, and the anolyte was extracted intermittently or continuously. Removal of impurities such as elements, and further removal of impurities using a filter, and intermittently or continuously placing the removed liquid on the power source side for electrolytic sampling, remove impurities such as metal elements. It can be seen that this is a simple and very effective method for effectively removing and obtaining high-purity metals. The invention's effect
以上に示すように、 電解液として高純度化用金属含有溶液を用い、 他の 金属元素、 非金属、 炭素、 酸素等が多く含有される金属原料から、 電解用 金属含有溶液を用いて電解採取する簡便な方法を提供するものであり、 簡 単な製造工程の改良により、 同原料から純度 4 N ( 9 9. 9 9 w t %) 以 上若しくは 5 N ( 9 9. 9 9 9 w t %) 以上の高純度金属を効率的に製造 できるという著しい効果を有する。  As shown above, a high-purity metal-containing solution is used as the electrolytic solution, and a metal raw material containing a large amount of other metal elements, non-metals, carbon, oxygen, etc., is used for electrowinning using the metal-containing solution for electrolysis. Purity 4 N (99.99 wt%) or 5 N (99.99 wt%) from the same raw material by improving the simple manufacturing process It has a remarkable effect that the above high-purity metals can be produced efficiently.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電解液として高純度化用金属を含有する溶液を用いて電解する際に、 アノードと力ソードを陰イオン交換膜で仕切り、 ァノライトを間歇的又は 連続的に抜き出して溶媒抽出槽に導入して、 該溶媒抽出槽にて不純物を除 去し、 この不純物除去後の高純度金属電解液を力ソード側に、 間歇的又は 連続的に導入することを特徴とする高純度金属の製造方法。 1. When performing electrolysis using a solution containing a metal for purification as an electrolytic solution, the anode and force sword are separated by an anion exchange membrane, and anolyte is extracted intermittently or continuously and introduced into a solvent extraction tank. And removing the impurities in the solvent extraction tank, and intermittently or continuously introducing the high-purity metal electrolyte from which the impurities have been removed to the power source side.
2 . 単一の電解槽内において、 金属原料の溶解と金属の採取を同時に行な レ 、 かつイオン交換膜で分離されていることを特徴とする請求の範囲第 1 項記載の高純度金属の製造方法。  2. In a single electrolytic cell, the dissolution of the metal raw material and the collection of the metal are simultaneously performed, and the metal is separated by an ion-exchange membrane. Production method.
3 . 溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留し、 高純度金属電解液を力ソード側に間歇的又は連続的に導入することを特徴 とする請求の範囲第 1項又は第 2項記載の高純度金属の製造方法。  3. The high-purity metal electrolyte from which impurities have been removed in the solvent extraction tank is temporarily stored, and the high-purity metal electrolyte is intermittently or continuously introduced into the power source side. 3. The method for producing a high-purity metal according to item 1 or 2.
4 . ァノライ ト及びカソライトの液を循環させることを特徴とする請求の 範囲第 1項〜第 3項のそれぞれに記載の高純度金属の製造方法。  4. The method for producing a high-purity metal according to any one of claims 1 to 3, wherein the solution of anolyte and catholyte is circulated.
5 . 電解による高純度金属の製造装置であって、 金属原料を入れたァノー ドバスケット、 アノードと力ソードを仕切る陰イオン交換膜、 高純度金属 を析出させる力ソード、 金属溶解液 (ァノライ ト) から不純物を除去する 溶媒抽出槽、 ァノライ トを間歇的又は連続的に抜き出して溶媒抽出槽に導 入する装置及び溶媒抽出によって得られた高純度金属電解液をカソード側 に間歇的又は連続的に導入する装置からなることを特徴とする高純度金属 の製造装置。 5. High-purity metal production equipment by electrolysis, including an anode basket containing metal raw materials, an anion exchange membrane separating the anode and the power sword, a power sword for precipitating high-purity metal, and a metal solution (anolite) Solvent extraction tank, equipment for extracting anolyte intermittently or continuously and introducing it into the solvent extraction tank, and intermittently or continuously the high-purity metal electrolyte obtained by solvent extraction toward the cathode side High-purity metal production equipment, characterized by the equipment to be introduced.
6 . 金属原料の溶解と金属の採取が単一の電解槽内であり、 かつイオン交 換膜で分離されていることを特徴とする請求の範囲第 5項記載の高純度金 属の製造装置。 6. The apparatus for producing a high-purity metal according to claim 5, wherein the dissolution of the metal raw material and the collection of the metal are performed in a single electrolytic cell and are separated by an ion exchange membrane. .
7 . 溶媒抽出槽にて不純物を除去した高純度金属電解液を一時的に貯留す る電解液貯槽を備えていることを特徴とする請求の範囲第 5項又は第 6項 記載の高純度金属の製造装置。 7. The high-purity metal according to claim 5 or 6, further comprising an electrolyte storage tank for temporarily storing the high-purity metal electrolyte from which impurities have been removed in the solvent extraction tank. Manufacturing equipment.
8 . ァノライト及び力ソライトの液を循環させる装置を備えていることを 特徴とする請求の範囲第 5項〜第 7項のそれぞれに記載の高純度金属の製  8. The apparatus for producing a high-purity metal according to any one of claims 5 to 7, further comprising a device for circulating a liquid of the anolyte and the power solite.
PCT/JP2003/001113 2002-05-21 2003-02-04 Method and device for producing high-purity metal WO2003097903A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002145630 2002-05-21
JP2002-145630 2002-05-21
JP2002323541A JP2004043946A (en) 2002-05-21 2002-11-07 Method and device for manufacturing high purity metal
JP2002-323541 2002-11-07

Publications (1)

Publication Number Publication Date
WO2003097903A1 true WO2003097903A1 (en) 2003-11-27

Family

ID=29552314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001113 WO2003097903A1 (en) 2002-05-21 2003-02-04 Method and device for producing high-purity metal

Country Status (3)

Country Link
JP (1) JP2004043946A (en)
TW (1) TWI252875B (en)
WO (1) WO2003097903A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784639B2 (en) 2008-03-20 2014-07-22 Rio Tinto Fer Et Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1276129C (en) * 2004-07-28 2006-09-20 金川集团有限公司 Process for preparing high purity nickel
JP4745400B2 (en) * 2006-10-24 2011-08-10 Jx日鉱日石金属株式会社 Recovery method of valuable metals from ITO scrap
KR101623629B1 (en) 2011-03-07 2016-05-23 제이엑스 킨조쿠 가부시키가이샤 Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
KR101696161B1 (en) * 2013-09-27 2017-01-13 제이엑스금속주식회사 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
WO2015064201A1 (en) * 2013-11-01 2015-05-07 Jx日鉱日石金属株式会社 HIGHLY PURE In AND PRODUCTION METHOD THEREFOR
JP6448417B2 (en) * 2014-10-02 2019-01-09 Jx金属株式会社 High purity tin production method, high purity tin electrowinning device and high purity tin
JP6532734B2 (en) 2015-03-31 2019-06-19 Jx金属株式会社 Recovery method of valuables including tungsten

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115222A (en) * 1976-10-25 1978-09-19 National Research Institute For Metals Method for electrolytic winning of lead
JPS6431988A (en) * 1987-07-29 1989-02-02 Sumitomo Metal Mining Co Method for refining indium
WO1993020262A1 (en) * 1992-04-01 1993-10-14 Rmg Services Pty. Ltd. Electrochemical system for recovery of metals from their compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115222A (en) * 1976-10-25 1978-09-19 National Research Institute For Metals Method for electrolytic winning of lead
JPS6431988A (en) * 1987-07-29 1989-02-02 Sumitomo Metal Mining Co Method for refining indium
WO1993020262A1 (en) * 1992-04-01 1993-10-14 Rmg Services Pty. Ltd. Electrochemical system for recovery of metals from their compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784639B2 (en) 2008-03-20 2014-07-22 Rio Tinto Fer Et Titane Inc. Electrochemical process for the recovery of metallic iron and chlorine values from iron-rich metal chloride wastes

Also Published As

Publication number Publication date
TW200307060A (en) 2003-12-01
TWI252875B (en) 2006-04-11
JP2004043946A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP4840808B2 (en) High purity nickel, high purity nickel target and high purity nickel thin film
TWI628287B (en) High-purity tin and manufacturing method thereof
JP5043028B2 (en) Recovery method of valuable metals from ITO scrap
WO2001090445A1 (en) Method of producing a higher-purity metal
US6818119B2 (en) Method for processing metals
JP2013079443A (en) Method and device for collecting indium or indium alloy
JP3825984B2 (en) Manufacturing method of high purity manganese
KR100614891B1 (en) Method for recovering high purity Indium
WO2003097903A1 (en) Method and device for producing high-purity metal
JPH10204673A (en) Recovering method of indium
JP3825983B2 (en) Metal purification method
JPH073486A (en) High-purity cobalt and production of thereof
JP3878407B2 (en) Metal purification method
JP3878402B2 (en) Metal purification method
JPH06192874A (en) Refining method for cobalt
JP3095730B2 (en) Method for producing high purity cobalt
JP2004099975A (en) Process for recovering ruthenium and/or iridium
JP3151195B2 (en) Cobalt purification method
CN114808036A (en) Method for recovering high-purity tin-indium alloy from ITO target waste
JP2000204494A (en) High-purity titanium and its production
JPH11350179A (en) Production of high purity cobalt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase