WO2003096328A1 - Disc device signal processing device - Google Patents

Disc device signal processing device Download PDF

Info

Publication number
WO2003096328A1
WO2003096328A1 PCT/JP2003/005301 JP0305301W WO03096328A1 WO 2003096328 A1 WO2003096328 A1 WO 2003096328A1 JP 0305301 W JP0305301 W JP 0305301W WO 03096328 A1 WO03096328 A1 WO 03096328A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
control voltage
peak level
fcm
gain control
Prior art date
Application number
PCT/JP2003/005301
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Tada
Shigekazu Minechika
Yoshihiro Aoi
Koichi Ogawa
Ichizo Sakamoto
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Publication of WO2003096328A1 publication Critical patent/WO2003096328A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • G11B7/0053Reproducing non-user data, e.g. wobbled address, prepits, BCA

Definitions

  • the present invention relates to a signal processing device for a disk drive, and more particularly to, for example, rotating a disk recording medium in which a track is formed on a recording surface and a predetermined mark is formed on the track at predetermined intervals, and a laser beam is applied to the recording surface.
  • the present invention relates to a disk device that detects a predetermined mark signal related to a predetermined mark by irradiating the mark, and executes a predetermined process based on the predetermined mark signal.
  • predetermined marks such as an FCM (Fine Clock Mark) and an address mark are formed at predetermined intervals on a track.
  • FCM Freine Clock Mark
  • address mark an address mark
  • Various operations such as speed adjustment are controlled based on the FCM signal and the address mark signal detected from the reflected light when the FCM and the address mark are traced.
  • the peak levels of the FCM signal and the address mark signal vary depending on the difference in the magneto-optical disc and the difference in the characteristics of the optical pickup. Therefore, the FCM signal and the address mark signal may not be properly distinguished from the detected FCM signal and the address mark signal.
  • a gain control voltage is applied to each VGA (Variable Gain Amplifier) to which the FCM signal or the address mark signal is input, and the FCM signal or the address mark signal is amplified to reduce the peak level. It is always constant. That is, the peak level of the FCM signal and the address mark signal is determined by the gain control voltage.
  • the determination of the gain control signal has been performed as follows. First, two types of gain control voltages are applied to the VGA, and the peak level of each FCM signal or address mark signal is measured. Next, the measured two points are approximated by a straight line. Then, a desired gain control voltage is obtained by substituting a desired peak level into this linear equation.
  • the conventional VGA has, for example, a gain setting range of 1 dB to 10 dB. had.
  • this gain setting width was not enough to absorb the variation in the peak level of the FCM signal and the address mark signal due to the difference in the reflectivity of the magneto-optical disk and the difference in the laser power.
  • a VGA with a wider gain setting range for example, ⁇ 10 dB to +10 dB, has been used.
  • a main object of the present invention is to provide a novel disk drive.
  • a signal processing device for performing predetermined signal processing on an amplified signal amplified by an amplifying means to which a control voltage is applied, a specification for specifying at least two control voltages in which a peak level of the amplified signal exceeds a threshold value Means, estimating means for estimating a quadratic function indicating the amplification characteristic of the amplifying means based on the control voltage specified by the specifying means and a peak level corresponding to the control voltage, and an amplified signal based on the quadratic function
  • a signal processing apparatus comprising: a calculating unit that calculates an optimum control voltage at which a peak level of the control signal becomes an optimum level.
  • a memory means for storing a reference amplification characteristic; Measuring means for measuring the first peak level of the amplified signal amplified by the means, detecting means for detecting the second peak level corresponding to the reference control voltage with reference to the reference amplification characteristic, first peak level of the second peak level Means for multiplying the target peak level by the ratio to
  • a signal processing device comprising a specifying unit that specifies a control voltage corresponding to a multiplied value of a multiplying unit as an optimum control voltage with reference to the multiplying unit.
  • the specifying means specifies at least two control voltages at which the peak level of the amplified signal exceeds the threshold. Based on the control voltage specified by the specifying means and the peak level corresponding to the control voltage, a quadratic function indicating the amplification characteristic of the amplifying means is estimated by the estimating means. Based on the quadratic function, the optimum control voltage at which the peak level of the amplified signal becomes the optimum level is calculated by the calculating means. Then, the optimum control voltage is applied to the amplifier, and the signal is amplified to the optimum level by the amplifier.
  • the reference amplification characteristic of the amplification means is stored in the memory means.
  • the first peak level of the amplified signal amplified by the amplification means to which the reference control voltage has been applied is measured by the measurement means.
  • the second peak level corresponding to the reference control voltage is detected by the detection unit with reference to the reference amplification characteristic.
  • the ratio of the second peak level to the first peak level is multiplied by the multiplying means by the target peak level.
  • the control voltage corresponding to the multiplied value by the multiplying means is specified as the optimum control voltage by the specifying means with reference to the reference amplification characteristic. Then, the optimum control voltage is applied to the amplifier, and the signal is amplified to the optimum level by the amplifier.
  • the optimum control voltage for the amplifying means is determined based on a quadratic function that approximates the output characteristics of the amplifying means, or the optimum control voltage is determined by using the output characteristics serving as the reference of the amplifying means. Since the control voltage is determined, a more precise optimal control voltage can be obtained. Therefore, the predetermined mark signal can be amplified to the optimum level, so that the predetermined mark signal can be properly determined even when the peak level fluctuates due to the difference between the magneto-optical disks and the characteristic of the optical pickup.
  • FIG. 1 is an illustrative view showing an entire configuration of an embodiment of the present invention.
  • FIG. 2 is an illustrative view explaining a state of an FCM and an address mark.
  • Figure 3 is a circuit diagram showing the photodetector, TE signal detection circuit, FE signal detection circuit, and FCM signal detection circuit.
  • FIG. 4 is a waveform diagram showing the address mark signal.
  • FIG. 5A is a waveform diagram showing an FCM signal detected from a land track
  • FIG. 5B is a waveform diagram showing an FCM signal detected from a groove track
  • FIG. 6 is a graph showing the signal characteristics of a VGA that amplifies the FCM signal.
  • FIG. 7 is a flowchart showing a part of the operation of the DSP.
  • FIG. 8 is a flowchart showing another part of the operation of the DSP.
  • FIG. 9 is a flowchart showing another part of the operation of the DSP.
  • FIG. 10 is a graph showing how the optimum gain control voltage is obtained.
  • FIG. 11 is a flowchart showing a part of the operation of the DSP.
  • FIG. 12 is a flowchart showing another part of the operation of the DSP.
  • FIG. 13 is a flowchart showing another part of the operation of the DSP. BEST MODE FOR CARRYING OUT THE INVENTION
  • an optical disk device 10 of this embodiment includes an optical pickup 12 provided with an optical lens 14.
  • the optical lens 14 is supported by the tracking function 16 and the focus function 18, and the laser light emitted from the laser diode 20 is converged by such an optical lens 14.
  • the recording surface of the magneto-optical disk 50 such as ASM ⁇ is irradiated. As a result, desired data is recorded on the magneto-optical disk 50 or reproduced from the magneto-optical disk 50.
  • land tracks and groove tracks are alternately formed every other track on the surface of the magneto-optical disk 50, and FCM and address marks are embossed at predetermined intervals on each track.
  • the land track is formed in a convex shape
  • the FCM on the land track is formed in a concave shape
  • the groove track is formed in a concave shape
  • the FCM on the group track is formed in a convex shape.
  • the address mark is 301
  • the address mark is formed in a concave shape on the land track and is formed in a convex shape on the groove track.
  • the hatched portion is a concave portion
  • the white portion is a convex portion.
  • the output of the photodetector 22 is input to an FE signal detection circuit 24, a TE signal detection circuit 26, and an FCM signal detection circuit 28, which detect a FE (Focus Error) signal, a TE (TrackingError) signal, and an FCM signal, respectively. Is done.
  • the optical detector 22, the FE signal detection circuit 24, the TE signal detection circuit 26, and the FCM signal detection circuit 28 are configured as shown in FIG.
  • the photodetector 22 is composed of four detection elements 22a to 22d. The outputs of the detection elements 22a to 22d are different in the FE signal detection circuit 24, the TE signal detection circuit 26, and the FCM signal detection circuit 28. Is calculated. Specifically, equation (1) is calculated in the FE signal detection circuit 24, equation (2) is calculated in the TE signal detection circuit 26, and equation (3) is calculated in the FCM signal detection circuit 28.
  • A” to “D” in Expressions (1) to (3) correspond to the outputs of the detection elements 22 a to 22 d, respectively.
  • the detection elements 22a and 22d detect the left half light component of the laser light in the tracing direction
  • the detection elements 22b and 22c detect the right half light component of the laser light in the tracing direction.
  • the FE signal and the TE signal are supplied to a DSP (Digital Signal Processor) 40 via A / D converters 42a and 42b, respectively.
  • the DSP 44 executes a focus servo process based on the FE signal, and executes a tracker servo process and a thread sample process based on the TE signal.
  • a focus work control signal is generated by the focus servo process, and is output to the focus work 18 via the D / A converter 42b.
  • a tracking actuating control signal is generated by the tracking serpo process, and is output from the DZA converter 42a. It is output on the 16th of tracking practice.
  • a thread control signal is generated by the thread support process, and is output from the D / A converter 42 c to the thread motor 48.
  • the swing width of the address mark occupies 1/2 of each track width, and as can be seen from Fig. 2 and equation (2), the TE signal is a half of the left half laser light component from the left half laser light component. It is generated by subtracting the laser light component. Therefore, in the tracking state where the laser light traces the center of the track, the level of the TE signal fluctuates according to the unevenness of the address mark as shown in FIG. This fluctuation is much larger than the fluctuation based on the tracking deviation, and the fluctuation component generated by scanning such an address mark is defined as an address mark signal.
  • the address mark signal is supplied to a peak hold circuit 32 and an address detection circuit 34 via a VGA (Voltage Controlled Amplifier) 30.
  • the peak hold circuit 32 detects the peak level of the address mark signal, and outputs a peak hold signal indicated by a chain line in FIG.
  • This peak hold signal is input to the DSP 44 via the A / D converter 42c, and the DSP 44 generates a gain control signal for controlling the gain of the VGA 30 based on the input peak hold signal. I do.
  • the generated gain control signal is supplied to the VGA 30 via the DZA converter 46e, whereby the level of the address mark signal is adjusted.
  • the FCM signal output from the FCM signal detection circuit 28 is supplied to the peak hold circuit 38 and the FCM processing circuit 40 via the VGA 36.
  • the FCM signal changes as shown in FIG. 5A when the laser beam scans over the land track, and changes as shown in FIG. 5B when the laser beam scans over the groove track.
  • the peak hold circuit 32 detects such a peak level of the FCM signal and outputs a peak hold signal indicated by a chain line in FIG. 5 (A) or FIG. 5 (B).
  • the output peak hold signal is supplied to the AZD converter 42 (03 44 via 1).
  • the DSP 44 generates a VGA 36 gain control signal based on the input peak hold signal, and generates the generated gain control signal.
  • the address detection circuit 34 detects an address value from the address mark signal whose level has been adjusted by the VGA 30, and inputs the detected address value to the signal processing circuit 41.
  • the FCM processing circuit 40 performs processing such as land group discrimination based on the FCM signal whose level has been adjusted by the VGA 36, and provides the processing result to the signal processing circuit 41.
  • the signal processing circuit 41 generates a timing signal based on the input address value and the determination result, and the DSP 44 performs processing in response to the generated timing signal.
  • the gain setting range of VGA30 and VGA36 is -10 dB to +10 dB, which is wider than conventional ones.
  • the peak level of the address mark signal included in the output from the TE signal detection circuit 26 and the peak level of the FCM signal output from the FCM signal detection circuit 28 are shown in FIG.
  • the gain of VGA 30 and VGA 36 should be adjusted appropriately and peak level variations should be reduced. It needs to be suppressed.
  • the gain control signal is determined as follows. First, the peak level of the FCM signal or the address mark signal is actually measured at two points (points A and B) where the peak level of the FCM signal or the address mark signal is equal to or higher than a predetermined signal level. . Next, the slope between points A and B is calculated. Using the calculated slope, a straight line connecting points A and B is approximated by a quadratic curve, and a gain control signal is calculated from the quadratic curve. In the VGA30 and VGA36, in which the gain setting width is wider than before, the peak levels of the FCM signal and the address mark signal change exponentially with respect to the gain control voltage. Therefore, by approximating points A and B with a quadratic curve, it is possible to approximate with less error than with linear approximation.
  • the operation of the DSP 44 will be described below with reference to the flowcharts shown in FIGS. Although the DSP 44 is actually formed by a logic circuit, a flow diagram is used for convenience of explanation.
  • Execute support and thread support That is, a tracking work overnight control signal, a focus work overnight control signal and a thread control signal are generated based on the FE signal and the TE signal taken from the A / D converters 42a and 42b. Output from the DZA converter 46a to 46c. Subsequently, in steps S7 and S9, the peak level adjustment of the FCM signal and the peak level adjustment of the address mark signal are respectively performed. When the peak level adjustment is completed, the AZD converters 4 2e and 4e in step S11. 4 Perform various controls based on the output of f.
  • step S7 The FCM peak level adjustment processing in step S7 is executed according to the subroutine shown in FIG. First, in step S21, output to the D / A converter 46d
  • step S23 it is determined whether the output to the DZA converter 46d is 2.3 V.
  • abnormal termination at step S 47 occurs because the peak level of the FCM signal cannot be obtained, as can be seen from Fig. 6. I do.
  • the process proceeds to step S 25.
  • step S25 the currently set gain control voltage is applied to the VGA 36 via the D / A converter 46d, and the peak level of the FCM signal is measured in step S27. Then, the current gain control voltage is stored in the work area Ax, and the peak level of the FCM signal, which is the measurement result, is stored in the work area Ay. If the peak level of the FCM signal has the characteristics of curve 3 shown in Fig. 6, the coordinates in the graph in Fig. 6
  • (x, y) (A x, Ay) is the first A point.
  • the work area is simply described as Ax or Ay, it indicates a value stored in the work area A x or the work area Ay. The same applies to the following work areas.
  • step S29 it is determined whether the measured peak level of the FCM signal is lower than 1.0 V. If the peak level of the FCM signal is lower than 1.0 V, the gain control voltage is increased by 0.2 V in step S31, and the process returns to step S23.
  • step S25 the currently set gain control voltage is again converted to DZA It is applied to the VGA 36 via the detector 46d, and the peak level of the FCM signal is measured in step S27. Then, the current gain control voltage is stored in the work area Ax, and the peak level of the FCM signal, which is the measurement result, is stored in the work area Ay. Thus, the coordinates of point A are updated.
  • the axis of x Ax becomes the temporary y axis, and the current peak level (Ay) of the FCM signal becomes the intercept b on the temporary y axis.
  • step S33 the gain control voltage is increased by 0.2 V, and in step S35, the updated gain control voltage is applied to the VGA 36 via the DZA converter 46d.
  • step S37 the peak level of the FCM signal is measured.
  • the gain control voltage updated in step S33 is stored in the work area Bx, and the peak level measured in step S37 is stored in the private area By.
  • step S39 the slope a of the spring AB connecting point A and point B is calculated according to equation (4), and the calculated value of slope a is stored in work area a.
  • step S41 the line segment AB is approximated by the quadratic curve shown in equation (5).
  • step S43 equation (6) obtained by transforming equation (5) is added to the target FCM The optimum gain control voltage corresponding to the target peak level of the FCM signal is calculated by substituting the signal peak level value. Optimal gain obtained in this way T / JP03 / 05301
  • the control voltage is applied to the VGA 36 via the DZA converter 46 d in step S45.
  • the FCM signal having the target peak level is output from the VGA 36.
  • c is a coefficient based on a rule of thumb.
  • step S9 The address level adjustment processing in step S9 is performed according to a subroutine shown in FIG. 9, and this subroutine is applied to the application destination of the gain control voltage output in step S65, step S75, and step S85.
  • VGA 36 two different gain control voltages are applied to the VGA 36, and the VGA 36 amplifies the FCM signal with a gain according to the applied gain control voltage.
  • the peak level of each amplified FCM signal is detected by a peak hold circuit 38.
  • DSP 44 uses a quadratic curve to determine the characteristics of VGA 36 based on each gain control voltage applied to VGA 36 and each peak level detected by peak hold circuit 38. Approximate. Then, based on the quadratic curve, the optimum gain control voltage at which the optimum peak level is obtained is calculated.
  • the VGA 36 amplifies the FCM signal based on the calculated optimal gain control voltage.
  • the optimum gain control voltage is calculated for the address mark signal in the same manner as described above, and the calculated optimum gain control voltage is applied to the VGA 30.
  • the FCM signal address mark signal can be appropriately determined.
  • the peak level of the positive polarity of the FCM signal or the address signal is detected in order to calculate the optimum gain control voltage, but the peak level of the negative polarity is detected. You may. In other words, the peak level of the negative polarity of the FCM signal (or address mark signal) amplified with two different gains is The optimum gain control voltage can also be obtained by performing a predetermined calculation on the above two gains and the corresponding two peak levels, which are detected by a bias circuit.
  • the relationship between the standard gain control voltage and the peak level of the FCM signal (VGA characteristics) is stored in advance as a table, and the optimal gain control voltage is determined using this table.
  • the optimal gain control voltage is determined using this table.
  • the peak level of the FCM signal when the gain control voltage is 1.5 V (OdB) is actually measured. Let this measurement point (1.5, a) be point A. Next, referring to the table, obtain the peak level of the FCM signal when the gain control voltage is also 1.5V (OdB). Let this score (1.5, b) be point B. Then, the ratio r of the peak level of the FCM signal between the points A and B is calculated, and the target ratio of the FCM peak level is divided by the calculated ratio r to correspond to the target FCM peak level ⁇ (gain (The control voltage is the same.) Find the FCM peak level on the table] 3. Finally, referring to the table, the (optimal) gain control voltage X corresponding to the FCM peak level 3 is obtained. Then, the optimum gain control voltage X is applied to the VGA 36.
  • the operation of the DSP 44 will be described below with reference to FIGS. 11 to 13. Although the DSP 44 is actually formed by a logic circuit, a flow diagram is used for convenience of explanation.
  • the processing of the main routine shown in FIG. 11 is the same as the operation of FIG. 7 of the previous embodiment except for the processing of step S107 and step S109.
  • step S107 The FCM level adjustment processing in step S107 is executed according to the subroutine shown in FIG. First, in step S121, a 1.5V harvest control voltage is applied to the VGA 36, and in step S123, the FCM peak level at point A (see FIG. 10) is measured. If the measurement result at this time is a, the coordinates of point A are (1.5, a).
  • step S125 the gain control voltage is set to 1.5 Get the FCM peak level at V. If the value of the FCM peak level obtained at this time is b and the obtained point is point B, the coordinates of point B are (1.5, b).
  • step S127 the ratio r of the gain control voltage between the actually measured value (point A) and the table value (point B) is calculated according to equation (7).
  • step SI31 a gain control voltage X corresponding to the FCM peak level] 3 is obtained by referring to the table.
  • This gain control voltage is the optimum gain control voltage that can obtain the target FCM peak level ⁇ when applied to the VGA 36.
  • step S133 the optimum gain control voltage X thus obtained is applied to the VGA.
  • step S109 The address level adjustment processing in step S109 is executed in accordance with the subroutine shown in FIG. 13.
  • the application destination of the gain control voltage output in step S141 and step S153 is VGA30. This is the same as the subroutine shown in FIG. 12, except that the signal for measuring the peak level in S143 is an address mark signal.
  • the FCM peak level a was actually measured at the point where the gain control voltage was 1.5 V, and the gain control voltage was set to 1.5 times using a table prepared in advance.
  • the standard FCM peak level b at V is obtained, and the ratio r between the FCM peak levels a and b is obtained.
  • the target FCM peak The level ratio is given by the ratio r, and the FCM peak level
  • the gain control voltage X corresponding to the FCM peak level / 3 is obtained by referring to the table.
  • the target FCM peak level ⁇ can be obtained by applying the obtained optimal gain control voltage X to the VGA.
  • the gain control voltage corresponding to the target FCM peak level is calculated using the ratio between the value in the standard VGA characteristic held in the take-up and the measured value, so that a more strict The optimum gain control voltage can be obtained. Therefore, even if the peak level of the signal fluctuates due to the difference between the magneto-optical disks and the difference in the characteristics of the optical pickup, the FCM signal address mark signal can be appropriately determined.

Abstract

A disc device signal processing device includes a VGA to which two different gain control voltages are applied and the VGA amplifies an FCM signal by the gain corresponding to the gain control voltage applied. The FCM signals amplified have peak levels detected by a peak hold circuit. According to the gain control voltages applied to the VGA and the peak levels detected by the peak hold circuit, a DSP approximates the VGA characteristic by a quadratic curve. According to this quadratic curve, an optimal gain control voltage where the optimal peak level can be obtained is calculated. The VGA amplifies the FCM signal according to the optimal gain control voltage calculated.

Description

明細書  Specification
ディスク装置の信号処理装置 発明の分野  FIELD OF THE INVENTION Field of the Invention
この発明は、 ディスク装置の信号処理装置に関し、 特にたとえば、 記録面にト ラックが形成されかつトラック上に所定距離毎に所定マークが形成されたディス ク記録媒体を回転させ、 記録面にレーザ光を照射して所定マークに関連する所定 マーク信号を検出し、 そして所定マーク信号に基づいて所定の処理を実行する、 ディスク装置に関する。  The present invention relates to a signal processing device for a disk drive, and more particularly to, for example, rotating a disk recording medium in which a track is formed on a recording surface and a predetermined mark is formed on the track at predetermined intervals, and a laser beam is applied to the recording surface. The present invention relates to a disk device that detects a predetermined mark signal related to a predetermined mark by irradiating the mark, and executes a predetermined process based on the predetermined mark signal.
従来技術  Conventional technology
A S MO (Advanced Storage Magneto Opt ical disk) のような光磁気ディスク には、 F CM (Fine Clock Mark) やアドレスマークのような所定マークがトラッ ク上に所定の間隔で形成されており、 ディスク回転速度調整などの各種動作は、 F CMおよびアドレスマークをトレースしたときの反射光から検出された F CM 信号およびァドレスマーク信号に基づいて制御される。  On a magneto-optical disk such as an ASMO (Advanced Storage Magnetic Disk), predetermined marks such as an FCM (Fine Clock Mark) and an address mark are formed at predetermined intervals on a track. Various operations such as speed adjustment are controlled based on the FCM signal and the address mark signal detected from the reflected light when the FCM and the address mark are traced.
しかし、 F CM信号およびアドレスマーク信号のピークレベルは、 光磁気ディ スクの違いや光ピックアツプの特性の違いによってばらつきがある。 そのため、 検出されたそのままの F CM信号およびァドレスマーク信号では、 F CM信号お よびァドレスマーク信号を適切に判別できないおそれがある。  However, the peak levels of the FCM signal and the address mark signal vary depending on the difference in the magneto-optical disc and the difference in the characteristics of the optical pickup. Therefore, the FCM signal and the address mark signal may not be properly distinguished from the detected FCM signal and the address mark signal.
そのため、 F CM信号あるいはァドレスマーク信号が入力されるそれぞれの V GA (Variable Gain Ampl i f ier) に利得制御電圧を印加して、 F CM信号あるい はアドレスマーク信号を増幅してピ一クレベルが常に一定となるようにしている。 つまり、 利得制御電圧いかんによって、 F CM信号およびアドレスマーク信号 のピークレベルが決定される。 従来は、 この利得制御信号の決定は次のようにし て行われていた。 まず、 2通りの利得制御電圧を V GAに印加して、 それぞれの F CM信号あるいはアドレスマーク信号のピークレベルを測定する。 次に、 測定 した 2点を直線によって近似する。 そして、 この直線式に所望のピークレベルを 代入することによって、 目的の利得制御電圧を得る。  Therefore, a gain control voltage is applied to each VGA (Variable Gain Amplifier) to which the FCM signal or the address mark signal is input, and the FCM signal or the address mark signal is amplified to reduce the peak level. It is always constant. That is, the peak level of the FCM signal and the address mark signal is determined by the gain control voltage. Conventionally, the determination of the gain control signal has been performed as follows. First, two types of gain control voltages are applied to the VGA, and the peak level of each FCM signal or address mark signal is measured. Next, the measured two points are approximated by a straight line. Then, a desired gain control voltage is obtained by substituting a desired peak level into this linear equation.
ところで、 従来の VGAは、 たとえば、 一 4 d B〜十 4 d Bのゲイン設定幅を 持っていた。 しかし、 このゲイン設定幅では、 光磁気ディスクの反射率の違いや レーザーパワーの違いによる F CM信号およびァドレスマ一ク信号のピークレべ ルのばらつきを吸収するには十分ではなかった。 そのため、 ゲイン設定幅が、 た とえば、 - 1 0 d B〜+ l 0 d Bというように従来よりも広い V GAが使用され るようになった。 By the way, the conventional VGA has, for example, a gain setting range of 1 dB to 10 dB. had. However, this gain setting width was not enough to absorb the variation in the peak level of the FCM signal and the address mark signal due to the difference in the reflectivity of the magneto-optical disk and the difference in the laser power. For this reason, a VGA with a wider gain setting range, for example, −10 dB to +10 dB, has been used.
ところが、 ゲイン設定幅が広い V G Aでは、 F CM信号およびァドレスマーク 信号のピークレベルが、 利得制御電圧に対して指数関数的に変化する。 したがつ て、 指数関数的に変化する V G Aの特性を従来のように直線で近似したのでは誤 差が大きくなるという問題が発生する。 発明の概要  However, in VGA having a wide gain setting range, the peak levels of the FCM signal and the address mark signal change exponentially with respect to the gain control voltage. Therefore, if the characteristics of the VGA that changes exponentially are approximated by a straight line as in the past, there is a problem that the error increases. Summary of the Invention
それゆえに、 この発明の主たる目的は、 新規なディスク装置を提供することで ある。  Therefore, a main object of the present invention is to provide a novel disk drive.
この発明の他の目的は、 ピークレベルが変動するときでもディスクから再生さ れた信号を適切に判別することができる、 ディスク装置の信号処理装置を提供す ることである。  It is another object of the present invention to provide a signal processing device for a disk device, which can appropriately determine a signal reproduced from a disk even when a peak level fluctuates.
第 1の発明は、 制御電圧が印加される増幅手段によって増幅された増幅信号に 所定の信号処理を施す信号処理装置において、 増幅信号のピークレベルが閾値を 上回る少なくとも 2つの制御電圧を特定する特定手段、 前記特定手段によって特 定された制御電圧と当該制御電圧に対応するピークレベルとに基づいて増幅手段 の増幅特性を示す 2次関数を推定する推定手段、 および 2次関数に基づいて増幅 信号のピークレベルが最適レベルとなる最適制御電圧を算出する算出手段を備え る、 信号処理装置である。  According to a first aspect of the present invention, in a signal processing device for performing predetermined signal processing on an amplified signal amplified by an amplifying means to which a control voltage is applied, a specification for specifying at least two control voltages in which a peak level of the amplified signal exceeds a threshold value Means, estimating means for estimating a quadratic function indicating the amplification characteristic of the amplifying means based on the control voltage specified by the specifying means and a peak level corresponding to the control voltage, and an amplified signal based on the quadratic function A signal processing apparatus comprising: a calculating unit that calculates an optimum control voltage at which a peak level of the control signal becomes an optimum level.
第 2の発明は、 制御電圧が印加される増幅手段によって増幅された増幅信号に 所定の信号処理を施す信号処理装置において、 基準増幅特性を格納するメモリ手 段、 基準制御電圧が印加された増幅手段によって増幅された増幅信号の第 1ピー クレベルを測定する測定手段、 基準増幅特性を参照して基準制御電圧に対応する 第 2ピークレベルを検出する検出手段、 第 2ピークレベルの第 1ピークレベルに 対する比率を目標ピークレベルに掛け算する掛け算手段、 および基準増幅特性を 参照して掛け算手段の掛け算値に対応する制御電圧を最適制御電圧として特定す る特定手段を備える、 信号処理装置である。 According to a second aspect of the present invention, in a signal processing device for performing predetermined signal processing on an amplified signal amplified by an amplifying unit to which a control voltage is applied, a memory means for storing a reference amplification characteristic; Measuring means for measuring the first peak level of the amplified signal amplified by the means, detecting means for detecting the second peak level corresponding to the reference control voltage with reference to the reference amplification characteristic, first peak level of the second peak level Means for multiplying the target peak level by the ratio to A signal processing device comprising a specifying unit that specifies a control voltage corresponding to a multiplied value of a multiplying unit as an optimum control voltage with reference to the multiplying unit.
第 1の発明においては、 特定手段によって増幅信号のピークレベルが閾値を上 回る少なくとも 2つの制御電圧が特定される。 特定手段によって特定された制御 電圧とこの制御電圧に対応するピークレベルとに基づいて増幅手段の増幅特性を 示す 2次関数が推定手段によって推定される。 2次関数に基づいて増幅信号のピ —クレベルが最適レベルとなる最適制御電圧が算出手段によって算出される。 そ して、 最適制御電圧が増幅手段に印加され、 増幅手段によって信号が最適レベル に増幅される。  In the first invention, the specifying means specifies at least two control voltages at which the peak level of the amplified signal exceeds the threshold. Based on the control voltage specified by the specifying means and the peak level corresponding to the control voltage, a quadratic function indicating the amplification characteristic of the amplifying means is estimated by the estimating means. Based on the quadratic function, the optimum control voltage at which the peak level of the amplified signal becomes the optimum level is calculated by the calculating means. Then, the optimum control voltage is applied to the amplifier, and the signal is amplified to the optimum level by the amplifier.
第 2の発明においては、 増幅手段の基準増幅特性がメモリ手段に格納されてい る。 基準制御電圧が印加された増幅手段によって増幅された増幅信号の第 1ピー クレベルが測定手段によって測定される。 基準増幅特性を参照して基準制御電圧 に対応する第 2ピークレベルが検出手段によって検出される。 第 2ピークレベル の第 1ピークレベルに対する比率が目標ピークレベルに掛け算手段によって掛け 算される。 基準増幅特性を参照して掛け算手段による掛け算値に対応する制御電 圧が特定手段によって最適制御電圧として特定される。 そして、 最適制御電圧が 増幅手段に印加され、 増幅手段によって信号が最適レベルに増幅される。  In the second invention, the reference amplification characteristic of the amplification means is stored in the memory means. The first peak level of the amplified signal amplified by the amplification means to which the reference control voltage has been applied is measured by the measurement means. The second peak level corresponding to the reference control voltage is detected by the detection unit with reference to the reference amplification characteristic. The ratio of the second peak level to the first peak level is multiplied by the multiplying means by the target peak level. The control voltage corresponding to the multiplied value by the multiplying means is specified as the optimum control voltage by the specifying means with reference to the reference amplification characteristic. Then, the optimum control voltage is applied to the amplifier, and the signal is amplified to the optimum level by the amplifier.
これらの発明によれば、 増幅手段の出力特性を近似する 2次関数を基に増幅手 段に対する最適制御電圧を決定するようにしたり、 あるいは増幅手段の基準とな る出力特性を利用して最適制御電圧を決定するようにしたりしたため、 より厳密 な最適制御電圧が得られるようになった。 したがって、 所定マーク信号を最適レ ベルに増幅することができるので、 光磁気ディスクの違いゃ光ピックアツプの特 性の違いによってピークレベルが変動したときでも所定マーク信号を適切に判別 することができる。  According to these inventions, the optimum control voltage for the amplifying means is determined based on a quadratic function that approximates the output characteristics of the amplifying means, or the optimum control voltage is determined by using the output characteristics serving as the reference of the amplifying means. Since the control voltage is determined, a more precise optimal control voltage can be obtained. Therefore, the predetermined mark signal can be amplified to the optimum level, so that the predetermined mark signal can be properly determined even when the peak level fluctuates due to the difference between the magneto-optical disks and the characteristic of the optical pickup.
この発明の上述の目的, その他の目的, 特徴, および利点は、 図面を参照して 行う以下の実施例の詳細な説明から一層明らかとなろう。 図面の簡単な説明  The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の一実施例の全体構成を示す図解図である。 図 2は F CMおよびアドレスマークの様子を説明する図解図である。 FIG. 1 is an illustrative view showing an entire configuration of an embodiment of the present invention. FIG. 2 is an illustrative view explaining a state of an FCM and an address mark.
図 3は光検出器, T E信号検出回路, F E信号検出回路および F CM信号検出 回路を示す回路図である。  Figure 3 is a circuit diagram showing the photodetector, TE signal detection circuit, FE signal detection circuit, and FCM signal detection circuit.
図 4はァドレスマーク信号を示す波形図である。  FIG. 4 is a waveform diagram showing the address mark signal.
図 5 (A) はランドトラックから検出された F CM信号を示す波形図であり、 図 5 (B) はグルーブトラックから検出された F CM信号を示す波形図である。 図 6は F CM信号を増幅する V GAの信号特性を示すグラフである。  FIG. 5A is a waveform diagram showing an FCM signal detected from a land track, and FIG. 5B is a waveform diagram showing an FCM signal detected from a groove track. FIG. 6 is a graph showing the signal characteristics of a VGA that amplifies the FCM signal.
図 7は D S Pの動作の一部を示すフロー図である。  FIG. 7 is a flowchart showing a part of the operation of the DSP.
図 8は D S Pの動作の他の一部を示すフロー図である。  FIG. 8 is a flowchart showing another part of the operation of the DSP.
図 9は D S Pの動作のその他の一部を示すフロー図である。  FIG. 9 is a flowchart showing another part of the operation of the DSP.
図 1 0は最適利得制御電圧を求める様子を示すグラフである。  FIG. 10 is a graph showing how the optimum gain control voltage is obtained.
図 1 1は D S Pの動作の一部を示すフロー図である。  FIG. 11 is a flowchart showing a part of the operation of the DSP.
図 1 2は D S Pの動作の他の一部を示すフロー図である。  FIG. 12 is a flowchart showing another part of the operation of the DSP.
図 1 3は D S Pの動作のその他の一部を示すフロー図である。 発明を実施するための最良の形態  FIG. 13 is a flowchart showing another part of the operation of the DSP. BEST MODE FOR CARRYING OUT THE INVENTION
図 1を参照して、 この実施例の光ディスク装置 1 0は、 光学レンズ 1 4が設け られた光ピックアップ 1 2を含む。 光学レンズ 1 4は、 トラッキングァクチユエ —夕 1 6およびフォーカスァクチユエ一夕 1 8によって支持され、 レーザダイォ ード 2 0から放出されたレーザ光は、 このような光学レンズ 1 4で収束されて A S M〇のような光磁気ディスク 5 0の記録面に照射される。 これによつて、 所望 のデータが光磁気ディスク 5 0に記録され、 または光磁気ディスク 5 0から再生 される。  Referring to FIG. 1, an optical disk device 10 of this embodiment includes an optical pickup 12 provided with an optical lens 14. The optical lens 14 is supported by the tracking function 16 and the focus function 18, and the laser light emitted from the laser diode 20 is converged by such an optical lens 14. The recording surface of the magneto-optical disk 50 such as ASM〇 is irradiated. As a result, desired data is recorded on the magneto-optical disk 50 or reproduced from the magneto-optical disk 50.
光磁気ディスク 5 0の表面には、 図 2に示すように、 ランドトラックおよびグ ルーブトラックが 1トラックおきに交互に形成され、 各トラックには F CMおよ びァドレスマークが所定間隔でエンボス加工によって形成される。 具体的に説明 すると、 ランドトラックは凸状に形成され、 ランドトラック上の F CMは凹状に 形成される。 これに対して、 グルーブトラックは凹状に形成され、 グループトラ ック上の F CMは凸状に形成される。 また、 アドレスマークは、 隣接する 2つの 301 As shown in FIG. 2, land tracks and groove tracks are alternately formed every other track on the surface of the magneto-optical disk 50, and FCM and address marks are embossed at predetermined intervals on each track. Formed by Specifically, the land track is formed in a convex shape, and the FCM on the land track is formed in a concave shape. On the other hand, the groove track is formed in a concave shape, and the FCM on the group track is formed in a convex shape. Also, the address mark is 301
トラックの境界線上を波打つように (ゥォブル状に) 形成され、 この波の振れ幅 は各々のトラック幅の 1Z2に相当する。 このため、 アドレスマークは、 ランド トラック上では凹状に形成され、 グルーブトラック上では凸状に形成される。 な お、 図 2において斜線で示す部分が凹状部であり、 白抜き部分が凸状部である。 図 1に戻って、 記録面からの反射光は、 光学レンズ 14を通過して光検出器 2 2に照射される。 光検出器 22の出力は、 FE信号検出回路 24, TE信号検出 回路 26および F CM信号検出回路 28に入力され、 それぞれで FE (Focus Error) 信号, TE (TrackingError) 信号および F CM信号が検出される。 光検 出器 22, FE信号検出回路 24, TE信号検出回路 26および F CM信号検出 回路 28は、 図 3に示すように構成される。 光検出器 22は 4つの検出素子 22 a〜22dからなり、 この検出素子 22 a〜22 dの出力が、 FE信号検出回路 24, TE信号検出回路 26および F CM信号検出回路 28において、 異なる演 算を施される。具体的には、 FE信号検出回路 24において式(1)が演算され、 TE信号検出回路 26において式 (2) が演算され、 FCM信号検出回路 28に おいて式 (3) が演算される。 It is formed so as to undulate (wobble) on the track boundaries, and the amplitude of this wave is equivalent to 1Z2 of each track width. Therefore, the address mark is formed in a concave shape on the land track and is formed in a convex shape on the groove track. In FIG. 2, the hatched portion is a concave portion, and the white portion is a convex portion. Returning to FIG. 1, the reflected light from the recording surface passes through the optical lens 14 and irradiates the photodetector 22. The output of the photodetector 22 is input to an FE signal detection circuit 24, a TE signal detection circuit 26, and an FCM signal detection circuit 28, which detect a FE (Focus Error) signal, a TE (TrackingError) signal, and an FCM signal, respectively. Is done. The optical detector 22, the FE signal detection circuit 24, the TE signal detection circuit 26, and the FCM signal detection circuit 28 are configured as shown in FIG. The photodetector 22 is composed of four detection elements 22a to 22d. The outputs of the detection elements 22a to 22d are different in the FE signal detection circuit 24, the TE signal detection circuit 26, and the FCM signal detection circuit 28. Is calculated. Specifically, equation (1) is calculated in the FE signal detection circuit 24, equation (2) is calculated in the TE signal detection circuit 26, and equation (3) is calculated in the FCM signal detection circuit 28.
FE= (A+C) ― (B+D) … (1)  FE = (A + C) ― (B + D)… (1)
TE= (A + D) 一 (B + C) … (2)  TE = (A + D) one (B + C)… (2)
FCM= (A + B) - (C + D) … (3)  FCM = (A + B)-(C + D)… (3)
なお、 式 (1) 〜式 (3) における "A"〜 "D" はそれぞれ検出素子 22 a 〜22 dの出力に対応する。 また、 検出素子 22 aおよび 22 dはレーザ光のト レース方向左半分の光成分を検出し、 検出素子 22 bおよび 22 cはレーザ光の トレース方向右半分の光成分を検出する。  Note that “A” to “D” in Expressions (1) to (3) correspond to the outputs of the detection elements 22 a to 22 d, respectively. The detection elements 22a and 22d detect the left half light component of the laser light in the tracing direction, and the detection elements 22b and 22c detect the right half light component of the laser light in the tracing direction.
FE信号および TE信号は、 A/D変換器 42 aおよび 42 bを介して DSP (Digital Signal Processor) 40にそれぞれ与えられる。 DSP44は、 FE 信号に基づいてフォーカスサーポ処理を実行し、 TE信号に基づいてトラツキン ダサーポおよびスレツドサ一ポ処理を実行する。 フォーカスサーポ処理によって フォーカスァクチユエ一夕制御信号が生成され、 D/A変換器 42 bを介してフ オーカスァクチユエ一夕 18に出力される。 また、 トラッキングサーポ処理によ つてトラッキングァクチユエ一夕制御信号が生成され、 DZA変換器 42 aから トラッキングァクチユエ一夕 16に出力される。 さらに、 スレッドサーポ処理に よってスレツド制御信号が生成され、 D/A変換器 42 cからスレツドモータ 4 8に出力される。 The FE signal and the TE signal are supplied to a DSP (Digital Signal Processor) 40 via A / D converters 42a and 42b, respectively. The DSP 44 executes a focus servo process based on the FE signal, and executes a tracker servo process and a thread sample process based on the TE signal. A focus work control signal is generated by the focus servo process, and is output to the focus work 18 via the D / A converter 42b. In addition, a tracking actuating control signal is generated by the tracking serpo process, and is output from the DZA converter 42a. It is output on the 16th of tracking practice. Further, a thread control signal is generated by the thread support process, and is output from the D / A converter 42 c to the thread motor 48.
図 2に示すようにァドレスマークの振れ幅は各々のトラック幅の 1 / 2を占め、 TE信号は図 2および式 (2) から分かるように左半分のレ一ザ光成分から右半 分のレーザ光成分を引き算することで生成される。 このため、 レーザ光がトラッ クの中央をトレースするトラッキング状態では、 TE信号のレベルはアドレスマ —クの凹凸に応じて図 4に示すように変動する。 この変動はトラッキングのずれ に基づく変動よりも格段に大きく、 このようなアドレスマークの走査によって生 じる変動成分を、 特にアドレスマーク信号と定義する。  As shown in Fig. 2, the swing width of the address mark occupies 1/2 of each track width, and as can be seen from Fig. 2 and equation (2), the TE signal is a half of the left half laser light component from the left half laser light component. It is generated by subtracting the laser light component. Therefore, in the tracking state where the laser light traces the center of the track, the level of the TE signal fluctuates according to the unevenness of the address mark as shown in FIG. This fluctuation is much larger than the fluctuation based on the tracking deviation, and the fluctuation component generated by scanning such an address mark is defined as an address mark signal.
アドレスマーク信号は、 VGA (Voltage Controlled Amplifier) 30を介し てピークホールド回路 32およびァドレス検出回路 34に与えられる。 ピークホ —ルド回路 32は、 アドレスマーク信号のピークレベルを検出し、 図 4に一点鎖 線で示すピークホールド信号を出力する。 このピークホールド信号は、 A/D変 換器 42 cを介して DSP 44に入力され、 DSP44は、 入力されたピ一クホ ールド信号に基づいて、 V G A 30の利得を制御する利得制御信号を生成する。 生成された利得制御信号は DZA変換器 46 eを介して VGA 30に与えられ、 これによつてァドレスマーク信号のレベルが調整される。  The address mark signal is supplied to a peak hold circuit 32 and an address detection circuit 34 via a VGA (Voltage Controlled Amplifier) 30. The peak hold circuit 32 detects the peak level of the address mark signal, and outputs a peak hold signal indicated by a chain line in FIG. This peak hold signal is input to the DSP 44 via the A / D converter 42c, and the DSP 44 generates a gain control signal for controlling the gain of the VGA 30 based on the input peak hold signal. I do. The generated gain control signal is supplied to the VGA 30 via the DZA converter 46e, whereby the level of the address mark signal is adjusted.
FCM信号検出回路 28から出力された FCM信号は、 VGA36を介してピ ークホールド回路 38および FCM処理回路 40に与えられる。 FCM信号は、 レーザ光がランドトラック上を走査するとき図 5 (A) に示すように変化し、 レ 一ザ光がグルーブトラック上を走査するとき図 5 (B) に示すように変化する。 ピークホールド回路 32は、 このような F CM信号のピークレベルを検出し、 図 5 (A) または図 5 (B) において一点鎖線で示すピークホールド信号を出力す る。 出力されたピークホールド信号は、 AZD変換器 42(1を介して03 44 に与えられる。 DSP44は、 入力されたピークホールド信号に基づいて VGA 36の利得制御信号を生成し、 生成した利得制御信号を D/A変換器 46 dを介 して VGA 36に与える。 このため、 F CM信号のレベルもまた、 利得制御信号 に基づいて調整される。 アドレス検出回路 34は、 VGA 30によってレベル調整を施されたアドレス マ一ク信号からアドレス値を検出し、 検出されたアドレス値を信号処理回路 41 に入力する。 一方、 F CM処理回路 40は、 VGA 36によってレベル調整が施 された F CM信号に基づいてランド グループ判別などの処理を施し、 処理結果 を信号処理回路 41に与える。 信号処理回路 41は、 入力されたアドレス値およ び判別結果に基づいてタイミング信号を生成し、 D S P 44は、 生成されたタイ ミング信号に応答して処理を行う。 なお、 VGA30および VGA36のゲイン 設定幅は、 —10dB〜+l 0 dBと従来のものに比べて広くなつている。 The FCM signal output from the FCM signal detection circuit 28 is supplied to the peak hold circuit 38 and the FCM processing circuit 40 via the VGA 36. The FCM signal changes as shown in FIG. 5A when the laser beam scans over the land track, and changes as shown in FIG. 5B when the laser beam scans over the groove track. The peak hold circuit 32 detects such a peak level of the FCM signal and outputs a peak hold signal indicated by a chain line in FIG. 5 (A) or FIG. 5 (B). The output peak hold signal is supplied to the AZD converter 42 (03 44 via 1). The DSP 44 generates a VGA 36 gain control signal based on the input peak hold signal, and generates the generated gain control signal. Is supplied to the VGA 36 via the D / A converter 46 d. Therefore, the level of the FCM signal is also adjusted based on the gain control signal. The address detection circuit 34 detects an address value from the address mark signal whose level has been adjusted by the VGA 30, and inputs the detected address value to the signal processing circuit 41. On the other hand, the FCM processing circuit 40 performs processing such as land group discrimination based on the FCM signal whose level has been adjusted by the VGA 36, and provides the processing result to the signal processing circuit 41. The signal processing circuit 41 generates a timing signal based on the input address value and the determination result, and the DSP 44 performs processing in response to the generated timing signal. The gain setting range of VGA30 and VGA36 is -10 dB to +10 dB, which is wider than conventional ones.
T E信号検出回路 26からの出力に含まれるァドレスマーク信号のピークレべ ルゃ、 F CM信号検出回路 28から出力される F CM信号のピークレベルには、 図 6に示すように(図 6は F CM信号の例)、光磁気ディスク 50の違いや光ピッ クアップ 12の違いによってばらつきがある。 したがって、 FCM信号ゃァドレ スマーク信号を適切に判別し、 F CM信号やアドレスマーク信号を用いた処理を 正しく行うためには、 VGA 30および VGA 36のゲインを適度に調整し、 ピ ークレベルのばらつきを抑える必要がある。  As shown in FIG. 6, the peak level of the address mark signal included in the output from the TE signal detection circuit 26 and the peak level of the FCM signal output from the FCM signal detection circuit 28 are shown in FIG. There are variations due to differences in the magneto-optical disk 50 and differences in the optical pick-up 12). Therefore, in order to properly determine the FCM signal address mark signal and properly perform processing using the FCM signal and address mark signal, the gain of VGA 30 and VGA 36 should be adjusted appropriately and peak level variations should be reduced. It needs to be suppressed.
そこで、 この実施例のディスク装置 10では、 次のようにして利得制御信号を 決定する。 まず、 FCM信号あるいはアドレスマーク信号のピ一クレベルが所定 の信号レベル以上となる 2箇所 (A点と B点とする) において、 F CM信号ある いはアドレスマーク信号のピークレベルを実際に測定する。 次に、 A点と B点と の間の傾斜を算出する。 そして、 算出された傾斜を利用して A点と B点とを結ぶ 直線を 2次曲線で近似し、 この 2次曲線から利得制御信号を算出する。 ゲイン設 定幅が従来よりも広くなつた VGA30および VGA36では、 FCM信号およ びァドレスマーク信号のピークレベルが利得制御電圧に対して指数関数的に変化 する。 したがって、 A点と B点とを 2次曲線で近似することによって直線近似よ りも誤差が少なく近似できる。  Therefore, in the disk device 10 of this embodiment, the gain control signal is determined as follows. First, the peak level of the FCM signal or the address mark signal is actually measured at two points (points A and B) where the peak level of the FCM signal or the address mark signal is equal to or higher than a predetermined signal level. . Next, the slope between points A and B is calculated. Using the calculated slope, a straight line connecting points A and B is approximated by a quadratic curve, and a gain control signal is calculated from the quadratic curve. In the VGA30 and VGA36, in which the gain setting width is wider than before, the peak levels of the FCM signal and the address mark signal change exponentially with respect to the gain control voltage. Therefore, by approximating points A and B with a quadratic curve, it is possible to approximate with less error than with linear approximation.
以下に、 図 7〜図 9に示すフロー図を用いて DSP 44の動作を説明する。 な お、 DSP44は、 実際には論理回路によって形成されるが、 説明の便宜上、 フ ロー図を用いる。  The operation of the DSP 44 will be described below with reference to the flowcharts shown in FIGS. Although the DSP 44 is actually formed by a logic circuit, a flow diagram is used for convenience of explanation.
まず図 7のステップ S I, S 3および S 5でフォーカスサーポ, トラッキング 5301 First, focus servo and tracking are performed in steps SI, S3 and S5 in Fig. 7. 5301
サ一ポおよびスレッドサ一ポを実行する。 つまり、 A/D変換器 4 2 aおよび 4 2 bから取り込んだ F E信号および T E信号に基づいてトラッキングァクチユエ 一夕制御信号, フォーカスァクチユエ一夕制御信号およびスレツド制御信号を生 成し、 DZA変換器 4 6 a〜4 6 cから出力する。 続いて、 ステップ S 7および S 9で F CM信号のピークレベル調整およびァドレスマーク信号のピークレベル 調整をそれぞれ実行し、 ピークレベル調整が完了すると、 ステップ S 1 1で AZ D変換器 4 2 eおよび 4 2 fの出力に基づく各種制御を実行する。 Execute support and thread support. That is, a tracking work overnight control signal, a focus work overnight control signal and a thread control signal are generated based on the FE signal and the TE signal taken from the A / D converters 42a and 42b. Output from the DZA converter 46a to 46c. Subsequently, in steps S7 and S9, the peak level adjustment of the FCM signal and the peak level adjustment of the address mark signal are respectively performed. When the peak level adjustment is completed, the AZD converters 4 2e and 4e in step S11. 4 Perform various controls based on the output of f.
ステップ S 7における F CMピークレベル調整処理は、 図 8に示すサブルーチ ンに従って実行される。 まず、 ステップ S 2 1で、 D/A変換器 4 6 dへの出力 The FCM peak level adjustment processing in step S7 is executed according to the subroutine shown in FIG. First, in step S21, output to the D / A converter 46d
(フロー図には "DA"で示す)、 つまり VGA 3 6への出力 (利得制御電圧) を 0 . 5 Vに設定する。 Set the output (gain control voltage) to VGA 36 (shown as "DA" in the flow chart) to 0.5 V.
次に、 ステップ S 2 3において、 DZA変換器 4 6 dへの出力が 2. 3 Vであ るかどうかを判断する。 D/A変換器 4 6 dへの出力が 2 . 3 V以上である場合 は、 図 6からもわかるように、 F CM信号のピークレベルが得られないためステ ップ S 4 7で異常終了する。 一方、 DZA変換器 4 6 dへの出力が 2. 3 Vでな い場合には、 ステップ S 2 5に進む。  Next, in step S23, it is determined whether the output to the DZA converter 46d is 2.3 V. When the output to the D / A converter 46 d is 2.3 V or more, abnormal termination at step S 47 occurs because the peak level of the FCM signal cannot be obtained, as can be seen from Fig. 6. I do. On the other hand, when the output to the DZA converter 46 d is not 2.3 V, the process proceeds to step S 25.
ステップ S 2 5では、 現在設定されている利得制御電圧を D/A変換器 4 6 d を介して V GA 3 6に印加し、 ステップ S 2 7において F CM信号のピークレべ ルを測定する。 そして、 現在の利得制御電圧をワークエリア A xに保存し、 測定 結果である F CM信号のピークレベルをワークエリァ A yに保存する。 F CM信 号のピークレベルが図 6に示す曲線 3の特性を有する場合、 図 6のグラフの座標 In step S25, the currently set gain control voltage is applied to the VGA 36 via the D / A converter 46d, and the peak level of the FCM signal is measured in step S27. Then, the current gain control voltage is stored in the work area Ax, and the peak level of the FCM signal, which is the measurement result, is stored in the work area Ay. If the peak level of the FCM signal has the characteristics of curve 3 shown in Fig. 6, the coordinates in the graph in Fig. 6
(x, y) = (A x, Ay)が最初の A点となる。なお、 ワークエリアについて、 単に Axや Ayと表記した場合は、ワークエリア A xやワークエリア Ayに保存さ れている値を示すものとする。 以下に出てくるワークエリアについても同じであ る。 (x, y) = (A x, Ay) is the first A point. When the work area is simply described as Ax or Ay, it indicates a value stored in the work area A x or the work area Ay. The same applies to the following work areas.
ステツプ S 2 9では、 測定した F CM信号のピークレベルが 1 . 0 Vよりも低 いかどうかを判断する。 F CM信号のピークレベルが 1 . 0 Vよりも低い場合は、 ステップ S 3 1において、 利得制御電圧を 0. 2 Vだけ上昇させ、 ステップ S 2 3に戻る。 ステップ S 2 5で再び現在設定されている利得制御電圧を DZA変換 器 46 dを介して VGA 36に印加し、 ステップ S 27において F CM信号のピ 一クレベルを測定する。 そして、 現在の利得制御電圧をワークエリア Axに保存 し、 測定結果である F CM信号のピークレベルをワークエリァ Ayに保存する。 こうして A点の座標が更新される。 In step S29, it is determined whether the measured peak level of the FCM signal is lower than 1.0 V. If the peak level of the FCM signal is lower than 1.0 V, the gain control voltage is increased by 0.2 V in step S31, and the process returns to step S23. In step S25, the currently set gain control voltage is again converted to DZA It is applied to the VGA 36 via the detector 46d, and the peak level of the FCM signal is measured in step S27. Then, the current gain control voltage is stored in the work area Ax, and the peak level of the FCM signal, which is the measurement result, is stored in the work area Ay. Thus, the coordinates of point A are updated.
F CM信号のピークレベルが 1. 0Vよりも低い場合には、 図 6に示したよう に、 グラフの傾斜がなだらかであり、 2次曲線で近似すると誤差が大きくなる。 そのため、 F CM信号のピークレベルが 1. 0Vよりも低い部分は排除する。 一方、 FCMのピークレベルが 1. 0V以上である場合は、 ステップ S 23か らステップ S 31によって構成されるループを抜ける。 ループを抜けたときにヮ —クエリア Axおよびワークエリア Ayに保存されている値によって A点が確定 する。  When the peak level of the FCM signal is lower than 1.0 V, as shown in FIG. 6, the slope of the graph is gentle, and the error increases when the curve is approximated by a quadratic curve. Therefore, the part where the peak level of the FCM signal is lower than 1.0 V is excluded. On the other hand, when the peak level of the FCM is equal to or higher than 1.0 V, the process exits the loop including Step S23 to Step S31. When exiting the loop, point A is determined by the values stored in query area Ax and work area Ay.
そして、 x=Axの軸が仮の y軸となり、 F CM信号の現時点でのピークレべ ル(Ay)が仮の y軸における切片 bとなる。図 6において、曲線 1においては、 x=0 (dB) が仮の y軸となり、 切片 bは 1. 0となる。 曲線 2においては、 x = -l 0 (dB) が仮の y軸となり、 切片 bは 1. 25となる。 そして、 曲線 3においては、 x =—6 (dB) が仮の y軸となり、 切片 bは 1. 0となる。 ステツプ S 33では利得制御電圧を 0. 2 Vだけ上昇させ、 ステップ S 35で は更新された利得制御電圧を DZA変換器 46 dを介して VGA 36に印加する。 ステップ S 37では、 F CM信号のピ一クレベルの測定を行う。 ステップ S 33 で更新された利得制御電圧はワークエリア Bxに保存され、 ステップ S37で測 定されたピークレベルはヮ一クエリア Byに保存される。 こうして座標(X, y) = (Bx, By) が B点として確定する。  Then, the axis of x = Ax becomes the temporary y axis, and the current peak level (Ay) of the FCM signal becomes the intercept b on the temporary y axis. In FIG. 6, in curve 1, x = 0 (dB) is the provisional y-axis, and the intercept b is 1.0. In curve 2, x = -l 0 (dB) is the temporary y-axis, and the intercept b is 1.25. Then, in curve 3, x = -6 (dB) is the temporary y axis, and the intercept b is 1.0. In step S33, the gain control voltage is increased by 0.2 V, and in step S35, the updated gain control voltage is applied to the VGA 36 via the DZA converter 46d. In step S37, the peak level of the FCM signal is measured. The gain control voltage updated in step S33 is stored in the work area Bx, and the peak level measured in step S37 is stored in the private area By. Thus, the coordinates (X, y) = (Bx, By) are determined as point B.
次に、ステップ S 39において、 A点と B点とを結ぶ泉分 ABの傾斜 aを式(4) にしたがつて算出し、 算出した傾斜 aの値をワークェリア aに保存する。  Next, in step S39, the slope a of the spring AB connecting point A and point B is calculated according to equation (4), and the calculated value of slope a is stored in work area a.
a = (By-Ay) / (Bx— Ax) … (4)  a = (By-Ay) / (Bx— Ax)… (4)
そして、 ステップ S41では、 式 (5) に示す 2次曲線によって線分 A Bを近 似し、 ステップ S 43において、 式 (5) を変形して得られる式 (6) に、 目標 とする F CM信号のピークレベル値を代入して、 この目標とする F CM信号のピ ークレベルに対応する最適利得制御電圧を算出する。 こうして得られた最適利得 T/JP03/05301 In step S41, the line segment AB is approximated by the quadratic curve shown in equation (5). In step S43, equation (6) obtained by transforming equation (5) is added to the target FCM The optimum gain control voltage corresponding to the target peak level of the FCM signal is calculated by substituting the signal peak level value. Optimal gain obtained in this way T / JP03 / 05301
制御電圧を、 ステップ S 4 5において DZA変換器 4 6 dを介して V GA 3 6に 印加する。 このことにより、 目標とするピークレベルをもった F CM信号が V G A 3 6から出力される。 The control voltage is applied to the VGA 36 via the DZA converter 46 d in step S45. As a result, the FCM signal having the target peak level is output from the VGA 36.
y = a · c · x 2 + b … ( 5 ) y = a · c · x 2 + b… (5)
ただし、 cは経験則に基づく係数である。 Here, c is a coefficient based on a rule of thumb.
Figure imgf000012_0001
Figure imgf000012_0001
ステップ S 9におけるアドレスレベル調整処理は、 図 9に示すサブルーチンに 従って実行されるが、 このサブルーチンは、 ステップ S 6 5 , ステップ S 7 5お よびステップ S 8 5で出力する利得制御電圧の印加先が V GA 3 0であり、 ステ ップ S 6 7およびステップ S 7 7でピークレベルを測定する信号がアドレスマ一 ク信号である点を除き、 図 8に示すサカレ一チンと同じである。  The address level adjustment processing in step S9 is performed according to a subroutine shown in FIG. 9, and this subroutine is applied to the application destination of the gain control voltage output in step S65, step S75, and step S85. Is VGA30, and is the same as Sakare chin shown in FIG. 8 except that the signal for measuring the peak level in step S67 and step S77 is an address mark signal.
以上の説明から分かるように、 互いに異なる 2つの利得制御電圧が V GA 3 6 に印加され、 VGA 3 6は、 印加された利得制御電圧に応じた利得で F CM信号 を増幅する。 増幅された各々の F C M信号のピークレベルは、 ピークホールド回 路 3 8によって検出される。 D S P 4 4は、 V GA 3 6に印加した各々の禾得制 御電圧と、 ピークホールド回路 3 8によって検出された各々のピークレベルに基 づいて、 V GA 3 6の特性を 2次曲線によって近似する。 そして、 この 2次曲線 に基づいて最適ピークレベルが得られる最適利得制御電圧を算出する。 V GA 3 6は、 算出された最適利得制御電圧に基づいて F C M信号を増幅する。 なお、 ァ ドレスマーク信号についても上述したのと同じ要領で最適利得制御電圧が算出さ れ、 算出されたこの最適利得制御電圧が、 V GA 3 0に印加される。  As can be seen from the above description, two different gain control voltages are applied to the VGA 36, and the VGA 36 amplifies the FCM signal with a gain according to the applied gain control voltage. The peak level of each amplified FCM signal is detected by a peak hold circuit 38. DSP 44 uses a quadratic curve to determine the characteristics of VGA 36 based on each gain control voltage applied to VGA 36 and each peak level detected by peak hold circuit 38. Approximate. Then, based on the quadratic curve, the optimum gain control voltage at which the optimum peak level is obtained is calculated. The VGA 36 amplifies the FCM signal based on the calculated optimal gain control voltage. The optimum gain control voltage is calculated for the address mark signal in the same manner as described above, and the calculated optimum gain control voltage is applied to the VGA 30.
このように、 2次曲線によって V GAの特性を近似するようにしたため、 より 厳密な最適利得制御電圧が得られるようになった。 したがって、 光磁気ディスク の違いゃ光ピックアツプの特性の違いによつてピークレベルが変動したときでも F CM信号ゃァドレスマーク信号を適切に判別することができる。  As described above, since the characteristics of the VGA are approximated by the quadratic curve, a more strict optimal gain control voltage can be obtained. Therefore, even when the peak level fluctuates due to the difference between the magneto-optical disks and the difference between the characteristics of the optical pickup, the FCM signal address mark signal can be appropriately determined.
なお、 この実施例では、 最適利得制御電圧を算出するために、 F CM信号また はァドレス信号の正極性のピークレベルを検出するようにしているが、 検出する のは負極性のピークレベルであってもよい。 つまり、 異なる 2つの利得で増幅し た F C M信号 (またはアドレスマーク信号) の負極性のピークレベルをピークホ —ルド回路によって検出し、 上述の 2つの利得とこれに対応する 2つのピークレ ベルに所定の演算を施すことによつても、 最適利得制御電圧を求めることができ る。 In this embodiment, the peak level of the positive polarity of the FCM signal or the address signal is detected in order to calculate the optimum gain control voltage, but the peak level of the negative polarity is detected. You may. In other words, the peak level of the negative polarity of the FCM signal (or address mark signal) amplified with two different gains is The optimum gain control voltage can also be obtained by performing a predetermined calculation on the above two gains and the corresponding two peak levels, which are detected by a bias circuit.
次に示す実施例では、 標準的な利得制御電圧と F CM信号のピークレベルとの 関係 (VGA特性) をテーブルとしてあらかじめ持っておき、 このテーブルを利 用して最適利得制御電圧を決定し、 この最適利得制御電圧を VGA 36に印加す ることによって、 F CM信号のレベル調整を行う。 アドレスマーク信号のレベル 調整についても同様である。  In the following embodiment, the relationship between the standard gain control voltage and the peak level of the FCM signal (VGA characteristics) is stored in advance as a table, and the optimal gain control voltage is determined using this table. By applying the optimum gain control voltage to the VGA 36, the level of the FCM signal is adjusted. The same applies to the level adjustment of the address mark signal.
より具体的には、 図 10を参照して、 まず、利得制御電圧が 1. 5V (OdB) のときの F CM信号のピークレベルを実測する。 この測定点 (1. 5, a) を A 点とする。次に、 テーブルを参照して、 利得制御電圧が同じく 1. 5V (OdB) のときの F CM信号のピークレベルを取得する。 この取得点 (1. 5, b) を B 点とする。そして、 A点と B点との F CM信号のピークレベルの割合 rを算出し、 算出した割合 rで目標となる F CMピークレベル を除算して、 目標 F CMピー クレベル αに対応する (利得制御電圧が同じである) テーブル上の F CMピーク レベル ]3を求める。 最後に、 テーブルを参照し、 F CMピ一クレベル3に対応す る (最適) 利得制御電圧 Xを得る。 そして、 この最適利得制御電圧 Xを VGA 3 6に印力 Πする。  More specifically, referring to FIG. 10, first, the peak level of the FCM signal when the gain control voltage is 1.5 V (OdB) is actually measured. Let this measurement point (1.5, a) be point A. Next, referring to the table, obtain the peak level of the FCM signal when the gain control voltage is also 1.5V (OdB). Let this score (1.5, b) be point B. Then, the ratio r of the peak level of the FCM signal between the points A and B is calculated, and the target ratio of the FCM peak level is divided by the calculated ratio r to correspond to the target FCM peak level α (gain (The control voltage is the same.) Find the FCM peak level on the table] 3. Finally, referring to the table, the (optimal) gain control voltage X corresponding to the FCM peak level 3 is obtained. Then, the optimum gain control voltage X is applied to the VGA 36.
以下に、図 11〜図 13に示すフ口一図を用いて D SP44の動作を説明する。 なお、 DSP44は、 実際には論理回路によって形成されるが、 説明の便宜上、 フロー図を用いる。  The operation of the DSP 44 will be described below with reference to FIGS. 11 to 13. Although the DSP 44 is actually formed by a logic circuit, a flow diagram is used for convenience of explanation.
図 11に示すメインルーチンの処理は、 ステップ S 107およびステップ S 1 09の処理を除いて先の実施例の図 7の動作と同じである。  The processing of the main routine shown in FIG. 11 is the same as the operation of FIG. 7 of the previous embodiment except for the processing of step S107 and step S109.
ステップ S 107における F CMレベル調整処理は、 図 12に示すサブル一チ ンに従って実行される。 まず、 ステップ S 121において、 1. 5Vの禾得制御 電圧を VGA36に印加し、 ステップ S 123において、 A点 (図 10参照) に おける F CMピークレベルを測定する。 このときの測定結果を aとすると、 A点 の座標は (1. 5, a) となる。  The FCM level adjustment processing in step S107 is executed according to the subroutine shown in FIG. First, in step S121, a 1.5V harvest control voltage is applied to the VGA 36, and in step S123, the FCM peak level at point A (see FIG. 10) is measured. If the measurement result at this time is a, the coordinates of point A are (1.5, a).
次に、 ステップ S 125において、 テーブルを参照して利得制御電圧が 1. 5 Vのときの F CMピークレベルを取得する。 このとき取得された F CMピークレ ベルの値を bとし、 この取得点を B点とすると B点の座標は (1. 5, b) とな る。 Next, in step S125, the gain control voltage is set to 1.5 Get the FCM peak level at V. If the value of the FCM peak level obtained at this time is b and the obtained point is point B, the coordinates of point B are (1.5, b).
ステップ S 127では、 実測値 (A点) とテーブル値 (B点) との利得制御電 圧の割合 rを式 (7) にしたがって算出する。  In step S127, the ratio r of the gain control voltage between the actually measured value (point A) and the table value (point B) is calculated according to equation (7).
r = a/b … (7)  r = a / b… (7)
ここで、 目標とする F CMピークレベルを とし、 F CMピークレベルがひと なるときの利得制御電圧を Xとする。 つまり Xは最適利得制御電圧である。 この 座標 ( , x) の点が図 10における C点である。 そして、 テーブル上において 利得制御電圧 Xに対応する F CMピークレベルを /3とする。 この座標 (β, X) の点が図 10における D点である。 すると、 式 (8) が成り立つと考えられるの で、 さらに式 (8) から式 (9) が得られ、 ステップ S 129において式 (9) を演算する。  Here, let the target FCM peak level be, and let X be the gain control voltage when the FCM peak level becomes one. That is, X is the optimal gain control voltage. The point at the coordinates (, x) is point C in FIG. Then, the FCM peak level corresponding to the gain control voltage X on the table is set to / 3. The point at the coordinates (β, X) is point D in FIG. Then, since it is considered that Expression (8) holds, Expression (9) is further obtained from Expression (8), and Expression (9) is calculated in Step S129.
a : b = « : ]3 … (8)  a: b = «:] 3… (8)
β = (b/a) = /τ … (9)  β = (b / a) = / τ… (9)
そして、 ステップ S I 31では、 テーブルを参照して、 FCMピークレベル ]3 に対応する利得制御電圧 Xを取得する。 この利得制御電圧 が、 VGA 36に印 加したときに、 目標 F C Mピークレベル αが得られる最適利得制御電圧である。 ステップ S 133では、 こうして得られた最適利得制御電圧 Xを VGA36に 印加する。  Then, in step SI31, a gain control voltage X corresponding to the FCM peak level] 3 is obtained by referring to the table. This gain control voltage is the optimum gain control voltage that can obtain the target FCM peak level α when applied to the VGA 36. In step S133, the optimum gain control voltage X thus obtained is applied to the VGA.
ステップ S 109におけるァドレスレベル調整処理は、 図 13に示すサブルー チンに従って実行されるが、 このサブルーチンは、 ステップ S 141およびステ ップ S 153で出力する利得制御電圧の印加先が VGA30であり、 ステップ S 143においてピークレベルを測定する信号がァドレスマーク信号である点を除 き、 図 12に示すサブルーチンと同じである。  The address level adjustment processing in step S109 is executed in accordance with the subroutine shown in FIG. 13. In this subroutine, the application destination of the gain control voltage output in step S141 and step S153 is VGA30. This is the same as the subroutine shown in FIG. 12, except that the signal for measuring the peak level in S143 is an address mark signal.
以上の説明から分かるように、 この実施例では、 まず、 利得制御電圧が 1. 5 Vの地点で F CMピークレベル aを実測し、 あらかじめ用意されたテーブルを用 いて利得制御電圧が 1 · 5 Vのときの標準的な F CMピークレベル bを取得し、 F CMピークレベル aと bとの割合 rを求める。 次に、 目標とする FCMピーク レベルひを割合 rで!^して、 F CMピークレベル αと同じ利得制御電圧で対応 するテーブル上の F CMピ一クレベル |8を求める。 そして、 テーブルを参照して F CMピークレベル /3に対応する利得制御電圧 Xを取得する。 こうして取得され た最適利得制御電圧 Xを V G Aに印加することによって、 目標とする F C Mピー クレベル αが得られる。 As can be seen from the above description, in this embodiment, first, the FCM peak level a was actually measured at the point where the gain control voltage was 1.5 V, and the gain control voltage was set to 1.5 times using a table prepared in advance. The standard FCM peak level b at V is obtained, and the ratio r between the FCM peak levels a and b is obtained. Next, the target FCM peak The level ratio is given by the ratio r, and the FCM peak level | 8 on the corresponding table is obtained with the same gain control voltage as the FCM peak level α. Then, the gain control voltage X corresponding to the FCM peak level / 3 is obtained by referring to the table. The target FCM peak level α can be obtained by applying the obtained optimal gain control voltage X to the VGA.
このように、 テーカレに保持された標準的な V GA特性における値と実測値と の割合を用いて目標とする F CMピークレベルに対応する利得制御電圧を算出す るようにしたため、 より厳密な最適利得制御電圧が得られるようになった。 した がつて、 光磁気ディスクの違いゃ光ピックアツプの特性の違いによつて信号のピ ークレベルが変動したときでも F CM信号ゃァドレスマーク信号を適切に判別す ることができる。  As described above, the gain control voltage corresponding to the target FCM peak level is calculated using the ratio between the value in the standard VGA characteristic held in the take-up and the measured value, so that a more strict The optimum gain control voltage can be obtained. Therefore, even if the peak level of the signal fluctuates due to the difference between the magneto-optical disks and the difference in the characteristics of the optical pickup, the FCM signal address mark signal can be appropriately determined.
この発明が詳細に説明され図示されたが、 それは単なる図解および一例として 用いたものであり、 限定であると解されるべきではないことは明らかであり、 こ の発明の精神および範囲は添付されたクレームの文言によってのみ限定される。  While this invention has been described and illustrated in detail, it is obvious that it is used by way of illustration and example only and should not be construed as limiting, the spirit and scope of the invention being attached to Limited only by the language of the claim.

Claims

請求の範囲 The scope of the claims
1 . 制御電圧が印加される増幅手段によって増幅された増幅信号に所定の信号 処理を施す信号処理装置であって、  1. A signal processing device for performing predetermined signal processing on an amplified signal amplified by an amplification unit to which a control voltage is applied,
前記増幅信号のピ一クレベルが閾値を上回る少なくとも 2つの制御電圧を特定 する特定手段、  Specifying means for specifying at least two control voltages in which the peak level of the amplified signal exceeds a threshold,
前記特定手段によって特定された制御電圧と当該制御電圧に対応するピークレ ベルとに基づいて前記増幅手段の増幅特性を示す 2次関数を推定する推定手段、 および  Estimating means for estimating a quadratic function indicating an amplification characteristic of the amplifying means based on the control voltage specified by the specifying means and a peak level corresponding to the control voltage; and
前記 2次関数に基づいて前記増幅信号のピークレベルが最適レベルとなる最適 制御電圧を算出する算出手段を備える、 信号処理装置。  A signal processing device, comprising: calculating means for calculating an optimum control voltage at which a peak level of the amplified signal becomes an optimum level based on the quadratic function.
2 . 請求項 1に従属する信号処理装置であって、 前記推定手段は前記閾値を上 回る最低のピークレベルを前記 2次関数の切片とする。  2. The signal processing device according to claim 1, wherein the estimating unit sets a lowest peak level exceeding the threshold value as an intercept of the quadratic function.
3 . 制御電圧が印加される増幅手段によって増幅された増幅信号に所定の信号 処理を施す信号処理装置であって、  3. A signal processing device for performing predetermined signal processing on an amplified signal amplified by an amplifying means to which a control voltage is applied,
基準増幅特性を格納するメモリ手段、  Memory means for storing a reference amplification characteristic,
前記基準制御電圧が印加された前記増幅手段によって増幅された増幅信号の第 1ピ一クレベルを測定する測定手段、  Measuring means for measuring a first peak level of an amplified signal amplified by the amplifying means to which the reference control voltage is applied;
前記基準増幅特性を参照して前記基準制御電圧に対応する第 2ピークレベルを 検出する検出手段、  Detecting means for detecting a second peak level corresponding to the reference control voltage with reference to the reference amplification characteristic;
前記第 2ピークレベルの前記第 1ピークレベルに対する比率を目標ピークレべ ルに掛け算する掛け算手段、 および  Multiplying means for multiplying a target peak level by a ratio of the second peak level to the first peak level; and
前記基準増幅特性を参照して前記掛け算手段の掛け算値に対応する制御電圧を 最適制御電圧として特定する特定手段を備える、 信号処理装置。  A signal processing device comprising: a specifying unit that specifies a control voltage corresponding to a multiplied value of the multiplying unit as an optimum control voltage with reference to the reference amplification characteristic.
4. 請求項 1ないし 3のいずれかに従属する信号処理装置であって、 記録面にトラックが形成されかつ前記トラック上に所定間隔でマークが形成さ れたディスク記録媒体を着脱自在に保持する保持手段をさらに備え、  4. A signal processing device according to any one of claims 1 to 3, wherein a disk recording medium having tracks formed on a recording surface and marks formed at predetermined intervals on the tracks is detachably held. Further comprising holding means,
前記増幅手段は前記保持手段に保持されたディスク記録媒体から再生されたか つ前記マークに関連するマーク信号を増幅する。  The amplifying unit amplifies a mark signal reproduced from the disk recording medium held by the holding unit and related to the mark.
PCT/JP2003/005301 2002-05-07 2003-04-24 Disc device signal processing device WO2003096328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-131661 2002-05-07
JP2002131661A JP2003323720A (en) 2002-05-07 2002-05-07 Signal processor

Publications (1)

Publication Number Publication Date
WO2003096328A1 true WO2003096328A1 (en) 2003-11-20

Family

ID=29416615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005301 WO2003096328A1 (en) 2002-05-07 2003-04-24 Disc device signal processing device

Country Status (2)

Country Link
JP (1) JP2003323720A (en)
WO (1) WO2003096328A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582426A (en) * 1991-09-25 1993-04-02 Hitachi Ltd Electron beam lithography system
JPH05134674A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Waveform generating device
JPH0993059A (en) * 1995-09-27 1997-04-04 Sharp Corp Agc equipment
JPH09331222A (en) * 1996-06-11 1997-12-22 Nec Corp Correcting device for gain control signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582426A (en) * 1991-09-25 1993-04-02 Hitachi Ltd Electron beam lithography system
JPH05134674A (en) * 1991-11-12 1993-05-28 Matsushita Electric Ind Co Ltd Waveform generating device
JPH0993059A (en) * 1995-09-27 1997-04-04 Sharp Corp Agc equipment
JPH09331222A (en) * 1996-06-11 1997-12-22 Nec Corp Correcting device for gain control signal

Also Published As

Publication number Publication date
JP2003323720A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP3142383B2 (en) Crosstalk reduction method in optical disk drive
KR20020079820A (en) Method and optical recording apparatus for determining the optimum write power
JP3552938B2 (en) Optical disk apparatus and correction method therefor
EP0936602B1 (en) Optical disk recording technique capable of forming pits accurately centered on track and servo-balance adjusting technique for optical disk recording
JPH02220237A (en) Gain control system for error signal amplifier in tracking servo mechanism
KR100697173B1 (en) Optical disk recording/reproducing device employing waveform correction of laser output signal
JP3577651B2 (en) Optical disk drive
WO2003096328A1 (en) Disc device signal processing device
JP3033066B2 (en) Focus position adjustment device
JP3148590B2 (en) Automatic adjustment method of focus servo
JP3378837B2 (en) Disk unit
US20050128901A1 (en) Optical disk apparatus and an optical disk recording and reproducing method
JP3882223B2 (en) Optical recording / reproducing apparatus and offset value determining method thereof
JP2718154B2 (en) Focus position adjusting method and focus control device
JP3981207B2 (en) Optical disk device
JP2800281B2 (en) Optical recording / reproducing device
JPH10162401A (en) Optical disk device and method for correcting reference value of light emitting power of laser diode therein
JP2001093172A (en) Optical disk device
JP2000020955A (en) Optical disk device
JPH09274725A (en) Automatic tracking servo gain control circuit and its method
JPH02195529A (en) Magneto-optical disk tester
JPH05144033A (en) Optical information recording/reproducing device and method for correcting tracking error signal
JP3782549B2 (en) Magneto-optical disk drive
JPH1116173A (en) Optical disk device and proofreading method of focus correction
JP3829886B2 (en) Disk reader

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase