WO2003091565A1 - Dme fuel feed device of diesel engine - Google Patents

Dme fuel feed device of diesel engine Download PDF

Info

Publication number
WO2003091565A1
WO2003091565A1 PCT/JP2003/005452 JP0305452W WO03091565A1 WO 2003091565 A1 WO2003091565 A1 WO 2003091565A1 JP 0305452 W JP0305452 W JP 0305452W WO 03091565 A1 WO03091565 A1 WO 03091565A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
temperature
dme
oil reservoir
dme fuel
Prior art date
Application number
PCT/JP2003/005452
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Nozaki
Toshifumi Noda
Yukihiro Hayasaka
Daijo Ushiyama
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002126232A external-priority patent/JP2003322063A/en
Priority claimed from JP2002145785A external-priority patent/JP2003336557A/en
Priority claimed from JP2002224474A external-priority patent/JP3868866B2/en
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Priority to AU2003235959A priority Critical patent/AU2003235959A1/en
Publication of WO2003091565A1 publication Critical patent/WO2003091565A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • F02M37/12Feeding by means of driven pumps fluid-driven, e.g. by compressed combustion-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors

Definitions

  • the present invention relates to a DME fuel supply device for a diesel engine using DME (dimethyl ether) as a fuel, a DME fuel temperature control method in a DME fuel supply device for a diesel engine, and a DME fuel temperature control program.
  • DME dimethyl ether
  • DME fuel is a liquefied gas fuel, unlike light oil, which is the conventional fuel.
  • DME has a property that it has a lower boiling point temperature than gas oil and, at atmospheric pressure, gas oil is liquid at room temperature while gas oil is liquid at room temperature.
  • the DME fuel supply device adds DME fuel in a fuel tank with a feed pump or the like. And send it to the injection pump.
  • the injection pump pressure-feeds the DME fuel in the oil reservoir supplied from the fuel tank by a predetermined amount to each fuel injection nozzle of the diesel engine at a predetermined timing. Since DME fuel pressurized by the feed pump is continuously supplied to the oil reservoir of the injection pump, the DME fuel overflows so that the pressure of the DME fuel in the oil reservoir is kept constant. Returned to the feed tank.
  • the DME fuel supplied from the fuel tank to the oil reservoir of the injection pump by a feed pump or the like is constantly circulating in a route passing from the fuel tank to the oil reservoir and the overflow fuel pipe.
  • DME fuel is constantly circulated. Therefore, there is an advantage that the temperature distribution in the oil reservoir can be easily made uniform, thereby stabilizing the injection characteristics of each injection pump. Also, without controlling the pressure of the feed pump, the overflow provided in the overflow fuel pipe can be controlled.
  • the pressure of the DME fuel in the oil reservoir can be kept constant, thereby easily stabilizing the injection characteristics of each injection pump. There is a merit that it can be done.
  • DME fuel has the property of becoming a gas at room temperature, and is vaporized when suctioned by a suction pump. Therefore, the feed pump for DME fuel needs to be pressurized and delivered by a mechanical pump such as a piston type.
  • a mechanical pump such as a piston type.
  • a large-capacity pump is required as compared with a fuel supply system for a diesel engine of a light oil type, and there is a possibility that the cost is increased.
  • the present invention has been made in view of such a situation, and the problem is to supply DME fuel from a fuel tank to an oil reservoir of an injection pump without using a driving means such as a feed pump.
  • DME fuel supply for diesel engines To provide a location.
  • Another object is to provide a DME fuel supply device for a diesel engine that can obtain stable fuel injection characteristics of an injection pump.
  • a first aspect of the present invention is to provide a DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount to a fuel injection nozzle of a diesel engine at a predetermined timing.
  • An injection pump that sends out the fuel to the injection pipe, a nozzle return pipe that returns the DME fuel that overflows from the fuel injection nozzle to the feed pipe, and the DME in the oil sump of the injection pump.
  • a DME fuel supply device for a diesel engine wherein the DME fuel in the fuel tank is supplied to the oil reservoir according to a difference.
  • the saturated vapor pressure of the DME fuel in the sump decreases. Therefore, a differential pressure is generated between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir, which were substantially the same pressure at normal temperature, and the pressure difference caused the DME fuel in the fuel tank to reach the oil reservoir. It will be pumped. Further, the temperature of the DME fuel in the oil reservoir is detected by the oil reservoir fuel temperature detecting means, so that the pressure difference between the oil reservoir and the fuel tank is substantially constant. The DME fuel in the fuel tank can be pumped to the oil reservoir at a substantially constant pressure by controlling the temperature of the fuel tank with the oil reservoir fuel cooling device. Therefore, the hydraulic pressure of the DME fuel in the oil reservoir can be controlled to be substantially constant, whereby the injection characteristics of each injection pump can be stabilized.
  • the DME fuel supply of the diesel engine according to the first aspect of the present invention is performed.
  • the DME fuel in the fuel tank can be pumped to the oil reservoir with a substantially constant force by the pressure difference between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir. Therefore, the operation and effect can be obtained in that DME fuel can be supplied from the fuel tank to the oil storage chamber without using a driving means such as a feed pump.
  • the oil reservoir fuel cooling device is configured to cool the DME fuel in the oil reservoir by a cooling cycle using the DME fuel as a refrigerant.
  • DME fuel has the property of becoming a gas at room temperature, so it constitutes a cooling cycle using DME fuel as a refrigerant, and utilizes the heat of vaporization caused by the dME fuel escaping. To cool the DME fuel in the sump.
  • the oil reservoir fuel cooling device can be rationally configured.
  • the excellent characteristics of the DME fuel as a refrigerant are effectively utilized.
  • the fuel cooler described above can rationally configure the oil sump fuel cooling system, so that the effect of reducing the cost of the DME fuel supply system in Dzerjejing can be obtained.
  • the oil reservoir fuel cooling device comprises: a refrigerant supply pipe for supplying the DME fuel from the feed pipe; and a DME flowing through the refrigerant supply pipe.
  • a fuel supply device for vaporizing fuel and sending it to the fuel cooler, and a solenoid valve for opening and closing the coolant supply pipe for opening and closing the coolant supply pipe, for controlling the opening and closing of the coolant supply pipe on / off solenoid valve
  • a DME fuel supply device for a diesel engine characterized in that it is controlled by the DME fuel supply system.
  • the amount of the DME fuel that is sent to the fuel cooler can be controlled.
  • the temperature of the DME fuel in the oil reservoir by the oil reservoir fuel cooling device can be controlled.
  • the oil having a configuration capable of controlling the fuel cooler by controlling the opening / closing of the refrigerant supply pipe opening / closing solenoid valve.
  • the DME fuel mixed in the lubricating oil in the cam chamber of the injection pump which is a dedicated lubrication system separated from the lubrication system of the diesel engine, is separated.
  • an electric compressor that pressurizes the DME fuel separated at the oil separator and sends it to the fuel tank.
  • the electric compressor is supplied from the refrigerant supply pipe to the oil reservoir fuel cooling device.
  • the DME fuel supply device for a diesel engine wherein the DME fuel is sent to the fuel tank by the electric compressor.
  • DME fuel has the property of becoming a gas at normal temperature, so in order to supply liquid DME fuel to the injection pump, the supply pressure to the injection pump must be higher than that of light oil fuel. There is a need to. Therefore, due to the high supply pressure to the injection pump, the fuel leaks into the injection pump's force chamber through the gap between the plunger and the plunger barrel of the injection pump that sends DME fuel to the fuel injection nozzle of the diesel engine. A problem arises in that the amount of fuel becomes larger than when light oil fuel is used. In addition, DME has a lower viscosity than light oil, so it easily leaks from gaps, and the amount of DME increases. Then, the DME fuel leaked from the gap between the plunger barrel and the plunger flows into the cam chamber of the injection pump and is deflected. Damaged: DME fuel may enter the crankcase of the diesel engine and ignite.
  • the cam chamber is a dedicated lubrication system separated from the diesel engine lubrication system, the DME fuel mixed into the lubrication oil in the cam chamber is separated at the oil separator, and the separated DME fuel is pressurized by an electric compressor.
  • an electric compressor By sending the fuel to the fuel tank, the risk of such a problem occurring can be reduced.
  • the DME fuel supplied to the oil reservoir fuel cooling device from the refrigerant supply pipe is sent out to the fuel tank, so that the refrigerant can be used as a refrigerant without providing a dedicated refrigerant recovery means.
  • DME fuel Supplied to sump fuel cooling system: DME fuel can be recovered.
  • the DME fuel supply device for a diesel engine in addition to the function and effect according to the second or third aspect of the present invention, without providing a dedicated refrigerant recovery means, Since the DME fuel supplied to the oil spill chamber fuel cooling device as a refrigerant can be recovered, the effect of lowering the cost of the oil spill chamber fuel cooling device can be obtained.
  • the DME fuel supply device for a diesel engine according to the fourth aspect, further comprising a fuel tank temperature adjusting means for adjusting a temperature in the fuel tank. It is.
  • a fuel tank temperature adjusting means for adjusting the temperature in the fuel tank is provided.
  • the fuel tank temperature adjusting means further comprises: A first return path which is sent to the fuel tank after being cooled and cooled, and the DME fuel sent from the electric compressor is sent to the fuel tank without passing through the air-cooled cooler.
  • a DME fuel supply device for a diesel engine characterized in that the DME fuel supply device is configured to control the temperature in the fuel tank by controlling the return path switching electromagnetic valve.
  • the DME fuel supply device for a diesel engine According to the DME fuel supply device for a diesel engine according to the sixth aspect of the present invention, the first return path through which the DME fuel sent from the electric compressor is cooled and then sent to the fuel tank, and the delivery from the electric compressor Controlling the temperature in the fuel tank by controlling a return path switching solenoid valve for switching the second return path in which the cooled DME fuel is sent to the fuel tank without being cooled.
  • a diesel engine DME fuel supply device comprising: a residual fuel recovery means capable of recovering DME fuel into the fuel tank.
  • DME fuel remains in the injection system after the diesel engine stops, it leaks from the nozzle sheet of the fuel injection nozzle into the cylinder of the diesel engine, causing a danger. Fuel is full. As a result, abnormal combustion such as knocking may occur when starting the diesel engine, and the diesel engine may not start normally, generating large vibrations and noise. Therefore, after the diesel engine was stopped by the residual fuel recovery means, Also, by recovering the DME fuel remaining in the nozzle return pipe to the fuel tank, it is possible to reduce the risk of abnormal combustion such as knocking occurring when starting the diesel engine.
  • the diesel engine DME fuel supply device of the second aspect of the present invention in addition to the operation and effect according to any one of the first to sixth aspects of the present invention, when starting the diesel engine, This has the effect of reducing the risk of abnormal combustion such as knocking that occurs in the vehicle.
  • the residual fuel recovery means includes: an inlet side of the oil reservoir communicating with the feed pipe; and a communication path of the nozzle return pipe, Communication path switching means for switching from the feed pipe to a residual fuel recovery pipe communicating with the inlet side of the electric compressor, the communication path switching means being provided in the oil reservoir chamber of the injection pump and in the nozzle return pipe.
  • the communication path between the oil reservoir and the nozzle return pipe communicating with the feed pipe is connected to the electric compressor.
  • DME fuel remaining in the oil sump and the nozzle return pipe can be recovered by switching to the residual fuel recovery pipe communicating with one inlet side and driving the electric compressor.
  • the inlet side of the oil reservoir communicating with the feed pipe, and the communication path of the nozzle return pipe are connected to the feed pipe.
  • the operation and effect according to the above-described seventh aspect of the present invention can be obtained by the communication path switching means for switching to the residual fuel recovery nozzle communicating with the inlet side of the electric compressor 1 from the fuel tank.
  • the communication between the liquid phase portion of the fuel tank and the feed pipe is interrupted, and the gas phase portion of the fuel tank and the feed pipe are communicated.
  • the gas phase of the fuel tank is filled with gaseous DME fuel that is higher in pressure than the oil reservoir, the communication between the liquid phase of the fuel tank and the feed pipe is cut off when diesel fuel is stopped.
  • the gas phase of the fuel tank communicates with the feed pipe, part of the fuel remaining in the feed pipe due to the pressure of the gas phase of the fuel tank is directed to the electric compressor via the refrigerant supply pipe. Can be extruded. Therefore, before recovering the DME fuel remaining in the oil reservoir and the nozzle cleaning pipe by the residual fuel recovery means, the DME fuel remaining in the feed pipe in advance by the gas-phase fuel delivery means is recovered. Since part of the fuel can be recovered to the fuel tank by the electric compressor, the feed pipe is filled with the depleted DME fuel, and the time required to recover the DME fuel by the residual fuel recovery means can be reduced. it can.
  • a capacity between the fuel tank and the feed pipe is larger than that of the fuel tank.
  • DME fuel must be supplied, but initially there is no DME fuel in the oil reservoir, so the difference in hydraulic pressure between the oil reservoir and the fuel tank is used to transfer the DME fuel in the fuel tank to the oil reservoir. Cannot be sent to Therefore, the gas phase in the fuel tank is pressurized by driving the electric compressor, and the pressure in the liquid phase in the fuel tank is increased. Then, the DME fuel in the fuel tank pressurized by the electric compressor is sent out to the feed pipe by the pressure, and the DME fuel is charged into the oil reservoir.
  • the electric compressor pressurizes the inside of the sub fuel tank, which has a smaller capacity than the fuel tank provided between the fuel tank and the feed pipe. Since the DME fuel in the tank is filled into the oil sump, the time for filling the DME fuel into the oil sump can be reduced. The effect of being able to obtain is obtained.
  • the DME fuel delivered from the injection pump is supplied to a common rail, and is delivered from the common rail to each fuel injection nozzle.
  • This is a diesel engine DME fuel supply device that has the following features.
  • a first aspect of the present invention relates to a fuel injection nozzle for a diesel engine which supplies DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing.
  • An injection pump for delivering to an injection pipe communicating with the fuel injection nozzle, a nozzle return pipe for returning the DME fuel overflowing from the fuel injection nozzle to the feed pipe, and a cam for the injection pump
  • An oil sump fuel cooling means for cooling the DME fuel in the oil sump of the injection pump by cooling a room; and an oil sump fuel temperature detecting means for detecting a temperature of the DME fuel in the oil sump. Adjusting the temperature of the DME fuel in the oil reservoir to a temperature lower than the temperature of the DME fuel in the fuel tank by the oil reservoir fuel cooling means.
  • a DME fuel supply device for a diesel engine characterized in that the DME fuel in the fuel reservoir is supplied to the oil reservoir by a pressure difference between the oil reservoir and the fuel tank. is there.
  • Cooling the cam chamber of the injection pump cools the DME fuel in the oil chamber, and when the temperature of the DME fuel in the oil chamber decreases, the saturated vapor pressure of the DME fuel in the oil chamber decreases. It is going down. Therefore, a differential pressure occurs between the saturated vapor pressure in the fuel tank, which was approximately the same at room temperature, and the saturated vapor pressure in the oil reservoir, and the pressure difference causes the DME fuel in the fuel tank to be pumped to the oil reservoir. Will be done.
  • the temperature of the DME fuel in the oil chamber is detected by the oil chamber fuel temperature detecting means, and the fuel chamber and the fuel are detected.
  • the DME fuel in the fuel tank is held at a substantially constant pressure. It can be pumped to the oil sump. Therefore, the hydraulic pressure of the DME fuel in the oil reservoir can be controlled to be substantially constant, whereby the injection characteristics of each injection pump can be stabilized.
  • the fuel tank is provided by the pressure difference between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir. Because the DME fuel inside the pump can be pumped to the oil reservoir at a substantially constant pressure, the DME fuel can be supplied from the fuel tank to the oil reservoir without using a driving means such as a feed pump. The effect is obtained.
  • the oil reservoir fuel cooling means cools the cam chamber using heat of vaporization caused by vaporization of the DME fuel.
  • the DME fuel supply system for diesel engines is characterized in that:
  • DME fuel has the property of becoming a gas at normal temperature, so it constitutes a cooling cycle using DME fuel as a refrigerant and utilizes the heat of vaporization caused by the vaporization of DME fuel.
  • the cam chamber can be cooled, and the DME fuel in the oil chamber can be cooled. That is, since the DME fuel in the oil reservoir is cooled by effectively utilizing the excellent characteristics of the DME fuel as a refrigerant, the oil reservoir fuel cooling means can be rationally configured.
  • the DME fuel supply device for a diesel engine in addition to the operational effects according to the first and second aspects of the present invention, excellent characteristics of the DME fuel as a refrigerant are provided.
  • the oil reservoir fuel cooling means can be configured rationally, and the effect of reducing the cost of the DME fuel supply device for the diesel engine can be obtained.
  • the oil reservoir fuel cooling means comprises: A refrigerant supply pipe for supplying the DME fuel from the feed pipe; a fuel supply unit for supplying the DME fuel flowing to the refrigerant supply pipe to discharge the DME fuel into the cam chamber; A DME fuel supply device for a diesel engine, comprising: a refrigerant supply pipe opening / closing solenoid valve for opening / closing the coolant supply pipe, and being controlled by opening / closing the coolant supply pipe opening / closing solenoid valve. It is.
  • the amount of vaporized DME fuel discharged into the cam chamber can be controlled.
  • the fuel vaporizer can be controlled, the temperature of the DME fuel in the oil reservoir by the oil reservoir fuel cooling means can be controlled.
  • the DME fuel supply device for a diesel engine according to the fourteenth aspect of the present invention, the DME fuel is discharged into the cam chamber by opening and closing the refrigerant supply pipe opening and closing electromagnetic valve.
  • the operation and effect according to the above-described thirteenth aspect of the present invention can be obtained by the oil reservoir fuel cooling means having a configuration capable of controlling the fuel gasifier.
  • the DME fuel is mixed with lubricating oil in the power chamber, which is a dedicated lubrication system separated from the lubrication system of the diesel engine.
  • a DME fuel supply device for a diesel engine comprising: an oil separator that performs an oil separation, and an electric compressor that pressurizes the DME fuel separated by the oil separator and sends the pressurized DME fuel to the fuel tank.
  • DME fuel has the property of becoming a gas at normal temperature, so in order to supply liquid DME fuel to the injection pump, the supply pressure to the injection pump must be higher than that of light oil fuel. There is a need to.
  • the injection pump pumps the injection pump through the gap between the plunger barrel and the plunger of the injection pump that sends DME fuel to the fuel injection nozzle of the diesel pump due to the high pressure and supply pressure to the injection pump.
  • This causes a problem that the amount of fuel leaking into the cam chamber becomes larger than when gas oil fuel is used.
  • DME has a lower viscosity than light oil, it easily leaks from gaps, and the amount of DME increases. Then, the DME fuel leaked from the gap between the plunger barrel and the plunger flows into the power chamber of the injection pump and is deflected, and the deflected DME fuel enters the diesel engine crank chamber and ignites. It may cause
  • the cam chamber is a dedicated lubrication system separated from the lubrication system of the diesel engine, the DME fuel mixed into the lubricating oil in the cam chamber is separated in an oil separator, and the separated DME fuel is pressurized by an electric compressor.
  • the risk of such a problem occurring can be reduced.
  • DME fuel supplied from the refrigerant supply pipe to the oil reservoir fuel cooling means and discharged as a refrigerant into the cam chamber can be recovered to the fuel tank, thereby eliminating the need for a dedicated refrigerant recovery means.
  • the DME fuel supplied to the oil reservoir fuel cooling means as a refrigerant can be recovered.
  • a dedicated refrigerant recovery means is provided.
  • the DME fuel discharged into the cam chamber as the refrigerant can be recovered, the effect of being able to configure the oil reservoir fuel cooling means at lower cost can be obtained.
  • a sixteenth aspect of the present invention is the DME fuel supply device for a diesel engine according to the fifteenth aspect, further comprising a fuel tank temperature adjusting means for adjusting the temperature in the fuel tank. It is.
  • the temperature in the fuel tank for adjusting the temperature in the fuel tank is increased.
  • the adjusting means can control the temperature of the DME fuel in the oil reservoir to an optimum temperature while maintaining the relative temperature difference between the oil reservoir and the fuel tank.
  • ME fuel injection characteristics can be obtained The operation and effect are obtained.
  • the fuel tank temperature adjusting means is configured such that the DME fuel delivered from the electric compressor is cooled via an air-cooled cooler, A second return path for sending out to the fuel tank, and a second return path for sending out the DME fuel sent from the electric compressor to the fuel tank without passing through the air-cooled cooler A return path switching solenoid valve for switching between the first return path and the second return path, and a fuel tank temperature detecting means for detecting a temperature in the fuel tank.
  • a DME fuel supply device for a diesel engine characterized in that the DME fuel supply device is configured to control the temperature in the fuel tank by controlling the return path switching electromagnetic valve.
  • the DME fuel sent from the electric compressor is cooled and then sent to the fuel tank, the 12th return path, and the electric compressor.
  • Control the temperature inside the fuel tank by controlling the solenoid valve that switches the return path that switches between the DME fuel sent from the fuel tank and the second return path that is sent to the fuel tank without cooling. Accordingly, the operation and effect according to the above-described sixteenth aspect of the present invention can be obtained.
  • An eighteenth aspect of the present invention is the aspect according to any one of the twelfth to seventeenth aspects, wherein the residual fuel remains in the oil reservoir of the ejection pump and in the nozzle return pipe after stopping the diesel engine.
  • a DME fuel supply device for a diesel engine comprising: a residual fuel recovery means capable of recovering the DME fuel used in the fuel tank.
  • DME fuel remains in the injection system after the diesel engine stops, it leaks from the nozzle seat of the fuel injection nozzle into the cylinder of the diesel engine and vaporizes, and the cylinder is filled with vaporized DME fuel. According to that, When starting the engine, abnormal combustion such as knocking may occur, and the diesel engine may not start normally, causing large vibration and noise. Therefore, by using residual fuel recovery means, after stopping diesel fuel, DME fuel remaining in the oil sump chamber of the injection pump and in the nozzle return pipe is recovered to the fuel tank, so that such a diesel engine can be used. It is possible to reduce the risk of abnormal combustion such as knocking occurring at the time of starting.
  • a diesel engine in addition to the operation and effect according to any one of the first to seventeenth aspects of the present invention, a diesel engine is provided.
  • the operation and effect of reducing the risk of abnormal combustion such as knocking occurring at the time of starting can be obtained.
  • the residual fuel recovery means includes: an inlet side of the oil reservoir that communicates with the feed pipe; and a communication path of the nozzle re-opening pipe.
  • a communication path switching means for switching from the feed pipe to the residual fuel recovery pipe communicating with the inlet side of the electric compressor, the oil reservoir of the induction pump, and the nozzle cleaning pipe.
  • the inlet side of the oil reservoir communicating with the feed pipe, and the nozzle hole By the communication path switching means for switching the communication path of the turn pipe from the feed pipe to the residual fuel recovery pipe communicating with the inlet side of the electric compressor 1, it is possible to obtain the above-described operation and effect according to the eighteenth aspect of the present invention. it can.
  • a DME fuel supply device for a diesel engine further comprising gas-phase fuel delivery means for delivering the gaseous DME fuel. Since the gas phase of the fuel tank is filled with gaseous DME fuel that is higher in pressure than the oil reservoir, the communication between the liquid phase of the fuel tank and the feed pipe is cut off when diesel fuel is stopped. When the gas phase of the fuel tank communicates with the feed pipe, part of the fuel remaining in the feed pipe due to the pressure in the gas phase of the fuel tank is directed to the electric compressor via the refrigerant supply pipe. Can be pushed out.
  • the DME fuel remaining in the oil reservoir and the nozzle return pipe is recovered by the residual fuel recovery means, the DME fuel remaining in the feed pipe in advance by the gas-phase fuel delivery means is recovered. Since a part of the fuel can be recovered to the fuel tank by the electric compressor, the feed pipe is filled with vaporized DME fuel, and the time required to recover the DME fuel by the residual fuel recovery means can be reduced. .
  • the DME fuel supply device for a diesel engine according to the twenty-fifth aspect of the present invention in addition to the operation and effect of the nineteenth aspect of the present invention, the DME fuel recovery by the residual fuel recovery means The effect that the time can be shortened is obtained.
  • a sub-fuel tank having a smaller capacity than the fuel tank is provided between the fuel tank and the feed pipe.
  • the communication between the fuel tank and the sub fuel tank is cut off and the sub fuel tank is disconnected.
  • the DME fuel is supplied to the oil reservoir from the sub-fuel tank whose gas phase is pressurized by the electric compressor.
  • a DME fuel supply device for a diesel engine characterized in that it is supplied to a diesel engine.
  • DME fuel When starting a diesel engine, DME fuel must first be supplied to the oil sump of the injection pump, but initially there is no DME fuel in the oil sump, so there is a difference in hydraulic pressure between the oil sump and the fuel tank.
  • the DME fuel in the fuel tank cannot be delivered to the oil sump using the fuel tank. Therefore, the gas phase in the fuel tank is pressurized by driving the electric compressor, and the pressure in the liquid phase in the fuel tank is increased. Then, the DME fuel in the fuel tank pressurized by the electric compressor is sent out to the feed pipe by the pressure, and the DME fuel is charged into the oil reservoir.
  • the electric compressor pressurizes the inside of the sub fuel tank, which has a smaller capacity than the fuel tank provided between the fuel tank and the feed pipe. Since the DME fuel in the sub fuel tank is filled into the oil reservoir, the operation and effect of shortening the time for filling the DME fuel into the oil reservoir can be obtained.
  • the DME fuel delivered from the injection pump is supplied to a common rail, and from the common rail to each fuel injection nozzle.
  • This is a DME fuel supply system for diesel engines, characterized in that it is delivered.
  • the DME fuel supply device for a diesel engine in the DME fuel supply device for a common rail diesel engine, any one of the above-described first to twenty-second aspects of the present invention is provided.
  • the operation and effect of the present invention can be obtained.
  • the DME fuel temperature control method according to the twenty-third aspect of the present invention is characterized in that the DME fuel supplied from the fuel tank via the feed pipe is supplied to the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined timing.
  • a method for controlling the temperature of DME fuel in a DME fuel supply device for a diesel engine comprising: a fuel evening temperature control means for adjusting the temperature of the DME fuel in the oil reservoir. as temperature becomes the specified temperature T G, controls the oil reservoir chamber fuel temperature adjusting means, and the temperature of the D ME fuel in the oil reservoir chamber in front Symbol fuel evening links than the temperature of the D ME fuel relative To as a high temperature at a substantially constant temperature difference, controls the fuel evening links the temperature adjusting means, it is characterized in.
  • the oil reservoir fuel temperature control means so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature T Q , it is easily affected by the temperature change sent from the injection pump to the fuel injection nozzle.
  • DME fuel temperature is kept almost constant Can be controlled. Therefore, the fuel injection characteristics of each fuel injection nozzle can be stabilized.
  • the temperature control means in the fuel tank so that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the DME fuel in the oil reservoir with a relatively constant temperature difference, the temperature difference is controlled.
  • DME fuel in the fuel tank can be pumped by the pressure difference of the saturated vapor pressure generated between the oil reservoir and the fuel tank.
  • the specified temperature TG is a temperature at which the DME fuel injection characteristics of each fuel injection nozzle are most stable, and the fuel tank is set so that a pressure difference capable of pumping the DME fuel in the fuel tank occurs.
  • the temperature is set to a temperature sufficiently lower than the upper limit temperature, and the optimum temperature obtained by experiments is set.
  • the DME fuel is supplied from the fuel tank to the oil reservoir of the injection pump without using a driving means such as a feed pump. It is possible to obtain the effect of obtaining stable fuel injection characteristics of the injection pump.
  • the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the depleted DME fuel as a cooling medium.
  • An oil sump fuel cooler, cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil sump fuel cooler, and detecting a temperature of the DME fuel in the oil sump.
  • a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detector. defined as the temperature T sigma, it said to ⁇ New / 0 FF controlling supply operation of said cold ⁇ body by the cooling medium supply means, that is a temperature control method for a D ME fuel characterized by.
  • the temperature of the DME fuel in the oil reservoir becomes the specified temperature so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature.
  • Cooling medium to oil sump fuel cooler cooling DME fuel ON ZOFF control of the supply operation based on the temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detection means, the cooling operation of the oil sump fuel cooler is ON / OFF controlled to cool the DME fuel in the oil sump. or, by repeating the or not cooled and controlled so that the temperature of DME fuel in the oil reservoir chamber is defined temperature T alpha.
  • the D ⁇ fuel temperature control method based on the temperature of the D ⁇ fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means.
  • the operation and effect according to the twenty-third aspect of the present invention can be obtained.
  • the oil reservoir fuel temperature adjusting means includes an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium.
  • a reservoir temperature detecting means for detecting a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the reservoir detected by the fuel temperature detector.
  • a method for controlling the temperature of a DME fuel characterized by adjusting a supply amount of the cooling medium by the cooling medium supply means so that ⁇ ⁇ is obtained.
  • the temperature of the D ⁇ fuel in the oil reservoir is adjusted to the specified temperature TG based on the temperature detected by the oil temperature fuel detecting means for detecting the temperature of the D ⁇ fuel in the oil reservoir. Adjust the amount of cooling medium supplied to the oil reservoir fuel cooler that cools the fuel in the oil reservoir. In other words, by adjusting the cooling power of the oil sump fuel cooler based on the temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detection means, the D ⁇ ⁇ fuel in the oil sump is controlled. Control so that the temperature becomes the specified temperature TG . As a result, the temperature of the DME fuel in the oil sump, which rises due to heat from diesel engines, etc. The temperature can be maintained at the specified temperature TG .
  • the DME fuel temperature in the oil reservoir is detected based on the DME fuel temperature in the oil reservoir detected by the oil reservoir fuel temperature detecting means.
  • the operation and effect according to the twenty-third aspect of the present invention can be obtained.
  • the cooling medium supply unit adjusts a supply amount of the cooling medium to the oil sump fuel cooler according to a rotation speed of a rotary driving force source. and forms a structure to increase or decrease based on the temperature of DME fuel in the oil reservoir chamber detected by the oil reservoir chamber fuel temperature detecting means, and temperature the predetermined temperature T e of the DME fuel in the oil reservoir chamber.
  • the DME fuel in the oil reservoir is detected based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means.
  • the supply amount of the cooling medium to the oil reservoir fuel cooler can be controlled.
  • the fuel tank internal temperature control means is configured to control the temperature of the DME fuel delivered to the fuel tank via an air-cooled cooler.
  • the first return path is to return to the fuel tank while the DME fuel sent to the fuel tank is cooled via the air-cooled cooler, while the second return path is to the fuel tank.
  • the delivered DME fuel is returned to the fuel tank without passing through the air-cooled cooler, that is, without being cooled. Therefore, when returning the DME fuel to the diesel engine, the oil reservoir detected by the oil reservoir fuel temperature detecting means determines whether to return via the first return path or the second return path.
  • the fuel tank is switched from the temperature of the DME fuel in the oil reservoir.
  • the temperature of the DME fuel in the fuel tank can be controlled such that the temperature of the DME fuel in the fuel tank becomes high with a relatively constant temperature difference.
  • the temperature of the DME fuel in the oil reservoir and the fuel tank fuel temperature detected by the oil reservoir fuel temperature detecting means are detected.
  • the DME fuel in the fuel tank By controlling the DME fuel in the fuel tank by switching the return path of the DME fuel delivered to the fuel tank based on the temperature of the DME fuel in the fuel tank detected by the means, The operation and effect according to any one of the embodiments 23 to 26 can be obtained.
  • a DME fuel supply device for a diesel engine is configured to supply DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing.
  • An injection pump for delivering to an injection pipe communicating with a fuel injection nozzle; an oil reservoir fuel temperature adjusting means for adjusting a temperature of DME fuel filled in an oil reservoir of the injection pump;
  • a fuel tank temperature control means for controlling the temperature of the DME fuel in the fuel tank; and a fuel tank temperature control means and the fuel tank temperature control means.
  • the fuel tank temperature control means is controlled so that the temperature becomes high.
  • the same operation and effect as those of the above-described twenty-third aspect of the present invention can be obtained. Can be.
  • the oil reservoir fuel temperature adjusting means uses the vaporized DME fuel as a cooling medium to cool the DME fuel in the oil reservoir.
  • Reservoir temperature detection means wherein the D ⁇ fuel temperature control means detects the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detection means.
  • the temperature of the DME fuel in the chamber is the predetermined temperature T G
  • the DME fuel supply device of the diesel engine according to the twentieth aspect of the present invention in the DME fuel supply device of a diesel engine, the same operational effects as those of the above-described twenty-fourth aspect of the present invention can be obtained. Can be.
  • the oil reservoir fuel temperature adjusting means comprises an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium.
  • the DME fuel supply device for a diesel engine According to the DME fuel supply device for a diesel engine according to the thirtieth aspect of the present invention, it is possible to obtain the same operational effects as those of the above-described twenty-fifth aspect of the present invention in the DME fuel supply device for a diesel engine. it can.
  • the cooling medium supply means is configured to control a supply amount of the cooling medium to the oil sump fuel cooler according to a rotation speed of a rotary driving force source.
  • the oil reservoir chamber temperature control means is configured to: increase or decrease the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detection means.
  • the same operational effects as those of the above-described twenty-sixth aspect of the present invention are obtained. be able to.
  • the fuel tank temperature adjusting means is arranged so that the DME fuel delivered to the fuel tank passes through an air-cooled cooler.
  • a return path switching means for switching between the first return path and the second return path; and a fuel tank fuel temperature for detecting a temperature of the DME fuel in the fuel tank.
  • Detecting means for controlling the temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means.
  • Yo Controlling the return path switching means such that the temperature of the DME fuel in the fuel tank becomes relatively high with a relatively constant temperature difference. It is.
  • the same operational effects as those of the above-described twenty-sixth aspect of the present invention can be obtained in the DME fuel supply device for a diesel engine. it can.
  • the DME fuel delivered from the injection pump is supplied to a common rail, and from the common rail to each fuel injection nozzle.
  • This is a DME fuel supply system for diesel engines, characterized in that it is delivered.
  • any one of the aforementioned 28th to 32nd aspects of the present invention is provided in the DME fuel supply device of a common rail diesel engine.
  • the operation and effect according to the embodiment can be obtained.
  • the temperature control program for DME fuel includes the steps of: providing DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing; An injection pump for delivering to an injection pipe communicating with the injection nozzle; an oil reservoir fuel temperature adjusting means for adjusting the temperature of the DME fuel filled in an oil reservoir of the injection pump; DME fuel temperature control for causing a computer to execute DME fuel temperature control in a DME fuel supply device for a diesel engine, comprising: a fuel tank temperature control means for controlling the temperature of the DME fuel in the fuel tank.
  • the oil reservoir chamber fuel temperature system for controlling the oil reservoir chamber fuel temperature regulating means Controlling the temperature control means in the fuel tank such that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the D ⁇ fuel in the oil reservoir with a relatively substantially constant temperature difference.
  • a fuel tank internal temperature control procedure According to the DME fuel temperature control program according to the thirty-fourth aspect of the present invention, the same operation and effect as those of the above-described twenty-third aspect of the present invention can be obtained. The same operational effects as those of the above-described twenty-third aspect of the present invention can be provided to any diesel engine DME fuel supply device capable of executing the program.
  • the oil reservoir fuel temperature adjusting means comprises an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium.
  • a DME fuel temperature control program wherein the cooling medium supply means controls the supply of the cooling medium by the NMEFF so that the temperature of the DME fuel becomes the specified temperature. is there.
  • the DME fuel temperature control program of the thirty-fifth aspect of the present invention the same operation and effect as those of the above-described second aspect of the present invention can be obtained, and the DME fuel temperature control program is executed.
  • the DME fuel supply device of any diesel engine that can perform the same operation and effect as the above-described twenty-fourth aspect of the present invention can be provided.
  • the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the deprived DME fuel as a cooling medium.
  • An oil sump fuel cooler, cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil sump fuel cooler, and detecting a temperature of the DME fuel in the oil sump.
  • Oil reservoir fuel temperature detecting means for detecting oil temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. The temperature of the DME fuel in the reservoir becomes the specified temperature,
  • a temperature control program for DME fuel characterized by comprising a procedure for adjusting a supply amount of the cooling medium by a cooling medium supply unit.
  • the DME fuel temperature control program according to the thirty-sixth aspect of the present invention it is possible to obtain the same operation and effect as those of the above-described twenty-fifth aspect of the present invention,
  • the same operational effects as those of the above-described twenty-fifth aspect of the present invention can be provided to any diesel engine DME fuel supply device capable of executing the above.
  • the cooling medium supply means is configured to control a supply amount of the cooling medium to the oil reservoir fuel cooler in accordance with a rotation speed of a rotary driving force source.
  • the oil reservoir fuel temperature control procedure includes the step of: controlling the oil reservoir fuel temperature based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. as the temperature of the DME fuel is the predetermined temperature T e, has a procedure for controlling the rotational speed of the rotary driving power source, a temperature control program of D ME fuel characterized by.
  • the same operation and effect as those of the 26th aspect of the present invention can be obtained.
  • the same operational effects as those of the above-described twenty-sixth aspect of the present invention can be provided to any DME fuel supply device capable of executing the above.
  • the fuel tank internal temperature control means includes an air-cooled cooler for supplying the DME fuel to the fuel tank.
  • a first return path which is cooled through the fuel tank and then returns to the fuel tank, and a second return path in which the DME fuel delivered to the fuel tank is returned to the fuel tank without passing through the air-cooled cooler.
  • Return route switching means for switching between the first return and the second return route; and a fuel for detecting the temperature of the DME fuel in the fuel reservoir. And a fuel temperature detecting means.
  • the fuel tank internal temperature control procedure is based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means, and the fuel tank is controlled based on the temperature of the DME fuel in the oil reservoir. Controlling the return path switching means so that the temperature of the DME fuel in the inside becomes high with a relatively constant temperature difference. It is a program.
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a DME fuel supply device according to the present invention.
  • FIG. 2 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state when diesel engines are stopped.
  • FIG. 3 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged.
  • FIG. 4 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
  • FIG. 5 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel fuel.
  • FIG. 6 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device according to the present invention.
  • FIG. 7 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device according to the present invention, in which a feed pipe is connected to a feed pipe before the residual fuel recovery operation after stopping the diesel engine. It shows a state in which the phase parts are communicated.
  • FIG. 8 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention.
  • FIG. 9 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state when diesel engines are stopped.
  • FIG. 10 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state where DME fuel is charged.
  • FIG. 11 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state during a diesel engine operation.
  • FIG. 12 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after stopping the diesel engine. It shows the state.
  • FIG. 13 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
  • FIG. 14 is a schematic configuration diagram showing a fourth embodiment of the DME fuel supply device according to the present invention.
  • FIG. 15 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention.
  • FIG. 16 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
  • FIG. 17 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state where DME fuel is charged.
  • FIG. 18 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
  • FIG. 19 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
  • FIG. 20 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device according to the present invention.
  • FIG. 21 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after the diesel engine is stopped.
  • FIG. 21 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after the diesel engine is stopped.
  • FIG. 22 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention.
  • FIG. 23 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
  • FIG. 24 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged.
  • FIG. 25 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state during a diesel engine operation.
  • FIG. 26 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after stopping the diesel engine.
  • FIG. 26 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after stopping the diesel engine.
  • FIG. 27 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
  • FIG. 28 is a schematic configuration diagram showing an eighth embodiment of the DME fuel supply device according to the present invention.
  • FIG. 29 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention.
  • FIG. 30 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
  • FIG. 31 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged.
  • FIG. 32 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
  • FIG. 33 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
  • FIG. 34 is a flowchart showing the “procedure for controlling the temperature in the fuel tank” according to the present invention.
  • FIG. 35 is a flowchart showing an “oil reservoir fuel temperature control procedure” according to the present invention.
  • FIG. 36 is a graph schematically showing a temperature waveform of the DME fuel in the fuel tank and a temperature waveform of the DME fuel in the oil reservoir according to the present invention.
  • FIG. 37 is a schematic configuration diagram showing another embodiment of the DME fuel supply device according to the present invention.
  • FIG. 38 is a flowchart showing an “oil reservoir fuel temperature control procedure” in the DME fuel supply device for the diesel engine shown in FIG. 37.
  • FIG. 39 is a graph schematically showing the temperature waveform of the DME fuel in the fuel tank according to the present invention and the temperature waveform of the DME fuel in the oil reservoir, in which the rotation speed of the electric compressor is controlled. This shows the temperature control of the DME fuel in the oil reservoir by the c.
  • FIG. 1 is a schematic configuration diagram illustrating a DME fuel supply device according to a first embodiment of the present invention.
  • the DME fuel supply device 100 for supplying DME fuel to a diesel engine includes an injection pump 1.
  • the DME fuel in the liquid part 4 a of the fuel tank 4 is filtered from the liquid fuel outlet 41 through a filter 5 a and then fed.
  • the oil is supplied to the oil reservoir 11 of the injection pump 1 via the pipe 5 and the three-way solenoid valve 21.
  • the three-way solenoid valve 21, which is a component of the “remaining fuel recovery means” described later, is in the ON state during the injection state (during operation of the diesel engine), and the feed pipe 5 communicates with the oil reservoir 11. I have.
  • the injection pump 1 is provided with the same number of injection pump elements 2 as the number of cylinders of the diesel engine.
  • An injection pipe 3 is connected to a fuel outlet of the injection pump element 2, and the injection pipe 3 is connected to a fuel injection nozzle 9, and the DME fuel compressed to a high pressure sent from the injection pump 1 is used for injection.
  • the fuel is fed to the fuel injection nozzle 9 via the injection pipe 3.
  • the DME fuel overflowing from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 and is supplied again to the oil reservoir 11.
  • an “oil reservoir fuel cooling device 60” for cooling the DME fuel in the oil reservoir 11 is provided outside the oil reservoir 11.
  • DME fuel is supplied as a refrigerant from the fuel tank 4 to the “oil reservoir fuel cooling device 60” via a refrigerant supply pipe 51 branched from the feed pipe 5.
  • the DME fuel supplied as the refrigerant is supplied to the fuel gas dehydrator 15 through the refrigerant supply pipe opening / closing solenoid valve 16.
  • the DME fuel gasified by the fuel vaporizer 15 is supplied to the fuel cooler 6 utilizing the heat of vaporization, and the DME fuel in the oil reservoir 11 is cooled by the heat of vaporization.
  • the “oil reservoir fuel cooling device 60” is controlled by opening and closing the refrigerant supply pipe opening and closing solenoid valve 16.
  • the cam chamber 12 is a dedicated lubrication system separated from the diesel engine lubrication system, and the oil separator 13 leaks from the injection pump element 2 to the cam chamber 12: DME fuel
  • the mixed lubricating oil in the cam chamber 12 is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber 12.
  • the DME fuel separated in the oil separator 13 is sent out to the electric compressor 23 via a check valve 14 for preventing the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized in 2, it is returned to the fuel tank 4.
  • the “oil reservoir fuel cooling system” The DME fuel supplied as a refrigerant to the fuel cooler 6 is also pressurized by the electric compressor 23 and then returned to the fuel tank 4.
  • the DME fuel was supplied from the refrigerant supply pipe 51 to the “oil reservoir fuel cooling device”: D
  • the DME fuel supplied as the refrigerant to the “oil reservoir fuel cooling device” can be recovered without providing a dedicated refrigerant recovery unit.
  • the DME fuel pressurized by the electric compressor 23 is cooled by the cooler 42 as “air-cooled cooling ⁇ ” before the fuel tank Returned to 4 (first return path).
  • the temperature of the DME fuel returned to the fuel tank 4 can be adjusted by ON / OFF control of the three-way solenoid valve 2 2, thereby controlling the temperature of the DME fuel in the fuel tank 4. can do.
  • the check valve 43 prevents the DME fuel from flowing back to the cooler 42 from the second return path.
  • the DME fuel supply stop operation, the DME fuel charging operation, the diesel engine operation state, and the residual fuel recovery operation after the diesel engine is stopped are sequentially performed. Will be described later.
  • FIG. 2 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when diesel engines are stopped.
  • FIG. 3 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state in which DME fuel is charged.
  • the DME fuel in the fuel tank 4 is supplied to the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle pipe 7 of the nozzle, and the refrigerant supply pipe 51.
  • the three-way solenoid valve 21 and the three-way solenoid valve 22 are in the ON state, and a communication path in the illustrated direction is formed for each.
  • the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the three-way solenoid valve 22 in the on state is indicated by the symbol B.
  • the gas phase 4 b in the fuel tank 4 is pressurized in the direction.
  • the DME fuel in the liquid phase 4a is sent out to the feed pipe 5 (symbol C), and the oil sump chamber 11, the injection pipe 3, and the nozzle
  • the return pipe 7 and the refrigerant supply pipe 51 are filled with DME fuel in the direction indicated by the symbol D.
  • the DME fuel supplied as a refrigerant from the refrigerant supply pipe 51 is degassed by the fuel vaporizer 15 and sent out to the fuel cooler 6 of the “oil reservoir fuel cooling device”, where the heat of vaporization is obtained. As a result, the DME fuel filled in the oil reservoir 11 is cooled.
  • FIG. 4 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during a diesel engine operation.
  • the DME fuel in the fuel tank 4 is filled with the DME fuel in the oil reservoir 11 cooled by the “oil reservoir fuel cooling device” and the fuel tank 4. Due to the relative pressure difference between the two due to the temperature difference with the DME fuel, it is pumped to the feed pipe 5 (reference E). That is, the DME fuel supply device 100 according to the present invention does not include a pump for sending the DME fuel from the fuel tank 4 to the injection pump 1, and the DME fuel in the oil reservoir 11 is not provided. Due to the pressure difference between the oil reservoir 11 and the inside of the fuel tank 4 caused by cooling the DME fuel, the DME fuel in the fuel tank 4 is supplied to the injection pump 1.
  • the oil reservoir 11 does not have an overflow channel, and the DME pumped from the oil reservoir 11 to the fuel injection nozzle 9 via the injection pipe 3 by the injection pump element 2 (reference F). It will be supplied only for the amount of fuel. Also, the DME fuel did not return to the fuel tank 4 as before, but returned to the feed pipe 5 via the nozzle return pipe 7 and returned to the oil reservoir 1 again. Supplied to 1. In this way, the fuel cooler 6, which effectively utilizes the excellent characteristics of the DME fuel as a refrigerant, makes it possible to rationally configure the "oil reservoir fuel cooling device". This is unnecessary, and the cost of the diesel engine DME fuel supply device 100 can be reduced.
  • a temperature sensor 1 la oil reservoir fuel temperature detecting means
  • the cooling temperature of the oil reservoir 11 is controlled to be a constant cooling temperature by controlling the opening and closing of the refrigerant supply pipe opening and closing solenoid valve 16. That is, when the temperature of the DME fuel in the oil reservoir 11 detected by the temperature sensor disposed in the oil reservoir 11 falls below a predetermined temperature, the refrigerant supply pipe opening / closing solenoid valve 16 is controlled to close. (ON), and when the temperature exceeds a predetermined temperature, the refrigerant supply pipe opening / closing solenoid valve 16 is opened (OFF) to maintain the temperature of the DME fuel in the oil reservoir 11 constant.
  • a temperature sensor 4c (means for detecting the temperature in the fuel tank) is provided.
  • the temperature of the DME fuel in the oil reservoir 11 and the temperature of the DME fuel in the fuel tank 4 are determined.
  • the three-way solenoid valve 2 2 (return path switching solenoid valve) is controlled so that the temperature difference between the three-way solenoid valve 22 and the fuel tank 4 becomes constant, that is, the temperature difference between the oil reservoir 11 and the fuel tank 4 becomes constant.
  • the temperature control means 22 a in the fuel tank is configured so as to control the temperature of the DME fuel in the fuel tank 4 by ONZOFF control of the valve.
  • FIG. 5 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a residual fuel recovery operation after the diesel engine is stopped.
  • the cylinder After stopping the diesel engine, the cylinder is filled with vaporized DME fuel to prevent abnormal combustion such as noking that occurs when the diesel engine is restarted.
  • the oil reservoir 11, the injection pipe 3, and the nozzle The DME fuel filled in the pump 7 and the refrigerant supply pipe 51 is recovered to the fuel tank 4 by the residual fuel recovery means 2 la.
  • the residual fuel recovery means 21a is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23.
  • the electric compressor 23 fills the oil reservoir 11, the injection pipe 3, the nozzle pipe 7, and the refrigerant supply pipe 51.
  • the collected DME fuel is collected in the fuel tank 4 through the route indicated by reference symbol J.
  • the recovered DME fuel is cooled by the cooler 14 2 in the first return route (the route indicated by the symbol H) and then recovered to the fuel tank 4. You.
  • the DME fuel can be supplied from the fuel tank to the oil reservoir without using a driving means such as a feed pump.
  • FIG. 6 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device 100 according to the present invention.
  • the gas phase portion 4b of the fuel tank 4 is connected to the feed pipe 5 from the gas phase fuel outlet 44 through the gas phase fuel output pipe 311 and the 3-way solenoid valve 31.
  • the DME fuel supply device 100 communicates with the oil reservoir 11 and the liquid phase portion 4 a of the fuel tank 4, and the three-way solenoid valve 3 If 1 is in the 0 N state, The oil reservoir 11 communicates with the gas phase portion 4b of the fuel tank 4.
  • the remaining fuel is filled into the oil sump chamber 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 by the "remaining fuel recovery means".
  • the three-way solenoid valve 31 is turned on and the high-pressure gaseous DME fuel in the gas phase section 4b is sent to the feed pipe 5 (gas phase Fuel delivery means).
  • FIG. 7 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device 100 according to the present invention, in which a gas phase is supplied to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows a state in which the parts 4b are connected to each other.
  • the three-way electric valve 31 is turned on when the diesel engine is stopped, and the liquid phase of the fuel tank 4 is turned on.
  • the communication between 4a and the feed pipe 5 is cut off and the gas phase 4 of the fuel tank 4 is connected to the feed pipe 5
  • the gaseous DME fuel in the gas phase 4b passes through the path indicated by the symbol K. Sent out.
  • the DME fuel in the feed pipe 5 on the side of the oil reservoir 11 from the three-way solenoid valve 31 and the DME fuel charged in the refrigerant supply pipe 51 are supplied through the fuel cooler 6 to the symbol L.
  • the fuel is collected in the fuel tank 4 by the electric compressor 23 along the route indicated by.
  • the feed pipe is previously prepared by the “gas phase fuel delivery means”. 5, and a part of the DME fuel remaining in the refrigerant supply pipe 51 can be recovered to the fuel tank 4 by the electric compressor 23, so the D vaporized in the feed pipe 5 and the refrigerant supply pipe 51
  • the ME fuel is filled, and the time required for DME fuel recovery by the “residual fuel recovery means” can be reduced.
  • FIG. 8 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention.
  • a sub-fuel tank 45 having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5, a sub-fuel tank 45 having a smaller capacity than the fuel tank 4 is provided.
  • the capacity of the sub fuel tank 45 is about 1/1000 of the fuel tank 4.
  • the DME fuel supply device 100 shown in this embodiment fills the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 with DME fuel when the diesel engine is started. In this case, DME fuel is supplied not from the fuel tank 4 but from the sub fuel tank 45.
  • FIG. 9 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when diesel engines are stopped.
  • the three-way solenoid valve 21 and the three-way solenoid valve 22 and the refrigerant supply pipe opening / closing solenoid valve 16 are all OFF. Further, the three-way solenoid valve 33 and the solenoid valve 32 for opening and closing the communication between the fuel tank 4 and the sub fuel tank 45 are also OFF. As shown, the three-way solenoid valve 33 communicates with the fuel tank 4 in the OFF state, and the solenoid valve 32 communicates with the fuel tank 4 and the sub fuel tank 45 in the OFF state.
  • FIG. 10 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged.
  • the DME fuel in the fuel tank 4 is filled with the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle pipe 7 and the coolant supply pipe 5 1 Fill into.
  • a three-way solenoid valve 21 and the three-way solenoid valve 22 are turned ON, and each constitutes a communication path in the direction shown.
  • the three-way solenoid valve 33 and the solenoid valve 32 are in the ⁇ N state, the communication between the fuel tank 4 and the sub fuel tank 45 is cut off, and the communication path from the three-way solenoid valve 22 is changed to the sub fuel tank. Connect to 4-5.
  • the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the three-way solenoid valve 22 in the ON state and the sub fuel tank 4 communicated with the three-way solenoid valve 33 are turned on.
  • 5 is pressurized in the direction indicated by the symbol M, and the gas phase in the sub fuel tank 45 is pressurized.
  • the DME fuel in the sub fuel tank 45 is delivered to the feed pipe 5 (reference numeral N), and the oil reservoir 11 and the injection pipe 3
  • the DME fuel is charged into the nozzle return pipe 7 and the refrigerant supply pipe 51 in the direction indicated by the symbol N.
  • FIG. 11 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during diesel engine operation.
  • the return pipe 8 communicates with the cooler 14 through the electric compressor 23, and the DME fuel in the fuel tank 4 is cooled in the oil reservoir 11 cooled by the “oil reservoir fuel cooling device”. Due to the relative pressure difference between the DME fuel and the DME fuel in the fuel tank 4 caused by the temperature difference between the DME fuel and the DME fuel, the fuel is pumped to the feed pipe 5 via the sub fuel tank 45 (reference numeral N). ;).
  • the fuel tank is filled by the amount of the DME fuel that has been pumped (reference F) from the oil reservoir 11 to the fuel injection nozzle 9 via the injection pipe 3 by the injection pump element 2. It will be supplied from 4 via the sub fuel tank 45.
  • the DME fuel that has overflowed from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 without being returned to the fuel tank 4 as in the conventional case, and is returned to the oil reservoir 11 again. Supplied to
  • FIG. 12 is a schematic view showing a third embodiment of the DME fuel supply device 100 according to the present invention.
  • FIG. 3 is a configuration diagram showing a state in which a gas phase section 4b is connected to a feed pipe 5 before a residual fuel recovery operation after the diesel engine is stopped.
  • the three-way valve 31 is set to the ⁇ N state, the communication between the liquid phase portion 4a of the fuel tank 4 and the feed pipe 5 is cut off, and the fuel
  • the gas phase portion 4b of the tank 4 is communicated with the feed pipe 5
  • the gaseous DME fuel in the gas phase portion 4b is sent out through the path indicated by the symbol K.
  • the DME fuel in the feed pipe 5 on the side of the oil reservoir 11 from the three-way solenoid valve 31 and the DME fuel filled in the refrigerant supply pipe 51 are denoted by L through the fuel cooler 6.
  • the fuel is recovered to the fuel tank 4 by the electric compressor 13 through the route indicated by.
  • FIG. 13 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 10 ° according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
  • “Residual fuel recovery means” is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23. When the three-way solenoid valve 21 is turned off after the diesel engine stops, the electric compressor 23 fills the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 with DME.
  • Fuel is recovered to fuel tank 4 along the path indicated by reference symbol J.
  • the DME fuel recovered by turning off the three-way solenoid valve 22 is cooled by the cooler 14 in the first return route (the route indicated by the symbol H) and then recovered to the fuel tank 4. Is done.
  • D fuel can be removed from the fuel tank without using a driving means such as a feed pump.
  • ME fuel can be supplied to the oil reservoir.
  • the capacity of the sub fuel tank 45 is smaller than that of the fuel tank 4, the pressurization time by the electric compressor 23 can be short, and the DME fuel is transferred to the oil reservoir 11 by the pressing force of the electric compressor 23. The filling time can be reduced.
  • the capacity of the sub fuel tank 45 is smaller than that of the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 as long as the DME fuel can be charged. It can be said that the faster the DME fuel can be filled, the better.
  • a DME fuel supply device 100 in the third embodiment is a common rail type.
  • FIG. 14 is a schematic configuration diagram showing a fourth embodiment of the DME fuel supply device 100 according to the present invention.
  • the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied via the common rail 91 to which each fuel injection nozzle 9 is connected can also be implemented, and the operation and effect of the present invention can be obtained.
  • FIG. 15 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention
  • FIG. 16 is a fifth embodiment of the DME fuel supply device 100 according to the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating a state when the diesel engine is stopped.
  • FIG. 17 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged.
  • FIG. 18 is a schematic configuration diagram illustrating a fifth embodiment of the DME fuel supply device 100 according to the present invention, and illustrates a state during operation of the diesel engine.
  • FIG. 19 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device 100 according to the present invention, and shows a residual fuel recovery operation after the diesel engine is stopped.
  • the fifth embodiment includes many parts having the same configuration as the first embodiment. During ⁇ Explain to my heart.
  • the fifth embodiment of the present invention does not include the fuel cooler 6 as described in the first to fourth embodiments.
  • a cam chamber 1 is provided outside the cam chamber 12 as an “oil sump fuel cooling device 6 1” for cooling the DME fuel in the oil sump 11.
  • a fuel gas mist device 15 for discharging the vaporized DME fuel as a refrigerant is provided in the fuel cell 2.
  • DME fuel is supplied as a refrigerant to the fuel vaporizer 15 from the fuel tank 4 via a refrigerant supply pipe 51 branched from the feed pipe 5.
  • the DME fuel supplied as the refrigerant is supplied to the fuel vaporizer 15 via the refrigerant supply pipe opening / closing solenoid valve 16.
  • the cooling is effected via an injection pump element 2 arranged over the chamber 11.
  • the oil reservoir fuel cooling device 61 is controlled by opening and closing a refrigerant supply pipe opening and closing electromagnetic valve 16.
  • the cam chamber 12 is a dedicated lubrication system that is separated from the diesel engine lubrication system.
  • the oil separator 13 is a cam with DME fuel mixed into the cam chamber 12 from the injection pump element 2.
  • the lubricating oil in the chamber 12 is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber 12.
  • the DME fuel separated in the oil separator 13 is sent to the electric compressor 23 through the check valve 14 that prevents the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized by the compressor 23, it is returned to the fuel tank 4.
  • the DME fuel discharged into the cam chamber 12 as a refrigerant by the fuel carburetor 15 is also used in the oil separator 13 After being separated from the lubricating oil by the compressor and pressurized by the electric compressor 23, it is returned to the fuel tank 4.
  • the oil separator 13 and the electric compressor 23 for separating the DME fuel leaked from the injection pump element 2 into the cam chamber 12 and mixed with the lubricating oil and collecting the DME fuel in the fuel tank 4 A dedicated refrigerant recovery means is provided by collecting the DME fuel supplied from the refrigerant supply pipe 51 to the fuel gas deflector 15 and discharged into the cam chamber 12 into the fuel tank 4 using the Thus, the DME fuel supplied to the oil reservoir fuel cooling device 61 as a refrigerant can be recovered.
  • the DME fuel in the fuel tank 4 is supplied to the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe. 5 Fill into 1.
  • the three-way solenoid valve 21 and the three-way solenoid valve 22 are in the ON state, and communication paths are formed in the directions shown in the drawings.
  • the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the three-way solenoid valve 22 in the ON state is indicated by the symbol B.
  • the gas phase portion 4b in the fuel tank 4 is pressurized in the direction shown by.
  • the DME fuel in the liquid phase 4 a is delivered to the feed pipe 5 (reference C), and the oil reservoir 11, the injection pipe 3,
  • the DME fuel is charged into the nozzle return pipe 7 and the refrigerant supply pipe 51 in the direction indicated by the symbol D.
  • the DME fuel supplied as the refrigerant from the refrigerant supply pipe 51 is vaporized by the fuel vaporizer 15 and discharged into the cam chamber 12, and the heat of vaporization causes the DME fuel to flow into the oil reservoir 11.
  • the DME fuel filled in is cooled.
  • the DME fuel overflowed from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 without being returned to the fuel nozzle 4 as in the conventional case. However, it is supplied to the oil sump 11 again. In this way, the vaporized DME fuel is discharged into the cam chamber 12 and the excellent characteristics of the DME fuel as a refrigerant are effective.
  • the "oil reservoir fuel cooling means" can be rationally configured, so that a drive means such as a feed pump is not required, and the cost of the DME fuel supply device 100 for diesel engines is reduced. Can be done.
  • FIG. 16 showing the state when the diesel engine is stopped and FIG. 19 showing the residual fuel recovery operation after the diesel engine is stopped are not particularly described, but the parts not described are not described. This is the same as the first embodiment. Parts not described with reference to FIGS. 15, 17, and 18 are also the same as those in the first embodiment.
  • FIG. 20 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device 100 according to the present invention.
  • FIG. 21 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device 100 according to the present invention, in which the gas phase section 4 is fed to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows a state where b is communicated.
  • FIG. 22 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention.
  • FIG. 23 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when the diesel engine is stopped.
  • FIG. 24 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 10 ° according to the present invention, and shows a state where DME fuel is charged.
  • FIG. 25 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during operation of the diesel engine.
  • FIG. 26 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, in which the gaseous phase section is supplied to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows the state where 4b is connected.
  • FIG. 27 shows a DME fuel supply device 1 according to the present invention.
  • FIG. 14 is a schematic configuration diagram illustrating a seventh embodiment of the present invention, and illustrates a residual fuel recovery operation after the diesel engine is stopped.
  • a sub fuel tank having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5.
  • the seventh embodiment is basically the same as the second embodiment, except that a sub-fuel tank having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5 in addition to the second embodiment. This is a change, and the same operation and effect as in the second embodiment can be obtained by the change, so that the description is omitted here.
  • FIG. 28 is a schematic configuration diagram showing an eighth embodiment of the DME fuel supply device 100 according to the present invention.
  • the eighth embodiment differs from the seventh embodiment in that the DME fuel supply device 100 is a common rail type.
  • the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied through a common rail 91 to which each fuel injection nozzle 9 is connected.
  • the present invention can be implemented, and the operation and effect of the present invention can be obtained.
  • a diesel engine DME fuel supply device capable of supplying DME fuel from a fuel tank to an oil reservoir of an injection pump without using a driving means such as a feed pump. be able to.
  • FIG. 29 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention.
  • FIG. 30 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, showing a state where the diesel engine is stopped.
  • FIG. 31 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged.
  • FIG. 32 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during operation of the diesel engine.
  • FIG. 33 shows a DME fuel supply device 100 according to the present invention.
  • FIG. 9 is a schematic configuration diagram showing a ninth embodiment, illustrating a residual fuel recovery operation after stopping diesel fuel.
  • the ninth embodiment includes many parts having the same configuration as the first embodiment. I will explain mainly.
  • FIGS. 29 to 33 the same reference numerals as those used in the first to fourth embodiments are shown in FIGS. 29 to 33. Unless otherwise specified, it is assumed that the same members or portions are the same as those described in the first to fourth embodiments.
  • the cam chamber 12 is a dedicated lubrication system separated from the lubrication system of the diesel engine, and the oil separator 13 is an injection pump element. Separate the DME fuel leaked from 2 into the cam chamber 12 from the lubricating oil. The DME fuel separated in the oil separator 13 is sent to the electric compressor 23 via a check valve 14 for preventing the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized by the electric compressor 23, it is returned to the fuel tank 4.
  • oil reservoir fuel temperature control means for cooling the DME fuel in the oil reservoir 11 is provided.
  • DME fuel is supplied to the “oil reservoir fuel temperature adjusting means” as a cooling medium from the fuel tank 4 via a cooling medium supply pipe 51 branched from the feed pipe 5.
  • the DME fuel supplied as the cooling medium is supplied to the fuel gas radiator 15 via the cooling medium supply pipe opening / closing solenoid valve 16.
  • the DME fuel gasified by the fuel vaporizer 15 is supplied to the oil reservoir fuel cooler 106 using the heat of vaporization, and the DME fuel in the oil reservoir 11 is heated by the heat of vaporization. Fuel is cooled.
  • the DME fuel supplied as a cooling medium to the oil reservoir fuel cooler 106 is sucked by the electric compressor 23 and returned to the fuel tank 4.
  • D ME fuel Pressurized by electric compressor 23: D ME fuel, return path switching electromagnetic
  • the valve 122 When the valve 122 is OFF, it is cooled by the cooler 42 as an “air cooling cooler” and then returned to the fuel tank 4 (first return path).
  • the return path switching electromagnetic valve 122 When the return path switching electromagnetic valve 122 is ON, the fuel is returned to the fuel tank 4 without passing through the cooler 42, that is, without being cooled (second return path). Therefore, the temperature of the DME fuel returned to the fuel tank 4 can be adjusted by the ONZOFF control of the return path switching solenoid valve 122, whereby the temperature of the DME fuel in the fuel tank 4 can be controlled ( Temperature control means in the fuel tank).
  • the check valve 43 is for preventing the DME fuel from flowing back to the cooler 42 from the second return path.
  • the “oil reservoir fuel temperature adjusting means” is controlled by the DME fuel temperature control unit 10 as “DME fuel temperature control means”, and specifically, the oil reservoir as “oil reservoir fuel temperature detecting means”.
  • the cooling medium supply pipe opening / closing solenoid valve 16 is controlled to open and close based on the temperature of the DME fuel in the oil sump 11 detected by the chamber temperature sensor 11a. ONZOFF control of cooling medium supply.
  • the “fuel tank temperature control means” is also controlled by the DME fuel temperature control unit 10, and specifically, the fuel detected by the fuel tank temperature sensor 4c as “fuel tank fuel temperature detection means”.
  • the return path switching solenoid valve 122 is ONZOFF controlled based on the temperature of the DME fuel in the tank 4.
  • the DME fuel supply operation the DME fuel supply operation, the DME fuel supply operation, the Diesel Engine operation state, and the residual fuel recovery operation after the diesel engine is stopped are sequentially performed. explain.
  • the three-way solenoid valve 21, the re-start path switching solenoid valve 122, and the cooling medium supply pipe opening / closing solenoid valve 16 are all OFF.
  • the three-way solenoid valve 21 and the return path switching solenoid valve 122 communicate with each other in the illustrated communication direction in an OFF state.
  • the cooling medium supply pipe opening / closing electromagnetic valve 16 is an electromagnetic valve that communicates in an OFF state.
  • the DME fuel in the fuel tank 4 is supplied with the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle return pipe A, and the cooling medium supply pipe. 5 Fill into 1.
  • the three-way solenoid valve 21 and the return path switching solenoid valve 122 are turned ON, and a communication path in the illustrated direction is formed. Subsequently, the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the on-state restart path switching solenoid valve 122 is turned on. The gas phase 4b in the fuel tank 4 is pressurized by being pressurized in the direction indicated by the symbol B.
  • the DME fuel in the liquid phase 4 a is delivered to the feed pipe 5 (reference C), and the oil reservoir 11, the injection pipe 3, and the nozzle
  • the return pipe 7 and the cooling medium supply pipe 51 are filled with the DME fuel in the direction indicated by the symbol D.
  • DME fuel supplied as a cooling medium from the cooling medium supply pipe 51 is vaporized by a fuel vaporizer 15 and sent to an oil reservoir fuel cooler 106, and the heat of vaporization causes the oil reservoir to emit oil. 1
  • the DME fuel charged in 1 is cooled.
  • the DME fuel in the fuel tank 4 is combined with the DME fuel in the oil reservoir 11 cooled by the oil reservoir fuel cooler 106.
  • the fuel is fed to the feed pipe 5 by a relative pressure difference between the fuel tank 4 and the DME fuel due to a temperature difference between the fuel and the DME fuel (reference E). That is, the DME fuel supply device 100 according to the present invention does not include a pump for sending the DME fuel from the fuel tank 4 to the injection pump 1, and the DME fuel in the oil reservoir 11 is not provided.
  • the configuration is such that the DME fuel in the fuel tank 4 is supplied to the injection pump 1 by the pressure difference between the oil reservoir 11 and the fuel tank 4 caused by cooling the fuel tank.
  • the oil reservoir fuel cooler 106 which effectively utilizes the excellent characteristics of the DME fuel as a cooling medium, rationally constitutes the “oil reservoir fuel temperature control means”, and the feed pump This eliminates the need for driving means such as the above, and can reduce the cost of the DME fuel supply device 100 for diesel engines.
  • the cylinder is filled with the depleted DME fuel to prevent the abnormal combustion such as knocking that occurs when the cylinder is moved. Then, the DME fuel filled in the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the cooling medium supply pipe 51 is recovered to the fuel tank 4 by “residual fuel recovery means”.
  • the “fuel recovery means” is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23.
  • the motor is activated.
  • DME fuel filled by the compressor 23 into the oil sump 11, the injection pipe 3, the nozzle return pipe 7, and the cooling medium supply pipe 51 flows along the path indicated by the symbol J.
  • the DME fuel that is recovered by turning off the return path switching solenoid valve 122 is turned off in the first return path (the path indicated by symbol H). After being cooled by the cooler 1, it is collected in the fuel tank 4.
  • FIG. 34 is a flowchart showing the “procedure for controlling the temperature in the fuel tank” according to the present invention. Note that the procedure shown in the flowchart is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON. This is the procedure to be performed.
  • Step S5 it is determined whether or not the diesel engine is operating (Step s: if the Do diesel engine is not operating (No in Step S1), the return path switching solenoid valve 122 is turned off and the procedure is terminated. (Step S5) On the other hand, if the diesel engine is operating (Yes in Step S1), then the “temperature control means in the fuel tank” is controlled to reduce the amount of DME fuel in the fuel tank 4. Execute the procedure to adjust the temperature, where Tg is the temperature of the DME fuel in the oil reservoir 11 detected by the oil reservoir temperature sensor 1 la and Tg is the fuel tank detected by the fuel tank temperature sensor 4 c.
  • the temperature of the DME fuel in 4 is Tt, and the lower limit of the temperature difference between the DME fuel in 1 and the DME fuel in the fuel tank 4 where the required pressure difference is obtained is Tt ⁇ T g In other words, the temperature of the DME fuel in the fuel tank 4 is determined. Gallery you determine temperature below whether or not the lower limit value a obtained by adding the temperature difference required temperature of the DME fuel in 1 1 (step S 2).
  • step S2 If the temperature of the DME fuel in the fuel tank 4 is lower than the temperature of the DME fuel in the oil reservoir 11 plus the lower limit of the required temperature difference (Y es in step S2), If the temperature difference between the DME fuel in the chamber 11 and the DME fuel in the fuel tank 4 is less than the lower limit of the required temperature difference, the return path switching solenoid valve 122 is turned on to control the fuel tank.
  • the DME fuel sent to 4 is returned to the fuel tank 4 via the second return path, that is, without passing through the cooler 42 (step S3). Since the DME fuel delivered to the fuel tank 4 is returned to the fuel tank 4 without cooling, the temperature of the DME fuel in the fuel tank 4 increases.
  • the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 increases, so that the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 increase.
  • the temperature difference between the temperature difference and the required temperature difference can be higher than the lower limit of the required temperature difference.
  • the temperature of the DME fuel in the fuel tank 4 adds the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 If the temperature is equal to or higher than the specified temperature (No in step S2), Determine whether or not. ? Is the upper limit of the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 where the required pressure difference is obtained. That is, it is determined whether the temperature of the DME fuel in the fuel tank 4 is equal to or higher than the temperature obtained by adding the upper limit value ⁇ of the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 (step S4). .
  • step S4 If the temperature of the DME fuel in the fuel tank 4 is lower than the temperature obtained by adding the upper limit of the required temperature difference /? To the temperature of the DME fuel in the oil reservoir 11 (No in step S4), return as it is. The procedure is terminated while maintaining the control state of the path switching solenoid valve 122. On the other hand, if the temperature of the DME fuel in the fuel tank 4 is equal to or higher than the temperature obtained by adding the upper limit value /?
  • step S4 Of the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 (Yes in step S4), If the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 is equal to or more than the upper limit value of the required temperature difference ⁇ , the return path switching solenoid valve 122 is turned off.
  • the DME fuel sent to the fuel tank 4 by the F control is returned to the fuel tank 4 via the first return path, that is, via the cooler 42, and the procedure is terminated (step S5). Since the DME fuel sent to the fuel tank 4 is cooled and returned to the fuel tank 4, the temperature of the DME fuel in the fuel tank 4 decreases.
  • the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 becomes smaller, so that the difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4:
  • the temperature difference can be less than the required upper limit of the temperature difference of 3.
  • the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 can be controlled to be equal to or more than the required lower limit and less than the upper limit / ?.
  • FIG. 35 is a flowchart showing an “oil reservoir fuel temperature control procedure” according to the present invention. Note that the procedure shown in the flowchart is a procedure that is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON.
  • step S11 it is determined whether or not the diesel engine is operating (step S11). Day If the diesel engine is not operating (No in Step S11), the cooling medium supply pipe opening / closing solenoid valve 16 is turned off (control), and the procedure is terminated (Step S16). On the other hand, if the diesel engine is operating (Yes in step S11), the “oil sump fuel temperature adjusting means” is controlled, and the temperature of the DME fuel in the oil sump 11 reaches the specified temperature.
  • the temperature of the DME fuel in the oil sump 11 is adjusted so that First, Tg ⁇ T G - whether ⁇ , i.e., DME fuel temperature limit width of the gallery 11 to the temperature specified temperature TG of DM E fuel oil reservoir 11 - or below the temperature obtained by adding a ⁇ It is determined whether or not it is (step S12).
  • step S12 If the temperature of the DME fuel in the oil chamber 11 is lower than the specified temperature Tc plus the lower limit width of the DME fuel temperature in the oil chamber 11 (Yes in step S12), If the temperature of the DME fuel in the chamber 11 is lower than the lower limit temperature of the DME fuel in the oil chamber 11, there is no need to cool the DME fuel in the oil chamber 11, so the cooling medium supply pipe opening and closing electromagnetic Turn ON (close control) the valve 16 (step S13). As a result, the DME fuel as the cooling medium is not supplied to the oil reservoir fuel cooler 106, so that the DME fuel in the oil reservoir 11 is not cooled. Therefore, the temperature of the DME fuel in the oil reservoir 11 rises and becomes equal to or higher than the lower limit temperature of the DME fuel in the oil reservoir 11.
  • step S12 After the cooling medium supply pipe opening / closing solenoid valve 16 is subjected to ⁇ N control, or if the temperature of the DME fuel in the oil reservoir 11 is equal to or higher than the lower limit temperature of the DME fuel in the oil reservoir 11 (step S12). No), the followed,. Tg ⁇ T G + 7 whether, that is, the upper width + ⁇ of DME fuel temperature of the DME fuel in the oil reservoir 11 in the fuel gallery 11 to the specified temperature T G It is determined whether or not the temperature is equal to or higher than the value obtained by adding (Step S14).
  • the temperature of the DME fuel in the oil reservoir 11 is defined temperature T 0 in the oil reservoir chamber temperature less than that obtained by adding the upper limit width + ⁇ of DME fuel temperature within 11 (vo at step S 14), the oil reservoir 1 1 Since there is no need to cool the DME fuel inside, the cooling medium supply pipe is closed and the ON control state of the solenoid valve 16 is maintained, and the procedure is terminated.
  • the temperature of the DME fuel in the oil sump 11 rises to the specified temperature ⁇ ⁇ ; If the temperature of the DME fuel in the oil reservoir 11 is equal to or higher than the upper limit temperature of the DME fuel in the oil reservoir 11 if the temperature is equal to or higher than the temperature obtained by adding the Since it is necessary to cool the DME fuel inside, the cooling medium supply pipe opening / closing solenoid valve 16 is turned off (closed control) and the procedure is terminated (step S15). As a result, the DME fuel as a cooling medium is supplied to the oil reservoir fuel cooler 106, so that the DME fuel in the oil reservoir 11 is cooled, and the temperature of the DME fuel in the oil reservoir 11 decreases.
  • FIG. 36 is a graph schematically showing a temperature waveform of the DME fuel in the fuel tank 4 and a temperature waveform of the DME fuel in the oil reservoir 11 according to the present invention.
  • the temperature (Tt) of the DME fuel in the fuel tank 4 controlled by the “temperature control procedure in the fuel tank” is within the range of Tg + H ⁇ Tt and Tg +?
  • the temperature (Tg) of the DME fuel in the oil reservoir 11 controlled by the “oil reservoir fuel temperature control procedure” is in the range of T G — 7 ⁇ Tg and T G + a.
  • the temperature of the DME fuel in the fuel tank 4 is controlled so that the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 becomes relatively constant. Accordingly, the DME fuel can be supplied from the fuel tank 4 to the oil reservoir 11 at a substantially constant delivery pressure without using a driving means such as a feed pump. In addition, since the temperature of the DME fuel in the oil reservoir 11 can be controlled to a substantially constant temperature, the DME fuel injection characteristics of the injection pump 1 can be stabilized.
  • FIG. 37 is a schematic configuration diagram showing another embodiment of the DME fuel supply device 100 according to the present invention.
  • the electric compressor 23 is driven by a rotary driving power source such as a DC motor,
  • the suction force is increased or decreased by increasing or decreasing the number of rotations of the rotational driving force source.
  • the DME fuel supply device 100 is configured so that the rotation speed of the electric compressor 13 can be controlled by the DME fuel temperature control unit 10. Note that other configurations are the same as those of the DME fuel supply device 100 shown in FIG. 29, and thus description thereof is omitted.
  • FIG. 38 is a flowchart showing the “oil reservoir fuel temperature control procedure” in the DME fuel supply device 100 for a diesel engine shown in FIG. 37.
  • the procedure shown in the flowchart is a procedure that is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON.
  • step S 2 l it is determined whether or not the diesel engine is operating. If the diesel engine is not operating (No in step S 21), the electric compressor 23 is controlled to OFF to perform the procedure. Is completed (step S24). On the other hand, if the diesel engine is operating (Yes in step S21), the “oil sump fuel temperature control means” is controlled, and the temperature of the DME fuel in the oil sump 11 reaches the specified temperature.
  • the temperature of the DME fuel in the oil reservoir 11 is adjusted so as to reach TG .
  • Tg> T Q that is, whether or not the temperature of the DME fuel in the oil reservoir 11 exceeds the specified temperature TG (step S22).
  • the temperature of the DME fuel in the oil sump 11 is the specified temperature. If it does not exceed (in step S22), it is not necessary to cool the DME fuel in the oil reservoir 11 so that the electric compressor 23 is controlled to OFF and the procedure is terminated (step S24). . On the other hand, if the temperature of the DME fuel in the sump 11 exceeds the specified temperature TG (Yes in step S22), the DME fuel in the sump 11 needs to be cooled. The electric compressor 23 is turned ON at a rotation speed corresponding to the temperature difference between the temperature of the DME fuel in the chamber 11 and the specified temperature TG (step S23).
  • the DME fuel as a cooling medium is supplied to the oil reservoir fuel cooler 106 at a supply amount corresponding to the temperature difference between the temperature of the DME fuel in the oil reservoir 11 and the specified temperature ⁇ ⁇ . So in the oil sump 11 DME fuel temperature can be adjusted with high precision.
  • FIG. 39 is a graph schematically showing the temperature waveform of the DME fuel in the fuel tank 4 and the temperature waveform of the DME fuel in the oil reservoir 11 according to the present invention, wherein the rotation speed of the electric compressor 23 is shown.
  • FIG. 3 shows the temperature control of the DME fuel in the oil reservoir 11 by controlling the temperature.
  • the temperature (Tt) of the DME fuel in the fuel tank 4 controlled by the “temperature control procedure in the fuel tank” becomes a temperature within the range of Tg + « ⁇ Tt and Tg +? temperature of DME fuel in the "gallery fuel temperature control procedure" oil reservoir 11 which is controlled by a (Tg) of, T G - the temperature in the 7 ⁇ Tg rather a range of T G + ⁇ .
  • the cooling medium supplied to the oil reservoir fuel cooler 106 is By adjusting the supply amount of the DME fuel, the temperature of the DME fuel in the oil reservoir 11 can be adjusted with higher precision as shown in the figure.
  • the DME fuel supply device 100 in the above embodiment is a common rail type.
  • the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied via a common rail to which each fuel injection nozzle 9 is connected the DME fuel is supplied from the oil reservoir 11 to the common rail. Since the temperature of the DME fuel can be controlled to be substantially constant, the temperature of the DME fuel in the common rail can be controlled to be substantially constant. Therefore, the present invention is also applicable to the common rail type DME fuel supply device 100, and the operation and effect of the present invention can be obtained.
  • DME fuel can be supplied from the fuel tank to the oil reservoir of the injection pump without using a driving means such as a feed pump. It is possible to provide a diesel engine DME fuel supply device capable of obtaining a stable fuel injection characteristic of a pump.
  • DME fuel in a DME fuel supply device for a diesel engine, can be supplied from a fuel tank to an oil reservoir of an injection pump without using a drive means such as a feed pump. Also, stable fuel injection characteristics of the injection pump can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A DME fuel feed device of a diesel engine capable of feeding DME fuel from a fuel tank to the oil sump of an injection pump without using a drive means such as feed pump, wherein when an electric compressor (23) is turned on and a gaseous phase part (4b) in the fuel tank (4) is pressurized, the DME fuel in a liquid phase part (4a) is sent to a feed pipe (5), and then filled into the oil sump (11), an injection pipe (3), a nozzle return pipe (7), and a refrigerant feed pipe (51), the DME fuel fed as refrigerant is vaporized by a fuel carburetor (15) and sent to a fuel cooler (6) to cool the DME fuel filled in the oil sump (11) by the heat of the vaporization thereof, and the DME fuel in the fuel tank (4) is fed to the injection pump (1) due to a relative pressure difference between the cooled DME fuel in the oil sump (11) and the DME fuel in the fuel tank (4) caused by a temperature difference therebetween.

Description

明 細 書 ディ一ゼルェンジンの D M E燃料供給装置 技術分野  Description DM ZELZENJINE's DME fuel supply system Technical field
本発明は、 DM E (ジメチルェ一テル) を燃料としたディーゼルエンジンの D M E燃料供給装置、 及びデイーゼルエンジンの D M E燃料供給装置における D M E燃料の温度制御方法、 並びに D M E燃料の温度制御プログラムに関する。 背景技術  The present invention relates to a DME fuel supply device for a diesel engine using DME (dimethyl ether) as a fuel, a DME fuel temperature control method in a DME fuel supply device for a diesel engine, and a DME fuel temperature control program. Background art
ディーゼルエンジンによる大気汚染対策として、 軽油の代わりに排気がクリー ンな DME (ジメチルエーテル) を燃料とするものが注目されている。 D ME燃 料は、 従来の燃料である軽油と違って液化ガス燃料である。 つまり、 軽油と比較 して沸点温度が低く、 大気圧下で軽油が常温において液体であるのに対して、 D MEは、 常温において気体となる性質を有している。 例えば、 特閧平 1 1— 1 0 7 8 7 1号公報等に開示されている DMEを燃料としたディーゼルエンジンの; D M E燃料供給装置は、 燃料夕ンク内の D M E燃料をフィードボンプ等で加圧して インジェクションポンプへ送出する。 インジェクションポンプは、 燃料タンクか ら供給された油溜室の D ME燃料を、 所定のタイミングで所定の量だけディーゼ ルェンジンの各燃料噴射ノズルへ圧送する。 インジェクションボンプの油溜室に は、 フィードポンプでカロ圧された DME燃料が供給され続けるので、 油溜室内の DME燃料の圧力が一定に保たれるように D ME燃料をオーバ一フローさせて燃 料タンクに戻している。 つまり、 燃料タンクからフィードポンプ等によってイン ジェクシヨンポンプの油溜室に供給された D M E燃料は、燃料タンクから油溜室、 オーバ一フロー燃料パイプを経由する経路で常に循環している。  As a countermeasure against air pollution by diesel engines, attention has been paid to fuels that use DME (dimethyl ether), whose exhaust is clean, instead of light oil. DME fuel is a liquefied gas fuel, unlike light oil, which is the conventional fuel. In other words, DME has a property that it has a lower boiling point temperature than gas oil and, at atmospheric pressure, gas oil is liquid at room temperature while gas oil is liquid at room temperature. For example, in a diesel engine using DME as a fuel disclosed in Japanese Patent Application Publication No. 11-077871, the DME fuel supply device adds DME fuel in a fuel tank with a feed pump or the like. And send it to the injection pump. The injection pump pressure-feeds the DME fuel in the oil reservoir supplied from the fuel tank by a predetermined amount to each fuel injection nozzle of the diesel engine at a predetermined timing. Since DME fuel pressurized by the feed pump is continuously supplied to the oil reservoir of the injection pump, the DME fuel overflows so that the pressure of the DME fuel in the oil reservoir is kept constant. Returned to the feed tank. In other words, the DME fuel supplied from the fuel tank to the oil reservoir of the injection pump by a feed pump or the like is constantly circulating in a route passing from the fuel tank to the oil reservoir and the overflow fuel pipe.
このような、 燃料循環型の D ME燃料供給装置は、 D ME燃料が常に循環して いるので油溜室内の温度分布が均一になり易く、 それによつて、 各インジヱクシ ヨンポンプの噴射特性が安定するというメリットがある。 また、 フィードポンプ の加圧力を制御しなくてもオーバ一フロー燃料パイプに設けられたオーバーフロIn such a fuel circulation type DME fuel supply device, DME fuel is constantly circulated. Therefore, there is an advantage that the temperature distribution in the oil reservoir can be easily made uniform, thereby stabilizing the injection characteristics of each injection pump. Also, without controlling the pressure of the feed pump, the overflow provided in the overflow fuel pipe can be controlled.
—バルブ等でオーバ一フローする D M E燃料の量を制御することによって、 油溜 室内の D ME燃料の圧力を一定に保つことができ、 それによつて、 各インジェク シヨンポンプの噴射特性を容易に安定させることができるというメリヅ卜がある。 しかしながら、 DME燃料は、 前述したように常温で気体となる性質を有して いるので、 吸引ポンプで吸引すると気化してしまう。 そのため、 D ME燃料のフ イードポンプは、 ピストン式等の機械式のポンプで加圧、 送出する必要がある。 また、 D ME燃料は粘性が低いので、 ピストン式等の機械式のポンプで加圧、 送 出すると効率が悪い。 したがって、 軽油式のディーゼルエンジンの燃料供給装置 と比較して、 大容量のポンプが必要になってしまうことになり、 コスト的に大き な負担となってしまう虞がある。 —By controlling the amount of DME fuel that overflows with a valve, etc., the pressure of the DME fuel in the oil reservoir can be kept constant, thereby easily stabilizing the injection characteristics of each injection pump. There is a merit that it can be done. However, as described above, DME fuel has the property of becoming a gas at room temperature, and is vaporized when suctioned by a suction pump. Therefore, the feed pump for DME fuel needs to be pressurized and delivered by a mechanical pump such as a piston type. In addition, because DME fuel has low viscosity, it is inefficient to pressurize and send it out with a mechanical pump such as a piston type. Accordingly, a large-capacity pump is required as compared with a fuel supply system for a diesel engine of a light oil type, and there is a possibility that the cost is increased.
また、 DM E燃料が常に循環しているので、 例えば、 オーバ一フロー燃料パイ プに亀裂等が生じると、オーバ一フローした D ME燃料が漏れ続けることになり、 大量の D ME燃料が漏れ出てしまう虞がある。  In addition, since the DME fuel is constantly circulating, for example, if a crack or the like occurs in the overflow fuel pipe, the overflowed DME fuel will continue to leak, and a large amount of DME fuel will leak. There is a possibility that it will be.
さらに、 ディーゼルエンジン停止時に油溜室と燃料噴射ノズルのノズルリ夕一 ンパイプに残留している D ME燃料を回収する際に、 オーバーフロー燃料パイプ に残留している D M E燃料も回収しなければならないので、 ディーゼルエンジン 停止後、 DM E燃料供給装置に残留している D ME燃料を回収するのに、 長い時 間を要する要因になってしまう虞がある。 発明の開示  Furthermore, when the DME fuel remaining in the oil sump and the nozzle re-injection pipe of the fuel injection nozzle when the diesel engine is stopped is collected, the DME fuel remaining in the overflow fuel pipe must also be collected. After stopping the diesel engine, it may take a long time to recover the DME fuel remaining in the DME fuel supply system. Disclosure of the invention
本発明は、 このような状況に鑑み成されたものであり、 その課題は、 フィード ポンプ等の駆動手段によらずに、 燃料夕ンクから D M E燃料をインジェクション ポンプの油溜室へ供給することが可能なディーゼルエンジンの D M E燃料供給装 置を提供することにある。 The present invention has been made in view of such a situation, and the problem is to supply DME fuel from a fuel tank to an oil reservoir of an injection pump without using a driving means such as a feed pump. DME fuel supply for diesel engines To provide a location.
また別の課題は、 インジェクションポンプの安定した燃料噴射特性が得られる ディーゼルエンジンの D ME燃料供給装置を提供することにある。  Another object is to provide a DME fuel supply device for a diesel engine that can obtain stable fuel injection characteristics of an injection pump.
上記課題を達成するため、 本発明の第 1の態様は、 燃料タンクからフィードパ イブを経由して供給された DM E燃料を、 所定のタイミングで所定の量だけディ —ゼルエンジンの燃料噴射ノズルに連通しているインジェクションパイプへ送出 するインジェクションポンプと、 前記燃料噴射ノズルからォ一バーフロ一した前 記 D ME燃料を前記フィ一ドパイプへ戻すノズルリターンパイプと、 前記ィンジ ェクシヨンポンプの油溜室内の前記 D M E燃料を冷却する油溜室燃料冷却装置と、 前記油溜室内の前記 D ME燃料の温度を検出する油溜室燃料温度検出手段と、 前 記油溜室燃料冷却装置で前記油溜室内の前記 D ME燃料の温度を前記燃料タンク 内の前記 D M E燃料の温度より低温に調節することにより生じる前記油溜室内と 前記燃料夕ンク内との圧力差によって、 前記燃料夕ンク内の前記 D M E燃料を前 記油溜室へ供給することを特徴とするディーゼルエンジンの D M E燃料供給装置 である。  In order to achieve the above object, a first aspect of the present invention is to provide a DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount to a fuel injection nozzle of a diesel engine at a predetermined timing. An injection pump that sends out the fuel to the injection pipe, a nozzle return pipe that returns the DME fuel that overflows from the fuel injection nozzle to the feed pipe, and the DME in the oil sump of the injection pump. An oil sump fuel cooling device for cooling fuel, an oil sump fuel temperature detecting means for detecting a temperature of the DME fuel in the oil sump, and the oil sump fuel cooling device in the oil sump. The pressure between the oil reservoir and the fuel tank caused by adjusting the temperature of the DME fuel to be lower than the temperature of the DME fuel in the fuel tank. A DME fuel supply device for a diesel engine, wherein the DME fuel in the fuel tank is supplied to the oil reservoir according to a difference.
油溜室内の: DME燃料を冷却し、 油溜室内の D ME燃料の温度が低下すると、 油溜室内の D ME燃料の飽和蒸気圧が低下していく。 したがって、 常温において 略同圧だった燃料夕ンク内の飽和蒸気圧と、 油溜室内の飽和蒸気圧とに差圧が生 じ、 その圧力差によって燃料タンク内の D ME燃料が油溜室へ圧送されることに なる。また、油溜室燃料温度検出手段にて油溜室内の D M E燃料の温度を検出し、 油溜室内と燃料夕ンク内との圧力差が略一定になるように、 油溜室内の D M E燃 料の温度を油溜室燃料冷却装置にて制御することによって、 略一定の圧力で燃料 タンク内の D ME燃料を油溜室へ圧送することができる。 したがって、 油溜室内 の D ME燃料の液圧を略一定に制御することができ、 それによつて、 各インジェ クシヨンポンプの噴射特性を安定させることができる。  In the sump: As the DME fuel cools and the temperature of the DME fuel in the sump decreases, the saturated vapor pressure of the DME fuel in the sump decreases. Therefore, a differential pressure is generated between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir, which were substantially the same pressure at normal temperature, and the pressure difference caused the DME fuel in the fuel tank to reach the oil reservoir. It will be pumped. Further, the temperature of the DME fuel in the oil reservoir is detected by the oil reservoir fuel temperature detecting means, so that the pressure difference between the oil reservoir and the fuel tank is substantially constant. The DME fuel in the fuel tank can be pumped to the oil reservoir at a substantially constant pressure by controlling the temperature of the fuel tank with the oil reservoir fuel cooling device. Therefore, the hydraulic pressure of the DME fuel in the oil reservoir can be controlled to be substantially constant, whereby the injection characteristics of each injection pump can be stabilized.
これにより、 本発明の第 1の態様に係るディーゼルエンジンの D M E燃料供給 装置によれば、 燃料夕ンク内の飽和蒸気圧と油溜室内の飽和蒸気圧との圧力差に よって、 燃料タンク内の D ME燃料を略一定の压力で油溜室へ圧送することがで きるので、 フィードポンプ等の駆動手段によらずに、 燃料タンクから D ME燃料 を油溜室へ供給することができるという作用効果が得られる。 Thereby, the DME fuel supply of the diesel engine according to the first aspect of the present invention is performed. According to the device, the DME fuel in the fuel tank can be pumped to the oil reservoir with a substantially constant force by the pressure difference between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir. Therefore, the operation and effect can be obtained in that DME fuel can be supplied from the fuel tank to the oil storage chamber without using a driving means such as a feed pump.
本発明の第 2の態様は、 第 1の態様において、 前記油溜室燃料冷却装置は、 前 記 D ME燃料を冷媒とする冷却サイクルによって前記油溜室内の前記 D ME燃料 を冷却する構成を成しており、 前記 D M E燃料が気化することによる気化熱を利 用して前記油溜室内の前記 D ME燃料を冷却する燃料冷却器を備えている、 こと を特徴としたディ一ゼルェンジンの D M E燃料供給装置である。  According to a second aspect of the present invention, in the first aspect, the oil reservoir fuel cooling device is configured to cool the DME fuel in the oil reservoir by a cooling cycle using the DME fuel as a refrigerant. A fuel cooler for cooling the DME fuel in the oil reservoir using heat of vaporization caused by the vaporization of the DME fuel. It is a fuel supply device.
前述したように、 D ME燃料は、 常温で気体となる性質を有しているので、 D ME燃料を冷媒とした冷却サイクルを構成し、 D ME燃料が気ィ匕することによる 気化熱を利用して油溜室内の: D ME燃料を冷却することができる。 つまり、 D M E燃料の冷媒としての優れた特性を有効利用した燃料冷却器によって油溜室内の D M E燃料を冷却するので、 油溜室燃料冷却装置を合理的に構成することができ る。  As described above, DME fuel has the property of becoming a gas at room temperature, so it constitutes a cooling cycle using DME fuel as a refrigerant, and utilizes the heat of vaporization caused by the dME fuel escaping. To cool the DME fuel in the sump. In other words, since the DME fuel in the oil reservoir is cooled by the fuel cooler that effectively utilizes the excellent characteristics of the DME fuel as a refrigerant, the oil reservoir fuel cooling device can be rationally configured.
これにより、 本発明の第 2の態様に係るディーゼルエンジンの D M E燃料供給 装置によれば、 本発明の第 1の態様による作用効果に加えて、 D ME燃料の冷媒 としての優れた特性を有効利用した燃料冷却器によって、 油溜室燃料冷却装置を 合理的に構成することができるので、 ディ一ゼルェンジンの D M E燃料供給装置 のコストを低減させることができるという作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the second aspect of the present invention, in addition to the function and effect of the first aspect of the present invention, the excellent characteristics of the DME fuel as a refrigerant are effectively utilized. The fuel cooler described above can rationally configure the oil sump fuel cooling system, so that the effect of reducing the cost of the DME fuel supply system in Dzerjejing can be obtained.
本発明の第 3の態様は、 第 2の態様において、 前記油溜室燃料冷却装置は、 前 記フィ一ドバイプから前記 DME燃料を供給する冷媒供給パイプと、 該冷媒供給 パイプに流れる前記 D ME燃料を気化して前記燃料冷却器へ送出する燃料気ィ匕器 と、 前記冷媒供給パイプを開閉する冷媒供給パイプ開閉電磁弁とを備え、 前記冷 媒供給ノ ィプ開閉電磁弁を開閉制御することによって制御される構成を成してい る、 ことを特徴としたディーゼルエンジンの DME燃料供給装置である。 このように、 冷媒供給パイプ開閉電磁弁を開閉制御することによって、 燃料冷 却器に送出される気ィ匕した DME燃料の量を制御することができる。 それによつ て、 燃料冷却器を制御することができるので、 油溜室燃料冷却装置による油溜室 内の D M E燃料の温度を制御することができる。 According to a third aspect of the present invention, in the second aspect, the oil reservoir fuel cooling device comprises: a refrigerant supply pipe for supplying the DME fuel from the feed pipe; and a DME flowing through the refrigerant supply pipe. A fuel supply device for vaporizing fuel and sending it to the fuel cooler, and a solenoid valve for opening and closing the coolant supply pipe for opening and closing the coolant supply pipe, for controlling the opening and closing of the coolant supply pipe on / off solenoid valve A DME fuel supply device for a diesel engine, characterized in that it is controlled by the DME fuel supply system. In this way, by controlling the opening and closing of the refrigerant supply pipe opening and closing solenoid valve, the amount of the DME fuel that is sent to the fuel cooler can be controlled. Thereby, since the fuel cooler can be controlled, the temperature of the DME fuel in the oil reservoir by the oil reservoir fuel cooling device can be controlled.
これにより、 本発明の第 3の態様に係るディ一ゼルェンジンの D M E燃料供給 装置によれば、 冷媒供給パイプ開閉電磁弁を開閉制御することによって燃料冷却 器を制御することが可能な構成を成す油溜室燃料冷却装置によって、 前述した本 発明の第 2の態様による作用効果を得ることができる。  Thereby, according to the DME fuel supply device of the diesel engine according to the third aspect of the present invention, the oil having a configuration capable of controlling the fuel cooler by controlling the opening / closing of the refrigerant supply pipe opening / closing solenoid valve. With the reservoir fuel cooling device, the above-described operation and effect according to the second aspect of the present invention can be obtained.
本発明の第 4の態様は、 第 3の態様において、 前記ディーゼルエンジンの潤滑 系と分離された専用潤滑系となっている前記インジェクションポンプのカム室内 の潤滑油に混入した前記 D ME燃料を分離するオイルセパレ一夕と、 該オイルセ パレー夕にて分離した前記 DME燃料を加圧して前記燃料タンクへ送出する電動 コンプレッサーとを備え、 前記冷媒供給パイプから前記油溜室燃料冷却装置に供 給された前記 D M E燃料は、 前記電動コンプレッサーによって前記燃料夕ンクへ 送出される構成を成している、 ことを特徴としたディーゼルエンジンの D ME燃 料供給装置である。  According to a fourth aspect of the present invention, in the third aspect, the DME fuel mixed in the lubricating oil in the cam chamber of the injection pump, which is a dedicated lubrication system separated from the lubrication system of the diesel engine, is separated. And an electric compressor that pressurizes the DME fuel separated at the oil separator and sends it to the fuel tank. The electric compressor is supplied from the refrigerant supply pipe to the oil reservoir fuel cooling device. The DME fuel supply device for a diesel engine, wherein the DME fuel is sent to the fuel tank by the electric compressor.
前述したように、 D ME燃料は、 常温において気体となる性質を有しているの で、 液体の D ME燃料をインジェクションポンプへ供給するためには、 軽油燃料 よりインジェクションポンプへの供給圧力を高くする必要がある。 そのため、 ィ ンジェクシヨンポンプへの高い供給圧力によって、 ディ一ゼルェンジンの燃料噴 射ノズルに D M E燃料を送出するインジェクションポンプのプランジャバレルと プランジャとの間の隙間から、 インジェクションポンプの力ム室に漏れる燃料の 量が、軽油燃料を使用した場合より多くなつてしまうという問題が生じる。また、 D MEは、 軽油と比較して低粘度であるので、 隙間から漏れやすく、 さらにその 量は多くなつてしまう。 そして、 プランジャバレルとプランジャとの間の隙間か ら漏れた D M E燃料が、 ィンジェクシヨンポンプのカム室に流れ込んで気ィ匕し、 気ィ匕した: DME燃料がディーゼルエンジンのクランク室に侵入して引火する虞が ある。 As described above, DME fuel has the property of becoming a gas at normal temperature, so in order to supply liquid DME fuel to the injection pump, the supply pressure to the injection pump must be higher than that of light oil fuel. There is a need to. Therefore, due to the high supply pressure to the injection pump, the fuel leaks into the injection pump's force chamber through the gap between the plunger and the plunger barrel of the injection pump that sends DME fuel to the fuel injection nozzle of the diesel engine. A problem arises in that the amount of fuel becomes larger than when light oil fuel is used. In addition, DME has a lower viscosity than light oil, so it easily leaks from gaps, and the amount of DME increases. Then, the DME fuel leaked from the gap between the plunger barrel and the plunger flows into the cam chamber of the injection pump and is deflected. Damaged: DME fuel may enter the crankcase of the diesel engine and ignite.
そこで、 カム室をディーゼルエンジンの潤滑系と分離された専用潤滑系とし、 カム室内の潤滑油に混入した D ME燃料をオイルセパレー夕で分離し、 分離した D ME燃料を電動コンプレッサーで加圧して燃料タンクへ送出することによって、 このような問題が生じる虞を少なくすることができる。 そして、 この電動コンプ レヅサ一を利用して、 冷媒供給パイプから油溜室燃料冷却装置に供給された DM E燃料を燃料タンクへ送出することによって、 専用の冷媒回収手段を設けること なく、 冷媒として油溜室燃料冷却装置に供給された: D ME燃料を回収することが できる。  Therefore, the cam chamber is a dedicated lubrication system separated from the diesel engine lubrication system, the DME fuel mixed into the lubrication oil in the cam chamber is separated at the oil separator, and the separated DME fuel is pressurized by an electric compressor. By sending the fuel to the fuel tank, the risk of such a problem occurring can be reduced. Then, by using this electric compressor, the DME fuel supplied to the oil reservoir fuel cooling device from the refrigerant supply pipe is sent out to the fuel tank, so that the refrigerant can be used as a refrigerant without providing a dedicated refrigerant recovery means. Supplied to sump fuel cooling system: DME fuel can be recovered.
これにより、 本発明の第 4の態様に係るディーゼルエンジンの D ME燃料供給 装置によれば、 本発明の第 2又は 3の態様による作用効果に加えて、 専用の冷媒 回収手段を設けることなく、 冷媒として油溜室燃料冷却装置に供給された D ME 燃料を回収することができるので、 油溜室燃料冷却装置をより低コストに構成す ることができるという作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the fourth aspect of the present invention, in addition to the function and effect according to the second or third aspect of the present invention, without providing a dedicated refrigerant recovery means, Since the DME fuel supplied to the oil spill chamber fuel cooling device as a refrigerant can be recovered, the effect of lowering the cost of the oil spill chamber fuel cooling device can be obtained.
本発明の第 5の態様は、 第 4の態様において、 前記燃料タンク内の温度を調節 する燃料タンク内温度調節手段を備えている、 ことを特徴としたディーゼルェン ジンの D ME燃料供給装置である。  According to a fifth aspect of the present invention, there is provided the DME fuel supply device for a diesel engine according to the fourth aspect, further comprising a fuel tank temperature adjusting means for adjusting a temperature in the fuel tank. It is.
本発明の第 5の態様に係るディーゼルエンジンの D M E燃料供給装置によれば、 本発明の第 4の態様による作用効果に加えて、 燃料夕ンク内の温度を調節する燃 料タンク内温度調節手段によって、 油溜室内と燃料夕ンク内との相対的な温度差 を維持したまま油溜室内の D M E燃料の温度を最適な温度に制御することができ るので、 それによつて、 最適な DM E燃料の噴射特性を得ることができるという 作用効果が得られる。  According to the DME fuel supply device for a diesel engine according to the fifth aspect of the present invention, in addition to the function and effect of the fourth aspect of the present invention, a fuel tank temperature adjusting means for adjusting the temperature in the fuel tank is provided. As a result, it is possible to control the temperature of the DME fuel in the oil reservoir to an optimum temperature while maintaining the relative temperature difference between the oil reservoir and the fuel tank. The function and effect of obtaining the fuel injection characteristics can be obtained.
本発明の第 6の態様は、 第 5の態様において、 前記燃料タンク内温度調節手段 は、 前記電動コンプレツサーから送出された前記 D M E燃料が空冷冷却器を経由 して冷却されてから前記燃料夕ンクへ送出される第 1のリターン経路と、 前記電 動コンプレッサーから送出された前記 D ME燃料が前記空冷冷却器を経由せずに 前記燃料タンクへ送出される第 2のリターン経路と、 前記第 1のリ夕一ン経路と 前記第 2のリターン経路とを切り換えるリターン経路切換電磁弁と、 前記燃料夕 ンク内の温度を検出する燃料タンク内温度検出手段とを備え、 前記リターン経路 切換電磁弁を制御することによって、 前記燃料夕ンク内の温度を調節するように 構成されていることを特徴としたディーゼルエンジンの D ME燃料供給装置であ る。 According to a sixth aspect of the present invention, in the fifth aspect, in the fifth aspect, the fuel tank temperature adjusting means further comprises: A first return path which is sent to the fuel tank after being cooled and cooled, and the DME fuel sent from the electric compressor is sent to the fuel tank without passing through the air-cooled cooler. A second return path, a return path switching solenoid valve for switching between the first return path and the second return path, and a fuel tank temperature detecting means for detecting a temperature in the fuel tank. A DME fuel supply device for a diesel engine, characterized in that the DME fuel supply device is configured to control the temperature in the fuel tank by controlling the return path switching electromagnetic valve.
本発明の第 6の態様に係るディーゼルエンジンの D M E燃料供給装置によれば、 電動コンプレッサーから送出された DME燃料が冷却されてから燃料タンクへ送 出される第 1のリターン経路と、 電動コンプレッサーから送出された D ME燃料 が冷却されずに燃料夕ンクへ送出される第 2のリターン経路とを切り換えるリ夕 ーン経路切換電磁弁を制御することによって、 燃料夕ンク内の温度を制御するこ とができ、 それによつて、 前述した本発明の第 5の態様による作用効果を得るこ とができる。  According to the DME fuel supply device for a diesel engine according to the sixth aspect of the present invention, the first return path through which the DME fuel sent from the electric compressor is cooled and then sent to the fuel tank, and the delivery from the electric compressor Controlling the temperature in the fuel tank by controlling a return path switching solenoid valve for switching the second return path in which the cooled DME fuel is sent to the fuel tank without being cooled. Thereby, the operation and effect according to the fifth aspect of the present invention described above can be obtained.
本発明の第 7の態様は、 第 1 ~ 6のいずれかの態様において、 前記ディーゼル ェンジン停止後、 前記ィンジェクシヨンポンプの油溜室内、 及び前記ノズルリ夕 —ンパイプ内に残留している前記 D ME燃料を、 前記燃料タンクへ回収可能な残 留燃料回収手段を備えている、 ことを特徴としたディーゼルエンジンの D ME燃 料供給装置である。  According to a seventh aspect of the present invention, in any one of the first to sixth aspects, after stopping the diesel engine, the oil remaining in the oil sump chamber of the injection pump and the nozzle line pipe after stopping the diesel engine. A diesel engine DME fuel supply device, comprising: a residual fuel recovery means capable of recovering DME fuel into the fuel tank.
ディーゼルェンジン停止後に噴射系内に D M E燃料が残留していると、 燃料噴 射ノズルのノズルシ一ト部からディーゼルエンジンのシリンダ内に漏れて気ィ匕し、 シリンダ内に気ィヒした DM E燃料が充満する。 それによつて、 ディーゼルェンジ ンを始動する際にノッキング等の異常燃焼が生じて、 ディーゼルエンジンの始動 が正常に行えず大きな振動や騒音が発生する虞がある。 そこで、 残留燃料回収手 段によって、 ディーゼルエンジン停止後、 インジェクションポンプの油溜室内、 及びノズルリターンパイプ内に残留している D M E燃料を燃料タンクへ回収する ことで、 このようなディーゼルエンジンを始動する際に生じるノッキング等の異 常燃焼の虞を少なくすることができる。 If DME fuel remains in the injection system after the diesel engine stops, it leaks from the nozzle sheet of the fuel injection nozzle into the cylinder of the diesel engine, causing a danger. Fuel is full. As a result, abnormal combustion such as knocking may occur when starting the diesel engine, and the diesel engine may not start normally, generating large vibrations and noise. Therefore, after the diesel engine was stopped by the residual fuel recovery means, Also, by recovering the DME fuel remaining in the nozzle return pipe to the fuel tank, it is possible to reduce the risk of abnormal combustion such as knocking occurring when starting the diesel engine.
これにより、 本発明の第 Ίの態様に係るディ一ゼルェンジンの D M E燃料供給 装置によれば、 本発明の第 1〜6のいずれかの態様による作用効果に加えて、 デ イーゼルエンジンを始動する際に生じるノッキング等の異常燃焼の虞を少なくす ることができるという作用効果が得られる。  Thus, according to the diesel engine DME fuel supply device of the second aspect of the present invention, in addition to the operation and effect according to any one of the first to sixth aspects of the present invention, when starting the diesel engine, This has the effect of reducing the risk of abnormal combustion such as knocking that occurs in the vehicle.
本発明の第 8の態様は、 第 7の態様において、 前記残留燃料回収手段は、 前記 フィードパイプへ連通している前記油溜室の入口側、 及び前記ノズルリターンパ ィプの連通経路を、 前記フィ一ドパイプから前記電動コンプレヅサ一の入口側へ 連通している残留燃料回収パイプへ切り換える連通経路切換手段を備え、 前記ィ ンジェクションポンプの油溜室内、 及び前記ノズルリターンパイプ内に残留して いる前記 D M E燃料は、 前記電動コンプレッサーによつて前記燃料夕ンクへ回収 される構成を成している、 ことを特徴としたディーゼルエンジンの D M E燃料供 給装置である。  In an eighth aspect of the present invention based on the seventh aspect, in the seventh aspect, the residual fuel recovery means includes: an inlet side of the oil reservoir communicating with the feed pipe; and a communication path of the nozzle return pipe, Communication path switching means for switching from the feed pipe to a residual fuel recovery pipe communicating with the inlet side of the electric compressor, the communication path switching means being provided in the oil reservoir chamber of the injection pump and in the nozzle return pipe. The DME fuel supply device for a diesel engine, wherein the DME fuel is configured to be recovered to the fuel tank by the electric compressor.
このように、 ディーゼルエンジン停止時において、 油溜室及びノズルリターン パイプに残留している D M E燃料を回収する際に、 フィードパイプへ連通してい る油溜室及びノズルリターンパイプの連通経路を電動コンプレッサ一の入口側に 連通している残留燃料回収パイプへ切り換え、 電動コンプレッサーを駆動するこ とによって、 油溜室及びノズルリターンパイプに残留している D M E燃料を回収 することができる。  Thus, when the diesel engine is stopped, when the DME fuel remaining in the oil reservoir and the nozzle return pipe is recovered, the communication path between the oil reservoir and the nozzle return pipe communicating with the feed pipe is connected to the electric compressor. DME fuel remaining in the oil sump and the nozzle return pipe can be recovered by switching to the residual fuel recovery pipe communicating with one inlet side and driving the electric compressor.
これにより、 本発明の第 8の態様に係るディ一ゼルェンジンの D M E燃料供給 装置によれば、 フィードパイプへ連通している油溜室の入口側、 及びノズルリタ —ンパイプの連通経路を、 フィ一ドパイプから電動コンプレッサ一の入口側へ連 通している残留燃料回収ノ ^ィプへ切り換える連通経路切換手段によって、 前述し た本発明の第 7の態様による作用効果を得ることができる。 本発明の第 9の態様は、 第 8の態様において、 前記燃料タンクの液相部と前記 フィードパイプとの連通を遮断し、 前記燃料タンクの気相部と前記フィ一ドパイ プとを連通させて気体状の前記 DME燃料を送出する気相燃料送出手段を備えて いる、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置である。 Thereby, according to the DME fuel supply device of the diesel engine according to the eighth aspect of the present invention, the inlet side of the oil reservoir communicating with the feed pipe, and the communication path of the nozzle return pipe are connected to the feed pipe. The operation and effect according to the above-described seventh aspect of the present invention can be obtained by the communication path switching means for switching to the residual fuel recovery nozzle communicating with the inlet side of the electric compressor 1 from the fuel tank. According to a ninth aspect of the present invention, in the eighth aspect, the communication between the liquid phase portion of the fuel tank and the feed pipe is interrupted, and the gas phase portion of the fuel tank and the feed pipe are communicated. A gaseous phase fuel delivery means for delivering the gaseous DME fuel.
燃料夕ンクの気相部は、 油溜室よりも高圧な気体の DME燃料が充満している ので、 ディ一ゼルェンジン停止時に燃料夕ンクの液相部とフィードパイプとの連 通を遮断し、 燃料タンクの気相部とフィードパイプとを連通させると、 燃料タン クの気相部の圧力によってフィードパイプ内に残留している燃料の一部を、 冷媒 供給パイプを介して電動コンプレッサーへ向けて押し出すことができる。 したが つて、 残留燃料回収手段によって油溜室及びノズルリ夕一ンパイプ内に残留して いる D M E燃料を回収する前に、 気相燃料送出手段によってあらかじめフィード パイプ内に残留している D ME燃料の一部を電動コンプレッサーによって燃料夕 ンクへ回収することができるので、 フィードパイプ内に気ィ匕した D M E燃料が充 填された状態となり、 残留燃料回収手段による D M E燃料の回収時間を短縮する ことができる。  Since the gas phase of the fuel tank is filled with gaseous DME fuel that is higher in pressure than the oil reservoir, the communication between the liquid phase of the fuel tank and the feed pipe is cut off when diesel fuel is stopped. When the gas phase of the fuel tank communicates with the feed pipe, part of the fuel remaining in the feed pipe due to the pressure of the gas phase of the fuel tank is directed to the electric compressor via the refrigerant supply pipe. Can be extruded. Therefore, before recovering the DME fuel remaining in the oil reservoir and the nozzle cleaning pipe by the residual fuel recovery means, the DME fuel remaining in the feed pipe in advance by the gas-phase fuel delivery means is recovered. Since part of the fuel can be recovered to the fuel tank by the electric compressor, the feed pipe is filled with the depleted DME fuel, and the time required to recover the DME fuel by the residual fuel recovery means can be reduced. it can.
これにより、 本発明の第 9の態様に係るディーゼルエンジンの D M E燃料供給 装置によれば、 本発明の第 8の態様による作用効果に加えて、 残留燃料回収手段 による D M E燃料の回収時間を短縮することができるという作用効果が得られる c 本発明の第 1 0の態様は、 第 1〜 9のいずれかの態様において、 前記燃料夕ン クと前記フィードパイプとの間に、 前記燃料タンクより容量が小さいサブ燃料夕 ンクが設けられており、 前記ディーゼルエンジンの始動時には、 前記燃料タンク と前記サブ燃料タンクとの間の連通を遮断するとともに、 前記サブ燃料タンクの 相部と前記電動コンプレツサ一の出口側とを連通させることによって、 前記電 動コンプレッサーによって気相部が加圧された前記サブ燃料夕ンクから前記 D M E燃料が前記油溜室へ供給される構成を成している、 ことを特徴としたディーゼ ルエンジンの DM E燃料供給装置である。 ディーゼルエンジンの始動時には、 まず、 インジェクションポンプの油溜室にThereby, according to the DME fuel supply device for a diesel engine according to the ninth aspect of the present invention, in addition to the operation and effect of the eighth aspect of the present invention, the time for collecting the DME fuel by the residual fuel recovery means is reduced. C In a tenth aspect of the present invention, in any of the first to ninth aspects, a capacity between the fuel tank and the feed pipe is larger than that of the fuel tank. When the diesel engine is started, communication between the fuel tank and the sub fuel tank is cut off, and a phase portion of the sub fuel tank and the electric compressor are connected to each other. By communicating with the outlet side, the DME fuel is supplied to the oil reservoir from the sub fuel tank whose gas phase is pressurized by the electric compressor. Forms a configuration, it is DM E fuel supply system for diesel engines, wherein. When starting the diesel engine, first, in the oil sump of the injection pump
DM E燃料を供給しなければならないが、 最初は油溜室内に D ME燃料が無いの で油溜室内と燃料タンク内との液圧差を利用して燃料タンク内の D ME燃料を油 溜室へ送出することができない。 そこで、 電動コンプレッサーを駆動することに よって燃料タンク内の気相部を加圧し、 燃料タンク内の液相部の圧力を上昇させ る。 そして、 電動コンプレッサーに加圧された燃料タンク内の DME燃料は、 そ の圧力によってフィードパイプに送出され、 DME燃料が油溜室へ充填されるこ とになる。 DME fuel must be supplied, but initially there is no DME fuel in the oil reservoir, so the difference in hydraulic pressure between the oil reservoir and the fuel tank is used to transfer the DME fuel in the fuel tank to the oil reservoir. Cannot be sent to Therefore, the gas phase in the fuel tank is pressurized by driving the electric compressor, and the pressure in the liquid phase in the fuel tank is increased. Then, the DME fuel in the fuel tank pressurized by the electric compressor is sent out to the feed pipe by the pressure, and the DME fuel is charged into the oil reservoir.
しかし、 容量の大きな燃料タンク内を電動コンプレッサーで加圧するには、 一 定の時間が必要となるので、 ディ一ゼルェンジン始動時の油溜室への D M E燃料 の充填動作に長い時間を要することになつてしまう虞がある。 そこで、 燃料夕ン クとフィ一ドパイプとの間に、 燃料夕ンクより容量が小さいサブ燃料夕ンクを設 ける。 そして、 ディーゼルエンジン始動時の油溜室への D ME燃料の充填動作時 には、 燃料タンクとサブ燃料タンクとの間の連通を遮断するとともに、 サブ燃料 タンクの気相部と電動コンプレッサ一の出口側とを連通させることによって、 電 動コンプレッサーによって気相部が加圧されたサブ燃料タンクから D M E燃料が 油溜室へ供給されるようにする。 サブ燃料タンクは、 燃料タンクより容量が小さ いので、 電動コンプレッサーによる加圧時間が短くて済むので、 電動コンプレツ サ一の加圧力によって DME燃料を油溜室へ充填する時間を短縮することができ る。  However, it takes a certain amount of time to pressurize the large-capacity fuel tank with an electric compressor, so it takes a long time to fill the oil reservoir with DME fuel when starting diesel engines. There is a possibility that it will be done. Therefore, a sub fuel tank with a smaller capacity than the fuel tank is installed between the fuel tank and the feed pipe. When the DME fuel is filled into the oil reservoir when the diesel engine is started, the communication between the fuel tank and the sub fuel tank is cut off, and the gas phase of the sub fuel tank and the electric compressor By communicating with the outlet side, DME fuel is supplied to the oil reservoir from the sub fuel tank whose gas phase is pressurized by the electric compressor. Since the capacity of the sub fuel tank is smaller than that of the fuel tank, the pressurization time by the electric compressor can be shortened, so that the time required to fill the oil reservoir with the DME fuel by the pressure of the electric compressor can be shortened. You.
これにより、 本発明の第 1 0の態様に係るディーゼルエンジンの D M E燃料供 給装置によれば、 本発明の第 1〜 9のいずれかの態様による作用効果に加えて、 ディ一ゼルェンジンの始動時に D M E燃料を油溜室へ充填する際には、 燃料夕ン クとフィードパイプとの間に設けられた燃料タンクより容量が小さいサブ燃料夕 ンク内を前記電動コンプレッサーで加圧して、 サブ燃料タンク内の DM E燃料を 油溜室へ充填するので、 D ME燃料を油溜室へ充填する時間を短縮することがで きるという作用効果が得られる。 Thus, according to the DME fuel supply device for a diesel engine according to the tenth aspect of the present invention, in addition to the operation and effect according to any one of the first to ninth aspects of the present invention, at the time of starting the diesel engine, When filling DME fuel into the oil reservoir, the electric compressor pressurizes the inside of the sub fuel tank, which has a smaller capacity than the fuel tank provided between the fuel tank and the feed pipe. Since the DME fuel in the tank is filled into the oil sump, the time for filling the DME fuel into the oil sump can be reduced. The effect of being able to obtain is obtained.
本発明の第 1 1の態様は、 第 1〜1 0のいずれかの態様において、 前記インジ ェクシヨンポンプから送出された前記 DME燃料は、 コモンレールへ供給され、 該コモンレールから各燃料噴射ノズルへ送出される構成を成している、 ことを特 徴としたディーゼルエンジンの D M E燃料供給装置である。  According to a eleventh aspect of the present invention, in any one of the first to tenth aspects, the DME fuel delivered from the injection pump is supplied to a common rail, and is delivered from the common rail to each fuel injection nozzle. This is a diesel engine DME fuel supply device that has the following features.
本発明の第 1 1の態様に係るディーゼルエンジンの D ME燃料供給装置によれ ば、 コモンレール式ディーゼルエンジンの D ME燃料供給装置において、 前述し た本発明の第 1〜1 0のいずれかの態様による作用効果を得ることができる。 上記課題を達成するため、 本発明の第 1 2の態様は、 燃料タンクからフィード パイプを経由して供給された D ME燃料を、 所定のタイミングで所定の量だけデ ィ一ゼルェンジンの燃料噴射ノズルに連通しているインジェクションパイプへ送 出するィンジェクシヨンポンプと、 前記燃料噴射ノズルからオーバ一フローした 前記 DME燃料を前記フィ一ドパイプへ戻すノズルリターンパイプと、 前記ィン ジェクシヨンポンプのカム室内を冷却することによって、 前記インジェクション ポンプの油溜室の前記 D M E燃料を冷却する油溜室燃料冷却手段と、 前記油溜室 内の前記 D M E燃料の温度を検出する油溜室燃料温度検出手段と、 前記油溜室燃 料冷却手段で前記油溜室内の前記 D M E燃料の温度を前記燃料夕ンク内の前記 D M E燃料の温度より低温に調節することにより生じる前記油溜室内と前記燃料夕 ンク内との圧力差によって、 前記燃料夕ンク内の前記: D M E燃料を前記油溜室へ 供給することを特徴とするディーゼルエンジンの DME燃料供給装置である。 ィンジェクシヨンポンプのカム室内を冷却することによって、 油溜室内の DM E燃料を冷却し、 油溜室内の D ME燃料の温度が低下すると、 油溜室内の D ME 燃料の飽和蒸気圧が低下していく。 したがって、 常温において略同圧だった燃料 タンク内の飽和蒸気圧と、 油溜室内の飽和蒸気圧とに差圧が生じ、 その圧力差に よって燃料タンク内の D ME燃料が油溜室へ圧送されることになる。 また、 油溜 室燃料温度検出手段にて油溜室内の DME燃料の温度を検出し、 油溜室内と燃料 タンク内との圧力差が略一定になるように、 油溜室内の D ME燃料の温度を油溜 室燃料冷却手段にて制御することによって、 略一定の圧力で燃料夕ンク内の D M E燃料を油溜室へ圧送することができる。 したがって、 油溜室内の DM E燃料の 液圧を略一定に制御することができ、 それによつて、 各インジェクションポンプ の噴射特性を安定させることができる。 According to the DME fuel supply device for a diesel engine according to the eleventh aspect of the present invention, in the DME fuel supply device for a common rail diesel engine, any one of the first to tenth aspects of the present invention described above The operation and effect of the present invention can be obtained. In order to achieve the above object, a first aspect of the present invention relates to a fuel injection nozzle for a diesel engine which supplies DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing. An injection pump for delivering to an injection pipe communicating with the fuel injection nozzle, a nozzle return pipe for returning the DME fuel overflowing from the fuel injection nozzle to the feed pipe, and a cam for the injection pump An oil sump fuel cooling means for cooling the DME fuel in the oil sump of the injection pump by cooling a room; and an oil sump fuel temperature detecting means for detecting a temperature of the DME fuel in the oil sump. Adjusting the temperature of the DME fuel in the oil reservoir to a temperature lower than the temperature of the DME fuel in the fuel tank by the oil reservoir fuel cooling means. A DME fuel supply device for a diesel engine, characterized in that the DME fuel in the fuel reservoir is supplied to the oil reservoir by a pressure difference between the oil reservoir and the fuel tank. is there. Cooling the cam chamber of the injection pump cools the DME fuel in the oil chamber, and when the temperature of the DME fuel in the oil chamber decreases, the saturated vapor pressure of the DME fuel in the oil chamber decreases. It is going down. Therefore, a differential pressure occurs between the saturated vapor pressure in the fuel tank, which was approximately the same at room temperature, and the saturated vapor pressure in the oil reservoir, and the pressure difference causes the DME fuel in the fuel tank to be pumped to the oil reservoir. Will be done. In addition, the temperature of the DME fuel in the oil chamber is detected by the oil chamber fuel temperature detecting means, and the fuel chamber and the fuel are detected. By controlling the temperature of the DME fuel in the oil sump by the oil sump fuel cooling means so that the pressure difference between the tank and the tank becomes substantially constant, the DME fuel in the fuel tank is held at a substantially constant pressure. It can be pumped to the oil sump. Therefore, the hydraulic pressure of the DME fuel in the oil reservoir can be controlled to be substantially constant, whereby the injection characteristics of each injection pump can be stabilized.
これにより、 本発明の第 1 2の態様に係るディーゼルエンジンの DM E燃料供 給装置によれば、 燃料夕ンク内の飽和蒸気圧と油溜室内の飽和蒸気圧との圧力差 によって、 燃料タンク内の D M E燃料を略一定の圧力で油溜室へ圧送することが できるので、 フィードポンプ等の駆動手段によらずに、 燃料タンクから D M E燃 料を油溜室へ供給することができるという作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the twelfth aspect of the present invention, the fuel tank is provided by the pressure difference between the saturated vapor pressure in the fuel tank and the saturated vapor pressure in the oil reservoir. Because the DME fuel inside the pump can be pumped to the oil reservoir at a substantially constant pressure, the DME fuel can be supplied from the fuel tank to the oil reservoir without using a driving means such as a feed pump. The effect is obtained.
本発明の第 1 3の態様は、第 1 2の態様において、前記油溜室燃料冷却手段は、 前記 D ME燃料が気化することによる気化熱を利用して前記カム室内を冷却する 構成を成している、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置 である。  According to a thirteenth aspect of the present invention, in the twelfth aspect, the oil reservoir fuel cooling means cools the cam chamber using heat of vaporization caused by vaporization of the DME fuel. The DME fuel supply system for diesel engines is characterized in that:
前述したように、 D ME燃料は、 常温で気体となる性質を有しているので、 D ME燃料を冷媒とした冷却サイクルを構成し、 D ME燃料が気化することによる 気化熱を利用してカム室内を冷却し、 油溜室内の D M E燃料を冷却することがで きる。 つまり、 D ME燃料の冷媒としての優れた特性を有効利用することによつ て油溜室内の DM E燃料を冷却するので、 油溜室燃料冷却手段を合理的に構成す ることができる。  As described above, DME fuel has the property of becoming a gas at normal temperature, so it constitutes a cooling cycle using DME fuel as a refrigerant and utilizes the heat of vaporization caused by the vaporization of DME fuel. The cam chamber can be cooled, and the DME fuel in the oil chamber can be cooled. That is, since the DME fuel in the oil reservoir is cooled by effectively utilizing the excellent characteristics of the DME fuel as a refrigerant, the oil reservoir fuel cooling means can be rationally configured.
これにより、 本発明の第 1 3の態様に係るディーゼルエンジンの D M E燃料供 給装置によれば、 本発明の第 1 2の態様による作用効果に加えて、 DM E燃料の 冷媒としての優れた特性を有効利用することによって、 油溜室燃料冷却手段を合 理的に構成することができるので、 ディーゼルエンジンの D ME燃料供給装置の コストを低減させることができるという作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the thirteenth aspect of the present invention, in addition to the operational effects according to the first and second aspects of the present invention, excellent characteristics of the DME fuel as a refrigerant are provided. By effectively utilizing the oil reservoir, the oil reservoir fuel cooling means can be configured rationally, and the effect of reducing the cost of the DME fuel supply device for the diesel engine can be obtained.
本発明の第 1 4の態様は、第 1 3の態様において、前記油溜室燃料冷却手段は、 前記フィ一ドパイプから前記 D ME燃料を供給する冷媒供給パイプと、 該冷媒供 給パイプに流れる前記 D M E燃料を気ィ匕して前記カム室内へ吐出する燃料気ィ匕器 と、 前記冷媒供給パイプを開閉する冷媒供給パイプ開閉電磁弁とを備え、 前記冷 媒供給パイプ開閉電磁弁を開閉制御することによって制御される構成を成してい る、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置である。 According to a fifteenth aspect of the present invention, in the thirteenth aspect, the oil reservoir fuel cooling means comprises: A refrigerant supply pipe for supplying the DME fuel from the feed pipe; a fuel supply unit for supplying the DME fuel flowing to the refrigerant supply pipe to discharge the DME fuel into the cam chamber; A DME fuel supply device for a diesel engine, comprising: a refrigerant supply pipe opening / closing solenoid valve for opening / closing the coolant supply pipe, and being controlled by opening / closing the coolant supply pipe opening / closing solenoid valve. It is.
このように、 冷媒供給パイプ開閉電磁弁を開閉制御することによって、 カム室 内に吐出される気化した D ME燃料の量を制御することができる。それによつて、 燃料気化器を制御することができるので、 油溜室燃料冷却手段による油溜室内の D ME燃料の温度を制御することができる。  Thus, by controlling the opening and closing of the refrigerant supply pipe opening and closing solenoid valve, the amount of vaporized DME fuel discharged into the cam chamber can be controlled. Thereby, since the fuel vaporizer can be controlled, the temperature of the DME fuel in the oil reservoir by the oil reservoir fuel cooling means can be controlled.
これにより、 本発明の第 1 4の態様に係るディーゼルエンジンの DME燃料供 給装置によれば、 冷媒供給パイプ開閉電磁弁を開閉制御することによってカム室 内に気ィ匕した DME燃料を吐出する燃料気ィ匕器を制御することが可能な構成を成 す油溜室燃料冷却手段によって、 前述した本発明の第 1 3の態様による作用効果 を得ることができる。  Thus, according to the DME fuel supply device for a diesel engine according to the fourteenth aspect of the present invention, the DME fuel is discharged into the cam chamber by opening and closing the refrigerant supply pipe opening and closing electromagnetic valve. The operation and effect according to the above-described thirteenth aspect of the present invention can be obtained by the oil reservoir fuel cooling means having a configuration capable of controlling the fuel gasifier.
本発明の第 1 5の態様は、 第 1 4の態様において、 前記ディーゼルエンジンの 潤滑系と分離された専用潤滑系となっている前記力ム室内の潤滑油に混入した前 記 D M E燃料を分離するオイルセパレ一夕と、 該オイルセパレ一夕にて分離した 前記 DME燃料を加圧して前記燃料タンクへ送出する電動コンプレッサーとを備 えている、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置である。 前述したように、 D ME燃料は、 常温において気体となる性質を有しているの で、 液体の D ME燃料をインジェクションポンプへ供給するためには、 軽油燃料 よりインジェクションポンプへの供給圧力を高くする必要がある。 そのため、 ィ ンジェクシヨンボンプへの高レ、供給圧力によって、 ディ一ゼルェンジンの燃料噴 射ノズルに D ME燃料を送出するィンジェクシヨンポンプのプランジャバレルと プランジャとの間の隙間から、 インジェクションボンプのカム室に漏れる燃料の 量が、軽油燃料を使用した場合より多くなつてしまうという問題が生じる。また、 DMEは、 軽油と比較して低粘度であるので、 隙間から漏れやすく、 さらにその 量は多くなつてしまう。 そして、 プランジャバレルとプランジャとの間の隙間か ら漏れた D M E燃料が、 インジェクションボンプの力ム室に流れ込んで気ィ匕し、 気ィ匕した D M E燃料がディーゼルエンジンのクランク室に侵入して引火する虞が ある。 According to a fifteenth aspect of the present invention, in the fourteenth aspect, the DME fuel is mixed with lubricating oil in the power chamber, which is a dedicated lubrication system separated from the lubrication system of the diesel engine. A DME fuel supply device for a diesel engine, comprising: an oil separator that performs an oil separation, and an electric compressor that pressurizes the DME fuel separated by the oil separator and sends the pressurized DME fuel to the fuel tank. . As described above, DME fuel has the property of becoming a gas at normal temperature, so in order to supply liquid DME fuel to the injection pump, the supply pressure to the injection pump must be higher than that of light oil fuel. There is a need to. For this reason, the injection pump pumps the injection pump through the gap between the plunger barrel and the plunger of the injection pump that sends DME fuel to the fuel injection nozzle of the diesel pump due to the high pressure and supply pressure to the injection pump. This causes a problem that the amount of fuel leaking into the cam chamber becomes larger than when gas oil fuel is used. Also, Since DME has a lower viscosity than light oil, it easily leaks from gaps, and the amount of DME increases. Then, the DME fuel leaked from the gap between the plunger barrel and the plunger flows into the power chamber of the injection pump and is deflected, and the deflected DME fuel enters the diesel engine crank chamber and ignites. It may cause
そこで、 カム室をディーゼルエンジンの潤滑系と分離された専用潤滑系とし、 カム室内の潤滑油に混入した D ME燃料をオイルセパレ一夕で分離し、 分離した DM E燃料を電動コンプレッサーで加圧して燃料タンクへ送出することによって、 このような問題が生じる虞を少なくすることができる。 そして、 それによつて、 冷媒供給パイプから油溜室燃料冷却手段に供給され、 カム室内に冷媒として吐出 する D M E燃料を燃料夕ンクへ回収することができるので、 専用の冷媒回収手段 を設けることなく、 冷媒として油溜室燃料冷却手段に供給された D ME燃料を回 収することができる。  Therefore, the cam chamber is a dedicated lubrication system separated from the lubrication system of the diesel engine, the DME fuel mixed into the lubricating oil in the cam chamber is separated in an oil separator, and the separated DME fuel is pressurized by an electric compressor. By sending the fuel to the fuel tank, the risk of such a problem occurring can be reduced. Then, DME fuel supplied from the refrigerant supply pipe to the oil reservoir fuel cooling means and discharged as a refrigerant into the cam chamber can be recovered to the fuel tank, thereby eliminating the need for a dedicated refrigerant recovery means. However, the DME fuel supplied to the oil reservoir fuel cooling means as a refrigerant can be recovered.
これにより、 本発明の第 1 5の態様に係るディーゼルエンジンの D ME燃料供 給装置によれば、 本発明の第 1 4の態様による作用効果に加えて、 専用の冷媒回 収手段を設けることなく、 冷媒としてカム室内に吐出する DME燃料を回収する ことができるので、 油溜室燃料冷却手段をより低コストに構成することができる という作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the fifteenth aspect of the present invention, in addition to the function and effect of the fourteenth aspect of the present invention, a dedicated refrigerant recovery means is provided. In addition, since the DME fuel discharged into the cam chamber as the refrigerant can be recovered, the effect of being able to configure the oil reservoir fuel cooling means at lower cost can be obtained.
本発明の第 1 6の態様は、 第 1 5の態様において、 前記燃料タンク内の温度を 調節する燃料タンク内温度調節手段を備えている、 ことを特徴としたディーゼル エンジンの D ME燃料供給装置である。  A sixteenth aspect of the present invention is the DME fuel supply device for a diesel engine according to the fifteenth aspect, further comprising a fuel tank temperature adjusting means for adjusting the temperature in the fuel tank. It is.
本発明の第 1 6の態様に係るディーゼルエンジンの: DME燃料供給装置によれ ば、 本発明の第 1 5の態様による作用効果に加えて、 燃料タンク内の温度を調節 する燃料夕ンク内温度調節手段によって、 油溜室内と燃料夕ンク内との相対的な 温度差を維持したまま油溜室内の D M E燃料の温度を最適な温度に制御すること ができるので、 それによつて、 最適な D ME燃料の噴射特性を得ることができる という作用効果が得られる。 According to the DME fuel supply device of the diesel engine according to the sixteenth aspect of the present invention, in addition to the operation and effect according to the fifteenth aspect of the present invention, the temperature in the fuel tank for adjusting the temperature in the fuel tank is increased. The adjusting means can control the temperature of the DME fuel in the oil reservoir to an optimum temperature while maintaining the relative temperature difference between the oil reservoir and the fuel tank. ME fuel injection characteristics can be obtained The operation and effect are obtained.
本発明の第 1 7の態様は、 第 1 6の態様において、 前記燃料夕ンク内温度調節 手段は、 前記電動コンプレツサーから送出された前記 D M E燃料が空冷冷却器を 経由して冷却されてから前記燃料夕ンクへ送出される第 1 2のリタ一ン経路と、 前記電動コンプレツサ一から送出された前記 D M E燃料が前記空冷冷却器を経由 せずに前記燃料タンクへ送出される第 2のリターン経路と、 前記第 1 2のリタ一 ン経路と前記第 2のリターン経路とを切り換えるリタ一ン経路切換電磁弁と、 前 記燃料夕ンク内の温度を検出する燃料夕ンク内温度検出手段とを備え、 前記リ夕 ーン経路切換電磁弁を制御することによって、 前記燃料夕ンク内の温度を調節す るように構成されていることを特徴としたディーゼルエンジンの D ME燃料供給 装置である。  According to a seventeenth aspect of the present invention, in the sixteenth aspect, the fuel tank temperature adjusting means is configured such that the DME fuel delivered from the electric compressor is cooled via an air-cooled cooler, A second return path for sending out to the fuel tank, and a second return path for sending out the DME fuel sent from the electric compressor to the fuel tank without passing through the air-cooled cooler A return path switching solenoid valve for switching between the first return path and the second return path, and a fuel tank temperature detecting means for detecting a temperature in the fuel tank. A DME fuel supply device for a diesel engine, characterized in that the DME fuel supply device is configured to control the temperature in the fuel tank by controlling the return path switching electromagnetic valve.
本発明の第 1 7の態様に係るディーゼルエンジンの D M E燃料供給装置によれ ば、 電動コンプレッサーから送出された D M E燃料が冷却されてから燃料タンク へ送出される第 1 2のリターン経路と、 電動コンプレッサーから送出された D M E燃料が冷却されずに燃料夕ンクへ送出される第 2のリターン経路とを切り換え るリ夕一ン経路切換電磁弁を制御することによって、 燃料タンク内の温度を制御 することができ、 それによつて、 前述した本発明の第 1 6の態様による作用効果 を得ることができる。  According to the DME fuel supply device for a diesel engine according to the seventeenth aspect of the present invention, the DME fuel sent from the electric compressor is cooled and then sent to the fuel tank, the 12th return path, and the electric compressor. Control the temperature inside the fuel tank by controlling the solenoid valve that switches the return path that switches between the DME fuel sent from the fuel tank and the second return path that is sent to the fuel tank without cooling. Accordingly, the operation and effect according to the above-described sixteenth aspect of the present invention can be obtained.
本発明の第 1 8の態様は、 第 1 2〜1 7のいずれかの態様において、 前記ディ —ゼルェンジン停止後、 前記ィンジェクシヨンボンプの油溜室内、 及び前記ノズ ルリターンパイプ内に残留している前記 DME燃料を、 前記燃料タンクへ回収可 能な残留燃料回収手段を備えている、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置である。  An eighteenth aspect of the present invention is the aspect according to any one of the twelfth to seventeenth aspects, wherein the residual fuel remains in the oil reservoir of the ejection pump and in the nozzle return pipe after stopping the diesel engine. A DME fuel supply device for a diesel engine, comprising: a residual fuel recovery means capable of recovering the DME fuel used in the fuel tank.
ディ一ゼルェンジン停止後に噴射系内に D M E燃料が残留していると、 燃料噴 射ノズルのノズルシート部からディーゼルエンジンのシリンダ内に漏れて気化し、 シリンダ内に気化した D M E燃料が充満する。 それによつて、 ディ一ゼルェンジ ンを始動する際にノッキング等の異常燃焼が生じて、 ディーゼルエンジンの始動 が正常に行えず大きな振動や騒音が発生する虞がある。 そこで、 残留燃料回収手 段によって、 ディ一ゼルェンジン停止後、 インジェクションポンプの油溜室内、 及びノズルリターンパイプ内に残留している D ME燃料を燃料タンクへ回収する ことで、 このようなディーゼルエンジンを始動する際に生じるノヅキング等の異 常燃焼の虞を少なくすることができる。 If DME fuel remains in the injection system after the diesel engine stops, it leaks from the nozzle seat of the fuel injection nozzle into the cylinder of the diesel engine and vaporizes, and the cylinder is filled with vaporized DME fuel. According to that, When starting the engine, abnormal combustion such as knocking may occur, and the diesel engine may not start normally, causing large vibration and noise. Therefore, by using residual fuel recovery means, after stopping diesel fuel, DME fuel remaining in the oil sump chamber of the injection pump and in the nozzle return pipe is recovered to the fuel tank, so that such a diesel engine can be used. It is possible to reduce the risk of abnormal combustion such as knocking occurring at the time of starting.
これにより、 本発明の第 1 8の態様に係るディーゼルエンジンの D ME燃料供 給装置によれば、 本発明の第 1 2〜1 7のいずれかの態様による作用効果に加え て、 ディーゼルエンジンを始動する際に生じるノヅキング等の異常燃焼の虞を少 なくすることができるという作用効果が得られる。  Thus, according to the DME fuel supply device for a diesel engine according to the eighteenth aspect of the present invention, in addition to the operation and effect according to any one of the first to seventeenth aspects of the present invention, a diesel engine is provided. The operation and effect of reducing the risk of abnormal combustion such as knocking occurring at the time of starting can be obtained.
本発明の第 1 9の態様は、 第 1 8の態様において、 前記残留燃料回収手段は、 前記フィ一ドパイプへ連通している前記油溜室の入口側、 及び前記ノズルリ夕一 ンパイプの連通経路を、 前記フィ一ドパイプから前記電動コンプレッサ一の入口 側へ連通している残留燃料回収パイプへ切り換える連通経路切換手段を備え、 前 記ィンジヱクションポンプの油溜室内、 及び前記ノズルリ夕一ンパイプ内に残留 している前記 D ME燃料は、 前記電動コンプレッサーによって前記燃料タンクへ 回収される構成を成している、 ことを特徴としたディーゼルエンジンの D ME燃 料供給装置である。  According to a nineteenth aspect of the present invention, in the eighteenth aspect, the residual fuel recovery means includes: an inlet side of the oil reservoir that communicates with the feed pipe; and a communication path of the nozzle re-opening pipe. A communication path switching means for switching from the feed pipe to the residual fuel recovery pipe communicating with the inlet side of the electric compressor, the oil reservoir of the induction pump, and the nozzle cleaning pipe. The DME fuel remaining in the DME fuel supply device for a diesel engine, wherein the DME fuel is recovered to the fuel tank by the electric compressor.
このように、 ディーゼルエンジン停止時において、 油溜室及びノズルリターン パイプに残留している DME燃料を回収する際に、 フィ一ドパイプへ連通してい る油溜室及びノズルリターンパイプの連通経路を電動コンプレッサ一の入口側に 連通している残留燃料回収パイプへ切り換え、 電動コンプレッサーを駆動するこ とによって、 油溜室及びノズルリ夕一ンパイプに残留している D M E燃料を回収 することができる。  As described above, when the diesel engine is stopped, when the DME fuel remaining in the oil reservoir and the nozzle return pipe is recovered, the communication path between the oil reservoir and the nozzle return pipe communicating with the feed pipe is electrically driven. By switching to the residual fuel recovery pipe communicating with the inlet side of the compressor and driving the electric compressor, it is possible to recover the DME fuel remaining in the oil reservoir and the nozzle cleaning pipe.
これにより、 本発明の第 1 9の態様に係るディーゼルエンジンの DME燃料供 給装置によれば、 フィードパイプへ連通している油溜室の入口側、 及びノズルリ ターンパイプの連通経路を、 フィードパイプから電動コンプレッサ一の入口側へ 連通している残留燃料回収パイプへ切り換える連通経路切換手段によって、 前述 した本発明の第 1 8の態様による作用効果を得ることができる。 Thus, according to the DME fuel supply device for a diesel engine according to the nineteenth aspect of the present invention, the inlet side of the oil reservoir communicating with the feed pipe, and the nozzle hole By the communication path switching means for switching the communication path of the turn pipe from the feed pipe to the residual fuel recovery pipe communicating with the inlet side of the electric compressor 1, it is possible to obtain the above-described operation and effect according to the eighteenth aspect of the present invention. it can.
本発明の第 2 0の態様は、 第 1 9の態様において、 前記燃料タンクの液相部と 前記フィ―ドパイプとの連通を遮断し、 前記燃料タンクの気相部と前記フイード パイプとを連通させて気体状の前記 D ME燃料を送出する気相燃料送出手段を備 えている、 ことを特徴としたディ一ゼルエンジンの D ME燃料供給装置である。 燃料夕ンクの気相部は、 油溜室よりも高圧な気体の D M E燃料が充満している ので、 ディ一ゼルェンジン停止時に燃料夕ンクの液相部とフィードパイプとの連 通を遮断し、 燃料タンクの気相部とフィードパイプとを連通させると、 燃料夕ン クの気相部の圧力によってフィードパイプ内に残留している燃料の一部を、 冷媒 供給パイプを介して電動コンプレッサーへ向けて押し出すことができる。 したが つて、 残留燃料回収手段によって油溜室及びノズルリターンパイプ内に残留して いる D ME燃料を回収する前に、 気相燃料送出手段によってあらかじめフィード パイプ内に残留している D ME燃料の一部を電動コンプレッサーによって燃料夕 ンクへ回収することができるので、 フィードパイプ内に気化した D M E燃料が充 填された状態となり、 残留燃料回収手段による D ME燃料の回収時間を短縮する ことができる。  According to a 20th aspect of the present invention, in the 19th aspect, communication between the liquid phase portion of the fuel tank and the feed pipe is interrupted, and communication between the gas phase portion of the fuel tank and the feed pipe is performed. A DME fuel supply device for a diesel engine, further comprising gas-phase fuel delivery means for delivering the gaseous DME fuel. Since the gas phase of the fuel tank is filled with gaseous DME fuel that is higher in pressure than the oil reservoir, the communication between the liquid phase of the fuel tank and the feed pipe is cut off when diesel fuel is stopped. When the gas phase of the fuel tank communicates with the feed pipe, part of the fuel remaining in the feed pipe due to the pressure in the gas phase of the fuel tank is directed to the electric compressor via the refrigerant supply pipe. Can be pushed out. Therefore, before the DME fuel remaining in the oil reservoir and the nozzle return pipe is recovered by the residual fuel recovery means, the DME fuel remaining in the feed pipe in advance by the gas-phase fuel delivery means is recovered. Since a part of the fuel can be recovered to the fuel tank by the electric compressor, the feed pipe is filled with vaporized DME fuel, and the time required to recover the DME fuel by the residual fuel recovery means can be reduced. .
これにより、 本発明の第 2 0の態様に係るディーゼルエンジンの D ME燃料供 給装置によれば、 本発明の第 1 9の態様による作用効果に加えて、 残留燃料回収 手段による D M E燃料の回収時間を短縮することができるという作用効果が得ら れる。  Thereby, according to the DME fuel supply device for a diesel engine according to the twenty-fifth aspect of the present invention, in addition to the operation and effect of the nineteenth aspect of the present invention, the DME fuel recovery by the residual fuel recovery means The effect that the time can be shortened is obtained.
本発明の第 2 1の態様は、 第 1 2〜2 0のいずれかの態様において、 前記燃料 タンクと前記フィ一ドパイプとの間に、 前記燃料夕ンクより容量が小さいサブ燃 料タンクが設けられており、 前記ディーゼルエンジンの始動時には、 前記燃料夕 ンクと前記サブ燃料夕ンクとの間の連通を遮断するとともに、 前記サブ燃料夕ン クの気相部と前記電動コンプレッサーの出口側とを連通させることによって、 前 記電動コンプレヅサ一によつて気相部が加圧された前記サプ燃料夕ンクから前記 D ME燃料が前記油溜室へ供給される構成を成している、 ことを特徴としたディ ーゼルエンジンの DME燃料供給装置である。 According to a twenty-first aspect of the present invention, in any one of the twenty-second to twenty-second aspects, a sub-fuel tank having a smaller capacity than the fuel tank is provided between the fuel tank and the feed pipe. When the diesel engine is started, the communication between the fuel tank and the sub fuel tank is cut off and the sub fuel tank is disconnected. By communicating the gas phase of the compressor with the outlet side of the electric compressor, the DME fuel is supplied to the oil reservoir from the sub-fuel tank whose gas phase is pressurized by the electric compressor. A DME fuel supply device for a diesel engine, characterized in that it is supplied to a diesel engine.
ディーゼルエンジンの始動時には、 まず、 インジェクションポンプの油溜室に DME燃料を供給しなければならないが、 最初は油溜室内に D ME燃料が無いの で油溜室内と燃料夕ンク内との液圧差を利用して燃料夕ンク内の D ME燃料を油 溜室へ送出することができない。 そこで、 電動コンプレッサーを駆動することに よって燃料タンク内の気相部を加圧し、 燃料タンク内の液相部の圧力を上昇させ る。 そして、 電動コンプレッサーに加圧された燃料タンク内の DME燃料は、 そ の圧力によってフィードパイプに送出され、 DME燃料が油溜室へ充填されるこ とになる。  When starting a diesel engine, DME fuel must first be supplied to the oil sump of the injection pump, but initially there is no DME fuel in the oil sump, so there is a difference in hydraulic pressure between the oil sump and the fuel tank. The DME fuel in the fuel tank cannot be delivered to the oil sump using the fuel tank. Therefore, the gas phase in the fuel tank is pressurized by driving the electric compressor, and the pressure in the liquid phase in the fuel tank is increased. Then, the DME fuel in the fuel tank pressurized by the electric compressor is sent out to the feed pipe by the pressure, and the DME fuel is charged into the oil reservoir.
しかし、 容量の大きな燃料タンク内を電動コンプレヅサ一で加圧するには、 一 定の時間が必要となるので、 ディ一ゼルェンジン始動時の油溜室への D M E燃料 の充填動作に長い時間を要することになつてしまう虞がある。 そこで、 燃料タン クとフィ一ドパイプとの間に、 燃料タンクより容量が小さいサブ燃料夕ンクを設 ける。 そして、 ディーゼルエンジン始動時の油溜室への D ME燃料の充填動作時 には、 燃料タンクとサブ燃料タンクとの間の連通を遮断するとともに、 サブ燃料 タンクの気相部と電動コンプレッサーの出口側とを連通させることによって、 電 動コンプレッサーによって気相部が加圧されたサブ燃料夕ンクから D M E燃料が 油溜室へ供給されるようにする。 サブ燃料タンクは、 燃料タンクより容量が小さ いので、 電動コンプレッサーによる加圧時間が短くて済むので、 電動コンプレヅ サ一の加圧力によって D M E燃料を油溜室へ充填する時間を短縮することができ る。  However, it takes a certain amount of time to pressurize the large-capacity fuel tank with the electric compressor.Therefore, it takes a long time to fill the oil reservoir with DME fuel when the diesel engine starts. May be caused. Therefore, a sub-fuel tank with a smaller capacity than the fuel tank is installed between the fuel tank and the feed pipe. When the DME fuel is filled into the oil reservoir when the diesel engine is started, the communication between the fuel tank and the sub fuel tank is cut off, and the gas phase of the sub fuel tank and the outlet of the electric compressor are shut off. The DME fuel is supplied to the oil reservoir from the sub fuel tank whose gas phase is pressurized by the electric compressor by communicating with the oil side. Since the capacity of the sub fuel tank is smaller than that of the fuel tank, the pressurization time by the electric compressor can be shortened, so that the time required to fill the oil reservoir with the DME fuel by the pressure of the electric compressor can be reduced. You.
これにより、 本発明の第 2 1の態様に係るディーゼルエンジンの DME燃料供 給装置によれば、 本発明の第 1 2〜2 0のいずれかの態様による作用効果に加え て、 ディーゼルエンジンの始動時に DME燃料を油溜室へ充填する際には、 燃料 タンクとフィードパイプとの間に設けられた燃料タンクより容量が小さいサブ燃 料タンク内を前記電動コンプレッサーで加圧して、 サブ燃料夕ンク内の D M E燃 料を油溜室へ充填するので、 D ME燃料を油溜室へ充填する時間を短縮すること ができるという作用効果が得られる。 Thus, according to the DME fuel supply device for a diesel engine according to the twenty-first aspect of the present invention, in addition to the effects of any one of the first to twenty-second aspects of the present invention, When filling the oil reservoir with DME fuel at the start of the diesel engine, the electric compressor pressurizes the inside of the sub fuel tank, which has a smaller capacity than the fuel tank provided between the fuel tank and the feed pipe. Since the DME fuel in the sub fuel tank is filled into the oil reservoir, the operation and effect of shortening the time for filling the DME fuel into the oil reservoir can be obtained.
本発明の第 2 2の態様は、 第 1 2〜2 1のいずれかの態様において、 前記イン ジェクシヨンポンプから送出された前記 D M E燃料は、コモンレールへ供給され、 該コモンレールから各燃料噴射ノズルへ送出される構成を成している、 ことを特 徴としたディーゼルエンジンの DME燃料供給装置である。  According to a twenty-second aspect of the present invention, in any one of the twelfth to twenty-first aspects, the DME fuel delivered from the injection pump is supplied to a common rail, and from the common rail to each fuel injection nozzle. This is a DME fuel supply system for diesel engines, characterized in that it is delivered.
本発明の第 2 2の態様に係るディーゼルエンジンの D M E燃料供給装置によれ ば、 コモンレール式ディーゼルエンジンの D ME燃料供給装置において、 前述し た本発明の第 1 2〜2 1のいずれかの態様による作用効果を得ることができる。 本発明の第 2 3の態様に係る D ME燃料の温度制御方法は、 燃料タンクからフ イードパイプを経由して供給された DME燃料を、 所定のタイミングで所定の量 だけディーゼルエンジンの燃料噴射ノズルに連通しているィンジェクシヨンパイ プへ送出するインジェクションポンプと、 前記ィンジェクシヨンボンプの油溜室 に充填されている D M E燃料の温度を調節する油溜室燃料温度調節手段と、 前記 燃料夕ンク内の D M E燃料の温度を調節する燃料夕ンク内温度調節手段とを備え たディーゼルエンジンの D ME燃料供給装置における D M E燃料の温度制御方法 であって、 前記油溜室内の D ME燃料の温度が規定温度 T Gとなる如く、 前記油 溜室燃料温度調節手段を制御し、 かつ、 前記油溜室内の D ME燃料の温度より前 記燃料夕ンク内の D ME燃料の温度が相対的に略一定の温度差で高温となる如く、 前記燃料夕ンク内温度調節手段を制御する、 ことを特徴とするものである。 According to the DME fuel supply device for a diesel engine according to the twenty-second aspect of the present invention, in the DME fuel supply device for a common rail diesel engine, any one of the above-described first to twenty-second aspects of the present invention is provided. The operation and effect of the present invention can be obtained. The DME fuel temperature control method according to the twenty-third aspect of the present invention is characterized in that the DME fuel supplied from the fuel tank via the feed pipe is supplied to the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined timing. An injection pump for delivering to the connected injection pipe; an oil sump fuel temperature adjusting means for adjusting the temperature of the DME fuel filled in the oil sump of the injection pump; and the fuel A method for controlling the temperature of DME fuel in a DME fuel supply device for a diesel engine, comprising: a fuel evening temperature control means for adjusting the temperature of the DME fuel in the oil reservoir. as temperature becomes the specified temperature T G, controls the oil reservoir chamber fuel temperature adjusting means, and the temperature of the D ME fuel in the oil reservoir chamber in front Symbol fuel evening links than the temperature of the D ME fuel relative To as a high temperature at a substantially constant temperature difference, controls the fuel evening links the temperature adjusting means, it is characterized in.
このように、 油溜室内の D M E燃料の温度が規定温度 T Qとなる如く、 油溜室 燃料温度調節手段を制御することによって、 インジェクションポンプから燃料噴 射ノズル送出する温度変化の影響を受けやすい DME燃料の温度を略一定の温度 に制御することができる。 したがって、 各燃料噴射ノズルの燃料噴射特性を安定 させることができる。 また、 油溜室内の D ME燃料の温度より燃料タンク内の D M E燃料の温度が相対的に略一定の温度差で高温となる如く、 燃料タンク内温度 調節手段を制御することによって、 その温度差によって油溜室と燃料タンクとの 間に生じる飽和蒸気圧の圧力差によって、 燃料タンク内の DME燃料を圧送する ことができる。 As described above, by controlling the oil reservoir fuel temperature control means so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature T Q , it is easily affected by the temperature change sent from the injection pump to the fuel injection nozzle. DME fuel temperature is kept almost constant Can be controlled. Therefore, the fuel injection characteristics of each fuel injection nozzle can be stabilized. Also, by controlling the temperature control means in the fuel tank so that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the DME fuel in the oil reservoir with a relatively constant temperature difference, the temperature difference is controlled. DME fuel in the fuel tank can be pumped by the pressure difference of the saturated vapor pressure generated between the oil reservoir and the fuel tank.
尚、 規定温度 T Gは、 各燃料噴射ノズルの D ME燃料の噴射特性が最も安定す る温度であり、 かつ、 燃料タンク内の D ME燃料を圧送可能な圧力差が生じるよ うに、 燃料タンク内の上限温度より十分低い温度に設定され、 実験等により得ら れる最適な温度に設定される。 The specified temperature TG is a temperature at which the DME fuel injection characteristics of each fuel injection nozzle are most stable, and the fuel tank is set so that a pressure difference capable of pumping the DME fuel in the fuel tank occurs. The temperature is set to a temperature sufficiently lower than the upper limit temperature, and the optimum temperature obtained by experiments is set.
これにより、本発明の第 2 3の態様に係る DME燃料の温度制御方法によれば、 フィードボンプ等の駆動手段によらずに、 燃料夕ンクから D M E燃料をインジェ クシヨンポンプの油溜室へ供給することが可能であり、 かつ、 インジェクション ポンプの安定した燃料噴射特性が得られるという作用効果が得られる。  Thus, according to the temperature control method for the DME fuel according to the twenty-third aspect of the present invention, the DME fuel is supplied from the fuel tank to the oil reservoir of the injection pump without using a driving means such as a feed pump. It is possible to obtain the effect of obtaining stable fuel injection characteristics of the injection pump.
本発明の第 2 4の態様は、 第 2 3の態様において、 前記油溜室燃料温度調節手 段は、 気ィ匕した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D M E燃料の温 度を検出する油溜室燃料温度検出手段とを備え、 前記油溜室燃料温度検出手段に て検出した前記油溜室内の DM E燃料の温度に基づいて、 前記油溜室内の D ME 燃料の温度が前記規定温度 Τ σとなる如く、 前記冷却媒体供給手段による前記冷 却媒体の供給動作を〇 Ν/0 F F制御する、 ことを特徴とした D ME燃料の温度 制御方法である。 According to a twenty-fourth aspect of the present invention, in the twenty-third aspect, the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the depleted DME fuel as a cooling medium. An oil sump fuel cooler, cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil sump fuel cooler, and detecting a temperature of the DME fuel in the oil sump. And a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detector. defined as the temperature T sigma, it said to 〇 New / 0 FF controlling supply operation of said cold却媒body by the cooling medium supply means, that is a temperature control method for a D ME fuel characterized by.
このように、 油溜室内の D M E燃料の温度を検出する油溜室燃料温度検出手段 によって検出した温度に基づいて、 油溜室内の D M E燃料の温度が規定温度 となるように、 油溜室内の D M E燃料を冷却する油溜室燃料冷却器への冷却媒体 の供給動作を O NZO F F制御する。 つまり、 油溜室燃料温度検出手段によって 検出した油溜室内の D ME燃料の温度に基づいて、 油溜室燃料冷却器の冷却動作 を O N/O F F制御し、 油溜室内の D ME燃料を冷却したり、 冷却しなかったり を繰り返すことで、 油溜室内の D M E燃料の温度が規定温度 Τ αとなるように制 御する。 それによつて、 ディーゼルエンジン等からの熱によって上昇する油溜室 内の D Μ Ε燃料の温度を規定温度 T Gに維持することができる。 Thus, based on the temperature detected by the oil reservoir fuel temperature detecting means for detecting the temperature of the DME fuel in the oil reservoir, the temperature of the DME fuel in the oil reservoir becomes the specified temperature so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature. Cooling medium to oil sump fuel cooler cooling DME fuel ON ZOFF control of the supply operation. In other words, based on the temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detection means, the cooling operation of the oil sump fuel cooler is ON / OFF controlled to cool the DME fuel in the oil sump. or, by repeating the or not cooled and controlled so that the temperature of DME fuel in the oil reservoir chamber is defined temperature T alpha. As a result, the temperature of the DΜ fuel in the oil reservoir that rises due to heat from the diesel engine or the like can be maintained at the specified temperature TG .
これにより、本発明の第 2 4の態様に係る D Μ Ε燃料の温度制御方法によれば、 油溜室燃料温度検出手段によつて検出した油溜室内の D Μ Ε燃料の温度に基づい て、 油溜室内の D Μ Ε燃料を冷却する油溜室燃料冷却器への冷却媒体の供給動作 を制御することによって、 本発明の第 2 3の態様による作用効果を得ることがで きる。  Thus, according to the DΜ fuel temperature control method according to the twenty-fourth aspect of the present invention, based on the temperature of the D の fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. By controlling the supply operation of the cooling medium to the oil reservoir fuel cooler that cools the fuel in the oil reservoir, the operation and effect according to the twenty-third aspect of the present invention can be obtained.
本発明の第 2 5の態様は、 第 2 3の態様において、 前記油溜室燃料温度調節手 段は、 気化した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D M E燃料の温 度を検出する油溜室燃料温度検出手段とを備え、 前記油溜室燃料温度検出手段に て検出した前記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D ME 燃料の温度が前記規定温度 Τ σとなる如く、 前記冷却媒体供給手段による前記冷 却媒体の供給量を調節する、ことを特徴とした D ME燃料の温度制御方法である。 このように、 油溜室内の D Μ Ε燃料の温度を検出する油溜室燃料温度検出手段 によって検出した温度に基づいて、 油溜室内の D Μ Ε燃料の温度が規定温度 T G となるように、 油溜室内の D Μ Ε燃料を冷却する油溜室燃料冷却器への冷却媒体 の供給量を調節する。 つまり、 油溜室燃料温度検出手段によって検出した油溜室 内の D ME燃料の温度に基づいて、油溜室燃料冷却器の冷却力を調節することで、 油溜室内の D Μ Ε燃料の温度が規定温度 T Gとなるように制御する。 それによつ て、 ディ一ゼルェンジン等からの熱によって上昇する油溜室内の D M E燃料の温 度を規定温度 T Gに維持することができる。 According to a twenty-fifth aspect of the present invention, in the twenty-third aspect, the oil reservoir fuel temperature adjusting means includes an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium. A reservoir fuel cooler; a cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and an oil for detecting the temperature of the DME fuel in the oil reservoir. A reservoir temperature detecting means for detecting a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the reservoir detected by the fuel temperature detector. A method for controlling the temperature of a DME fuel, characterized by adjusting a supply amount of the cooling medium by the cooling medium supply means so that とσ is obtained. As described above, the temperature of the DΜ fuel in the oil reservoir is adjusted to the specified temperature TG based on the temperature detected by the oil temperature fuel detecting means for detecting the temperature of the D の fuel in the oil reservoir. Adjust the amount of cooling medium supplied to the oil reservoir fuel cooler that cools the fuel in the oil reservoir. In other words, by adjusting the cooling power of the oil sump fuel cooler based on the temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detection means, the D Μ の fuel in the oil sump is controlled. Control so that the temperature becomes the specified temperature TG . As a result, the temperature of the DME fuel in the oil sump, which rises due to heat from diesel engines, etc. The temperature can be maintained at the specified temperature TG .
これにより、本発明の第 2 5の態様に係る D M E燃料の温度制御方法によれば、 油溜室燃料温度検出手段によって検出した油溜室内の D M E燃料の温度に基づい て、 油溜室内の D ME燃料を冷却する油溜室燃料冷却器への冷却媒体の供給量を 制御することによって、 本発明の第 2 3の態様による作用効果を得ることができ る。  Thus, according to the DME fuel temperature control method according to the twenty-fifth aspect of the present invention, the DME fuel temperature in the oil reservoir is detected based on the DME fuel temperature in the oil reservoir detected by the oil reservoir fuel temperature detecting means. By controlling the supply amount of the cooling medium to the oil reservoir fuel cooler that cools the ME fuel, the operation and effect according to the twenty-third aspect of the present invention can be obtained.
本発明の第 2 6の態様は、 第 2 5の態様において、 前記冷却媒体供給手段は、 回転駆動力源の回転数に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量 が増減する構成を成しており、 前記油溜室燃料温度検出手段にて検出した前記油 溜室内の DME燃料の温度に基づいて、 前記油溜室内の D M E燃料の温度が前記 規定温度 T eとなる如く、 前記回転駆動力源の回転数を制御する、 ことを特徴と した D M E燃料の温度制御方法である。 According to a twenty-sixth aspect of the present invention, in the twenty-fifth aspect, the cooling medium supply unit adjusts a supply amount of the cooling medium to the oil sump fuel cooler according to a rotation speed of a rotary driving force source. and forms a structure to increase or decrease based on the temperature of DME fuel in the oil reservoir chamber detected by the oil reservoir chamber fuel temperature detecting means, and temperature the predetermined temperature T e of the DME fuel in the oil reservoir chamber Thus, a method for controlling the temperature of the DME fuel, comprising controlling the number of rotations of the rotary driving force source.
本発明の第 2 6の態様に係る D ME燃料の温度制御方法によれば、 油溜室燃料 温度検出手段にて検出した油溜室内の D ME燃料の温度に基づいて、 油溜室内の D M E燃料の温度が規定温度 T Qとなる如く、 冷却媒体供給手段の回転駆動力源 の回転数を制御することによって、 油溜室燃料冷却器への冷却媒体の供給量を制 御することができ、 それによつて、 本発明の第 2 5の態様による作用効果を得る ことができる。 According to the DME fuel temperature control method according to the twenty-sixth aspect of the present invention, the DME fuel in the oil reservoir is detected based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. By controlling the number of rotations of the rotational driving force source of the cooling medium supply means so that the temperature of the fuel reaches the specified temperature T Q , the supply amount of the cooling medium to the oil reservoir fuel cooler can be controlled. Thereby, the operation and effect according to the twenty-fifth aspect of the present invention can be obtained.
本発明の第 2 7の態様は、 第 2 3〜2 6のいずれかの態様において、 前記燃料 タンク内温度調節手段は、 前記燃料夕ンクへ送出される前記 D M E燃料が空冷冷 却器を経由して冷却されてから前記燃料タンクへ戻される第 1のリ夕一ン経路と、 前記燃料タンクへ送出される前記 D ME燃料が前記空冷冷却器を経由せずに前記 燃料タンクへ戻される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリターン経路とを切り換えるリタ一ン経路切換手段と、 前記燃料夕ンク内の 前記 DM E燃料の温度を検出する燃料夕ンク燃料温度検出手段とを備え、 前記燃 料タンク燃料温度検出手段にて検出した前記燃料タンク内の D ME燃料の温度に 基づいて、 前記油溜室内の D M E燃料の温度より前記燃料夕ンク内の D M E燃料 の温度が相対的に略一定の温度差で高温となる如く、 前記リタ一ン経路切換手段 を制御する、 ことを特徴とした D M E燃料の温度制御方法である。 According to a twenty-seventh aspect of the present invention, in any one of the twenty-third to the twenty-sixth aspects, the fuel tank internal temperature control means is configured to control the temperature of the DME fuel delivered to the fuel tank via an air-cooled cooler. A first recirculation path that is cooled and then returned to the fuel tank, and a second path where the DME fuel delivered to the fuel tank is returned to the fuel tank without passing through the air-cooled cooler. (2) a return path switching means for switching between the first return path and the second return path; and a fuel tank fuel temperature for detecting a temperature of the DME fuel in the fuel tank. Detecting means for detecting the temperature of DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means. Controlling the return path switching means such that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the DME fuel in the oil reservoir with a relatively substantially constant temperature difference. This is a method for controlling the temperature of DME fuel.
第 1のリターン経路は、 燃料夕ンクへ送出される D ME燃料が空冷冷却器を経 由して冷却されてから燃料タンクへ戻されるのに対して、第 2のリターン経路は、 燃料タンクへ送出される D ME燃料が空冷冷却器を経由せずに、 つまり冷却され ずに燃料タンクへ戻される。 したがって、 D ME燃料をディーゼルエンジンに戻 す際に、 第 1のリターン経路を介して戻すか、 第 2のリターン経路を介して戻す かを、 油溜室燃料温度検出手段にて検出した油溜室内の D ME燃料の温度、 及び 燃料夕ンク燃料温度検出手段にて検出した燃料夕ンク内の D ME燃料の温度に基 づいて切り換えることによって、 油溜室内の D ME燃料の温度より燃料タンク内 の D M E燃料の温度が相対的に略一定の温度差で高温となる如く、 燃料タンク内 の D M E燃料の温度を制御することができる。  The first return path is to return to the fuel tank while the DME fuel sent to the fuel tank is cooled via the air-cooled cooler, while the second return path is to the fuel tank. The delivered DME fuel is returned to the fuel tank without passing through the air-cooled cooler, that is, without being cooled. Therefore, when returning the DME fuel to the diesel engine, the oil reservoir detected by the oil reservoir fuel temperature detecting means determines whether to return via the first return path or the second return path. By switching based on the temperature of the DME fuel in the oil reservoir and the temperature of the DME fuel in the fuel reservoir detected by the fuel reservoir in the fuel reservoir, the fuel tank is switched from the temperature of the DME fuel in the oil reservoir. The temperature of the DME fuel in the fuel tank can be controlled such that the temperature of the DME fuel in the fuel tank becomes high with a relatively constant temperature difference.
これにより、本発明の第 2 7の態様に係る DME燃料の温度制御方法によれば、 油溜室燃料温度検出手段にて検出した油溜室内の DME燃料の温度、 及び燃料夕 ンク燃料温度検出手段にて検出した燃料タンク内の D ME燃料の温度に基づいて、 燃料タンクへ送出される D ME燃料のリターン経路を切り換えて燃料タンク内の D ME燃料を制御することによって、 本発明の第 2 3〜2 6のいずれかの態様に よる作用効果を得ることができる。 ,  Thus, according to the DME fuel temperature control method according to the twenty-seventh aspect of the present invention, the temperature of the DME fuel in the oil reservoir and the fuel tank fuel temperature detected by the oil reservoir fuel temperature detecting means are detected. By controlling the DME fuel in the fuel tank by switching the return path of the DME fuel delivered to the fuel tank based on the temperature of the DME fuel in the fuel tank detected by the means, The operation and effect according to any one of the embodiments 23 to 26 can be obtained. ,
本発明の第 2 8の態様に係るディーゼルエンジンの D M E燃料供給装置は、 燃 料タンクからフィードパイプを経由して供給された D ME燃料を、 所定のタイミ ングで所定の量だけディ一ゼルェンジンの燃料噴射ノズルに連通しているインジ ェクシヨンパイプへ送出するィンジェクシヨンポンプと、 前記ィンジェクシヨン ポンプの油溜室に充填されている D M E燃料の温度を調節する油溜室燃料温度調 節手段と、 前記燃料夕ンク内の D M E燃料の温度を調節する燃料夕ンク内温度調 節手段と、 前記油溜室燃料温度調節手段及び前記燃料夕ンク内温度調節手段を制 御する D M E燃料温度制御手段とを備えたディーゼルエンジンの D M E燃料供給 装置であって、 前記 D ME燃料温度制御手段は、 前記油溜室内の D ME燃料の温 度が規定温度 Τ αとなる如く、 前記油溜室燃料温度調節手段を制御し、 かつ、 前 記油溜室内の D Μ Ε燃料の温度より前記燃料夕ンク内の D Μ Ε燃料の温度が相対 的に略一定の温度差で高温となる如く、 前記燃料夕ンク内温度調節手段を制御す ることを特徴とするものである。 A DME fuel supply device for a diesel engine according to a twenty-eighth aspect of the present invention is configured to supply DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing. An injection pump for delivering to an injection pipe communicating with a fuel injection nozzle; an oil reservoir fuel temperature adjusting means for adjusting a temperature of DME fuel filled in an oil reservoir of the injection pump; A fuel tank temperature control means for controlling the temperature of the DME fuel in the fuel tank; and a fuel tank temperature control means and the fuel tank temperature control means. A DME fuel supply device for a diesel engine equipped with a DME fuel temperature control means for control, the D ME fuel temperature control means, as temperature of the D ME fuel in the oil reservoir chamber is defined temperature T alpha Controlling the oil reservoir fuel temperature adjusting means, and making the temperature of the fuel in the fuel tank relatively lower than the temperature of the fuel in the oil reservoir with a substantially constant temperature difference. The fuel tank temperature control means is controlled so that the temperature becomes high.
本発明の第 2 8の態様に係るディーゼルエンジンの D Μ Ε燃料供給装置によれ ば、 ディーゼルエンジンの DME燃料供給装置において、 前述した本発明の第 2 3の態様と同様の作用効果を得ることができる。  According to the D エ ン ジ ン fuel supply device for a diesel engine according to the twenty-eighth aspect of the present invention, in the DME fuel supply device for a diesel engine, the same operation and effect as those of the above-described twenty-third aspect of the present invention can be obtained. Can be.
本発明の第 2 9の態様は、 第 2 8の態様において、 前記油溜室燃料温度調節手 段は、 気化した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料タンク内の DME燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D Μ Ε燃料の温 度を検出する油溜室燃料温度検出手段とを備え、前記 D Μ Ε燃料温度制御手段は、 前記油溜室燃料温度検出手段にて検出した前記油溜室内の D ME燃料の温度に基 づいて、 前記油溜室内の D M E燃料の温度が前記規定温度 T Gとなる如く、 前記 冷却媒体供給手段による前記冷却媒体の供給動作を◦ NZO F F制御する、 こと を特徴としたディーゼルエンジンの: D ME燃料供給装置である。 According to a twentieth aspect of the present invention, in the twenty-eighth aspect, the oil reservoir fuel temperature adjusting means uses the vaporized DME fuel as a cooling medium to cool the DME fuel in the oil reservoir. A reservoir fuel cooler, cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler, and an oil for detecting the temperature of the D の fuel in the oil reservoir. Reservoir temperature detection means, wherein the DΜ fuel temperature control means detects the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detection means. as the temperature of the DME fuel in the chamber is the predetermined temperature T G, the supply operation of the cooling medium by the cooling medium supply means ◦ for NZO FF control, a diesel engine, wherein a: with D ME fuel supply system is there.
本発明の第 2 9の態様に係るディ一ゼルェンジンの D ME燃料供給装置によれ ば、 ディーゼルエンジンの DME燃料供給装置において、 前述した本発明の第 2 4の態様と同様の作用効果を得ることができる。  According to the DME fuel supply device of the diesel engine according to the twentieth aspect of the present invention, in the DME fuel supply device of a diesel engine, the same operational effects as those of the above-described twenty-fourth aspect of the present invention can be obtained. Can be.
本発明の第 3 0の態様は、 第 2 8の態様において、 前記油溜室燃料温度調節手 段は、 気化した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D M E燃料の温 度を検出する油溜室燃料温度検出手段とを備え、前記 D M E燃料温度制御手段は、 前記油溜室燃料温度検出手段にて検出した前記油溜室内の D ME燃料の温度に基 づいて、 前記油溜室内の D M E燃料の温度が前記規定温度 T cとなる如く、 前記 冷却媒体供給手段による前記冷却媒体の供給量を調節する、 ことを特徴としたデ イーゼルエンジンの D M E燃料供給装置である。 According to a thirtieth aspect of the present invention, in the twenty-eighth aspect, the oil reservoir fuel temperature adjusting means comprises an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium. A reservoir fuel cooler; a cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and an oil for detecting the temperature of the DME fuel in the oil reservoir. Reservoir temperature detection means, wherein the DME fuel temperature control means comprises: The cooling medium supply is performed so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature Tc based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. A DME fuel supply device for a diesel engine, wherein the supply amount of the cooling medium by means is adjusted.
本発明の第 3 0の態様に係るディーゼルエンジンの DME燃料供給装置によれ ば、 ディーゼルエンジンの DM E燃料供給装置において、 前述した本発明の第 2 5の態様と同様の作用効果を得ることができる。  According to the DME fuel supply device for a diesel engine according to the thirtieth aspect of the present invention, it is possible to obtain the same operational effects as those of the above-described twenty-fifth aspect of the present invention in the DME fuel supply device for a diesel engine. it can.
本発明の第 3 1の態様は、 第 3 0の態様において、 前記冷却媒体供給手段は、 回転駆動力源の回転数に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量 が増減する構成を成しており、 前記油溜室燃料温度制御手段は、 前記油溜室燃料 温度検出手段にて検出した前記油溜室内の: D ME燃料の温度に基づいて、 前記油 溜室内の D M E燃料の温度が前記規定温度 T Qとなる如く、 前記回転駆動力源の 回転数を制御する手段を有している、 ことを特徴としたディ—ゼルエンジンの D ME燃料供給装置である。 According to a thirty-first aspect of the present invention, in the thirty-fifth aspect, the cooling medium supply means is configured to control a supply amount of the cooling medium to the oil sump fuel cooler according to a rotation speed of a rotary driving force source. The oil reservoir chamber temperature control means is configured to: increase or decrease the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detection means. is D ME fuel supply system for diesel engines - as the temperature of the DME fuel is the predetermined temperature T Q, and has a means for controlling the rotational speed of the rotary driving power source, di which was characterized by .
本発明の第 3 1の態様に係るディ一ゼルエンジンの DM E燃料供給装置によれ ば、 ディーゼルエンジンの DME燃料供給装置において、 前述した本発明の第 2 6の態様と同様の作用効果を得ることができる。  According to the DME fuel supply device for a diesel engine according to the thirty-first aspect of the present invention, in the DME fuel supply device for a diesel engine, the same operational effects as those of the above-described twenty-sixth aspect of the present invention are obtained. be able to.
本発明の第 3 2の態様は、 第 2 8〜3 1のいずれかの態様において、 前記燃料 タンク内温度調節手段は、 前記燃料夕ンクへ送出される前記 D M E燃料が空冷冷 却器を経由して冷却されてから前記燃料タンクへ戻される第 1のリ夕一ン経路と、 前記燃料夕ンクへ送出される前記 D M E燃料が前記空冷冷却器を経由せずに前記 燃料タンクへ戻される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリターン経路とを切り換えるリタ一ン経路切換手段と、 前記燃料夕ンク内の 前記 D ME燃料の温度を検出する燃料夕ンク燃料温度検出手段とを備え、 前記 D ME燃料温度制御手段は、 前記燃料タンク燃料温度検出手段にて検出した前記燃 料タンク内の D M E燃料の温度に基づいて、 前記油溜室内の D ME燃料の温度よ り前記燃料夕ンク内の D M E燃料の温度が相対的に略一定の温度差で高温となる 如く、 前記リターン経路切換手段を制御する、 ことを特徴としたディーゼルェン ジンの D ME燃料供給装置である。 According to a thirty-second aspect of the present invention, in any one of the thirty-eighth to thirty-first aspects, the fuel tank temperature adjusting means is arranged so that the DME fuel delivered to the fuel tank passes through an air-cooled cooler. A first recirculation path for cooling and then returning to the fuel tank; and a second recirculation path for returning the DME fuel to the fuel tank to the fuel tank without passing through the air-cooled cooler. A return path switching means for switching between the first return path and the second return path; and a fuel tank fuel temperature for detecting a temperature of the DME fuel in the fuel tank. Detecting means for controlling the temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means. Yo Controlling the return path switching means such that the temperature of the DME fuel in the fuel tank becomes relatively high with a relatively constant temperature difference. It is.
本発明の第 3 2の態様に係るディーゼルエンジンの D M E燃料供給装置によれ ば、 ディーゼルエンジンの D ME燃料供給装置において、 前述した本発明の第 2 6の態様と同様の作用効果を得ることができる。  According to the DME fuel supply device for a diesel engine according to the thirty-second aspect of the present invention, the same operational effects as those of the above-described twenty-sixth aspect of the present invention can be obtained in the DME fuel supply device for a diesel engine. it can.
本発明の第 3 3の態様は、 第 2 8〜3 2のいずれかの態様において、 前記イン ジェクシヨンポンプから送出された前記 DME燃料は、コモンレールへ供給され、 該コモンレールから各燃料噴射ノズルへ送出される構成を成している、 ことを特 徴としたディーゼルエンジンの D ME燃料供給装置である。  According to a thirty-third aspect of the present invention, in any one of the thirty-eighth to thirty-second aspects, the DME fuel delivered from the injection pump is supplied to a common rail, and from the common rail to each fuel injection nozzle. This is a DME fuel supply system for diesel engines, characterized in that it is delivered.
本発明の第 3 3の態様に係るディ一ゼルェンジンの D M E燃料供給装置によれ ば、 コモンレール式ディーゼルエンジンの D ME燃料供給装置において、 前述し た本発明の第 2 8〜3 2のいずれかの態様による作用効果を得ることができる。 本発明の第 3 4の態様に係る D ME燃料の温度制御プログラムは、 燃料タンク からフィードパイプを経由して供給された D ME燃料を、 所定のタイミングで所 定の量だけディ一ゼルェンジンの燃料噴射ノズルに連通しているインジェクショ ンパイプへ送出するィンジェクシヨンポンプと、 前記ィンジェクシヨンポンプの 油溜室に充填されている D M E燃料の温度を調節する油溜室燃料温度調節手段と、 前記燃料夕ンク内の D M E燃料の温度を調節する燃料夕ンク内温度調節手段とを 備えたディーゼルエンジンの D M E燃料供給装置における D M E燃料の温度制御 をコンピュータに実行させるための D M E燃料の温度制御プログラムであって、 前記油溜室内の D M E燃料の温度が規定温度 Τ σとなる如く、 前記油溜室燃料温 度調節手段を制御する油溜室燃料温度制御手順と、 前記油溜室内の D Μ Ε燃料の 温度より前記燃料タンク内の D ME燃料の温度が相対的に略一定の温度差で高温 となる如く、 前記燃料タンク内温度調節手段を制御する燃料夕ンク内温度制御手 順とを有している、 ことを特徴とするものである。 本発明の第 3 4の態様に係る D ME燃料の温度制御プログラムによれば、 前述 した本発明の第 2 3の態様と同様の作用効果を得ることができるとともに、 この D ME燃料の温度制御プログラムを実行することができる任意のディーゼルェン ジンの D ME燃料供給装置に、 前述した本発明の第 2 3の態様と同様の作用効果 をもたらすことができる。 According to the DME fuel supply device of the diesel engine according to the 33rd aspect of the present invention, in the DME fuel supply device of a common rail diesel engine, any one of the aforementioned 28th to 32nd aspects of the present invention is provided. The operation and effect according to the embodiment can be obtained. The temperature control program for DME fuel according to the thirty-fourth aspect of the present invention includes the steps of: providing DME fuel supplied from a fuel tank via a feed pipe by a predetermined amount at a predetermined timing; An injection pump for delivering to an injection pipe communicating with the injection nozzle; an oil reservoir fuel temperature adjusting means for adjusting the temperature of the DME fuel filled in an oil reservoir of the injection pump; DME fuel temperature control for causing a computer to execute DME fuel temperature control in a DME fuel supply device for a diesel engine, comprising: a fuel tank temperature control means for controlling the temperature of the DME fuel in the fuel tank. a program, as the temperature of the DME fuel in the oil reservoir chamber is defined temperature T sigma, the oil reservoir chamber fuel temperature system for controlling the oil reservoir chamber fuel temperature regulating means Controlling the temperature control means in the fuel tank such that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the DΜ fuel in the oil reservoir with a relatively substantially constant temperature difference. And a fuel tank internal temperature control procedure. According to the DME fuel temperature control program according to the thirty-fourth aspect of the present invention, the same operation and effect as those of the above-described twenty-third aspect of the present invention can be obtained. The same operational effects as those of the above-described twenty-third aspect of the present invention can be provided to any diesel engine DME fuel supply device capable of executing the program.
本発明の第 3 5の態様は、 第 3 4の態様において、 前記油溜室燃料温度調節手 段は、 気化した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料夕ンク内の D M E燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D M E燃料の温 度を検出する油溜室燃料温度検出手段とを備え、前記油溜室燃料温度制御手順は、 前記油溜室燃料温度検出手段にて検出した前記油溜室内の D M E燃料の温度に基 づいて、 前記油溜室内の D ME燃料の温度が前記規定温度 となる如く、 前記 冷却媒体供給手段による前記冷却媒体の供給動作を 0 NZO F F制御する手順を 有している、 ことを特徴とした DME燃料の温度制御プログラムである。  According to a thirty-fifth aspect of the present invention, in the thirty-fourth aspect, the oil reservoir fuel temperature adjusting means comprises an oil for cooling the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium. A reservoir fuel cooler; a cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and an oil reservoir for detecting a temperature of the DME fuel in the oil reservoir. A fuel tank temperature detecting means, wherein the oil sump fuel temperature control step comprises: detecting a temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detecting means. A DME fuel temperature control program, wherein the cooling medium supply means controls the supply of the cooling medium by the NMEFF so that the temperature of the DME fuel becomes the specified temperature. is there.
本発明の第 3 5の態様に係る DME燃料の温度制御プログラムによれば、 前述 した本発明の第 2 の態様と同様の作用効果を得ることができるとともに、 この DME燃料の温度制御プログラムを実行することができる任意のディーゼルェン ジンの D ME燃料供給装置に、 前述した本発明の第 2 4の態様と同様の作用効果 をもたらすことができる。  According to the DME fuel temperature control program of the thirty-fifth aspect of the present invention, the same operation and effect as those of the above-described second aspect of the present invention can be obtained, and the DME fuel temperature control program is executed. The DME fuel supply device of any diesel engine that can perform the same operation and effect as the above-described twenty-fourth aspect of the present invention can be provided.
本発明の第 3 6の態様は、 第 3 4の態様において、 前記油溜室燃料温度調節手 段は、 気ィ匕した D ME燃料を冷却媒体として前記油溜室内の D ME燃料を冷却す る油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油 溜室燃料冷却器へ供給する冷却媒体供給手段と、 前記油溜室内の D M E燃料の温 度を検出する油溜室燃料温度検出手段とを備え、前記油溜室燃料温度制御手順は、 前記油溜室燃料温度検出手段にて検出した前記油溜室内の D M E燃料の温度に基 づいて、 前記油溜室内の D M E燃料の温度が前記規定温度 となる如く、 前記 冷却媒体供給手段による前記冷却媒体の供給量を調節する手順を有している、 こ とを特徴とした D M E燃料の温度制御プログラムである。 According to a thirty-sixth aspect of the present invention, in the thirty-fourth aspect, the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the deprived DME fuel as a cooling medium. An oil sump fuel cooler, cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil sump fuel cooler, and detecting a temperature of the DME fuel in the oil sump. Oil reservoir fuel temperature detecting means for detecting oil temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. The temperature of the DME fuel in the reservoir becomes the specified temperature, A temperature control program for DME fuel, characterized by comprising a procedure for adjusting a supply amount of the cooling medium by a cooling medium supply unit.
本発明の第 3 6の態様に係る D ME燃料の温度制御プログラムによれば、 前述 した本発明の第 2 5の態様と同様の作用効果を得ることができるとともに、 この D M E燃料の温度制御プログラムを実行することができる任意のディ一ゼルェン ジンの D ME燃料供給装置に、 前述した本発明の第 2 5の態様と同様の作用効果 をもたらすことができる。  According to the DME fuel temperature control program according to the thirty-sixth aspect of the present invention, it is possible to obtain the same operation and effect as those of the above-described twenty-fifth aspect of the present invention, The same operational effects as those of the above-described twenty-fifth aspect of the present invention can be provided to any diesel engine DME fuel supply device capable of executing the above.
本発明の第 3 7の態様は、 第 3 6の態様において、 前記冷却媒体供給手段は、 回転駆動力源の回転数に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量 が増減する構成を成しており、 前記油溜室燃料温度制御手順は、 前記油溜室燃料 温度検出手段にて検出した前記油溜室内の D ME燃料の温度に基づいて、 前記油 溜室内の D M E燃料の温度が前記規定温度 T eとなる如く、 前記回転駆動力源の 回転数を制御する手順を有している、 ことを特徴とした D ME燃料の温度制御プ ログラムである。 In a thirty-seventh aspect of the present invention, in the thirty-sixth aspect, the cooling medium supply means is configured to control a supply amount of the cooling medium to the oil reservoir fuel cooler in accordance with a rotation speed of a rotary driving force source. The oil reservoir fuel temperature control procedure includes the step of: controlling the oil reservoir fuel temperature based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. as the temperature of the DME fuel is the predetermined temperature T e, has a procedure for controlling the rotational speed of the rotary driving power source, a temperature control program of D ME fuel characterized by.
本発明の第 3 7の態様に係る D ME燃料の温度制御プログラムによれば、 前述 した本発明の第 2 6の態様と同様の作用効果を得ることができるとともに、 この D M E燃料の温度制御プログラムを実行することができる任意のディ一ゼルェン ジンの D ME燃料供給装置に、 前述した本発明の第 2 6の態様と同様の作用効果 をもたらすことができる。  According to the DME fuel temperature control program according to the 37th aspect of the present invention, the same operation and effect as those of the 26th aspect of the present invention can be obtained. The same operational effects as those of the above-described twenty-sixth aspect of the present invention can be provided to any DME fuel supply device capable of executing the above.
本発明の第 3 8の態様は、 第 3 4〜3 7のいずれかの態様において、 前記燃料 夕ンク内温度調節手段は、 前記燃料タンクへ送出される前記 D ME燃料が空冷冷 却器を経由して冷却されてから前記燃料タンクへ戻される第 1のリターン経路と、 前記燃料夕ンクへ送出される前記 D M E燃料が前記空冷冷却器を経由せずに前記 燃料夕ンクへ戻される第 2のリタ一ン経路と、 前記第 1のリタ一ン, と前記第 2のリターン経路とを切り換えるリ夕一ン経路切換手段と、 前記燃料夕ンク内の 前記 D ME燃料の温度を検出する燃料夕ンク燃料温度検出手段とを備え、 前記燃 料夕ンク内温度制御手順は、 前記燃料夕ンク燃料温度検出手段にて検出した前記 燃料タンク内の D ME燃料の温度に基づいて、 前記油溜室内の D ME燃料の温度 より前記燃料夕ンク内の D ME燃料の温度が相対的に略一定の温度差で高温とな る如く、 前記リタ一ン経路切換手段を制御する手順を有している、 ことを特徴と した D M E燃料の温度制御プログラムである。 According to a thirty-eighth aspect of the present invention, in any one of the thirty-fourth to thirty-seventh aspects, the fuel tank internal temperature control means includes an air-cooled cooler for supplying the DME fuel to the fuel tank. A first return path, which is cooled through the fuel tank and then returns to the fuel tank, and a second return path in which the DME fuel delivered to the fuel tank is returned to the fuel tank without passing through the air-cooled cooler. Return route switching means for switching between the first return and the second return route; and a fuel for detecting the temperature of the DME fuel in the fuel reservoir. And a fuel temperature detecting means. The fuel tank internal temperature control procedure is based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means, and the fuel tank is controlled based on the temperature of the DME fuel in the oil reservoir. Controlling the return path switching means so that the temperature of the DME fuel in the inside becomes high with a relatively constant temperature difference. It is a program.
本発明の第 3 8の態様に係る DME燃料の温度制御プログラムによれば、 前述 した本発明の第 2 7の態様と同様の作用効果を得ることができるとともに、 この D M E燃料の温度制御プログラムを実行することができる任意のディ一ゼルェン ジンの D ME燃料供給装置に、 前述した本発明の第 2 7の態様と同様の作用効果 をもたらすことができる。 図面の簡単な説明  According to the DME fuel temperature control program according to the thirty-eighth aspect of the present invention, the same operation and effect as those of the above-described twenty-seventh aspect of the present invention can be obtained, and this DME fuel temperature control program can be used. Any DME fuel supply device that can be implemented can have the same operation and effect as the above-described twenty-seventh aspect of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る D ME燃料供給装置の第 1実施例を示した概略構成図で ある。  FIG. 1 is a schematic configuration diagram showing a first embodiment of a DME fuel supply device according to the present invention.
図 2は、 本発明に係る DME燃料供給装置の第 1実施例を示した概略構成図で あり、 ディ一ゼルェンジン停止時の状態を示したものである。  FIG. 2 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state when diesel engines are stopped.
図 3は、 本発明に係る D ME燃料供給装置の第 1実施例を示した概略構成図で あり、 D ME燃料を充填している状態を示したものである。  FIG. 3 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged.
図 4は、 本発明に係る D ME燃料供給装置の第 1実施例を示した概略構成図で あり、 ディ一ゼルェンジン運転時の状態を示したものである。  FIG. 4 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
図 5は、 本発明に係る D ME燃料供給装置の第 1実施例を示した概略構成図で あり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものである。 図 6は、 本発明に係る D M E燃料供給装置の第 2実施例を示した概略構成図で める。  FIG. 5 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel fuel. FIG. 6 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device according to the present invention.
図 7は、 本発明に係る D ME燃料供給装置の第 2実施例を示した概略構成図で あり、 ディーゼルエンジン停止後の残留燃料回収動作の前にフィ一ドパイプへ気 相部を連通させた状態を示したものである。 FIG. 7 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device according to the present invention, in which a feed pipe is connected to a feed pipe before the residual fuel recovery operation after stopping the diesel engine. It shows a state in which the phase parts are communicated.
図 8は、 本発明に係る D ME燃料供給装置の第 3実施例を示した概略構成図で める。  FIG. 8 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention.
図 9は、 本発明に係る D ME燃料供給装置の第 3実施例を示した概略構成図で あり、 ディ一ゼルェンジン停止時の状態を示したものである。  FIG. 9 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state when diesel engines are stopped.
図 1 0は、 本発明に係る DM E燃料供給装置の第 3実施例を示した概略構成図 であり、 DME燃料を充填している状態を示したものである。  FIG. 10 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state where DME fuel is charged.
図 1 1は、 本発明に係る D ME燃料供給装置の第 3実施例を示した概略構成図 であり、 ディーゼルェンジン運転時の状態を示したものである。  FIG. 11 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a state during a diesel engine operation.
図 1 2は、 本発明に係る DME燃料供給装置の第 3実施例を示した概略構成図 であり、 ディーゼルエンジン停止後の残留燃料回収動作の前にフィ一ドバイプへ 気相部を連通させた状態を示したものである。  FIG. 12 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after stopping the diesel engine. It shows the state.
図 1 3は、 本発明に係る DME燃料供給装置の第 3実施例を示した概略構成図 であり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものである。 図 1 4は、 本発明に係る DME燃料供給装置の第 4実施例を示した概略構成図 である。  FIG. 13 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines. FIG. 14 is a schematic configuration diagram showing a fourth embodiment of the DME fuel supply device according to the present invention.
図 1 5は、 本発明に係る DME燃料供給装置の第 5実施例を示した概略構成図 である。  FIG. 15 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention.
図 1 6は、 本発明に係る D M E燃料供給装置の第 5実施例を示した概略構成図 であり、 ディーゼルェンジン停止時の状態を示したものである。  FIG. 16 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
図 1 7は、 本発明に係る D ME燃料供給装置の第 5実施例を示した概略構成図 であり、 DM E燃料を充填している状態を示したものである。  FIG. 17 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state where DME fuel is charged.
図 1 8は、 本発明に係る D ME燃料供給装置の第 5実施例を示した概略構成図 であり、 ディ一ゼルェンジン運転時の状態を示したものである。  FIG. 18 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
図 1 9は、 本発明に係る DME燃料供給装置の第 5実施例を示した概略構成図 であり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものである。 図 2 0は、 本発明に係る DM E燃料供給装置の第 6実施例を示した概略構成図 である。 FIG. 19 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines. FIG. 20 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device according to the present invention.
図 2 1は、 本発明に係る: DME燃料供給装置の第 6実施例を示した概略構成図 であり、 ディーゼルエンジン停止後の残留燃料回収動作の前にフィ一ドパイプへ 気相部を連通させた状態を示したものである。  FIG. 21 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after the diesel engine is stopped. FIG.
図 2 2は、 本発明に係る DME燃料供給装置の第 7実施例を示した概略構成図 FIG. 22 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention.
^める め る
図 2 3は、 本発明に係る DM E燃料供給装置の第 7実施例を示した概略構成図 であり、 ディーゼルエンジン停止時の状態を示したものである。  FIG. 23 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
図 2 4は、 本発明に係る DME燃料供給装置の第 7実施例を示した概略構成図 であり、 DME燃料を充填している状態を示したものである。  FIG. 24 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged.
図 2 5は、 本発明に係る DME燃料供給装置の第 7実施例を示した概略構成図 であり、 ディーゼルェンジン運転時の状態を示したものである。  FIG. 25 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a state during a diesel engine operation.
図 2 6は、 本発明に係る DM E燃料供給装置の第 7実施例を示した概略構成図 であり、 ディーゼルエンジン停止後の残留燃料回収動作の前にフィ一ドパイプへ 気相部を連通させた状態を示したものである。  FIG. 26 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, in which the gas phase is communicated to the feed pipe before the residual fuel recovery operation after stopping the diesel engine. FIG.
図 2 7は、 本発明に係る DME燃料供給装置の第 7実施例を示した概略構成図 であり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものである。 図 2 8は、 本発明に係る DME燃料供給装置の第 8実施例を示した概略構成図 であ 。  FIG. 27 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines. FIG. 28 is a schematic configuration diagram showing an eighth embodiment of the DME fuel supply device according to the present invention.
図 2 9は、 本発明に係る DM E燃料供給装置の第 9実施例を示した概略構成図 である。  FIG. 29 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention.
図 3 0は、 本発明に係る DME燃料供給装置の第 9実施例を示した概略構成図 であり、 ディーゼルエンジン停止時の状態を示したものである。  FIG. 30 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state when the diesel engine is stopped.
図 3 1は、 本発明に係る D ME燃料供給装置の第 9実施例を示した概略構成図 であり、 D ME燃料を充填している状態を示したものである。 図 3 2は、 本発明に係る D ME燃料供給装置の第 9実施例を示した概略構成図 であり、 ディ一ゼルェンジン運転時の状態を示したものである。 FIG. 31 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state where the DME fuel is charged. FIG. 32 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a state during diesel engine operation.
図 3 3は、 本発明に係る D ME燃料供給装置の第 9実施例を示した概略構成図 であり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものである。 図 3 4は、 本発明に係る 「燃料タンク内温度制御手順」 を示したフローチヤ一 トである。  FIG. 33 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines. FIG. 34 is a flowchart showing the “procedure for controlling the temperature in the fuel tank” according to the present invention.
図 3 5は、 本発明に係る 「油溜室燃料温度制御手順」 を示したフローチャート である。  FIG. 35 is a flowchart showing an “oil reservoir fuel temperature control procedure” according to the present invention.
図 3 6は、 本発明に係る燃料タンク内の D ME燃料の温度波形、 及び油溜室内 の D ME燃料の温度波形を模式的に示したグラフである。  FIG. 36 is a graph schematically showing a temperature waveform of the DME fuel in the fuel tank and a temperature waveform of the DME fuel in the oil reservoir according to the present invention.
図 3 7は、 本発明に係る D ME燃料供給装置の他の実施の形態を示した概略構 成図である。  FIG. 37 is a schematic configuration diagram showing another embodiment of the DME fuel supply device according to the present invention.
図 3 8は、 図 3 7に示したディーゼルエンジンの D ME燃料供給装置における 「油溜室燃料温度制御手順」 を示したフローチャートである。  FIG. 38 is a flowchart showing an “oil reservoir fuel temperature control procedure” in the DME fuel supply device for the diesel engine shown in FIG. 37.
図 3 9は、 本発明に係る燃料タンク内の D ME燃料の温度波形、 及び油溜室内 の D ME燃料の温度波形を模式的に示したグラフであり、 電動コンプレッサーの 回転数を制御することによる油溜室の D M E燃料の温度制御を示したものである c 発明を実施するための最良の形態  FIG. 39 is a graph schematically showing the temperature waveform of the DME fuel in the fuel tank according to the present invention and the temperature waveform of the DME fuel in the oil reservoir, in which the rotation speed of the electric compressor is controlled. This shows the temperature control of the DME fuel in the oil reservoir by the c.
以下、 本発明の実施の形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、 本発明に係るディーゼルエンジンの D M E燃料供給装置の第 1実施例に ついて説明する。 図 1は、 本発明に係る D ME燃料供給装置の第 1実施例を示し た概略構成図である。  First, a first embodiment of a DME fuel supply device for a diesel engine according to the present invention will be described. FIG. 1 is a schematic configuration diagram illustrating a DME fuel supply device according to a first embodiment of the present invention.
ディーゼルエンジンに; D M E燃料を供給する本発明に係る D M E燃料供給装置 1 0 0は、 インジェクションポンプ 1を備えている。 燃料タンク 4の液相部 4 a の D ME燃料は、 液相燃料出口 4 1からフィル夕 5 aでろ過された後、 フィード パイプ 5及び 3方電磁弁 2 1を介してインジェクションポンプ 1の油溜室 1 1へ 供給される。後述する「残留燃料回収手段」の構成要素である 3方電磁弁 2 1は、 噴射状態時 (ディーゼルエンジンの運転時) には O N状態で、 フィードパイプ 5 が油溜室 1 1に連通している。 インジェクションポンプ 1は、 ディーゼルェンジ ンが有するシリンダの数と同じ数のインジェクションポンプエレメント 2を備え ている。 インジェクションポンプエレメント 2の燃料送出口には、 インジェクシ ヨンパイプ 3が接続されており、 インジェクションパイプ 3は、 燃料噴射ノズル 9へ接続され、 インジェクションポンプ 1から送出される高圧に圧縮された D M E燃料は、 ィンジェクシヨンパイプ 3を介して燃料噴射ノズル 9へ圧送される。 燃料噴射ノズル 9からオーバーフローした D ME燃料は、 ノズルリターンパイプ 7を介してフィードパイプ 5へ戻され、 再び油溜室 1 1へと供給される。 The DME fuel supply device 100 according to the present invention for supplying DME fuel to a diesel engine includes an injection pump 1. The DME fuel in the liquid part 4 a of the fuel tank 4 is filtered from the liquid fuel outlet 41 through a filter 5 a and then fed. The oil is supplied to the oil reservoir 11 of the injection pump 1 via the pipe 5 and the three-way solenoid valve 21. The three-way solenoid valve 21, which is a component of the “remaining fuel recovery means” described later, is in the ON state during the injection state (during operation of the diesel engine), and the feed pipe 5 communicates with the oil reservoir 11. I have. The injection pump 1 is provided with the same number of injection pump elements 2 as the number of cylinders of the diesel engine. An injection pipe 3 is connected to a fuel outlet of the injection pump element 2, and the injection pipe 3 is connected to a fuel injection nozzle 9, and the DME fuel compressed to a high pressure sent from the injection pump 1 is used for injection. The fuel is fed to the fuel injection nozzle 9 via the injection pipe 3. The DME fuel overflowing from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 and is supplied again to the oil reservoir 11.
油溜室 1 1の外側には、 油溜室 1 1の D M E燃料を冷却するための 「油溜室燃 料冷却装置 6 0」が配設されている。 「油溜室燃料冷却装置 6 0」には、 フィード パイプ 5から分岐した冷媒供給パイプ 5 1を介して燃料夕ンク 4から D ME燃料 が冷媒として供給される。 冷媒として供給された D M E燃料は、 冷媒供給パイプ 開閉電磁弁 1 6を介して燃料気ィ匕器 1 5へ供給される。 そして、 燃料気化器 1 5 で気ィ匕された D M E燃料は、 その気ィ匕熱を利用した燃料冷却器 6に供給され、 そ の気化熱によって油溜室 1 1内の D M E燃料が冷却される。 「油溜室燃料冷却装 置 6 0」 は、 冷媒供給パイプ開閉電磁弁 1 6の開閉によって制御される。  Outside the oil reservoir 11, an “oil reservoir fuel cooling device 60” for cooling the DME fuel in the oil reservoir 11 is provided. DME fuel is supplied as a refrigerant from the fuel tank 4 to the “oil reservoir fuel cooling device 60” via a refrigerant supply pipe 51 branched from the feed pipe 5. The DME fuel supplied as the refrigerant is supplied to the fuel gas dehydrator 15 through the refrigerant supply pipe opening / closing solenoid valve 16. Then, the DME fuel gasified by the fuel vaporizer 15 is supplied to the fuel cooler 6 utilizing the heat of vaporization, and the DME fuel in the oil reservoir 11 is cooled by the heat of vaporization. You. The “oil reservoir fuel cooling device 60” is controlled by opening and closing the refrigerant supply pipe opening and closing solenoid valve 16.
カム室 1 2は、 ディーゼルエンジンの潤滑系と分離された専用潤滑系となって おり、 オイルセパレー夕 1 3は、 ィンジェクシヨンポンプエレメント 2からカム 室 1 2に漏れだした: D M E燃料が混入したカム室 1 2内の潤滑油を、 D ME燃料 と潤滑油とに分離して潤滑油をカム室 1 2に戻す。 オイルセパレ一夕 1 3で分離 された D ME燃料は、 カム室 1 2内の圧力が大気圧以下になるのを防止するチェ ヅク弁 1 4を介して、 電動コンプレッサー 2 3へ送出され、 電動コンプレッサー 2 3で加圧された後、燃料タンク 4へ戻される。また、 「油溜室燃料冷却装置」の 燃料冷却器 6に冷媒として供給された D M E燃料も電動コンプレヅサ一 2 3によ つて加圧された後、 燃料タンク 4へ戻される。 The cam chamber 12 is a dedicated lubrication system separated from the diesel engine lubrication system, and the oil separator 13 leaks from the injection pump element 2 to the cam chamber 12: DME fuel The mixed lubricating oil in the cam chamber 12 is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber 12. The DME fuel separated in the oil separator 13 is sent out to the electric compressor 23 via a check valve 14 for preventing the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized in 2, it is returned to the fuel tank 4. In addition, the “oil reservoir fuel cooling system” The DME fuel supplied as a refrigerant to the fuel cooler 6 is also pressurized by the electric compressor 23 and then returned to the fuel tank 4.
このように、 オイルセパレー夕 1 3で分離された D ME燃料を回収するための 電動コンプレッサー 2 3を利用して、 冷媒供給パイプ 5 1から 「油溜室燃料冷却 装置」 に供給された: D ME燃料を燃料タンク 4へ送出することによって、 専用の 冷媒回収手段を設けることなく、 冷媒として 「油溜室燃料冷却装置」 に供給され た DME燃料を回収することができる。  Thus, using the electric compressor 23 for recovering the DME fuel separated at the oil separator 13, the DME fuel was supplied from the refrigerant supply pipe 51 to the “oil reservoir fuel cooling device”: D By sending the ME fuel to the fuel tank 4, the DME fuel supplied as the refrigerant to the “oil reservoir fuel cooling device” can be recovered without providing a dedicated refrigerant recovery unit.
電動コンプレッサー 2 3にて加圧された D ME燃料は、 3方電磁弁 2 2が O F Fしている場合には、 「空冷冷却^」としてのク一ラー 4 2によって冷却されてか ら燃料タンク 4へ戻される (第 1のリターン経路)。 また、 3方電磁弁 2 2が O N している場合には、 クーラ一 4 2を経由しないで、 つまり冷却されずに燃料タン ク 4へ戻される(第 2のリ夕一ン経路)。 したがって、 3方電磁弁 2 2の O N/0 F F制御によって、燃料夕ンク 4に戻す D M E燃料の温度を調節することができ、 それによつて、燃料夕ンク 4内の D ME燃料の温度を制御することができる。尚、 逆止弁 4 3は、 第 2のリタ一ン経路から DME燃料がクーラー 4 2へ逆流するこ とを防止するためのものである。  When the three-way solenoid valve 22 is OFF, the DME fuel pressurized by the electric compressor 23 is cooled by the cooler 42 as “air-cooled cooling ^” before the fuel tank Returned to 4 (first return path). When the three-way solenoid valve 22 is ON, the fuel is returned to the fuel tank 4 without passing through the cooler 42, that is, without being cooled (the second restart path). Therefore, the temperature of the DME fuel returned to the fuel tank 4 can be adjusted by ON / OFF control of the three-way solenoid valve 2 2, thereby controlling the temperature of the DME fuel in the fuel tank 4. can do. The check valve 43 prevents the DME fuel from flowing back to the cooler 42 from the second return path.
次に、 当該実施例に示した D ME燃料供給装置 1 0 0の動作について、 ディー ゼルェンジン停止状態から、 D M E燃料充填動作、ディ一ゼルェンジン運転状態、 ディーゼルエンジン停止後の残留燃料回収動作へと順を追って説明する。  Next, regarding the operation of the DME fuel supply device 100 shown in the embodiment, the DME fuel supply stop operation, the DME fuel charging operation, the diesel engine operation state, and the residual fuel recovery operation after the diesel engine is stopped are sequentially performed. Will be described later.
図 2は、 本発明に係る D ME燃料供給装置 1 0 0の第 1実施例を示した概略構 成図であり、 ディ一ゼルェンジン停止時の状態を示したものである。  FIG. 2 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when diesel engines are stopped.
ディーゼルエンジン停止状態においては、 3方電磁弁 2 1及び 3方電磁弁 2 2、 並びに冷媒供給パイプ開閉電磁弁 1 6は、 全て O F Fとなっている。 3方電磁弁 2 1及び 3方電磁弁 2 2は、 O F Fの状態でそれぞれ図示の連通方向に連通して いる。 また、 冷媒供給パイプ開閉電磁弁 1 6は、 O F Fの状態で連通する電磁弁 である。 図 3は、 本発明に係る D ME燃料供給装置 1 0 0の第 1実施例を示した概略構 成図であり、 DM E燃料を充填している状態を示したものである。 When the diesel engine is stopped, the three-way solenoid valve 21 and the three-way solenoid valve 22 and the coolant supply pipe opening / closing solenoid valve 16 are all OFF. The three-way solenoid valve 21 and the three-way solenoid valve 22 communicate with each other in the communication direction shown in the OFF state. The refrigerant supply pipe opening / closing electromagnetic valve 16 is an electromagnetic valve that communicates in an OFF state. FIG. 3 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state in which DME fuel is charged.
停止状態からディ一ゼルェンジンを運転するために、 燃料夕ンク 4内の D ME 燃料をインジェクションポンプ 1の油溜室 1 1、 インジェクションパイプ 3、 ノ ズルリ夕一ンパイプ 7、 及び冷媒供給パイプ 5 1へ充填する。 まず、 3方電磁弁 2 1及び 3方電磁弁 2 2は O N状態となり、 それそれ図示の方向の連通経路が構 成される。 つづいて、 電動コンプレッサー 2 3が O Nとなり、 リターンパイプ 8 が符号 Aで示した方向に吸引され、 O N状態の 3方電磁弁 2 2によって連通して いる第 2のリターン経路が符号 Bで示した方向に加圧されて燃料夕ンク 4内の気 相部 4 bが加圧される。燃料夕ンク 4内の気相部 4 bが加圧されることによって、 液相部 4 aの D M E燃料がフィードパイプ 5へ送出され (符号 C)、 油溜室 1 1、 インジェクションパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給パイプ 5 1 へ D ME燃料が符号 Dで示した方向に充填される。 また、 冷媒供給パイプ 5 1か ら冷媒として供給された D ME燃料は、 燃料気化器 1 5によって気ィ匕されて 「油 溜室燃料冷却装置」 の燃料冷却器 6へ送出され、 その気化熱によって油溜室 1 1 内に充填された D ME燃料が冷却される。  To operate the diesel engine from the stopped state, the DME fuel in the fuel tank 4 is supplied to the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle pipe 7 of the nozzle, and the refrigerant supply pipe 51. Fill. First, the three-way solenoid valve 21 and the three-way solenoid valve 22 are in the ON state, and a communication path in the illustrated direction is formed for each. Subsequently, the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the three-way solenoid valve 22 in the on state is indicated by the symbol B. The gas phase 4 b in the fuel tank 4 is pressurized in the direction. When the gas phase 4b in the fuel tank 4 is pressurized, the DME fuel in the liquid phase 4a is sent out to the feed pipe 5 (symbol C), and the oil sump chamber 11, the injection pipe 3, and the nozzle The return pipe 7 and the refrigerant supply pipe 51 are filled with DME fuel in the direction indicated by the symbol D. The DME fuel supplied as a refrigerant from the refrigerant supply pipe 51 is degassed by the fuel vaporizer 15 and sent out to the fuel cooler 6 of the “oil reservoir fuel cooling device”, where the heat of vaporization is obtained. As a result, the DME fuel filled in the oil reservoir 11 is cooled.
図 4は、 本発明に係る D ME燃料供給装置 1 0 0の第 1実施例を示した概略構 成図であり、 ディーゼルェンジン運転時の状態を示したものである。  FIG. 4 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during a diesel engine operation.
各部に DM E燃料が充填された時点で、燃料タンク 4内の D ME燃料は、 「油溜 室燃料冷却装置」 によって冷却された油溜室 1 1内の D ME燃料と、 燃料タンク 4内の D ME燃料との温度差によって生じる両者間の相対的な圧力差によって、 フィードパイプ 5へと圧送される (符号 E )。つまり、本発明に係る D ME燃料供 給装置 1 0 0は、 燃料タンク 4から DME燃料をインジェクションポンプ 1へ送 出するためのポンプを備えておらず、 油溜室 1 1内の DM E燃料を冷却すること によって生じる油溜室 1 1と燃料タンク 4内との圧力差によって、 燃料タンク 4 内の D M E燃料をィンジェクションポンプ 1へ供給する構成を成している。 したがって、 油溜室 1 1にはオーバ一フロー経路が設けられておらず、 油溜室 1 1からインジェクションポンプエレメント 2によってインジェクションパイプ 3を介して燃料噴射ノズル 9へ圧送 (符号 F ) された D M E燃料の分だけ供給さ れていくことになる。 また、 燃料噴射ノズル 9からオーバ一フローした; D ME燃 料は、 従来のように燃料夕ンク 4へ戻されずに、 ノズルリターンパイプ 7を介し てフィードパイプ 5へ戻され、 再び油溜室 1 1へ供給される。 このように、 D M E燃料の冷媒としての優れた特性を有効利用した燃料冷却器 6によって、 「油溜 室燃料冷却装置」 を合理的に構成することができるので、 フィードポンプ等の駆 動手段が不要になり、 ディーゼルエンジンの D ME燃料供給装置 1 0 0のコスト を低減させることができる。 When each part is filled with the DME fuel, the DME fuel in the fuel tank 4 is filled with the DME fuel in the oil reservoir 11 cooled by the “oil reservoir fuel cooling device” and the fuel tank 4. Due to the relative pressure difference between the two due to the temperature difference with the DME fuel, it is pumped to the feed pipe 5 (reference E). That is, the DME fuel supply device 100 according to the present invention does not include a pump for sending the DME fuel from the fuel tank 4 to the injection pump 1, and the DME fuel in the oil reservoir 11 is not provided. Due to the pressure difference between the oil reservoir 11 and the inside of the fuel tank 4 caused by cooling the DME fuel, the DME fuel in the fuel tank 4 is supplied to the injection pump 1. Therefore, the oil reservoir 11 does not have an overflow channel, and the DME pumped from the oil reservoir 11 to the fuel injection nozzle 9 via the injection pipe 3 by the injection pump element 2 (reference F). It will be supplied only for the amount of fuel. Also, the DME fuel did not return to the fuel tank 4 as before, but returned to the feed pipe 5 via the nozzle return pipe 7 and returned to the oil reservoir 1 again. Supplied to 1. In this way, the fuel cooler 6, which effectively utilizes the excellent characteristics of the DME fuel as a refrigerant, makes it possible to rationally configure the "oil reservoir fuel cooling device". This is unnecessary, and the cost of the diesel engine DME fuel supply device 100 can be reduced.
油溜室 1 1内には、 温度センサ 1 l a (油溜室燃料温度検出手段) が配設され ている。 油溜室 1 1の冷却温度は、 冷媒供給パイプ開閉電磁弁 1 6を開閉制御す ることによって一定の冷却温度となるように制御される。 つまり、 油溜室 1 1内 に配設された温度センサが検出する油溜室 1 1内の D ME燃料の温度が、 所定の 温度以下になったら冷媒供給パイプ開閉電磁弁 1 6を閉制御 (O N) し、 所定の 温度以上になったら冷媒供給パイプ開閉電磁弁 1 6を開制御 (O F F) すること によって、 油溜室 1 1内の D ME燃料の温度を一定に維持する。 それによつて、 インジェクションポンプ 1の D ME燃料の噴射特性を安定させることができる。 また、 燃料タンク 4内には、 温度センサ 4 c (燃料タンク内温度検出手段) が 配設されており、 油溜室 1 1内の D ME燃料の温度と、 燃料タンク 4内の D ME 燃料の温度との温度差が一定の温度差となるように、 つまり油溜室 1 1内と燃料 タンク 4内との圧力差が一定になるように、 3方電磁弁 2 2 (リターン経路切換 電磁弁) を O NZO F F制御して燃料タンク 4内の D ME燃料の温度を調節する ように燃料タンク内温度調節手段 2 2 aは構成されている。 それによつて、 燃料 タンク 4からフィードパイプ 5へ送出される D ME燃料の送出圧を一定にするこ とができる (燃料タンク内温度調節手段)。 したがって、油溜室 1 1内と燃料タン ク 4内との相対的な温度差を維持したまま油溜室 1 1内の D ME燃料の温度を最 適な温度に制御することができるので、 それによつて、 最適な D ME燃料の噴射 特性が得ることができる。 In the oil reservoir 11, a temperature sensor 1 la (oil reservoir fuel temperature detecting means) is provided. The cooling temperature of the oil reservoir 11 is controlled to be a constant cooling temperature by controlling the opening and closing of the refrigerant supply pipe opening and closing solenoid valve 16. That is, when the temperature of the DME fuel in the oil reservoir 11 detected by the temperature sensor disposed in the oil reservoir 11 falls below a predetermined temperature, the refrigerant supply pipe opening / closing solenoid valve 16 is controlled to close. (ON), and when the temperature exceeds a predetermined temperature, the refrigerant supply pipe opening / closing solenoid valve 16 is opened (OFF) to maintain the temperature of the DME fuel in the oil reservoir 11 constant. Thereby, the injection characteristics of the DME fuel of the injection pump 1 can be stabilized. In the fuel tank 4, a temperature sensor 4c (means for detecting the temperature in the fuel tank) is provided. The temperature of the DME fuel in the oil reservoir 11 and the temperature of the DME fuel in the fuel tank 4 are determined. The three-way solenoid valve 2 2 (return path switching solenoid valve) is controlled so that the temperature difference between the three-way solenoid valve 22 and the fuel tank 4 becomes constant, that is, the temperature difference between the oil reservoir 11 and the fuel tank 4 becomes constant. The temperature control means 22 a in the fuel tank is configured so as to control the temperature of the DME fuel in the fuel tank 4 by ONZOFF control of the valve. This makes it possible to keep the delivery pressure of the DME fuel delivered from the fuel tank 4 to the feed pipe 5 constant (fuel tank temperature control means). Therefore, the fuel tank The temperature of the DME fuel in the oil reservoir 11 can be controlled to the optimum temperature while maintaining the relative temperature difference from the inside of the fuel 4, so that the optimal DME fuel injection Properties can be obtained.
図 5は、 本発明に係る D ME燃料供給装置 1 0 0の第 1実施例を示した概略構 成図であり、ディ一ゼルエンジン停止後の残留燃料回収動作を示したものである。 ディーゼルエンジン停止後、 シリンダ内に気化した DME燃料が充満すること によって、 ディーゼルエンジンを再始動する際に生じるノヅキング等の異常燃焼 を防止するために、 油溜室 1 1、 インジェクションパイプ 3、 ノズルリ夕一ンパ イブ 7、 及び冷媒供給パイプ 5 1へ充填されている D ME燃料を残留燃料回収手 段 2 l a によって燃料タンク 4へ回収する。 残留燃料回収手段 2 1 aは、 3方電 磁弁 2 1 (連通経路切換手段) 及び電動コンプレッサー 2 3とで構成される。 デ イーゼルエンジン停止後、 3方電磁弁 2 1が O F Fされると、 電動コンプレッサ 一 2 3によって、 油溜室 1 1、 インジェクションパイプ 3、 ノズルリ夕一ンパイ プ 7、 及び冷媒供給パイプ 5 1へ充填されている DM E燃料が符号 Jで示した経 路で燃料タンク 4へ回収される。 3方電磁弁 2 2が O F Fとなることによって、 回収される D ME燃料は、 第 1のリターン経路 (符号 Hで示した経路) でクーラ 一 4 2によって冷却されてから燃料タンク 4へ回収される。  FIG. 5 is a schematic configuration diagram showing a first embodiment of the DME fuel supply device 100 according to the present invention, and shows a residual fuel recovery operation after the diesel engine is stopped. After stopping the diesel engine, the cylinder is filled with vaporized DME fuel to prevent abnormal combustion such as noking that occurs when the diesel engine is restarted.The oil reservoir 11, the injection pipe 3, and the nozzle The DME fuel filled in the pump 7 and the refrigerant supply pipe 51 is recovered to the fuel tank 4 by the residual fuel recovery means 2 la. The residual fuel recovery means 21a is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23. When the three-way solenoid valve 21 is turned off after the diesel engine is stopped, the electric compressor 23 fills the oil reservoir 11, the injection pipe 3, the nozzle pipe 7, and the refrigerant supply pipe 51. The collected DME fuel is collected in the fuel tank 4 through the route indicated by reference symbol J. When the three-way solenoid valve 22 is turned off, the recovered DME fuel is cooled by the cooler 14 2 in the first return route (the route indicated by the symbol H) and then recovered to the fuel tank 4. You.
このようにして、 フィードポンプ等の駆動手段によらずに、 燃料タンクから D M E燃料を油溜室へ供給することができる。  In this way, the DME fuel can be supplied from the fuel tank to the oil reservoir without using a driving means such as a feed pump.
また、 第 2実施例としては、 上記第 1実施例に加えて、 燃料タンク 4の気相部 4 bとフィードパイプ 5とを連結可能に構成したものが挙げられる。 図 6は、 本 発明に係る D M E燃料供給装置 1 0 0の第 2実施例を示した概略構成図である。 燃料タンク 4の気相部 4 bは、 気相燃料出口 4 4から気相燃料出力パイプ 3 1 1を経由し、 3方電磁弁 3 1を介してフィードパイプ 5へ連結されている。 D M E燃料供給装置 1 0 0は、 3方電磁弁 3 1が〇 F F状態の場合には、 油溜室 1 1 と燃料夕ンク 4の液相部 4 aとが連通し、 3方電磁弁 3 1が 0 N状態の場合には、 油溜室 1 1と燃料タンク 4の気相部 4 bとが連通する構成を成している。 当該実 施の形態においては、ディ一ゼルェンジン停止後、 「残留燃料回収手段」によって、 油溜室 1 1、 インジヱクシヨンパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供 給パイプ 5 1へ充填されている DME燃料を燃料タンク 4へ回収する前に、 3方 電磁弁 3 1を O N状態にして、 気相部 4 bの高圧な気体状の D ME燃料をフィー ドパイプ 5へ送出する (気相燃料送出手段)。 Further, as a second embodiment, in addition to the above-described first embodiment, a configuration in which the gas phase portion 4b of the fuel tank 4 and the feed pipe 5 can be connected to each other is exemplified. FIG. 6 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device 100 according to the present invention. The gas phase portion 4b of the fuel tank 4 is connected to the feed pipe 5 from the gas phase fuel outlet 44 through the gas phase fuel output pipe 311 and the 3-way solenoid valve 31. When the three-way solenoid valve 31 is in the FF state, the DME fuel supply device 100 communicates with the oil reservoir 11 and the liquid phase portion 4 a of the fuel tank 4, and the three-way solenoid valve 3 If 1 is in the 0 N state, The oil reservoir 11 communicates with the gas phase portion 4b of the fuel tank 4. In this embodiment, after the diesel engine stops, the remaining fuel is filled into the oil sump chamber 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 by the "remaining fuel recovery means". Before the collected DME fuel is collected in the fuel tank 4, the three-way solenoid valve 31 is turned on and the high-pressure gaseous DME fuel in the gas phase section 4b is sent to the feed pipe 5 (gas phase Fuel delivery means).
図 7は、 本発明に係る D ME燃料供給装置 1 0 0の第 2実施例を示した概略構 成図であり、 ディーゼルエンジン停止後の残留燃料回収動作の前にフィードパイ プ 5へ気相部 4 bを連通させた状態を示したものである。  FIG. 7 is a schematic configuration diagram showing a second embodiment of the DME fuel supply device 100 according to the present invention, in which a gas phase is supplied to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows a state in which the parts 4b are connected to each other.
燃料夕ンク 4の気相部 4 bは、 高圧な気体の D ME燃料が充満しているので、 ディーゼルエンジン停止時に 3方電時弁 3 1を O N状態にして、 燃料タンク 4の 液相部 4 aとフィードパイプ 5との連通を遮断し、 燃料タンク 4の気相部 4 と フィードパイプ 5とを連通させると、 気相部 4 bの気体状の D M E燃料は、 符号 Kで示した経路で送出される。 そして、 3方電磁弁 3 1より油溜室 1 1側のフィ —ドパイプ 5内の D M E燃料、 及び冷媒供給パイプ 5 1へ充填されている D ME 燃料は、 燃料冷却器 6を介して符号 Lで示した経路で電動コンプレッサー 2 3に よって燃料タンク 4へ回収される。  Since the gas phase 4 b of the fuel tank 4 is filled with high-pressure gaseous DME fuel, the three-way electric valve 31 is turned on when the diesel engine is stopped, and the liquid phase of the fuel tank 4 is turned on. When the communication between 4a and the feed pipe 5 is cut off and the gas phase 4 of the fuel tank 4 is connected to the feed pipe 5, the gaseous DME fuel in the gas phase 4b passes through the path indicated by the symbol K. Sent out. The DME fuel in the feed pipe 5 on the side of the oil reservoir 11 from the three-way solenoid valve 31 and the DME fuel charged in the refrigerant supply pipe 51 are supplied through the fuel cooler 6 to the symbol L. The fuel is collected in the fuel tank 4 by the electric compressor 23 along the route indicated by.
このように、 「残留燃料回収手段」によって油溜室 1 1及びノズルリターンパイ プ 7に残留している D ME燃料を回収する前に、 「気相燃料送出手段」によってあ らかじめフィードパイプ 5、 及び冷媒供給パイプ 5 1に残留している D ME燃料 の一部を電動コンプレッサー 2 3によって燃料タンク 4へ回収することができる ので、 フィードパイプ 5、 及び冷媒供給パイプ 5 1に気化した D ME燃料が充填 された状態となり、 「残留燃料回収手段」による D ME燃料の回収時間を短縮する ことができる。  As described above, before the DME fuel remaining in the oil reservoir 11 and the nozzle return pipe 7 is recovered by the “remaining fuel recovery means”, the feed pipe is previously prepared by the “gas phase fuel delivery means”. 5, and a part of the DME fuel remaining in the refrigerant supply pipe 51 can be recovered to the fuel tank 4 by the electric compressor 23, so the D vaporized in the feed pipe 5 and the refrigerant supply pipe 51 The ME fuel is filled, and the time required for DME fuel recovery by the “residual fuel recovery means” can be reduced.
さらに、 第 3実施例としては、 上記第 2実施例に加えて、 燃料タンク 4とフィ 一ドパイプ 5との間に燃料夕ンク 4より容量の小さいサブ燃料夕ンクを設けたも のが挙げられる。 図 8は、 本発明に係る DME燃料供給装置 1 0 0の第 3実施例 を示した概略構成図である。 Further, as a third embodiment, in addition to the above-described second embodiment, a sub-fuel tank having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5. Is included. FIG. 8 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention.
燃料夕ンク 4とフィ一ドパイプ 5との間には、 燃料タンク 4より容量の小さい サブ燃料タンク 4 5が設けられている。 当該実施例においては、 サブ燃料タンク 4 5の容量は、 燃料タンク 4の約 1 / 1 0 0程度の容量となっている。 当該実施 例に示した DME燃料供給装置 1 0 0は、 ディーゼルエンジンの始動時に、 油溜 室 1 1、 インジェクションパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給パ イブ 5 1へ D ME燃料を充填する際には、 燃料タンク 4からではなくサブ燃料夕 ンク 4 5から D ME燃料を供給する構成を成している。  Between the fuel tank 4 and the feed pipe 5, a sub-fuel tank 45 having a smaller capacity than the fuel tank 4 is provided. In this embodiment, the capacity of the sub fuel tank 45 is about 1/1000 of the fuel tank 4. The DME fuel supply device 100 shown in this embodiment fills the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 with DME fuel when the diesel engine is started. In this case, DME fuel is supplied not from the fuel tank 4 but from the sub fuel tank 45.
つづいて、 当該実施例に示した D ME燃料供給装置 1 0 0の動作について、 デ イーゼルエンジン停止状態から、 D ME燃料充填動作、 ディーゼルエンジン運転 状態、 ディーゼルエンジン停止後の残留燃料回収動作へと順を追って説明する。 尚、第 1実施例及び第 2実施例と同様の部分については、一部省略して説明する。 図 9は、 本発明に係る D ME燃料供給装置 1 0 0の第 3実施例を示した概略構 成図であり、 ディ一ゼルェンジン停止時の状態を示したものである。  Subsequently, the operation of the DME fuel supply device 100 shown in this embodiment is changed from the diesel engine stopped state to the DME fuel filling operation, the diesel engine operation state, and the residual fuel recovery operation after the diesel engine is stopped. It will be described step by step. Note that parts similar to those in the first and second embodiments will be partially omitted from the description. FIG. 9 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when diesel engines are stopped.
ディーゼルエンジン停止状態においては、 3方電磁弁 2 1及び 3方電磁弁 2 2、 並びに冷媒供給パイプ開閉電磁弁 1 6は、 全て O F Fとなっている。 また、 3方 電磁弁 3 3、 及び燃料夕ンク 4とサブ燃料夕ンク 4 5との間の連通を開閉する電 磁弁 3 2も O F Fとなっている。 3方電磁弁 3 3は、 O F Fの状態で図示の如く 燃料タンク 4側へ連通し、 電磁弁 3 2は、 O F F状態で燃料タンク 4とサブ燃料 タンク 4 5とが連通する。  When the diesel engine is stopped, the three-way solenoid valve 21 and the three-way solenoid valve 22 and the refrigerant supply pipe opening / closing solenoid valve 16 are all OFF. Further, the three-way solenoid valve 33 and the solenoid valve 32 for opening and closing the communication between the fuel tank 4 and the sub fuel tank 45 are also OFF. As shown, the three-way solenoid valve 33 communicates with the fuel tank 4 in the OFF state, and the solenoid valve 32 communicates with the fuel tank 4 and the sub fuel tank 45 in the OFF state.
図 1 0は、 本発明に係る D M E燃料供給装置 1 0 0の第 3実施例を示した概略 構成図であり、 D ME燃料を充填している状態を示したものである。  FIG. 10 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged.
停止状態からディ一ゼルェンジンを運転するために、'燃料夕ンク 4内の D ME 燃料をインジェクションポンプ 1の油溜室 1 1、 インジェクションパイプ 3、 ノ ズルリ夕一ンパイプ 7、 及び冷媒供給パイプ 5 1へ充填する。 まず、 3方電磁弁 2 1及び 3方電磁弁 2 2は O N状態となり、 それそれ図示の方向の連通経路を構 成する。 また、 3方電磁弁 3 3及び電磁弁 3 2も〇N状態となり、 燃料タンク 4 とサブ燃料タンク 4 5との連通が遮断され、 3方電磁弁 2 2からの連通経路がサ ブ燃料タンク 4 5へ連通する。つづいて、電動コンプレッサー 2 3が O Nとなり、 リターンパイプ 8が符号 Aで示した方向に吸引され、 O N状態の 3方電磁弁 2 2 及び 3方電磁弁 3 3によって連通しているサブ燃料タンク 4 5の気相部が符号 M で示した方向に加圧されてサブ燃料タンク 4 5内の気相部が加圧される。 燃料夕 ンク 4 5内の気相部が加圧されることによって、 サブ燃料タンク 4 5内の D ME 燃料がフィードパイプ 5へ送出され(符号 N)、油溜室 1 1、 インジェクションパ イブ 3、 ノズルリターンパイプ 7、 及び冷媒供給パイプ 5 1へ DM E燃料が符号 Nで示した方向に充填される。 In order to operate the diesel engine from a standstill, the DME fuel in the fuel tank 4 is filled with the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle pipe 7 and the coolant supply pipe 5 1 Fill into. First, a three-way solenoid valve 21 and the three-way solenoid valve 22 are turned ON, and each constitutes a communication path in the direction shown. Also, the three-way solenoid valve 33 and the solenoid valve 32 are in the 〇N state, the communication between the fuel tank 4 and the sub fuel tank 45 is cut off, and the communication path from the three-way solenoid valve 22 is changed to the sub fuel tank. Connect to 4-5. Subsequently, the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the three-way solenoid valve 22 in the ON state and the sub fuel tank 4 communicated with the three-way solenoid valve 33 are turned on. 5 is pressurized in the direction indicated by the symbol M, and the gas phase in the sub fuel tank 45 is pressurized. When the gas phase in the fuel tank 45 is pressurized, the DME fuel in the sub fuel tank 45 is delivered to the feed pipe 5 (reference numeral N), and the oil reservoir 11 and the injection pipe 3 The DME fuel is charged into the nozzle return pipe 7 and the refrigerant supply pipe 51 in the direction indicated by the symbol N.
図 1 1は、 本発明に係る D ME燃料供給装置 1 0 0の第 3実施例を示した概略 構成図であり、 ディ一ゼルェンジン運転時の状態を示したものである。  FIG. 11 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during diesel engine operation.
各部に D ME燃料が充填された時点で、 3方電磁弁 2 2、 3方電磁弁 3 3及び 電磁弁 3 2は、 O N状態から O F F状態になる。 したがって、 リターンパイプ 8 は、 電動コンプレッサー 2 3を介してクーラ一 4 2へ連通し、 燃料タンク 4内の DM E燃料は、 「油溜室燃料冷却装置」によって冷却された油溜室 1 1内の D ME 燃料と、 燃料タンク 4内の DM E燃料との温度差によって生じる両者間の相対的 な圧力差によって、 サブ燃料タンク 4 5を経由してフィードパイプ 5へと圧送さ れる (符号 N;)。油溜室 1 1には、油溜室 1 1からインジェクションポンプエレメ ント 2によってィンジェクシヨンパイプ 3を介して燃料噴射ノズル 9へ圧送 (符 号 F ) された D M E燃料の分だけ、 燃料タンク 4からサブ燃料タンク 4 5を経由 して供給されていくことになる。 また、 燃料噴射ノズル 9からオーバ一フローし た D ME燃料は、 従来のように燃料タンク 4へ戻されずに、 ノズルリターンパイ プ 7を介してフィードパイプ 5へ戻され、 再び油溜室 1 1へ供給される。  When each part is filled with the DME fuel, the three-way solenoid valve 22, the three-way solenoid valve 33, and the solenoid valve 32 change from the ON state to the OFF state. Therefore, the return pipe 8 communicates with the cooler 14 through the electric compressor 23, and the DME fuel in the fuel tank 4 is cooled in the oil reservoir 11 cooled by the “oil reservoir fuel cooling device”. Due to the relative pressure difference between the DME fuel and the DME fuel in the fuel tank 4 caused by the temperature difference between the DME fuel and the DME fuel, the fuel is pumped to the feed pipe 5 via the sub fuel tank 45 (reference numeral N). ;). In the oil reservoir 11, the fuel tank is filled by the amount of the DME fuel that has been pumped (reference F) from the oil reservoir 11 to the fuel injection nozzle 9 via the injection pipe 3 by the injection pump element 2. It will be supplied from 4 via the sub fuel tank 45. The DME fuel that has overflowed from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 without being returned to the fuel tank 4 as in the conventional case, and is returned to the oil reservoir 11 again. Supplied to
図 1 2は、 本発明に係る DM E燃料供給装置 1 0 0の第 3実施例を示した概略 構成図であり、 ディ一ゼルエンジン停止後の残留燃料回収動作の前にフィ一ドパ イブ 5へ気相部 4 bを連通させた状態を示したものである。 FIG. 12 is a schematic view showing a third embodiment of the DME fuel supply device 100 according to the present invention. FIG. 3 is a configuration diagram showing a state in which a gas phase section 4b is connected to a feed pipe 5 before a residual fuel recovery operation after the diesel engine is stopped.
上記第 2実施例と同様に、 ディーゼルエンジン停止時に 3方電時弁 3 1を〇N 状態にして、 燃料夕ンク 4の液相部 4 aとフィードパイプ 5との連通を遮断し、 燃料夕ンク 4の気相部 4 bとフィードパイプ 5とを連通させると、 気相部 4 bの 気体状の D ME燃料は、 符号 Kで示した経路で送出される。 そして、 3方電磁弁 3 1より油溜室 1 1側のフィードパイプ 5内の D ME燃料、 及び冷媒供給パイプ 5 1へ充填されている D ME燃料は、 燃料冷却器 6を介して符号 Lで示した経路 で電動コンプレッサ一 2 3によつて燃料夕ンク 4へ回収される。  As in the second embodiment, when the diesel engine is stopped, the three-way valve 31 is set to the 〇N state, the communication between the liquid phase portion 4a of the fuel tank 4 and the feed pipe 5 is cut off, and the fuel When the gas phase portion 4b of the tank 4 is communicated with the feed pipe 5, the gaseous DME fuel in the gas phase portion 4b is sent out through the path indicated by the symbol K. The DME fuel in the feed pipe 5 on the side of the oil reservoir 11 from the three-way solenoid valve 31 and the DME fuel filled in the refrigerant supply pipe 51 are denoted by L through the fuel cooler 6. The fuel is recovered to the fuel tank 4 by the electric compressor 13 through the route indicated by.
図 1 3は、 本発明に係る D M E燃料供給装置 1 0◦の第 3実施例を示した概略 構成図であり、 ディ一ゼルェンジン停止後の残留燃料回収動作を示したものであ る。  FIG. 13 is a schematic configuration diagram showing a third embodiment of the DME fuel supply device 10 ° according to the present invention, and shows a residual fuel recovery operation after stopping diesel engines.
上記第 1実施例及び第 2実施例と同様に、 ディーゼルエンジン停止後、 シリン ダ内に気ィ匕した D M E燃料が充満することによって、 ディーゼルエンジンを再始 動する際に生じるノッキング等の異常燃焼を防止するために、 油溜室 1 1、 イン ジェクシヨンパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給パイプ 5 1へ充 填されている D ME燃料を 「残留燃料回収手段」 によって燃料タンク 4へ回収す る。 「残留燃料回収手段」は、 3方電磁弁 2 1 (連通経路切換手段)及び電動コン プレヅサ一 2 3とで構成される。 ディーゼルエンジン停止後、 3方電磁弁 2 1が O F Fされると、 電動コンプレッサー 2 3によって、 油溜室 1 1、 インジェクシ ヨンパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給パイプ 5 1へ充填されて いる D M E燃料が符号 Jで示した経路で燃料夕ンク 4へ回収される。 3方電磁弁 2 2が O F Fとなることによって、 回収される D ME燃料は、 第 1のリターン経 路 (符号 Hで示した経路) でクーラ一 4 2によって冷却されてから燃料タンク 4 へ回収される。  As in the first and second embodiments, after the diesel engine is stopped, abnormal combustion such as knocking that occurs when the diesel engine is restarted due to the filled DME fuel in the cylinder after the diesel engine is stopped. DME fuel filled in the oil sump 11, injection pipe 3, nozzle return pipe 7, and refrigerant supply pipe 51 to the fuel tank 4 by `` residual fuel recovery means '' to recover. “Residual fuel recovery means” is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23. When the three-way solenoid valve 21 is turned off after the diesel engine stops, the electric compressor 23 fills the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 with DME. Fuel is recovered to fuel tank 4 along the path indicated by reference symbol J. The DME fuel recovered by turning off the three-way solenoid valve 22 is cooled by the cooler 14 in the first return route (the route indicated by the symbol H) and then recovered to the fuel tank 4. Is done.
このようにして、 フィードポンプ等の駆動手段によらずに、 燃料タンクから D ME燃料を油溜室へ供給することができる。 また、 サブ燃料タンク 4 5は、 燃料 タンク 4より容量が小さいので、 電動コンプレッサー 2 3による加圧時間が短く て済むので、 電動コンプレッサー 2 3の加圧力によって D ME燃料を油溜室 1 1 へ充填する時間を短縮することができる。 尚、 サブ燃料夕ンク 4 5の容量は、 油 溜室 1 1、 インジェクションパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給 パイプ 5 1へ: D M E燃料を充填することが可能な範囲において、 より小さい容量 であるほど迅速な D ME燃料の充填が可能になり好ましいと言える。 In this way, D fuel can be removed from the fuel tank without using a driving means such as a feed pump. ME fuel can be supplied to the oil reservoir. Also, since the capacity of the sub fuel tank 45 is smaller than that of the fuel tank 4, the pressurization time by the electric compressor 23 can be short, and the DME fuel is transferred to the oil reservoir 11 by the pressing force of the electric compressor 23. The filling time can be reduced. In addition, the capacity of the sub fuel tank 45 is smaller than that of the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe 51 as long as the DME fuel can be charged. It can be said that the faster the DME fuel can be filled, the better.
さらに、 第 4実施例としては、 上記第 3実施例において、 D ME燃料供給装置 1 0 0をコモンレール式にしたものが挙げられる。 図 1 4は、 本発明に係る DM E燃料供給装置 1 0 0の第 4実施例を示した概略構成図である。 このように、 イ ンジェクシヨンポンプ 1から圧送される D M E燃料が、 各燃料噴射ノズル 9が連 結されているコモンレール 9 1を介して供給されるコモンレール式 DM E燃料供 給装置 1 0 0においても本発明の実施は可能であり、 本発明による作用効果を得 ることができるものである。  Further, as a fourth embodiment, a DME fuel supply device 100 in the third embodiment is a common rail type. FIG. 14 is a schematic configuration diagram showing a fourth embodiment of the DME fuel supply device 100 according to the present invention. Thus, the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied via the common rail 91 to which each fuel injection nozzle 9 is connected. The present invention can also be implemented, and the operation and effect of the present invention can be obtained.
次に本発明の第 5実施例〜第 8実施例について説明する。 図 1 5は、 本発明に 係る DME燃料供給装置の第 5実施例を示した概略構成図であり、 図 1 6は、 本 発明に係る D ME燃料供給装置 1 0 0の第 5実施例を示した概略構成図であり、 ディーゼルエンジン停止時の状態を示したものである。 図 1 7は、 本発明に係る DM E燃料供給装置 1 0 0の第 5実施例を示した概略構成図であり、 D ME燃料 を充填している状態を示したものである。 図 1 8は、 本発明に係る DM E燃料供 給装置 1 0 0の第 5実施例を示した概略構成図であり、 ディーゼルエンジン運転 時の状態を示したものである。 図 1 9は、 本発明に係る D ME燃料供給装置 1 0 0の第 5実施例を示した概略構成図であり、 ディ一ゼルエンジン停止後の残留燃 料回収動作を示したものである。  Next, fifth to eighth embodiments of the present invention will be described. FIG. 15 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device according to the present invention, and FIG. 16 is a fifth embodiment of the DME fuel supply device 100 according to the present invention. FIG. 2 is a schematic configuration diagram illustrating a state when the diesel engine is stopped. FIG. 17 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged. FIG. 18 is a schematic configuration diagram illustrating a fifth embodiment of the DME fuel supply device 100 according to the present invention, and illustrates a state during operation of the diesel engine. FIG. 19 is a schematic configuration diagram showing a fifth embodiment of the DME fuel supply device 100 according to the present invention, and shows a residual fuel recovery operation after the diesel engine is stopped.
図 1 5を図 1と比較して明らかなように、 第 5実施例は第 1実施例と構成が同 一な部分を多く含むため、 以下第 5実施例について第 1実施例と異なる構成を中 心に説明する。 As is apparent from a comparison of FIG. 15 with FIG. 1, the fifth embodiment includes many parts having the same configuration as the first embodiment. During ~ Explain to my heart.
尚、 以後、 第 5実施例〜第 8実施例を図面を参照しながら説明するに当たり、 上記第 1実施例〜第 4実施例で使用した符号と同一の符号が、 第 5実施例〜第 8 実施例に対応する図面中示されている部材または部分に付されている場合には、 特に説明がない限り、 上記第 1実施例〜第 4実施例で説明したものと同様な部材 または部分であるものとする。  Hereinafter, in describing the fifth to eighth embodiments with reference to the drawings, the same reference numerals as those used in the first to fourth embodiments will be used to refer to the fifth to eighth embodiments. When given to the members or portions shown in the drawings corresponding to the embodiments, unless otherwise specified, the same members or portions as those described in the first to fourth embodiments are used. There is.
本発明の第 5実施例では、 第 1実施例〜第 4実施例で説明したような燃料冷却 器 6を備えていない。 本例では、 図 1 5に示すように、 カム室 1 2の外側に、 油 溜室 1 1内の D ME燃料を冷却するための 「油溜室燃料冷却装置 6 1」 として、 カム室 1 2内に気化した D ME燃料を冷媒として吐出する燃料気ィ匕器 1 5が配設 されている。 燃料気化器 1 5には、 フィードパイプ 5から分岐した冷媒供給パイ プ 5 1を介して燃料タンク 4から D ME燃料が冷媒として供給される。 冷媒とし て供給された D ME燃料は、 冷媒供給パイプ開閉電磁弁 1 6を介して燃料気化器 1 5へ供給される。 そして、 燃料気化器 1 5で気ィ匕された D M E燃料がカム室 1 2内に吐出され、 その気ィ匕熱によって油溜室 1 1内の D ME燃料は、 カム室 1 2 と油溜室 1 1とにまたがって配設されているインジェクションポンプエレメント 2を介して冷却される。 この油溜室燃料冷却装置 6 1は、 冷媒供給パイプ開閉電 磁弁 1 6の開閉によって制御される。  The fifth embodiment of the present invention does not include the fuel cooler 6 as described in the first to fourth embodiments. In this example, as shown in FIG. 15, a cam chamber 1 is provided outside the cam chamber 12 as an “oil sump fuel cooling device 6 1” for cooling the DME fuel in the oil sump 11. A fuel gas mist device 15 for discharging the vaporized DME fuel as a refrigerant is provided in the fuel cell 2. DME fuel is supplied as a refrigerant to the fuel vaporizer 15 from the fuel tank 4 via a refrigerant supply pipe 51 branched from the feed pipe 5. The DME fuel supplied as the refrigerant is supplied to the fuel vaporizer 15 via the refrigerant supply pipe opening / closing solenoid valve 16. Then, the DME fuel degassed by the fuel carburetor 15 is discharged into the cam chamber 12, and the DME fuel in the oil storage chamber 11 is dissipated into the cam chamber 1 2 The cooling is effected via an injection pump element 2 arranged over the chamber 11. The oil reservoir fuel cooling device 61 is controlled by opening and closing a refrigerant supply pipe opening and closing electromagnetic valve 16.
カム室 1 2は、 ディーゼルエンジンの潤滑系と分離された専用潤滑系となって おり、 オイルセパレ一夕 1 3は、 インジェクションポンプエレメント 2からカム 室 1 2に漏れだした D ME燃料が混入したカム室 1 2内の潤滑油を、 D ME燃料 と潤滑油とに分離して潤滑油をカム室 1 2に戻す。 オイルセパレ一夕 1 3で分離 された D ME燃料は、 カム室 1 2内の圧力が大気圧以下になるのを防止するチェ ック弁 1 4を介して、 電動コンプレッサー 2 3へ送出され、 電動コンプレッサー 2 3で加圧された後、 燃料タンク 4へ戻される。 したがって、 燃料気化器 1 5に よって冷媒としてカム室 1 2内に吐出された D M E燃料もオイルセパレ一夕 1 3 で潤滑油と分離され、 電動コンプレッサー 2 3によって加圧された後、 燃料タン ク 4へ戻される。 The cam chamber 12 is a dedicated lubrication system that is separated from the diesel engine lubrication system.The oil separator 13 is a cam with DME fuel mixed into the cam chamber 12 from the injection pump element 2. The lubricating oil in the chamber 12 is separated into DME fuel and lubricating oil, and the lubricating oil is returned to the cam chamber 12. The DME fuel separated in the oil separator 13 is sent to the electric compressor 23 through the check valve 14 that prevents the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized by the compressor 23, it is returned to the fuel tank 4. Therefore, the DME fuel discharged into the cam chamber 12 as a refrigerant by the fuel carburetor 15 is also used in the oil separator 13 After being separated from the lubricating oil by the compressor and pressurized by the electric compressor 23, it is returned to the fuel tank 4.
このように、 ィンジェクシヨンポンプエレメント 2からカム室 1 2内に漏れて 潤滑油に混入した D M E燃料を分離して燃料タンク 4へ回収するためのオイルセ パレー夕 1 3及び電動コンプレヅサ一2 3を利用して、 冷媒供給パイプ 5 1から 燃料気ィ匕器 1 5に供給されてカム室 1 2内に吐出された DME燃料を燃料タンク 4へ回収することによって、 専用の冷媒回収手段を設けることなく、 冷媒として 油溜室燃料冷却装置 6 1に供給された D M E燃料を回収することができる。  Thus, the oil separator 13 and the electric compressor 23 for separating the DME fuel leaked from the injection pump element 2 into the cam chamber 12 and mixed with the lubricating oil and collecting the DME fuel in the fuel tank 4 A dedicated refrigerant recovery means is provided by collecting the DME fuel supplied from the refrigerant supply pipe 51 to the fuel gas deflector 15 and discharged into the cam chamber 12 into the fuel tank 4 using the Thus, the DME fuel supplied to the oil reservoir fuel cooling device 61 as a refrigerant can be recovered.
また図 1 7に関して、 停止状態からディーゼルエンジンを運転するために、 燃 料タンク 4内の D ME燃料をインジェクションポンプ 1の油溜室 1 1、 インジェ クシヨンパイプ 3、 ノズルリターンパイプ 7、 及び冷媒供給パイプ 5 1へ充填す る。 まず、 3方電磁弁 2 1及び 3方電磁弁 2 2は O N状態となり、 それぞれ図示 の方向の連通経路が構成される。 つづいて、 電動コンプレヅサ一2 3が O Nとな り、 リターンパイプ 8が符号 Aで示した方向に吸引され、 O N状態の 3方電磁弁 2 2によって連通している第 2のリターン経路が符号 Bで示した方向に加圧され て燃料夕ンク 4内の気相部 4 bが加圧される。燃料夕ンク 4内の気相部 4 bが加 圧されることによって、 液相部 4 aの D ME燃料がフィードパイプ 5へ送出され (符号 C)、 油溜室 1 1、 インジェクションパイプ 3、 ノズルリタ一ンパイプ 7、 及び冷媒供給パイプ 5 1へ D ME燃料が符号 Dで示した方向に充填される。 そし て本例では、 冷媒供給パイプ 5 1から冷媒として供給された D ME燃料は、 燃料 気化器 1 5によって気化されてカム室 1 2内へ吐出され、 その気化熱によって油 溜室 1 1内に充填された D M E燃料が冷却される。  Referring to Fig. 17, in order to operate the diesel engine from a standstill, the DME fuel in the fuel tank 4 is supplied to the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle return pipe 7, and the refrigerant supply pipe. 5 Fill into 1. First, the three-way solenoid valve 21 and the three-way solenoid valve 22 are in the ON state, and communication paths are formed in the directions shown in the drawings. Subsequently, the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the three-way solenoid valve 22 in the ON state is indicated by the symbol B. The gas phase portion 4b in the fuel tank 4 is pressurized in the direction shown by. When the gas phase 4 b in the fuel tank 4 is pressurized, the DME fuel in the liquid phase 4 a is delivered to the feed pipe 5 (reference C), and the oil reservoir 11, the injection pipe 3, The DME fuel is charged into the nozzle return pipe 7 and the refrigerant supply pipe 51 in the direction indicated by the symbol D. Then, in this example, the DME fuel supplied as the refrigerant from the refrigerant supply pipe 51 is vaporized by the fuel vaporizer 15 and discharged into the cam chamber 12, and the heat of vaporization causes the DME fuel to flow into the oil reservoir 11. The DME fuel filled in is cooled.
図 1 8に示すように、燃料噴射ノズル 9からォ一バ一フローした DM E燃料は、 従来のように燃料夕ンク 4へ戻されずに、 ノズルリターンパイプ 7を介してフィ ードパイプ 5へ戻され、 再び油溜室 1 1へ供給される。 このように、 カム室 1 2 内に気化した D ME燃料を吐出し、 DME燃料の冷媒としての優れた特性を有効 利用することによって、 「油溜室燃料冷却手段」を合理的に構成することができる ので、 フィードポンプ等の駆動手段が不要になり、 ディーゼルエンジンの D ME 燃料供給装置 1 0 0のコストを低減させることができる。 As shown in FIG. 18, the DME fuel overflowed from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 without being returned to the fuel nozzle 4 as in the conventional case. However, it is supplied to the oil sump 11 again. In this way, the vaporized DME fuel is discharged into the cam chamber 12 and the excellent characteristics of the DME fuel as a refrigerant are effective. By using this, the "oil reservoir fuel cooling means" can be rationally configured, so that a drive means such as a feed pump is not required, and the cost of the DME fuel supply device 100 for diesel engines is reduced. Can be done.
本実施例について、 ディーゼルエンジン停止時の状態を示した図 1 6及びディ —ゼルエンジン停止後の残留燃料回収動作を示した図 1 9に関して特に説明して いないが、説明していない部分に関しては第 1実施例と同様である。また図 1 5、 図 1 7、 図 1 8に関して説明していない部分も第 1実施例と同様である。  Regarding this embodiment, FIG. 16 showing the state when the diesel engine is stopped and FIG. 19 showing the residual fuel recovery operation after the diesel engine is stopped are not particularly described, but the parts not described are not described. This is the same as the first embodiment. Parts not described with reference to FIGS. 15, 17, and 18 are also the same as those in the first embodiment.
図 2 0は、 本発明に係る DM E燃料供給装置 1 0 0の第 6実施例を示した概略 構成図である。 図 2 1は、 本発明に係る D M E燃料供給装置 1 0 0の第 6実施例 を示した概略構成図であり、 ディーゼルエンジン停止後の残留燃料回収動作の前 にフィードパイプ 5へ気相部 4 bを連通させた状態を示したものである。  FIG. 20 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device 100 according to the present invention. FIG. 21 is a schematic configuration diagram showing a sixth embodiment of the DME fuel supply device 100 according to the present invention, in which the gas phase section 4 is fed to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows a state where b is communicated.
第 6実施例は、 上記第 5実施例に加えて、 燃料タンク 4の気相部 4 bとフィ一 ドパイプ 5とを連結可能に構成したものである。 第 6実施例は、 上記第 1実施例 に加えて、 燃料夕ンク 4の気相部 4 bとフィードパイプ 5とを連結可能に構成し た第 2実施例と基本的に同様な変更をなしたものであり、 該変更により第 2実施 例における場合と同様な作用効果が得られるから、 ここでの説明を省略する。 図 2 2は、 本発明に係る D ME燃料供給装置 1 0 0の第 7実施例を示した概略 構成図である。 図 2 3は、 本発明に係る DM E燃料供給装置 1 0 0の第 7実施例 を示した概略構成図であり、 ディーゼルエンジン停止時の状態を示したものであ る。 図 2 4は、 本発明に係る: D ME燃料供給装置 1 0◦の第 7実施例を示した概 略構成図であり、 D ME燃料を充填している状態を示したものである。図 2 5は、 本発明に係る D M E燃料供給装置 1 0 0の第 7実施例を示した概略構成図であり、 ディーゼルエンジン運転時の状態を示したものである。 図 2 6は、 本発明に係る D ME燃料供給装置 1 0 0の第 7実施例を示した概略構成図であり、 ディーゼル ェンジン停止後の残留燃料回収動作の前にフィードパイプ 5へ気相部 4 bを連通 させた状態を示したものである。 図 2 7は、 本発明に係る DME燃料供給装置 1 0 0の第 7実施例を示した概略構成図であり、 ディーゼルエンジン停止後の残留 燃料回収動作を示したものである。 In the sixth embodiment, in addition to the fifth embodiment, the gas phase portion 4b of the fuel tank 4 and the feed pipe 5 can be connected. The sixth embodiment is basically the same as the first embodiment, except that the gas phase portion 4b of the fuel tank 4 and the feed pipe 5 can be connected to each other. Since the same operation and effect as in the second embodiment can be obtained by the change, the description is omitted here. FIG. 22 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention. FIG. 23 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, and shows a state when the diesel engine is stopped. FIG. 24 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 10 ° according to the present invention, and shows a state where DME fuel is charged. FIG. 25 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during operation of the diesel engine. FIG. 26 is a schematic configuration diagram showing a seventh embodiment of the DME fuel supply device 100 according to the present invention, in which the gaseous phase section is supplied to the feed pipe 5 before the residual fuel recovery operation after stopping the diesel engine. This shows the state where 4b is connected. FIG. 27 shows a DME fuel supply device 1 according to the present invention. FIG. 14 is a schematic configuration diagram illustrating a seventh embodiment of the present invention, and illustrates a residual fuel recovery operation after the diesel engine is stopped.
第 7実施例は、 上記第 6実施例に加えて、 燃料タンク 4とフィードパイプ 5と の間に燃料夕ンク 4より容量の小さいサブ燃料夕ンクを設けたものである。 第 7 実施例は、 上記第 2実施例に加えて、 燃料タンク 4とフィードパイプ 5との間に 燃料タンク 4より容量の小さいサブ燃料タンクを設けた第 3実施例と基本的に同 様な変更をなしたものであり、 該変更により第 2実施例における場合と同様な作 用効果が得られるから、 ここでの説明を省略する。  In the seventh embodiment, in addition to the sixth embodiment, a sub fuel tank having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5. The seventh embodiment is basically the same as the second embodiment, except that a sub-fuel tank having a smaller capacity than the fuel tank 4 is provided between the fuel tank 4 and the feed pipe 5 in addition to the second embodiment. This is a change, and the same operation and effect as in the second embodiment can be obtained by the change, so that the description is omitted here.
図 2 8は、 本発明に係る DM E燃料供給装置 1 0 0の第 8実施例を示した概略 構成図である。 第 8実施例は、 上記第 7実施例において、 DM E燃料供給装置 1 0 0をコモンレール式にしたものである。 上記第 4実施例同様に、 インジェクシ ヨンポンプ 1から圧送される D M E燃料が、 各燃料噴射ノズル 9が連結されてい るコモンレール 9 1を介して供給されるコモンレール式 D ME燃料供給装置 1 0 0においても本発明の実施は可能であり、 本発明による作用効果を得ることがで きるものである。  FIG. 28 is a schematic configuration diagram showing an eighth embodiment of the DME fuel supply device 100 according to the present invention. The eighth embodiment differs from the seventh embodiment in that the DME fuel supply device 100 is a common rail type. Similarly to the fourth embodiment, the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied through a common rail 91 to which each fuel injection nozzle 9 is connected. The present invention can be implemented, and the operation and effect of the present invention can be obtained.
以上の発明によれば、 フィードポンプ等の駆動手段によらずに、 燃料タンクか ら D ME燃料をインジェクションボンプの油溜室へ供給することが可能なディ一 ゼルェンジンの D M E燃料供給装置を提供することができる。  According to the above invention, there is provided a diesel engine DME fuel supply device capable of supplying DME fuel from a fuel tank to an oil reservoir of an injection pump without using a driving means such as a feed pump. be able to.
次に本発明の第 9実施例について説明する。 図 2 9は、 本発明に係る DME燃 料供給装置 1 0 0の第 9実施例を示した概略構成図である。 図 3 0は、 本発明に 係る DME燃料供給装置 1 0 0の第 9実施例を示した概略構成図であり、 ディ一 ゼルエンジン停止時の状態を示したものである。 図 3 1は、 本発明に係る D ME 燃料供給装置 1 0 0の第 9実施例を示した概略構成図であり、 D ME燃料を充填 している状態を示したものである。 図 3 2は、 本発明に係る D ME燃料供給装置 1 0 0の第 9実施例を示した概略構成図であり、 ディーゼルエンジン運転時の状 態を示したものである。 図 3 3は、 本発明に係る D M E燃料供給装置 1 0 0の第 9実施例を示した概略構成図であり、 ディ一ゼルェンジン停止後の残留燃料回収 動作を示したものである。 Next, a ninth embodiment of the present invention will be described. FIG. 29 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention. FIG. 30 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, showing a state where the diesel engine is stopped. FIG. 31 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state where DME fuel is being charged. FIG. 32 is a schematic configuration diagram showing a ninth embodiment of the DME fuel supply device 100 according to the present invention, and shows a state during operation of the diesel engine. FIG. 33 shows a DME fuel supply device 100 according to the present invention. FIG. 9 is a schematic configuration diagram showing a ninth embodiment, illustrating a residual fuel recovery operation after stopping diesel fuel.
図 2 9を図 1と比較して明らかなように、 第 9実施例は第 1実施例と構成が同 一な部分を多く含むため、 以下第 9実施例について第 1実施例と異なる構成を中 心に説明する。  As is clear from the comparison of FIG. 29 with FIG. 1, the ninth embodiment includes many parts having the same configuration as the first embodiment. I will explain mainly.
尚、 以後、 第 9実施例を図面を参照しながら説明するに当たり、 上記第 1実施 例〜第 4実施例で使用した符号と同一の符号が、 図 2 9〜図 3 3中で示されてい る部材または部分に付されている場合には、 特に説明がない限り、 上記第 1実施 例〜第 4実施例で説明したものと同様な部材または部分であるものとする。  Hereinafter, in describing the ninth embodiment with reference to the drawings, the same reference numerals as those used in the first to fourth embodiments are shown in FIGS. 29 to 33. Unless otherwise specified, it is assumed that the same members or portions are the same as those described in the first to fourth embodiments.
図 2 9に示すように、 第 9実施例では、 カム室 1 2は、 ディーゼルエンジンの 潤滑系と分離された専用潤滑系となっており、 オイルセパレ一夕 1 3は、 インジ ェクシヨンポンプエレメント 2からカム室 1 2に漏れだした D ME燃料を潤滑油 から分離する。 オイルセパレ一夕 1 3で分離された D ME燃料は、 カム室 1 2内 の圧力が大気圧以下になるのを防止するチェック弁 1 4を介して、 電動コンプレ ヅサ一 2 3へ送出され、 電動コンプレッサー 2 3で加圧された後、 燃料タンク 4 へ戻される。  As shown in FIG. 29, in the ninth embodiment, the cam chamber 12 is a dedicated lubrication system separated from the lubrication system of the diesel engine, and the oil separator 13 is an injection pump element. Separate the DME fuel leaked from 2 into the cam chamber 12 from the lubricating oil. The DME fuel separated in the oil separator 13 is sent to the electric compressor 23 via a check valve 14 for preventing the pressure in the cam chamber 12 from becoming lower than the atmospheric pressure. After being pressurized by the electric compressor 23, it is returned to the fuel tank 4.
油溜室 1 1の外側には、 油溜室 1 1の D M E燃料を冷却するための 「油溜室燃 料温度調節手段」が配設されている。 「油溜室燃料温度調節手段」には、 フィード パイプ 5から分岐した冷却媒体供給パイプ 5 1を介して燃料夕ンク 4から D ME 燃料が冷却媒体として供給される。 冷却媒体として供給された D ME燃料は、 冷 却媒体供給パイプ開閉電磁弁 1 6を介して燃料気ィ匕器 1 5へ供給される。そして、 燃料気化器 1 5で気ィ匕された D M E燃料は、 その気化熱を利用した油溜室燃料冷 却器 1 0 6に供給され、 その気化熱によって油溜室 1 1内の D ME燃料が冷却さ れる。 油溜室燃料冷却器 1 0 6に冷却媒体として供給された D ME燃料は、 電動 コンプレッサー 2 3によつて吸引されて燃料夕ンク 4へ戻される。  Outside the oil reservoir 11, “oil reservoir fuel temperature control means” for cooling the DME fuel in the oil reservoir 11 is provided. DME fuel is supplied to the “oil reservoir fuel temperature adjusting means” as a cooling medium from the fuel tank 4 via a cooling medium supply pipe 51 branched from the feed pipe 5. The DME fuel supplied as the cooling medium is supplied to the fuel gas radiator 15 via the cooling medium supply pipe opening / closing solenoid valve 16. Then, the DME fuel gasified by the fuel vaporizer 15 is supplied to the oil reservoir fuel cooler 106 using the heat of vaporization, and the DME fuel in the oil reservoir 11 is heated by the heat of vaporization. Fuel is cooled. The DME fuel supplied as a cooling medium to the oil reservoir fuel cooler 106 is sucked by the electric compressor 23 and returned to the fuel tank 4.
電動コンプレッサー 2 3にて加圧された: D ME燃料は、 リターン経路切換電磁 弁 122が OFFしている場合には、 「空冷冷却器」としてのクーラ一 42によつ て冷却されてから燃料タンク 4へ戻される (第 1のリターン経路)。 また、 リタ一 ン経路切換電磁弁 122が ONしている場合には、クーラ一 42を経由しないで、 つまり冷却されずに燃料タンク 4へ戻される(第 2のリターン経路)。したがって、 リターン経路切換電磁弁 122の ONZOFF制御によって、 燃料タンク 4に戻 す DME燃料の温度を調節することができ、 それによつて、 燃料タンク 4 の D ME燃料の温度を制御することができる(燃料タンク内温度調節手段)。尚、逆止 弁 43は、 第 2のリターン経路から DME燃料がクーラー 42へ逆流することを 防止するためのものである。 Pressurized by electric compressor 23: D ME fuel, return path switching electromagnetic When the valve 122 is OFF, it is cooled by the cooler 42 as an “air cooling cooler” and then returned to the fuel tank 4 (first return path). When the return path switching electromagnetic valve 122 is ON, the fuel is returned to the fuel tank 4 without passing through the cooler 42, that is, without being cooled (second return path). Therefore, the temperature of the DME fuel returned to the fuel tank 4 can be adjusted by the ONZOFF control of the return path switching solenoid valve 122, whereby the temperature of the DME fuel in the fuel tank 4 can be controlled ( Temperature control means in the fuel tank). The check valve 43 is for preventing the DME fuel from flowing back to the cooler 42 from the second return path.
そして、 「油溜室燃料温度調節手段」 は、 「DME燃料温度制御手段」 としての DME燃料温度制御部 10によって制御され、具体的には、 「油溜室燃料温度検出 手段」 としての油溜室温度センサ 11 aにて検出された油溜室 11内の DME燃 料の温度に基づいて、 冷却媒体供給パイプ開閉電磁弁 16が開閉制御されること によって、 油溜室燃料冷却器 106への冷却媒体の供給が ONZOFF制御され る。また、 「燃料タンク内温度調節手段」も DME燃料温度制御部 10によって制 御され、具体的には、 「燃料タンク内燃料温度検出手段」としての燃料タンク温度 センサ 4 cにて検出された燃料タンク 4内の DME燃料の温度に基づいて、 リタ ーン経路切換電磁弁 122が ONZOFF制御される。  The “oil reservoir fuel temperature adjusting means” is controlled by the DME fuel temperature control unit 10 as “DME fuel temperature control means”, and specifically, the oil reservoir as “oil reservoir fuel temperature detecting means”. The cooling medium supply pipe opening / closing solenoid valve 16 is controlled to open and close based on the temperature of the DME fuel in the oil sump 11 detected by the chamber temperature sensor 11a. ONZOFF control of cooling medium supply. The “fuel tank temperature control means” is also controlled by the DME fuel temperature control unit 10, and specifically, the fuel detected by the fuel tank temperature sensor 4c as “fuel tank fuel temperature detection means”. The return path switching solenoid valve 122 is ONZOFF controlled based on the temperature of the DME fuel in the tank 4.
次に、 当該実施例に示した DME燃料供給装置 100の動作について、 ディ一 ゼルェンジン停止状態から、 D M E燃料充填動作、ディ一ゼルェンジン運転状態、 ディーゼルエンジン停止後の残留燃料回収動作へと順を追って説明する。  Next, regarding the operation of the DME fuel supply device 100 shown in the present embodiment, the DME fuel supply operation, the DME fuel supply operation, the Diesel Engine operation state, and the residual fuel recovery operation after the diesel engine is stopped are sequentially performed. explain.
図 30に関して、 ディーゼルエンジン停止状態においては、 3方電磁弁 21及 びリ夕一ン経路切換電磁弁 122、並びに冷却媒体供給パイプ開閉電磁弁 16は、 全て OFFとなっている。 3方電磁弁 21及びリターン経路切換電磁弁 122は、 OFFの状態でそれぞれ図示の連通方向に連通している。 また、 冷却媒体供給パ イブ開閉電磁弁 16は、 OFFの状態で連通する電磁弁である。 図 3 1に関して、 停止状態からディーゼルエンジンを運転するために、 燃料夕 ンク 4内の D ME燃料をインジェクションポンプ 1の油溜室 1 1、 インジェクシ ョンパイプ 3、 ノズルリターンパイプア、 及び冷却媒体供給パイプ 5 1へ充填す る。まず、 3方電磁弁 2 1及びリターン経路切換電磁弁 1 2 2は O N状態となり、 それそれ図示の方向の連通経路が構成される。 つづいて、 電動コンプレッサー 2 3が O Nとなり、 リターンパイプ 8が符号 Aで示した方向に吸引され、 O N状態 のリ夕一ン経路切換電磁弁 1 2 2によって連通している第 2のリターン経路が符 号 Bで示した方向に加圧されて燃料タンク 4内の気相部 4 bが加圧される。 燃料 タンク 4内の気相部 4 bが加圧されることによって、 液相部 4 aの DME燃料が フィ一ドパイプ 5へ送出され (符号 C )、油溜室 1 1、インジェクションパイプ 3、 ノズルリターンパイプ 7、 及び冷却媒体供給パイプ 5 1へ D ME燃料が符号 Dで 示した方向に充填される。 また、 冷却媒体供給パイプ 5 1から冷却媒体として供 給された DM E燃料は、 燃料気化器 1 5によって気化されて油溜室燃料冷却器 1 0 6へ送出され、 その気化熱によって油溜室 1 1内に充填された D ME燃料が冷 却される。 Referring to FIG. 30, when the diesel engine is stopped, the three-way solenoid valve 21, the re-start path switching solenoid valve 122, and the cooling medium supply pipe opening / closing solenoid valve 16 are all OFF. The three-way solenoid valve 21 and the return path switching solenoid valve 122 communicate with each other in the illustrated communication direction in an OFF state. The cooling medium supply pipe opening / closing electromagnetic valve 16 is an electromagnetic valve that communicates in an OFF state. Referring to Fig. 31, in order to operate the diesel engine from a standstill, the DME fuel in the fuel tank 4 is supplied with the oil reservoir 11 of the injection pump 1, the injection pipe 3, the nozzle return pipe A, and the cooling medium supply pipe. 5 Fill into 1. First, the three-way solenoid valve 21 and the return path switching solenoid valve 122 are turned ON, and a communication path in the illustrated direction is formed. Subsequently, the electric compressor 23 is turned on, the return pipe 8 is sucked in the direction indicated by the symbol A, and the second return path communicated by the on-state restart path switching solenoid valve 122 is turned on. The gas phase 4b in the fuel tank 4 is pressurized by being pressurized in the direction indicated by the symbol B. When the gas phase 4 b in the fuel tank 4 is pressurized, the DME fuel in the liquid phase 4 a is delivered to the feed pipe 5 (reference C), and the oil reservoir 11, the injection pipe 3, and the nozzle The return pipe 7 and the cooling medium supply pipe 51 are filled with the DME fuel in the direction indicated by the symbol D. DME fuel supplied as a cooling medium from the cooling medium supply pipe 51 is vaporized by a fuel vaporizer 15 and sent to an oil reservoir fuel cooler 106, and the heat of vaporization causes the oil reservoir to emit oil. 1 The DME fuel charged in 1 is cooled.
図 3 2に関して、 各部に D M E燃料が充填された時点で、 燃料タンク 4内の D ME燃料は、 油溜室燃料冷却器 1 0 6によって冷却された油溜室 1 1内の D ME 燃料と、 燃料タンク 4内の DME燃料との温度差によって生じる両者間の相対的 な圧力差によって、 フィードパイプ 5へと压送される (符号 E )。つまり、 本発明 に係る D ME燃料供給装置 1 0 0は、 燃料タンク 4から D ME燃料をインジェク シヨンポンプ 1へ送出するためのポンプを備えておらず、 油溜室 1 1内の D ME 燃料を冷却することによって生じる油溜室 1 1と燃料夕ンク 4内との圧力差によ つて、 燃料タンク 4内の D ME燃料をインジェクションポンプ 1へ供給する構成 を成している。  Referring to FIG. 32, when each part is filled with the DME fuel, the DME fuel in the fuel tank 4 is combined with the DME fuel in the oil reservoir 11 cooled by the oil reservoir fuel cooler 106. The fuel is fed to the feed pipe 5 by a relative pressure difference between the fuel tank 4 and the DME fuel due to a temperature difference between the fuel and the DME fuel (reference E). That is, the DME fuel supply device 100 according to the present invention does not include a pump for sending the DME fuel from the fuel tank 4 to the injection pump 1, and the DME fuel in the oil reservoir 11 is not provided. The configuration is such that the DME fuel in the fuel tank 4 is supplied to the injection pump 1 by the pressure difference between the oil reservoir 11 and the fuel tank 4 caused by cooling the fuel tank.
したがって、 油溜室 1 1にはオーバーフロー経路が設けられておらず、 油溜室 1 1からインジェクションポンプエレメント 2によってィンジェクシヨンパイプ 3を介して燃料噴射ノズル 9へ圧送 (符号 F ) された D M E燃料の分だけ供給さ れていくことになる。 また、 燃料噴射ノズル 9からオーバーフローした DME燃 料は、 従来のように燃料タンク 4へ戻されずに、 ノズルリターンパイプ 7を介し てフィードパイプ 5へ戻され、 再び油溜室 1 1へ供給される。 このように、 D M E燃料の冷却媒体としての優れた特性を有効利用した油溜室燃料冷却器 1 0 6に よって、 「油溜室燃料温度調節手段」を合理的に構成することで、フィードポンプ 等の駆動手段が不要になり、 ディーゼルエンジンの D ME燃料供給装置 1 0 0の コストを低減させることができる。 Therefore, no overflow path is provided in the oil sump chamber 1 1, and the injection pipe is moved from the oil sump chamber 1 1 by the injection pump element 2. The amount of the DME fuel that has been pressure-fed (reference F) to the fuel injection nozzle 9 via 3 will be supplied. Also, the DME fuel overflowing from the fuel injection nozzle 9 is returned to the feed pipe 5 via the nozzle return pipe 7 without being returned to the fuel tank 4 as in the conventional case, and is supplied to the oil reservoir 11 again. . In this way, the oil reservoir fuel cooler 106, which effectively utilizes the excellent characteristics of the DME fuel as a cooling medium, rationally constitutes the “oil reservoir fuel temperature control means”, and the feed pump This eliminates the need for driving means such as the above, and can reduce the cost of the DME fuel supply device 100 for diesel engines.
図 3 3に関して、 ディーゼルエンジン停止後、 シリンダ内に気ィ匕した D ME燃 料が充満することによって、 ディ一ゼルェンジンを再^ (台動する際に生じるノヅキ ング等の異常燃焼を防止するために、 油溜室 1 1、 インジェクションパイプ 3、 ノズルリターンパイプ 7、 及び冷却媒体供給パイプ 5 1へ充填されている D ME 燃料を「残留燃料回収手段」によって燃料夕ンク 4へ回収する。 「残留燃料回収手 段」は、 3方電磁弁 2 1 (連通経路切換手段) 及び電動コンプレヅサ一 2 3とで 構成される。 ディーゼルエンジン停止後、 3方電磁弁 2 1が O F Fされると、 電 動コンプレッサー 2 3によって、 油溜室 1 1、 インジェクションパイプ 3、 ノズ ルリターンパイプ 7、 及び冷却媒体供給パイプ 5 1へ充填されている D ME燃料 が符号 Jで示した経路で燃料夕ンク 4へ回収される。 リ夕ーン経路切換電磁弁 1 2 2が O F Fとなることによって、 回収される D ME燃料は、 第 1のリタ一ン経 路 (符号 Hで示した経路) でクーラ一 4 2によって冷却されてから燃料タンク 4 へ回収される。  Referring to Fig. 33, after the diesel engine is stopped, the cylinder is filled with the depleted DME fuel to prevent the abnormal combustion such as knocking that occurs when the cylinder is moved. Then, the DME fuel filled in the oil reservoir 11, the injection pipe 3, the nozzle return pipe 7, and the cooling medium supply pipe 51 is recovered to the fuel tank 4 by “residual fuel recovery means”. The “fuel recovery means” is composed of a three-way solenoid valve 21 (communication path switching means) and an electric compressor 23. When the three-way solenoid valve 21 is turned off after the diesel engine is stopped, the motor is activated. DME fuel filled by the compressor 23 into the oil sump 11, the injection pipe 3, the nozzle return pipe 7, and the cooling medium supply pipe 51 flows along the path indicated by the symbol J. The DME fuel that is recovered by turning off the return path switching solenoid valve 122 is turned off in the first return path (the path indicated by symbol H). After being cooled by the cooler 1, it is collected in the fuel tank 4.
次に、 DME燃料温度制御部 1 0によって実行される本発明に係る D ME燃料 温度制御の手順について説明する。  Next, the procedure of the DME fuel temperature control according to the present invention, which is executed by the DME fuel temperature control unit 10, will be described.
図 3 4は、 本発明に係る 「燃料タンク内温度制御手順」 を示したフローチヤ一 トである。 尚、 当該フローチャートに示した手順は、 D ME燃料供給装置 1 0 0 を搭載したディーゼルエンジン車両の電源が O N状態の間、 定周期で繰り返し実 行される手順である。 FIG. 34 is a flowchart showing the “procedure for controlling the temperature in the fuel tank” according to the present invention. Note that the procedure shown in the flowchart is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON. This is the procedure to be performed.
まず、ディーゼルエンジンが運転中か否かを判定する (ステップ s Doディー ゼルエンジンが運転中でなければ(ステップ S 1で No)、 リターン経路切換電磁 弁 122を OFF制御して当該手順を終了する (ステップ S 5)。一方、 ディ一ゼ ルエンジンが運転中ならば (ステップ S 1で Ye s)、 つづいて、 「燃料タンク内 温度調節手段」 を制御して燃料タンク 4内の DME燃料の温度を調節する手順を 実行する。 ここで、 油溜室温度センサ 1 l aにて検出した油溜室 1 1内の DME 燃料の温度を Tg、 燃料タンク温度検出センサ 4 cにて検出した燃料タンク 4内 の DME燃料の温度を Tt、 必要な圧力差が得られる油溜室 1 1内の DME燃料 と燃料夕ンク 4内の D ME燃料との温度差の下限値をひとし、 Tt≤T g +ひか 否かを判定する。 つまり、 燃料タンク 4内の D ME燃料の温度が油溜室 1 1内の DME燃料の温度に必要な温度差の下限値 aを加算した温度未満か否かを判定す る (ステップ S 2)。  First, it is determined whether or not the diesel engine is operating (Step s: if the Do diesel engine is not operating (No in Step S1), the return path switching solenoid valve 122 is turned off and the procedure is terminated. (Step S5) On the other hand, if the diesel engine is operating (Yes in Step S1), then the “temperature control means in the fuel tank” is controlled to reduce the amount of DME fuel in the fuel tank 4. Execute the procedure to adjust the temperature, where Tg is the temperature of the DME fuel in the oil reservoir 11 detected by the oil reservoir temperature sensor 1 la and Tg is the fuel tank detected by the fuel tank temperature sensor 4 c. The temperature of the DME fuel in 4 is Tt, and the lower limit of the temperature difference between the DME fuel in 1 and the DME fuel in the fuel tank 4 where the required pressure difference is obtained is Tt≤T g In other words, the temperature of the DME fuel in the fuel tank 4 is determined. Gallery you determine temperature below whether or not the lower limit value a obtained by adding the temperature difference required temperature of the DME fuel in 1 1 (step S 2).
燃料タンク 4内の DME燃料の温度が油溜室 1 1内の DME燃料の温度に必要 な温度差の下限値ひを加算した温度未満ならば(ステヅプ S 2で Y e s )、つまり、 油溜室 1 1内の DME燃料と燃料タンク 4内の DME燃料との間の温度差が必要 な温度差の下限値ひ未満である場合には、 リターン経路切換電磁弁 122を ON 制御して燃料タンク 4へ送出される DME燃料を第 2のリターン経路を介して、 つまり、 クーラー 42を経由させずに燃料タンク 4へ戻す(ステヅプ S 3)。燃料 タンク 4へ送出される D M E燃料を冷却せずに燃料夕ンク 4へ戻すので、 燃料夕 ンク 4内の DME燃料の温度が上昇することになる。 それによつて、 油溜室 1 1 内の DME燃料と燃料タンク 4内の DME燃料との温度差が大きくなつていくの で、 油溜室 1 1内の DME燃料と燃料タンク 4内の DME燃料との温度差を必要 な温度差の下限値ひ以上にすることができる。  If the temperature of the DME fuel in the fuel tank 4 is lower than the temperature of the DME fuel in the oil reservoir 11 plus the lower limit of the required temperature difference (Y es in step S2), If the temperature difference between the DME fuel in the chamber 11 and the DME fuel in the fuel tank 4 is less than the lower limit of the required temperature difference, the return path switching solenoid valve 122 is turned on to control the fuel tank. The DME fuel sent to 4 is returned to the fuel tank 4 via the second return path, that is, without passing through the cooler 42 (step S3). Since the DME fuel delivered to the fuel tank 4 is returned to the fuel tank 4 without cooling, the temperature of the DME fuel in the fuel tank 4 increases. As a result, the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 increases, so that the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 increase. The temperature difference between the temperature difference and the required temperature difference can be higher than the lower limit of the required temperature difference.
リターン経路切換電磁弁 122を〇N制御した後、 あるいは、 燃料タンク 4内 の D M E燃料の温度が油溜室 1 1内の D M E燃料の温度に必要な温度差 を加算 した温度以上ならば(ステップ S 2で No)、 つづいて、 丁七 丁 十?か否かを 判定する。 ?は、 必要な圧力差が得られる油溜室 11内の DME燃料と燃料夕ン ク 4内の DME燃料との温度差の上限値である。 つまり、 燃料タンク 4内の DM E燃料の温度が油溜室 11内の DM E燃料の温度に必要な温度差の上限値^を加 算した温度以上か否かを判定する (ステップ S 4)。 After the return path switching solenoid valve 122 is 電磁 N controlled, or the temperature of the DME fuel in the fuel tank 4 adds the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 If the temperature is equal to or higher than the specified temperature (No in step S2), Determine whether or not. ? Is the upper limit of the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 where the required pressure difference is obtained. That is, it is determined whether the temperature of the DME fuel in the fuel tank 4 is equal to or higher than the temperature obtained by adding the upper limit value ^ of the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 (step S4). .
燃料タンク 4内の D ME燃料の温度が油溜室 11内の D ME燃料の温度に必要 な温度差の上限値/?を加算した温度未満ならば(ステップ S 4で N o )、そのまま リターン経路切換電磁弁 122の制御状態を維持して当該手順を終了する。一方、 燃料タンク 4内の DM E燃料の温度が油溜室 11内の DM E燃料の温度に必要な 温度差の上限値/?を加算した温度以上ならば (ステップ S4で Yes)、 つまり、 油溜室 11内の: D M E燃料と燃料夕ンク 4内の D M E燃料との間の温度差が必要 な温度差の上限値 ζβ以上である場合には、 リタ一ン経路切換電磁弁 122を OF F制御して燃料タンク 4へ送出される DME燃料を第 1のリターン経路を介して、 つまり、クーラー 42を経由させて燃料タンク 4へ戻して当該手順を終了する(ス テツプ S 5)。燃料タンク 4へ送出される DME燃料を冷却してから燃料タンク 4 へ戻すので、 燃料タンク 4内の DME燃料の温度が低下することになる。 それに よって、 油溜室 11内の DME燃料と燃料タンク 4内の DME燃料との温度差が 小さくなつていくので、 油溜室 11内の DME燃料と燃料タンク 4内の: DME燃 料との温度差を必要な温度差の上限値3未満にすることができる。 このようにし て、 油溜室 11内の DME燃料と燃料タンク 4内の DME燃料との温度差を必要 な温度差の下限値 以上、 上限値/?未満に制御することができる。  If the temperature of the DME fuel in the fuel tank 4 is lower than the temperature obtained by adding the upper limit of the required temperature difference /? To the temperature of the DME fuel in the oil reservoir 11 (No in step S4), return as it is. The procedure is terminated while maintaining the control state of the path switching solenoid valve 122. On the other hand, if the temperature of the DME fuel in the fuel tank 4 is equal to or higher than the temperature obtained by adding the upper limit value /? Of the required temperature difference to the temperature of the DME fuel in the oil reservoir 11 (Yes in step S4), If the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 is equal to or more than the upper limit value of the required temperature difference ζβ, the return path switching solenoid valve 122 is turned off. The DME fuel sent to the fuel tank 4 by the F control is returned to the fuel tank 4 via the first return path, that is, via the cooler 42, and the procedure is terminated (step S5). Since the DME fuel sent to the fuel tank 4 is cooled and returned to the fuel tank 4, the temperature of the DME fuel in the fuel tank 4 decreases. As a result, the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 becomes smaller, so that the difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4: The temperature difference can be less than the required upper limit of the temperature difference of 3. In this manner, the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 can be controlled to be equal to or more than the required lower limit and less than the upper limit / ?.
図 35は、 本発明に係る 「油溜室燃料温度制御手順」 を示したフローチャート である。 尚、 当該フローチャートに示した手順は、 DME燃料供給装置 100を 搭載したディーゼルエンジン車両の電源が ON状態の間、 定周期で繰り返し実行 される手順である。  FIG. 35 is a flowchart showing an “oil reservoir fuel temperature control procedure” according to the present invention. Note that the procedure shown in the flowchart is a procedure that is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON.
まず、ディーゼルエンジンが運転中か否かを判定する(ステップ S 11)。ディ ーゼルエンジンが運転中でなければ(ステップ S 11で No)、冷却媒体供給パイ プ開閉電磁弁 16を OFF制御 (閧制御) して当該手順を終了する (ステップ S 16)。 一方、 ディーゼルエンジンが運転中ならば (ステップ S 11で Ye s)、 つづいて、 「油溜室燃料温度調節手段」を制御し、油溜室 11内の DME燃料の温 度が規定温度を Teとなる如く、 油溜室 11内の DME燃料の温度を調節する。 まず、 Tg≤TG—ァか否か、 つまり、 油溜室 11内の DM E燃料の温度が規定 温度 T Gに油溜室 11内の D M E燃料温度の下限幅―ァを加算した温度未満か否 かを判定する (ステップ S 12)。 First, it is determined whether or not the diesel engine is operating (step S11). Day If the diesel engine is not operating (No in Step S11), the cooling medium supply pipe opening / closing solenoid valve 16 is turned off (control), and the procedure is terminated (Step S16). On the other hand, if the diesel engine is operating (Yes in step S11), the “oil sump fuel temperature adjusting means” is controlled, and the temperature of the DME fuel in the oil sump 11 reaches the specified temperature. The temperature of the DME fuel in the oil sump 11 is adjusted so that First, Tg≤T G - whether §, i.e., DME fuel temperature limit width of the gallery 11 to the temperature specified temperature TG of DM E fuel oil reservoir 11 - or below the temperature obtained by adding a § It is determined whether or not it is (step S12).
油溜室 11内の DME燃料の温度が規定温度 Tcに油溜室 11内の DME燃料 温度の下限幅—ァを加算した温度未満ならば(ステップ S 12で Ye s)、つまり、 油溜室 11内の D ME燃料の温度が油溜室 11内の D ME燃料の下限温度未満な らば、 油溜室 11内の DME燃料を冷却する必要がないので、 冷却媒体供給パイ プ開閉電磁弁 16を ON制御 (閉制御) ずる (ステップ S 13)。 これによつて、 油溜室燃料冷却器 106へ冷却媒体としての DME燃料が供給されなくなるので、 油溜室 11内の DME燃料は冷却されない。 したがって、 油溜室 11内の DME 燃料の温度が上昇し、 油溜室 11内の DME燃料の下限温度以上になる。 冷却媒 体供給パイプ開閉電磁弁 16を〇N制御した後、 あるいは、 油溜室 11内の DM E燃料の温度が油溜室 11内の DME燃料の下限温度以上ならば (ステップ S 1 2で No)、 つづいて、. Tg≥TG + 7か否か、 つまり、 油溜室 11内の DME燃 料の温度が規定温度 T Gに油溜室 11内の D M E燃料温度の上限幅 +ァを加算し た温度以上か否かを判定する (ステップ S 14)。 If the temperature of the DME fuel in the oil chamber 11 is lower than the specified temperature Tc plus the lower limit width of the DME fuel temperature in the oil chamber 11 (Yes in step S12), If the temperature of the DME fuel in the chamber 11 is lower than the lower limit temperature of the DME fuel in the oil chamber 11, there is no need to cool the DME fuel in the oil chamber 11, so the cooling medium supply pipe opening and closing electromagnetic Turn ON (close control) the valve 16 (step S13). As a result, the DME fuel as the cooling medium is not supplied to the oil reservoir fuel cooler 106, so that the DME fuel in the oil reservoir 11 is not cooled. Therefore, the temperature of the DME fuel in the oil reservoir 11 rises and becomes equal to or higher than the lower limit temperature of the DME fuel in the oil reservoir 11. After the cooling medium supply pipe opening / closing solenoid valve 16 is subjected to 〇N control, or if the temperature of the DME fuel in the oil reservoir 11 is equal to or higher than the lower limit temperature of the DME fuel in the oil reservoir 11 (step S12). No), the followed,. Tg≥T G + 7 whether, that is, the upper width + § of DME fuel temperature of the DME fuel in the oil reservoir 11 in the fuel gallery 11 to the specified temperature T G It is determined whether or not the temperature is equal to or higher than the value obtained by adding (Step S14).
油溜室 11内の DME燃料の温度が規定温度 T0に油溜室 11内の DME燃料 温度の上限幅 +ァを加算した温度未満ならば(ステップ S 14で Νο)、油溜室 1 1内の DME燃料を冷却する必要がないので、 そのまま冷却媒体供給パイプ鬨閉 電磁弁 16の ON制御状態を維持して当該手順を終了する。 一方、 油溜室 11内 の D M E燃料の温度が規定温度 Τ πに油溜室 11内の; D Μ Ε燃料温度の上限幅 + ァを加算した温度以上ならば(ステヅプ S 14で Yes)、つまり、油溜室 11内 の D ME燃料の温度が油溜室 11内の D ME燃料の上限温度以上ならば、 油溜室 11内の DME燃料を冷却する必要があるので、 冷却媒体供給パイプ開閉電磁弁 16を OFF制御(閉制御) して当該手順を終了する (ステップ S 15)。 これに よって、 油溜室燃料冷却器 106へ冷却媒体としての DME燃料が供給されるの で、 油溜室 11内の DME燃料は冷却され、 油溜室 11内の DME燃料の温度が 低下し、 油溜室 11内の DME燃料の上限温度未満になる。 したがって、 油溜室 11内の D M E燃料の温度を規定温度 T G ±ァ以内に制御することができる。 図 36は、 本発明に係る燃料タンク 4内の DME燃料の温度波形、 及び油溜室 11内の D M E燃料の温度波形を模式的に示したグラフである。 If the temperature of the DME fuel in the oil reservoir 11 is defined temperature T 0 in the oil reservoir chamber temperature less than that obtained by adding the upper limit width + § of DME fuel temperature within 11 (vo at step S 14), the oil reservoir 1 1 Since there is no need to cool the DME fuel inside, the cooling medium supply pipe is closed and the ON control state of the solenoid valve 16 is maintained, and the procedure is terminated. On the other hand, the temperature of the DME fuel in the oil sump 11 rises to the specified temperature π π ; If the temperature of the DME fuel in the oil reservoir 11 is equal to or higher than the upper limit temperature of the DME fuel in the oil reservoir 11 if the temperature is equal to or higher than the temperature obtained by adding the Since it is necessary to cool the DME fuel inside, the cooling medium supply pipe opening / closing solenoid valve 16 is turned off (closed control) and the procedure is terminated (step S15). As a result, the DME fuel as a cooling medium is supplied to the oil reservoir fuel cooler 106, so that the DME fuel in the oil reservoir 11 is cooled, and the temperature of the DME fuel in the oil reservoir 11 decreases. However, the temperature becomes lower than the upper limit temperature of the DME fuel in the oil reservoir 11. Therefore, the temperature of the DME fuel in the oil reservoir 11 can be controlled within the specified temperature T G ± a. FIG. 36 is a graph schematically showing a temperature waveform of the DME fuel in the fuel tank 4 and a temperature waveform of the DME fuel in the oil reservoir 11 according to the present invention.
このように、 「燃料夕ンク内温度制御手順」によって制御される燃料タンク 4内 の DME燃料の温度 (Tt) は、 Tg +ひ≤Ttく Tg + ?の範囲内の温度とな り、 「油溜室燃料温度制御手順」によって制御される油溜室 11内の D M E燃料の 温度 (Tg) は、 TG— 7≤Tgく TG+ァの範囲内の温度となる。 As described above, the temperature (Tt) of the DME fuel in the fuel tank 4 controlled by the “temperature control procedure in the fuel tank” is within the range of Tg + H ≦ Tt and Tg +? The temperature (Tg) of the DME fuel in the oil reservoir 11 controlled by the “oil reservoir fuel temperature control procedure” is in the range of T G — 7≤Tg and T G + a.
このようにして、 油溜室 11内の DME燃料と燃料タンク 4内の DME燃料と の温度差が相対的に略一定の温度差となる如く、 燃料夕ンク 4内の DME燃料の 温度を制御することができるので、 それによつて、 フィードポンプ等の駆動手段 によらずに、 略一定の送出圧で燃料タンク 4から DME燃料を油溜室 11へ供給 することができる。 また、 加えて油溜室 11内の DME燃料の温度を略一定の温 度に制御することができるので、 それによつて、 インジェクションポンプ 1の D ME燃料の噴射特性を安定させることができる。  In this way, the temperature of the DME fuel in the fuel tank 4 is controlled so that the temperature difference between the DME fuel in the oil reservoir 11 and the DME fuel in the fuel tank 4 becomes relatively constant. Accordingly, the DME fuel can be supplied from the fuel tank 4 to the oil reservoir 11 at a substantially constant delivery pressure without using a driving means such as a feed pump. In addition, since the temperature of the DME fuel in the oil reservoir 11 can be controlled to a substantially constant temperature, the DME fuel injection characteristics of the injection pump 1 can be stabilized.
また、 他の実施の形態としては、 上記一実施の形態に示した DM E燃料供給装 置 100において、 油溜室燃料冷却器 106への冷却媒体の供給量を調節して油 溜室 11内の DME燃料の温度を調節するものが挙げられる。 図 37は、 本発明 に係る DME燃料供給装置 100の他の実施の形態を示した概略構成図である。 電動コンプレッサー 23は、 DCモータ等の回転駆動力源によって駆動され、 回転駆動力源の回転数を増減することによって、 吸引力が増減する構成を成して いる。 そして、 DME燃料供給装置 100は、 DME燃料温度制御部 10によつ て電動コンプレッサー 13の回転数が制御可能な構成となっている。 尚、 その他 の構成については、 図 29に示した DME燃料供給装置 100と同様なので、 説 明は省略する。 Further, as another embodiment, in the DME fuel supply device 100 shown in the above embodiment, the supply amount of the cooling medium to the oil reservoir One that regulates the temperature of the DME fuel. FIG. 37 is a schematic configuration diagram showing another embodiment of the DME fuel supply device 100 according to the present invention. The electric compressor 23 is driven by a rotary driving power source such as a DC motor, The suction force is increased or decreased by increasing or decreasing the number of rotations of the rotational driving force source. The DME fuel supply device 100 is configured so that the rotation speed of the electric compressor 13 can be controlled by the DME fuel temperature control unit 10. Note that other configurations are the same as those of the DME fuel supply device 100 shown in FIG. 29, and thus description thereof is omitted.
図 38は、 図 37に示したディーゼルエンジンの DME燃料供給装置 100に おける 「油溜室燃料温度制御手順」 を示したフローチャートである。 尚、 当該フ 口—チャートに示した手順は、 DME燃料供給装置 100を搭載したディーゼル エンジン車両の電源が ON状態の間、 定周期で繰り返し実行される手順である。 まず、ディーゼルエンジンが運転中か否かを判定する (ステップ S 2 l)oディ —ゼルエンジンが運転中でなければ(ステップ S 21で N o)、電動コンプレッサ —23を OFF制御して当該手順を終了する (ステップ S 24)。一方、 ディ一ゼ ルエンジンが運転中ならば (ステップ S 21で Yes)、 つづいて、 「油溜室燃料 温度調節手段」 を制御し、 油溜室 11内の DME燃料の温度が規定温度を TGと なる如く、 油溜室 11内の DME燃料の温度を調節する。 まず、 Tg>TQか否 か、 つまり、 油溜室 11内の DME燃料の温度が規定温度 TGを超えているか否 かを判定する (ステップ S 22)。 FIG. 38 is a flowchart showing the “oil reservoir fuel temperature control procedure” in the DME fuel supply device 100 for a diesel engine shown in FIG. 37. The procedure shown in the flowchart is a procedure that is repeatedly executed at regular intervals while the power of the diesel engine vehicle equipped with the DME fuel supply device 100 is ON. First, it is determined whether or not the diesel engine is operating (step S 2 l). If the diesel engine is not operating (No in step S 21), the electric compressor 23 is controlled to OFF to perform the procedure. Is completed (step S24). On the other hand, if the diesel engine is operating (Yes in step S21), the “oil sump fuel temperature control means” is controlled, and the temperature of the DME fuel in the oil sump 11 reaches the specified temperature. The temperature of the DME fuel in the oil reservoir 11 is adjusted so as to reach TG . First, it is determined whether or not Tg> T Q , that is, whether or not the temperature of the DME fuel in the oil reservoir 11 exceeds the specified temperature TG (step S22).
油溜室 11内の DME燃料の温度が規定温度 Τ。を超えていなければ (ステツ プ S 22で Νο)、油溜室 11内の DME燃料を冷却する必要がないので、電動コ ンプレッサ一 23を OFF制御して当該手順を終了する(ステップ S 24)。一方、 油溜室 11内の DME燃料の温度が規定温度 TGを超えていれば (ステップ S 2 2で Ye s)、油溜室 11内の DME燃料を冷却する必要があるので、油溜室 11 内の DME燃料の温度と規定温度 TGとの温度差に対応した回転数にて電動コン プレッサー 23を ON制^ Pする (ステップ S 23)。 これによつて、油溜室燃料冷 却器 106へ冷却媒体としての DME燃料は、 油溜室 11内の DME燃料の温度 と規定温度 ΤΓτとの温度差に対応した供給量で供給されるので、 油溜室 11内の DME燃料の温度を高精度に調節することができる。 The temperature of the DME fuel in the oil sump 11 is the specified temperature. If it does not exceed (in step S22), it is not necessary to cool the DME fuel in the oil reservoir 11 so that the electric compressor 23 is controlled to OFF and the procedure is terminated (step S24). . On the other hand, if the temperature of the DME fuel in the sump 11 exceeds the specified temperature TG (Yes in step S22), the DME fuel in the sump 11 needs to be cooled. The electric compressor 23 is turned ON at a rotation speed corresponding to the temperature difference between the temperature of the DME fuel in the chamber 11 and the specified temperature TG (step S23). As a result, the DME fuel as a cooling medium is supplied to the oil reservoir fuel cooler 106 at a supply amount corresponding to the temperature difference between the temperature of the DME fuel in the oil reservoir 11 and the specified temperature Τ Γτ. So in the oil sump 11 DME fuel temperature can be adjusted with high precision.
尚、 「燃料夕ンク内温度制御手順」による燃料夕ンク 4内の D ME燃料の温度を 調節する手順は、 図 34に示したフローチャートと同様なので説明は省略する。 図 39は、 本発明に係る燃料タンク 4内の DME燃料の温度波形、 及び油溜室 11内の DME燃料の温度波形を模式的に示したグラフであり、 電動コンプレヅ サ一 23の回転数を制御することによる油溜室 11の DME燃料の温度制御を示 したものである。  The procedure for adjusting the temperature of the DME fuel in the fuel tank 4 by the “control procedure for the temperature in the fuel tank” is the same as that in the flowchart shown in FIG. FIG. 39 is a graph schematically showing the temperature waveform of the DME fuel in the fuel tank 4 and the temperature waveform of the DME fuel in the oil reservoir 11 according to the present invention, wherein the rotation speed of the electric compressor 23 is shown. FIG. 3 shows the temperature control of the DME fuel in the oil reservoir 11 by controlling the temperature.
このように、 「燃料夕ンク内温度制御手順」によって制御される燃料夕ンク 4内 の DME燃料の温度 (Tt) は、 Tg + «≤Ttく Tg + ?の範囲内の温度とな り、 「油溜室燃料温度制御手順」によって制御される油溜室 11内の DME燃料の 温度 (Tg) は、 TG— 7≤Tgく TG+ァの範囲内の温度となる。 また、 前述し た冷却媒体供給パイプ開閉電磁弁 16の ONZOFF制御によって油溜室 11内 の DME燃料の温度を制御する態様と比較して、 油溜室燃料冷却器 106へ供給 する冷却媒体としての DME燃料の供給量を調節することで、 図示の如く、 より 高精度に油溜室 11内の DME燃料の温度を調節することができる。 As described above, the temperature (Tt) of the DME fuel in the fuel tank 4 controlled by the “temperature control procedure in the fuel tank” becomes a temperature within the range of Tg + «≤Tt and Tg +? temperature of DME fuel in the "gallery fuel temperature control procedure" oil reservoir 11 which is controlled by a (Tg) of, T G - the temperature in the 7≤Tg rather a range of T G + §. Also, as compared with the above-described embodiment in which the temperature of the DME fuel in the oil reservoir 11 is controlled by the ONZOFF control of the cooling medium supply pipe opening / closing solenoid valve 16, the cooling medium supplied to the oil reservoir fuel cooler 106 is By adjusting the supply amount of the DME fuel, the temperature of the DME fuel in the oil reservoir 11 can be adjusted with higher precision as shown in the figure.
さらに、 他の実施の形態としては、 上記一実施の形態において、 DME燃料供 給装置 100をコモンレール式にしたものが挙げられる。 インジェクションボン プ 1から圧送される D M E燃料が、 各燃料噴射ノズル 9が連結されているコモン レールを介して供給されるコモンレール式 DME燃料供給装置 100においては、 油溜室 11からコモンレールに供給される D ME燃料の温度を略一定に制御する ことができるので、 コモンレール内の DME燃料の温度を略一定に制御すること ができる。 したがって、 コモンレール式の DME燃料供給装置 100においても 本発明の実施は可能であり、 本発明による作用効果を得ることができる。  Further, as another embodiment, the DME fuel supply device 100 in the above embodiment is a common rail type. In the common rail type DME fuel supply device 100 in which the DME fuel pressure-fed from the injection pump 1 is supplied via a common rail to which each fuel injection nozzle 9 is connected, the DME fuel is supplied from the oil reservoir 11 to the common rail. Since the temperature of the DME fuel can be controlled to be substantially constant, the temperature of the DME fuel in the common rail can be controlled to be substantially constant. Therefore, the present invention is also applicable to the common rail type DME fuel supply device 100, and the operation and effect of the present invention can be obtained.
尚、 本発明は上記実施例に限定されることなく、 特許請求の範囲に記載した発 明の範囲内で、 種々の変形が可能であり、 それらも本発明の範囲内に含まれるも のであることは言うまでもない。 本発明の第 9の実施例によれば、 フィードポンプ等の駆動手段によらずに、 燃 料タンクから D ME燃料をインジェクションボンプの油溜室へ供給することが可 能であり、 かつ、 インジェクションポンプの安定した燃料噴射特性が得られるデ イーゼルエンジンの D ME燃料供給装置を提供することができる。 産業上の利用可能性 It should be noted that the present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and these are also included in the scope of the present invention. Needless to say. According to the ninth embodiment of the present invention, DME fuel can be supplied from the fuel tank to the oil reservoir of the injection pump without using a driving means such as a feed pump. It is possible to provide a diesel engine DME fuel supply device capable of obtaining a stable fuel injection characteristic of a pump. Industrial applicability
本発明によれば、 ディーゼルエンジンの D ME燃料供給装置において、 フィ一 ドポンプ等の駆動手段によらずに、 燃料タンクから D M E燃料をインジェクショ ンポンプの油溜室へ供給することが可能であり、 またインジェクションボンプの 安定した燃料噴射特性が得られる。  According to the present invention, in a DME fuel supply device for a diesel engine, DME fuel can be supplied from a fuel tank to an oil reservoir of an injection pump without using a drive means such as a feed pump. Also, stable fuel injection characteristics of the injection pump can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 燃料タンクからフィードパイプを経由して供給された D ME燃料を、 所定 の夕イミングで所定の量だけディーゼルエンジンの燃料噴射ノズルに連通してい るィンジェクシヨンパイプへ送出するィンジェクシヨンポンプと、 1. DME fuel supplied from the fuel tank via the feed pipe is sent out to the injection pipe connected to the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined evening. Chillon pump,
前記燃料噴射ノズルからオーバ一フローした前記 D M E燃料を前記フィードパ ィプへ戻すノズルリターンパイプと、  A nozzle return pipe for returning the DME fuel overflowing from the fuel injection nozzle to the feed pipe;
前記ィンジェクシヨンボンプの油溜室内の前記 D M E燃料を冷却する油溜室燃 料冷却装置と、  An oil sump fuel cooling system for cooling the DME fuel in the oil sump of the injection pump;
前記油溜室内の前記 DME燃料の温度を検出する油溜室燃料温度検出手段と、 前記油溜室燃料冷却装置で前記油溜室内の前記 D ME燃料の温度を前記燃料夕 ンク内の前記 D M E燃料の温度より低温に調節することにより生じる前記油溜室 内と前記燃料タンク内との圧力差によって、 前記燃料タンク内の前記 D ME燃料 を前記油溜室へ供給するように構成したことを特徴とするディ一ゼルェンジンの D M E燃料供給装置。  An oil sump fuel temperature detecting means for detecting a temperature of the DME fuel in the oil sump; and a temperature of the DME fuel in the oil sump in the fuel sump by the oil sump fuel cooling device. A configuration in which the DME fuel in the fuel tank is supplied to the oil reservoir by a pressure difference between the inside of the oil reservoir and the inside of the fuel tank caused by adjusting the temperature to a temperature lower than the temperature of the fuel. Diesel Djinn fuel supply system.
2 . 請求項 1において、 前記油溜室燃料冷却装置は、 前記 D ME燃料を冷媒と する冷却サイクルによって前記油溜室内の前記 D ME燃料を冷却する構成を成し ており、 前記 DM E燃料が気化することによる気化熱を利用して前記油溜室内の 前記 D M E燃料を冷却する燃料冷却器を備えている、 ことを特徴としたディ一ゼ ルエンジンの D M E燃料供給装置。 2. The oil reservoir fuel cooling device according to claim 1, wherein the DME fuel in the oil reservoir is cooled by a cooling cycle using the DME fuel as a refrigerant. A DME fuel supply device for a diesel engine, comprising: a fuel cooler that cools the DME fuel in the oil reservoir using heat of vaporization caused by gasification.
3 . 請求項 2において、 前記油溜室燃料冷却装置は、 前記フィードパイプから 前記 D M E燃料を供給する冷媒供給パイプと、 該冷媒供給パイプに流れる前記 D ME燃料を気ィ匕して前記燃料冷却器へ送出する燃料気ィ匕器と、 前記冷媒供給パイ プを開閉する冷媒供給パイプ開閉電磁弁とを備え、 前記冷媒供給パイプ開閉電磁 弁を開閉制御することによって制御される構成を成している、 ことを特徴とした ディ一ゼルェンジンの DM E燃料供給装置。 3. The fuel cooling device according to claim 2, wherein the oil reservoir fuel cooling device includes: a refrigerant supply pipe that supplies the DME fuel from the feed pipe; and the DME fuel that flows through the refrigerant supply pipe. A refrigerant supply pipe opening / closing solenoid valve for opening / closing the refrigerant supply pipe. The diesel fuel supply system of Diesel-Zhengjing, wherein the DME fuel supply system is configured to be controlled by controlling opening and closing of a valve.
4 . 請求項 3において、 前記ディーゼルエンジンの潤滑系と分離された専用潤 滑系となっている前記ィンジヱクシヨンポンプの力ム室内の潤滑油に混入した前 記 D ME燃料を分離するオイルセパレ一夕と、 該オイルセパレ一夕にて分離した 前記 D M E燃料を加圧して前記燃料夕ンクへ送出する電動コンプレッサーとを備 え、 前記冷媒供給パイプから前記油溜室燃料冷却装置に供給された前記 D M E燃 料は、 前記電動コンプレッサーによって前記燃料夕ンクへ送出される構成を成し ている、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 4. The DME fuel according to claim 3, which is mixed with lubricating oil in a power chamber of the engine pump, which is a dedicated lubrication system separated from the lubrication system of the diesel engine. An oil separator, and an electric compressor that pressurizes the DME fuel separated at the oil separator and sends the pressurized DME fuel to the fuel tank. The electric compressor is supplied from the refrigerant supply pipe to the oil reservoir fuel cooling device. The DME fuel supply device for a diesel engine, wherein the DME fuel is sent to the fuel tank by the electric compressor.
5 . 請求項 4において、 前記燃料タンク内の温度を調節する燃料タンク内温度 調節手段を備えている、 ことを特徴としたディーゼルエンジンの D ME燃料供給 5. The DME fuel supply for a diesel engine according to claim 4, further comprising a fuel tank temperature adjusting means for adjusting the temperature inside the fuel tank.
6 . 請求項 5において、 前記燃料夕ンク内温度調節手段は、 前記電動コンプレ ヅサ一から送出された前記 D ME燃料が空冷冷却器を経由して冷却されてから前 記燃料夕ンクへ送出される第 1のリタ一ン経路と、 前記電動コンプレッサーから 送出された前記 D M E燃料が前記空冷冷却器を経由せずに前記燃料夕ンクへ送出 される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリターン経 路とを切り換えるリタ一ン経路切換電磁弁と、 前記燃料夕ンク内の温度を検出す る燃料夕ンク内温度検出手段とを備え、 前記リ夕一ン経路切換電磁弁を制御する ことによって、 前記燃料タンク内の温度を調節するように構成されていることを 特徴としたディ一ゼルェンジンの D M E燃料供給装置。 6. The fuel tank according to claim 5, wherein the temperature control means in the fuel tank sends the DME fuel sent from the electric compressor to the fuel tank after being cooled via an air-cooled cooler. A first return path, wherein the DME fuel sent from the electric compressor is sent to the fuel tank without passing through the air-cooled cooler, and a first return path; A return path switching solenoid valve for switching between a return path and the second return path; and a fuel tank temperature detecting means for detecting a temperature inside the fuel tank, wherein the return path includes: A DME fuel supply device for diesel engines, characterized in that the switching solenoid valve is controlled to adjust the temperature in the fuel tank.
7 . 請求項 1〜 6のいずれか 1項において、 前記ディーゼルエンジン停止後、 前記インジェクションポンプの油溜室内、 及び前記ノズルリターンパイプ内に残 留している前記 D M E燃料を、 前記燃料夕ンクへ回収可能な残留燃料回収手段を 備えている、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 7. The method according to any one of claims 1 to 6, wherein after stopping the diesel engine, The diesel engine according to claim 1, further comprising: a residual fuel recovery unit configured to recover the DME fuel remaining in the oil reservoir of the injection pump and the nozzle return pipe to the fuel tank. D ME fuel supply.
8 . 請求項 7において、 前記残留燃料回収手段は、 前記フィ―ドパイプへ連通 している前記油溜室の入口側、 及び前記ノズルリターンパイプの連通経路を、 前 記フィードパイプから前記電動コンプレッサーの入口側へ連通している残留燃料 回収パイプへ切り換える連通経路切換手段を備え、 前記ィンジェクションポンプ の油溜室内、及び前記ノズルリターンパイプ内に残留している前記 DME燃料は、 前記電動コンプレッサーによって前記燃料タンクへ回収される構成を成している、 ことを特徴としたディーゼルエンジンの D M E燃料供給装置。 8. In claim 7, the residual fuel recovery means is configured to connect an inlet side of the oil reservoir chamber communicating with the feed pipe and a communication path of the nozzle return pipe with the feed pipe from the feed pipe to the electric compressor. Communication path switching means for switching to a residual fuel recovery pipe communicating with the inlet side, wherein the DME fuel remaining in the oil reservoir of the injection pump and in the nozzle return pipe is supplied by the electric compressor. A DME fuel supply device for a diesel engine, wherein the DME fuel supply device is configured to be collected in the fuel tank.
9 . 請求項 8において、 前記燃料タンクの液相部と前記フィードパイプとの連 通を遮断し、 前記燃料夕ンクの気相部と前記フイードパイプとを連通させて気体 状の前記 D ME燃料を送出する気相燃料送出手段を備えている、 ことを特徴とし たディ一ゼルェンジンの D M E燃料供給装置。 9. In claim 8, the communication between the liquid phase portion of the fuel tank and the feed pipe is cut off, and the gas phase portion of the fuel tank is communicated with the feed pipe to remove the gaseous DME fuel. The DME fuel supply device according to claim 1, wherein the DME fuel supply device is provided with a gas-phase fuel delivery means for delivering.
1 0 . 請求項 1 ~ 9のいずれか 1項において、 前記燃料タンクと前記フィード パイプとの間に、 前記燃料夕ンクより容量が小さいサブ燃料夕ンクが設けられて おり、 前記ディーゼルエンジンの始動時には、 前記燃料タンクと前記サブ燃料夕 ンクとの間の連通を遮断するとともに、 前記サブ燃料夕ンクの気相部と前記電動 コンプレツサ一の出口側とを連通させることによって、 前記電動コンプレヅサー によって気相部が加圧された前記サブ燃料夕ンクから前記 D M E燃料が前記油溜 室へ供給される構成を成している、 ことを特徴としたディーゼルエンジンの D M E燃料供給装置。 10. The diesel engine according to any one of claims 1 to 9, wherein a sub-fuel tank having a smaller capacity than the fuel tank is provided between the fuel tank and the feed pipe. In some cases, the communication between the fuel tank and the sub fuel tank is cut off, and the gas phase of the sub fuel tank is connected to the outlet side of the electric compressor so that the electric compressor allows the air to be compressed by the electric compressor. The DME fuel supply device for a diesel engine, wherein the DME fuel is supplied to the oil reservoir from the sub fuel tank whose phase is pressurized.
1 1 . 請求項 1〜1 0のいずれか 1項において、 前記インジェクションポンプ から送出された前記 D ME燃料は、 コモンレールへ供給され、 該コモンレールか ら各燃料噴射ノズルへ送出される構成を成している、 ことを特徴としたディーゼ ルエンジンの D M E燃料供給装置。 11. The structure according to any one of claims 1 to 10, wherein the DME fuel sent from the injection pump is supplied to a common rail, and is sent from the common rail to each fuel injection nozzle. DME fuel supply system for diesel engines.
1 2 . 燃料タンクからフィードパイプを経由して供給された D ME燃料を、 所 定のタイミングで所定の量だけディーゼルエンジンの燃料噴射ノズルに連通して いるインジェクションパイプへ送出するィンジェクシヨンポンプと、 1 2. Injection pump that sends out DME fuel supplied from the fuel tank via the feed pipe to the injection pipe communicating with the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined timing. When,
前記燃料噴射ノズルからオーバ一フローした前記 D ME燃料を前記フィードパ ィプへ戻すノズルリターンパイプと、  A nozzle return pipe for returning the DME fuel overflowing from the fuel injection nozzle to the feed pipe;
前記ィンジェクシヨンポンプのカム室内を冷却することによって、 前記ィンジ ェクシヨンボンプの油溜室の前記 D M E燃料を冷却する油溜室燃料冷却手段と、 前記油溜室内の前記 D M E燃料の温度を検出する油溜室燃料温度検出手段と、 前記油溜室燃料冷却手段で前記油溜室内の前記 D M E燃料の温度を前記燃料夕 ンク内の前記 D M E燃料の温度より低温に調節することにより生じる前記油溜室 内と前記燃料夕ンク内との圧力差によって、 前記燃料夕ンク内の前記 D M E燃料 を前記油溜室へ供給するように構成したことを特徴とするディ一ゼルエンジンの D ME燃料供給装置。  An oil reservoir fuel cooling means for cooling the DME fuel in the oil reservoir of the injection pump by cooling a cam chamber of the injection pump; and detecting a temperature of the DME fuel in the oil reservoir. An oil sump fuel temperature detecting means, and the oil sump generated by adjusting the temperature of the DME fuel in the oil sump chamber to a temperature lower than the temperature of the DME fuel in the fuel tank by the oil sump fuel cooling means. A DME fuel supply device for a diesel engine, wherein the DME fuel in the fuel tank is supplied to the oil reservoir by a pressure difference between the chamber and the fuel tank. .
1 3 . 請求項 1 2において、 前記油溜室燃料冷却手段は、 前記 D ME燃料が気 化することによる気化熱を利用して前記カム室内を冷却する構成を成している、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 13. The fuel reservoir according to claim 12, wherein the oil reservoir fuel cooling means cools the cam chamber using heat of vaporization caused by vaporization of the DME fuel. DME fuel supply system for diesel engines.
1 4 . 請求項 1 3において、 前記油溜室燃料冷却手段は、 前記フィ―ドパイプ から前記 DME燃料を供給する冷媒供給パイプと、 該冷媒供給パイプに流れる前 記 D ME燃料を気ィ匕して前記カム室内へ吐出する燃料気ィ匕器と、 前記冷媒供給パ ィプを開閉する冷媒供給パイプ開閉電磁弁とを備え、 前記冷媒供給パイプ開閉電 磁弁を開閉制御することによって制御される構成を成している、 ことを特徴とし たディ—ゼルエンジンの D ME燃料供給装置。 14. In Claim 13, the oil reservoir fuel cooling means comprises: a refrigerant supply pipe for supplying the DME fuel from the feed pipe; and a DME fuel flowing to the refrigerant supply pipe. A fuel supply device that discharges the fuel into the cam chamber; And a refrigerant supply pipe opening / closing solenoid valve for opening and closing the coolant supply pipe. The diesel engine has a structure controlled by opening and closing the refrigerant supply pipe opening / closing electromagnetic valve. ME fuel supply device.
1 5 . 請求項 1 4において、 前記ディーゼルエンジンの潤滑系と分離された専 用潤滑系となっている前記カム室内の潤滑油に混入した前記 D M E燃料を分離す るオイルセパレー夕と、 該オイルセパレ一夕にて分離した前記 D ME燃料を加圧 して前記燃料タンクへ送出する電動コンプレッサ一とを備えている、 ことを特徴 としたディ一ゼルェンジンの D M E燃料供給装置。 15. The oil separator according to claim 14, wherein the oil separator separates the DME fuel mixed in the lubricating oil in the cam chamber, which is a dedicated lubrication system separated from the lubrication system of the diesel engine. An electric compressor that pressurizes the DME fuel separated at night and sends it to the fuel tank.
1 6 . 請求項 1 5において、 前記燃料タンク内の温度を調節する燃料タンク内 温度調節手段を備えている、 ことを特徴としたディーゼルエンジンの D ME燃料 16. The DME fuel for a diesel engine according to claim 15, further comprising a temperature adjusting means in the fuel tank for adjusting the temperature in the fuel tank.
1 7 . 請求項 1 6において、 前記燃料タンク内温度調節手段は、 前記電動コン プレッサ一から送出された前記 DM E燃料が空冷冷却器を経由して冷却されてか ら前記燃料タンクへ送出される第 1のリターン経路と、 前記電動コンプレッサー から送出された前記 D M E燃料が前記空冷冷却器を経由せずに前記燃料タンクへ 送出される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリタ一 ン経路とを切り換えるリターン経路切換電磁弁と、 前記燃料タンク内の温度を検 出する燃料夕ンク内温度検出手段とを備え、 前記リ夕一ン経路切換電磁弁を制御 することによって、 前記燃料タンク内の温度を調節するように構成されているこ とを特徴としたディーゼルエンジンの D ME燃料供給装置。 17. The fuel tank according to claim 16, wherein the temperature control means in the fuel tank is supplied to the fuel tank after the DME fuel sent from the electric compressor is cooled via an air-cooled cooler. A first return path, wherein the DME fuel sent from the electric compressor is sent to the fuel tank without passing through the air-cooled cooler; a first return path; A return path switching electromagnetic valve for switching between a second return path and a fuel tank internal temperature detecting means for detecting a temperature in the fuel tank, for controlling the return path switching electromagnetic valve; A DME fuel supply device for a diesel engine, wherein the DME fuel supply device is configured to adjust the temperature in the fuel tank.
1 8 . 請求項 1 2 ~ 1 7のいずれか 1項において、 前記ディーゼルエンジン停 止後、 前記ィンジェクシヨンポンプの油溜室内、 及び前記ノズルリ夕一ンパイプ 内に残留している前記 D M E燃料を、 前記燃料夕ンクへ回収可能な残留燃料回収 手段を備えている、ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 18. The fuel pump according to any one of claims 12 to 17, wherein after stopping the diesel engine, the oil reservoir of the injection pump and the nozzle pipe are connected. A DME fuel supply device for a diesel engine, comprising: a residual fuel recovery means capable of recovering the DME fuel remaining in the fuel tank to the fuel tank.
1 9 . 請求項 1 8において、 前記残留燃料回収手段は、 前記フィ一ドパイプへ 連通している前記油溜室の入口側、及び前記ノズルリターンパイプの連通経路を、 前記フィードパイプから前記電動コンプレッサーの入口側へ連通している残留燃 料回収パイプへ切り換える連通経路切換手段を備え、 前記ィンジヱクシヨンボン プの油溜室内、 及び前記ノズルリターンパイプ内に残留している前記 D M E燃料 は、 前記電動コンプレヅサ一によつて前記燃料夕ンクへ回収される構成を成して いる、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 19. The method according to claim 18, wherein the residual fuel recovery means is configured to connect an inlet side of the oil reservoir chamber communicating with the feed pipe and a communication path of the nozzle return pipe from the feed pipe to the electric compressor. Communication path switching means for switching to a residual fuel recovery pipe communicating with the inlet side of the fuel pump, wherein the DME fuel remaining in the oil sump chamber of the injection pump and the nozzle return pipe is A DME fuel supply device for a diesel engine, wherein the DME fuel supply device is configured to be recovered to the fuel tank by the electric compressor.
2 0 . 請求項 1 9において、 前記燃料タンクの液相部と前記フィードパイプと の連通を遮断し、 前記燃料夕ンクの気相部と前記フイードパイプとを連通させて 気体状の前記 DM E燃料を送出する気相燃料送出手段を備えている、 ことを特徴 としたディ一ゼルェンジンの D M E燃料供給装置。 20. The gaseous DME fuel according to claim 19, wherein communication between a liquid phase portion of the fuel tank and the feed pipe is interrupted, and a gas phase portion of the fuel tank is communicated with the feed pipe. A DME fuel supply device according to claim 1, wherein the DME fuel supply device includes gas-phase fuel delivery means for delivering fuel.
2 1 . 請求項 1 2〜2 0のいずれか 1項において、 前記燃料タンクと前記フィ ードパイプとの間に、 前記燃料タンクより容量が小さいサブ燃料タンクが設けら れており、 前記ディーゼルエンジンの始動時には、 前記燃料タンクと前記サブ燃 料タンクとの間の連通を遮断するとともに、 前記サブ燃料夕ンクの気相部と前記 電動コンプレッサ一の出口側とを連通させることによって、 前記電動コンプレヅ サ一によって気相部が加圧された前記サブ燃料夕ンクから前記 D M E燃料が前記 油溜室へ供給される構成を成している、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 21. The diesel engine according to any one of claims 12 to 20, wherein a sub-fuel tank having a smaller capacity than the fuel tank is provided between the fuel tank and the feed pipe. At the time of start-up, the communication between the fuel tank and the sub-fuel tank is cut off, and the gas compressor of the sub-fuel tank and the outlet side of the electric compressor are connected to each other, so that the electric compressor is The DME fuel supply device for a diesel engine, wherein the DME fuel is supplied to the oil reservoir from the sub fuel tank whose gas phase is pressurized by one.
2 2 . 請求項 1 2〜2 1のいずれか 1項において、 前記インジェクションボン プから送出された前記 D ME燃料は、 コモンレールへ供給され、 該コモンレール から各燃料噴射ノズルへ送出される構成を成している、 ことを特徴としたディー ゼルェンジンの D M E燃料供給装置。 22. The injection bone according to any one of claims 12 to 21. Wherein the DME fuel delivered from the pump is supplied to a common rail, and is delivered to each fuel injection nozzle from the common rail.
2 3 . 燃料タンクからフィードパイプを経由して供給された D ME燃料を、 所 定の夕ィミングで所定の量だけディ一ゼルェンジンの燃料噴射ノズルに連通して いるィンジェクシヨンパイプへ送出するインジェクションポンプと、 前記ィンジ ェクシヨンポンプの油溜室に充填されている DME燃料の温度を調節する油溜室 燃料温度調節手段と、 前記燃料タンク内の D ME燃料の温度を調節する燃料夕ン ク内温度調節手段とを備えたディ一ゼルェンジンの D M E燃料供給装置における DME燃料の温度制御方法であって、 2 3. DME fuel supplied from the fuel tank via the feed pipe is sent out to the injection pipe communicating with the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined evening. An injection pump; an oil reservoir for adjusting the temperature of the DME fuel filled in the oil reservoir of the injection pump; a fuel temperature adjusting means; and a fuel tank for adjusting the temperature of the DME fuel in the fuel tank. A method for controlling the temperature of DME fuel in a diesel fuel supply system in Diesel-Zenjing comprising:
前記油溜室内の D M E燃料の温度が規定温度 T eとなる如く、 前記油溜室燃料 温度調節手段を制御し、 かつ、 前記油溜室内の D M E燃料の温度より前記燃料夕 ンク内の D M E燃料の温度が相対的に略一定の温度差で高温となる如く、 前記燃 料夕ンク内温度調節手段を制御する、 ことを特徴とした D ME燃料の温度制御方 法。 As the temperature of the DME fuel in the oil reservoir chamber is defined temperature T e, and controls the oil reservoir chamber fuel temperature adjusting means, and, DME fuel in the fuel evening the tank than the temperature of the DME fuel in the oil reservoir chamber Controlling the temperature control means in the fuel tank so that the temperature of the fuel becomes high with a relatively constant temperature difference.
2 4 · 請求項 2 3において、 前記油溜室燃料温度調節手段は、 気ィ匕した D ME 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料タンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の D M E燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 24.In Claim 23, the oil sump fuel temperature adjusting means comprises: an oil sump fuel cooler that cools the DME fuel in the oil sump using the degassed DME fuel as a cooling medium; A cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and an oil reservoir fuel temperature detecting means for detecting a temperature of the DME fuel in the oil reservoir. ,
前記油溜室燃料温度検出手段にて検出した前記油溜室内の D ME燃料の温度に 基づいて、 前記油溜室内の D ME燃料の温度が前記規定温度 T Gとなる如く、 前 記冷却媒体供給手段による前記冷却媒体の供給動作を 0 N/0 F F制御する、 こ とを特徴とした D ME燃料の温度制御方法。 The cooling medium described above, based on the temperature of the DME fuel in the oil chamber detected by the oil chamber fuel temperature detecting means, such that the temperature of the DME fuel in the oil chamber becomes the specified temperature TG. A method for controlling the temperature of the DME fuel, wherein the supply operation of the cooling medium by the supply means is controlled by 0 N / 0 FF.
2 5 . 請求項 2 3において、 前記油溜室燃料温度調節手段は、 気化した D ME 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料タンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の D M E燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 25. The fuel tank according to claim 23, wherein the oil chamber fuel temperature adjusting means cools the DME fuel in the oil chamber using the vaporized DME fuel as a cooling medium, and the fuel tank. Cooling medium supply means for supplying the DME fuel in the oil reservoir as a cooling medium to the oil reservoir fuel cooler, and oil reservoir fuel temperature detecting means for detecting the temperature of the DME fuel in the oil reservoir.
前記油溜室燃料温度検出手段にて検出した前記油溜室内の D ME燃料の温度に 基づいて、 前記油溜室内の D ME燃料の温度が前記規定温度 T。となる如く、 前 記冷却媒体供給手段による前記冷却媒体の供給量を調節する、 ことを特徴とした D M E燃料の温度制御方法。  Based on the temperature of the DME fuel in the oil chamber detected by the oil chamber fuel temperature detecting means, the temperature of the DME fuel in the oil chamber is the specified temperature T. Adjusting the supply amount of the cooling medium by the cooling medium supply means so as to obtain a temperature of the DME fuel.
2 6 . 請求項 2 5において、 前記冷却媒体供給手段は、 回転駆動力源の回転数 に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量が増減する構成を成し ており、 前記油溜室燃料温度検出手段にて検出した前記油溜室内の DME燃料の 温度に基づいて、 前記油溜室内の D M E燃料の温度が前記規定温度 T cjとなる如 く、 前記回転駆動力源の回転数を制御する、 ことを特徴とした D ME燃料の温度 制御方法。 26. The cooling medium supply means according to claim 25, wherein a supply amount of the cooling medium to the oil reservoir fuel cooler is increased or decreased according to a rotation speed of a rotary driving force source. The rotational driving force so that the temperature of the DME fuel in the oil reservoir becomes the specified temperature T cj based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. A method for controlling the temperature of DME fuel, comprising controlling the number of revolutions of a source.
2 7 . 請求項 2 3 ~ 2 6のいずれか 1項において、 前記燃料タンク内温度調節 手段は、 前記燃料タンクへ送出される前記 D ME燃料が空冷冷却器を経由して冷 却されてから前記燃料夕ンクへ戻される第 1のリターン経路と、 前記燃料夕ンク へ送出される前記 D M E燃料が前記空冷冷却器を経由せずに前記燃料タンクへ戻 される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリターン経 路とを切り換えるリターン経路切換手段と、 前記燃料タンク内の前記 D M E燃料 の温度を検出する燃料タンク燃料温度検出手段とを備え、 27. The fuel tank according to any one of claims 23 to 26, wherein the temperature control means in the fuel tank is provided after the DME fuel delivered to the fuel tank is cooled via an air-cooled cooler. A first return path for returning to the fuel tank; a second return path for returning the DME fuel to the fuel tank to the fuel tank without passing through the air-cooled cooler; Return path switching means for switching between a first return path and the second return path, and fuel tank fuel temperature detecting means for detecting the temperature of the DME fuel in the fuel tank,
前記燃料夕ンク燃料温度検出手段にて検出した前記燃料夕ンク内の D ME燃料 の温度に基づいて、 前記油溜室内の D M E燃料の温度より前記燃料夕ンク内の D M E燃料の温度が相対的に略一定の温度差で高温となる如く、 前記リターン経路 切換手段を制御する、 ことを特徴とした DME燃料の温度制御方法。 DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means Controlling the return path switching means such that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature of the DME fuel in the oil reservoir with a relatively constant temperature difference based on the temperature of the oil reservoir. DME fuel temperature control method.
2 8 . 燃料タンクからフィードパイプを経由して供給された D ME燃料を、 所 定の夕イミングで所定の量だけディーゼルエンジンの燃料噴射ノズルに連通して いるインジェクションパイプへ送出するィンジェクシヨンポンプと、 前記ィンジ ェクシヨンポンプの油溜室に充填されている D ME燃料の温度を調節する油溜室 燃料温度調節手段と、 前記燃料夕ンク内の D ME燃料の温度を調節する燃料夕ン ク内温度調節手段と、 前記油溜室燃料温度調節手段及び前記燃料夕ンク内温度調 節手段を制御する D M E燃料温度制御手段とを備えたディーゼルエンジンの D M E燃料供給装置であって、 2 8. Injection that sends DME fuel supplied from the fuel tank via the feed pipe to the injection pipe communicating with the fuel injection nozzle of the diesel engine by a predetermined amount at a predetermined evening. A pump, an oil reservoir for adjusting the temperature of the DME fuel filled in the oil reservoir of the injection pump, a fuel temperature adjusting means, and a fuel reservoir for adjusting the temperature of the DME fuel in the fuel reservoir. A DME fuel supply device for a diesel engine, comprising: an internal temperature control unit; and a DME fuel temperature control unit that controls the oil reservoir fuel temperature control unit and the fuel tank internal temperature control unit,
前記 D ME燃料温度制御手段は、 前記油溜室内の D ME燃料の温度が規定温度 T Qとなる如く、 前記油溜室燃料温度調節手段を制御し、 かつ、 前記油溜室内の DME燃料の温度より前記燃料夕ンク内の D M E燃料の温度が相対的に略一定の 温度差で高温となる如く、 前記燃料タンク内温度調節手段を制御する、 ことを特 徴としたディーゼルエンジンの D M E燃料供給装置。 Wherein D ME fuel temperature control means, as the temperature of the D ME fuel in the oil reservoir chamber is defined temperature T Q, and controls the oil reservoir chamber fuel temperature adjusting means, and the DME fuel in the oil reservoir chamber Controlling the temperature control means in the fuel tank such that the temperature of the DME fuel in the fuel tank becomes relatively higher than the temperature with a relatively constant temperature difference. apparatus.
2 9 . 請求項 2 8において、 前記油溜室燃料温度調節手段は、 気化した D ME 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料タンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の D M E燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 29. The fuel tank according to claim 28, wherein the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium, and the fuel tank. Cooling medium supply means for supplying the DME fuel in the oil reservoir as a cooling medium to the oil reservoir fuel cooler, and oil reservoir fuel temperature detecting means for detecting the temperature of the DME fuel in the oil reservoir.
前記 D ME燃料温度制御手段は、 前記油溜室燃料温度検出手段にて検出した前 記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D M E燃料の温度が 前記規定温度 Τ αとなる如く、 前記冷却媒体供給手段による前記冷却媒体の供給 動作を O NZO F F制御する、 ことを特徴としたディ一ゼルエンジンの D ME燃 料供給装置。 The DME fuel temperature control means adjusts the temperature of the DME fuel in the oil reservoir to the specified temperature based on the temperature of the DME fuel in the oil reservoir detected by the oil chamber fuel temperature detection means. supply of the cooling medium by the cooling medium supply means so as to be α DME fuel supply system for diesel engines, characterized in that the operation is controlled by ONZOFF.
3 0 . 請求項 2 8において、 前記油溜室燃料温度調節手段は、 気化した D M E 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の D ME燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 30. The oil reservoir fuel temperature controller according to claim 28, wherein the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the vaporized DME fuel as a cooling medium, and the fuel tank. A cooling medium supply means for supplying the DME fuel in the oil reservoir as a cooling medium to the oil reservoir fuel cooler; and an oil reservoir fuel temperature detecting means for detecting a temperature of the DME fuel in the oil reservoir.
前記 D M E燃料温度制御手段は、 前記油溜室燃料温度検出手段にて検出した前 記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D ME燃料の温度が 前記規定温度 T eとなる如く、 前記冷却媒体供給手段による前記冷却媒体の供給 量を調節する、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。  The DME fuel temperature control means, based on the temperature of the DME fuel in the oil sump detected by the oil sump fuel temperature detection means, adjusts the temperature of the DME fuel in the oil sump to the specified temperature T. A DME fuel supply device for a diesel engine, wherein the supply amount of the cooling medium by the cooling medium supply means is adjusted so as to be e.
3 1 . 請求項 3 0において、 前記冷却媒体供給手段は、 回転駆動力源の回転数 に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量が増減する構成を成し ており、 前記油溜室燃料温度制御手段は、 前記油溜室燃料温度検出手段にて検出 した前記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D ME燃料の 温度が前記規定温度 T Qとなる如く、 前記回転駆動力源の回転数を制御する手段 を有している、 ことを特徴としたディーゼルエンジンの D ME燃料供給装置。 31. In Claim 30, the cooling medium supply means is configured to increase or decrease the supply amount of the cooling medium to the oil reservoir fuel cooler according to the number of rotations of a rotary driving force source. The oil reservoir fuel temperature control means determines the temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detection means. as the temperature T Q, wherein a means for controlling the rotational speed of the rotary driving power source and, D ME fuel supply device for a diesel engine characterized in that.
3 2 . 請求項 2 8〜3 1のいずれか 1項において、 前記燃料タンク内温度調節 手段は、 前記燃料タンクへ送出される前記 D ME燃料が空冷冷却器を経由して冷 却されてから前記燃料タンクへ戻される第 1のリターン経路と、 前記燃料夕ンク へ送出される前記 D M E燃料が前記空冷冷却器を経由せずに前記燃料夕ンクへ戻 される第 2のリターン経路と、 前記第 1のリ夕一ン経路と前記第 2のリターン経 路とを切り換えるリターン経路切換手段と、 前記燃料夕ンク内の前記 D M E燃料 の温度を検出する燃料夕ンク燃料温度検出手段とを備え、 32. The fuel tank according to any one of claims 28 to 31, wherein the temperature control means in the fuel tank is provided after the DME fuel delivered to the fuel tank is cooled via an air-cooled cooler. A first return path for returning to the fuel tank; a second return path for returning the DME fuel to the fuel tank to the fuel tank without passing through the air-cooled cooler; Return path switching means for switching between a first return path and the second return path; and the DME fuel in the fuel tank. Fuel temperature detection means for detecting the temperature of the fuel tank,
前記 D ME燃料温度制御手段は、 前記燃料夕ンク燃料温度検出手段にて検出し た前記燃料タンク内の D ME燃料の温度に基づいて、 前記油溜室内の D ME燃料 の温度より前記燃料タンク内の D ME燃料の温度が相対的に略一定の温度差で高 温となる如く、 前記リターン経路切換手段を制御する、 ことを特徴としたディ一 ゼルェンジンの D M E燃料供給装置。  The DME fuel temperature control means, based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detection means, calculates the temperature of the DME fuel in the oil storage chamber from the fuel tank. Controlling the return path switching means so that the temperature of the DME fuel in the inside becomes high with a relatively constant temperature difference.
3 3 . 請求項 2 8〜 3 2のいずれか 1項において、 前記インジェクションボン プから送出された前記 D ME燃料は、 コモンレールへ供給され、 該コモンレール から各燃料噴射ノズルへ送出される構成を成している、 ことを特徴としたディ一 ゼルェンジンの D M E燃料供給装置。 33. The structure according to any one of claims 28 to 32, wherein the DME fuel delivered from the injection pump is supplied to a common rail, and is delivered from the common rail to each fuel injection nozzle. A DME fuel supply system for diesel engines.
3 4 . 燃料タンクからフィードパイプを経由して供給された D ME燃料を、 所 定のタイミングで所定の量だけディ一ゼルエンジンの燃料噴射ノズルに連通して いるインジェクションパイプへ送出するィンジェクシヨンポンプと、 前記ィンジ ェクシヨンボンプの油溜室に充填されている D M E燃料の温度を調節する油溜室 燃料温度調節手段と、 前記燃料夕ンク内の D M E燃料の温度を調節する燃料夕ン ク内温度調節手段とを備えたディ一ゼルェンジンの D M E燃料供給装置における D M E燃料の温度制御をコンピュータに実行させるための D M E燃料の温度制御 プログラムであって、 3 4. An injector that sends out a predetermined amount of DME fuel supplied from the fuel tank via the feed pipe to the injection pipe connected to the fuel injection nozzle of the diesel engine at a predetermined timing. A fuel pump for adjusting the temperature of the DME fuel filled in the oil reservoir of the injection pump; a fuel temperature adjusting means for adjusting the temperature of the DME fuel; and a fuel tank for adjusting the temperature of the DME fuel in the fuel tank. A DME fuel temperature control program for causing a computer to execute the DME fuel temperature control in the DME fuel supply device having a temperature control means.
前記油溜室内の D M E燃料の温度が規定温度 T となる如く、 前記油溜室燃料 温度調節手段を制御する油溜室燃料温度制御手順と、 前記油溜室内の D M E燃料 の温度より前記燃料夕ンク内の D M E燃料の温度が相対的に略一定の温度差で高 温となる如く、 前記燃料夕ンク内温度調節手段を制御する燃料タンク内温度制御 手順とを有している、 ことを特徴とした D ME燃料の温度制御プログラム。 An oil reservoir fuel temperature control procedure for controlling the oil reservoir fuel temperature adjusting means so that the temperature of the DME fuel in the oil reservoir becomes a specified temperature T; And a fuel tank temperature control procedure for controlling the fuel tank temperature control means so that the temperature of the DME fuel in the tank becomes relatively high with a substantially constant temperature difference. DME fuel temperature control program.
3 5 . 請求項 3 4において、 前記油溜室燃料温度調節手段は、 気ィ匕した D ME 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料夕ンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の DME燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 35. The oil reservoir fuel cooler according to claim 34, wherein the oil reservoir fuel temperature adjusting means is configured to cool the DME fuel in the oil reservoir using the degassed DME fuel as a cooling medium, Cooling medium supply means for supplying DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and oil reservoir fuel temperature detection means for detecting the temperature of the DME fuel in the oil reservoir. Prepared,
前記油溜室燃料温度制御手順は、 前記油溜室燃料温度検出手段にて検出した前 記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D M E燃料の温度が 前記規定温度 T eとなる如く、 前記冷却媒体供給手段による前記冷却媒体の供給 動作を O NZO F F制御する手順を有している、 ことを特徴とした DM E燃料の 温度制御プログラム。  The oil reservoir fuel temperature control procedure includes: determining a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means; A temperature control program for DME fuel, characterized by comprising a procedure of ONZOFF control of a supply operation of the cooling medium by the cooling medium supply means so as to be Te.
3 6 . 請求項 3 4において、 前記油溜室燃料温度調節手段は、 気ィ匕した D ME 燃料を冷却媒体として前記油溜室内の D ME燃料を冷却する油溜室燃料冷却器と、 前記燃料タンク内の D ME燃料を冷却媒体として前記油溜室燃料冷却器へ供給す る冷却媒体供給手段と、 前記油溜室内の DME燃料の温度を検出する油溜室燃料 温度検出手段とを備え、 36. The oil reservoir fuel cooler according to claim 34, wherein the oil reservoir fuel temperature adjusting means cools the DME fuel in the oil reservoir using the degassed DME fuel as a cooling medium. A cooling medium supply means for supplying the DME fuel in the fuel tank as a cooling medium to the oil reservoir fuel cooler; and an oil reservoir fuel temperature detecting means for detecting a temperature of the DME fuel in the oil reservoir. ,
前記油溜室燃料温度制御手順は、 前記油溜室燃料温度検出手段にて検出した前 記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D M E燃料の温度が 前記規定温度 T。となる如く、 前記冷却媒体供給手段による前記冷却媒体の供給 量を調節する手順を有している、 ことを特徴とした D ME燃料の温度制御プログ ラム。  The oil reservoir fuel temperature control procedure includes: determining a temperature of the DME fuel in the oil reservoir based on the temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means; T. A temperature control program for the DME fuel, comprising a step of adjusting a supply amount of the cooling medium by the cooling medium supply means so that
3 7 . 請求項 3 6において、 前記冷却媒体供給手段は、 回転駆動力源の回転数 に応じて前記油溜室燃料冷却器への前記冷却媒体の供給量が増減する構成を成し ており、 前記油溜室燃料温度制御手順は、 前記油溜室燃料温度検出手段にて検出 した前記油溜室内の D ME燃料の温度に基づいて、 前記油溜室内の D ME燃料の 温度が前記規定温度 T Qとなる如く、 前記回転駆動力源の回転数を制御する手順 を有している、 ことを特徴とした D ME燃料の温度制御プログラム。 37. In Claim 36, the cooling medium supply means is configured to increase or decrease the supply amount of the cooling medium to the oil reservoir fuel cooler according to the number of rotations of a rotary driving force source. The oil reservoir fuel temperature control procedure includes: determining a temperature of the DME fuel in the oil reservoir based on a temperature of the DME fuel in the oil reservoir detected by the oil reservoir fuel temperature detecting means. As the temperature is the predetermined temperature T Q, the temperature control program of the a procedure for controlling the rotational speed of the rotary driving power source and, D ME fuel characterized by.
3 8 . 請求項 3 4 - 3 7のいずれか 1項において、 前記燃料タンク内温度調節 手段は、 前記燃料タンクへ送出される前記 D ME燃料が空冷冷却器を経由して冷 却されてから前記燃料夕ンクへ戻される第 1のリタ一ン経路と、 前記燃料夕ンク へ送出される前記 D M E燃料が前記空冷冷却器を経由せずに前記燃料夕ンクへ戻 される第 2のリターン経路と、 前記第 1のリターン経路と前記第 2のリターン経 路とを切り換えるリタ一ン経路切換手段と、 前記燃料夕ンク内の前記 D M E燃料 の温度を検出する燃料タンク燃料温度検出手段とを備え、 38. The fuel tank according to any one of claims 34 to 37, wherein the temperature control means in the fuel tank is provided after the DME fuel delivered to the fuel tank is cooled via an air-cooled cooler. A first return path to return to the fuel tank; and a second return path to return the DME fuel to the fuel tank to the fuel tank without passing through the air-cooled cooler. Return path switching means for switching between the first return path and the second return path, and fuel tank fuel temperature detecting means for detecting the temperature of the DME fuel in the fuel tank. ,
前記燃料夕ンク内温度制御手順は、 前記燃料夕ンク燃料温度検出手段にて検出 した前記燃料タンク内の: D ME燃料の温度に基づいて、 前記油溜室内の DM E燃 料の温度より前記燃料タンク内の D M E燃料の温度が相対的に略一定の温度差で 高温となる如く、 前記リターン経路切換手段を制御する手順を有している、 こと を特徴とした DME燃料の温度制御プログラム。  The temperature control process in the fuel tank is based on the temperature of the DME fuel in the fuel tank detected by the fuel tank fuel temperature detecting means, based on the temperature of the DME fuel in the oil reservoir. A program for controlling the temperature of the DME fuel, characterized by comprising a procedure for controlling the return path switching means so that the temperature of the DME fuel in the fuel tank becomes relatively high with a relatively constant temperature difference.
PCT/JP2003/005452 2002-04-26 2003-04-28 Dme fuel feed device of diesel engine WO2003091565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235959A AU2003235959A1 (en) 2002-04-26 2003-04-28 Dme fuel feed device of diesel engine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-126232 2002-04-26
JP2002126232A JP2003322063A (en) 2002-04-26 2002-04-26 Dme fuel supply device of diesel engine
JP2002-145785 2002-05-21
JP2002145785A JP2003336557A (en) 2002-05-21 2002-05-21 Dme fuel supply device for diesel engine
JP2002-224474 2002-08-01
JP2002224474A JP3868866B2 (en) 2002-08-01 2002-08-01 DME fuel supply device for diesel engine, DME fuel temperature control method in DME fuel supply device for diesel engine, and DME fuel temperature control program

Publications (1)

Publication Number Publication Date
WO2003091565A1 true WO2003091565A1 (en) 2003-11-06

Family

ID=29273434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005452 WO2003091565A1 (en) 2002-04-26 2003-04-28 Dme fuel feed device of diesel engine

Country Status (2)

Country Link
AU (1) AU2003235959A1 (en)
WO (1) WO2003091565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488014A (en) * 2018-03-09 2018-09-04 安徽江淮汽车集团股份有限公司 A kind of fuel oil temperature regulating system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306760A (en) * 1997-05-07 1998-11-17 Nkk Corp Diesel engine for dimethyl ether
JPH11107871A (en) * 1997-09-30 1999-04-20 Hino Motors Ltd Diesel engine fuel system using dimethyl ether fuel
US5967126A (en) * 1997-06-26 1999-10-19 Avl List Gmbh Injection system for an internal combustion engine operated with liquefied petroleum gas
JP2002061542A (en) * 2000-08-23 2002-02-28 Bosch Automotive Systems Corp Fuel injection device for automobile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306760A (en) * 1997-05-07 1998-11-17 Nkk Corp Diesel engine for dimethyl ether
US5967126A (en) * 1997-06-26 1999-10-19 Avl List Gmbh Injection system for an internal combustion engine operated with liquefied petroleum gas
JPH11107871A (en) * 1997-09-30 1999-04-20 Hino Motors Ltd Diesel engine fuel system using dimethyl ether fuel
JP2002061542A (en) * 2000-08-23 2002-02-28 Bosch Automotive Systems Corp Fuel injection device for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108488014A (en) * 2018-03-09 2018-09-04 安徽江淮汽车集团股份有限公司 A kind of fuel oil temperature regulating system

Also Published As

Publication number Publication date
AU2003235959A1 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
KR100935487B1 (en) Dme fuel feed device of diesel engine
US8245684B2 (en) Method of oil pressure control in an engine
KR20100128319A (en) Arrangement and method for an internal combustion engine with direct dual fuel injection
JP2003206824A (en) Injection pump, dme fuel supply device of diesel engine having it
EP1831508B1 (en) Diesel engine lubricated with fuel such as light oil
WO2008001532A1 (en) Diesel engine for dimethyl ether
JP4707156B2 (en) Liquefied gas fuel supply device for internal combustion engine
JP4787208B2 (en) LIQUID GAS FUEL SUPPLY DEVICE AND METHOD FOR DRIVING HIGH PRESSURE PUMP
WO2006004101A1 (en) Liquefied gas fuel supply device of diesel engine
JP4297907B2 (en) Liquefied gas fuel supply system for diesel engine
WO2003091565A1 (en) Dme fuel feed device of diesel engine
JP3796146B2 (en) DME engine fuel supply system
JP2003336557A (en) Dme fuel supply device for diesel engine
JP2003262167A (en) Dme fuel feed device of diesel engine
JP3868866B2 (en) DME fuel supply device for diesel engine, DME fuel temperature control method in DME fuel supply device for diesel engine, and DME fuel temperature control program
JP2003322063A (en) Dme fuel supply device of diesel engine
JP3932190B2 (en) DME fuel supply system for diesel engine
JP3922695B2 (en) DME fuel supply system for diesel engine
WO2003106835A1 (en) Diesel engine dme fuel supply system
JP2004027863A (en) Dme fuel supplying device for diesel engine
JP2005180193A (en) Liquefied gas fuel supply device for diesel engine
JP2003336557A5 (en)
JP2003328875A (en) Dme fuel supply device of diesel engine
JP2005146964A (en) Liquefied gas fuel supplying device for diesel engine
JP2003328874A (en) Dme fuel supply device of diesel engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase