WO2003094174A1 - Procede d'evolution temporelle continue et mise en oeuvre pour optimiser la reponse en frequences d'un microscope a forces - Google Patents

Procede d'evolution temporelle continue et mise en oeuvre pour optimiser la reponse en frequences d'un microscope a forces Download PDF

Info

Publication number
WO2003094174A1
WO2003094174A1 PCT/ES2003/000191 ES0300191W WO03094174A1 WO 2003094174 A1 WO2003094174 A1 WO 2003094174A1 ES 0300191 W ES0300191 W ES 0300191W WO 03094174 A1 WO03094174 A1 WO 03094174A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
response
microscope
frequency response
frequency
Prior art date
Application number
PCT/ES2003/000191
Other languages
English (en)
Spanish (es)
Inventor
Tomás R. RODRÍGUEZ FRUTOS
Ricardo García García
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003224180A priority Critical patent/AU2003224180A1/en
Publication of WO2003094174A1 publication Critical patent/WO2003094174A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment

Definitions

  • the current proposal presents the following improvements with respect to the previous proposals.
  • SUBSTITUTE RULE 26 feedback is possible during transients, which does not make it necessary for them to disappear to assume the stationary solution. All of this would allow the development of a digital program that would increase the effective quality factor of the system from 5 to 1000. Which, as far as we know, is not possible with programs based on stationary feedback as its transitory diverges for effective Q factors greater than 200. All this would result in a more precise and faster operation of the modules responsible for modifying the quality factor (scheme 3).
  • this proposal proposes to program the frequency response of a force microscope based on the continuous evolution method.
  • the new free amplitude also depends on the frequency through the quality factor: / ⁇ '( ⁇ )
  • Figure 1 shows this curve for different values of Q 'and Q mt .
  • the amplitude curve is identical to that of a system with a natural Q of 200.
  • the starting equation contains an outdated term a quarter of a period as this is the term that increases the quality factor
  • the integration is done in a total time equal to 4000 periods.
  • the feedback is "turned on” after 50 periods from the initial moment to initially feed back a steady state. The feedback is then left for the remaining time.
  • FIG. 4.b shows in detail where the feedback is turned on.
  • the amplitude versus frequency curves are obtained from the curves of Figure 4 by varying the excitation frequency and measuring the amplitude of the oscillation in the last period.
  • STITUTION RULE 26 Tip-sample distance z c with a round-trip ramp. The choice of the gain G and the exciter force / is carried out as described in the case without sample.
  • the repulsive force will be the same for all cases, with a sample of reduced elastic modulus of 1.51 GPa.
  • the van der Waals force and the adhesion force we will have a Hamaker constant of 6.4 10 "20 J for QnaXlO while for ⁇ note ⁇ . ⁇ 10 we will have a 6.4 10 "21 J constant, that is, an order of magnitude less.
  • the radius of the tip in all cases is 20 nm.
  • the resonant frequency, force constant and AO in all cases are 350 kHz, 40 N / m and 20 nm respectively.
  • the magnitudes we represent are deflection, average force, maximum force and minimum distance between the tip and the sample.
  • the deflection has a greater slope and is more symmetrical in the case of feedback.
  • both the average force and the maximum force are much greater in the
  • TION RULE 26 case without feedback with a low Q mt .
  • the minimum distance (deformation if it is less than zero) is much less in the feedback system.
  • Figure 4. Temporary response of the micropalnca for a feedback system according to the method of continuous temporal evolution.
  • Figure 4.b shows in detail where the feedback is turned on.
  • Figure 6. Differences ( c) a system with a high natural Q (1000) and another with a low natural Q (5) fed back _> using the present method until its particular solution has a high Q '(1000).
  • Figure 7 Deflection curve (a), average force (b), maximum force (c) and minimum distance (d) as a function of the tip-surface distance for a case with a low natural Q without feedback (red) and feedback according to the method of continuous temporal evolution (black).
  • Figure 8 Deflection curve (a), average force (b), maximum force (c) and minimum distance (d) as a function of point-to-surface distance for a natural system that has bistability and no feedback system.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Feedback Control In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

L'invention concerne la microscopie à forces en modes oscillants (AFM), qui s'est convertie en une des techniques les plus puissantes de caractérisation de superficies à échelle nanométrique. Son utilisation dans des milieux liquides est, cependant, fortement conditionnée par la diminution du facteur de qualité (Q) du microlevier de l'AFM. Cette diminution qui découle de l'augmentation du frottement hydrodynamique avec le fluide génère, entre autres, une perte de sensibilité à la topographie, un fonctionnement plus lent du microscope et la présence de forces supérieures sur l'échantillon. Différents modes d'augmentation efficace du facteur Q ont, par conséquent, été mis au point. Toutes les analyses des procédés antérieurs restent, cependant, basées sur l'hypothèse d'une réponse stationnaire.
PCT/ES2003/000191 2002-05-03 2003-04-30 Procede d'evolution temporelle continue et mise en oeuvre pour optimiser la reponse en frequences d'un microscope a forces WO2003094174A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003224180A AU2003224180A1 (en) 2002-05-03 2003-04-30 Continuous temporal evolution method and implementation thereof in order to optimise the frequency response of a force microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200201022A ES2194608B1 (es) 2002-05-03 2002-05-03 El metodo de evolucion temporal continua y su implementacion para optimizar la respuesta en frecuencias de un microscopio de fuerzas.
ESP200201022 2002-05-03

Publications (1)

Publication Number Publication Date
WO2003094174A1 true WO2003094174A1 (fr) 2003-11-13

Family

ID=29286305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000191 WO2003094174A1 (fr) 2002-05-03 2003-04-30 Procede d'evolution temporelle continue et mise en oeuvre pour optimiser la reponse en frequences d'un microscope a forces

Country Status (3)

Country Link
AU (1) AU2003224180A1 (fr)
ES (1) ES2194608B1 (fr)
WO (1) WO2003094174A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032623A1 (fr) * 1995-04-10 1996-10-17 International Business Machines Corporation Procede et appareil de commande d'un oscillateur mecanique
US5955660A (en) * 1995-12-08 1999-09-21 Seiko Instruments Inc. Method of controlling probe microscope
US6079254A (en) * 1998-05-04 2000-06-27 International Business Machines Corporation Scanning force microscope with automatic surface engagement and improved amplitude demodulation
EP1037058A1 (fr) * 1999-03-18 2000-09-20 Nanosurf AG Dispositif électronique de mesure de la fréquence et son utilisation
WO2000058759A2 (fr) * 1999-03-29 2000-10-05 Nanodevices, Inc. Sonde active pour microscope a forces atomiques et son procede d'utilisation
WO2001081857A2 (fr) * 2000-04-20 2001-11-01 The University Of Bristol Systeme d'entrainement de sonde a resonance et microscope a sonde a balayage comprenant ce type de systeme

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996032623A1 (fr) * 1995-04-10 1996-10-17 International Business Machines Corporation Procede et appareil de commande d'un oscillateur mecanique
US5955660A (en) * 1995-12-08 1999-09-21 Seiko Instruments Inc. Method of controlling probe microscope
US6079254A (en) * 1998-05-04 2000-06-27 International Business Machines Corporation Scanning force microscope with automatic surface engagement and improved amplitude demodulation
EP1037058A1 (fr) * 1999-03-18 2000-09-20 Nanosurf AG Dispositif électronique de mesure de la fréquence et son utilisation
WO2000058759A2 (fr) * 1999-03-29 2000-10-05 Nanodevices, Inc. Sonde active pour microscope a forces atomiques et son procede d'utilisation
WO2001081857A2 (fr) * 2000-04-20 2001-11-01 The University Of Bristol Systeme d'entrainement de sonde a resonance et microscope a sonde a balayage comprenant ce type de systeme

Also Published As

Publication number Publication date
AU2003224180A1 (en) 2003-11-17
ES2194608B1 (es) 2005-03-16
ES2194608A1 (es) 2003-11-16

Similar Documents

Publication Publication Date Title
Bhushan et al. Applied scanning probe methods I
Solares et al. Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy
Lee et al. Nonlinear tapping dynamics of multi-walled carbon nanotube tipped atomic force microcantilevers
Hirano Atomistics of friction
Platz et al. The role of nonlinear dynamics in quantitative atomic force microscopy
Melcher et al. Invited Article: VEDA: A web-based virtual environment for dynamic atomic force microscopy
Guo et al. Axial vibration analysis of nanocones based on nonlocal elasticity theory
Meyer et al. Superlubricity on the nanometer scale
Craciun et al. Stochastic stick–slip nanoscale friction on oxide surfaces
Reiche et al. Bidirectional quantitative force gradient microscopy
Solares Probing viscoelastic surfaces with bimodal tapping-mode atomic force microscopy: Underlying physics and observables for a standard linear solid model
Solares Eliminating bistability and reducing sample damage through frequency and amplitude modulation in tapping-mode atomic force microscopy
Yilmaz et al. Exploring the static acoustic force sensitivity using AFM micro-cantilever under single-and bimodal-frequency excitation
WO2003094174A1 (fr) Procede d'evolution temporelle continue et mise en oeuvre pour optimiser la reponse en frequences d'un microscope a forces
Wang et al. Thermal activation of nanoscale wear
Meier et al. Multifrequency force microscopy using flexural and torsional modes by photothermal excitation in liquid: atomic resolution imaging of calcite
Balthazar et al. TM-AFM nonlinear motion control with robustness analysis to parametric errors in the control signal determination
Deeva et al. Mathematical model of tip oscillations: Influence on image quality
Yang et al. Torsional resonance mode atomic force microscopy in liquid with Lorentz force actuation
Saraswat et al. Real-time probe based quantitative determination of material properties at the nanoscale
Park et al. Operation of a wet near-field scanning optical microscope in stable zones by minimizing the resonance change of tuning forks
Belikov et al. Classification of dynamic atomic force microscopy control modes based on asymptotic nonlinear mechanics
Labardi Model of frequency-modulated atomic force microscopy for interpretation of noncontact piezoresponse measurements
Baowan et al. Modelling the joining of nanocones and nanotubes
Polyakov et al. Tribological aspects of in situ manipulation of nanostructures inside scanning electron microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP