WO2003091534A1 - Method for recovering coal seam by non-combustion gasification at original location and method for recovering organic substance or fossil organic substance under ground by non-combustion gasification at original location - Google Patents
Method for recovering coal seam by non-combustion gasification at original location and method for recovering organic substance or fossil organic substance under ground by non-combustion gasification at original location Download PDFInfo
- Publication number
- WO2003091534A1 WO2003091534A1 PCT/JP2003/005474 JP0305474W WO03091534A1 WO 2003091534 A1 WO2003091534 A1 WO 2003091534A1 JP 0305474 W JP0305474 W JP 0305474W WO 03091534 A1 WO03091534 A1 WO 03091534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coal seam
- gasification
- carbon dioxide
- organic matter
- underground
- Prior art date
Links
- 239000003245 coal Substances 0.000 title claims abstract description 171
- 238000002309 gasification Methods 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 29
- 239000000126 substance Substances 0.000 title abstract description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 241
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 120
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 120
- 239000011435 rock Substances 0.000 claims abstract description 26
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 76
- 239000005416 organic matter Substances 0.000 claims description 72
- 238000011084 recovery Methods 0.000 claims description 56
- 238000011065 in-situ storage Methods 0.000 claims description 43
- 244000005700 microbiome Species 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 239000004215 Carbon black (E152) Substances 0.000 claims description 13
- 239000004576 sand Substances 0.000 claims description 9
- 102000004190 Enzymes Human genes 0.000 claims description 7
- 108090000790 Enzymes Proteins 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 5
- 239000002028 Biomass Substances 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 239000010815 organic waste Substances 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 2
- 230000001737 promoting effect Effects 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 1
- 238000005065 mining Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 3
- 238000002347 injection Methods 0.000 description 41
- 239000007924 injection Substances 0.000 description 41
- 239000007789 gas Substances 0.000 description 32
- 239000003921 oil Substances 0.000 description 21
- 241000894006 Bacteria Species 0.000 description 8
- 239000004058 oil shale Substances 0.000 description 7
- 239000003415 peat Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000009841 combustion method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000010779 crude oil Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 239000003077 lignite Substances 0.000 description 4
- 239000003027 oil sand Substances 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000002802 bituminous coal Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 208000031872 Body Remains Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000203407 Methanocaldococcus jannaschii Species 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000003476 subbituminous coal Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/255—Methods for stimulating production including the injection of a gaseous medium as treatment fluid into the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/164—Injecting CO2 or carbonated water
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
Definitions
- the present invention relates to a non-combustion type in situ coal seam gasification and recovery method for gasifying and recovering an underground coal seam or an underground rock body containing underground organic matter and fossil organic matter using supercritical carbon dioxide. ⁇ Related to in-situ gasification and recovery of fossil organic matter. Background art
- the present invention provides a non-combustion type in-situ coal seam gasification and recovery method and a non-combustion method that can effectively and efficiently use coal beds or underground rocks containing underground organic matter and fossil organic matter at the lowest possible cost and safely.
- the first aspect of the present invention is a non-combustion type in-situ coal seam gasification and recovery method for gasifying and recovering an underground coal seam, injecting supercritical carbon dioxide from the ground into an underground coal seam.
- a non-combustion in-situ coal seam gasification and recovery method characterized by recovering volatile components extracted from the coal seam to the ground.
- the supercritical carbon dioxide is injected into the underground coal seam and infiltrated to extract volatile components, so that the coal seam can be effectively used without mining and in a non-combustion system.
- a second aspect of the present invention is the non-combustion method according to the first aspect, wherein the carbon dioxide present together with the volatile component is permeated into the coal seam and fixed. In-situ coal seam gasification and recovery method.
- the volatile components extracted from the coal seam by the injection of supercritical carbon dioxide and present together with the carbon dioxide can be taken out by immobilizing only carbon dioxide in the coal seam, and unnecessary. Carbon dioxide can be fixed underground.
- the volatile component extracted from the coal seam is permeated into the coal seam together with the injected carbon dioxide, and the carbon dioxide is adsorbed on the coal seam.
- a non-combustion in-situ coal seam gasification and recovery method characterized in that the volatile components are gasified and the hydrocarbon-based gas generated thereby is recovered.
- the volatile components extracted by the supercritical carbon dioxide are gasified by microorganisms in the coal seam, and then recovered as a hydrocarbon-based gas. Becomes
- a fourth aspect of the present invention is the fourth aspect, characterized in that, in the third aspect, a gasification accelerator that promotes a reaction in which the volatile component gasifies in the coal seam is introduced into the coal seam from the ground. In-situ coal bed gasification and recovery method.
- gasification of volatile components in the coal seam can be promoted, and effective utilization of the volatile components can be promoted.
- a fifth aspect of the present invention is the non-combustion in-situ coal seam gas according to the fourth aspect, wherein at least one of a microorganism and an enzyme is used as the gasification accelerator. In the recovery method.
- gasification of volatile components in the coal seam can be promoted by introducing microorganisms or enzymes into the coal seam.
- any one of the first to fifth aspects prior to the recovery of the volatile components extracted from the coal seam, methane adsorbed on the coal seam is recovered.
- Non-combustion in-situ coal seam gasification and recovery method prior to the recovery of the volatile components extracted from the coal seam, methane adsorbed on the coal seam is recovered.
- the sixth embodiment it takes a long time from the start of injection of supercritical carbon dioxide into the coal seam to the time when volatile components can be recovered.However, by recovering methane at a relatively early stage, Can be used effectively relatively early.
- the supercritical diacid is formed such that a crack g is formed in the coal bed when the supercritical carbon dioxide is injected into the coal bed.
- a non-combustion type in-situ coal seam gasification and recovery method characterized by improving the permeability of carbon.
- the supercritical carbon dioxide effectively penetrates into the coal seam from the crack formed in the coal seam, and the volatile component can be effectively extracted.
- the eighth aspect which is powerful, by injecting sand together with supercritical carbon dioxide, it is possible to form minute cracks in the coal seam, and when the coal seam is injected at a stage where it is likely to contract, the permeability is maintained. Shrinkage is prevented as it is, and land subsidence due to this can be prevented.
- a ninth aspect of the present invention is a non-combustion type underground organic matter / fossil organic matter in-situ gasification and recovery method for gasifying and recovering underground organic matter and fossil organic matter, comprising: Non-combustible underground organic matter and fossil organic matter raw material characterized by injecting supercritical carbon dioxide into the rock body and thereby recovering underground organic matter and fossil organic matter contained in the rock body to the ground In-situ gasification recovery method.
- supercritical secondary rocks are added to underground rocks containing underground organic matter and fossil organic matter.
- Volatile components extracted from underground organic matter and fossil organic matter can be gasified and recovered without mining by injecting carbon oxide and infiltrating to extract volatile components without mining. . ⁇
- the underground organic matter / fossil organic matter strength is a natural buried biological remains and excreta, or these biological remains and excrement are at least pressure, heat and microorganisms.
- Non-combustible underground organic matter and fossil organic matter in-situ gasification and recovery method which is characterized by being a substance.
- At least one of carbonaceous matter, oily matter, and hydrocarbons resulting from the transformation of these biological remains and excrement by the action of at least one of pressure, heat and microorganisms, or artificially injected into underground cavities and cavities
- Volatile components can be recovered from at least one of biomass and organic waste.
- the eleventh aspect of the present invention is the non-combustion method according to the ninth or tenth aspect, characterized in that carbon dioxide present together with the volatile component is permeated into the rock body to be fixed.
- the volatile component extracted from the rock by the injection of supercritical carbon dioxide and fixed together with carbon dioxide alone from the volatile component present together with carbon dioxide is used to fix the volatile component. Can be taken out and unnecessary carbon dioxide can be fixed underground.
- a gasification accelerator that promotes a reaction in which the volatile component gasifies in the rock body is introduced into the rock body from the ground.
- gasification of volatile components in underground organic matter and fossil organic matter can be promoted, and effective utilization of volatile components can be promoted.
- the gasification accelerator an in-situ gasification and recovery method for underground organic matter and fossil organic matter, wherein at least one of a microorganism and an enzyme is used.
- gasification of volatile components in the rock can be promoted by introducing microorganisms or enzymes into underground organic matter and fossil organic matter.
- carbon dioxide is relatively easily placed in a supercritical state, and by contacting supercritical carbon dioxide with an underground coal seam, volatile components can be extracted from the coal seam in situ by a non-combustion method.
- the injected carbon dioxide can be immobilized on the coal seam, only the volatile components can be recovered, and the volatile components can be gasified and recovered by permeating the coal seam.
- This is realized by the new knowledge of, and is effective in an environmentally friendly manner without mining the underground coal seam or excavating unexcavated deep coal seams without emitting harmful substances like combustion method It has the effect that it can be used.
- carbon dioxide which is a problem due to destruction of the ozone layer, can be fixed underground.
- Underground organic matter and fossil organic matter such as peat and oil sands
- Underground organic matter such as peat and oil sands and fossil organic matter have lower grades than coal, but they are expected to be several tens of times more expensive than coal. It is possible to solve energy problems.
- FIG. 1 shows a non-combustion in-situ gasification and recovery system according to an embodiment of the present invention. It is a figure showing a schematic structure.
- FIG. 2 is a diagram conceptually showing a state of gas recovery using a non-combustion in-situ gasification recovery system according to one embodiment of the present invention.
- supercritical carbon dioxide is directly injected into an underground coal seam, and the coal is reacted with the supercritical carbon dioxide to extract volatile components.
- a coal seam refers to a stratum (coal seam) composed of underground coal, and its type is not particularly limited.
- the coal bed include bituminous coal, sub-bituminous coal, lignite, lignite, anthracite, etc., but bituminous coal is the most volatile component and is most suitable in the present invention.
- High pressure is required to obtain supercritical carbon dioxide, and the coal seam itself must withstand the pressure of the injected supercritical carbon dioxide. is there. Therefore, a coal seam with a depth of about 500 to 300 Om, preferably about 100 Om, is targeted.
- the depth is large in order to secure a high pressure at which the carbon dioxide becomes supercritical when the carbon dioxide is injected into and penetrated into the coal seam. It should have a depth of 0 Om or more.
- the pressure of the bedrock including the coal seam (static rock pressure) is usually 8 MPa or more, so that it can sufficiently withstand the pressure of the supercritical carbon dioxide.
- supercritical carbon dioxide is carbon dioxide in a supercritical state, and 99.9% or more of carbon dioxide has a temperature of 31.1 ° C or more and a pressure of 7.39 MPa.
- a supercritical state is established under the above conditions.
- To inject supercritical carbon dioxide into a coal seam it is sufficient that supercritical carbon dioxide is converted at least at the stage of contact with the coal seam, and it is not necessary to convert supercritical carbon dioxide from the ground. Therefore, it is only necessary to exceed the above conditions when injected into the coal seam. Of course, it may be supercritical carbon dioxide from the ground.
- high-purity carbon dioxide by injecting high-purity carbon dioxide at a predetermined pressure and temperature, Inject supercritical carbon dioxide into the coal seam.
- High purity is at least 99%, preferably at least 99.9%. It is to be noted that supercritical carbon dioxide can be obtained at a high temperature and high pressure even if it is not more than 99%, but it is preferable to use high purity carbon dioxide of not less than 99% because the injection condition becomes severe.
- Such high-purity carbon dioxide can be separated and recovered from waste gas from thermal power plants and factories. The separation and recovery of carbon dioxide from such equipment is still performed today, and the recovered carbon dioxide is sometimes dumped into the sea or underground. Carbon dioxide can be used as it is or with a slightly higher purity. In addition, high-purity carbon dioxide can be relatively easily obtained by an amine method of absorbing and recovering amines such as monoethanolamine.
- a carbon dioxide injection pipe that reaches a coal seam is installed. Then, high-purity carbon dioxide is injected at a pressure and temperature at which the supercritical state is reached at least when injected into the coal seam. The injection conditions differ depending on the depth of the coal seam, etc.
- the injection pressure is 1 OMPa and the temperature is about 40 ° C.
- the injected carbon dioxide is in a supercritical state at the injection point at the same level as the injection pressure and temperature, but at a distance of several tens of meters from the injection point, about 5 MPa and 30 ° C Is expected to decline to
- the injection pressure should be 15 MPa and the temperature should be about 50 ° C.
- the injected carbon dioxide is in the supercritical state at the injection point, the same as the injection pressure and temperature, and is about 1 OMPa and about 40 ° C even several tens of meters away from the injection point.
- the injection pressure may be 35 MPa and the temperature may be about 100 ° C.
- the injected carbon dioxide is in a supercritical state at the injection point at the same level as the injection pressure and temperature, and even at a distance of several tens of meters from the injection point, 30 MPa and 90 ° It is only reduced to about C, and it is expected that the supercritical state is maintained.
- the present invention adopts a method of infiltrating supercritical carbon dioxide directly into an underground coal seam, eliminating the need for a large-scale device capable of withstanding high temperatures and pressures. Since it can be removed by immobilization on the coal bed, there is an advantage that the recovery of volatile components can be performed relatively easily.
- the method of injecting supercritical carbon dioxide into the coal seam is not particularly limited as long as supercritical carbon dioxide is effectively penetrated as much as possible throughout the coal seam.
- the injection of supercritical carbon dioxide may be performed from a single point or may be performed from a plurality of places. It is preferable to press-fit so as to form a large number of cracks. That is, in the initial stage of carbon dioxide injection, it is preferable to increase the pressure to pulverize the coal seam to form a large number of cracks. It is also preferable to mix sand or the like as necessary to prevent clogging of the cracks, and to allow the carbon dioxide to penetrate into a wide range over a long period of time.
- the point of injection of the supercritical diacid fli carbon and the point of recovery of volatile components must be separated by a distance (at least several tens of meters) sufficient for carbon dioxide to be adsorbed and removed from the coal seam.
- supercritical carbon dioxide may be injected into the deep part of the coal seam to recover volatile components from the shallow part of the same area, or supercritical carbon dioxide may be injected from one end of the flatly extending coal seam. Volatile components may be recovered from the other end of the distant region. If the coal seam is inclined from the deep portion to the shallow portion and extends in a plane, the volatile component is injected at the deep portion and injected into the shallow portion. Is preferably recovered.
- Volatile components extracted by supercritical carbon dioxide may be recovered in the state where they coexist with groundwater, or gasified ones may be recovered. In any case, by recovering after infiltrating the coal seam, only the carbon dioxide present in the mixed state is selectively adsorbed and fixed on the coal seam and removed, thereby reducing or removing the carbon dioxide content. Volatile components thus obtained can be recovered.
- the volatile components extracted by microorganisms when penetrating the coal seam Since it is gasified, it is preferable to recover it as a hydrocarbon gas such as methane after gasification.
- gasification promoters are microorganisms and enzymes that decompose and gasify volatile components such as tar, and are anaerobic microorganisms that can operate at relatively high temperatures, such as Metnanobacterium ⁇ 'hermoautotrophicum and Methanogenic bacteria such as Methanococcus Jannaschii are preferred.
- Anaerobic microorganisms other than methanogens play a supplementary role of methanogens, and cannot produce methane but produce intermediate-stage organic acids and hydrogen. Bacteria group to be used.
- the method of introducing the gasification accelerator is not particularly limited, and may be present so as to be in contact with the extracted volatile component, and may be introduced using a carbon dioxide injection pipe, A separate injection tube may be provided for introduction.
- the hydrocarbon-based gas obtainable by the method of the present invention is estimated as the amount of methane, for example, assuming that it is equivalent to the coal of the Ishikari Coalfield in Hokkaido, which has a large amount of methane adsorption, in the recovery of the initially adsorbed methane per ton of coal, Although the maximum amount of methane is 12.5 cubic meters, the amount of methane is estimated to be about 5334 cubic meters per tonne of coal, considering that it is then extracted with supercritical carbon dioxide and gasified and recovered. Since it can be estimated that methane can be recovered, there is an advantage that it is possible to recover methane more than 40 times compared to the recovery of adsorbed methane alone.
- coal seam may contract and land subsidence may occur.
- sand may be mixed with the injected carbon dioxide to introduce sand into the coal seam.
- Sand fills the gaps in the coal seam to prevent the coal seam from shrinking, but the cracks remain open for carbon dioxide to penetrate, so that the permeation is maintained and ⁇ Yanban settlement is prevented. It works.
- supercritical carbon dioxide is introduced into a coal seam to gasify coal into volatile components such as methane gas and collect it.
- peat, oil sand, oil shale It is applicable to gasification of fossil organic matter into methane, such as underground organic matter such as gas siere and garland oil field.
- the underground organic matter / fossil organic matter to which the method of the present invention can be applied is formed by burying the remains of living things and excrement deep underground.
- the remains and excrement of living things accumulate on the bottom of the sea or lake with sand and mud, and gradually become buried deep underground, the pressure and temperature will rise, and the fermentation action of microorganisms underground will work
- Organic matter, such as human remains and excrement is gradually transformed into coal and petroleum, and various intermediates are formed along the way.
- coal is the origin
- peat peat
- oil sands and oil shale are those in which oily substances that pretend to be oil accumulate in the gaps between sandstone and shale particles. These oily substances are highly viscous and enter the fine gaps between the rock particles and are in close contact with the particles, so it is difficult to collect them and their use as resources has hardly progressed. Also, in general oil fields, light oil with low viscosity is mostly recovered, but heavy oil with high viscosity such as asphalt is trapped in the gaps between underground rocks, making it difficult to recover.
- Underground organic matter and fossil organic matter to which the method of the present invention can be applied include underground organic matter such as peat, oil sand, oil shale, gas seal, dead oil field and the like, and fossil organic matter.
- underground organic matter such as peat, oil sand, oil shale, gas seal, dead oil field and the like
- fossil organic matter By treating in the same manner as in the injection of carbon dioxide, it is possible to recover as a gaseous component, preferably methane gas.
- organic waste and biomass injected into an underground sand or coal seam can be recovered as volatiles such as methane gas by the same process.
- gasification that takes a long time in the natural process as it is, supercritical carbon dioxide is injected into the rock body, and volatile matter such as organic matter, carbonaceous matter, oily matter, etc. Can be extracted to promote decomposition by microorganisms. If necessary, gasification can be promoted by adding a gasifier such as an anaerobic bacterium or yeast extract. Volatile components can be enriched in hydrocarbon gas such as methane by selective adsorption of carbon dioxide by substances, and volatile gases such as methane gas can be generated by methanation of carbon dioxide by thermophilic methanogens. Can be obtained by a non-combustion method.
- the dead oil reservoir has been storing oil for more than several million years and is the best place to store carbon dioxide.However, since more than half of crude oil that cannot be collected remains, There was some opposition that the injection of Sani-Dani carbon would deteriorate the crude oil and result in resource destruction. However, when the method of the present invention was applied, by injecting supercritical carbon dioxide, the residual crude oil was also gasified as a volatile component. It is possible to recover resources by using them, which has the effect of leading to effective use of resources.
- FIG. 1 is a diagram conceptually showing a non-combustion in-situ coal seam gasification and recovery system according to an embodiment for carrying out the method of the present invention.
- the volatile component extraction is performed by injecting supercritical carbon dioxide into underground coal seam 1 and extracting volatile components from the coal seam 1.
- a carbon dioxide injection pipe 11 penetrating from the ground surface 2 to the coal seam 1 and a carbon dioxide injection device 1 2 for injecting carbon dioxide into the coal seam 1 from the carbon dioxide injection pipe 11 at a predetermined pressure.
- the carbon dioxide injecting device 12 injects supercritical carbon dioxide into the coal bed 1 by injecting carbon dioxide of a prescribed purity into the coal bed 1 at a prescribed pressure. That is, it is sufficient that the carbon dioxide is at least in a supercritical state when injected into the coal seam 1, and it is not necessary to be in a supercritical state on the ground. It may be carbon.
- the depth of the coal seam 1 at the injection point is about 100 m
- carbon dioxide of 99.9% purity is injected at an injection pressure of 15 MPa and a temperature of about 50 ° C. I do.
- a gasification accelerator injection pipe 21 and a gasification accelerator injection device 22 are provided adjacent to the carbon dioxide injection device 12.
- a gasification accelerator such as methane-adhered bacteria is introduced using the gasification accelerator injection device 22. Since the gasification accelerator such as methane-producing bacteria has high resistance, the gasification accelerator injection pipe 21 is omitted, and the gasification accelerator is supplied from the gasification accelerator injection device 22 to the carbon dioxide injection pipe 11. It is also possible to inject.
- the supercritical carbon dioxide and the gasification accelerator may be introduced continuously, but generally only intermittently.
- the introduction conditions, the introduction interval, etc. depend on the type and condition of the coal seam 1. design.
- a volatile component recovery pipe 31 and a volatile component recovery device 32 are provided at a relatively shallow position relatively far from the carbon dioxide injection device 12 and the gasification promoter injection device 22. It is assumed that the coal seam 1 exists obliquely from a relatively deep portion where the carbon dioxide injection pipe 11 is inserted to a relatively shallow portion where the volatile component recovery pipe 31 is inserted.
- the volatile component recovery device 32 initially, methane adsorbed on the coal seam 1 is extracted from the coal seam 1 and the volatile components are gasified while permeating the coal seam 1 thereafter. The resulting hydrocarbon-based gas is recovered.
- the volatile component recovery device 32 may be a device that recovers a naturally occurring gas or a device that forcibly recovers a gas by suction or the like.
- Fig. 2 conceptually shows the procedure of a gas recovery method using such a non-combustion in-situ coal seam gasification recovery system.
- natural methane 41 is adsorbed in coal seam 1, and only natural methane 41 released from the coal seam by suction is recovered.
- supercritical carbon dioxide 42 is introduced from carbon dioxide injection pipe 11.
- the introduced supercritical carbon dioxide 42 penetrates into the coal seam 1, thereby extracting volatile components 43 from the coal seam 1 and permeating it.
- the carbon dioxide 44 is replaced with the natural methane 41 adsorbed on the coal seam and is immobilized on the coal seam 1.
- methane 45 is gradually recovered from the volatile component recovery pipe 31.
- the extracted volatile components 43 permeate through the coal seam 1 and are gasified by methane-producing bacteria and the like to become gas 46, and hydrocarbon gas 47 Will be collected as
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A method for recovering a coal seam, or an organic substance or fossil organic substance under the ground by a process of non-combustion gasification at the original location thereof, which comprises pressing supercritical carbon dioxide from the face of the ground into the coal seam or a rock zone (1) containing the organic substance or fossil organic substance under the ground, to thereby extract volatile components from the coal seam or rock zone (1), and recovering the volatile components to the face of the ground. The method allows the effective use of a coal seam or a rock zone containing an organic substance or fossil organic substance under the ground, without mining and by a non-combustion process, and further with a reduced cost and safety.
Description
明 細 非燃焼方式原位置炭層ガス化回収方法及び非燃焼方式地下有機物 ·化石有機物原 位置ガス化回収方法 技術分野 Description Non-burning in-situ coal gasification and recovery method and non-burning underground organic matter and fossil organic matter in-situ gasification and recovery method
本発明は、 超臨界二酸化炭素を利用して地下の炭層又は地下有機物 ·化石有機 物を含む地下の岩体をガス化して回収する非燃焼方式原位置炭層ガス化回収方法 及び非燃焼方式地下有機物 ·化石有機物原位置ガス化回収方法に関する。 背景技術 The present invention relates to a non-combustion type in situ coal seam gasification and recovery method for gasifying and recovering an underground coal seam or an underground rock body containing underground organic matter and fossil organic matter using supercritical carbon dioxide. · Related to in-situ gasification and recovery of fossil organic matter. Background art
近年、 国際的な石油の需要は、 中国、 韓国などの東南アジア地区を中心とした 発展途上国の著しいエネルギー需要の伸びによりさらに増大しており、 供給原油 の重質化は避けられず、 我が国でも重質油の処理について、 種々の研究開発が行 われている。 例えば、 重質残渣油の改質、 水素化分解、 熱分解、 ガス化、 溶剤脱 瀝などの軽質化、 さらには軽質化された後に残る超重質残渣油の有効利用などに ついて研究されている。 また、 タールサンド油、 オイルシェール油などの新しい 重質油の処理技術についても研究されている。 In recent years, international oil demand has been increasing further due to the remarkable growth in energy demand in developing countries, mainly in the Southeast Asian regions such as China and South Korea, and it is inevitable that the supply of crude oil will become heavier. Various types of research and development have been conducted on the processing of heavy oil. For example, research has been conducted on lightening of heavy residual oil reforming, hydrocracking, thermal cracking, gasification, solvent deasphalting, etc., and effective use of ultra-heavy residual oil remaining after lightening. . Also, new heavy oil processing technologies such as tar sands oil and oil shale oil are being studied.
一方、 オイルショック以来、 再び、 石炭の利用が強く望まれるようになつてき ているが、 そのままエネルギー源として使用する場合には環境汚染を防ぐ技術が 必要である。 そこで、 従来より、 石炭液化技術などが開発されているが、 固体か ら液体にするまでには、 状態を高温 ·高圧に保つ大掛かりな装置が必要であり、 生産的ランニングコストが高いという問題があり、 現在のところ、 コストではと ても石油に太刀打ちできないという問題がある。 On the other hand, since the oil crisis, the use of coal has been strongly desired again, but if it is used as it is as an energy source, technology to prevent environmental pollution is needed. Therefore, coal liquefaction technology and the like have been developed, but large-scale equipment that maintains the state at high temperature and high pressure is required to change from solid to liquid, and the problem of high production running costs is a problem. Yes, at present, the problem is that oil cannot compete with petroleum.
このような技術背景において、 近年、 超臨界流体、 特に、 超臨界水を用いて重 質油や石炭を有効利用しょうという研究が盛んに行われている。 これは超臨界流 体が高い溶解性と反応溶媒としての性質を併せ持つ点に着目したものであり、 例 えば、 ゴィヌク褐炭ゃゴィヌクオイルシェール油を超臨界水や超臨界水に 2 0 % テトラリンを加えた混合液などで処理し、 液体、
アルテン、 さらには気体を回収したという報告がある (Mi s s a l P. ; C a n e 1 M. E d o e 1 E r d g a s Ko h l e, 109, 6, 1 993 ,. p. 270— 274、 三輪成;超臨界流体高度利用特別研究会 「ワーキング グループ活動成果報告書」 (1 995) p. 150参照) 。 Against this background, research has been actively conducted in recent years on the effective use of heavy oil and coal using supercritical fluids, especially supercritical water. This focuses on the fact that supercritical fluids have both high solubility and properties as a reaction solvent.For example, goinuk lignite / goinuk oil shale oil is used in supercritical water or 20% supercritical water. Treat with a mixed solution containing tetralin, It has been reported that Alten and also gas were recovered (Missal P .; Cane 1 M. Edoe 1 Erdgas Kohle, 109, 6, 1999, p. 270-274, Miwa Shige; supercritical Advanced Fluid Utilization Special Study Group Working Group Activity Results Report (1 995) p. 150).
しかしながら、 このように超臨界流体で処理する場合にも、 高温 ·高圧状態を 保持する大掛かりな装置が必要であるという問題がある。 また、 再び石炭を利用 しょうとすると、 多くの地域で閉鎖となった炭鉱を再び開発しなければならない という問題もある。 However, even in the case of treating with a supercritical fluid as described above, there is a problem that a large-scale apparatus for maintaining a high temperature and a high pressure state is required. Another problem is that if coal is to be used again, coal mines that have been closed in many areas must be redeveloped.
一方、 地下の炭層にメタンが吸着内蔵されていることに着目し、 地下の炭層に 炭酸ガスを注入し、 炭層メタンを回収すると共に炭酸ガスを固定化しようとする 技術が提案されている (特開平 6— 288 171号公報参照) 。 On the other hand, focusing on the fact that methane is adsorbed and built into underground coal seams, a technique has been proposed in which carbon dioxide is injected into underground coal seams to recover coal seam methane and fix carbon dioxide gas. Kaihei 6-288171).
しかしながら、 この場合には、 炭層に吸着内蔵されているメタンを回収するの みで、 炭層自体の利用にはなってはいないという問題がある。 However, in this case, there is a problem that only the methane adsorbed in the coal seam is recovered, and the coal seam itself is not used.
なお、 地下の炭層をそのまま利用する方法として、 地下の炭層に火を着けて不 完全燃焼させることによりガス化するという方法がロシアで行われているが、 一 酸ィ匕炭素などの環境に有害な物質が多量に含有されるため、 他の地域では実用化 できないという問題がある。 発明の開示 In addition, as a method of using the underground coal seam as it is, gasification by igniting the underground coal seam and burning it incompletely is performed in Russia, but it is harmful to the environment such as Ichidani Carbon. There is a problem that it cannot be put to practical use in other areas due to the large amount of such substances. Disclosure of the invention
本発明はこのような事情に鑑み、 炭層又は地下有機物 ·化石有機物を含む地下 の岩体をできるだけ低コストで且つ安全に有効利用することができる非燃焼方式 原位置炭層ガス化回収方法及び非燃焼方式地下有機物 ·化石有機物原位置ガス化 回収方法を提供することを目的とする。 In view of such circumstances, the present invention provides a non-combustion type in-situ coal seam gasification and recovery method and a non-combustion method that can effectively and efficiently use coal beds or underground rocks containing underground organic matter and fossil organic matter at the lowest possible cost and safely. Method Underground organic matter · Fossil organic matter in-situ gasification It is intended to provide a method of recovery.
前記目的を達成するために研究を重ねた結果、 火力発電所等の廃ガスからアミ ン法で形成される高純度の二酸化炭素は 31. 1°C、 7. 39MP aという比較 的穏和な条件で超臨界状態になることに着目し、 このような超臨界二酸化炭素を 利用すれば石炭を地下に埋蔵したまま、 地下の炭層から揮発成分を抽出 ·回収す ることができ、 且つ二酸化炭素は地下の炭層に固定化できるということを知見し 、 本発明を完成させた。
かかる本発明の第 1の態様は、 地下の炭層をガス化して回収する非燃焼方式原 位置炭層ガス化回収方法であって、 地上から地下の炭層へ超臨界二酸化炭素を圧 入し、 これにより当該炭層から抽出された揮発成分を地上へ回収することを特徴 とする非燃焼方式原位置炭層ガス化回収方法にある。 As a result of repeated studies to achieve the above objectives, high-purity carbon dioxide formed by the amine method from waste gas from thermal power plants was relatively mild under conditions of 31.1 ° C and 7.39 MPa. With the use of such supercritical carbon dioxide, it is possible to extract and recover volatile components from underground coal seams while burying coal underground. The present inventors have found that they can be immobilized on an underground coal seam, and have completed the present invention. The first aspect of the present invention is a non-combustion type in-situ coal seam gasification and recovery method for gasifying and recovering an underground coal seam, injecting supercritical carbon dioxide from the ground into an underground coal seam. A non-combustion in-situ coal seam gasification and recovery method characterized by recovering volatile components extracted from the coal seam to the ground.
かかる第 1の態様では、 地下の炭層へ超臨界二酸化炭素を圧入して浸透させて 揮発成分を抽出することにより、 炭層を採掘することなく且つ非燃焼方式で有効 利用することができる。 In the first embodiment, the supercritical carbon dioxide is injected into the underground coal seam and infiltrated to extract volatile components, so that the coal seam can be effectively used without mining and in a non-combustion system.
本発明の第 2の態様は、 第 1の態様において、 前記揮努成分と共に存在する二 酸ィ匕炭素を前記炭層中へ浸透させて固定ィヒさせるようにすることを特徴とする非 燃焼方式原位置炭層ガス化回収方法にある。 A second aspect of the present invention is the non-combustion method according to the first aspect, wherein the carbon dioxide present together with the volatile component is permeated into the coal seam and fixed. In-situ coal seam gasification and recovery method.
かかる第 2の態様では、 超臨界二酸化炭素の圧入により炭層から抽出された、 二酸化炭素と共に存在する揮発成分から、 二酸化炭素のみを炭層に固定化させる ことにより揮発成分を取り出すことができ、 且つ不要な二酸化炭素を地下に固定 化することができる。 In the second aspect, the volatile components extracted from the coal seam by the injection of supercritical carbon dioxide and present together with the carbon dioxide can be taken out by immobilizing only carbon dioxide in the coal seam, and unnecessary. Carbon dioxide can be fixed underground.
本発明の第 3の態様は、 第 1又は 2の態様において、 前記炭層から抽出された 前記揮発成分を圧入された二酸化炭素と共に当該炭層中へ浸透させて、 当該炭層 へ前記二酸化炭素を吸着させて固定化すると共に前記揮発成分をガス化させ、 こ れにより生成した炭化水素系ガスを回収するようにすることを特徴とする非燃焼 方式原位置炭層ガス化回収方法にある。 According to a third aspect of the present invention, in the first or second aspect, the volatile component extracted from the coal seam is permeated into the coal seam together with the injected carbon dioxide, and the carbon dioxide is adsorbed on the coal seam. A non-combustion in-situ coal seam gasification and recovery method characterized in that the volatile components are gasified and the hydrocarbon-based gas generated thereby is recovered.
かかる第 3の態様では、 超臨界二酸化炭素により抽出された揮発成分を炭層中 の微生物等によりガス化させた後、 炭化水素系ガスとして回収するので、 回収し た後の利用までの処理が容易となる。 In the third aspect, the volatile components extracted by the supercritical carbon dioxide are gasified by microorganisms in the coal seam, and then recovered as a hydrocarbon-based gas. Becomes
'—本発明の第 4の態様は、 第 3の態様において、 前記揮発成分が前記炭層中でガ ス化する反応を促進するガス化促進剤を地上から当該炭層中へ導入することを特 徴とする非燃焼方式原位置炭層ガス化回収方法にある。 '—A fourth aspect of the present invention is the fourth aspect, characterized in that, in the third aspect, a gasification accelerator that promotes a reaction in which the volatile component gasifies in the coal seam is introduced into the coal seam from the ground. In-situ coal bed gasification and recovery method.
かかる第 4の態様では、 ガス化促進剤を導入することにより、 炭層中での揮発 成分のガス化を促進し、 揮発成分の有効利用を促進することができる。 In the fourth aspect, by introducing the gasification accelerator, gasification of volatile components in the coal seam can be promoted, and effective utilization of the volatile components can be promoted.
本発明の第 5の態様は、 第 4の態様において、 前記ガス化促進剤として、 微生 物及び酵素の少なくとも一方を用いることを特徴とする非燃焼方式原位置炭層ガ
ス化回収方法にある。 A fifth aspect of the present invention is the non-combustion in-situ coal seam gas according to the fourth aspect, wherein at least one of a microorganism and an enzyme is used as the gasification accelerator. In the recovery method.
力かる第 5の態様では、 炭層中へ微生物又は酵素を導入することにより、 炭層 中での揮発成分のガス化を促進することができる。 In the powerful fifth embodiment, gasification of volatile components in the coal seam can be promoted by introducing microorganisms or enzymes into the coal seam.
本発明の第 6の態様は、 第 1〜 5の何れかの態様において、 前記炭層から抽出 された前記揮発成分の回収に先立つて当該炭層に吸着されていたメタンを回収す ることを特徴とする非燃焼方式原位置炭層ガス化回収方法にある。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, prior to the recovery of the volatile components extracted from the coal seam, methane adsorbed on the coal seam is recovered. Non-combustion in-situ coal seam gasification and recovery method.
かかる第 6の態様では、 ·炭層中に超臨界二酸化炭素を圧入し始めてから揮発成 分が回収できるようになるまでに長期間かかるが、 その比較的初期段階でメタン を回収することにより、 炭層を比較的早期に有効利用することができる。 In the sixth embodiment, it takes a long time from the start of injection of supercritical carbon dioxide into the coal seam to the time when volatile components can be recovered.However, by recovering methane at a relatively early stage, Can be used effectively relatively early.
本発明の第 7の態様は、 第 1〜6の何れかの態様において、 前記炭層へ前記超 臨界二酸化炭素を圧入する際に当該炭層に割れ gが形成されるようにして当該超 臨界二酸ィヒ炭素の浸透性を向上させることを特徴とする非燃焼方式原位置炭層ガ ス化回収方法にある。 According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the supercritical diacid is formed such that a crack g is formed in the coal bed when the supercritical carbon dioxide is injected into the coal bed. A non-combustion type in-situ coal seam gasification and recovery method characterized by improving the permeability of carbon.
かかる第 7の態様では、 超臨界二酸化炭素が炭層に形成された割れ目から炭層 中へ有効に浸透し、 揮発成分の抽出を有効に行うことができる。 In the seventh aspect, the supercritical carbon dioxide effectively penetrates into the coal seam from the crack formed in the coal seam, and the volatile component can be effectively extracted.
本発明の第 8の態様は、 第:!〜 7の.何れかの態様において、 前記超臨界二酸化 炭素と共に砂を前記炭層へ圧入することを特徴とする非燃焼方式原位置炭層ガス 化回収方法にある。 According to an eighth aspect of the present invention, there is provided: 7. The non-combustion type in-situ coal seam gasification and recovery method according to any one of the aspects 7, wherein sand is injected into the coal seam together with the supercritical carbon dioxide.
力かる第 8の態様によれば、 超臨界二酸化炭素と共に砂を圧入することにより 、 炭層へ微小な割れ目を形成することができ、 また、 炭層が収縮しそうな段階で 注入すると浸透性を維持したまま収縮が防止され、 これに起因する地盤沈下を防 ぐことができる。 According to the eighth aspect which is powerful, by injecting sand together with supercritical carbon dioxide, it is possible to form minute cracks in the coal seam, and when the coal seam is injected at a stage where it is likely to contract, the permeability is maintained. Shrinkage is prevented as it is, and land subsidence due to this can be prevented.
本発明の第 9の態様は、 地下有機物 ·化石有機物をガス化して回収する非燃焼 方式地下有機物 ·化石有機物原位置ガス化回収方法であって、 地上から地下有機 物 ·化石有機物を含む地下の岩体へ超臨界二酸化炭素を圧入し、 これにより当該 岩体に含まれる地下有機物 ·化石有機物から抽出された揮発成分を地上へ回収す ることを特徴とする非燃焼方式地下有機物 ·化石有機物原位置ガス化回収方法に ある。 A ninth aspect of the present invention is a non-combustion type underground organic matter / fossil organic matter in-situ gasification and recovery method for gasifying and recovering underground organic matter and fossil organic matter, comprising: Non-combustible underground organic matter and fossil organic matter raw material characterized by injecting supercritical carbon dioxide into the rock body and thereby recovering underground organic matter and fossil organic matter contained in the rock body to the ground In-situ gasification recovery method.
かかる第 9の態様では、 地下有機物 ·化石有機物を含む地下の岩体へ超臨界二
酸化炭素を圧入して浸透させて揮発成分を抽出することにより、 採掘することな く、 地下有機物 ·化石有機物から抽出された揮発成分を非燃焼方式でガス化回収 することができる。 . ― In the ninth aspect, supercritical secondary rocks are added to underground rocks containing underground organic matter and fossil organic matter. Volatile components extracted from underground organic matter and fossil organic matter can be gasified and recovered without mining by injecting carbon oxide and infiltrating to extract volatile components without mining. . ―
本発明の第 1 0の態様は、 第 9の態様において、 前記地下有機物 ·化石有機物 力 天然に埋没した生物遺骸及ぴ排泄物、 又はこれら生物遺骸及ぴ排泄物が圧力 、 熱及び微生物の少なくとも一種の作用で変質して生じた炭質物、 油質物及び炭 化水素の少なくとも一種、 又は人為的に地下空隙及ぴ空洞中に注入されたバイオ マス及び有機廃棄物の少なくとも一種、 又はこれらの複合物であることを特徴と する非燃焼方式地下有機物 ·化石有機物原位置ガス化回収方法にある。 According to a tenth aspect of the present invention, in the ninth aspect, the underground organic matter / fossil organic matter strength is a natural buried biological remains and excreta, or these biological remains and excrement are at least pressure, heat and microorganisms. At least one of carbonaceous matter, oily matter, and hydrocarbon generated by a kind of action, or at least one of biomass and organic waste artificially injected into underground cavities and cavities, or a combination thereof Non-combustible underground organic matter and fossil organic matter in-situ gasification and recovery method, which is characterized by being a substance.
かかる第 1 0の態様では、 地下に埋もれる天然に埋没した生物遺骸及び排泄物 In the tenth aspect, naturally buried biological remains and excrement buried underground
、 又はこれら生物遺骸及び排泄物が圧力、 熱及び微生物の少なくとも一種の作用 で変質して生じた炭質物、 油質物及び炭化水素の少なくとも一種、 又は人為的に 地下空隙及び空洞中に注入されたバイオマス及び有機廃棄物の少なくとも一種か ら揮発成分を回収することができる。 , Or at least one of carbonaceous matter, oily matter, and hydrocarbons resulting from the transformation of these biological remains and excrement by the action of at least one of pressure, heat and microorganisms, or artificially injected into underground cavities and cavities Volatile components can be recovered from at least one of biomass and organic waste.
本発明の第 1 1の態様は、 第 9又は 1 0の態様において、 前記揮発成分と共に 存在する二酸化炭素を前記岩体中へ浸透させて固定化させるようにすることを特 徴とする非燃焼方式地下有機物 ·化石有機物原位置ガス化回収方法にある。 かかる第 1 1の態様では、 超臨界二酸化炭素の圧入により岩体から抽出された 、 二酸ィヒ炭素と共に存在する揮発成分から、 二酸化炭素のみを岩体に固定ィヒさせ ることにより揮発成分を取り出すことができ、 且つ不要な二酸化炭素を地下に固 定化することができる。 The eleventh aspect of the present invention is the non-combustion method according to the ninth or tenth aspect, characterized in that carbon dioxide present together with the volatile component is permeated into the rock body to be fixed. Method Underground organic matter ・ Fossil organic matter in-situ gasification and recovery method. In the eleventh embodiment, the volatile component extracted from the rock by the injection of supercritical carbon dioxide and fixed together with carbon dioxide alone from the volatile component present together with carbon dioxide is used to fix the volatile component. Can be taken out and unnecessary carbon dioxide can be fixed underground.
本発明の第 1 2の態様は、 第 9〜1 1の何れかの態様において、 前記揮発成分 が前記岩体中でガス化する反応を促進するガス化促進剤を地上から当該岩体中へ 導入することを特徴とする非燃焼方式地下有機物 ·化石有機物原位置ガス化回収 方法にある。 According to a twelfth aspect of the present invention, in any one of the ninth to eleventh aspects, a gasification accelerator that promotes a reaction in which the volatile component gasifies in the rock body is introduced into the rock body from the ground. Non-combustible underground organic matter and fossil organic matter in-situ gasification and recovery method characterized by introduction.
かかる第 1 2の態様では、 ガス化促進剤を導入することにより、 地下有機物 · 化石有機物中での揮発成分のガス化を促進し、 揮発成分の有効利用を促進するこ とができる。 In the first and second aspects, by introducing a gasification accelerator, gasification of volatile components in underground organic matter and fossil organic matter can be promoted, and effective utilization of volatile components can be promoted.
本発明の第 1 3の態様は、 第 1 2の態様において、 前記ガス化促進剤として、
微生物及び酵素の少なくとも一方を用いることを特徴とする非燃焼方式地下有機 物 ·化石有機物原位置ガス化回収方法にある。 According to a thirteenth aspect of the present invention, in the thirteenth aspect, as the gasification accelerator, An in-situ gasification and recovery method for underground organic matter and fossil organic matter, wherein at least one of a microorganism and an enzyme is used.
かかる第 1 3の態様では、 地下有機物 ·化石有機物中へ微生物又は酵素を導入 することにより、 岩体中での揮発成分のガス化を促進することができる。 In the thirteenth aspect, gasification of volatile components in the rock can be promoted by introducing microorganisms or enzymes into underground organic matter and fossil organic matter.
かかる本発明は、 二酸化炭素が比較的超臨界状態になりやすく、 超臨界二酸化 炭素を地下の炭層に接触させることにより、 非燃焼方式原位置により炭層から揮 発成分を抽出することができ、 また、 注入した二酸化炭素は炭層に固定化するこ とができるので、 揮発成分のみを回収することができ、 さらに、 揮努成分は炭層 を浸透させることによりガス化させて回収することができるという多くの新たな 知見により実現されたものであり、 地下の炭層を採掘することなくあるいは探掘 不可能な地下深部の炭層を、 燃焼方式のように有害物質を出すことなく環境に優 しい方式で有効利用することができるという効果を奏する。 また、 同時に、 ォゾ ン層破壊等により問題となっている二酸化炭素を地下に固定化することができる という効果も奏する。 In the present invention, carbon dioxide is relatively easily placed in a supercritical state, and by contacting supercritical carbon dioxide with an underground coal seam, volatile components can be extracted from the coal seam in situ by a non-combustion method. However, since the injected carbon dioxide can be immobilized on the coal seam, only the volatile components can be recovered, and the volatile components can be gasified and recovered by permeating the coal seam. This is realized by the new knowledge of, and is effective in an environmentally friendly manner without mining the underground coal seam or excavating unexcavated deep coal seams without emitting harmful substances like combustion method It has the effect that it can be used. At the same time, carbon dioxide, which is a problem due to destruction of the ozone layer, can be fixed underground.
また、 地下有機物 ·化石有機物である泥炭やオイルサンド等は、 石炭と同様に メタンガスなどの揮 ¾成分にガス化させることができ、 同様に超臨界二酸化炭素 を用いて揮発成分としてエネルギーとして回収可能である。 なお、 泥炭やオイル サンド等の地下有機物 ·化石有機物は、 石炭と比較すると品位が落ちるが、 石炭 の数十倍と予測されるように、 資源量が多いので、 これらを有効活用することに よりエネルギー問題を解決することが可能である。 Underground organic matter and fossil organic matter, such as peat and oil sands, can be gasified into volatile components such as methane gas in the same way as coal, and can be recovered as energy as volatile components using supercritical carbon dioxide. It is. Underground organic matter such as peat and oil sands and fossil organic matter have lower grades than coal, but they are expected to be several tens of times more expensive than coal. It is possible to solve energy problems.
以上説明したように、 本発明によると、 地上から地下の炭層又は地下有機物 · 化石有機物を含む地下の岩体へ超臨界二酸化炭素を圧入し、 これにより当該炭層 又は地下有機物 ·化石有機物を含む地下の岩体から揮発成分を抽出し、 これを地 上へ回収することができるので、 非燃焼方式原位置で、 低コストで且つ安全に炭 層又は地下有機物 ·化石有機物を含む地下の岩体を非燃焼方式で有効利用するこ とができるという効果を奏する。 図面の簡単な説明 As described above, according to the present invention, supercritical carbon dioxide is injected from above the ground to an underground coal seam or an underground rock containing underground organic matter and fossil organic matter, whereby the underground seawater containing the coal seam or underground organic matter and fossil organic matter is injected. Volatile components can be extracted from the rocks of this area and recovered on the ground, so that in-situ non-combustion systems can safely and inexpensively remove underground rocks containing coal seams or underground organic matter and fossil organic matter. This has the effect that it can be used effectively in a non-combustion system. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施形態に係る非燃焼方式原位置ガス化回収システムの
概略構成を示す図である。 FIG. 1 shows a non-combustion in-situ gasification and recovery system according to an embodiment of the present invention. It is a figure showing a schematic structure.
第 2図は、 本発明の一実施例に係る非燃焼方式原位置ガス化回収システムを用 いたガス回収の状態を概念的に示す図である。 本発明を実施するための最良の形態 FIG. 2 is a diagram conceptually showing a state of gas recovery using a non-combustion in-situ gasification recovery system according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明では、 まず、 地下の炭層に直接、 超臨界二酸化炭素を圧入し、 石炭と超 臨界二酸化炭素とを反応させて揮発成分を抽出する。 In the present invention, first, supercritical carbon dioxide is directly injected into an underground coal seam, and the coal is reacted with the supercritical carbon dioxide to extract volatile components.
本努明で炭層とは、 地下に存在する石炭からなる地層 (石炭層) をいい、 その 種類は特に限定されない。 炭層としては、 れき青炭、 亜れき青炭、 褐炭、 亜炭、 無煙炭などを挙げることができるが、 れき青炭が最も揮発成分が多く最適である 本発明においては、 炭層に到達した際に超臨界二酸化炭素とするためには高圧 が必要であり、 また、 炭層自体が圧入された超臨界二酸ィヒ炭素の圧力に耐えなけ ればならないので、 ある程度の深さにある炭層である必要がある。 従って、 深度 5 0 0 m〜3 0 0 O m程度の炭層、 好ましくは 1 0 0 O m前後の炭層を対象とす る。 すなわち、 二酸ィ匕炭素が炭層に圧入されて浸透していくときに超臨界二酸ィ匕 炭素となるような高圧を確保するためには深度が大きい方が好ましく、 この点か らは 5 0 O m以上の深度を有するのがよい。 また、 地下 4 0 O m以上となると、 炭層を含む岩盤の圧力 (静岩圧) は通常 8 M P a以上であるので、 超臨界二酸ィ匕 炭素の圧力に十分耐えることができる。 In this effort, a coal seam refers to a stratum (coal seam) composed of underground coal, and its type is not particularly limited. Examples of the coal bed include bituminous coal, sub-bituminous coal, lignite, lignite, anthracite, etc., but bituminous coal is the most volatile component and is most suitable in the present invention. High pressure is required to obtain supercritical carbon dioxide, and the coal seam itself must withstand the pressure of the injected supercritical carbon dioxide. is there. Therefore, a coal seam with a depth of about 500 to 300 Om, preferably about 100 Om, is targeted. In other words, it is preferable that the depth is large in order to secure a high pressure at which the carbon dioxide becomes supercritical when the carbon dioxide is injected into and penetrated into the coal seam. It should have a depth of 0 Om or more. When the pressure is 40 Om or more underground, the pressure of the bedrock including the coal seam (static rock pressure) is usually 8 MPa or more, so that it can sufficiently withstand the pressure of the supercritical carbon dioxide.
本発明において、 超臨界二酸化炭素とは、 超臨界状態となった二酸化炭素であ り、 9 9 . 9 %以上の二酸化炭素は、 温度 3 1 . 1 °C以上、 圧力 7 . 3 9 M P a 以上の条件下で超臨界状態となる。 炭層に超臨界二酸化炭素を圧入するとは、 少 なくとも炭層と接触する段階で超臨界二酸化炭素となっていればよく、 地上から 超臨界二酸化炭素となっている必要はない。 従って、 炭層に圧入された際に上記 条件を越えていればよいことになる。 勿論、 地上から超臨界二酸化炭素であって あよい。 In the present invention, supercritical carbon dioxide is carbon dioxide in a supercritical state, and 99.9% or more of carbon dioxide has a temperature of 31.1 ° C or more and a pressure of 7.39 MPa. A supercritical state is established under the above conditions. To inject supercritical carbon dioxide into a coal seam, it is sufficient that supercritical carbon dioxide is converted at least at the stage of contact with the coal seam, and it is not necessary to convert supercritical carbon dioxide from the ground. Therefore, it is only necessary to exceed the above conditions when injected into the coal seam. Of course, it may be supercritical carbon dioxide from the ground.
本発明では、 高純度の二酸化炭素を所定の圧力及び温度で注入することにより
、 超臨界二酸化炭素を炭層に圧入する。 高純度とは 9 9 %以上であり、 好ましく は 9 9 . 9 %以上である。 なお、 9 9 %以下でもさらに高温高圧とすれば超臨界 二酸化炭素とすることができるが、 注入条件が過酷になるので、 9 9 %以上の高 純度二酸化炭素を用いるのが好ましい。 In the present invention, by injecting high-purity carbon dioxide at a predetermined pressure and temperature, Inject supercritical carbon dioxide into the coal seam. High purity is at least 99%, preferably at least 99.9%. It is to be noted that supercritical carbon dioxide can be obtained at a high temperature and high pressure even if it is not more than 99%, but it is preferable to use high purity carbon dioxide of not less than 99% because the injection condition becomes severe.
このような高純度の二酸化炭素は、 火力発電所や工場の廃ガスから分離回収す ることができる。 このような設備からの二酸化炭素の分離回収は現在でも行われ ており、 回収された二酸ィ匕炭素は場合によっては海中や地中に投棄されるもので あるが、 本発明ではこのような二酸化炭素をそのまま、 あるいは純度を多少高め て利用することができる。 なお、 高純度の二酸化炭素は、 モノエタノールァミン 等のァミンに吸収させて回収するァミン法により比較的容易に得ることができる 本発明では、 炭層に到達する二酸ィ匕炭素注入管を設置し、 少なくとも炭層に圧 入される際に超臨界状態となる圧力及び温度で高純度二酸化炭素を圧入する。 圧 入条件は、 炭層の深さ'等により異なるが、 例えば、 深度 5 0 0 mの場合、 注入圧 力は 1 O M P aで温度は 4 0 °C程度でよいと考えられる。 この場合、 注入された 二酸ィヒ炭素は、 圧入点では注入圧及び温度と同程度であって超臨界状態となるが 、 圧入点から数十メートル離れると 5 M P a及び 3 0 °C程度に低下すると予想さ れる。 また、 深度 1 0 0 O mの場合、 注入圧力は 1 5 M P aで温度は 5 0 °C程度 でよいと考えられる。 この場合、 注入された二酸化炭素は、 圧入点では、 注入圧 及び温度と同じであって超臨界状態となり、 また、 圧入点から数十メートル離れ ても 1 O M P a及び 4 0 °C程度であり、 未だ超臨界状態を維持していると予想さ れる。 さらに、 深度 3 0 0 0 mの場合、 注入圧力は 3 5 M P aで温度は 1 0 0 °C 程度でよいと考えられる。 この場合、 注入された二酸化炭素は、 圧入点では、 注 入圧及び温度と同じ程度で超臨界状態であり、 また、 圧入点から数十メートル離 れても、 3 0 M P a及び 9 0 °C程度に低下するだけであり、 超臨界状態を維持し ていると予想される。 Such high-purity carbon dioxide can be separated and recovered from waste gas from thermal power plants and factories. The separation and recovery of carbon dioxide from such equipment is still performed today, and the recovered carbon dioxide is sometimes dumped into the sea or underground. Carbon dioxide can be used as it is or with a slightly higher purity. In addition, high-purity carbon dioxide can be relatively easily obtained by an amine method of absorbing and recovering amines such as monoethanolamine. In the present invention, a carbon dioxide injection pipe that reaches a coal seam is installed. Then, high-purity carbon dioxide is injected at a pressure and temperature at which the supercritical state is reached at least when injected into the coal seam. The injection conditions differ depending on the depth of the coal seam, etc. For example, when the depth is 500 m, it is considered that the injection pressure is 1 OMPa and the temperature is about 40 ° C. In this case, the injected carbon dioxide is in a supercritical state at the injection point at the same level as the injection pressure and temperature, but at a distance of several tens of meters from the injection point, about 5 MPa and 30 ° C Is expected to decline to In the case of a depth of 100 Om, it is considered that the injection pressure should be 15 MPa and the temperature should be about 50 ° C. In this case, the injected carbon dioxide is in the supercritical state at the injection point, the same as the injection pressure and temperature, and is about 1 OMPa and about 40 ° C even several tens of meters away from the injection point. However, it is expected that the supercritical state is still maintained. Furthermore, in the case of a depth of 300 m, the injection pressure may be 35 MPa and the temperature may be about 100 ° C. In this case, the injected carbon dioxide is in a supercritical state at the injection point at the same level as the injection pressure and temperature, and even at a distance of several tens of meters from the injection point, 30 MPa and 90 ° It is only reduced to about C, and it is expected that the supercritical state is maintained.
このように炭層に超臨界二酸ィ匕炭素を圧入し、 浸透させることにより、 石炭か ら揮発成分が抽出される。 超臨界二酸ィヒ炭素により石炭からタールなどの揮発成 分を抽出する技術自体は知られているが、 二酸化炭素を超臨界状態として石炭に
接触させるために、 高温高圧に耐える大型装置を必要とし、 また、 抽出された揮 発成分に多量の二酸化炭素が混入してしまうため、 抽出した揮発成分の有効利用 が困難である等の大きな問題があった。 し力 しながら、 本発明では、 地下の炭層 に直接超臨界二酸化炭素を浸透させるという手法を採用することにより、 高温高 圧に耐える大型装置が必要なく、 また、 炭層に浸透させた二酸化炭素は当該炭層 へ固定化することにより除去できるので、 揮発成分の回収も比較的容易に行うこ とができるという利点がある。 By injecting supercritical diacid carbon into the coal bed and infiltrating it as described above, volatile components are extracted from the coal. Although the technology for extracting volatile components such as tar from coal using supercritical carbon dioxide is known, coal is converted to supercritical carbon dioxide to form coal. Large problems that require large equipment that can withstand high temperature and high pressure in order to contact, and that a large amount of carbon dioxide is mixed into the extracted volatile components make it difficult to use the extracted volatile components effectively. was there. However, the present invention adopts a method of infiltrating supercritical carbon dioxide directly into an underground coal seam, eliminating the need for a large-scale device capable of withstanding high temperatures and pressures. Since it can be removed by immobilization on the coal bed, there is an advantage that the recovery of volatile components can be performed relatively easily.
本発明において、 超臨界二酸化炭素の炭層への圧入は、 炭層のできるだけ全体 へ超臨界二酸化炭素を有効に浸透させるように行うものであればその方法は特に 限定されない。 例えば、 超臨界二酸化炭素の圧入は、 一力所から行ってもよいし 、 複数箇所から行ってもよく、 また、 圧入点から炭層全体へ浸透していくように 、 圧入点の周囲の炭層に多数の割れ目を形成するように圧入するのが好ましい。 すなわち、 二酸化炭素の圧入の初期段階では圧力を高めることにより炭層を粉砕 して多数の割れ目を形成するようにするのが好ましい。 また、 必要に応じて砂な どを混入させて割れ目の閉塞を防ぎ、 二酸ィ匕炭素を長い期間にわたり広い範囲に 浸透するようにするのが好ましい。 In the present invention, the method of injecting supercritical carbon dioxide into the coal seam is not particularly limited as long as supercritical carbon dioxide is effectively penetrated as much as possible throughout the coal seam. For example, the injection of supercritical carbon dioxide may be performed from a single point or may be performed from a plurality of places. It is preferable to press-fit so as to form a large number of cracks. That is, in the initial stage of carbon dioxide injection, it is preferable to increase the pressure to pulverize the coal seam to form a large number of cracks. It is also preferable to mix sand or the like as necessary to prevent clogging of the cracks, and to allow the carbon dioxide to penetrate into a wide range over a long period of time.
超臨界二酸 fli炭素の圧入点と揮発成分の回収点とは二酸化炭素が炭層に吸着し て取り除かれるに十分な距離 (少なくとも数十 m) 以上離す必要がある。 例えば 、 炭層の深部に超臨界二酸ィヒ炭素を圧入して同一領域の浅部から揮発成分を回収 するようにしてもよいし、 平面的に延びる炭層の一端から超臨界二酸化炭素を圧 入して離れた領域の他端から揮発成分を回収するようにしてもよく、 深部から浅 部まで傾斜して平面的に延びる炭層である場合には深部の領域で圧入して浅部で 揮発成分を回収するようにするのが好ましい。 The point of injection of the supercritical diacid fli carbon and the point of recovery of volatile components must be separated by a distance (at least several tens of meters) sufficient for carbon dioxide to be adsorbed and removed from the coal seam. For example, supercritical carbon dioxide may be injected into the deep part of the coal seam to recover volatile components from the shallow part of the same area, or supercritical carbon dioxide may be injected from one end of the flatly extending coal seam. Volatile components may be recovered from the other end of the distant region.If the coal seam is inclined from the deep portion to the shallow portion and extends in a plane, the volatile component is injected at the deep portion and injected into the shallow portion. Is preferably recovered.
超臨界二酸化炭素により抽出された揮発成分は地下水と共存した状態で回収し てもよいが、 ガス化したものを回収するようにしてもよい。 何れの場合も炭層を 浸透させた後に回収することにより、 混合状態で存在した二酸化炭素のみが炭層 に選択的に吸着 ·固定ィヒされて除去され、 二酸化炭素の含有量が低減した又は除 去された揮発成分を回収することができる。 - また、 抽出された揮発成分は、 炭層中を浸透していく際に微生物の作用により
ガス化されるので、 ガス化された後に、 メタンなどの炭化水素系ガスとして回収 するのが好ましい。 このようにガス化させて炭化水素系ガスとして回収するため には、 長い間炭層中を浸透させた後に回収する必要があるが、 このガス化を促進 するために、 ガス化促進剤を地上から導入するようにしてもよい。 Volatile components extracted by supercritical carbon dioxide may be recovered in the state where they coexist with groundwater, or gasified ones may be recovered. In any case, by recovering after infiltrating the coal seam, only the carbon dioxide present in the mixed state is selectively adsorbed and fixed on the coal seam and removed, thereby reducing or removing the carbon dioxide content. Volatile components thus obtained can be recovered. -In addition, the volatile components extracted by microorganisms when penetrating the coal seam Since it is gasified, it is preferable to recover it as a hydrocarbon gas such as methane after gasification. In order to gasify and recover as a hydrocarbon-based gas in this way, it is necessary to infiltrate the coal seam for a long time and then recover it.However, in order to promote this gasification, a gasification accelerator must be removed from the ground. It may be introduced.
ここで、 ガス化促進剤とは、 タールなどの揮発成分を分解してガス化させる微 生物や酵素などであり、 '比較的高温で活動できる嫌気性微生物であり、 例えば、 Metnanobacterium 丄' hermoautotrophicumや Methanococcus Jannaschiiなどのメタ ン生成菌が好適である。 メタン生成菌以外の嫌気性微生物としては、 メタン生成 菌の補助的な役割をするもので、 メタン生成はできないが中間段階の有機酸や水 素を生産するものとして、 水素生成酢酸生成細菌と総称される細菌群などを挙げ ることができる。 Here, gasification promoters are microorganisms and enzymes that decompose and gasify volatile components such as tar, and are anaerobic microorganisms that can operate at relatively high temperatures, such as Metnanobacterium 丄 'hermoautotrophicum and Methanogenic bacteria such as Methanococcus Jannaschii are preferred. Anaerobic microorganisms other than methanogens play a supplementary role of methanogens, and cannot produce methane but produce intermediate-stage organic acids and hydrogen. Bacteria group to be used.
なお、 ガス化促進剤の導入方法は特に限定されず、 抽出された揮発成分と接触 するように存在させるようにすればよく、 二酸化炭素注入管を使用して導入する ようにしてもよいし、 別途注入管を設けて導入するようにしてもよい。 The method of introducing the gasification accelerator is not particularly limited, and may be present so as to be in contact with the extracted volatile component, and may be introduced using a carbon dioxide injection pipe, A separate injection tube may be provided for introduction.
さらに、 本発明では、 揮発成分、 特に揮発成分がガス化した炭化水素系ガスを 回収できるようになるまでの間、 炭層中に天然に吸着されているメタンを得るこ とができるという利点がある。 すなわち、 超臨界二酸化炭素の導入を蘭始した後 揮発成分、 特に炭化水素系ガスを回収できるようになるまで比較的長い期間を 必要とするが、 それまでの間、 天然の吸着メタンガスを得ることにより、 比較的 早期から有用ガスの供給を開始することができるという利点がある。 Further, in the present invention, there is an advantage that methane naturally adsorbed in the coal seam can be obtained until a volatile component, particularly a hydrocarbon-based gas in which the volatile component has been gasified, can be recovered. . In other words, after the introduction of supercritical carbon dioxide, it takes a relatively long time until volatile components, especially hydrocarbon gas, can be recovered. This has the advantage that the supply of useful gas can be started relatively early.
本発明方法により得ることができる炭化水素系ガスをメタン量として推定する と、 例えば、 メタン吸着量が多い北海道石狩炭田の石炭と同等として推定すると 、 初期の吸着メタンの回収においては石炭 1 t当たり最大 1 2 . 5立方メートル のメタン量であるが、 その後、 超臨界二酸化炭素で抽出し且つガス化して回収す る場合を考えると、 石炭 1 t当たり推定 5 3 4立法メートル程度のメタン量を回 収できると推定できるので、 吸着メタンの回収のみと比較しても 4 0倍以上のメ タンを回収することができるという利点がある。 When the hydrocarbon-based gas obtainable by the method of the present invention is estimated as the amount of methane, for example, assuming that it is equivalent to the coal of the Ishikari Coalfield in Hokkaido, which has a large amount of methane adsorption, in the recovery of the initially adsorbed methane per ton of coal, Although the maximum amount of methane is 12.5 cubic meters, the amount of methane is estimated to be about 5334 cubic meters per tonne of coal, considering that it is then extracted with supercritical carbon dioxide and gasified and recovered. Since it can be estimated that methane can be recovered, there is an advantage that it is possible to recover methane more than 40 times compared to the recovery of adsorbed methane alone.
'さらに、 炭層に選択的に吸着された二酸ィ匕炭素は、 長期間経過後には好熱性メ タン生成菌によりメタン化されるので、 地下に注入した二酸化炭素もメタンとし
て順次回収することができる。 'Furthermore, since the carbon dioxide selectively adsorbed on the coal seam is methanated by thermophilic methane-producing bacteria after a long period of time, the carbon dioxide injected underground is converted to methane. Can be collected sequentially.
なお、 本発明方法により揮発成分を抽出し続けていくと炭層が収縮して地盤沈 下が発生する虞がある場合がある。 このような場合、 圧入する二酸化炭素に砂を 混入して炭層中に砂を導入するようにすればよい。 砂は炭層中の隙間に充填され て炭層の収縮を防止するが、 二酸化炭素が浸透されるための割れ目は開いたまま 残るので、 浸透性が維持されたまま ±也盤沈下が防止されるという効果を奏する。 以上説明したように、 本発明方法は、 炭層に超臨界二酸化炭素を導入して石炭 をメタンガス等の揮発成分にガス化して回収するものであるが、 石炭以外に泥炭 、 オイルサンド、 オイルシェール、 ガスシエール、 枯渴油田等の地下有機物 '化 石有機物のメタンガス化に適用可能である。 In addition, when the volatile component is continuously extracted by the method of the present invention, there is a possibility that the coal seam may contract and land subsidence may occur. In such a case, sand may be mixed with the injected carbon dioxide to introduce sand into the coal seam. Sand fills the gaps in the coal seam to prevent the coal seam from shrinking, but the cracks remain open for carbon dioxide to penetrate, so that the permeation is maintained and ± Yanban settlement is prevented. It works. As described above, in the method of the present invention, supercritical carbon dioxide is introduced into a coal seam to gasify coal into volatile components such as methane gas and collect it. In addition to coal, peat, oil sand, oil shale, It is applicable to gasification of fossil organic matter into methane, such as underground organic matter such as gas siere and garland oil field.
ここで、 本発明方法が適用可能な地下有機物 ·化石有機物は、 生物の遺骸ゃ排 泄物が地下深くに埋もれて形成されたものである。 すなわち、 生物の遺骸や排泄 物が砂や泥と一緒に海底や湖沼底に堆積し、 次第に地下深くに埋もれると、 圧力 、 温度が上昇し、 さらに、 地下の微生物による発酵作用が働き、 生物の遺骸ゃ排 泄物などの有機物は次第に変質し、 石炭や石油に変化するが、 その途中で種々の 中間体も生成する。 例えば、 石炭に成りかけであり、 植物と石炭の中間のものが 泥炭 (ピート) であり、 例えば、 北海道の湿原に存在する。 また、 これに似たも のは亜炭などと呼ばれて束京や大阪な の各地の数百万年以内くらいの若い堆積 物中に多量に埋もれている。 一方、 石油に成りかけの油質物が砂岩や頁炭の粒子 の隙間に溜まっているものが、 オイルサンドやオイルシェールである。 これらは 油質物の粘性が高く、 岩石粒子の微細な隙間に入って粒子と密着しているため、 回収し難く、 資源としての利用はほとんど進んでいない。 また、 一般の油田でも 、 粘性の低い軽質油などはほとんど回収されるが、 アスファルト分などの粘性の 高い重質油は地下岩石の隙間に閉じこめられて回収し難いため、 枯渴油田層とし て地下に残っており、 人工的なオイルサンドに似た状態となっている。 なお、 ォ ィルサンドはカナダやべネズエラに多く存在し、 オイルシェールは、 中国などに 大量に存在する。 また、 枯渴油田は古い産油国に多いが、 日本にも多く存在する 。 さらに、 このような化石有機物や、 その変化した炭質物、 油質物は、 さらに、 温度 ·圧力 '微生物の作用で分解して、 二酸化炭素やメタンに分解し、 地下に生
息するメタン生成菌により究極的にはメタンガスに変化して地下に存在するが、 このようなメタンガスやメタンガスに変わる途上のものをガスシエールという。 本発明方法が適用可能な地下有機物 ·化石有機物は、 このような泥炭、 オイル サンド、 オイルシェール、 ガスシヱール、 枯渴油田等の地下有機物 '化石有機物 をいい、 これらは、 上述した炭層への超臨界二酸ィ匕炭素注入と同様に処理するこ とにより、 揮努成分、 好適にはメタンガスとして回収可能である。 また、 同様に 、 地下の砂層や炭層に注入した有機廃棄物やバイオマスも同様なプロセスでメタ ンガスなどの揮発成 として回収可能である。 Here, the underground organic matter / fossil organic matter to which the method of the present invention can be applied is formed by burying the remains of living things and excrement deep underground. In other words, if the remains and excrement of living things accumulate on the bottom of the sea or lake with sand and mud, and gradually become buried deep underground, the pressure and temperature will rise, and the fermentation action of microorganisms underground will work, Organic matter, such as human remains and excrement, is gradually transformed into coal and petroleum, and various intermediates are formed along the way. For example, coal is the origin, and peat (peat) is between plants and coal. For example, it exists in wetlands in Hokkaido. Similar ones are called lignite, etc., and are buried in large quantities in young sediments of less than a million years, such as in Sakagyo and Osaka. On the other hand, oil sands and oil shale are those in which oily substances that pretend to be oil accumulate in the gaps between sandstone and shale particles. These oily substances are highly viscous and enter the fine gaps between the rock particles and are in close contact with the particles, so it is difficult to collect them and their use as resources has hardly progressed. Also, in general oil fields, light oil with low viscosity is mostly recovered, but heavy oil with high viscosity such as asphalt is trapped in the gaps between underground rocks, making it difficult to recover. It remains underground and resembles an artificial oil sand. Oil sands are abundant in Canada and Venezuela, and oil shale is abundant in China and elsewhere. In addition, there are many dry fields in old oil-producing countries, but also in Japan. In addition, such fossil organic substances and their altered carbonaceous and oily substances are further decomposed by the action of temperature and pressure microorganisms, decomposed into carbon dioxide and methane, and produced underground. Depending on the methane-producing bacteria that live, it ultimately changes to methane gas and exists underground, but such methane gas and those that are changing to methane gas are called gas sires. Underground organic matter and fossil organic matter to which the method of the present invention can be applied include underground organic matter such as peat, oil sand, oil shale, gas seal, dead oil field and the like, and fossil organic matter. By treating in the same manner as in the injection of carbon dioxide, it is possible to recover as a gaseous component, preferably methane gas. Similarly, organic waste and biomass injected into an underground sand or coal seam can be recovered as volatiles such as methane gas by the same process.
すなわち、 本発明方法によると、 自然のプロセスのままでは長期間を要するガ ス化を、 超臨界二酸化炭素を岩体に注入して岩石粒子の隙間から有機物 ·炭質物 '油質物などの揮発成分を抽出し、 微生物による分解を促進する、 また、 必要に 応じて嫌気性細菌や酵母エキスなどのガスィヒ促進剤を添加してガス化を促進する ことができ、 また、 頁岩などの岩体、 炭質物による二酸化炭素の選択吸着により 、 揮発成分をメタンなどの炭化水素ガス富化状態とすることができ、 さらには、 好熱性メタン生成菌による二酸化炭素のメタン化によって、 メタンガスなどの揮 発性ガスを非燃焼方式で得ることができるという効果を奏する。 In other words, according to the method of the present invention, gasification that takes a long time in the natural process as it is, supercritical carbon dioxide is injected into the rock body, and volatile matter such as organic matter, carbonaceous matter, oily matter, etc. Can be extracted to promote decomposition by microorganisms.If necessary, gasification can be promoted by adding a gasifier such as an anaerobic bacterium or yeast extract. Volatile components can be enriched in hydrocarbon gas such as methane by selective adsorption of carbon dioxide by substances, and volatile gases such as methane gas can be generated by methanation of carbon dioxide by thermophilic methanogens. Can be obtained by a non-combustion method.
なお、 枯渴油層は、 石油を数百万年以上も貯留してきた実績があり、 二酸化炭 素貯留の場として最適であるが、 採取しきれない原油が半分以上も残されている ので、 二酸ィ匕炭素を圧入すると原油が劣化して資源破壌になるという反対意見が あつたが、 本発明方法を適用すると、 超臨界二酸化炭素を圧入することにより残 留原油も揮発成分としてガス化して回収することができるので、 資源の有効利用 につながるという効果を奏する。 The dead oil reservoir has been storing oil for more than several million years and is the best place to store carbon dioxide.However, since more than half of crude oil that cannot be collected remains, There was some opposition that the injection of Sani-Dani carbon would deteriorate the crude oil and result in resource destruction. However, when the method of the present invention was applied, by injecting supercritical carbon dioxide, the residual crude oil was also gasified as a volatile component. It is possible to recover resources by using them, which has the effect of leading to effective use of resources.
本発明方法を適用すると、 石炭以外に泥炭、 オイルサンド、 オイルシェール、 ガスシエール、 枯渴油田等の資源を有効利用しつつ、 二酸化炭素貯留の場として 利用でき、 温暖化防止に著しい効果を奏する。 By applying the method of the present invention, it is possible to effectively use resources such as peat, oil sand, oil shale, gas shale, and dead oil fields in addition to coal, and use it as a place for storing carbon dioxide, which has a remarkable effect on the prevention of global warming. .
(実施例) (Example)
以下、 本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be described based on examples.
第 1図は、'本発明方法を実施する一実施形態に係る非燃焼方式原位置炭層ガス 化回収システムを概念的に示す図である。
第 1図に示すように、 本実施形態の非燃焼方式原位置炭層ガス化回収システム では、 地下の炭層 1へ超臨界二酸化炭素を圧入して当該炭層 1から揮発成分を抽 出する揮発成分抽出手段として、 地表 2から炭層 1へ貫通する二酸化炭素注入管 1 1と、 この二酸化炭素注入管 1 1から所定の圧力で二酸ィ匕炭素を炭層 1中へ注 入する二酸化炭素注入装置 1 2とを具備する。 FIG. 1 is a diagram conceptually showing a non-combustion in-situ coal seam gasification and recovery system according to an embodiment for carrying out the method of the present invention. As shown in FIG. 1, in the non-combustion in-situ coal seam gasification and recovery system of this embodiment, the volatile component extraction is performed by injecting supercritical carbon dioxide into underground coal seam 1 and extracting volatile components from the coal seam 1. As means, a carbon dioxide injection pipe 11 penetrating from the ground surface 2 to the coal seam 1 and a carbon dioxide injection device 1 2 for injecting carbon dioxide into the coal seam 1 from the carbon dioxide injection pipe 11 at a predetermined pressure. And
ここで、 二酸化炭素注入装置 1 2は、 所定の純度の二酸化炭素を所定の圧力で 炭層 1へ注入することにより、 炭層 1に超臨界二酸ィ匕炭素を注入するものである 。 すなわち、 二酸ィ匕炭素は、 少なくもと炭層 1に注入される際に超臨界状態とな つていればよく、 地上で超臨界状態である必要はないが、 勿論、 地上から超臨界 二酸化炭素であってもよい。 Here, the carbon dioxide injecting device 12 injects supercritical carbon dioxide into the coal bed 1 by injecting carbon dioxide of a prescribed purity into the coal bed 1 at a prescribed pressure. That is, it is sufficient that the carbon dioxide is at least in a supercritical state when injected into the coal seam 1, and it is not necessary to be in a supercritical state on the ground. It may be carbon.
例えば、 圧入点の炭層 1の深度が 1 0 0 0 m程度とした場合、 例えば、 9 9 . 9 %純度の二酸ィヒ炭素を注入圧力 1 5 M P a、 温度 5 0 °C程度で注入する。 二酸化炭素注入装置 1 2に隣接して、 ガス化促進剤注入管 2 1及びガス化促進 剤注入装置 2 2が設けられている。 このガス化促進剤注入装置 2 2を用いてメタ ン^成菌などのガス化促進剤を導入する。 メタン生成菌などのガス化促進剤の耐 性が高いため、 ガス化促進剤注入管 2 1を省略して、 ガス化促進剤注入装置 2 2 から二酸化炭素注入管 1 1へガス化促進剤を注入することも可能である。 For example, when the depth of the coal seam 1 at the injection point is about 100 m, for example, carbon dioxide of 99.9% purity is injected at an injection pressure of 15 MPa and a temperature of about 50 ° C. I do. A gasification accelerator injection pipe 21 and a gasification accelerator injection device 22 are provided adjacent to the carbon dioxide injection device 12. A gasification accelerator such as methane-adhered bacteria is introduced using the gasification accelerator injection device 22. Since the gasification accelerator such as methane-producing bacteria has high resistance, the gasification accelerator injection pipe 21 is omitted, and the gasification accelerator is supplied from the gasification accelerator injection device 22 to the carbon dioxide injection pipe 11. It is also possible to inject.
ここで、 超臨界二酸化炭素やガス化促進剤の導入は連続的に行ってもよいが、 一般的には断続的に行えばよく、 導入条件、 導入間隔等は炭層 1の種類、 状態に よって設計する。 Here, the supercritical carbon dioxide and the gasification accelerator may be introduced continuously, but generally only intermittently. The introduction conditions, the introduction interval, etc. depend on the type and condition of the coal seam 1. design.
また、 二酸化炭素注入装置 1 2及びガス化促進剤注入装置 2 2から比較的離れ た比較的浅部の位置に、 揮発成分回収管 3 1及び揮発成分回収装置 3 2が設けら れている。 なお、 炭層 1は、 二酸ィヒ炭素注入管 1 1が揷入された比較的深部から 揮発成分回収管 3 1が挿入された比較的浅部まで斜めに存在しているものとして いる。 Further, a volatile component recovery pipe 31 and a volatile component recovery device 32 are provided at a relatively shallow position relatively far from the carbon dioxide injection device 12 and the gasification promoter injection device 22. It is assumed that the coal seam 1 exists obliquely from a relatively deep portion where the carbon dioxide injection pipe 11 is inserted to a relatively shallow portion where the volatile component recovery pipe 31 is inserted.
ここで、 揮発成分回収装置 3 2では、 初期においては、 炭層 1に吸着されてい たメタンが、 その後においては、 炭層 1から抽出され、 炭層 1を浸透していく間 に揮発成分がガス化されることにより生成された炭化水素系ガスが、 それぞれ回 収される。
なお、 揮発成分回収装置 3 2は、 自然に出てくるガスを回収するものでも、 吸 引等することにより強制的にガスを回収するものでもよい。 Here, in the volatile component recovery device 32, initially, methane adsorbed on the coal seam 1 is extracted from the coal seam 1 and the volatile components are gasified while permeating the coal seam 1 thereafter. The resulting hydrocarbon-based gas is recovered. In addition, the volatile component recovery device 32 may be a device that recovers a naturally occurring gas or a device that forcibly recovers a gas by suction or the like.
このような非燃焼方式原位置炭層ガス化回収システムを用いたガス回収方法の 手順を第 2図に概念的に示す。 第 2図 (a ) に示す状態では、 炭層 1中に天然メ タン 4 1が吸着されており、 吸引により炭層から遊離された天然メタン 4 1のみ が回収される。 また、 二酸ィ匕炭素注入管 1 1から超臨界二酸ィヒ炭素 4 2が導入さ れている。 第 2図 (b ) に示す状態では、 導入された超臨界二酸化炭素 4 2が炭 層 1中へ浸透されていき、 これにより炭層 1から揮発成分 4 3が抽出され、 また 、 浸透されていった二酸化炭素 4 4が、 炭層に吸着されていた天然メタン 4 1と 置換されて炭層 1に固定化される。 これにより、 揮発成分回収管 3 1からは徐々 にメタン 4 5が回収される。 さらに、 第 2図 (c ) に示す状態では、 抽出された 揮発成分 4 3が炭層 1中を浸透していき、 メタン生成菌などによりガス化されて ガス 4 6となり、 炭化水素系ガス 4 7として回収される。
Fig. 2 conceptually shows the procedure of a gas recovery method using such a non-combustion in-situ coal seam gasification recovery system. In the state shown in Fig. 2 (a), natural methane 41 is adsorbed in coal seam 1, and only natural methane 41 released from the coal seam by suction is recovered. Further, supercritical carbon dioxide 42 is introduced from carbon dioxide injection pipe 11. In the state shown in FIG. 2 (b), the introduced supercritical carbon dioxide 42 penetrates into the coal seam 1, thereby extracting volatile components 43 from the coal seam 1 and permeating it. The carbon dioxide 44 is replaced with the natural methane 41 adsorbed on the coal seam and is immobilized on the coal seam 1. Thereby, methane 45 is gradually recovered from the volatile component recovery pipe 31. Furthermore, in the state shown in Fig. 2 (c), the extracted volatile components 43 permeate through the coal seam 1 and are gasified by methane-producing bacteria and the like to become gas 46, and hydrocarbon gas 47 Will be collected as
Claims
1 . 地下の炭層をガス化して回収する非燃焼方式原位置炭層ガス化回収方法で あって、 1. A non-combustion in-situ coal seam gasification and recovery method that gasifies and collects underground coal seams.
地上から地下の炭層へ超臨界二酸化炭素を圧入し、 これにより当該炭層から抽 出された揮発成分を地上へ回収することを特徴とする非燃焼方式原位置炭層ガス 化回収方法。 A non-combustion type in-situ coal seam gasification and recovery method, which comprises injecting supercritical carbon dioxide from the ground to an underground coal seam, thereby recovering volatile components extracted from the coal seam to the ground.
2 . 請求の範囲 1において、 前記揮発成分と共に存在する二酸ィヒ炭素を前記炭 層中へ浸透させて固定ィヒさせるようにすることを特徴とする非燃焼方式原位置炭 層ガス化回収方法。 2. The non-combustion-type in-situ coal seam gasification and recovery according to claim 1, wherein carbon dioxide present together with the volatile component is permeated into the coal seam and fixed. Method.
3 . 請求の範囲 1において、 前記炭層から抽出された前記揮発成分を圧入され た二酸化炭素と共に当該炭層中へ浸透させて、 当該炭層へ前記二酸化炭素を吸着 させて固定化すると共に前記揮発成分をガス化させ、 これにより生成した炭化水 素系ガスを回収するようにすることを特徴とする非燃焼方式原位置炭層ガス化回 収方法。 3. In Claim 1, the volatile component extracted from the coal seam is infiltrated into the coal seam together with the injected carbon dioxide, and the carbon dioxide is adsorbed and immobilized on the coal seam, and the volatile component is removed. A non-combustion in situ coal seam gasification and recovery method characterized by gasifying and recovering the hydrocarbon-based gas generated thereby.
4 . 請求の範囲 3において、 前記揮発成分が前記炭層中でガス化する反応を促進 するガス化促進剤を地上から当該炭層中へ導入することを特徴とする非燃焼方式 原位置炭層ガス化回収方法。 4. The non-combustion type in-situ coal seam gasification and recovery according to claim 3, wherein a gasification accelerator for promoting a reaction in which the volatile component gasifies in the coal seam is introduced into the coal seam from the ground. Method.
5 . 請求の範囲 4において、 前記ガス化促進剤として、 微生物及び酵素の少なく とも一方を用いることを特徴とする非燃焼方式原位置炭層ガス化回収方法。 5. The non-combustion in-situ coal seam gasification and recovery method according to claim 4, wherein at least one of a microorganism and an enzyme is used as the gasification accelerator.
6 . 請求の範囲 1〜5の何れかにおいて、 前記炭層から抽出された前記揮発成分 の回収に先立って当該炭層に吸着されていたメタンを回収することを特徴とする 非燃焼方式原位置炭層ガス化回収方法。
6. The non-combustion-type in-situ coal seam gas according to any one of claims 1 to 5, wherein the methane adsorbed on the coal seam is collected prior to the recovery of the volatile component extracted from the coal seam. Recovery method.
7 . 請求の範囲 1〜 5の何れかにおいて、 前記炭層へ前記超臨界二酸化炭素を 圧入する際に当該炭層に割れ目が形成されるようにして当該超臨界二酸化炭素の 浸透性を向上させることを特徴とする非燃焼方式原位置炭層ガス化回収方法。 7. The method according to any one of claims 1 to 5, wherein when the supercritical carbon dioxide is injected into the coal seam, a crack is formed in the coal seam to improve the permeability of the supercritical carbon dioxide. A non-combustion in-situ coal seam gasification and recovery method.
8 . 請求の範囲 1〜 5の何れかにおいて、 前記超臨界二酸化炭素と共に砂を前 記炭層へ圧入することを特徴とする非燃焼方式原位置炭層ガス化回収方法。 8. The non-combustion in-situ coal seam gasification and recovery method according to any one of claims 1 to 5, wherein sand is injected into the coal seam together with the supercritical carbon dioxide.
9 . 地下有機物 ·化石有機物をガス化して回収する非燃焼方式地下有機物 ·化 石有機物原位置ガス化回収方法であって、 9. An in-situ gasification and recovery method for underground organic matter and fossil organic matter that gasifies and recovers fossil organic matter.
地上から地下有機物 ·化石有機物を含む地下の岩体へ超臨界二酸化炭素を圧入 し、 これにより当該岩体に含まれる地下有機物 ·化石有機物から抽出された揮発 成分を地上へ回収することを特徴とする非燃焼方式地下有機物 ·化石有機物原位 置ガス化回収方法。 Supercritical carbon dioxide is injected from underground into underground organic matter and underground rocks containing fossil organic matter, thereby recovering volatile components extracted from underground organic matter and fossil organic matter contained in the rocks to the ground. Non-combustible underground organic matter and fossil organic matter in-situ gasification and recovery method.
1 0 . 請求の範囲 9において、 前記地下有機物 ·化石有機物が、 天然に埋没し た生物遺骸及び排泄物、 又はこれら生物遺骸及び排泄物が圧力、 熱及び微生物の 少なくとも一種の作用で変質して生じた炭質物、 油質物及び炭化水素の少なくと も一種、 又は人為的に地下空隙及ぴ空洞中に注入されたバイオマス及ぴ有機廃棄 物の少なくとも一種、 又はこれらの複合物であることを特徴とする非燃焼方式地 下有機物 ·化石有機物原位置ガス化回収方法。 10. In claim 9, the underground organic matter and fossil organic matter are transformed into naturally buried biological remains and excreta, or these biological remains and excrement are transformed by at least one action of pressure, heat and microorganisms. It is characterized in that it is at least one kind of generated carbonaceous matter, oily matter and hydrocarbon, or at least one kind of biomass and organic waste artificially injected into underground voids and cavities, or a composite thereof. Non-combustible underground organic matter · Fossil organic matter in-situ gasification and recovery method.
1 1 . 請求の範囲 9において、 前記揮発成分と共に存在する二酸化炭素を前記 岩体中へ浸透させて固定化させるようにすることを特徴とする非燃焼方式地下有 機物 ·化石有機物原位置ガス化回収方法。 11. The non-combustible underground organic / fossil organic in situ gas according to claim 9, wherein carbon dioxide present together with the volatile component is permeated into the rock body to be fixed. Recovery method.
1 2. 請求の範囲 9〜 1 1の何れかにおいて、 前記揮発成分が前記岩体中でガ ス化する反応を促進するガス化促進剤を地上から当該岩体中へ導入することを特 徴とする非燃焼方式地下有機物 ·化石有機物原位置ガス化回収方法。 ―
1 2. The method according to any one of claims 9 to 11, characterized in that a gasification accelerator for promoting a reaction of the volatile component to gasify in the rock is introduced into the rock from the ground. Non-combustible underground organic matter · In-situ fossil organic matter gasification and recovery method. ―
13. . 請求の範囲 12において、 前記ガス化促進剤として、 微生物及ぴ酵素の 少なくとも一方を用いることを特徴とする非燃焼方式地下有機物 ·化石有機物原 位置ガス化回収方法。
13. The method for in situ gasification and recovery of underground organic matter and fossil organic matter according to claim 12, wherein at least one of a microorganism and an enzyme is used as the gasification accelerator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-126925 | 2002-04-26 | ||
JP2002126925 | 2002-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003091534A1 true WO2003091534A1 (en) | 2003-11-06 |
Family
ID=29267623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/005474 WO2003091534A1 (en) | 2002-04-26 | 2003-04-28 | Method for recovering coal seam by non-combustion gasification at original location and method for recovering organic substance or fossil organic substance under ground by non-combustion gasification at original location |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2003091534A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102348866A (en) * | 2009-03-13 | 2012-02-08 | 英国备选能源国际有限公司 | Fluid injection |
CN105317411A (en) * | 2014-08-03 | 2016-02-10 | 山东拓普石油装备有限公司 | High-pressure, oxygen-free, yield-increasing and plug-release gas injection device of CBM (Coal Bed Methane) well and using method of high-pressure, oxygen-free, yield-increasing and plug-release gas injection device |
CN105822341A (en) * | 2016-06-12 | 2016-08-03 | 河南理工大学 | Low permeability coal bed supercritical carbon dioxide anti-reflection system and method |
FR3100142A1 (en) | 2019-08-28 | 2021-03-05 | Rmv Equipement | Device for the extraction and decontamination of organic and / or inorganic substances from solid or semi-solid materials under the control of several parameters |
CN117988925A (en) * | 2024-02-06 | 2024-05-07 | 中国矿业大学 | Method for sealing and converting carbon dioxide by closing mine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010463A1 (en) * | 1988-04-19 | 1989-11-02 | B.W.N. Live-Oil Pty. Ltd. | Recovery of oil from oil reservoirs |
JPH0525986A (en) * | 1991-07-19 | 1993-02-02 | Nkk Corp | Method and apparatus for collecting natural gas utilizing disused carbon dioxide as heat source |
JPH11192416A (en) * | 1997-12-29 | 1999-07-21 | Kawasaki Heavy Ind Ltd | Fixing of carbon dioxide |
JP2000061293A (en) * | 1998-08-18 | 2000-02-29 | Toshiba Corp | System utilizing methane hydrate as fuel |
JP2001164270A (en) * | 1999-12-03 | 2001-06-19 | Kansai Research Institute | Method of manufacturing gas and equipment |
JP2002114986A (en) * | 2000-10-10 | 2002-04-16 | Tokyo Electric Power Co Inc:The | Method and apparatus for producing gas |
-
2003
- 2003-04-28 WO PCT/JP2003/005474 patent/WO2003091534A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989010463A1 (en) * | 1988-04-19 | 1989-11-02 | B.W.N. Live-Oil Pty. Ltd. | Recovery of oil from oil reservoirs |
JPH0525986A (en) * | 1991-07-19 | 1993-02-02 | Nkk Corp | Method and apparatus for collecting natural gas utilizing disused carbon dioxide as heat source |
JPH11192416A (en) * | 1997-12-29 | 1999-07-21 | Kawasaki Heavy Ind Ltd | Fixing of carbon dioxide |
JP2000061293A (en) * | 1998-08-18 | 2000-02-29 | Toshiba Corp | System utilizing methane hydrate as fuel |
JP2001164270A (en) * | 1999-12-03 | 2001-06-19 | Kansai Research Institute | Method of manufacturing gas and equipment |
JP2002114986A (en) * | 2000-10-10 | 2002-04-16 | Tokyo Electric Power Co Inc:The | Method and apparatus for producing gas |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102348866A (en) * | 2009-03-13 | 2012-02-08 | 英国备选能源国际有限公司 | Fluid injection |
CN105317411A (en) * | 2014-08-03 | 2016-02-10 | 山东拓普石油装备有限公司 | High-pressure, oxygen-free, yield-increasing and plug-release gas injection device of CBM (Coal Bed Methane) well and using method of high-pressure, oxygen-free, yield-increasing and plug-release gas injection device |
CN105822341A (en) * | 2016-06-12 | 2016-08-03 | 河南理工大学 | Low permeability coal bed supercritical carbon dioxide anti-reflection system and method |
FR3100142A1 (en) | 2019-08-28 | 2021-03-05 | Rmv Equipement | Device for the extraction and decontamination of organic and / or inorganic substances from solid or semi-solid materials under the control of several parameters |
CN117988925A (en) * | 2024-02-06 | 2024-05-07 | 中国矿业大学 | Method for sealing and converting carbon dioxide by closing mine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004003326A (en) | Non-combustion system in-situ coal seam gasification recovery method, and non-combustion system underground organic material / fossil organic material in-situ gasification recovery method | |
JP5236458B2 (en) | Bioreactor and method for producing synthetic fuels from carbonaceous materials | |
Goraya et al. | Coal bed methane enhancement techniques: a review | |
AU2011243196B2 (en) | Solubilization of carbonaceous materials and conversion to hydrocarbons and other useful products | |
US20040033557A1 (en) | Method of generating and recovering gas from subsurface formations of coal, carbonaceous shale and organic-rich shales | |
US9982205B2 (en) | Subterranean gasification system and method | |
KR101481459B1 (en) | Bitumen mining method of oil sand using biological treatment | |
US6409650B2 (en) | Method for biosolid disposal and methane generation | |
US20100200229A1 (en) | System and method for hydrocarbon recovery and extraction | |
US20090145843A1 (en) | Method for reducing carbon dioxide emissions and water contamination potential while increasing product yields from carbon gasification and energy production processes | |
CN106522914A (en) | Underground gasifier quenching and burnt-out area restoration treatment method for coal underground gasification process | |
WO2003091534A1 (en) | Method for recovering coal seam by non-combustion gasification at original location and method for recovering organic substance or fossil organic substance under ground by non-combustion gasification at original location | |
WO2013082636A1 (en) | Exploitation of carbonaceous deposits | |
CA2316617C (en) | Method for biosolid disposal and methane generation | |
Abukova et al. | Role of the organic matter of a shale layer in the formation of its permeability at the early catagenic stage | |
Biswas et al. | Selection criteria of coalfields for underground coal gasification (UCG) | |
Fink et al. | Plastics recycling coupled with enhanced oil recovery. A. critical survey of the concept | |
CA3198716A1 (en) | Subterranean emplacement of organic wastes | |
Pratiwi | Underground coal gasification: A safe, secure and clean unconventional gas technology for development in Indonesia | |
CA2556208C (en) | Method for biosolid disposal and methane generation | |
Xi et al. | Technology for Plugging of Hu2 Well in Gas Storage, Hutubi Gas Field, Junggar Basin | |
Moore et al. | New Fossil Fuel Technologies | |
Shakhovskaya Larisa et al. | Social and environmental risks of sustainable development of gas producing regions of the Russian Federation and ways to reduce them | |
Gold | Resolving the Petroleum Paradox |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |