WO2003089646A1 - Novel proteins and dnas encoding the same - Google Patents

Novel proteins and dnas encoding the same Download PDF

Info

Publication number
WO2003089646A1
WO2003089646A1 PCT/JP2003/004984 JP0304984W WO03089646A1 WO 2003089646 A1 WO2003089646 A1 WO 2003089646A1 JP 0304984 W JP0304984 W JP 0304984W WO 03089646 A1 WO03089646 A1 WO 03089646A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
dna
seq
amino acid
sequence
Prior art date
Application number
PCT/JP2003/004984
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihide Hayashizaki
Mamoru Kamiya
Hideo Kubodera
Original Assignee
Riken
K. K. Dnaform
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken, K. K. Dnaform, Mitsubishi Chemical Corporation filed Critical Riken
Priority to AU2003227429A priority Critical patent/AU2003227429A1/en
Publication of WO2003089646A1 publication Critical patent/WO2003089646A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a novel protein, a DNA encoding the protein, a full-length cDNA encoding the protein, a recombinant vector having the DNA, an oligonucleotide comprising a partial sequence of the DNA, and a gene into which the DNA has been introduced.
  • the present invention relates to an introduced cell, and an antibody specifically binding to the protein. Background art
  • a cataloged library means that there is no duplication in the cDNAs contained in the library, and refers to a library containing one type of each cDNA.
  • the full-length cDNA cloning method is described in JP-A-9-1248187 and JP-A-10-127291.
  • This method comprises the steps of binding a tag molecule to the diol structure present in the 5′-kisapsite of the mRNA, transforming the mRNA bound to the tag molecule into a ⁇ type, using o 1 igo dT as a primer to reverse-transcribe RNA-DNA.
  • a method comprising preparing a complex, and separating a complex having a DNA corresponding to the full length of the mRNA using the function of the tag molecule.
  • the full-length cDNA library produced by such a technique does not include all the elements that are completely different from each other in the library. Some clones do not. Since clones that exist only in these trace amounts are likely to be novel, subtraction and normalization methods have been developed to enrich such clones.
  • the present invention analyzes the nucleotide sequence of a cDNA clone contained in a cataloged full-length cDNA library, and among those having a novel sequence, identifies the physiological activity of the protein encoded by the nucleotide sequence.
  • the purpose of the present invention is to propose a method of using a protein based on activity and a DNA encoding the protein.
  • the present inventors analyzed the nucleotide sequence of the cDNA clone in the mouse full-length cDNA library and searched a database based on the homology of the sequence, and found that the sequence has a specific function. A protein-specific sequence was found.
  • the expression levels of these cDNAs in each tissue and the interaction of the proteins encoded by the cDNAs were analyzed by actually expressing them.
  • the physiological activity (function) of the protein was analyzed by inhibiting the expression of the protein encoded by the cDNA.
  • the present invention has been accomplished based on these findings.
  • a protein comprising the amino acid sequence of any one of SEQ ID NOs: 17 to 20;
  • one or several amino acids are composed of a deleted, substituted and / or Z- or added amino acid ffi sequence, and have protein interaction activity protein.
  • a protein having M binding activity A protein having M binding activity.
  • (c) encodes a protein having a base sequence capable of hybridizing under stringent conditions to a DNA having the base sequence of SEQ ID NO: 21 or 22 or a sequence complementary thereto and having RIM binding activity DNA.
  • a protein comprising an amino acid sequence shown in SEQ ID NO: 31 or 32 in which one or several amino acids have been deleted, substituted and Z- or added, and has a lipid binding activity.
  • a recombinant vector comprising the DNA described in any of 2-4, 6-8, 10-12, 14-16, 18-20, 22-24, 26-28 above. . 30. Above 2-4, 6-8, 10-12, 14-16, 18-20, 22-24,
  • At least one or more amino acid sequence information selected from the amino acid sequences of the proteins described in any of the above 1, 5, 9, 13, 17, 17, 21 and 25 and / or the above 2 to 4 , 6 to 8, 10 to 12, 14 to 16, 18 to 20, 22 to 24, 26 to 28.
  • a computer-readable recording medium storing the above base sequence information.
  • FIG. 1 is a conceptual diagram showing a method for inducing a transgene in an RNAi individual.
  • the DNA of the present invention is a protein consisting of the amino acid sequence of SEQ ID NO: 2, 12, 17, 18, 18, 19, 20, 23, 24, 26, 28, 31, 32, or 1 in the amino acid sequence. Or several (the number here is not particularly limited 1 means, for example, 20 or less, preferably 15 or less, more preferably 10 or less, and still more preferably 5 or less) Any substance may be used as long as it comprises an amino acid sequence containing substitution, deletion, insertion, addition, or inversion, and can encode a protein having a specific activity described below.
  • the translation region may include only the translation region encoding the amino acid sequence, or may include the full-length cDNA.
  • the DNA containing the full-length cDNA includes, for example, the nucleotide sequence described in SEQ ID NO: 1, 11, 13, 14, 15, 16, 21, 22, 25, 27, 29, 30. DNA and the like.
  • the translation region a sequence represented by base numbers 290 to 871 of SEQ ID NO: 1,
  • a sequence represented by base numbers 84 to 1883 of SEQ ID NO: 14 A sequence represented by nucleotide numbers 204 to 1004 of SEQ ID NO: 15,
  • the DNA of the present invention includes those which are adjacent to the above-mentioned translation region and the 3 'and Z or 5' ends thereof and which contain the minimum necessary for the expression of the translation region. included.
  • the DNA of the present invention may be obtained by any method as long as it can be obtained. Specifically, it can be obtained by the following method, for example.
  • mRNA is prepared from a suitable animal, preferably a mammalian tissue or the like, by a method known per se and generally used.
  • reverse transcription using this mRNA as type I and oligo dT as a primer, a method of separating only full-length cDNA using the function of the tag molecule (Japanese Patent Application Laid-Open No.
  • JP-A-10-127291 248187/1991; JP-A-10-127291) is preferably used.
  • the temperature is increased by using a thermostable reverse transcriptase in the presence of trehalose. It is preferable to use a method of performing reverse transcription below (JP-A-10-84961).
  • high temperature means 40-80.
  • the cDNA thus obtained is inserted into an appropriate cloning vector for cloning.
  • the vectors used here have various chain lengths
  • a linear vector that has a recombinase recognition sequence at both ends of a cloning site and can be inserted into a host by a method other than infection Japanese Patent Application Laid-Open No. 11-9273. Gazette) is preferably used.
  • Gazette is preferably used in the thus obtained cDNA library.
  • not all clones exist uniformly hereinafter, this may be referred to as “cataloged”).
  • a clone that exists only in a plant has a high probability of being new. Therefore, the subtraction method for enriching such clones and the normalization method (Japanese Unexamined Patent Publication No. 2000-325080; Carninci, P. et al., Genomics, 37, 327-336 (1996)) can be used. preferable.
  • the cataloged cDNA library performs nucleotide sequence analysis by a commonly used method known per se.
  • the DNA of the present invention is obtained by combining the base sequence obtained from the base 100
  • BLAST Basic local alignment search tool
  • Altschul, SF et al., J. Mol. Biol., 215, 403-410 (1990)
  • HMME R sequence analysis method using hidden Markov model
  • the homology obtained as a result of the search is sufficient.
  • the function of the clone to be analyzed can be estimated from various annotation information associated with the desired hit sequence.
  • the sufficient significant hit sequence, or identity of the corresponding portion to the DNA of the catalytic domain portion of the sequence registered invention e- value as 10 one 4 following ones, or 3 0 % Or more.
  • the prediction holds that the clone to be analyzed that is similar in sequence to that will also have the same function. .
  • HMMPFAM analysis is performed by a method to identify whether or not the base sequence to be analyzed has the characteristics of the base sequence possessed by the entry in the database in which the protein profiles are integrated. Profiles are extracted from a series of proteins with the same characteristics, and even if a function cannot be clarified by comparing the full length of a single sequence to a single sequence, if there is a characteristic region in the sequence, it will be found. Can predict.
  • (1-1) Protein Having Interaction Activity with IL-11 Receptor Family
  • the amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 1 was identified by BLAST search as I NTERLEUK IN— 1 HOMOLOG 1 (I NTERLEUK I N- 1 EP SI LON) and e-value: 7. 2 X 1 CT 30, 146 60% homology at the amino acid residue, also FIL 1 EP SI LON and e- va 1 ue: 7. 3 X 10- 24 , 3% homology 46. 149 amino acid residues, further FIL 1 E TA and e- value: having a 6. 5 X 10- 21, 144 amino acid residues 44.5% homologous or raw.
  • HMMP FAM protein characteristic search by HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 11 shows a sequence that shows the characteristics of a glycoprotein hormone (a nucleotide that is entered as “Cys_knot” in P f am). Sequence) is found.
  • the protein encoded by the nucleotide sequence of SEQ ID NO: 11 is a glycoprotein hormone that functions as a gonadotropin.
  • the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 13 was rat mRNA for CCA3, complete cds. And e-value: 0.0, 61% of the amino acid sequence over 542 amino acid residues. homology, also RCC like G exchanging factor RLG and e- value: 4 X 10- 12, 152 human 26% degree of coincidence over the amino acid residues Cut.
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 13 was searched for protein characteristics using HMMP FAM, the amino acid sequence of 383 to 499 showed a sequence (Pf am, a base sequence that is entered as BTB in am), and ankyrin repeat (Pfam entry ank) is also found in three places.
  • the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 14 was rat mRNA for CCA3, complete cds. And e-value: 0.0, 61% of which spanned 560 amino acid residues. in coincidence degree, also the RCCl- like G exchanging factor RLG, e- value: hits in 26% of the degree of coincidence over the 4 X 10- 12, 152 Amino acid residues.
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 14 was searched for protein characteristics by HMMP FAM, the amino acid sequence of 401 to 517 showed a sequence (P fam In addition, an ankyrin repeat (Pfam entry ank) is also found in three places.
  • Amino acid sequences which nucleotide sequence is encoded according to SEQ ID NO: 1 5, the BLAST server switch, novel BTB / P0Z domain containing zinc finger protein and e- va 1 ue: a 3 X 10- 92, 233 Amino acid residues With 74% agreement, and Zinc finger Protein 151 and e-value: Hit with 27% match over 8 X 10 -15 and 255 amino acid residues.
  • HMMP FAM protein characteristic search using HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 15 revealed that the amino acid sequence of 8 to 11 (Base sequence that is entered as BTB at P fam).
  • a protein characteristic search using FMP FAM was performed on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 16, and the amino acid sequence of 9 to 121 showed a sequence (P f am The base sequence that is entered as BTB) is found, and the Zinc finger domain (the zf-C2H2 entry of P fam) is also found in seven places.
  • amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 21 was identified by the BLAST search as having a 75% identity over the KIM0318 gene, partial cds (Homo sapiens; and e-value: 0, 725 amino acid residues, Also RIM (Rab3- interacting molecule) -binding protein 2 (chicken) and e—value: 0, 722 amino acid residues with 72% identity, plus peripheral benzodiazepine receptor interacting protein (Homo sapiens) and e—va 1 ue: 5 X 10 hit one 118, 766 37% degree of coincidence over the amino acid residues.
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 21 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 23 is a kind of RIM-binding protein.
  • the protein expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be used as a therapeutic agent for dementia, Norkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy.
  • amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 22 is identical to the KIAA0318 gene, partial cds (Homo sapiens) according to BLAST with an e-value of 0, 107% 81% over the 1077 amino acid residues And RIM-binding protein 2 (chicken) and e-value: 0, 813 with 75% identity over amino acid residues, and RIM binding protein 1A (RbplA) mRNA, partial cds (Rattus and e_v a 1 ue: 5 x 10- m , hits at 843 amino acid residues with 35% identity.
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 22 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 24 is a kind of RIM-binding protein.
  • the expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be a therapeutic drug for type dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy.
  • the amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 25 was obtained by BLAST search and found that Bacu ⁇ oviral IAP repeat-containing protein 3 and e—value: 2 X 10- 2. In, also a 35% homology over 156 amino acid residues, also the Inhibitor of apoptosis protein, e- value: at 1 X 10- 18, a 53% homology over a 67 amino acid residue, further, and Apoptosis inhibitor IAP, e- value: with 2 X 10- 17, with 30% homology over 154 amino acid residues. From these results, it was presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 26 was a protein having an apoptosis-suppressing activity.
  • Baculoviral IAP repeat—containing protein 3 protein / protein may be involved in apoptosis suppression based on literature information (Nat. Struct. Biol. 6: 648-651 (1999)) in the database.
  • the above inhibitor of apoptosis protein is considered to be involved in the suppression of T cell apoptosis based on literature information (DNA Cell Biol. 15: 981-988 (1996)) in the database. It was clarified from the literature information in the database (J. Virol. 67: 2168-2174 (1993)) that it was involved in the suppression of cell apoptosis.
  • the protein encoded by the nucleotide sequence of SEQ ID NO: 25 was a protein having a function related to suppression of apoptosis.
  • THP Ta-horse-fall protein, kidney membrane protein
  • GP-2 glycosylphosphatidylinositol
  • a protein feature search using HMMPFAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 27 shows that the amino acid sequence encoded by nucleotide numbers 1636 to 238 A sequence showing the characteristics of the protein (base sequence IJ, which is entered in P fam as a Zona pellucida-like domain) is found. It is also known that the GPI anchor region is often linked downstream of this sequence.
  • tmHMM S. Moller, MDR Croning, R. Apweiler. Evaluation of methods for the prediction of membrane spanning regions.
  • transmembrane site is predicted at amino acid numbers 366-3888 of SEQ ID NO: 28. From this, it is inferred that the protein encoded by the nucleotide sequence is localized on the membrane.
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 27 is a glycoprotein that binds to the secretory granule membrane via a GPI anchor and has a function related to the assembly and secretion of secretory granules, It is assumed that the protein has similar activity.
  • the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 29 was obtained by BLAST search using Bactericidal permeability—increased protein precursor he—v a 1 ue: 2 X 1 (T 52 , 28% coincidence over 476 amino acid residues, and e-va 1 ue: 4X 10 _37 , 497 over amino acid residues 23 % in the degree of coincidence, further Lipopolysaccharide - binding protein precursor and e- value: 9X 1 0- 3S, 457 2 hits in 3% degree of coincidence over the Amino acid residue.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 31 is a lipid binding protein.
  • this protein is considered to be involved in cytotoxic activity against Gram-negative bacteria from literature information (Nucleic Acids Res. 18: 3052-3052 (1990)), and other literature information (J. Biol. Chem. 270: 17133- 17138 (1995)), it is speculated that it is involved in the transport and regulation of HDL and other phospholipids and that it is involved in binding to lipopolysaccharides from other literature information (Science 249: 1429-1431 (1990)). You.
  • a protein characteristic search using HMMPFAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 29 shows that a sequence (P fam LBP—BPI—the base sequence entered as CETP_C).
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 29 is a lipid-binding protein.
  • Amino acid sequences which nucleotide sequence is encoded according to SEQ ID NO: 30, the BLAST server switch, Bactericidal permeability-increasing protein precursor and e- va 1 ue: 5 X 10- 148, 484 Amino acid residues 53% over degree of coincidence ', also Lipopolysaccharide- binding protein precursor and e- va 1 ue: 2 X 10 one 96, 472 38% degree of coincidence over the amino acid residues, further from Phospholipid transfer protein precursor and e- value: 2 X 10 — A hit of 25% over 33 and 476 amino acid residues.
  • the protein consisting of the amino acid sequence shown in SEQ ID NO: 32 is a lipid binding protein. This protein may be involved in binding to lipopolysaccharide from literature information (J. Biol. Chem. 269: 17411-17416 (1994)), and other literature information (Science
  • HMMP FAM protein characteristic search by HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30 shows that the amino acid numbers 28 to 242 of SEQ ID NO: 32 show the characteristics of the lipid-bound glycoprotein. (Base sequence entered as LBP-BPI-CETP in P fam) is found.
  • the protein encoded by the nucleotide sequence of SEQ ID NO: 30 is a lipid binding protein.
  • the DNA of the present invention may be obtained in a state where a base sequence has been deleted or inserted in the translated sequence.
  • the base of the DNA was obtained. If a deletion or insertion in the sequence is suspected, use methods such as library screening and PCR cloning, which are commonly used by those skilled in the art, to obtain the full length without base deletion or insertion.
  • cDNA can be obtained.
  • the DNA of the present invention thus obtained, whose nucleotide sequence is determined, and whose function is presumed, is the above-mentioned SEQ ID NO: 1, 11, 13, 13, 14, 15, 15, 16, 21, 2, 22, 25 , 27, 29, 30 or those having the base sequence shown above as a translation region thereof, as well as one or several (the number Although the number is not particularly limited, for example, it means 60 or less, preferably 30 or less, more preferably 20 or less, further preferably 10 or less, and particularly preferably 5 or less.
  • a DNA having a base sequence in which a base is deleted, substituted and / or Z- or added, and which encodes a protein having any of the above-mentioned activities; and a DNA which hybridizes with these under stringent conditions, and A protein with any activity Also includes DNA coding.
  • D As described above, NA has one or several amino acid sequences in the amino acid sequences described in SEQ ID NOs: 2, 12, 17, 18, 19, 20, 23, 24, 26, 28, 31, 32. Includes those consisting of a deleted, substituted and / or added amino acid sequence and encoding a protein having any of the above activities.
  • DNA that hybridizes under stringent conditions is SEQ ID NO:
  • Hybridization under stringent conditions refers to a reaction in a normal hybridization buffer at a temperature of 40 to 70 ° C, preferably 60 to 65 ° C, and the like. Can be carried out according to a method of washing in a washing solution of 15 mM to 300 mM, preferably 15 mM to 60 mM.
  • the DNA of the present invention may be one obtained by the above method or one synthesized.
  • the DNA base sequence can be easily replaced with a sales kit such as Site Directed Mutagenesis Kit (Takara Shuzo) or Quick Change Site Directed Mutagenesis Kit (Stratagene). Can be.
  • nucleotide sequence described in SEQ ID NOs: 1, 11, 13, 14, 15, 16, 21, 22, 25, 27, 29, or 30 is derived from a mouse.
  • a human cDNA library was prepared according to the method for preparing a DNA library, and SEQ ID NOS: 1, 11, 13, 14, 15, 16, 21, 2
  • DNAs that hybridize under stringent conditions with DNA described in 1, 22, 25, 27, 29 or 30 include DNA encoding such a human homologue. NA is also included.
  • methods for predicting a base sequence encoding a homolog protein of a target protein using informatics include, for example, (i) using a base sequence of a target cDNA as a query, A method for performing homology search using cDNA etc.
  • cDNA databases including cDNA databases predicted by informatics
  • base sequence of the target cDNA A homology search using BLAST or the like to an EST database such as that described above, and linking the sequences of the hit ESTs with reference to the base sequence of the target cDNA; and (iii) the target cDNA
  • a homology search is performed using BLAST or the like on a human or other genomic database to find a gene in which the cDNA gene of interest exists. The position on the nom is identified, and Gen s c a n (http: // genes.
  • SEQ ID NOs: 1, 11, 13, 14, 14, 15, 16, 21, 21, 22, 25 DNA encoding a human homolog protein of the protein encoded by the nucleotide sequence described in 27, 29 or 30 can also be obtained.
  • Specific acquisition Examples of the method include, for example, a method of performing PCR using the above-mentioned human cDNA library as a type III using a primer having a nucleotide sequence complementary to the nucleotide sequence of the predicted 5, 5, and 3 end of the human homolog DNA, And a method in which a partial sequence of the predicted human homolog DNA is used as a probe to perform hybridization on the human cDNA library.
  • a similar gene having a nucleotide sequence having the highest homologous nucleotide sequence to the nucleotide sequence of the target gene is referred to as a “homolog”, and the above-mentioned method also aims to obtain a human homolog.
  • the gene obtained as a homolog is a family member of the target gene.
  • Genes acquired as “homologs” between two species of organisms are likely to be “orthologs”, which are the same genes evolved from a common ancestral gene, and also arise from duplication from a common ancestral gene It may be a different gene, a “paralog”.
  • the function of the protein encoded by the human-derived DNA must be In order to estimate and verify the function of the protein of the present invention in mice, it is preferable to confirm that the human homolog is an ortholog of a closely related species of the mouse gene of the present invention.
  • the following method is used as a method for confirming the ortholog.
  • (ii) homology is analyzed for the nucleotide sequence of the obtained human homolog DNA and the corresponding nucleotide sequence of the cDNA of the present invention. Then, the obtained Using the base sequence of human homolog DNA as a query, homology search was performed on the mouse base sequence contained in the international base sequence database such as DDB J, EMBL, GenBank, etc., and the patent database. Confirm that the match between the base sequence of the query and the base sequence of the query is higher than the match between the base sequence obtained from the database and the base sequence of the query. By confirming the above (i) and (ii), the obtained human homolog can be identified as a human ortholog corresponding to the cDNA of the present invention.
  • the obtained human homolog can be identified as a human ortholog corresponding to the cDNA of the present invention.
  • the homology analysis described in (i) and (ii) above may be performed by comparing amino acid sequences, or by drawing a molecular evolutionary phylogenetic tree. Further, it is preferable to analyze the degree of coincidence by the homology analysis described in (i) and (ii) as the degree of coincidence over the entire length of the query.
  • the function of the protein encoded by the base sequence can be estimated and confirmed. it can.
  • the full-length cDNA thus obtained is used to express the protein of the present invention, which can be used for confirmation of activity, functional analysis and the like.
  • the nucleotide sequence of the DNA is converted into amino acids by three types of reading frames, and the range in which the longest polypeptide is encoded is determined by the present invention.
  • its amino acid sequence can be determined as the translation region of the gene.
  • amino acid sequences include, for example, those described in SEQ ID NOs: 2, 12, 17, 17, 18, 19, 20, 23, 24, 26, 28, 31 or 32, etc. Is mentioned.
  • the protein of the present invention is not limited to the above amino acid sequence, but comprises an amino acid sequence in which one or several amino acids have been substituted, deleted and / or added in the amino acid sequence, and Those having the following are also included.
  • the method for obtaining the protein of the present invention the method of transcription and translation of the DNA of the present invention described in the above (1) by an appropriate method is preferably used. Specifically, a recombinant vector inserted into a suitable expression vector or a suitable vector together with a suitable promoter is prepared, and the recombinant vector is used to transform a suitable host microorganism, It can be expressed by introducing it into appropriate cultured cells, and can be obtained by purifying it.
  • the protein thus obtained When the protein thus obtained is obtained in a free form, it can be converted into a salt by a known method or a method analogous thereto, and conversely, when the protein is obtained in a salt form, the free form or other Can be converted to a salt.
  • Such salts of the protein of the present invention are also included in the protein of the present invention.
  • the protein produced by the above transformant may be modified before or after purification with an appropriate protein modifying enzyme to optionally modify the protein or partially remove the polypeptide to modify the protein. Quality.
  • the vector used for producing the recombinant vector containing the DNA of the present invention is not particularly limited as long as the DNA is expressed in the transformant.
  • Vectors and phage vectors may be misaligned.
  • a commercially available protein expression vector into which an expression control region DNA such as a promoter suitable for the host into which the DNA is introduced has already been inserted is used.
  • Specific examples of such a protein expression vector include, for example, pET3 and pET11 (manufactured by Stratagene) GEX (manufactured by Amersham Pharmacia Biotech) when the host is Escherichia coli.
  • p ESP-I expression vector-1 (Stratagene) and the like
  • BacP AK6 BacP AK6
  • examples include ZAPExpress (manufactured by Stratagene) and SVK3 (manufactured by Amersham Pharmacia Biotech).
  • the expression control region It is necessary to insert at least a promoter.
  • the promoter used may be a promoter contained in a host microorganism or a cultured cell.
  • the promoter is not limited to this. Specifically, for example, when the host is Otsuki bacterium, T3, T7 , Tac, 1 ac promoter and the like, and in the case of yeast, nmt1 promoter, Ga11 promoter and the like can be used.
  • the host is an animal cell, SV40 promoter, CMV promoter and the like are preferably used.
  • a promoter specific to the gene of the present invention can also be used. Insertion of the DNA of the present invention into these vectors may be performed by linking the DNA or a DNA fragment containing the DNA to the amino acid sequence of the protein encoded by the gene DNA downstream of the open motor in the vector.
  • the recombinant vector thus prepared can be transformed into a host described below by a method known per se to prepare a DNA-introduced body.
  • a method for introducing the vector into a host specifically, a heat shock method (J. Mol. Biol., 53, 154, (1970)) and a calcium phosphate method (Science, 221, 551, (1983)) , DEAE Dextran method (Science, 215, 166, (1982)), in vitro packaging method (Proc. Natl. Acad. Sci. USA, 72, 581, (1975)), virus vector method (Cell, 37, 1053). , (1984)) and the electric pulse method (Chu. Et al., Nuc. Acids Res., 15, 1331 (1987)).
  • the host for producing the DNA transfectant is not particularly limited as long as the DNA of the present invention is expressed in the body.
  • Mouse cells include mouse fibroblast C127 (J. Viol., 26, 291, (1978)) and Chinese hamster ovary. Cells CHO cells (Proc. Natl. Acad. Sci. USA, 77, 4216, (1980)) and the like. From the expression level and simplicity of screening, it is preferable to use African green monkey kidney-derived COS-7 (ATCC CRL1651: Lican type culture collection (preserved cells) is used.
  • ATCC CRL1651 Lican type culture collection (preserved cells) is used.
  • a homologous strand exchanging technique for directly inserting a promoter-ligated DNA fragment of the present invention into the chromosome of a host microorganism (AA Vertes et al., Biosci. Biotechnol. Biochem., 57, 2036, (1993)) or transposons or insertion sequences (AA Vertes et al., Molecular
  • Microbiol., 11, 739, (1994) can also be used to prepare a DNA-introduced body.
  • cells or cells are collected by a method such as centrifugation, suspended in an appropriate buffer, and then sonicated, lysozyme, and Z or freeze-thaw, etc.
  • a crude protein solution is obtained by centrifugation, filtration, or the like, and further purified by a combination of appropriate purification methods.
  • the protein of the present invention is obtained.
  • protein expression is induced by subjecting the DNA of the present invention obtained in the above (1) to a cell-free transcription / translation system, and the protein of the present invention Can be obtained.
  • the cell-free transcription / translation system used in the present invention is a system containing all the elements necessary for transcription from DNA to mRNA and translation of mRNA to protein, and by adding DNA thereto. It refers to any system in which the protein encoded by the DNA is synthesized.
  • the cell-free transcription / translation system include a transcription / translation system prepared based on an eukaryotic cell, a bacterial cell, or an extract from a part thereof, and a particularly preferred example is Egret A transcription / translation system prepared based on extracts from reticulocytes, wheat germ, and Escherichia coli (Escherichia coli S30 extract) may be mentioned.
  • Separation and purification of the protein of the present invention from the obtained transcription-translation product of the cell-free transcription / translation system can be carried out by a commonly used method known per se. Specifically, for example, epitope peptide, polyhistidine peptide, glutathione-S A DNA region encoding one transferase (GST), a maltose binding protein, etc. is introduced into the above-mentioned DNA to be transcribed and translated, expressed as described above, and the abundance of the protein with a substance having affinity is determined. It can be used for purification.
  • Expression of the target protein is determined by the ability to separate by SDS-polyacrylamide gel electrophoresis and stain it with Coomassie brilliant blue (manufactured by Sigmane earth), or by using an antibody that specifically binds to the protein of the present invention described later. It can be confirmed by the detection method. It is generally known that the expressed protein is cleaved (processed) by a proteolytic enzyme present in the living body.
  • the protein of the present invention is naturally included in the protein of the present invention, even if it is a fragment of the amino acid sequence that has been cleaved, as long as it has any of the above-mentioned activities.
  • a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, liposome method
  • yeast two-hybrid method fluorescence depolarization method
  • surface plasmon method phage display method
  • liposome method a conventional method known per se.
  • antisense oligonucleotides having a partial sequence of the DNA of the present invention senses by a conventional method using a DNA synthesizer or the like.
  • Oligonucleotides such as oligonucleotides can be prepared.
  • oligonucleotide examples include a DNA having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of the DNA or a DNA having a sequence complementary to the DNA.
  • the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, 11, 13, 14, 15, 16, 16, 21, 22, 25, 27, 29 or 30 is shown.
  • a distribution complementary to the DNA Examples include DNA having a sequence.
  • the above oligonucleotides whose melting temperature (Tm) and number of bases do not extremely change are preferred.
  • the length of the sequence is generally 5 to 100 bases, preferably 10 to 60 bases, and more preferably 15 to 50 bases. '
  • oligonucleotide derivatives of these oligonucleotides can also be used as the oligonucleotide of the present invention.
  • the oligonucleotide derivative include an oligonucleotide derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphodiester bond in an oligonucleotide in which an N 3 ′ —P 5 ′ phosphoramidate bond is used.
  • Oligonucleotide derivative in which the ribose and phosphodiester bond in the oligonucleotide have been converted to a peptide nucleic acid bond Oligonucleotide in which the peracyl in the oligonucleotide has been replaced with C-5-properuracil Nucleotide derivatives, oligonucleotide derivatives in which peracyl in oligonucleotides are substituted with C-15 thiazoleperacyl, oligonucleotide derivatives in which cytosines in oligonucleotides are substituted with C-15 propynylcytosine, oligonucleotides Oligonucleotide derivatives in which the cytosine in the oligonucleotide has been replaced with phenoxazine-modified cytosine, oligonucleotide derivatives in which the ribose in the oligonucleotide has been replaced by 2,1
  • RNA interference RNA interference
  • the oligonucleotide of the present invention is prepared as double-stranded RNA, introduced into a transfectant, and inhibits the expression of a target gene by RNA interference (hereinafter referred to as “RNAi”).
  • RNAi RNA interference
  • the RNA interference method for example, the method described in (Elbashir, S., et al., Nature, 411, 494-498 (2001)) can be used.
  • the double-stranded RNA does not necessarily have to be all RNA, for example, WO 02/107374. Those described in the report can also be used.
  • the target gene may be any gene as long as it is the DNA of the present invention.
  • a double-stranded RNA consisting of a sequence substantially identical to at least a part of the base sequence of these DNAs (hereinafter sometimes referred to as “double-stranded polynucleotide”) is defined as the base sequence of the target gene.
  • any portion may have a sequence substantially identical to a sequence of 15 bp or more.
  • substantially identical means that the sequence has 80% or more homology with the sequence of the target gene.
  • the nucleotide length may be any length from 15 bp to the full length of the open reading frame (ORF) of the target gene, but a length of about 15 to 50 Obp is preferably used.
  • mammalian-derived cells have a signaling system that activates in response to long double-stranded RNA of 3 Obp or more. This is called the interferon reaction (Mareus, PI, et al., Interferon, 5, 115-180 (1983)), and when the double-stranded RNA enters the cell, PKR (dsRNA-responsive protein) kinase: The translation initiation of many genes is non-specifically inhibited via Bass, BL, Nature, 411, 428-429 (2001)), and at the same time, 2 ', 5, oligoadenylate synthetase (Bass, BL, Nature) , 411, 428-429 (2001)), which activates RNase L and causes nonspecific degradation of intracellular RNA.
  • PKR dsRNA-responsive protein
  • a double-stranded polynucleotide of 15 to 3 Obp, preferably 19 to 22 bp, and most preferably 21 bp may be used.
  • the double-stranded polynucleotide does not need to be entirely double-stranded, and includes those having a partially protruding 5, or 3, terminal, but preferably those having a 3'-terminal protruding 2 bases.
  • the double-stranded polynucleotide means a double-stranded polynucleotide having a phase difference, but may be a self-annealed single-stranded polynucleotide having self-complementarity.
  • Examples of the single-stranded polynucleotide having self-complementarity include those having an inverted repeat sequence.
  • the method for preparing the double-stranded polynucleotide is not particularly limited, but it is preferable to use a chemical synthesis method known per se.
  • a single-stranded polynucleotide having a complementary 1 "molecule can be separately synthesized, and this can be combined by an appropriate method to form a double-stranded polynucleotide.
  • the synthesized single-stranded polynucleotide is mixed, heated to a temperature at which the double-strand is dissociated, and then gradually cooled, etc.
  • the associated double-stranded polynucleotide is obtained by using an agarose gel or the like. Check and remove the remaining single-stranded polynucleotide by decomposing it with an appropriate enzyme.
  • the transfectant into which the double-stranded polynucleotide prepared in this manner is introduced may be any as long as the target gene can be transcribed into RNA or translated into protein in the cell.
  • Specific examples include those belonging to plant, animal, protozoan, virus, bacterial, or fungal species.
  • the plant may be a monocotyledonous, dicotyledonous or gymnosperm, and the animal may be a vertebrate or invertebrate.
  • Preferred microorganisms are those used in agriculture or industry, and are pathogenic to plants or animals. Fungi include organisms in both mold and yeast forms.
  • vertebrates examples include mammals, including fish, sea lions, goats, pigs, sheep, hamsters, mice, rats and humans, and invertebrates include nematodes and others. Reptiles, Drosophila, and other insects.
  • the cells are vertebrate cells.
  • the transductant means a cell, tissue, or individual.
  • the cell may be from a germ line or somatic, totipotent or pluripotent, divided or undivided, parenchymal or epithelial, immortalized or transformed, and the like.
  • the cells may be gametes or embryos, in the case of embryos, single cell embryos or constitutive cells, or cells from multicellular embryos, including fetal tissue. Further, they may be undifferentiated cells, such as stem cells, or differentiated cells, such as from cells of an organ or tissue, including fetal tissue, or any other cells present in an organism.
  • Differentiating cell types include fat cells, fibroblasts, muscle cells, cardiomyocytes, endothelial cells, nerve cells, glia, blood cells Vesicles, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, basophils, mast cells, leukocytes, granulocytes, keratinocytes, chondrocytes, osteoblasts, osteoclasts, liver cells And endocrine or exocrine cells.
  • Methods for introducing a double-stranded polynucleotide into a recipient include, when the recipient is a cell or a tissue, a calcium phosphate method, an electroporation method, a lipofection method, a viral infection, Immersion in a single-stranded polynucleotide solution or a transformation method is used.
  • Examples of the method for introduction into an embryo include microinjection, electoral poration, and virus infection.
  • a method of injecting or perfusing the plant into the body cavity or stromal cells, or spraying is used.
  • an individual animal In the case of an individual animal, it is introduced systemically by oral, topical, parenteral (including subcutaneous, intramuscular and intravenous administration), vaginal, rectal, nasal, ophthalmic, intraperitoneal administration, etc.
  • the electrophoresis method or virus infection may be used.
  • the double-stranded polynucleotide can be mixed directly with the food of the organism.
  • it when introduced into an individual, it can be administered, for example, by administration as an implanted long-term release preparation or the like, or by ingesting an introduced body into which a double-stranded polynucleotide has been introduced.
  • the amount of the double-stranded polynucleotide to be introduced can be appropriately selected depending on the transductant and the target gene, but it is preferable to introduce an amount sufficient to introduce at least one copy per cell. Specifically, for example, when the transfectant is a cultured human cell and a double-stranded polynucleotide is introduced by a calcium phosphate method, 0.1 to 100 OnM is preferable.
  • RNA interference By suppressing the expression of the gene of the present invention in the transfected body by the RNA interference, it is possible to confirm the function of the protein encoded by the gene of the present invention or to analyze a new function.
  • an antibody that specifically binds to the protein of the present invention As a method for preparing an antibody that specifically binds to the protein of the present invention, a commonly used known method can be used.
  • a sequence having high antigenicity and suitable as an epitope (antigenic determinant) can be selected and used according to a known method.
  • a method of selecting the epitope for example,
  • polypeptide used as the above antigen a synthetic peptide synthesized according to a known method, or the protein of the present invention itself can be used.
  • a polypeptide serving as an antigen may be prepared in an appropriate solution or the like according to a known method and immunized to a mammal, for example, a heron, a mouse, a rat, or the like.
  • the route of administration of the antigen upon immunization is not particularly limited.
  • any route such as subcutaneous, intraperitoneal, intravenous, or intramuscular route may be used.
  • a method of inoculating a BALB / c mouse several times every several days to several weeks with an antigen polypeptide is used.
  • the antigen intake is preferably about 0.3 to 0.5 mg Zl times when the antigen is a polypeptide, but is appropriately adjusted depending on the type of the polypeptide and the animal species to be immunized.
  • test blood is collected as appropriate, and a rise in antibody titer is confirmed by enzyme-linked immunosorbent assay (hereinafter sometimes referred to as “ELISA”) or Western blotting.
  • ELISA enzyme-linked immunosorbent assay
  • Blood is collected from animals with elevated antibody titers.
  • a polyclonal antibody can be obtained.
  • a method of obtaining a purified antibody obtained by purifying an antibody component from serum according to a known method, and the like can be mentioned.
  • the antibody component can be purified by a method such as iontophoresis, ion exchange chromatography, affinity chromatography, and the like.
  • a monoclonal antibody can be prepared by using a hybridoma fused with spleen cells and myeloma cells of the animal according to a known method (Milstein, et al., Ature, 256, 495 (1975)). it can.
  • a monoclonal antibody can be obtained, for example, by the following method. First, antibody-producing cells are obtained from an animal whose antibody titer has been raised by immunization with the above-mentioned antigen.
  • the antibody-producing cells are plasma cells and lymphocytes which are precursor cells thereof, which may be obtained from any individual, but preferably obtained from spleen, lymph nodes, peripheral blood and the like.
  • the myeloma to be fused with these cells is generally a cell line obtained from a mouse, for example, an 8-azaguanine-resistant mouse (such as BALB / c-derived) myeloma cell line, P3X63-Ag8.65 (ATCC: CRL-1580), P3-NSl / lAg4.1 (RIKEN cell bank: RCB0095) and the like are preferably used.
  • an appropriate cell fusion medium such as RPMI1640, Iskov's modified Dulbecco's medium (IMM), or Dulbecco's modified Eagle's medium is used.
  • DMEM polyethylene glycol
  • PEG polyethylene glycol
  • High Priestess dormer is myeloma cell line 8 Azaguanin resistance by utilizing the fact that a strain suitable amount of hypoxanthine 'aminopterin' thymidine (HAT) solution including normal medium (HAT medium) in 5% CO 2 using , At 37 ° C for an appropriate time.
  • HAT hypoxanthine 'aminopterin' thymidine
  • HAT medium normal medium
  • a monoclonal antibody can be obtained from the culture supernatant obtained by purification by an appropriate method such as ammonium sulfate fractionation, affinity chromatography, etc.
  • a commercially available monoclonal antibody purification kit can also be used for purification.
  • ascites containing a large amount of the monoclonal antibody of the present invention can also be obtained by growing the antibody-producing hybridoma obtained above in the abdominal cavity of an animal of the same strain as the immunized animal or a nude mouse. .
  • human peripheral blood lymphocytes can be obtained by using the polypeptide or a partial peptide thereof as an antigen.
  • a humanized antibody can also be prepared by immunizing transplanted Severe combined immune deficiency (SCID) mice in the same manner as described above, and preparing a hybridoma between antibody-producing cells of the immunized animal and human myeloma cells. (Mosier, DE, et al. Ature, 335, 256-259 (1988); Duchosal, MA, et al., Nature, 355, 258-262 (1992)).
  • RNA is extracted from the obtained hybridoma producing the human antibody, the gene encoding the desired human antibody is cloned, this gene is inserted into an appropriate vector, and this is introduced into an appropriate host.
  • human antibodies can be produced in larger quantities.
  • an antibody having a low binding property to an antigen can be obtained as an antibody having a higher binding property by using an evolutionary engineering technique known per se.
  • a partial fragment such as a monovalent antibody can be prepared by, for example, cleaving the Fab portion and the Fc portion using papain or the like, and recovering the Fab portion using an affinity column or the like.
  • the antibody that specifically binds to the protein of the present invention thus obtained can also be used as a neutralizing antibody that specifically binds to the protein of the present invention and thereby inhibits the activity of the protein.
  • There is no particular limitation on the method for selecting those that inhibit the activity of the protein For example, contacting the antibody with the DNA transfectant prepared in (2) above to determine whether the function of the target protein in the transfectant is inhibited And a method of analyzing the above.
  • Such a neutralizing antibody can be used alone for the clinical application, but can also be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • a powerful drug can be administered in various forms, such as tablets, capsules, granules, powders, or syrups, orally, or injections, drops, ribosomes. And parenteral administration using suppositories and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
  • the protein of the present invention is prepared as a recombinant protein as described in the above (2) and analyzed for this function to obtain the above (1) ) Can be confirmed to have the activity estimated. Furthermore, analysis can also be performed in combination with the antibody or the like prepared as described in (4) above.
  • the activity of the protein of the present invention can be assayed, for example, as follows, but is not limited to these methods.
  • these functional assays can be used for screening of a function activator or a function inhibitor of the protein of the present invention and a screening of a protein expression regulator of the present invention, which will be described later.
  • the 1-1-like activity can be analyzed by, for example, an LAF (lymphocyte activating factor) activity measuring method.
  • LAF lymphocyte activating factor
  • the protein of the present invention or a restriction enzyme that may activate the protein is appropriately treated in RPM11640 medium containing 5% fetal bovine serum. Dilute to an appropriate concentration. Transfer 50 ⁇ l of the diluted solution to the wells of a 96-well tissue culture microplate, and add 50 ⁇ l of the maglutinin solution to a 50 // g / ml phyte solution.
  • thymocytes 1 ⁇ 10 7 cells / ml collected from C 3 H / He mice (6 to 10 weeks old) was added, and 5% CO 2 gas was added at 37 ° C.
  • 3H-thymidine 1 / iCi After cultivation for 2 days, add 3H-thymidine 1 / iCi and culture for an additional 18 hours.
  • Cells are collected on a glass fiber filter using a cell harvester, and the amount of 3H-thymidine (cpm) incorporated into the cells is measured.
  • LAF activity can be evaluated based on the increase in 3H-thymidine incorporation based on the amount of 3H-thymidine incorporation in a measurement system in which a medium is added instead of a test solution.
  • methods for analyzing the activity of the protein of the present invention using the binding property to the IL-1 receptor family as an index include, for example, the protein of the present invention or a restriction enzyme that may activate the protein.
  • proteins treated with caspase 1 etc. and IL-11 receptor or its analog receptor IL-18 receptor Binding to the body, ST2 / T1, etc. can be examined by ordinary binding experiments using labeled ligands or tests using surface plasmon resonance.
  • Gonadotropin activity can be assayed, for example, as follows.
  • a method for analyzing the activity of the protein of the present invention using the activity of interacting with a gonadotropin receptor such as gonadotropin as an index includes, for example, Hete dimer obtained by transfection with the gonadotropin ⁇ - subunit gene.
  • binding to the gonadotropin receptor or its analog receptor can be examined by ordinary binding experiments using labeled ligands or tests using surface plasmon resonance.
  • Confirmation of protein-protein binding activity can be performed, for example, by in vitro translation and protein-protein binding assay as follows.
  • the protein whose binding activity is to be measured is A, and its partner is B.
  • radioactive substance labeling can be performed by adding [ 35 S] methionine (Amersham) 40 ⁇ to a total volume of 50 ⁇ l.
  • the translation product is subjected to in vitro protein-protein binding.
  • a binding buffer 150 mM NaCl, 0.1% Nonidet P-40, 50 mM Hepes (pH 7.5)
  • lmMPMSF protease inhibitor
  • the protein-protein complex formed on the resin surface is 14,000 rpm at 4 ° C. Centrifuge for 1 min and wash the resin 5 times with 1 ml cold binding buffer at 4 ° C. Protein A bound to GST fusion protein B bound to resin is separated on SDS-12% polyacrylamide gel, and after drying the gel, autoradiography is performed to examine the binding activity between protein A and B can do.
  • a protein having RIM binding activity refers to a protein having an ability to bind to RIM (Rab3- interacting molecule) which is a target protein of Rab3A, that is, a RIM-binding protein (RIM-binding protein).
  • RIM Rab3- interacting molecule
  • RIM-binding protein RIM-binding protein
  • Rab family protein one of the small GTP-binding proteins, is an important factor that controls intracellular vesicle trafficking in eukaryotic cells.
  • Rab3A is abundantly expressed in the brain and concentrated in synaptic vesicles, and is involved in regulatory secretion including neurotransmitter release.
  • RIM Rab3-interacting molecule
  • a target protein of Rab3A is a macromolecule consisting of several hundred amino acids, and has a zinc finger domain on the N-terminal side and two C2 domains on the C-terminal side, like rabphilin.
  • RIM has a PDZ domain structure (involved in the translocation of signal molecules into the intracellular membrane) in the center, and is located in the active zone of the synapse.
  • RIM-binding protein has been cloned (J. Biol. Chem. 275, 26 (2000) 20033-20044), but has three SH3 domains and three fibronectin type III domains. , And is linked to RIM via the SH3 domain. It is also thought that they attach to the matrix of the synaptic active zone and control the release of neurotransmitters.
  • the protein of the present invention has 72% and 75% homology with RIM binding protein 2, respectively. Therefore, it is considered to be a RIM binding protein family molecule.
  • Binding of the protein of the present invention to RIM can be performed by a method known per se, for example, as follows.
  • rat brain was 0.5 ° /. TritonX-100, 1 mM EDTA, 0.l M NaCl, Homogenize using a sample buffer containing protease inhibitors and 50 mM Hepes-NaOH (pH 7.4), and centrifuge to obtain a whole brain fraction.
  • the protein of the present invention After washing the beads with Sampnole buffer to remove non-specifically adsorbed substances, collecting the bound beads, performing SDS gel electrophoresis, and performing immunoblotting using an anti-RIM antibody, the protein of the present invention and The ability to specifically bind to RIM can be examined.
  • the study of the activity of releasing the neurotransmitter by the protein of the present invention can be carried out as follows. For example, a gene encoding human growth hormone 1 and a vector 2 containing a gene encoding the protein of the present invention or an empty vector 2 were transfected into PC12 cells, and three days later, KC1 was used to remove the gene. By applying polarized stimulation and quantifying the amount of human growth hormone released into the medium, the release activity of neurotransmitters can be examined.
  • the protein having an apoptosis-suppressing function of the present invention is structurally similar to Baculoviral IAP repeat-containing protein and Inhibitor of apoptosis protein, it was presumed that it was a molecule having the above function (apoptosis-suppressing action).
  • the inhibitory effect on apoptosis can be verified, for example, by the following method (Nature 379 (1996) 349-353).
  • a vector for expressing the gene encoding the protein of the present invention and a beta control containing no insert for a negative control were added to CH0 cells, Hela cells, or Rat-1 according to a conventional method such as the adenovirus method or the ribofectamine method.
  • Transient gene transfer into cells, etc. apoptosis due to serum removal, menadione treatment (1 Mm-50 ⁇ 50), or TNF-a treatment (TNF-a 20 units / ml and cycloheximide 30 ⁇ g / ml)
  • TNF-a treatment TNF-a 20 units / ml and cycloheximide 30 ⁇ g / ml
  • the protein having peromodulin-like activity of the present invention is presumed to be a glycoprotein that binds to the secretory granule membrane via a GPI anchor and has a function related to the assembly and secretion of secretory granules.
  • cleavage release activity of the protein of the present invention by PI-PLC can be examined by a method known per se, for example, as follows (Proc. Natl. Acad. Sci. USA 89, (1992) 1189-1193). .
  • a vector for expressing the gene encoding the protein of the present invention is constructed, and the gene is transiently introduced into and expressed in CH0 cells, COS cells, pituitary cells, or the like, or expressed endogenously.
  • the secretory granules are extracted from the tissue according to a standard method to obtain a membrane fraction.
  • 20 ⁇ ug / ml of the membrane was added to 50 mM of 20 mM MES (pH 7.0), 80 raM KC1, 0.05 ⁇ g PI-PLC.
  • trypsin inhibitor aprotinin 20 u / ml, FOY- 305 (40 ⁇ g / ml)
  • centrifuged supernatant is electrophoresed, transferred to nylon membrane, and stained with a specific antibody against this protein and a secondary antibody. -It can be confirmed that the connection has been disconnected by the PLC.
  • the protein of the present invention obtained by the above method is incubated at room temperature for 16 hours at the following ion concentration.
  • the hydrogen ion concentration is in the range of pH 5 to pH 8, preferably at pH 5.5
  • the calcium ion concentration is in the range of 0 to 20 mM, preferably 15 mM
  • the sodium ion concentration is in the range of 100 ⁇ M to 100 mM. And preferably at 50 mM.
  • This solution is centrifuged at 220,000 ⁇ g for 90 minutes, separated into a supernatant and a precipitate, subjected to SDS electrophoresis, and detected by a silver staining method, whereby the self-assembly activity can be assayed.
  • the lipid binding activity can be confirmed by a commonly used method known per se. For example, cholesterol ester (CE), triglyceride (TG), or phosphatidylcholine (PC) labeled with radioactive substances The binding activity can be measured by a common binding test in the presence of the protein.
  • proteins can be preliminarily immobilized on a chip, and lipids such as CE, TG, or PC can be added thereto, and binding can be detected by surface plasmon resonance.
  • the transfer activity of lipoproteins can be determined, for example, by combining a donor lipoprotein (usually HDL) with a CE moiety labeled with 14 C or 3 H and an unlabeled receptor lipoprotein (usually VLDL or LDL).
  • These functional assay systems can also be used for screening for a function activator or a function inhibitor of the protein of the present invention described later, and for screening of a protein expression regulator of the present invention.
  • Examples of the method for analyzing the function of the protein of the present invention include, for example, (i) a method for comparative analysis of the expression state in each tissue, disease, or developmental stage, and (ii) an interaction with other proteins and DNA. (Iii) a method of analyzing the phenotype by introducing the protein into an appropriate cell or individual, and (iv) analyzing the phenotypic change by inhibiting the expression of the protein in the appropriate cell or individual. And the like. Further, according to such a method, the activity specific to the target protein can be analyzed from many aspects.
  • the expression of the protein of the present invention can be analyzed at the mRNA or protein level.
  • the expression level is analyzed at the mRNA level, for example, the in situ hybridization method (in situ
  • the protein of the present invention described below is particularly useful. Examples include ELISA using an antibody that binds differently, Western blotting, or tissue staining.
  • a probe that exists only in the cDNA encoding the protein to be analyzed and does not hybridize with the cDNA encoding the known variant may be used. It is good.
  • the function of the protein of the present invention can be analyzed by examining the presence or absence of interaction between the protein of the present invention and a known protein.
  • a method for analyzing the interaction a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, ribosomal method Display method and the like can be mentioned. Also in this method, when a known variant is present in the protein to be analyzed, it is preferable that the known variant is similarly analyzed for interacting substances, and a substance that specifically interacts with the target protein is identified.
  • the cells into which the cDNA of the present invention is introduced are not particularly limited, but human cultured cells and the like are particularly preferably used.
  • Methods for introducing DNA into cells include those described in (2) above.
  • the phenotype of the introduced cells can be observed with a microscope, such as cell viability, cell growth rate, cell differentiation, neurite elongation, localization and migration of intracellular proteins, etc. And those that can be analyzed by biochemical experiments, such as changes in the expression of specific proteins in cells.
  • these phenotypes can be similarly introduced into cells, and the phenotype associated with the target protein can be identified by comparative analysis. it can.
  • since the protein of the present invention is known to have each of the above activities, It is also preferable to analyze by paying attention to the phenotype and the like found in the disease.
  • the method can be efficiently performed by a method using an oligonucleotide described below or an RNA interference method.
  • a method using an oligonucleotide described below or an RNA interference method if a known variant is present in the protein to be analyzed, a similar analysis is performed for a known variant and other variants, and a function specific to the target protein is identified by comparative analysis. be able to. .
  • This method of screening for a regulatory substance may be any method as long as it can obtain a substance that specifically binds to the protein of the present invention and has an activity of inhibiting, antagonizing, or enhancing the activity of the protein. .
  • a method of first contacting a protein of the present invention with a test substance, selecting the test substance based on the binding property to the protein, and the like, and then selecting the test substance using the change in the activity of the protein of the present invention as an index. can be used.
  • the test substance may be any substance that interacts with the protein of the present invention and may affect the activity of the protein.
  • Specific examples include peptides, proteins, non-peptidic compounds, low-molecular compounds, synthetic compounds, fermentation products, cell extracts, animal tissue extracts, and the like. These substances may be novel substances or known substances.
  • Analysis of the interaction between the test substance and the protein of the present invention can be performed by a commonly used method known per se. Specific examples include the yeast two-hybrid method, the fluorescence depolarization method, the surface plasmon method, the phage display method, the liposomal display method, and the competition analysis method with the antibody described in (4) above. . By such a method, the activity of binding to the protein of the present invention was found. Next, by analyzing how the activity of the protein of the present invention is affected in the presence of the substance, whether or not the substance is used as a modulator is identified.
  • the DNA or recombinant protein of the present invention used for the purpose of screening for a pharmaceutically active ingredient it is preferable to use the above-mentioned human homolog.
  • screened material by the foregoing method also good c specifically performing selection as a drug candidate by screening in vivo of these, for example, activity possessed by the protein of the present invention by the following method
  • the analysis of the molecules that regulate the expression can be performed.
  • the analysis of the change in the interaction activity with the IL-11 receptor family is based on the above-mentioned properties and functions of the protein of the present invention. Based on the method (confirmation method of activity), it can be carried out by a commonly used method known per se. For example, a receptor or a protein serving as its substrate is introduced into the DNA transductant described in (2) in the same manner. The dephosphorylation of the protein serving as a substrate in the presence / absence of the selected substance with respect to the introduced substance is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in (5-1) above.
  • the substance If the activity of LAF or the binding to IL-1 receptor family is increased compared to the absence of the substance, the substance interacts with the IL_l receptor family and functions as an activator If the substance is reduced or inhibited, it can be identified that the substance may function as an inhibitor of the activity of interacting with the IL-11 receptor family. Further, the substances screened by the above method may be selected as drug candidates by screening in vivo in these organisms.
  • the interaction activity of the protein of the present invention with the IL-1 receptor family is, for example, to cause immune stress such as inflammation, or to have anti-inflammatory activity. Therefore, substances that can be identified by this screening method are anti-inflammatory drugs It can be used as
  • Analysis of changes in gonadotropin activity can be performed by a method known per se and generally used, based on the above-mentioned properties and functions of the protein of the present invention (method for confirming activity). Specifically, a protein serving as a receptor is introduced into the DNA transfectant described in (2) above in the same manner. The interaction between the protein of the present invention and the receptor in the presence or absence of the substance selected for the transductant is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in (5-2) above.
  • the substance may function as a gonadotropin activating substance
  • gonadotropin inhibitor If the amount of binding to gonadotropin receptor such as gonadotropin receptor is increased as compared with the absence of the substance, the substance may function as a gonadotropin activating substance.
  • the protein having gonadotropin activity of the present invention includes chorionic gonadotropin secreted from the placenta, follicle stimulating hormone (FSH) secreted from the pituitary gland, luteinizing hormone (LH), and thyroid stimulating hormone. (TSH) and the like are known. Both are glycoproteins, and in women, FSH promotes follicle development, LH stimulates estrogen production and secretion in cooperation with FSH, and further acts on mature follicles to induce ovulation, To form It also acts on the corpus luteum to promote progesterone secretion. Thus, LH and FSH play important roles in the formation of the menstrual cycle in normal women. In men, FSH promotes spermatogenesis and LH promotes testosterone secretion. Chorionic gonadotropin has a mainly LH-like effect.
  • substances that can be identified by the present screening method can be used as therapeutic agents for contraception, such as hypopituitary gland function and latent testes.
  • Analysis of changes in protein interaction activity is based on the above-mentioned properties and functions of the protein of the present invention (method of confirming the activity), and is based on the known methods used in the art. It can be performed by a method.
  • Substances that can be identified by the present screening method are, for example, those that can be used as therapeutic agents for cardiovascular diseases, psychiatric / neurological diseases, metabolic diseases and the like.
  • the analysis of the change in RIM binding activity can be performed by a method known per se and generally used, based on the above-mentioned properties of the protein of the present invention and the functional assay (activity confirmation method).
  • the protein having an RIM binding activity of the present invention has an important function as a control factor involved in various physiological functions, and abnormality of the protein in a living body causes various diseases. Therefore, the modulator of the RIM binding activity obtained by the above screening method can be used as a therapeutic agent for various diseases, for example, a disease related to abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic disease. It can be used as a therapeutic agent for brain diseases, diabetic peripheral neuropathy and the like.
  • the analysis of the change in the apoptosis-suppressing function can be carried out by a method known per se, which is known per se, based on the above-mentioned properties of the protein of the present invention and the function assay (activity confirmation method). If the apoptosis-inhibiting activity is increased compared to the absence of the substance, the substance may function as an apoptosis-inhibiting activator. The substance can be identified as potentially acting as an inhibitor of apoptosis.
  • the protein of the present invention may be a neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, or ischemic encephalopathy.
  • Other tumor oncolytic factors such as cancer, muscular atrophy, acquired '1' live immunodeficiency syndrome, immune diseases, endotoxin shock
  • TNF cytokines
  • IL-1 IL-6
  • IL-6 cytokines
  • the activity modulator of the protein of the present invention is used for various diseases related to abnormal secretion control from the kidney, kidney, pituitary gland, ovary, fallopian tube, testis, vas deferens, etc. It can be used as a therapeutic agent for nephritis, pituitary gland, oviduct, vas deferens and other secretory disorders.
  • the analysis of the change in lipid binding activity can be carried out based on the above-mentioned properties and functions of the protein of the present invention by an assay method (confirmation method of activity) by a method known per se and generally used.
  • the protein having a lipid binding activity of the present invention has an important function as a control factor involved in various physiological functions, and abnormality of the protein in a living body causes various diseases. Accordingly, the modulator of lipid binding activity obtained by the above screening method can be used as a therapeutic agent for various diseases, for example, an anticancer agent (antitumor agent), an anti-inflammatory agent, a therapeutic agent for neurodegenerative disease, a therapeutic agent for cardiovascular disease It can be used as a therapeutic agent for blood coagulation diseases and the like.
  • the modulator identified and analyzed by the above method can be used alone for the clinical application, but it can be used as a pharmaceutical composition in combination with a pharmaceutically acceptable carrier. You can also. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • a powerful drug can be administered in various forms, such as tablets, capsules, granules, powders, orally administered by syrup, injections, drops, Parenteral administration with ribosomes, suppositories and the like can be mentioned. The dose can be appropriately selected depending on the symptoms, age, body weight, and the like. (7) Screening of the DNA expression regulator of the present invention
  • Examples of the screening method include a method of analyzing the expression level of the protein of the present invention or the encoding of the protein of the present invention in the presence of the test substance, and the like.
  • cells expressing the protein of the present invention described in (2) above are cultured in an appropriate medium containing a test substance, and the amount of the protein of the present invention expressed in the cells is determined by ELISA.
  • N RNA is analyzed by quantitative reverse transcription PCR, Northern blotting, etc. be able to.
  • test substance those described in the above (6) can be used.
  • the substance functions as a substance for promoting the expression of the DNA of the present invention. If the substance decreases, it can be determined that the substance can be used as a substance for inhibiting the expression of the DNA of the present invention.
  • such an expression regulator When applied to clinical applications, such an expression regulator can be used alone as the active ingredient, and can be used as a pharmaceutical composition in combination with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight.
  • the drug can be administered in various forms. Examples of the dosage form include tablet, capsule, granule, powder, syrup, and the like, oral administration, injection, drip, ribosome And parenteral administration with suppositories and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
  • the transfected DNA containing the DNA of the present invention described in the above (1) is constructed, introduced into fertilized eggs of a non-human suckling animal, and transplanted into a female individual uterus to generate it.
  • a non-human mammal into which the DNA of the present invention has been introduced can be produced. More specifically, for example, a female individual is superovulated by hormone administration, then mated with a male, a fertilized egg is excised from the oviduct on the first day after mating, and the introduced DNA is microscopically introduced into the fertilized egg. It is introduced by a method such as injection.
  • Non-human mammals include, for example, mice, rats, guinea pigs, hamsters, rabbits, goats, pigs, dogs, cats, and the like.
  • the thus-obtained DNA-introduced animal of the present invention is used to breed this individual and subculture them in a normal breeding environment while confirming that the introduced DNA is stably retained, thereby obtaining the offspring. Obtainable.
  • the progeny can be obtained and the strain can be maintained.
  • the non-human mammal into which the DNA of the present invention has been introduced can be used as an analysis of the function of the DNA of the present invention in a living body, or as a screening system for a substance regulating the function.
  • the protein of the present invention can be used as a carrier having it bound on a substrate.
  • a nucleotide sequence encoding the protein of the present invention for example, DNA having a nucleotide sequence described in the sequence listing and a partial fragment thereof can be used as a carrier to which they are bound on a substrate.
  • proteins DNA chips
  • DNA arrays DNA microarrays and DNA macroarrays.
  • These protein chips or DNA chips or arrays may contain other proteins and DNA in addition to the proteins and DNA of the present invention.
  • a resin substrate such as a nylon film or a polypropylene film, a nitrocellulose film, a glass plate, a silicon plate, or the like is used as a substrate for binding a protein or DNA, and the detection of hybridization is performed.
  • a resin substrate such as a nylon film or a polypropylene film, a nitrocellulose film, a glass plate, a silicon plate, or the like is used as a substrate for binding a protein or DNA, and the detection of hybridization is performed.
  • a glass plate containing no fluorescent substance, silicon A plate or the like is preferably used.
  • the binding of the protein or DNA to the substrate can be easily performed by a commonly used method known per se.
  • These protein chips, DNA chips, or DNA arrays are also included in the scope of the present invention.
  • the amino acid sequence of the protein of the present invention and the nucleotide sequence of DNA can also be used as sequence information.
  • the nucleotide sequence of DNA also includes the nucleotide sequence of the corresponding RNA. That is, a database of amino acid sequences and base sequences can be constructed by storing the obtained amino acid sequences and base sequences in an appropriate recording medium in a predetermined format readable by a computer. This database may contain the nucleotide sequences of other types of proteins and the DNA encoding them. Further, in the present invention, the database also means a computer system that writes the above-mentioned sequence on an appropriate recording medium and performs a search according to a predetermined program.
  • Suitable recording media include, for example, magnetic media such as flexible disks, hard disks, and magnetic tapes, optical disks such as CD-ROM MO, CD-R, CD-RW, DVD-R, and DVD-RW, and semiconductors. Memory and the like can be mentioned.
  • mRNA-prepared mouse C57BL / 6
  • Each organ or tissue 0.5 or more: Lg is homogenized with a 10 ml suspension, and the same amount of phenol Z as 1 ml of 2 M sodium acetate at pH 4.0
  • a mixed solution of black-mouthed form (5: 1 by volume) was added for extraction.
  • RNA separated and precipitated from the aqueous phase.
  • RNA was dissolved in 4 ml of 7 M guanidine-C1 by centrifugation at room temperature at 4,000 rpm for 15 minutes. After adding 2 volumes of ethanol, the mixture was incubated on ice for 1 hour, centrifuged at 4.00 rpm for 15 minutes, and the resulting precipitate was washed with 70% ethanol to collect RNA. Was re-dissolved in water, and the purity of the RNA was measured by reading the OD ratios 260-280 (> 1.8) and 230/260 ⁇ 0.45).
  • Oligonucleotide containing the recognition sequence of the restriction enzyme Xho I (SEQ ID NO: 3) (in the sequence, V indicates A, G, or C, and N indicates A, G, C, or T) 12.6 ⁇ m 1 was used as a primer.
  • Biotinylation of RN ⁇ diol Two steps to bind biotin to the diol site of RN ((present at both the 5 'end of the Cap structure and the 3' end of the poly A chain ribose). The reaction was performed. These are the diol group oxidation and the subsequent coupling reaction of biotin hydrazide and oxidized RNA. First, 15 / Z g of the RNA-first strand cDNA complex obtained by the reverse transcription reaction was combined with 6.6 mM sodium acetate buffer (PH4.5) and sodium periodate as an oxidizing agent. The reaction was performed in 501 reactions. This oxidation reaction was performed on ice for 45 minutes under light-shielded conditions.
  • yeast tRNA treated with DNase I was added to 5 mg (500 ⁇ l) of yeast tRNA.
  • MPG magnetic porous glass
  • CPG reptavidin
  • the beads were suspended in 500 ⁇ l of a solution of 5 OmM EDTA and 2 M NaCl, and the RNase I-treated cDNA obtained in (4) above was added. By stirring for 30 minutes at room temperature, the magnetic beads and the full-length cDNA were bound.
  • Beads capturing full-length cDNA were treated 4 times with a solution of 5 OmM EDTA and 2 M NaC1, 0.4% SDS, 50 ⁇ g / ⁇ l once with yeast tRNA, and 10 mM Na C 1, 0.2 mM EDTA, 10 mM Tris—HCl (pH 7.5), once with 20% glycerol, once with 50 ⁇ l yeast tRNA aqueous solution, RNase H buffer (2 OmMT ris -HC l (p H 7. 5) , 1 OmM M g C l 2, 20 mM KC 1, 0. 1 mM EDTA, washed once with 0.
  • the single-stranded full-length cDNA recovered in this manner is extracted with phenol Z-form and reduced to less than 1001 in a speed bag, and then subjected to G25 / GlOOS ephadex chromatography. I attached it. Fractions with RI activity are collected in siliconized microtubes and glycogen 2 ⁇ g Was added, and the precipitate obtained by ethanol precipitation was dissolved in 30 ⁇ l of ultrapure water.
  • the synthesis of the second-strand cDNA obtained by converting the first-strand cDNA into type II was performed as follows. In a reaction system with a final volume of 60 ⁇ l, a second-strand low buffer (20 OmM Tris—HC
  • thermostable DNA ligase Am1 igase; E picentre
  • thermostable R Nase H Hybridase; E picentre
  • reaction was stopped by adding 1 ⁇ l of 0.5 M EDTA, and 1 ⁇ l of 10% SDS and 10 ⁇ g of proteinase K were added to dissolve the protein components. Heat at 45.C for 15 minutes, and finally extract the double-stranded full-length cDNA by phenol Z Obtained.
  • the double-stranded full-length cDNA obtained by the above method was inserted into a ⁇ II vector and recovered as a library.
  • the ZAP III vector is obtained by modifying SEQ ID NO: 5, which is a partial sequence of the multicloning site of the ⁇ II (S TRATAGENE) vector, to SEQ ID NO: 6, and introducing two new Sfi I sites. It is.
  • PS (RIKEN) (named ⁇ -FLC-1 (FLC means FULL-LENGTH cDNA)) is a modification of the ⁇ PS vector of MoBiTec (Germany) for cDNA. Things. That is, BamHI and Sa1I, which are convenient for cDNA insertion, are respectively introduced into the closing sites present on both sides of the lOkb pstuffer, and cDNA from about 0.5 kb to about 13 kb is cloned. A 6 kb DNA fragment was inserted into the XbaI site to allow
  • RNA driver The mRNA prepared in Example 1 (1) (hereinafter, this may be referred to as “(a) RNA driver”) and the RNA prepared by in vitro transcription reaction were used as drivers.
  • the latter RNA is further divided into two types (hereinafter referred to as “(b) RNA driver” and “(c) RNA driver”).
  • RNA (b) RNA driver was obtained by extraction of black form.
  • mini-libraries are usually prepared from nine types of tissues (pancreas, liver, lung, kidney, brain, spleen, testes, small intestine, stomach), and the nine types of mini-libraries are mixed. To obtain RNA.
  • RNA is cultured from a library (about 20,000 clones) that has already been stored as a non-overlapping clone, and the resulting DNA is subjected to (b) in vitro transcription reaction in the same manner as the RNA driver (c ) RNA Dryer.
  • RNA was labeled with biotin using the Label-ITB iotin Labeling Kit (manufactured by Mirus Corporation) and then added to tester cDNA at a ratio of 1: 1: 1. Reaction at t 10
  • One representative clone was selected from each cluster. Representative clones were selected using Q-bot (manufactured by G ENET IXLIMI TED) and arrayed on a 384-well plate. At that time, E. coli was cultured at 50 ° C in L ⁇ medium at 30 ° C for 18 to 24 hours. At this time, the cDNA library was introduced into the PS vector and E. coli DH10 If B is transformed, add 10 Omg / m1 ampicillin and 5 Omg / m1 kanamycin, introduce into the Zap vector, and 10 Omg if introduced into the SOLR system. / m1 of ampicillin and 25 mg / m1 of streptavidin.
  • Each clone cultured in (1) above is further cultured in 1.3 ml HT solution containing 10 OmgZm1 ampicillin, and after collecting cells by centrifugation, Q
  • Plasmid DNA was recovered and purified using I-Ap 96 Turbo (manufactured by QIAGEN). To check the chain length of the cDNA inserted in the obtained plasmid, 1Z30 of the plasmid DNA obtained above was
  • Plasmids were divided into two categories: those with insert sequences shorter than 2.5 kb and those with longer insert sequences. Of these clones, the clone having an insertion sequence shorter than 2.5 kb was analyzed for the nucleotide sequence from both ends.
  • the plasmid was prepared using the primers described in SEQ ID NO: 7 (sense strand) when the vector was PS, and the primers described in SEQ ID NO: 8 (antisense strand), and SEQ ID NO: 9 (sense strand) when the vector was Zap.
  • the primers described in (sense strand) and (antisense strand) 10 are used to determine the terminology of the primers.
  • the reaction was performed using a DNA polymerase 4100 (LonggrEadseqeqencer).
  • sequencing of clones with inserted cDNAs longer than 2.5 kb was performed by the shotgun method.
  • ShimadzuRISA 384 and DYEnamicETterminanatorcyclesesequenccinnggkit were used.
  • To generate a shotgun library 48 DNA fragments grown in PCR from 48 independent representative clones were used. The ends of the amplified DNA fragments were blunt-ended with T4 DNA polymerase.
  • This DNA fragment was inserted into a pUC18 vector, and Escherichia coli DH10B was transformed with the recombinant vector. Plasmid DNA was prepared from this E. coli in the same manner as in (2) above.
  • nucleotide sequence was determined by nucleotide sequence analysis from both ends, and the nucleotide sequences were ligated on a computer, followed by double-stroke S hearing device (Fiore In c.) [Shearing was performed. Nucleotide sequencing by the shotgun method was performed with duplication of 12 to 15 clones. The gap for which the sequence could not be determined by the nucleotide sequence determination was determined by primer walking as in the case of KamiSonomi.
  • dnafo rm56243 consists of 582 bases, of which base numbers 290 to 871 constitute an open reading frame (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 193 amino acid residues (SEQ ID NO: 2).
  • the protein of the above (i) is induced in keratinocytes by treatment with interferon y or TNF ⁇ from literature information (J. Biol. Chem. 2000, 275 (14): 10308-14) in the database.
  • the protein of (ii) is expressed in the spleen, thymus, and leukocytes according to literature information in the database (J. Biol. Chem. 275: 1169-1175 (2000)).
  • the protein of (iii) is expressed in bone marrow and tonsils from the literature information in the database (J. Biol. Chem. 275: 1169-1175 (2000)).
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1 was searched for protein characteristics using HMM PFAM, the amino acid sequence encoded by nucleotide numbers 440 to 868 in SEQ ID NO: 1 showed a sequence exhibiting IL-1 characteristics. (Base sequence that is entered as IL-1 in P f am).
  • dnafo rm60876 is, as shown in SEQ ID NO: 11, from 1618 bases. Of which, base numbers 246 to 509 were open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 87 amino acid residues (SEQ ID NO: 12).
  • a database registration mark Q 98849, GONADOTROP INB ETA- II CHA iN PRECURSOR (GTH- II -BETA) (LUTE INIZI NG HORMONE- LI KE GTH) is e- value: 3 X 10 16 in, at 45% of the degree of coincidence over the 83 amino acid residues, also (ii) a database registration mark AAKO 7414. 1, (AF 319960) l ii teiniazlngho rmo nebetasub un forces e- value: at 6 X 10 16, To 83 amino acid residues!
  • the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 11 was subjected to a protein feature search using HM MPF AM, which revealed that the amino acid sequence encoded by the nucleotide numbers 199 to 531 in SEQ ID NO: 11 showed the characteristics of glycoprotein hormones. (A nucleotide sequence entered as “Cys-knot” in P f am) was found.
  • dnafo rm35363 consists of 3133 bases, of which base numbers 43 to 1788 constitute an open reading frame (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 58 1 amino acid residues (SEQ ID NO: 17).
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 13 was subjected to a protein feature search using HMMP FAM.
  • amino acid sequence of 383 to 499 showed a sequence (P f am Base sequence entered as BTB in Japan).
  • Ankyrin repeat (Pfam entry ank) was also found in three places.
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 13 is useful as a tool for elucidating the intracellular protein interaction network.
  • HMMPFAM protein characteristic search by HMMPFAM was performed on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 14, and it was found that the amino acid sequences of 401 to 517 showed characteristics related to protein dimerization (Pf am, a base sequence that is entered as a BTB). Ankyrin repeat (P fam entry ank) was also found in three places.
  • dnafo rm40331 consists of 4446 bases, of which base numbers 204 to 1004 constitute an open reading frame (including a stop codon). Predicted from open reading frames The amino acid sequence consists of 266 amino acid residues (SEQ ID NO: 19).
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 15 was searched for protein characteristics by HMMP FAM.
  • amino acid sequence of 8 to 117 showed a sequence (P fam (A base sequence that is entered as a BTB).
  • dnafo rm39540 was composed of 2752 bases, of which base numbers 117 to 2387 were open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 756 amino acid residues (SEQ ID NO: 20).
  • the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 16 was subjected to homology detection using BLAST.
  • dnafo rm43059 consists of 3421 bases, of which base numbers 297 to 2507 constitute an open reading frame (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 736 amino acid residues (SEQ ID NO: 23).
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 21 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 23 is a kind of RIM-binding protein.
  • the expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be developed as a therapeutic agent for type dementia, Parkinson's disease, chorea, ischemic brain disease, diabetic peripheral neuropathy, etc.
  • dnaform50434 was composed of 480 bases, of which base numbers 724 to 3939 were open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 1071 amino acid residues (SEQ ID NO: 24).
  • SEQ ID NO: 24 When a homology search was performed using the BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 22, the S PTR protein database (SW ISS—PROT protein sequence database and the TrEMB L nucleic acid translation database were compared).
  • RIM-binding protein Since RIM-binding protein is considered to be involved in the secretion of neurotransmitters, the expression regulator, function activator, or function inhibitor of the protein of the present invention may be used in diseases involving abnormal neurotransmission, such as Alzheimer's disease. It may be developed as a therapeutic agent for type dementia, Parkinson's disease, chorea, ischemic brain disease, diabetic peripheral neuropathy, etc.
  • dnaform54482 was composed of 1531 bases, of which base numbers 125 to 595 were open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 156 amino acid residues (SEQ ID NO: 26).
  • the protein (i) is related to the inhibition of apoptosis based on literature information (Nat. Struct. Biol. 6: 648-651 (1999)) in the database, and the protein (ii) is From the literature information (DNA Cell Biol. 15: 981-988 (1996)), it is implicated in the suppression of T cell apoptosis, and the protein (iii) is described in the database information (J. Virol 67: 2168-2174 (1993)), it was clarified that they are involved in the suppression of cell apoptosis.
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 25 was searched for a protein motif using HMMP FAM.As a result, amino acid numbers 96 to 156 in SEQ ID NO: 26 were found to have Baculovirus Inhibitor of apoptosis protein Repeat (P f am Amino acid sequence that is entered as BIR, also described as IAP repeat).
  • the protein encoded by the nucleotide sequence of SEQ ID NO: 25 was a protein having a function related to suppression of apoptosis.
  • dnafo rm36789 was composed of 3541 bases, of which base numbers 1372 to 2613 were open reading frames.
  • the amino acid sequence predicted from the open reading frame consists of 413 amino acid residues (SEQ ID NO: 28).
  • SEQ ID NO: 28 When a homology search was performed using BLAST for the amino acid sequence encoding the nucleotide sequence shown in SEQ ID NO: 27, the S PTR protein database (SWI SS-PRO T protein sequence database and the TrEMBL nucleic acid translation database) during those that have been integrated) a, is (i) over to the data be registered gii No.
  • Uromodulin precursor (Tamm-Horsf all urinary glycoprotein), e- value: in l X l CT 23, over a period of 31 3 amino acid residues 2 9% degree of coincidence, also (ii) a database registration mark M58716, zymogen granule membrane protein GP - 2 is, e-value: at l X l 0- 16, also 29% of the degree of coincidence over the 285 amino acid residues And (iii) the database registration symbol U44949, zona pellucida A glycoprotein homolog force S, e- value: 1 X 1 0 one 14 was hit by one are two 3% coincidence degree 2 6 5 Amino acid residues. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 28 was a glycoprotein present in secretory granule membrane.
  • protein GP-2 (the major glycoprotein of the zymogen granule membrane of the viscera) can be obtained from the GPI based on literature information (J. Biol. Chem. 266 (1991) 4257-63) in the database. It was revealed that the anchor was bound to the secretory membrane and secreted from the apical surface of the knee cell.
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 27 was subjected to a protein feature search using HM MPF AM, and the amino acid sequence encoded by nucleotide numbers 1636 to 2368 was found to have a receptor-like amino acid sequence.
  • a sequence exhibiting the characteristics of a glycoprotein (a base sequence that is entered as a Zona pellucida-like domain in P fam) was found. It is also known that a GPI anchor region is often connected downstream of this sequence.
  • the protein encoded by the nucleotide sequence of SEQ ID NO: 27 is a GPI It was presumed that it was a glycoprotein that binds to the secretory granule membrane via an anchor and has a function related to the assembly and secretion of secretory granules, that is, a protein having peromodulin-like activity.
  • dnaform28658 was composed of 2313 bases, of which base numbers 68 to 1597 were open reading frames (including a stop codon).
  • the amino acid sequence predicted from the open reading frame consists of 509 amino acid residues (SEQ ID NO: 31).
  • the protein (i) may be involved in cytotoxic activity against Gram-negative bacteria from literature information (Nucleic Acids Res. 18: 3052-3052 (1990)) in the database, and the protein (ii) From the literature information in the database (J. Biol. Chem. 270: 17133-17138 (1995)), it is involved in the transport and regulation of phospholipids such as HDL. Information (Science 249: 1429-1431 (1990)) has revealed that each is involved in binding to lipopolysaccharides.
  • the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 29 was subjected to protein characteristic search using HMMP FAM. As a result, it was found that amino acids 26 to 242 of SEQ ID NO: 31 show characteristics of lipid-linked glycoprotein (Base sequence entered as PBP as LBP-BPI-CETP-C).
  • dnaform25641 consists of 1782 bases, of which base numbers 57 to 1517 have an open reading frame.
  • the amino acid sequence predicted from the open reading frame consists of 486 amino acid residues (SEQ ID NO: 32).
  • a homology search was performed using BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30, and the S PTR protein database (SWI SS—PROT protein sequence database and T r EMB L nucleic acid translation database were integrated.
  • SWI SS PROT protein sequence database
  • T r EMB L nucleic acid translation database were integrated.
  • the protein of the above (i) has the ability to be involved in binding to lipopolysaccharides from the literature information in the database (J. Biol. Chem. 269: 17411-17416 (1994)). From the literature information in the database (Science 249: 1429-1431 (1990)), the ability to participate in binding to lipopolysaccharides.
  • Literature information in the database J. Biol. Chem. 270: 17133-17138 (1995) revealed that it is involved in the transport and regulation of phospholipids such as HDL, respectively.
  • amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30 was subjected to a protein feature search using HMMP FAM.
  • amino acid numbers 28 to 242 in SEQ ID NO: 32 showed the amino acid sequences having lipid-linked glycoprotein characteristics. (Base sequence that is entered as LBP-BPI-CETP at P f am).
  • the protein encoded by the nucleotide sequence shown in SEQ ID NO: 30 was a lipid-binding protein.
  • Tissue expression analysis was performed as described in Miki, R., et al., Proc. Natl. Acad. Sci. USA, 98, 2199-2204 (2001).
  • the mouse cDNA library FAN TOM http://fantom.gsc.riken.go.jp/) belonging to the same cluster as the nucleotide sequence of the mouse full-length cDNA to be analyzed (dnafo rm35363 and ⁇ dnafo rm48060)
  • FAN TOM http://fantom.gsc.riken.go.jp/
  • the PCR product was precipitated with isopropanol and 15/1 3XSSC Dissolved in the liquid.
  • This DNA solution was spotted on a glass slide coated with poly-L-lysine using a DNA layer of 16 chips (SMP3, Telechem International, Sunny vale, CA) to prepare a DNA microarray (Method
  • SMP3, Telechem International, Sunny vale, CA Telechem International, Sunny vale, CA
  • the detection sensitivity of this DNA microarray was 1 to 3 copies of mRNA per cell. A clone with approximately 80% identity to the target sequence The intensities were 10 times lower than those of perfectly matched clones. The signal intensity of clones with less than 80% match with the target sequence was at the background level.
  • a 30 ⁇ l solution of a cDNA probe (Cy3 label) derived from the tissue to be analyzed for expression and a reference cDNA probe (Cy5 label) derived from a 17.5-day-old fetus at 95 ° C For 1 minute and cooled at room temperature.
  • the probe solution was added to the DNA microarray, covered with a force bar slip, and hybridized at 65 ° C.- ⁇ in a Hy bricasette (Ar ray It).
  • the DNA microarray was washed with 2 ⁇ SSC, 0.1% SDS, and then rinsed with 1 ⁇ SSC for 2 minutes and with 0.1 ⁇ SSC for 2 minutes.
  • the microarray was scanned using a ScanArray 5000 confocal laser scanner and the images were analyzed with I MAGENE (BioDiscovery).
  • the mRNA level (Cy 3 labeling) in each tissue is the logarithm (1 og 2 ) of the ratio (Cy 3 / Cy 5) to the reference 17.5-day-old fetal whole-body mRNA level (Cy 5 labeling). Displayed with. That is, if the expression level of mRNA corresponding to the full-length cDNA of each mouse to be analyzed is greater in each tissue than in the reference tissue, a positive value is used, and if it is less, it is a negative value and equal. The case is indicated by 0. In order to increase the accuracy of the data, the experiments were run independently twice and reproducible results were used. The results are shown in Table 1.
  • mRNA level is 2 times, if 2 the mRNA level is 4 times, conversely, If the difference between the tissues is -1, the mRNA amount is 1/2 times, and if it is 12, the mRNA amount is 1/4 times.
  • the DNA spotted on the microarray belongs to the same cluster as the cDNA to be analyzed, and has a match of 80% or more of the nucleotide sequence with the DNA for at least 200 bases. Because it has an area with Table 1 shows the numerical values of the measurement results of the DNA spotted on the microarray as the results of the cDNAs to be analyzed (dnafo rm35363 and dnafo rm48060).
  • dnaform48060 FANTOM NO: 6330404E16 0.154544 0.432329 As is evident from Table 1, the expression of dnafo rm35363 and dnafo rm48060 in testis and epididymis-derived fat cells can be reduced by about 1/2 times compared to other tissues. .
  • Example 6 Protein-protein interaction angle! Using the two-hybrid method in mammalian cells (Suzuki, H., et al., Genome Research, 11, 1758-1765 (2001)), the nucleotide sequence of one mouse full-length cDNA (dnafo rm39540) A comprehensive analysis of the protein-protein interaction of the protein encoded by the protein coding sequence was performed.
  • the fusion gene with the protein coding sequence of the full-length cDNA of each clone is basically the protocol of Promega. Was created by combining ligation using a common sequence and two-step PCR.
  • the BIND and ACT samples prepared by PCR were used directly without further purification. 0.25 ⁇ l, 30 ng of pG5 1 uc, and 9.51 Opti-MEM medium (Lifetech) of the BI ND sample and the ACT sample, respectively, were dispensed into 384 ⁇ l plates. Add LF2000 Transfection Reagent (Lifetech) 101 diluted 32 times in Opti-MEM medium to the wells, mix, incubate for 20 minutes, and bring to 1,300 cells / ⁇ 1 in F12 medium. The suspended CHO-K1 Chinese hamster cell solution (20 ⁇ l) was added and the cells were well suspended.
  • the protein (protein having protein binding activity) encoded by the nucleotide sequence (dnafo rm 39540) of the mouse full-length cDNA was obtained from the mouse cDNA library FANTOM.
  • HSPC206 is obtained from the CD34 + hematopoietic stem / progenitor cells and is collected in 7 cells (Genome Res. 2000, 10 (10): 1546-60). Thus, HSPC206 is derived from hematopoietic stem cells. From these results, it was speculated that the protein encoded by dnaform m39540 may be involved in cell differentiation / proliferation in the tissue, and also in cancer, immunity, inflammation and allergy.
  • the protein encoded by the mouse full-length cDNA cDNA (dnaform m54482) (a protein that has an apoptosis inhibitory effect) is as follows in the mouse cDNA library FANTOM.
  • the protein was found to interact with cytokeratin 10, keratin (homolog to high sulfur protein B2F), and putative keratin-associated protein.
  • cytokeratin 10 keratin (homolog to high sulfur protein B2F)
  • putative keratin-associated protein When epidermal cells are formed, they are born in the basal layer, migrate toward the integument, and, at the granular cell layer, gradually lose nuclei and organelles and become keratinized by a partial apoptotic mechanism. It was speculated that this protein controls such a differentiation process.
  • Leucine-rich repeat is a 20-29 amino acid residue motif found in many proteins in tandem. These proteins are involved in many functions such as hormone-receptor interaction, enzyme inhibition, cell adhesion, and intracellular transport. Recent findings also indicate that LRR proteins are involved in early mammalian development, nervous system development, cell polarization, regulation of gene expression, and apoptotic signaling. LRR is a structural frame that performs these various functions. It is thought to form a workweek. Therefore, it was speculated that this protein may be involved in the control of cell division, differentiation, apoptosis, etc.
  • Outer arm dynein is one of the motor proteins and belongs to the AAA + family ATPase, which is responsible for ciliary and flagellar movements, and is responsible for intracellular transport and cell division such as membrane vesicles
  • cytoplasmic dynein This protein works with the hypothetical outer arm dynein light chain 1 structure containing protein for 7 days, and this protein is used for the movement of cilia and flagella, or for the transport of membrane vesicles and the like in cells. It was presumed to be related to cell division and the like.
  • PCR was performed according to a conventional method (Higuchi R, et al., Biotechnology, 11: 1026-30 (1993)). Was used to perform tissue expression analysis.
  • the following five mRNAs encoding the protein of the present invention were expressed using a light cycler constant-quantity PCR device (Roche's Diagnostic Status).
  • Quantification was performed using LightCycler-FastStart DNA Master SYBR Green I reagent according to the protocol attached to the product.
  • the synthetic DNA sequences used for quantitative PCR are shown below.
  • GAP DH Glyceraldehyde 3-phosphate dehydrogenase
  • dnafo rm56243 was strongly expressed in bone marrow and lung and adipocytes, and increased in diabetic knee and colon cancer.
  • dnafor m4 3059 was highly expressed in the brain, increased in the diabetic knee, and decreased in colon cancer.
  • dnafo rm50034 was highly expressed in brain, increased in diabetic knees, and decreased in colon cancer.
  • dnafo rm54482 was strongly expressed in the eyes and highly expressed in the lungs. Expression of dnafo rm36789 was observed in the brain and eyes, and expression was enhanced in diabetic fat cells.
  • the cDNA of the clone and the protein encoded by the cDNA can be applied to the treatment and diagnosis of diabetes, cancer and the like.
  • the protein encoded by the cDNA may be involved in a tissue in which the mRNA expression is fluctuated as described above, or a high mRNA expression level, or a tissue-related disease.
  • the homologue of the fly gene to the nucleotide sequence of the full-length mouse cDNA obtained above was predicted by the following sequence analysis. The sequence analysis was performed at the amino acid sequence level, considering the protein translated from the ORF.
  • the mouse clone dnafo rm54482 was pair-wise between the mouse full-length cDNA clone (SEQ ID NO: 25) containing the amino acid sequence 1J shown in SEQ ID NO: 26 and the fly clone (Berkeley Drosophila Genome Project (BDGP) Drosophila Genomic Sequence Release 3.0).
  • the ORF of the above fly cDNA (CG12284), a fragment of about 500 b on the 5th side (hereinafter, this may be referred to as “target cDNA”) was obtained by using the fly cDNA library (Berkeley Drosophila Genome Project (httpV / www. fruitfly.org) "C
  • the PCR primer was Cpo I A7 (SEQ ID NO: 43: 3 'end of AAATTTCGGACCG).
  • SEQ ID NO: 45 the base sequence described in MATTTGGCCTACATGGCC, in which the base 3 of the target cDNA is linked to the base 3 of base 21 of the target cDNA 5, 2) and Cpo IB 3 (SEQ ID NO: 46: AAATTTCGGTCCG with the 3 'end of the target cDNA linked to the 3' end of the 3 'end was used.
  • a DNA fragment of about 500 bp amplified by PCR using S fi I A3 and S fi IB7 primers is digested with S fi I, and this digested fragment is used as a flyclothing vector (p UASTCS1: Ryu Ueda et al., Cell Engineering , Vol21, No. 8, 923-932 (2002)) were inserted between the sites digested with SiiI and cloned. Furthermore, a CpoI-digested DNA fragment obtained by PCR-amplification of the DNA fragment using the above-mentioned CpoI A7 and CpoIB3 primers was inserted between the sites where this vector was digested with CpoI and cloned.
  • the pUAST vector a fly transformation vector used above, is a vector that uses the transposon P factor, and uses the UAS sequence and the basic promoter of heat shock protein 70 to convert the transcription promoting protein GAL4 into the UAS sequence.
  • This vector is capable of inducing transcription of an inverted repeat sequence inserted downstream of a UAS sequence by ligation.
  • the inverted repeat vector DNA prepared in the above (i) was used for the fly W1118 strain (Indiana stock center:
  • Act 5 C—GAL 4 is a strain in which a fusion gene in which the yeast GAL 4 gene is linked to the promoter of the cellular actin gene (Act5C) expressed in whole body cells is introduced. Therefore, the GAL4 protein is expressed in all cells in the fly having the Act5C-GAL4 transgene.
  • RNAi individuals In the offspring (F1 generation, hereafter referred to as “RNAi individuals”) in which the IR strain fly and the Act 5 C—GAL 4 strain fly were crossed, two types of transfection were carried out as shown in FIG. Gene is present. Therefore, the GAL4 protein is expressed in all cells, and since the I R vector is forcibly transcribed, ds RNA appears in the cells, exerts the RNAi effect, and degrades when the target mRNA is expressed. Therefore, the function of the target gene is inhibited in all cells of the individual. If the target mRNA is not expressed, it has no effect on cells.
  • the fly individual By inhibiting the expression of the above fly gene using RNAi technology and inhibiting its function, it was found that the gene plays an important role in early development or maintenance of the individual's survival function.
  • the protein encoded by dnafo rm54482 (SEQ ID NOS: 25 and 26) is estimated to have an apoptosis-suppressing effect, and in RNAi individuals, the apoptosis-suppressing effect of the fly homolog gene is inhibited.
  • apoptosis did not proceed normally, and the individual is considered to have become semi-lethal.
  • the protein encoded by dnaform m54482 has an apoptosis-suppressing effect, and it is presumed that it plays an important role in relation to development, disruption, physiological functions, or disease states. . From the results of tissue expression and function analysis in Examples 5 to 8 above, it was revealed that the protein of the present invention has the following properties.
  • Example 4 From Example 4, it is assumed that the protein encoded by dnafo rm56243 (SEQ ID NO: 1) has an activity of interacting with IL-11 receptor family, and has a function of controlling an immune response and an inflammatory response.
  • Example 7 showed that it was strongly expressed in bone marrow, lung and fat cells, and increased in diabetic knee and colon cancer. From these results, it is suggested that the present protein is associated with immune diseases, respiratory diseases, diabetes, cancer, etc., and that the expression regulator, function activator, or function inhibitor of the protein of the present invention is immune-related. It may be developed as a therapeutic agent for diseases (eg, chronic joint rheumatism, psoriasis), respiratory diseases (eg, bronchial asthma, pneumonia), diabetes, cancer, and the like.
  • diseases eg, chronic joint rheumatism, psoriasis
  • respiratory diseases eg, bronchial asthma, pneumonia
  • diabetes cancer, and the like.
  • Example 4 From Example 4, the protein encoded by dnaform43059 (SEQ ID NO: 21) was estimated to be one type of RIM-binding protein.
  • RIM-binding protein is thought to be involved in secretion of neurotransmitters. In addition, it was also found from Example 7 that the expression was higher in the brain, increased in diabetic kidney, and decreased in colon cancer.
  • the expression control substance, the function activator, or Functional inhibitors may be developed as therapeutics for diseases associated with abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy. In addition, it may be developed as a therapeutic drug for diabetes, cancer, etc.
  • Example 4 From Example 4, the protein encoded by dnaform50034 (SEQ ID NO: 22) was estimated to be one type of RIM-binding protein.
  • RIM-binding protein is thought to be involved in neurotransmitter secretion. In addition, it was found from Example 7 that the expression was high in the brain, increased in diabetic kidney, and decreased in colon cancer.
  • the expression control substance, function activator or function inhibitor of the protein of the present invention is useful for diseases related to abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic. It may be developed as a therapeutic drug for peripheral neuropathy. In addition, it may be developed as a therapeutic drug for diabetes, cancer, etc. ⁇
  • the protein encoded by dnafo rm54482 (SEQ ID NO: 25) is suggested to be involved in the suppression of apoptosis from Example 4, and from Example 7, it is strongly expressed in eyes and high in lung.
  • the experimental results of protein-protein interaction also suggested that this protein is related to suppression of apoptosis, cancer, and respiratory diseases.
  • the protein was semi-lethal due to the effect of the RNAi of the fly homolog, and therefore, this protein plays an important role in development and differentiation, etc. And a connection with cancer was suggested. From these facts, there is a possibility that the expression regulator, function activator, or function inhibitor of this protein can be developed as a therapeutic agent for ocular diseases, respiratory diseases such as lungs and trachea, and cancer.
  • Example 5 From Example 4, the protein encoded by dnafo rm36789 (SEQ ID NO: 27) was presumed to be a glycoprotein present in membranes such as secretory granules of the knee. Expression is observed in the eyes, and is expressed in diabetic fat cells. Because of the increased current, expression regulators, function activators, or function inhibitors of this protein may be used in diseases involving diabetes and abnormalities in neurotransmission, such as Alzheimer's type 1 dementia, Parkinson's disease, chorea, and ischemic brain. It may be developed as a therapeutic agent for diseases, diabetic peripheral neuropathy, etc.
  • Example 6 From Example 6, it was confirmed that the protein encoded by dnaform39540 (SEQ ID NO: 16) interacts with the hypothetical protein HSPC206.
  • HSPC206 is a gene obtained from the CD34 + hematopoietic stem / progenitor cells (Genome Res. 2000, 10 (10): 1546-60).
  • the protein encoded by dnafo rm39540 may be involved in cell differentiation / proliferation in the tissue, and also in cancer, immunity, inflammation, allergy, etc. Was done.
  • the expression regulator, function activator, or function inhibitor of this protein can be developed as a therapeutic drug for cancer, immune disease, inflammatory disease, allergic disease and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The base sequences of cDNA clones involved in a catalogued full-length cDNA library are analyzed. Concerning cDNA clones having novel sequences from among those analyzed above, the physiological activities (functions) of proteins encoded thereby are specified. Based on these physiological activities (functions), a method of utilizing the proteins and DNAs encoding the same is proposed. Namely, the following proteins (a) and (b), DNAs encoding the same and a method of utilizing the same are provided: (a) a protein comprising an amino acid sequence represented by any of SEQ ID NOS:2, 12, 17, 18, 19, 20, 23, 24, 26, 28, 31 and 32; and (b) a protein comprising an amino acid sequence derived from an amino sequence represented by any of SEQ ID NOS: 2, 12, 17, 18, 19, 20, 23, 24, 26, 28, 31 and 32 by deletion, substitution and/or addition of one to several amino acids and having an activity of interacting with the IL-1 receptor family, a gonadotropic activity, an activity of interacting with a protein, an RIM-binding activity, an apoptosis-inhibiting function, an uromodulin-like activity or a lipid-binding activity.

Description

新規タンパク質及ぴそれをコードする DNA 技術分野  New proteins and the DNA technology that encodes them
本発明は、 新規なタンパク質、 該タンパク質をコードする DNA、 該タンパク 質をコードする完全長 c DNA、 該 DNAを有する組換えベクター、 該 DNAの 部分配列から成るオリゴヌクレオチド、 該 DNAを導入した遺伝子導入細胞、 及 ぴ該タンパク質に特異的に結合する抗体等に関する。 背景技術  The present invention relates to a novel protein, a DNA encoding the protein, a full-length cDNA encoding the protein, a recombinant vector having the DNA, an oligonucleotide comprising a partial sequence of the DNA, and a gene into which the DNA has been introduced. The present invention relates to an introduced cell, and an antibody specifically binding to the protein. Background art
c DN Aの取得及ぴその塩基配列解析は、 生体内に発現するタンパク質の生理 活性を解析し、 その活性に基づくタンパク質の利用方法を開発するうえで不可欠 である。 さらに、 全遺伝子種に対応する完全長 c DNAをカタログ化したライブ ラリーの作製は、 ヒトゲノムプロジェクトの重要な課題の一つである。 カタログ 化したライブラリーとは、 ライブラリーに含まれる c DN Aに重複がないという 意味であり、 各 c DNAが 1種類ずつ含まれているライブラリーのことである。 完全長 c DN Aクローニング法については、 特開平 9一 248187号公報及 ぴ特開平 10- 127291号公報に記載されている。 この方法は、 mRNAの 5 'キヤシプサイトに存在するジオール構造にタグになる分子を結合させる工程、 前記タグ分子を結合させた mRNAを铸型とし、 o 1 i g o dTをプライマー として逆転写により RNA— DNA複合体を作製し、 この複合体の内、 mRNA の完全長に対応する DNAを有するものをタグ分子の機能を利用して分離するェ 程を含むことを特徴とする方法である。  Acquisition of cDNA and its nucleotide sequence analysis are indispensable for analyzing the physiological activity of a protein expressed in a living body and developing a method for utilizing the protein based on the activity. In addition, creating a library that catalogs full-length cDNAs for all genotypes is an important issue of the Human Genome Project. A cataloged library means that there is no duplication in the cDNAs contained in the library, and refers to a library containing one type of each cDNA. The full-length cDNA cloning method is described in JP-A-9-1248187 and JP-A-10-127291. This method comprises the steps of binding a tag molecule to the diol structure present in the 5′-kisapsite of the mRNA, transforming the mRNA bound to the tag molecule into a 铸 type, using o 1 igo dT as a primer to reverse-transcribe RNA-DNA. A method comprising preparing a complex, and separating a complex having a DNA corresponding to the full length of the mRNA using the function of the tag molecule.
また効率のよい逆転写法として、 铸型が高次構造を形成しないような高温で行 うための方法も開発されている (特開平 10— 8496 1号公報) 。 さらに、 合 成された完全長 cDNAライブラリーに含まれる DNA断片についてその鎖長に 関わらず一律にクローニングすることができるクローニングベクターも開発され ている (特開平 1 1—9273号公報) 。 Also, as an efficient reverse transfer method, a method for performing the method at a high temperature so that the 铸 type does not form a higher-order structure has been developed (Japanese Patent Application Laid-Open No. Hei 10-84961). Furthermore, for the DNA fragments contained in the synthesized full-length cDNA library, Regardless, a cloning vector capable of uniformly cloning has been developed (Japanese Patent Application Laid-Open No. 11-9273).
このような技術により作製された完全長 cDNAライブラリ一は、 ライブラリ 一の個々の要素として全て均等に異なるものが含まれている訳ではなく、 存在割 合の高いクローンや逆に極微量にしか存在しないクローンもある。 この極微量に しか存在しないクローンは新規である可能性が高いため、 このようなクローンを 濃縮するためのサブトラクシヨン法やノーマライゼーション法も開発されている The full-length cDNA library produced by such a technique does not include all the elements that are completely different from each other in the library. Some clones do not. Since clones that exist only in these trace amounts are likely to be novel, subtraction and normalization methods have been developed to enrich such clones.
(特開 2000— 325080号公報; Carninci, P. et al., Genomics, 37, 327-336(1996)) 。 (Japanese Patent Application Laid-Open No. 2000-325080; Carninci, P. et al., Genomics, 37, 327-336 (1996)).
かくして得られるカタログ化された完全長 cDNAライブラリーの各クローン について、 公知の方法により塩基配列の解析を行えば、 その塩基配列は同定され るが、 該 c D N Aがコードするタンパク質の生理活性は依然不明のままである。 発明の開示  When the nucleotide sequence of each clone of the cataloged full-length cDNA library obtained in this manner is analyzed by a known method, the nucleotide sequence is identified, but the physiological activity of the protein encoded by the cDNA still remains. Remains unknown. Disclosure of the invention
本発明は、 カタログ化された完全長 cDNAライブラリーに含まれる cDNA クローンの塩基配列を解析し、 このうち配列が新規なものについては、 これがコ 一ドするタンパク質の生理活性を特定し、 該生理活性に基づくタンパク質および それをコードする DNAの利用方法を提案することを目的とする。  The present invention analyzes the nucleotide sequence of a cDNA clone contained in a cataloged full-length cDNA library, and among those having a novel sequence, identifies the physiological activity of the protein encoded by the nucleotide sequence. The purpose of the present invention is to propose a method of using a protein based on activity and a DNA encoding the protein.
本発明者らは、 マウス完全長 c DNAライブラリ一中の c DN Aクローンが有 する塩基配列を解析し、該配列の相同性に基づきデータベースを検索したところ、 該配列中に特定の機能を有するタンパク質に特異的な配列を見出した。 また、 こ れら c D N Aの各組織における発現量や、 該 c D N Aがコードするタンパク質を 実際に発現させてその相互作用を解析した。 さらには、 該 cDNAがコードする タンパク質の発現を阻害することにより該タンパク質の生理活性 (機能) を解析 した。 本発明は、 これらの知見に基づいて成し遂げられたものである。  The present inventors analyzed the nucleotide sequence of the cDNA clone in the mouse full-length cDNA library and searched a database based on the homology of the sequence, and found that the sequence has a specific function. A protein-specific sequence was found. In addition, the expression levels of these cDNAs in each tissue and the interaction of the proteins encoded by the cDNAs were analyzed by actually expressing them. Furthermore, the physiological activity (function) of the protein was analyzed by inhibiting the expression of the protein encoded by the cDNA. The present invention has been accomplished based on these findings.
すなわち本発明によれば、 以下の 1〜39に記載の発明が提供される。  That is, according to the present invention, the following inventions 1 to 39 are provided.
1. 以下の (a) または (b) のタンパク質。 ( a ) 配列番号 2に記載のァミノ酸配列からなるタンパク質。 1. The following protein (a) or (b): (a) a protein comprising the amino acid sequence of SEQ ID NO: 2;
( b ) 配列番号 2に記載のァミノ酸配列において 1若しくは数個のァミノ酸が欠 失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 かつ I L— 1受容体フ アミリーとの相互作用活性を有するタンパク質。  (b) the amino acid sequence of SEQ ID NO: 2 in which one or several amino acids are missing, substituted and / or Z- or added amino acid sequence, and have an interaction activity with IL-1 receptor family A protein having
2. 上記 1に記載のタンパク質をコードする DNA。  2. A DNA encoding the protein described in 1 above.
3. 上記 1に記載のタンパク質をコードする完全長 c DNA。  3. A full-length cDNA encoding the protein described in 1 above.
4. 以下の (a) 、 (b)又は (c) の何れかの DNA。  4. DNA of any of the following (a), (b) or (c):
(a) 配列番号 1に記載の塩基配列を有する DNA。  (a) DNA having the nucleotide sequence of SEQ ID NO: 1.
(b) 配列番号 1に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置 換及び/または付カ卩された塩基配列を有し、 かつ I L—1受容体フアミリーとの 相互作用活性を有するタンパク質をコードする DNA。  (b) having a nucleotide sequence in which one or several nucleotides are deleted, replaced and / or added in the nucleotide sequence set forth in SEQ ID NO: 1, and interacting with IL-1 receptor family DNA encoding an active protein.
(c) 配列番号 1に記載の塩基配列を有する DNAあるいはその相補配列とスト リンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 かつ I L一 1受容体ファミリ一との相互作用活性を有するタンパク質をコードする D NA。  (c) having a nucleotide sequence capable of hybridizing under stringent conditions with DNA having the nucleotide sequence of SEQ ID NO: 1 or its complementary sequence, and interacting with the IL-11 receptor family 1 DNA encoding an active protein.
5. 以下の (a) または (b) のタンパク質。  5. The following (a) or (b) protein:
(a) 配列番号 12に記載のアミノ酸配列からなるタンパク質。  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 12;
(b) 配列番号 1 2に記載のアミノ酸配列において 1若しくは数個のアミノ酸が 欠失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 かつ性腺刺激ホルモ ン活性を有するタンパク質。  (b) a protein consisting of the amino acid sequence of SEQ ID NO: 12 in which one or several amino acids have been deleted, substituted and / or added or have gonad-stimulating hormone activity;
6. 上記 5に記載のタンパク質をコードする DNA。  6. DNA encoding the protein described in 5 above.
7. 上記 5に記載のタンパク質をコードする完全長 c D N A。  7. A full-length cDNA encoding the protein described in 5 above.
8. 以下の (a;)、 (b) または (c) のいずれかの DNA。  8. DNA of any of the following (a;), (b) or (c):
(a) 配列番号 1 1に記載の塩基配列を有する DNA。  (a) a DNA having the nucleotide sequence of SEQ ID NO: 11;
(b) 配列番号 11に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及び/または付加された塩基配列を有し、 かつ性腺刺激ホルモン活性を有す るタンパク質をコードする DNA。 ( c ) 配列番号 1 1に記載の塩基配列あるいはその相補配列を有する D N Aとス トリンジェントな条件下でハイプリダイズする塩基配列を有し、 かつ性腺刺激ホ ルモン活性を有するタンパク質をコードする DNA。 (b) a DNA having a nucleotide sequence in which one or several nucleotides are deleted, substituted and / or added in the nucleotide sequence of SEQ ID NO: 11, and encoding a protein having gonadotropin activity . (c) a DNA having a nucleotide sequence that hybridizes under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 11 or a sequence complementary thereto, and encoding a protein having gonad-stimulating hormonal activity.
9. 以下の (a) または (b) のタンパク質。  9. The following (a) or (b) protein:
( 3)配列番号1 7〜20のいずれかに記載のアミノ酸配列からなるタンパク質。 (b) 配列番号 1 7〜 20のいずれかに記載のアミノ酸配列において 1若しくは 数個のアミノ酸が欠失、 置換及ぴ Zまたは付加されたアミノ酸 ffi列からなり、 か つタンパク質相互作用活性を有するタンパク質。  (3) a protein comprising the amino acid sequence of any one of SEQ ID NOs: 17 to 20; (b) In the amino acid sequence of any one of SEQ ID NOs: 17 to 20, one or several amino acids are composed of a deleted, substituted and / or Z- or added amino acid ffi sequence, and have protein interaction activity protein.
10. 上記 9に記載のタンパク質をコードする DNA。  10. DNA encoding the protein described in 9 above.
1 1. 上記 9に記載のタンパク質をコードする完全長 cDNA。  1 1. Full-length cDNA encoding the protein described in 9 above.
1 2. 以下の (a)、 (b) または (c) のいずれかの DNA。  1 2. Any of the following DNA (a), (b) or (c):
(a) 配列番号 1 3〜16のいずれかに記載の塩基配列を有する DNA。  (a) a DNA having the nucleotide sequence of any one of SEQ ID NOS: 13 to 16;
(b) 配列番号 1 3〜16のいずれかに記載の塩基配列において、 1若しくは数 個の塩基が欠失、 置換及び/または付加された塩基配列を有し、 かつタンパク質 相互作用活性を有するタンパク質をコードする DNA。  (b) a protein having the nucleotide sequence of any one of SEQ ID NOS: 13 to 16, having one or more nucleotides deleted, substituted and / or added, and having protein interaction activity; DNA that encodes
(c) 配列番号 1 3〜16のいずれかに記載の塩基配列あるいはその相補配列を 有する D N Aとストリンジェントな条件下でハイブリダイズすることができる塩 基配列を有し、 かつタンパク質相互作用活性を有するタンパク質をコードする D NA。  (c) having a base sequence capable of hybridizing under stringent conditions to a DNA having the base sequence of any of SEQ ID NOs: 13 to 16 or a sequence complementary thereto, and having a protein interaction activity. DNA encoding a protein having.
1 3. 以下の (a) または (b) のタンパク質。  1 3. The following protein (a) or (b):
( a ) 配列番号 23または 24に記載のァミノ酸配列からなるタンパク質。  (a) a protein comprising the amino acid sequence of SEQ ID NO: 23 or 24;
(b) 配列番号 23または 24に記載のアミノ酸配列において 1若しくは数個の ァミノ酸が欠失、 置換及び/または付加されたァミノ酸配列からなり、 かつ R I (b) an amino acid sequence represented by SEQ ID NO: 23 or 24 wherein one or several amino acids are deleted, substituted and / or added, and
M結合活性を有するタンパク質。 A protein having M binding activity.
14. 上記 1 3に記載のタンパク質をコードする DNA。  14. A DNA encoding the protein described in 13 above.
1 5. 上記 1 3に記載のタンパク質をコードする完全長 cDNA。  1 5. A full-length cDNA encoding the protein described in 13 above.
16. 以下の (a) 、 (b)または (c) の何れかの DNA。 ( a ) 配列番号 21または 22に記載の塩基配列を有する DNA。 16. DNA of any of the following (a), (b) or (c): (a) DNA having the nucleotide sequence of SEQ ID NO: 21 or 22.
(b) 配列番号 21または 22に記載の塩基配列において、 1若しくは数個の塩 基が欠失、 置換及び/または付加された塩基配列を有し、 かつ R IM結合活性を 有するタンパク質をコードする DNA。  (b) in the nucleotide sequence of SEQ ID NO: 21 or 22, encoding a protein having a nucleotide sequence in which one or several bases are deleted, substituted and / or added, and having RIM binding activity DNA.
(c) 配列番号 21または 22に記載の塩基配列あるいはその相補配列を有する DNAとストリンジェントな条件下でハイブリダイズすることができる塩基配列 を有し、 かつ R IM結合活性を有するタンパク質をコードする DNA。  (c) encodes a protein having a base sequence capable of hybridizing under stringent conditions to a DNA having the base sequence of SEQ ID NO: 21 or 22 or a sequence complementary thereto and having RIM binding activity DNA.
1 7. 以下の (a) または (b) のタンパク質。  1 7. The following protein (a) or (b):
( a ) 配列番号 26に記載のァミノ酸配列からなるタンパク質。  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 26;
(b) 配列番号 26に記載のアミノ酸配列において 1若しくは数個のアミノ酸が 欠失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 かつアポトーシス抑 制機能を有するタンパク質。  (b) a protein consisting of the amino acid sequence of SEQ ID NO: 26 in which one or several amino acids have been deleted, substituted and / or added or have an apoptosis-suppressing function.
18. 上記 1 7に記載のタンパク質をコードする DNA。  18. A DNA encoding the protein of 17 above.
19. 上記 1 7に記載のタンパク質をコードする完全長 cDNA。  19. A full-length cDNA encoding the protein described in 17 above.
20. 以下の (a) 、 (b)または (c) の何れかの DNA。 20. DNA of any of the following (a), (b) or (c):
( a ) 配列番号 25に記載の塩基配列を有する D NA。  (a) DNA having the nucleotide sequence of SEQ ID NO: 25.
(b) 配列番号 25に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及び/または付加された塩基配列を有し、 かつアポトーシス抑制機能を有す るタンパク質をコードする DNA。  (b) DNA encoding a protein having a base sequence in which one or several bases are deleted, substituted and / or added in the base sequence of SEQ ID NO: 25, and which has an apoptosis-suppressing function.
(c) 配列番号 25に記載の塩基配列あるいはその相補配列を有する DNAとス トリンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 か つアポトーシス抑制機能を有するタンパク質をコードする DNA。  (c) DNA encoding a protein having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 25 or its complementary sequence and having an apoptosis-suppressing function .
21. 以下の (a) または (b) のタンパク質。  21. The following (a) or (b) protein:
( a ) 配列番号 28に記載のァミノ酸配列からなるタンパク質。  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 28;
( b ) 配列番号 28に記載のアミノ酸配列において 1若しくは数個のァミノ酸が 欠失、 置換及び zまたは付加されたアミノ酸配列からなり、 かつゥロモジュリン 様活性を有するタンパク質。 22. 上記 21に記載のタンパク質をコードする DNA。 (b) a protein consisting of the amino acid sequence of SEQ ID NO: 28 in which one or several amino acids have been deleted, substituted and z- or added, and which has peromodulin-like activity. 22. DNA encoding the protein of 21 above.
23. 上記 21に記載のタンパク質をコードする完全長 c DNA。 23. A full-length cDNA encoding the protein according to 21 above.
24. 以下の (a) 、 (b)または (c) の何れかの DNA。 24. DNA of any of the following (a), (b) or (c):
( a ) 配列番号 27に記載の塩基配列を有する D N A。  (a) DNA having the nucleotide sequence of SEQ ID NO: 27.
(b) 配列番号 27に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及ぴ Zまたは付加された塩基配列を有し、 かつゥロモジュリン様活性を有す るタンパク質をコードする DNA。  (b) DNA encoding a protein having a base sequence in which one or several bases are deleted, substituted and / or Z- or added in the base sequence set forth in SEQ ID NO: 27, and which has peromodulin-like activity. .
(c) 配列番号 27に記載の塩基配列あるいはその相補配列を有する DNAとス トリンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 か っゥロモジュリン様活性を有するタンパク質をコードする DNA。  (c) a DNA having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 27 or a sequence complementary thereto, and encoding a protein having a purlomodulin-like activity .
25. 以下の (a) または (b) のタンパク質。  25. The following (a) or (b) protein:
(a) 配列番号 31または 32に記載のアミノ酸配列からなるタンパク質。 (a) a protein consisting of the amino acid sequence of SEQ ID NO: 31 or 32;
(b) 配列番号 31または 32に記載のアミノ酸配列において 1若しくは数個の アミノ酸が欠失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 かつ脂質 結合活性を有するタンパク質。 (b) a protein comprising an amino acid sequence shown in SEQ ID NO: 31 or 32 in which one or several amino acids have been deleted, substituted and Z- or added, and has a lipid binding activity.
26. 上記 25に記載のタンパク質をコードする DNA。  26. DNA encoding the protein described in 25 above.
27. 上記 25に記載のタンパク質をコードする完全長 cDNA。 27. A full-length cDNA encoding the protein described in 25 above.
28. 以下の (a) 、 (b)または (c) の何れかの DNA。 28. DNA of any of the following (a), (b) or (c):
(a) 配列番号 29または 30に記載の塩基配列を有する DNA。  (a) DNA having the nucleotide sequence of SEQ ID NO: 29 or 30.
( b ) 配列番号 29または 30に記載の塩基配列において、 1若しくは数個の塩 基が欠失、 置換及ぴ Zまたは付加された塩基配列を有し、 かつ脂質結合活性を有 するタンパク質をコードする DNA。  (b) Encoding a protein having a base sequence of SEQ ID NO: 29 or 30 wherein one or several bases are deleted, substituted and / or Z- or added, and which has a lipid binding activity DNA.
( c ) 配列番号 29または 30に記載の塩基配列あるいはその相補配列を有する DNAとストリンジェントな条件下でハイブリダイズすることができる塩基配列 を有し、 かつ脂質結合活性を有するタンパク質をコードする D N A。  (c) a DNA having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 29 or 30 or a sequence complementary thereto, and encoding a protein having a lipid binding activity .
29. 上記 2〜4、 6〜8、 10〜12、 14〜16、 18〜20、 22〜24、 26〜28のいずれかに記載の DNAを含む組換えベクター。 . 30. 上記 2〜4、 6〜8、 10〜12、 14〜1 6、 18〜20、 22〜24、29. A recombinant vector comprising the DNA described in any of 2-4, 6-8, 10-12, 14-16, 18-20, 22-24, 26-28 above. . 30. Above 2-4, 6-8, 10-12, 14-16, 18-20, 22-24,
26〜28のいずれかに記載の DNAまたは上記 29に記載の組み換えベクター を導入した遺伝子導入細胞または該細胞からなる個体。 29. A transgenic cell into which the DNA according to any one of 26 to 28 or the recombinant vector according to 29 is introduced, or an individual comprising said cell.
31. 上記 30に記載の細胞により産生される、 上記 1、 5、 9、 1 3、 1 7、 31. The above 1, 5, 9, 13, 17, 17 produced by the cell of the above 30.
21または 25に記載のタンパク質。 26. The protein according to 21 or 25.
32. 上記 2〜4、 6〜8、 10〜12、 14〜1 6、 1 8〜20、 22〜24、 32. Above 2-4, 6-8, 10-12, 14-16, 18-20, 22-24,
26〜28のいずれかに記載の DNAの塩基配列中の連続した 5〜100塩基と 同じ配列を有するセンスオリゴヌクレオチド、 当該センスオリゴヌクレオチドと 相補的な配列を有するアンチセンスオリゴヌクレオチド、 及ぴ、 当該センス又は アンチセンスオリゴヌクレオチドのオリゴヌクレオチド誘導体から成る群から選 ばれるォリゴヌクレオチド。 29. A sense oligonucleotide having the same sequence as 5 to 100 consecutive nucleotides in the base sequence of the DNA according to any one of 26 to 28, an antisense oligonucleotide having a sequence complementary to the sense oligonucleotide, and Oligonucleotides selected from the group consisting of oligonucleotide derivatives of sense or antisense oligonucleotides.
33. 上記 5、 9、 13、 1 7、 21または 25に記載のタンパク質に特異 的に結合する抗体あるいはその部分フラグメント。  33. An antibody or a partial fragment thereof that specifically binds to the protein described in 5, 9, 13, 17, 21 or 25 above.
34. 抗体がモノクローナル抗体である上記 33に記載の抗体。  34. The antibody according to the above item 33, wherein the antibody is a monoclonal antibody.
35. モノクローナル抗体が上記 1、 5、 9、 1 3、 1 7、 21または 25に記 載のタンパク質の活性を中和する作用を有することを特徴とする上記 34に記载 の抗体。  35. The antibody according to 34 above, wherein the monoclonal antibody has an action of neutralizing the activity of the protein described in 1, 5, 9, 13, 17, 21 or 25 above.
36. 上記 1、 5、 9、 1 3、 1 7、 21、 25のいずれかに記載のタンパク質 と被検物質を接触させ、 該被検物質による該タンパク質が有する活性の変化を測 定することを特徴とする、 該タンパク質の活性調節物質のスクリーニング方法。 37. 上記 30に記載の遺伝子導入細胞と被検物質を接触させ、 該細胞に導入さ れている DNAの発現レベルの変化を検出することを特徴とする、 該 DNAの発 現調節物質のスクリーニング方法。  36. Contacting the protein described in any one of the above 1, 5, 9, 13, 17, 17, 21 and 25 with a test substance, and measuring a change in the activity of the protein due to the test substance. A method for screening for an activity modulator of the protein. 37. A screening for a regulatory substance for the expression of DNA, comprising bringing the test substance into contact with the gene-introduced cell described in 30 above, and detecting a change in the expression level of the DNA introduced into the cell. Method.
38. 上記 1、 5、 9、 1 3、 1 7、 21、 25のいずれかに記載のタンパク質 のァミノ酸配列から選択される少なくとも 1以上のァミノ酸配列情報および/ま たは上記 2〜4、 6〜8、 10〜12、 14〜1 6、 18〜20、 22〜24、 26〜28のいずれかに記載の DNAの塩基配列から選択される少なくとも 1以 上の塩基配列情報を保存したコンピュータ読み取り可能記録媒体。 38. At least one or more amino acid sequence information selected from the amino acid sequences of the proteins described in any of the above 1, 5, 9, 13, 17, 17, 21 and 25 and / or the above 2 to 4 , 6 to 8, 10 to 12, 14 to 16, 18 to 20, 22 to 24, 26 to 28. A computer-readable recording medium storing the above base sequence information.
39. 上記 1、 5、 9、 13、 17、 21、 25のいずれかに記載のタンパク質 および/または上記 2〜4、 6〜8、 10〜12、 14〜: 16、 18〜20、 2 2〜24、 26〜 28のいずれかに記載の DN Aを結合させた担体。 図面の簡単な説明  39. The protein according to any of the above 1, 5, 9, 13, 17, 21, 25 and / or the above 2 to 4, 6 to 8, 10 to 12, 14 to: 16, 18 to 20, 22 To 24 or 26 to 28, to which the DNA is bound. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 RNA i個体中の導入遺伝子の誘導方法を示す概念図である。 発明を実施するための最良の形態  FIG. 1 is a conceptual diagram showing a method for inducing a transgene in an RNAi individual. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに言羊細に説明する。  Hereinafter, the present invention will be described in more detail.
( 1 ) 完全長 c D N Aの取得及び塩基配列の解析  (1) Acquisition of full-length cDNA and analysis of nucleotide sequence
本発明の DN Aは、 配列番号 2、 12、 1 7、 18、 19、 20、 23、 24、 26、 28、 31、 32に記載のアミノ酸配列からなるタンパク質、 またはアミ ノ酸配列において、 1若しくは数個 (ここで言う数個の数は特には限定されない 1 例えば 20個以下、 好ましく 15個以下、 より好ましくは 10個以下、 さら に好ましくは 5個以下を意味する) のアミノ酸残基の置換、 欠失、 挿入、 付加、 若しくは逆位を含むァミノ酸配列からなり、 かつ後述する特定の活性を有するタ ンパク質をコードし得るものであれば如何なるものであってもよレ、。具体的には、 該アミノ酸配列をコードする翻訳領域のみでも、 あるいはその c DNAの全長を 含むものでもよレ、。  The DNA of the present invention is a protein consisting of the amino acid sequence of SEQ ID NO: 2, 12, 17, 18, 18, 19, 20, 23, 24, 26, 28, 31, 32, or 1 in the amino acid sequence. Or several (the number here is not particularly limited 1 means, for example, 20 or less, preferably 15 or less, more preferably 10 or less, and still more preferably 5 or less) Any substance may be used as long as it comprises an amino acid sequence containing substitution, deletion, insertion, addition, or inversion, and can encode a protein having a specific activity described below. Specifically, the translation region may include only the translation region encoding the amino acid sequence, or may include the full-length cDNA.
具体的には、 c DNAの全長を含む DNAとしては、 例えば、 配列番号 1、 1 1、 13、 14、 15、 16、 21、 22、 25、 27、 29、 30に記載の塩 基配列からなる DNA等が挙げられる。 また、 その翻訳領域としては、 配列番号 1の塩基番号 290〜 871に示される配列、  Specifically, the DNA containing the full-length cDNA includes, for example, the nucleotide sequence described in SEQ ID NO: 1, 11, 13, 14, 15, 16, 21, 22, 25, 27, 29, 30. DNA and the like. In addition, as the translation region, a sequence represented by base numbers 290 to 871 of SEQ ID NO: 1,
配列番号 11の塩基番号 246〜509に示される配列、 A sequence represented by base numbers 246 to 509 of SEQ ID NO: 11,
配列番号 13の塩基番号 43〜 1788に示される配列、 A sequence represented by base numbers 43 to 1788 of SEQ ID NO: 13,
配列番号 14の塩基番号 84〜 1883に示される配列、 配列番号 15の塩基番号 204〜 1004に示される配列、 A sequence represented by base numbers 84 to 1883 of SEQ ID NO: 14, A sequence represented by nucleotide numbers 204 to 1004 of SEQ ID NO: 15,
配列番号 16の塩基番号 1 17〜2387に示される配列、 A sequence represented by base numbers 117-2387 of SEQ ID NO: 16,
配列番号 21の塩基番号 297〜2507に示される配列、 A sequence represented by base numbers 297 to 2507 of SEQ ID NO: 21,
配列番号 22の塩基番号 724〜3939に示される配列、 A sequence represented by base numbers 724 to 3939 of SEQ ID NO: 22,
配列番号 25の塩基番号 125〜595に示される配列、 A sequence represented by base numbers 125 to 595 of SEQ ID NO: 25,
配列番号 27の塩基番号 1 372〜261 3に示される配列、 A sequence represented by base numbers 1 372 to 2613 of SEQ ID NO: 27,
配列番号 29の塩基番号 68〜 1597に示される配列、 A sequence represented by base numbers 68 to 1597 of SEQ ID NO: 29,
配列番号 30の塩基番号 57〜151 7に示される配列、 A sequence represented by base numbers 57 to 1517 of SEQ ID NO: 30,
を挙げることができる。 Can be mentioned.
さらに上記の cDN Aの全長でなくても、 上記翻訳領域とその 3' 及び Zまた は 5' 端に隣接する、 翻訳領域の発現に最低限必要な部分を含むもの等も本発明 の DNAに含まれる。  Further, even if not the full length of the above-mentioned cDNA, the DNA of the present invention includes those which are adjacent to the above-mentioned translation region and the 3 'and Z or 5' ends thereof and which contain the minimum necessary for the expression of the translation region. included.
本発明の DN Aは、 これを取得できる方法であれば如何なる方法により取得し たものでもよいが、 具体的には、 例えば次の方法により取得することができる。 まず、 適当な動物、 好ましくは哺乳動物の組織等からそれ自体既知の通常用いら れる方法により mRNAを調製する。 次に、 この mRNAを铸型として c DNA を合成するが、 このとき完全長の cDNAを合成するために 5, キャップ (7MeG PPPN) サイトに特異的なジオール構造にタグになる分子を化学結合させ、 この m RNAを錶型として o l i g o dTをプライマーとして逆転写した後に、 タグ 分子の機能を利用して完全長の c DN Aのみを分離する方法 (特開平 9一 248 18 7号公報;特開平 10— 127291号公報) を用いることが好ましい。 ま た、 逆転写の際には、 錡型が高次構造を形成して逆転写の効率が低下することを 阻止するために、 トレハロース等の存在下で、 耐熱性逆転写酵素を用いて高温下 で逆転写を行う方法 (特開平 10— 84961号公報) を用いるのが好ましい。 ここで、 高温下とは 40〜 80 を意味する。 The DNA of the present invention may be obtained by any method as long as it can be obtained. Specifically, it can be obtained by the following method, for example. First, mRNA is prepared from a suitable animal, preferably a mammalian tissue or the like, by a method known per se and generally used. Next, synthesizing c DNA this mRNA as铸型, 5 to synthesize full-length cDNA this time, the cap (7Me G PPP N) chemical molecules consisting the tag-specific diol structure site After binding, reverse transcription using this mRNA as type I and oligo dT as a primer, a method of separating only full-length cDNA using the function of the tag molecule (Japanese Patent Application Laid-Open No. 248187/1991; JP-A-10-127291) is preferably used. In addition, in the case of reverse transcription, in order to prevent the type III from forming a higher-order structure and reducing the efficiency of reverse transcription, the temperature is increased by using a thermostable reverse transcriptase in the presence of trehalose. It is preferable to use a method of performing reverse transcription below (JP-A-10-84961). Here, high temperature means 40-80.
このようにして取得された c DNAは、 これを適当なクローニングベクターに 挿入してクローニングを行う。 ここで用いられるベクターとしては、 様々な鎖長 の DNAを一律にクロー-ングすることが可能な、 クローニングサイトの両末端 にリコンビナーゼ認識配列を有し、 感染以外の方法で宿主に挿入される直鎖状の ベクター (特開平 1 1一 9273号公報) が好ましく用いられる。 かくして得ら れる c DNAライブラリ一は、 全てのクローンが均一に存在している (以下、 こ れを 「カタログ化されている」 と称することがある) 訳ではなく、 このライブラ リー中に極微量にしか存在しないクローンこそ新規である確率が高い。 そこで、 このようなクローンを濃縮するためのサブトラクション法ゃノーマライゼーショ ン法 (特開 2000— 325080号公報; Carninci, P. et al., Genomics, 37, 327-336(1996)) を用いることが好ましい。 The cDNA thus obtained is inserted into an appropriate cloning vector for cloning. The vectors used here have various chain lengths A linear vector that has a recombinase recognition sequence at both ends of a cloning site and can be inserted into a host by a method other than infection (Japanese Patent Application Laid-Open No. 11-9273). Gazette) is preferably used. In the thus obtained cDNA library, not all clones exist uniformly (hereinafter, this may be referred to as “cataloged”). A clone that exists only in a plant has a high probability of being new. Therefore, the subtraction method for enriching such clones and the normalization method (Japanese Unexamined Patent Publication No. 2000-325080; Carninci, P. et al., Genomics, 37, 327-336 (1996)) can be used. preferable.
カタログ化された c DN Aライプラリーは、 それ自体既知の通常用いられる方 法により塩基配列の解析を行う。 本発明の DNAは、 cDNA全長の場合にはそ の末端 100ベースの配列について得られた塩基配列を、 BLAST  The cataloged cDNA library performs nucleotide sequence analysis by a commonly used method known per se. In the case of the full-length cDNA, the DNA of the present invention is obtained by combining the base sequence obtained from the base 100
(http://www.ncbi.nlm.nih.gov/BLAST/; National し enter of Biotechnology Information) を用いて、 N C B Iの G e n b a n k、 EMBL、 DDB J、 PD B等のデータベースについて検索し、 最も高い相同性を示す配列でも相同性が 3 0%以下であり、 かつ該 DN Aの翻訳領域の全長について最も高い相同性を示す 配列でもその相同性が 40%以下であるものを新規として以下の解析に供するこ ととした。 このような完全長 c DNAの塩基配列を有する DNA、 その翻訳領域 としては、 例えば、 上記したものが挙げられる。  (http://www.ncbi.nlm.nih.gov/BLAST/; National and enter of Biotechnology Information) to search databases such as NCBI Genbank, EMBL, DDB J, and PD B The following analysis is based on a new homologous sequence with a homology of 30% or less, and a sequence with the highest homology of 40% or less for the full length of the entire translation region of the DNA. It was decided to offer to. Examples of the DNA having such a full-length cDNA base sequence and its translation region include those described above.
かくして取得された新規な塩基配列を、 BLAST (Basic local alignment search tool; Altschul, S. F. , et al. , J. Mol. Biol. , 215, 403-410(1990)) に よる相同性検索 (homology search)や、 HMME R (隠れ Markovモデルによる配列 解析手法; Eddy, S. R. , Bioinformatics 14, 755-763 (1998)) の機能群のひと つである HMMP F AMによるタンパク質特徴検索 (profile search:  The novel base sequence obtained in this manner is subjected to homology search (homology search) by BLAST (Basic local alignment search tool; Altschul, SF, et al., J. Mol. Biol., 215, 403-410 (1990)). ) Or HMME R (sequence analysis method using hidden Markov model; Eddy, SR, Bioinformatics 14, 755-763 (1998)).
http: //pfam. wustl. edu)等を行うことにより、 該塩基配列がコードするタンパク 質の機能を推定することができる。 By performing http: // pfam. wustl. edu) or the like, the function of the protein encoded by the nucleotide sequence can be estimated.
B L A S Tによる相同性検索においては、 検索の結果得られた相同性が十分有 意なヒット配列に付随する種々のァノテーシヨン情報から、 解析対象としている クローンの機能を推定することができる。 ここで、 十分有意なヒット配列とは、 登録されている配列の触媒ドメイン部分と本発明の D N Aのこれに対応する部分 との i d e n t i t yが e— v a l u eとして 10一4以下のものか、 あるいは 3 0%以上のものを示す。 In homology search by BLAST, the homology obtained as a result of the search is sufficient. The function of the clone to be analyzed can be estimated from various annotation information associated with the desired hit sequence. Here, the sufficient significant hit sequence, or identity of the corresponding portion to the DNA of the catalytic domain portion of the sequence registered invention e- value as 10 one 4 following ones, or 3 0 % Or more.
例えば、 上位にヒットした触媒ドメイン配列の多くが特定の活性有することが 確認されているものであるならば、 それと配列上類似である解析対象クローンも また同じ機能を持つであろうという予測が成り立つ。  For example, if many of the top hit catalytic domain sequences have been confirmed to have a specific activity, the prediction holds that the clone to be analyzed that is similar in sequence to that will also have the same function. .
HMMPFAMでは、 P f a mとレ、うタンパク質プロファイルを集積したデー タベース中にあるエントリーが有する塩基配列の特徴を、 解析対象である塩基配 列が有するかどうかを洗い出す方法による解析が行われる。 プロファイルは一連 の同一特徴を持つタンパク質群から抽出されており、 一配列対一配列の全長に亘 る比較では明確化できない機能でも、 配列中にその特徴領域があればこれを見出 し、 機能予測ができる。  In HMMPFAM, analysis is performed by a method to identify whether or not the base sequence to be analyzed has the characteristics of the base sequence possessed by the entry in the database in which the protein profiles are integrated. Profiles are extracted from a series of proteins with the same characteristics, and even if a function cannot be clarified by comparing the full length of a single sequence to a single sequence, if there is a characteristic region in the sequence, it will be found. Can predict.
かくして行われるタンパク質の機能予測の具体的な例として以下に説明する。 (1 -1) I L一 1受容体ファミリーとの相互作用活性有するタンパク質 配列番号 1に記載の塩基配列がコードするァミノ酸配列は、 BLASTサーチ により I NTERLEUK I N— 1 HOMOLOG 1 ( I NTERLEUK I N- 1 EP S I LON) と e—v a l u e : 7. 2 X 1 CT30、 146アミノ酸 残基で 60%の相同性を、また F I L 1 EP S I LONと e— v a 1 u e: 7. 3 X 10— 24、 149アミノ酸残基で 46. 3%の相同性を、 さらに F I L 1 E TAと e— v a l u e : 6. 5 X 10—21、 144アミノ酸残基で 44. 5%の相 同や生を有する。 A specific example of the prediction of the function of a protein thus performed will be described below. (1-1) Protein Having Interaction Activity with IL-11 Receptor Family The amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 1 was identified by BLAST search as I NTERLEUK IN— 1 HOMOLOG 1 (I NTERLEUK I N- 1 EP SI LON) and e-value: 7. 2 X 1 CT 30, 146 60% homology at the amino acid residue, also FIL 1 EP SI LON and e- va 1 ue: 7. 3 X 10- 24 , 3% homology 46. 149 amino acid residues, further FIL 1 E TA and e- value: having a 6. 5 X 10- 21, 144 amino acid residues 44.5% homologous or raw.
また、 配列番号 1に示す塩基配列がコードするアミノ酸配列について、 HMM PF AMによるタンパク質特徴検索を行うと I L— 1受容体ファミリーとの相互 作用活性を有するタンパク質の特徴を示す配列 (P f amに I L 1としてェント リ一される塩基配列) が見出される。 これらのことから配列番号 1に示した塩基 配列がコードするタンパク質は I L— 1受容体フアミリーとの相互作用活性を有 すると推測できる。 さらには、 上記 I NTERLEUK I N— 1 HOMOLO G 1 ( I NTERLEUK I N— 1 E P S I L O N) は、 データベース中の文 献情報 (J. Biol. Chem. 2000, 275 (14): 10308-14) からインターフェロン yま たは TNF α処理によりケラチノサイトでの発現が誘導されることが、 また F I L 1 EP S I LONは、 データベース中の文献情報 (J. Biol. Chem. When the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1 was searched for protein characteristics using HMM PFAM, a sequence showing the characteristics of a protein having an interaction activity with the IL-1 receptor family (Pfam (A base sequence that is entered as IL 1). From these, the base shown in SEQ ID NO: 1 It can be inferred that the protein encoded by the sequence has an interaction activity with IL-1 receptor family. Furthermore, the above I NTERLEUK IN-1 HOMOLO G 1 (I NTERLEUK IN-1 EPSILON) can be obtained from the literature information (J. Biol. Chem. 2000, 275 (14): 10308-14) in the database. Or TNFα treatment can induce expression in keratinocytes, and FIL 1 EP SI LON is described in the literature information (J. Biol. Chem.
275:1169-1175 (2000) ) から脾臓、 胸腺、 白血球に発現しており、 LPS処理に よりモノサイトでの発現が誘導されることが、 さらに上記 F I L 1 ETAは、 データベース中の文献情報 (j. Biol. Chem. 275:1169-1175 (2000) ) から骨髄や 扁桃腺に発現しており、 LPS処理によりモノサイトでの発現が誘導されること が示される。 これらの結果より、 配列番号 1に記載の塩基配列がコード十るタン パク質は I L一 1受容体フアミリーとの相互作用活性を有することが推測される。 275: 1169-1175 (2000)), it is expressed in the spleen, thymus, and leukocytes, and LPS treatment induces expression in monocytes. j. Biol. Chem. 275: 1169-1175 (2000)), which indicates that LPS treatment induces expression in monocytes. From these results, it is presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 1 has an activity of interacting with the IL-11 receptor family.
(1 -2) 性腺刺激ホルモン活性を有するタンパク質  (1 -2) Gonadotropin-active protein
配列番号 1 1に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより GONADOTROPIN BETA - II CHAIN PRECURSORと e— v a l u e : 3 X 10一16、 83ァミノ酸残基で 45 %の相同性を有する。 The Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 1 1, Gonadotropin BETA by BLAST server Chi - II CHAIN PRECURSOR and e- value: a 3 X 10 one 16, 83 45% homology Amino acid residue Have.
また、 配列番号 1 1に示す塩基配列がコードするアミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行うと糖タンパク質ホルモンの特徴を示 す配列 (P f amに 「Cys_knot」 としてエントリーされる塩基配列) が見出され る。  In addition, a protein characteristic search by HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 11 shows a sequence that shows the characteristics of a glycoprotein hormone (a nucleotide that is entered as “Cys_knot” in P f am). Sequence) is found.
これらのことから配列番号 1 1に示す塩基配列がコードするタンパク質は性腺 刺激ホルモンとして機能する糖タンパク質ホルモンであることが推測できる。  From these facts, it can be inferred that the protein encoded by the nucleotide sequence of SEQ ID NO: 11 is a glycoprotein hormone that functions as a gonadotropin.
(1 -3) タンパク質相互作用活性を有するタンパク質  (1-3) Protein having protein interaction activity
配列番号 1 3に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 Rat mRNA for CCA3, complete cds.と e— v a l u e : 0. 0、 54 2ァミノ酸残基に亘り 61 %の相同性を、また RCC like G exchanging factor RLG と e— v a l u e : 4 X 10— 12、 152アミノ酸残基に亘り 26%の一致度でヒ ッ卜する。 According to the BLAST search, the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 13 was rat mRNA for CCA3, complete cds. And e-value: 0.0, 61% of the amino acid sequence over 542 amino acid residues. homology, also RCC like G exchanging factor RLG and e- value: 4 X 10- 12, 152 human 26% degree of coincidence over the amino acid residues Cut.
また、 配列番号 1 3に示す塩基配列がコードするァミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行うと 383〜499のアミノ酸配列に タンパク質ニ量ィ匕に関わる特徴を示す配列(P f amに BTBとしてエントリーされ る塩基配列) が見出され、 また ankyrin repeat (P f a mエントリー ank) も 3ケ 所に見出される。  When the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 13 was searched for protein characteristics using HMMP FAM, the amino acid sequence of 383 to 499 showed a sequence (Pf am, a base sequence that is entered as BTB in am), and ankyrin repeat (Pfam entry ank) is also found in three places.
これらの結果より、 配列番号 17に示したァミノ酸配列からなるタンパク質は タンパク質相互作用に関わることが推測される。 さらに、 このタンパク質は、 文 献情報 (Genomics 1998 Nov 15 ;54(1) :99 - 106) から RCCl- related GEF familyら しいことが推測される。  From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 17 is involved in protein interaction. Furthermore, this protein is presumed to be a RCCl-related GEF family from literature (Genomics 1998 Nov 15; 54 (1): 99-106).
配列番号 14に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 Rat mRNA for CCA3, complete cds.と e— v a l u e : 0. 0、 56 0ァミノ酸残基に亘り 6 1 %の一致度で、また RCCl- like G exchanging factor RLG と、 e— v a l u e : 4 X 10— 12、 152ァミノ酸残基に亘り 26 %の一致度で ヒットする。 According to the BLAST search, the amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 14 was rat mRNA for CCA3, complete cds. And e-value: 0.0, 61% of which spanned 560 amino acid residues. in coincidence degree, also the RCCl- like G exchanging factor RLG, e- value: hits in 26% of the degree of coincidence over the 4 X 10- 12, 152 Amino acid residues.
また、 配列番号 14に示す塩基配列がコードするァミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行うと 401〜5 17のアミノ酸配列に タンパク質二量化に関わる特^:を示す配列(P f a mに BTBとしてエントリーされ る塩基配列) が見出され、 また ankyrin repeat (P f amエントリー ank) も 3ケ 所に見出される。  When the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 14 was searched for protein characteristics by HMMP FAM, the amino acid sequence of 401 to 517 showed a sequence (P fam In addition, an ankyrin repeat (Pfam entry ank) is also found in three places.
これらの結果より、 配列番号 18に示したアミノ酸配列からなるタンパク質は タンパク質相互作用に関わることが推測さる。 さらに、 このタンパク質は、 文献 情報 (Genomics 1998 Nov 15 ;54(1) :99- 106) から RCCl - related GEF familyらし いことが推測される。  From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 18 is involved in protein interaction. Furthermore, this protein is presumed to be a RCCl-related GEF family from literature information (Genomics 1998 Nov 15; 54 (1): 99-106).
配列番号 1 5に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 novel BTB/P0Z domain containing zinc finger proteinと e— v a 1 u e : 3 X 10— 92、 233ァミノ酸残基に亘り 74 %の一致度で、また Zinc finger protein 151と e— v a l u e : 8 X 10-15、 255ァミノ酸残基に亘り 27 %の 一致度でヒットする。 Amino acid sequences which nucleotide sequence is encoded according to SEQ ID NO: 1 5, the BLAST server switch, novel BTB / P0Z domain containing zinc finger protein and e- va 1 ue: a 3 X 10- 92, 233 Amino acid residues With 74% agreement, and Zinc finger Protein 151 and e-value: Hit with 27% match over 8 X 10 -15 and 255 amino acid residues.
また、 配列番号 15に示す塩基配列がコ一ドするァミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行うと 8〜1 1 7のアミノ酸配列にタン パク質二量化に関わる特徴を示す配列(P f amに BTBとしてエントリーされる塩 基配列) が見出される。  In addition, a protein characteristic search using HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 15 revealed that the amino acid sequence of 8 to 11 (Base sequence that is entered as BTB at P fam).
これらの結果より、 配列番号 19に示したアミノ酸配列からなるタンパク質は タンパク質相互作用に関わることが推測される。 さらに、 このタンパク質は、 文 献情報 (Curr Top Microbiol Immunol 1997 ;224: 137- 46) から Mycタンパク質と相 互作用することが推測される。  From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 19 is involved in protein interaction. Furthermore, this protein is presumed to interact with the Myc protein based on literature information (Curr Top Microbiol Immunol 1997; 224: 137-46).
配列番号 16に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 Unknown (protein for MGC: 17368)と e— v a l u e : 5 X 10-110、 248ァミノ酸残基に亘り 78 %の一致度で、また myoneurinと e— v a 1 u e : 3 X 10—71、 665アミノ酸残基に亘り 28 %の一致度でヒットする。 The Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 16, the BLAST server switch, Unknown (protein for MGC: 17368 ) and e- value: 5 X 10 -110, 78% of over 248 Amino acid residue degree of coincidence, also myoneurin and e- va 1 ue: hit with 28% degree of coincidence over the 3 X 10- 71, 665 amino acid residues.
また、 配列番号 16に示す塩基配列がコードするアミノ酸配列について、 ΗΜ MP F AMによるタンパク質特徴検索を行うと 9〜121のアミノ酸配列にタン パク質二量化に関わる特徴を示す配列(P f amに BTBとしてエントリーされる塩 基配列) が見出され、 また Zinc finger domain (P f a mの zf- C2H2エントリー) も 7ケ所で見出される。  In addition, a protein characteristic search using FMP FAM was performed on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 16, and the amino acid sequence of 9 to 121 showed a sequence (P f am The base sequence that is entered as BTB) is found, and the Zinc finger domain (the zf-C2H2 entry of P fam) is also found in seven places.
これらの結果より、 配列番号 20に示したアミノ酸配列からなるタンパク質は タンパク質相互作用に関わることが推測された。 さらに、 このタンパク質は、 文 献情報 (Biochem Biophys Res Commun 2000 Jun 24;273(1) :385 - 91) から、 様々 な種で転写の活性化,と抑制の両方に関わることが推測される。  From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 20 is involved in protein interaction. Furthermore, from the literature (Biochem Biophys Res Commun 2000 Jun 24; 273 (1): 385-91), this protein is presumed to be involved in both activation and repression of transcription in various species.
(1-4) R IM結合活性を有するタンパク質  (1-4) a protein having RIM binding activity
配列番号 21に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 KIM0318 gene, partial cds (Homo sapiens;と e— v a l u e : 0、 725アミノ酸残基に亘り 75%の一致度で、 また RIM(Rab3- interacting molecule) -binding protein 2 (chicken)と e— v a l u e : 0、 722アミノ酸 残基に互り 72%の一致度で、 さらに peripheral benzodiazepine receptor interacting protein (Homo sapiens) と e— v a 1 u e : 5 X 10一118、 766 アミノ酸残基に亘り 37%の一致度でヒットする。 The amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 21 was identified by the BLAST search as having a 75% identity over the KIM0318 gene, partial cds (Homo sapiens; and e-value: 0, 725 amino acid residues, Also RIM (Rab3- interacting molecule) -binding protein 2 (chicken) and e—value: 0, 722 amino acid residues with 72% identity, plus peripheral benzodiazepine receptor interacting protein (Homo sapiens) and e—va 1 ue: 5 X 10 hit one 118, 766 37% degree of coincidence over the amino acid residues.
これらの結果より、 配列番号 21に示す塩基配列がコードするタンパク質、 ま たは配列番号 23に示すァミノ酸配列からなるタンパク質は RIM- binding proteinの 1種であることが推測される。  From these results, it is inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 21 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 23 is a kind of RIM-binding protein.
RIM- binding proteinは神経伝達物質の分泌に関与していると考えられるので、 本発明のタンパク質の発現制御物質、 機能賦活物質、 あるいは機能阻害物質は、 神経伝達の異常に関与する疾患、例えばアルツハイマー型痴呆ノ一キンソン病、 舞踏病、虚血性脳疾患、糖尿病性末梢神経障害などの治療薬となる可能性がある。 配列番号 22に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tによ り、 KIAA0318 gene, partial cds (Homo sapiens)と e— v a l u e : 0、 107 7ァミノ酸残基に亘り 8 1 %の一致度で、 また RIM- binding protein 2 (chicken) と e— v a l u e : 0、 813ァミノ酸残基に亘り 75 %の一致度で、 さらに RIM binding protein 1A (RbplA) mRNA, partial cds (Rattus と e_v a 1 u e : 5 X 10— m、 843アミノ酸残基に亘り 35%の一致度でヒットする。 Since the RIM-binding protein is considered to be involved in the secretion of neurotransmitters, the protein expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be used as a therapeutic agent for dementia, Norkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy. The amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 22 is identical to the KIAA0318 gene, partial cds (Homo sapiens) according to BLAST with an e-value of 0, 107% 81% over the 1077 amino acid residues And RIM-binding protein 2 (chicken) and e-value: 0, 813 with 75% identity over amino acid residues, and RIM binding protein 1A (RbplA) mRNA, partial cds (Rattus and e_v a 1 ue: 5 x 10- m , hits at 843 amino acid residues with 35% identity.
これらの結果より、 配列番号 22に示す塩基配列がコードするタンパク質、 ま たは配列番号 24に示すァミノ酸配列からなるタンパク質は RIM-binding proteinの 1種であることが推測される。  From these results, it is inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 22 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 24 is a kind of RIM-binding protein.
RIM-binding proteinは神経伝達物質の分泌に関与していると考えられるので、 本発明タンパク質の発現制御物質、 機能賦活物質、 あるいは機能阻害物質は、 神 経伝達の異常に関与する疾患、 例えばアルツハイマー型痴呆、 パーキンソン病、 舞踏病、虚血性脳疾患、糖尿病性末梢神経障害などの治療薬となる可能性がある。  Since RIM-binding protein is considered to be involved in the secretion of neurotransmitters, the expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be a therapeutic drug for type dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy.
(1— 5) アポトーシス抑制機能を有するタンパク質  (1-5) Protein with apoptosis inhibitory function
配列番号 25に記載の塩基配列がコードするァミノ酸配列は B LAS Tサーチ により Bacu丄 oviral IAP repeat-containing protein 3と、 e— v a l u e : 2 X 10— 2。で、また 156アミノ酸残基に亘り 35%の相同性を、また、 Inhibitor of apoptosis proteinと、 e— v a l u e : 1 X 10—18で、 67アミノ酸残基に亘り 53 %の相同性を、 さらに、 Apoptosis inhibitor IAPと、 e— v a l u e : 2 X 10— 17で、 154アミノ酸残基に亘り 30%の相同性を有する。 これらの結果よ り配列番号 26に示すァミノ酸配列からなるタンパク質はアポトーシス抑制作用 を有するタンパク質であることが推測された。The amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 25 was obtained by BLAST search and found that Bacu 丄 oviral IAP repeat-containing protein 3 and e—value: 2 X 10- 2. In, also a 35% homology over 156 amino acid residues, also the Inhibitor of apoptosis protein, e- value: at 1 X 10- 18, a 53% homology over a 67 amino acid residue, further, and Apoptosis inhibitor IAP, e- value: with 2 X 10- 17, with 30% homology over 154 amino acid residues. From these results, it was presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 26 was a protein having an apoptosis-suppressing activity.
7こ、 上言己 Baculoviral IAP repeat— containing protein 3タン/ヽク質は、 デー タベース中の文献情報 (Nat. Struct. Biol. 6: 648-651 (1999)) からアポトーシ スの抑制に関わることが、 また上記 Inhibitor of apoptosis proteinタンパク質 は、 データベース中の文献情報 (DNA Cell Biol. 15 :981-988 (1996)) から T細胞 のアポトーシスの抑制に関わることが、 さらに上記 Apoptosis inhibitor ΙΑΡタン パク質は、 データベース中の文献情報 (J. Virol. 67:2168-2174(1993)) から細 胞のアポトーシスの抑制に関わることがそれぞれ明らかとなつた。  7 Baculoviral IAP repeat—containing protein 3 protein / protein may be involved in apoptosis suppression based on literature information (Nat. Struct. Biol. 6: 648-651 (1999)) in the database. However, the above inhibitor of apoptosis protein is considered to be involved in the suppression of T cell apoptosis based on literature information (DNA Cell Biol. 15: 981-988 (1996)) in the database. It was clarified from the literature information in the database (J. Virol. 67: 2168-2174 (1993)) that it was involved in the suppression of cell apoptosis.
また、 HMM P F AMによるタンパク質モチーフ検索を行つたところ配列番号 26のァミノ酸番号 96〜 156【こ Baculovirus Inhibitor of apoptosis protein Repeat (P f a mに BIRとしてエントリーされるアミノ酸配列、 IAP repeatとも記 載される) を見出した。  In addition, a protein motif search using HMM PFAM revealed that amino acid numbers 96 to 156 of SEQ ID NO: 26 [Baculovirus Inhibitor of apoptosis protein Repeat (amino acid sequence entered as BIR in P fam, also described as IAP repeat) ) Was found.
これらのことから配列番号 25に示す塩基配列がコードするタンパク質はアポ トーシスの抑制に関わる機能を有するタンパク質であることが推測された。  From these facts, it was presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 25 was a protein having a function related to suppression of apoptosis.
(1 -6) ゥロモジュリン様活性を有するタンパク質  (1-6) A protein having peromodulin-like activity
配列番号 27に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 Uromodulin precursor (Tamm— Horsf a丄丄 urinary glycoprotein)と e— v a 1 u e : 1 X 10— 23、 31 3ァミノ酸残基に亘り 29 %の一致度で、 また zymogen granule membrane protein GP- 2と e_v a i u e : 1 X 10一16で、 28 5アミノ酸残基に亘り 29%の一致度で、さらに zonapellucidaA glycoprotein homologと e— v a l u e : l X l 0— 14で、 265ァミノ酸残基に亘り 23 %の一 致度でヒットする。 これらの結果より、 配列番号 2 8に示すアミノ酸配列からなるタンパク質は分 泌顆粒膜に存在する糖タンパク質であることが推測される。 The Amino acid sequence encoded by the nucleotide sequence set forth in SEQ ID NO: 27, the BLAST server switch, Uromodulin precursor (Tamm- Horsf a丄丄urinary glycoprotein) and e- va 1 ue: 1 X 10- 23, 31 3 Amino acid in 29% of the degree of coincidence over the residue, and zymogen granule membrane protein GP- 2 and e_v aiue: 1 by X 10 one 16, with 29% of degree of match over the 28 5 amino acid residues, further zonapellucidaA glycoprotein homolog and e - value: in l X l 0- 14, to hit 23% one致度over 265 Amino acid residues. From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 28 is a glycoprotein present in the secretory granule membrane.
また、上記 THP (Ta匪- Horsfallタンパク質、腎臓膜タンパク質)および GP- 2 (脖 臓の分泌顆粒膜の主要な糖タンパク質)は、 glycosylphosphatidylinositol (GPI) を介して先端分泌コンパートメントの分泌顆粒膜に結合しており、 p Hやイオン依 存的に集合し顆粒の分泌に関与することが報告されている (Proc. Natl. Acad. Sci. USA 89, (1992) 1189-1193) 。 また上記 GP-2 (膝臓の酵素前駆体顆粒膜の主 要な糖タンパク質) は、 文献情報 (J. Biol. Chem. 266 (1991) 4257-63) から GPI をアンカーとして分泌膜に結合しており膝臓細胞の先端表面から分泌されること が、 それぞれ知られている。  In addition, THP (Ta-horse-fall protein, kidney membrane protein) and GP-2 (the major glycoprotein of the secretory granule membrane of the kidney) bind to the secretory granule membrane of the apical secretory compartment via glycosylphosphatidylinositol (GPI). It has been reported that they are aggregated in a pH- and ion-dependent manner and are involved in the secretion of granules (Proc. Natl. Acad. Sci. USA 89, (1992) 1189-1193). In addition, GP-2 (a major glycoprotein of the zymogen granule membrane) is bound to the secretory membrane using GPI as an anchor, according to literature information (J. Biol. Chem. 266 (1991) 4257-63). It is known that they are secreted from the tip surface of knee cells.
さらに、 配列番号 2 7に示す塩基配列がコードするアミノ酸配列について、 H MM P F AMによるタンパク質特徴検索を行うと塩基番号 1 6 3 6〜 2 3 6 8が コードするアミノ酸配列に受容体様の糖タンパク質の特徴を示す配列 (P f a m に Zona pellucida- like domainとしてェントリーされる塩基配歹 IJ)が見出される。 また、この配列の下流には GPIアンカ一領域が繋がることが多いことも知られてい る。 また、 膜貫通へリックスを予測するプログラム t mHMM (S. Moller, M. D. R. Croning, R. Apweiler. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17 (7) : 646- 653, 2001. ) を用いると、 配列 番号 2 8のアミノ酸番号 3 6 6〜 3 8 8に膜貫通部位が予測される。 このことか ら、 該塩基配列がコードするタンパク質は膜に局在することが推測される。  Further, a protein feature search using HMMPFAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 27 shows that the amino acid sequence encoded by nucleotide numbers 1636 to 238 A sequence showing the characteristics of the protein (base sequence IJ, which is entered in P fam as a Zona pellucida-like domain) is found. It is also known that the GPI anchor region is often linked downstream of this sequence. In addition, a program to predict the transmembrane helix, tmHMM (S. Moller, MDR Croning, R. Apweiler. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17 (7): 646-653, 2001.) When used, a transmembrane site is predicted at amino acid numbers 366-3888 of SEQ ID NO: 28. From this, it is inferred that the protein encoded by the nucleotide sequence is localized on the membrane.
これらのこと力ゝら、 配列番号 2 7に示す塩基配列がコードするタンパク質は、 GPIアンカーを介して分泌顆粒膜に結合し、分泌顆粒の集合や分泌に関与する機能 を有する糖タンパク質、 即ちゥロモジュリン様活性を有するタンパク質であるこ とが推測される。  Based on these facts, the protein encoded by the nucleotide sequence shown in SEQ ID NO: 27 is a glycoprotein that binds to the secretory granule membrane via a GPI anchor and has a function related to the assembly and secretion of secretory granules, It is assumed that the protein has similar activity.
( 1 - 7 ) 脂質結合活性を有するタンパク質  (1-7) Protein having lipid binding activity
配列番号 2 9に記載の塩基配列がコードするアミノ酸配列は、 B L A S Tサー チにより、 Bactericidal permeability— increasing protein precursor h e— v a 1 u e : 2 X 1 (T52、 476ァミノ酸残基に亘り 28 %の一致度で、 また Phospholipid transfer protein precursorと e— v a 1 u e : 4X 10_37、 49 7ァミノ酸残基に亘り 23 %の一致度で、 さらに Lipopolysaccharide - binding protein precursorと e— v a l u e : 9X 1 0— 3S、 457ァミノ酸残基に亘り 2 3%の一致度でヒットする。 The amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 29 was obtained by BLAST search using Bactericidal permeability—increased protein precursor he—v a 1 ue: 2 X 1 (T 52 , 28% coincidence over 476 amino acid residues, and e-va 1 ue: 4X 10 _37 , 497 over amino acid residues 23 % in the degree of coincidence, further Lipopolysaccharide - binding protein precursor and e- value: 9X 1 0- 3S, 457 2 hits in 3% degree of coincidence over the Amino acid residue.
これらの結果より、 配列番号 31に示すアミノ酸配列からなるタンパク質は脂 質結合タンパク質であると推測される。  From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 31 is a lipid binding protein.
また、 このタンパク質は、 文献情報 (Nucleic Acids Res. 18:3052-3052(1990)) からグラム陰性菌に対する細胞毒活性に関わることが、 他の文献情報 (J. Biol. Chem. 270: 17133 - 17138 (1995)) から HDLなどのリン脂質の輸送と調節に関わるこ とが、 さらに他の文献情報 (Science 249: 1429-1431 (1990) ) からリポ多糖類との 結合に関わることが推測される。  In addition, this protein is considered to be involved in cytotoxic activity against Gram-negative bacteria from literature information (Nucleic Acids Res. 18: 3052-3052 (1990)), and other literature information (J. Biol. Chem. 270: 17133- 17138 (1995)), it is speculated that it is involved in the transport and regulation of HDL and other phospholipids and that it is involved in binding to lipopolysaccharides from other literature information (Science 249: 1429-1431 (1990)). You.
さらに、 配列番号 29に示す塩基配列がコードするアミノ酸配列について、 H MMPF AMによるタンパク質特徴検索を行うと配列番号 31のアミノ酸番号 2 6〜 242に脂質結合の糖タンパク質の特徴を示す配列 (P f a mに LBP— BPI— CETP_Cとしてエントリーされる塩基配列) が見出される。  Further, a protein characteristic search using HMMPFAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 29 shows that a sequence (P fam LBP—BPI—the base sequence entered as CETP_C).
これらのこと力ゝら、 配列番号 29に示す塩基配列がコードするタンパク質は脂 質結合タンパク質であると推測される。  From these facts, it is assumed that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 29 is a lipid-binding protein.
配列番号 30に記載の塩基配列がコードするァミノ酸配列は、 B L A S Tサー チにより、 Bactericidal permeability-increasing protein precursorと e— v a 1 u e : 5 X 10— 148、 484ァミノ酸残基に亘り 53 %の一致度で'、 また Lipopolysaccharide- binding protein precursorと e— v a 1 u e: 2 X 10一96、 472アミノ酸残基に亘り 38 %の一致度で、 さらに Phospholipid transfer protein precursorと e— v a l u e : 2 X 10— 33、 476アミノ酸残基に亘り 2 5%の一致度でヒットする。 Amino acid sequences which nucleotide sequence is encoded according to SEQ ID NO: 30, the BLAST server switch, Bactericidal permeability-increasing protein precursor and e- va 1 ue: 5 X 10- 148, 484 Amino acid residues 53% over degree of coincidence ', also Lipopolysaccharide- binding protein precursor and e- va 1 ue: 2 X 10 one 96, 472 38% degree of coincidence over the amino acid residues, further from Phospholipid transfer protein precursor and e- value: 2 X 10 — A hit of 25% over 33 and 476 amino acid residues.
これらの結果より、 配列番号 32に示すァミノ酸配列からなるタンパク質は脂 質結合タンパク質であると推測されれる。 また、 このタンパク質は、 文献情報 (J. Biol. Chem. 269 : 17411-17416 (1994) ) からリポ多糖類との結合に関わることが、 また他の文献情報 (Science From these results, it is presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 32 is a lipid binding protein. This protein may be involved in binding to lipopolysaccharide from literature information (J. Biol. Chem. 269: 17411-17416 (1994)), and other literature information (Science
249:1429-1431 (1990) )からリポ多糖類との結合に関わることが、 さらに他の文献 情報 (J. Biol. Chem. 270: 17133-17138 (1995) ) から HDLなどのリン脂質の輸送と 調節に関わることが推測される。 249: 1429-1431 (1990)), and the transport of phospholipids such as HDL from the information of other references (J. Biol. Chem. 270: 17133-17138 (1995)). It is presumed to be involved in regulation.
さらに、 配列番号 3 0に示す塩基配列がコードするァミノ酸配列について、 H MMP F AMによるタンパク質特徴検索を行うと配列番号 3 2のアミノ酸番号 2 8〜 2 4 2に脂質結合の糖タンパク質の特徴を示す配列 (P f a mに LBP— BPI— CETPとしてエントリーされる塩基配列) が見出される。  Further, a protein characteristic search by HMMP FAM for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30 shows that the amino acid numbers 28 to 242 of SEQ ID NO: 32 show the characteristics of the lipid-bound glycoprotein. (Base sequence entered as LBP-BPI-CETP in P fam) is found.
これらのことから、 配列番号 3 0に示す塩基配列がコードするタンパク質は脂 質結合タンパク質であると推測される。  From these facts, it is presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 30 is a lipid binding protein.
本発明の D N Aは、 翻訳配列中に塩基の欠失もしくは挿入を有した状態で取得 されることがあるが、 上記のような相同性検索ゃタンパク質特徴検索を行った結 果、 該 D N Aの塩基配列中の欠失もしくは挿入が推測された場合には、 当業者に おいて通常用いられているライブラリースクリーユングや P C Rクローニング等 の方法を用レ、て塩基の欠失もしくは挿入の無い完全長 c D N Aを取得することが できる。  The DNA of the present invention may be obtained in a state where a base sequence has been deleted or inserted in the translated sequence. As a result of the homology search and the protein feature search as described above, the base of the DNA was obtained. If a deletion or insertion in the sequence is suspected, use methods such as library screening and PCR cloning, which are commonly used by those skilled in the art, to obtain the full length without base deletion or insertion. cDNA can be obtained.
かくして取得され、 塩基配列が決定され、 また機能が推定される本発明の D N Aは上記の配列番号 1、 1 1、 1 3、 1 4、 1 5、 1 6、 2 1、 2 2、 2 5、 2 7、 2 9、 3 0に記載の塩基配列、 あるいはその翻訳領域として上記に示した塩 基配列を有するものだけでなく、これらの塩基配列において、 1若しくは数個(こ こで言う数個の数は特には限定されないが、 例えば 6 0個以下、 好ましく 3 0個 以下、 より好ましくは 2 0個以下、 さらに好ましくは 1 0個以下、 特に好ましく は 5個以下を意味する。 ) の塩基が欠失、 置換及ぴ Zまたは付加された塩基配列 を有し、 かつ上記したいずれかの活性を有するタンパク質をコードする D N A、 並びに、 これらとストリンジェントな条件下でハイブリダィズし、 かつ上記した いずれかの活性を有するタンパク質をコードする D NA等も含まれる。 これら D N Aには上記したとおり、 配列番号 2、 1 2、 1 7, 18、 1 9、 20、 23、 24、 26、 28、 3 1、 32に記載のアミノ酸配列において 1若しくは数個の アミノ酸配列が欠失、 置換及び/または付加されたアミノ酸配列からなり、 かつ 上記したいずれかの活性を有するタンパク質をコードするものが含まれる。 The DNA of the present invention thus obtained, whose nucleotide sequence is determined, and whose function is presumed, is the above-mentioned SEQ ID NO: 1, 11, 13, 13, 14, 15, 15, 16, 21, 2, 22, 25 , 27, 29, 30 or those having the base sequence shown above as a translation region thereof, as well as one or several (the number Although the number is not particularly limited, for example, it means 60 or less, preferably 30 or less, more preferably 20 or less, further preferably 10 or less, and particularly preferably 5 or less. A DNA having a base sequence in which a base is deleted, substituted and / or Z- or added, and which encodes a protein having any of the above-mentioned activities; and a DNA which hybridizes with these under stringent conditions, and A protein with any activity Also includes DNA coding. These D As described above, NA has one or several amino acid sequences in the amino acid sequences described in SEQ ID NOs: 2, 12, 17, 18, 19, 20, 23, 24, 26, 28, 31, 32. Includes those consisting of a deleted, substituted and / or added amino acid sequence and encoding a protein having any of the above activities.
ここで、 ストリンジェントな条件でハイプリダイズする D N Aとは、 配列番号 Here, DNA that hybridizes under stringent conditions is SEQ ID NO:
1、 1 1、 1 3、 14、 15、 16、 21、 22、 25、 27、 29または 30 に示される塩基配列と BLAST解析で 80%以上、 好ましくは 90%以上、 さ らに好ましくは 95%以上の相同性を有する塩基配列を含む DN A等が挙げられ る。 また、 ス トリンジェントな条件下のハイブリダィゼーシヨンとは、 通常のハ イブリダイゼーション緩衝液中で、温度が 40〜 70 °C、好ましくは 60〜 65 °C 等で反応を行い、 塩濃度が 15 mM〜 300 mM、 好ましくは 15 mM〜 60m M等の洗浄液中で洗浄を行う方法に従つて行うことができる。 80% or more, preferably 90% or more, and more preferably 95% or more by BLAST analysis with the nucleotide sequence shown in 1, 1, 1, 13, 14, 15, 16, 21, 22, 25, 27, 29 or 30. And DNA containing a nucleotide sequence having homology of at least%. Hybridization under stringent conditions refers to a reaction in a normal hybridization buffer at a temperature of 40 to 70 ° C, preferably 60 to 65 ° C, and the like. Can be carried out according to a method of washing in a washing solution of 15 mM to 300 mM, preferably 15 mM to 60 mM.
さらに、 本発明の DNAは、 上記の方法により取得されたものでも、 また合成 されたものでもよい。 DNAの塩基配列の置換は、 例えばサイトダイレクテツド ミュータジエネシスキット (宝酒造社製) や、 クイックチェンジサイトダイレク テツドミュータジエネシスキット (ストラタジーン社製) 等の巿販キットで容易 に行うことができる。  Further, the DNA of the present invention may be one obtained by the above method or one synthesized. The DNA base sequence can be easily replaced with a sales kit such as Site Directed Mutagenesis Kit (Takara Shuzo) or Quick Change Site Directed Mutagenesis Kit (Stratagene). Can be.
また、配列番号 1、 1 1、 1 3、 14、 15、 16、 21、 22、 25、 27、 29または 30に記載の塩基配列は、 マウスを由来とするものであるが、 上記し た c DN Aライブラリーの作製法に従ってヒ トの c DNAライブラリーを作製し、 該ライブラリーに対して配列番号 1、 1 1、 13、 14、 15、 16、 21、 2 In addition, the nucleotide sequence described in SEQ ID NOs: 1, 11, 13, 14, 15, 16, 21, 22, 25, 27, 29, or 30 is derived from a mouse. A human cDNA library was prepared according to the method for preparing a DNA library, and SEQ ID NOS: 1, 11, 13, 14, 15, 16, 21, 2
2、 25、 27、 29または 30に記載の塩基配列を有する DNA断片をプロ一 ブとしたハイブリダイゼーシヨンを行うことにより、 該配列番号に記載の塩基配 列がコードするタンパク質のヒトのホモログタンパク質をコードする DNAを取 得することもできる。 本発明の配列番号 1、 11、 1 3、 14、 15、 16、 2By performing hybridization using a DNA fragment having the nucleotide sequence of 2, 25, 27, 29 or 30 as a probe, a human homolog of the protein encoded by the nucleotide sequence of the SEQ ID NO: DNA encoding the protein can also be obtained. SEQ ID NOS: 1, 11, 13, 14, 15, 16, 2 of the present invention
1、 22、 25、 27、 29または 30に記載の DNAとストリンジェントな条 件でハイブリダィズする DN Aには、 このようなヒトのホモログをコードする D NAも含まれる。 DNAs that hybridize under stringent conditions with DNA described in 1, 22, 25, 27, 29 or 30 include DNA encoding such a human homologue. NA is also included.
また、 インフォマティックスを利用して、 ヒ トホモログ DNAが有する塩基配 列を予測し、 該塩基配列を基に上記のヒト c DNAライブラリーなどからヒトホ モログ DN Aを取得することもできる。  In addition, it is also possible to predict the base sequence of the human homolog DNA using informatics and obtain the human homolog DNA from the above-mentioned human cDNA library or the like based on the base sequence.
一般的に、 インフォマティックスを利用して目的とするタンパク質のホモログ タンパク質をコードする塩基配列を予測する方法としては、 例えば、 (i ) 目的 とする c DNAの塩基配列をクエリーとして、ヒト等の c DNAデータベース(ィ ンフォマティックにより予測される c DNAデータベースを含む) に対し B LA STなどを用いて相同性検索を行う方法や、 (i i ) 目的とする cDNAの塩基 配列をクエリーとして、 ヒト等の ESTデータベースに対し BLASTなどを用 いて相同性検索を行い、 ヒットした E STが有する配列を目的とする c DNAの 塩基配列を参照して連結する方法、 さらに (i i i ) 目的とする c DNAの塩基 配列をクエリーとして、 ヒトなどのゲノムデータベースに対し B LASTなどを 用いて相同性検索を行い、 目的とする c DN Aの遺伝子が存在するゲノム上の位 置を特定し、 そのゲノム領域に対して Ge n s c a n (http:// genes.  In general, methods for predicting a base sequence encoding a homolog protein of a target protein using informatics include, for example, (i) using a base sequence of a target cDNA as a query, A method for performing homology search using cDNA etc. against cDNA databases (including cDNA databases predicted by informatics), and (ii) using the base sequence of the target cDNA as a query A homology search using BLAST or the like to an EST database such as that described above, and linking the sequences of the hit ESTs with reference to the base sequence of the target cDNA; and (iii) the target cDNA Using a base sequence as a query, a homology search is performed using BLAST or the like on a human or other genomic database to find a gene in which the cDNA gene of interest exists. The position on the nom is identified, and Gen s c a n (http: // genes.
mit.edu/GENSCAN.html) や S i m4 (Genome Res. , 8: 976-74 (1998)) 等を 用いて、 該ゲノム中の遺伝子部分の塩基配列を予測する方法等が挙げられる。 マウス由来 c DNAのヒトホモログ DN Aの塩基配列を予測する場合、 上記の 方法のいずれも用いることができるが、本発明の配列番号 1、 1 1、 1 3、 1 4、 1 5、 1 6、 2 1、 22、 25、 27、 2 9または 30に記載の塩基配列を有す る c DNAはいずれも新規であり、上記 (i) の方法では、 ヒトホモログ DNAの 塩基配列を取得できないと考えられるため、 (ii) あるいは (iii) に記載の方法 などを用いるのが好ましい。 mit.edu/GENSCAN.html), Sim4 (Genome Res., 8: 976-74 (1998)), and the like, and a method of predicting the nucleotide sequence of the gene portion in the genome. When predicting the nucleotide sequence of the human homologue DNA of mouse-derived cDNA, any of the above methods can be used, however, SEQ ID NOs: 1, 11, 13, 14, 14, 15 and 16 of the present invention can be used. Any cDNA having the nucleotide sequence described in 21, 22, 25, 27, 29 or 30 is novel, and it is considered that the nucleotide sequence of human homolog DNA cannot be obtained by the method (i) above. Therefore, it is preferable to use the method described in (ii) or (iii).
かくして予測されたヒトホモログ DN Aの塩基配列を基に、 上記のヒト cDN Aライブラリーから、配列番号 1、 1 1、 1 3、 1 4、 1 5、 1 6、 2 1、 2 2、 25、 2 7、 2 9または 3 0に記載の塩基配列がコードするタンパク質のヒ トの ホモログタンパク質をコードする DN Aを取得することもできる。 具体的な取得 方法としては、 例えば、 予測されたヒトホモログ DNAの 5, 端および 3, 端の 塩基配列に相補的な塩基配列を有するプライマーを用いて、 上記ヒト cDNAラ イブラリーを铸型として PC Rを行う方法や、 予測されたヒトホモログ DN Aの 一部の配列をプローブとして、 上記ヒト c DNAライブラリーに対してハイプリ ダイゼーシヨンを行う方法等が挙げられる。 Based on the nucleotide sequence of the human homologue DNA thus predicted, based on the above human cDNA library, SEQ ID NOs: 1, 11, 13, 14, 14, 15, 16, 21, 21, 22, 25, DNA encoding a human homolog protein of the protein encoded by the nucleotide sequence described in 27, 29 or 30 can also be obtained. Specific acquisition Examples of the method include, for example, a method of performing PCR using the above-mentioned human cDNA library as a type III using a primer having a nucleotide sequence complementary to the nucleotide sequence of the predicted 5, 5, and 3 end of the human homolog DNA, And a method in which a partial sequence of the predicted human homolog DNA is used as a probe to perform hybridization on the human cDNA library.
一般的に、 目的遺伝子が有する塩基配列とホモ口ジ一の高い塩基配列を有する 類似遺伝子を 「ホモログ」 と呼ぴ、 上記の方法においてもヒ トホモログの取得を 目的としているが、 遺伝子の機能解析においては、 塩基配列が類似していること だけではなく、 ホモログとして取得された遺伝子が、 目的遺伝子のフアミリーメ ンバーであることを確認することが重要である。 2種類の生物間で 「ホモログ」 として取得された遺伝子は、 共通の祖先遺伝子から進化した同一の遺伝子である 「オルソログ」 である可能性と、 また、 共通の祖先遺伝子からの重複によって生 じた異なる遺伝子である 「パラログ」 である可能性がある。  Generally, a similar gene having a nucleotide sequence having the highest homologous nucleotide sequence to the nucleotide sequence of the target gene is referred to as a “homolog”, and the above-mentioned method also aims to obtain a human homolog. In, it is important to confirm not only that the nucleotide sequences are similar, but also that the gene obtained as a homolog is a family member of the target gene. Genes acquired as “homologs” between two species of organisms are likely to be “orthologs”, which are the same genes evolved from a common ancestral gene, and also arise from duplication from a common ancestral gene It may be a different gene, a “paralog”.
つまり、 上記でホモログとして取得されたヒト由来の DNAは、 これを、 本発 明のタンパク質と同一の機能を有すると解するには、 また、 該ヒト由来の DNA がコードするタンパク質の機能を、 本発明のタンパク質のマウスにおける機能と して推定検証するには、 上記ヒトホモログが本発明のマウス遺伝子の近縁種のォ ルソログであることを確認することが好ましい。  In other words, in order for the human-derived DNA obtained as a homologue to have the same function as the protein of the present invention, the function of the protein encoded by the human-derived DNA must be In order to estimate and verify the function of the protein of the present invention in mice, it is preferable to confirm that the human homolog is an ortholog of a closely related species of the mouse gene of the present invention.
オルソログであることの確認方法は、 例えば、 以下の方法などが用いられる。  For example, the following method is used as a method for confirming the ortholog.
( i ) まず、 本発明の c DNAの塩基配列と、 取得されたヒトホモログ DNAの 塩基配列について相同性を解析する。 次に、 本発明の cDNAの塩基配列をタエ リーとして、 DDB J、 EMBL、 G e n B a n kなどの国際塩基配列データべ ースや、 特許データベースに含まれるヒト塩基配列について相同性検索を行い、 取得されたヒトホモログ DN Aの塩基配列とクエリーの塩基配列の一致度が、 デ ータベースから得られた塩基配列とクエリ一の塩基配列の一致度より高いことを 確認する。 さらに、 ( i i) 取得されたヒトホモログ DN Aの塩基配列と、 対応 する本発明の c DNAの塩基配列について相同性を解析する。 次に、 取得された ヒトホモログ DNAの塩基配列をクエリーとして、 DDB J、 EMB L、 G e n B a n kなどの国際塩基配列データベースや、 特許データベースに含まれるマウ ス塩基配列について相同性検索を行い、 本発明の c DNAの塩基配列とクエリ一 の塩基配列の一致度が、 データベースから得られた塩基配列とクエリーの塩基配 列との一致度より高いことを確認する。 上記 (i ) および (i i ) を確認するこ とにより、 取得されたヒトホモログが、 本発明の c DNAに対応するヒトオルソ ログであると同定することができる。 上記 ( i ) および ( i i ) に記載した相同 性の解析はアミノ酸配列の比較を用いても良く、 また、 分子進化系統 樹を描いて検討することもできる。 また、 上記 ( i ) および ( i i ) に記載した相同性解析による一致度は、 クエリ一の全長にわたる一致 度と して解析することが好ましい。 (i) First, homology is analyzed for the nucleotide sequence of the cDNA of the present invention and the nucleotide sequence of the obtained human homolog DNA. Next, using the nucleotide sequence of the cDNA of the present invention as a query, homology search was performed on international nucleotide sequence databases such as DDB J, EMBL, Gen Bank, and human nucleotide sequences contained in patent databases. Confirm that the degree of matching between the nucleotide sequence of the obtained human homolog DNA and the nucleotide sequence of the query is higher than the degree of matching between the nucleotide sequence obtained from the database and the nucleotide sequence of the query. Further, (ii) homology is analyzed for the nucleotide sequence of the obtained human homolog DNA and the corresponding nucleotide sequence of the cDNA of the present invention. Then, the obtained Using the base sequence of human homolog DNA as a query, homology search was performed on the mouse base sequence contained in the international base sequence database such as DDB J, EMBL, GenBank, etc., and the patent database. Confirm that the match between the base sequence of the query and the base sequence of the query is higher than the match between the base sequence obtained from the database and the base sequence of the query. By confirming the above (i) and (ii), the obtained human homolog can be identified as a human ortholog corresponding to the cDNA of the present invention. The homology analysis described in (i) and (ii) above may be performed by comparing amino acid sequences, or by drawing a molecular evolutionary phylogenetic tree. Further, it is preferable to analyze the degree of coincidence by the homology analysis described in (i) and (ii) as the degree of coincidence over the entire length of the query.
かくして取得されたヒトホモログ DNAあるいはオルソログ DNAの塩基配列 を、 B LAS Tによる相同性検索や HMMP FAMによるタンパク質特徴検索等 を行うことにより、 該塩基配列がコードするタンパク質の機能を推定および確認 することができる。  By performing a homology search using BLAST or a protein feature search using HMMP FAM on the base sequence of the human homolog DNA or ortholog DNA thus obtained, the function of the protein encoded by the base sequence can be estimated and confirmed. it can.
かくして得られる完全長 c DNAを用いて本発明のタンパク質を発現させ、 こ れを活性の確認および機能解析等に用いることができる。  The full-length cDNA thus obtained is used to express the protein of the present invention, which can be used for confirmation of activity, functional analysis and the like.
(2) 新規 c DNAがコードするタンパク質  (2) Protein encoded by the new cDNA
本発明の DNAがコードするタンパク質の翻訳領域は、 例えば、 該 DNAが有 する塩基配列について 3種類の読み枠によりアミノ酸に変換していき、 最も長い ポリべプチドをコ一ドする範囲を本発明の翻訳領域としてそのアミノ酸配列を決 定すること等ができる。 このようなアミノ酸配列として、 例えば、 配列番号 2、 1 2、 1 7、 1 8、 1 9、 2 0、 2 3、 24、 2 6、 2 8、 3 1または 3 2に記 載のもの等が挙げられる。 また、 本発明のタンパク質は、 上記のアミノ酸配列に 限られるものではなく、 該ァミノ酸配列において 1若しくは数個のアミノ酸が置 換、 欠失、 及び または付加されたァミノ酸配列からなり、 上記活性を有するも のも含まれる。 本発明のタンパク質の取得方法としては、 上記 (1 ) に記載の本発明の D NA を適当な方法により転写 Z翻訳する方法が好ましく用いられる。 具体的には、 適 当な発現用ベクター若しくは適当なベクターに、 適当なプロモーターとともに挿 入した組換えべクタ一を作製し、 この組換えべクタ一で適当な宿主微生物を形質 転換したり、 適当な培養細胞に導入することにより発現させ、 これを精製するこ とにより取得することができる。 In the translation region of the protein encoded by the DNA of the present invention, for example, the nucleotide sequence of the DNA is converted into amino acids by three types of reading frames, and the range in which the longest polypeptide is encoded is determined by the present invention. And its amino acid sequence can be determined as the translation region of the gene. Such amino acid sequences include, for example, those described in SEQ ID NOs: 2, 12, 17, 17, 18, 19, 20, 23, 24, 26, 28, 31 or 32, etc. Is mentioned. Further, the protein of the present invention is not limited to the above amino acid sequence, but comprises an amino acid sequence in which one or several amino acids have been substituted, deleted and / or added in the amino acid sequence, and Those having the following are also included. As the method for obtaining the protein of the present invention, the method of transcription and translation of the DNA of the present invention described in the above (1) by an appropriate method is preferably used. Specifically, a recombinant vector inserted into a suitable expression vector or a suitable vector together with a suitable promoter is prepared, and the recombinant vector is used to transform a suitable host microorganism, It can be expressed by introducing it into appropriate cultured cells, and can be obtained by purifying it.
かくして得られるタンパク質が遊離体で得られた場合には、 公知の方法あるい はそれに準じる方法によつて塩に変換することができ、 逆に塩で得られた場合に は遊離体、 又は他の塩に変換することができる。 この様な本発明のタンパク質の 塩も本発明のタンパク質に含まれる。 また、 上記形質転換体が産生するタンパク 質を、 精製前、 又は後に適当なタンパク質修飾酵素を作用させることにより、 任 意に修飾を加えたり、 ポリぺプチドを部分的に除去することにより修飾タンパク 質とすることができる。 これらの修飾タンパク質も上記したそれぞれの活性を有 するものであれば本発明の範囲に含まれる。  When the protein thus obtained is obtained in a free form, it can be converted into a salt by a known method or a method analogous thereto, and conversely, when the protein is obtained in a salt form, the free form or other Can be converted to a salt. Such salts of the protein of the present invention are also included in the protein of the present invention. In addition, the protein produced by the above transformant may be modified before or after purification with an appropriate protein modifying enzyme to optionally modify the protein or partially remove the polypeptide to modify the protein. Quality. These modified proteins are also included in the scope of the present invention as long as they have the respective activities described above.
本発明のタンパク質の産生を行う際、 本発明の D NAを含む組換えベクターの 作製に用いるベクターとしては、 形質転換体内で該 D NAが発現されるものであ れば特に制限はなく、プラスミドベクター、ファージベクターのレ、ずれでもよレ、。 これらのうち通常は、 該 D N Aが導入される宿主に適したプロモーター等の発現 制御領域 D N Aが既に挿入されている市販のタンパク質発現用べクターを用いる。 このようなタンパク質発現用ベクターとして、 具体的には、 例えば、 宿主が大腸 菌の場合では、 p E T 3、 p E T 1 1 (ストラタジーン社製) G E X (アマシ ャムフアルマシアバイオテク社製) 等が挙げられ、 酵母の場合では p E S P— I エクスプレッションベクタ一 (ストラタジーン社製) 等が挙げられ、 さらに昆虫 細胞の場合では B a c P AK 6 (クロンテック社製) 等が挙げられる。 また宿主 が動物細胞の場合では、 Z A P E x p r e s s (ストラタジーン社製) 、 S V K 3 (アマシャムフアルマシアバイオテク社製) 等が挙げられる。  When producing the protein of the present invention, the vector used for producing the recombinant vector containing the DNA of the present invention is not particularly limited as long as the DNA is expressed in the transformant. Vectors and phage vectors may be misaligned. Of these, usually, a commercially available protein expression vector into which an expression control region DNA such as a promoter suitable for the host into which the DNA is introduced has already been inserted is used. Specific examples of such a protein expression vector include, for example, pET3 and pET11 (manufactured by Stratagene) GEX (manufactured by Amersham Pharmacia Biotech) when the host is Escherichia coli. In the case of yeast, p ESP-I expression vector-1 (Stratagene) and the like, and in the case of insect cells, BacP AK6 (Clontech) and the like. When the host is an animal cell, examples include ZAPExpress (manufactured by Stratagene) and SVK3 (manufactured by Amersham Pharmacia Biotech).
発現制御領域が揷入されていないベクターを用いる場合には、 発現制御領域と して少なくともプロモーターを挿入する必要がある。 ここでプロモーターとして は、 宿主微生物、 または培養細胞が保有するプロモーターを用いることができる 力 これに限られるものではなく、 具体的には、 例えば、 宿主が大月昜菌の場合に は T3、 T7、 t a c、 1 a cプロモーター等を用いることができ、 酵母の場合 には nmt 1プロモーター、 Ga 1 1プロモーター等を用いることができる。 ま た宿主が動物細胞の場合には SV 40プロモーター、 CMVプロモーター等が好 ましく用いられる。 When using a vector without an expression control region, the expression control region It is necessary to insert at least a promoter. Here, the promoter used may be a promoter contained in a host microorganism or a cultured cell. The promoter is not limited to this. Specifically, for example, when the host is Otsuki bacterium, T3, T7 , Tac, 1 ac promoter and the like, and in the case of yeast, nmt1 promoter, Ga11 promoter and the like can be used. When the host is an animal cell, SV40 promoter, CMV promoter and the like are preferably used.
また哺乳動物由来のプロモーターが機能可能な宿主を用いる場合には、 本発明 の遺伝子に固有のプロモーターを用いることもできる。 これらのベクターへの本 発明の DNAの挿入は、 該 DNAまたはこれを含む DNA断片をベクター中のプ 口モーターの下流に該遺伝子 DNAがコードするタンパク質のアミノ酸配列を連 結して行えばよい。  When a host capable of functioning as a mammalian promoter is used, a promoter specific to the gene of the present invention can also be used. Insertion of the DNA of the present invention into these vectors may be performed by linking the DNA or a DNA fragment containing the DNA to the amino acid sequence of the protein encoded by the gene DNA downstream of the open motor in the vector.
このようにして作製した組換えベクターは、 それ自体既知の方法により後述す る宿主を形質転換して、 DN A導入体を作製することができる。 宿主への該べク ターの導入方法として、 具体的には、 ヒートショック法 (J. Mol.Biol. ,53, 154, (1970)) 、 リン酸カルシウム法 (Science, 221, 551, (1983)) 、 DEAEデキスト ラン法 (Science, 215, 166, (1982) )、インビトロパッケージング法 (Proc. Natl. Acad. Sci. USA, 72, 581, (1975)) 、 ウィルスベクター法 (Cell, 37, 1053, (1984)) 、 およ ぴ電気パルス法 (Chu. et al. , Nuc. Acids Res. , 15, 1331 (1987) ) 等が挙げられる。  The recombinant vector thus prepared can be transformed into a host described below by a method known per se to prepare a DNA-introduced body. As a method for introducing the vector into a host, specifically, a heat shock method (J. Mol. Biol., 53, 154, (1970)) and a calcium phosphate method (Science, 221, 551, (1983)) , DEAE Dextran method (Science, 215, 166, (1982)), in vitro packaging method (Proc. Natl. Acad. Sci. USA, 72, 581, (1975)), virus vector method (Cell, 37, 1053). , (1984)) and the electric pulse method (Chu. Et al., Nuc. Acids Res., 15, 1331 (1987)).
DNA導入体を作製するための宿主としては、 本発明の DN Aが体内で発現す るものであれば特に限定されないが、例えば大腸菌、酵母、バキュロウィルス(節 足動物多角体ウィルス) 一昆虫細胞、 あるいは動物細胞等が挙げられる。 具体的 には、 大腸菌では BL 21、 XL-2B 1 u e (ストラタジーン社製) 等、 酵母 では SP— Q0 1 (ストラタジーン社製) 等、 バキュロウィルスでは Ac NPV (J. Biol. Chem. , 263, 7406, (1988)) とその宿主である S f 一 9  The host for producing the DNA transfectant is not particularly limited as long as the DNA of the present invention is expressed in the body. For example, Escherichia coli, yeast, baculovirus (arthropod polyhedrovirus), and insect cells Or animal cells. Specifically, BL 21 and XL-2B 1 ue (Stratagene) for E. coli, SP-Q01 (Stratagene) for yeast, and Ac NPV (J. Biol. Chem. 263, 7406, (1988)) and its host S f
(J. Biol. Chem. , 263, 7406, (1988) ) 等が挙げられる。 また動物細胞としてはマウ ス繊維芽細胞 C 127 (J. Viol. , 26, 291, (1978))やチャイニーズハムスター卵巣 細胞 C H O細胞 (Proc. Natl. Acad. Sci. USA, 77, 4216, (1980) ) 等が挙げられる 力 発現量やスクリーニングの簡便さから好ましくはアフリカミドリザル腎臓由 来 C O S— 7 (ATCC CRL1651: アメ リカン タイプ カルチャー コレクション 保存細胞) が用いられる。 (J. Biol. Chem., 263, 7406, (1988)). Mouse cells include mouse fibroblast C127 (J. Viol., 26, 291, (1978)) and Chinese hamster ovary. Cells CHO cells (Proc. Natl. Acad. Sci. USA, 77, 4216, (1980)) and the like. From the expression level and simplicity of screening, it is preferable to use African green monkey kidney-derived COS-7 (ATCC CRL1651: Lican type culture collection (preserved cells) is used.
上記したようなタンパク質発現用ベクターを用いる発現方法の他に、 プロモー ターを連結した本発明の D N A断片を宿主微生物の染色体中に直接挿入する相同 糸且換え技術 (A. A. Vertes et al. , Biosci. Biotechnol. Biochem., 57, 2036, (1993) )、 あるいはトランスポゾンや挿入配列 (A. A. Vertes et al. , Molecular  In addition to the above-described expression method using a protein expression vector, a homologous strand exchanging technique for directly inserting a promoter-ligated DNA fragment of the present invention into the chromosome of a host microorganism (AA Vertes et al., Biosci. Biotechnol. Biochem., 57, 2036, (1993)) or transposons or insertion sequences (AA Vertes et al., Molecular
Microbiol. , 11, 739, (1994) ) 等を用いて D N A導入体を作製することもできる。 得られた培養物は、 細胞あるいは菌体を遠心分離等の方法により収集し、 これ を適当な緩衝液に懸濁し、 超音波、 リゾチーム、 および Zまたは凍結融解等のそ れ自体既知の適当な方法により破壊した後、 遠心分離や濾過等によりタンパク質 粗精製液を得、 さらに適当な精製方法を組み合わせることにより精製することが できる。 かくして、 本発明のタンパク質が取得される。 上記したタンパク質発現 組換えベクターを用いる発現方法の他に、 上記 (1 ) で取得された本発明の D N Aを無細胞転写翻訳系に供することによりタンパク質発現を誘導し、 本発明のタ ンパク質を取得することができる。 本発明で用いられる無細胞転写翻訳系とは、 D N Aから m R N Aへの転写、 およぴ m R N Aからタンパク質への翻訳に必要な 全ての要素を含む系であり、 そこに D N Aを加えることによってその D N Aがコ ードしているタンパク質が合成されるようなあらゆる系を指す。 無細胞転写翻訳 系の具体例としては、 真核細胞、 およびバクテリア細胞、 又はそれらの一部から の抽出液に基づいて調製された転写翻訳系が挙げられ、 特に好ましい具体例とし ては、 ゥサギ網状赤血球、小麦胚芽、大腸菌からの抽出液 (大腸菌 S 3 0抽出液) に基づいて調製された転写翻訳系が挙げられる。 Microbiol., 11, 739, (1994)) can also be used to prepare a DNA-introduced body. In the resulting culture, cells or cells are collected by a method such as centrifugation, suspended in an appropriate buffer, and then sonicated, lysozyme, and Z or freeze-thaw, etc. After disruption by the method, a crude protein solution is obtained by centrifugation, filtration, or the like, and further purified by a combination of appropriate purification methods. Thus, the protein of the present invention is obtained. In addition to the above-described expression method using a protein expression recombinant vector, protein expression is induced by subjecting the DNA of the present invention obtained in the above (1) to a cell-free transcription / translation system, and the protein of the present invention Can be obtained. The cell-free transcription / translation system used in the present invention is a system containing all the elements necessary for transcription from DNA to mRNA and translation of mRNA to protein, and by adding DNA thereto. It refers to any system in which the protein encoded by the DNA is synthesized. Specific examples of the cell-free transcription / translation system include a transcription / translation system prepared based on an eukaryotic cell, a bacterial cell, or an extract from a part thereof, and a particularly preferred example is Egret A transcription / translation system prepared based on extracts from reticulocytes, wheat germ, and Escherichia coli (Escherichia coli S30 extract) may be mentioned.
得られた無細胞転写翻訳系の転写翻訳産物からの、本発明のタンパク質の分離、 および精製は、 それ自体既知の通常用いられる方法で行うことができる。 具体的 には、 例えばェピトープペプチド、 ポリヒスチジンペプチド、 グルタチオン一 S 一トランスフェラーゼ (GST) 、 マルトース結合タンパク質等をコードする D N A領域を、前記した転写翻訳されるべき DN Aに導入し、前記の通り発現させ、 該タンパク質と親和性を有する物質とのアブイ二ティーを利用して精製すること ができる。 Separation and purification of the protein of the present invention from the obtained transcription-translation product of the cell-free transcription / translation system can be carried out by a commonly used method known per se. Specifically, for example, epitope peptide, polyhistidine peptide, glutathione-S A DNA region encoding one transferase (GST), a maltose binding protein, etc. is introduced into the above-mentioned DNA to be transcribed and translated, expressed as described above, and the abundance of the protein with a substance having affinity is determined. It can be used for purification.
目的とするタンパク質の発現は、 S D S—ポリアクリルアミ ドゲル電気泳動等 で分離し、 クマシ一ブリリアントブルー (シグマネ土製) 等で染色する力、 または 後述する本発明のタンパク質に特異的に結合する抗体により検出する方法等によ つて確認できる。 また一般的に、 発現されたタンパク質は生体内に存在するタン パク質分解酵素により切断されること (プロセッシング) が知られている。 本発 明のタンパク質も当然のことながら切断されたァミノ酸配列の部分断片であって も、 上記したいずれかの活性を有するものであれば、 本発明のタンパク質に含ま れる。  Expression of the target protein is determined by the ability to separate by SDS-polyacrylamide gel electrophoresis and stain it with Coomassie brilliant blue (manufactured by Sigmane earth), or by using an antibody that specifically binds to the protein of the present invention described later. It can be confirmed by the detection method. It is generally known that the expressed protein is cleaved (processed) by a proteolytic enzyme present in the living body. The protein of the present invention is naturally included in the protein of the present invention, even if it is a fragment of the amino acid sequence that has been cleaved, as long as it has any of the above-mentioned activities.
かくして得られたタンパク質は、 他のタンパク質や核酸との相互作用等を解析 することにより、 生体内における多面的な機能を知ることができる。 上記相互作 用の解析法としては、それ自体既知の常法を用いることができるが、具体的には、 例えば、 酵母ツーハイブリッド法、 蛍光偏光解消法、 表面プラズモン法、 ファー ジディスプレイ法、 リポソ一マルディスプレイ法等が挙げられる。  By analyzing the interaction of the protein thus obtained with other proteins and nucleic acids, it is possible to know the multifaceted functions in vivo. As a method for analyzing the interaction, a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, liposome method One example is the multiple display method.
(3) オリゴヌクレオチドの調製  (3) Preparation of oligonucleotide
上記 (1) に記載の方法で取得した本発明の DNAまたはその断片を用いて、 DNA合成機などを用いる常法により、 本発明の DNAの一部の配列を有するァ ンチセンス · オリゴヌクレオチド、 センス ·オリゴヌクレオチド等のオリゴヌク レオチドを調製することができる。  Using the DNA of the present invention or a fragment thereof obtained by the method described in the above (1), antisense oligonucleotides having a partial sequence of the DNA of the present invention, senses by a conventional method using a DNA synthesizer or the like. · Oligonucleotides such as oligonucleotides can be prepared.
該オリゴヌクレオチドとしては、 上記 DN Aの有する塩基配列中の連続した 5 〜100塩基と同じ配列を有する DN Aまたは該 DN Aと相捕的な配列を有する DN Aを挙げることができる。具体例としては、配列番号 1、 1 1、 13、 14、 15、 1 6、 21、 22、 25、 27、 29または 30で表される塩基配列中の 連続した 5〜100塩基と同じ配列を有する DN Aまたは該 DN Aと相捕的な配 列を有する D N Aを挙げることができる。 センスプライマーおょぴアンチセンス プライマーとして用いる場合には、 両者の融解温度 (Tm) およぴ塩基数が極端 に変わることのない上記のオリゴヌクレオチドが好ましい。また、配列の長さは、 一般的には 5〜1 0 0塩基であり、 好ましくは 1 0〜6 0塩基であり、 より好ま しくは 1 5〜5 0塩基である。 ' Examples of the oligonucleotide include a DNA having the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence of the DNA or a DNA having a sequence complementary to the DNA. As a specific example, the same sequence as 5 to 100 consecutive nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, 11, 13, 14, 15, 16, 16, 21, 22, 25, 27, 29 or 30 is shown. Or a distribution complementary to the DNA Examples include DNA having a sequence. When used as a sense primer and an antisense primer, the above oligonucleotides whose melting temperature (Tm) and number of bases do not extremely change are preferred. The length of the sequence is generally 5 to 100 bases, preferably 10 to 60 bases, and more preferably 15 to 50 bases. '
また、 これらオリゴヌクレオチドの誘導体も本発明のオリゴヌクレオチドとし て利用することができる。 該オリゴヌクレオチド誘導体としては、 オリゴヌタレ ォチド中のリン酸ジエステル結合がホスホロチォエート結合に変換されたオリゴ ヌクレオチド誘導体、 オリゴヌクレオチド中のリン酸ジエステル結合が N 3 ' — P 5 ' ホスフォアミデート結合に変換されたオリゴヌクレオチド誘導体、 オリゴ ヌクレオチド中のリボースとリン酸ジエステル結合がぺプチド核酸結合に変換さ れたォリゴヌクレオチド誘導体、 オリゴヌクレオチド中のゥラシルが C— 5プロ ビュルゥラシルで置換されたォリゴヌクレオチド誘導体、 ォリゴヌクレオチド中 のゥラシルが C一 5チアゾールゥラシルで置換されたォリゴヌクレオチド誘導体、 オリゴヌクレオチド中のシトシンが C一 5プロピニルシトシンで置換されたオリ ゴヌクレオチド誘導体、 オリゴヌクレオチド中のシトシンがフエノキサジン修飾 シトシン (phenoxazine - mod:if ied cytosine) で置換されたオリゴヌクレオチド誘 導体、 オリゴヌクレオチド中のリボースが 2, 一 O—プロピルリボースで置換さ れたォリゴヌクレオチド誘導体、あるいはォリゴヌクレオチド中のリボースが 2 ' —メ トキシエトキシリボースで置換されたオリゴヌクレオチド誘導体等を挙げる ことができる。  In addition, derivatives of these oligonucleotides can also be used as the oligonucleotide of the present invention. Examples of the oligonucleotide derivative include an oligonucleotide derivative in which a phosphodiester bond in an oligonucleotide is converted to a phosphorothioate bond, and a phosphodiester bond in an oligonucleotide in which an N 3 ′ —P 5 ′ phosphoramidate bond is used. Oligonucleotide derivative in which the ribose and phosphodiester bond in the oligonucleotide have been converted to a peptide nucleic acid bond, Oligonucleotide in which the peracyl in the oligonucleotide has been replaced with C-5-properuracil Nucleotide derivatives, oligonucleotide derivatives in which peracyl in oligonucleotides are substituted with C-15 thiazoleperacyl, oligonucleotide derivatives in which cytosines in oligonucleotides are substituted with C-15 propynylcytosine, oligonucleotides Oligonucleotide derivatives in which the cytosine in the oligonucleotide has been replaced with phenoxazine-modified cytosine, oligonucleotide derivatives in which the ribose in the oligonucleotide has been replaced by 2,1-O-propylribose, or Oligonucleotide derivatives in which ribose in an oligonucleotide is substituted with 2′-methoxyethoxyribose can be mentioned.
また、 本発明のオリゴヌクレオチドは、 これを 2本鎖 R N Aとして調製し、 被 導入体へ導入し、 標的遺伝子の発現を阻害する R N Aインターフェアレンス (以 下これを 「R NA i」 と称することがある) 法に用いることができる。 R N Aィ ンターフェアレンス法については、例えば、 (Elbashir, S. , et al. , Nature, 411, 494-498 (2001) ) に記載の方法等を用いることができる。 また、上記 2本鎖 R N A は必ずしも全てが R NAである必要はなく、 例えば、 WO O 2 / 1 0 3 7 4号公 報に記載のもの等も用いることができる。 In addition, the oligonucleotide of the present invention is prepared as double-stranded RNA, introduced into a transfectant, and inhibits the expression of a target gene by RNA interference (hereinafter referred to as “RNAi”). Can be used in the law. As the RNA interference method, for example, the method described in (Elbashir, S., et al., Nature, 411, 494-498 (2001)) can be used. Further, the double-stranded RNA does not necessarily have to be all RNA, for example, WO 02/107374. Those described in the report can also be used.
ここで、 標的遺伝子としては、 本発明の DNAであれば、 如何なるものであつ てもよい。 これら DNAの少なくとも一部の塩基配列と実質的に同一な配列から なる 2本鎖 RNA (以下、 これを 「2本鎖ポリヌクレオチド」 と称することがあ る) とは、 標的遺伝子の塩基配列のうち、 いずれの部分でもよい 15 bp以上の配 列と実質的に同一な配列からなるものである。 ここで、 実質的に同一とは、 標的 遺伝子の配列と 80 %以上の相同性を有することを意味する。 ヌクレオチドの鎖 長は 1 5bpから標的遺伝子のオープンリーディングフレーム (ORF) の全長ま での如何なる長さでもよいが、 15〜50 Obp程度のものが好ましく用いられる。 ただし、 哺乳類動物由来の細胞おいては、 3 Obp以上の長い 2本鎖 RNAに反応 して活性化するシグナル伝達系の存在が知られている。 これはィンターフェロン 反応と呼ばれており (Mareus, P. I., et al. , Interferon, 5, 115-180(1983)) 、 該 2本鎖 RNAが細胞内に侵入すると、 PKR (dsRNA- responsive protein kinase: Bass, B. L. , Nature, 411, 428-429(2001)) を介して多くの遺伝子の翻 訳開始が非特異的に阻害され、それと同時に 2 ', 5, oligoadenylate synthetase (Bass, B.L. , Nature, 411, 428—429(2001)) を介して RNa s e Lの活性化が 起こり、 細胞内の RNAの非特異的な分解が惹起される。 これらの非特異的な反 応のために、 標的遺伝子の特異的反応が隠蔽されてしまう。 従って哺乳類動物、 または該動物由来の細胞、 あるいは組織を被導入体として用いる場合には 15〜 3 Obp、 好ましくは 1 9〜22 bp, 最も好ましくは 21 bpの 2本鎖ポリヌクレオ チドを用いることが好ましい。 2本鎖ポリヌクレオチドはその全体が 2本鎖であ る必要はなく、 5, または 3, 末端が一部突出したものも含むが、 3' 末端が 2 塩基突出したものを用いることが好ましい。  Here, the target gene may be any gene as long as it is the DNA of the present invention. A double-stranded RNA consisting of a sequence substantially identical to at least a part of the base sequence of these DNAs (hereinafter sometimes referred to as “double-stranded polynucleotide”) is defined as the base sequence of the target gene. Of these, any portion may have a sequence substantially identical to a sequence of 15 bp or more. Here, “substantially identical” means that the sequence has 80% or more homology with the sequence of the target gene. The nucleotide length may be any length from 15 bp to the full length of the open reading frame (ORF) of the target gene, but a length of about 15 to 50 Obp is preferably used. However, it is known that mammalian-derived cells have a signaling system that activates in response to long double-stranded RNA of 3 Obp or more. This is called the interferon reaction (Mareus, PI, et al., Interferon, 5, 115-180 (1983)), and when the double-stranded RNA enters the cell, PKR (dsRNA-responsive protein) kinase: The translation initiation of many genes is non-specifically inhibited via Bass, BL, Nature, 411, 428-429 (2001)), and at the same time, 2 ', 5, oligoadenylate synthetase (Bass, BL, Nature) , 411, 428-429 (2001)), which activates RNase L and causes nonspecific degradation of intracellular RNA. These non-specific reactions mask the specific response of the target gene. Therefore, when a mammal, or a cell or tissue derived from the animal is used as a recipient, a double-stranded polynucleotide of 15 to 3 Obp, preferably 19 to 22 bp, and most preferably 21 bp may be used. preferable. The double-stranded polynucleotide does not need to be entirely double-stranded, and includes those having a partially protruding 5, or 3, terminal, but preferably those having a 3'-terminal protruding 2 bases.
2本鎖ポリヌクレオチドは相捕 1·生を有する 2本鎖のポリヌクレオチドを意味す るが、 自己相補性を有する 1本鎖ポリヌクレオチドが自己アニーリングしたもの でもよレ、。 自己相補性を有する 1本鎖ポリヌクレオチドとしては、 例えば、 逆方 向反復配列を有するもの等が挙げられる。 2本鎖ポリヌクレオチドの調製方法としては、 特に制限はないが、 それ自体既 知の化学合成方法を用いることが好ましい。 化学合成は、 相補 1"生を有する 1本鎖 ポリヌクレオチドを別個に合成し、 これを適当な方法で会合させることにより 2 本鎖とすることができる。 会合の方法として具体的には、 例えば、 合成した 1本 鎖ポリヌクレオチドを混合し、 2本鎖が解離する温度にまで加熱し、 その後徐々 に冷却する方法等が挙げられる。 会合した 2本鎖ポリヌクレオチドは、 ァガロー スゲル等を用いて確認し、 残存する 1本鎖ポリヌクレオチドを適当な酵素により 分解する等して除去する。 The double-stranded polynucleotide means a double-stranded polynucleotide having a phase difference, but may be a self-annealed single-stranded polynucleotide having self-complementarity. Examples of the single-stranded polynucleotide having self-complementarity include those having an inverted repeat sequence. The method for preparing the double-stranded polynucleotide is not particularly limited, but it is preferable to use a chemical synthesis method known per se. In chemical synthesis, a single-stranded polynucleotide having a complementary 1 "molecule can be separately synthesized, and this can be combined by an appropriate method to form a double-stranded polynucleotide. The synthesized single-stranded polynucleotide is mixed, heated to a temperature at which the double-strand is dissociated, and then gradually cooled, etc. The associated double-stranded polynucleotide is obtained by using an agarose gel or the like. Check and remove the remaining single-stranded polynucleotide by decomposing it with an appropriate enzyme.
このようにして調製した 2本鎖ポリヌクレオチドを導入する被導入体としては、 標的遺伝子がその細胞内で R N Aに転写、 またはタンパク質に翻訳を受け得るも のであれば如何なるものであってもよいが、具体的には、植物、動物、原生動物、 ウィルス、 バクテリア、 または真菌種に属するものが挙げちれる。 植物は単子葉 植物、 双子葉植物または裸子植物であってよく、 動物は、 脊椎動物または無脊椎 動物であってよい。好ましい微生物は、農業または工業で使用されるものであり、 そして植物または動物に対して病原性のものである。 真菌には、 カビ及び酵母形 態両方での生物体が含まれる。 脊椎動物の例には、 魚類、 ゥシ、 ャギ、 ブタ、 ヒ ッジ、 ハムスター、 マウス、 ラット及ぴヒトを含む哺乳動物が含まれ、 無脊椎動 物には、 線虫類及ぴ他の虫類、 キイ口ショウジヨウバエ (Drosophila) 、 及ぴ他 の昆虫が含まれる。 好ましくは、 細胞は脊椎動物細胞である。  The transfectant into which the double-stranded polynucleotide prepared in this manner is introduced may be any as long as the target gene can be transcribed into RNA or translated into protein in the cell. Specific examples include those belonging to plant, animal, protozoan, virus, bacterial, or fungal species. The plant may be a monocotyledonous, dicotyledonous or gymnosperm, and the animal may be a vertebrate or invertebrate. Preferred microorganisms are those used in agriculture or industry, and are pathogenic to plants or animals. Fungi include organisms in both mold and yeast forms. Examples of vertebrates include mammals, including fish, sea lions, goats, pigs, sheep, hamsters, mice, rats and humans, and invertebrates include nematodes and others. Reptiles, Drosophila, and other insects. Preferably, the cells are vertebrate cells.
被導入体は、 細胞、 組織、 あるいは個体を意味する。 ここで細胞とは、 生殖系 列または体性、 分化全能、 または多分化能、 分割または非分割、 実質組織または 上皮、 不滅化したものまたは形質転換したもの等からであってよい。 細胞は、 配 偶子または胚であってよく、 胚の場合、 単一細胞胚または構成性細胞、 または多 重細胞胚からの細胞であり、 胎児組織を含む。 さらには、 幹細胞のような未分化 細胞、 または胎児組織を含む器官または組織の細胞からのような分化細胞、 また は生物内に存在する任意の他の細胞であってよい。 分化している細胞型には、 脂 肪細胞、 繊維芽細胞、 筋細胞、 心筋細胞、 内皮細胞、 神経細胞、 グリア、 血液細 胞、 巨核球、 リンパ球、 マクロファージ、 好中球、 好酸球、 好塩基球、 マス ト細 胞、 白血球、 顆粒球、 ケラチン生成細胞、 軟骨細胞、 骨芽細胞、 破骨細胞、 肝細 胞及ぴ内分泌腺または外分泌腺の細胞が含まれる。 The transductant means a cell, tissue, or individual. Here, the cell may be from a germ line or somatic, totipotent or pluripotent, divided or undivided, parenchymal or epithelial, immortalized or transformed, and the like. The cells may be gametes or embryos, in the case of embryos, single cell embryos or constitutive cells, or cells from multicellular embryos, including fetal tissue. Further, they may be undifferentiated cells, such as stem cells, or differentiated cells, such as from cells of an organ or tissue, including fetal tissue, or any other cells present in an organism. Differentiating cell types include fat cells, fibroblasts, muscle cells, cardiomyocytes, endothelial cells, nerve cells, glia, blood cells Vesicles, megakaryocytes, lymphocytes, macrophages, neutrophils, eosinophils, basophils, mast cells, leukocytes, granulocytes, keratinocytes, chondrocytes, osteoblasts, osteoclasts, liver cells And endocrine or exocrine cells.
被導入体への 2本鎖ポリヌクレオチドの導入法としては、 被導入体が細胞、 あ るいは組織の場合は、カルシウムフォスフエ一ト法、エレクトロポレーシヨン法、 リポフエクシヨン法、 ウィルス感染、 2本鎖ポリヌクレオチド溶液への浸漬、 あ るいは形質転換法等が用いられる。 また、 胚に導入する方法としては、 マイクロ インジェクション、 エレクト口ポレーシヨン法、 あるいはウイスル感染等が挙げ られる。 被導入体が植物の場合には、 植物体の体腔または間質細胞等への注入ま たは灌流、 あるいは噴霧による方法が用いられる。 また、 動物個体の場合には、 経口、 局所、 非経口 (皮下、 筋肉内及び静脈内投与を含む) 、 経膣、 経直腸、 経 鼻、 経眼、 腹膜内投与等によって全身的に導入する方法、 あるいはエレク トロボ レーシヨン法やウィルス感染等が用いられる。 経口導入のための方法には、 2本 鎖ポリヌクレオチドを生物の食物と直接混合することができる。 さらに、 個体に 導入する場合には、 例えば埋め込み長期放出製剤等として投与することや、 2本 鎖ポリヌクレオチドを導入した導入体を摂取させることにより行うこともできる。 導入する 2本鎖ポリヌクレオチドの量は、 導入体や、 標的遺伝子によつて適宜 選択することができるが、 細胞あたり少なくとも 1コピー導入されるに充分量を 導入することが好ましい。 具体的には、 例えば、 被導入体がヒト培養細胞で、 力 ルシゥムフォスフエ一ト法により 2本鎖ポリヌクレオチドを導入する場合、 0 . 1〜1 0 0 O nMが好ましい。  Methods for introducing a double-stranded polynucleotide into a recipient include, when the recipient is a cell or a tissue, a calcium phosphate method, an electroporation method, a lipofection method, a viral infection, Immersion in a single-stranded polynucleotide solution or a transformation method is used. Examples of the method for introduction into an embryo include microinjection, electoral poration, and virus infection. When the recipient is a plant, a method of injecting or perfusing the plant into the body cavity or stromal cells, or spraying is used. In the case of an individual animal, it is introduced systemically by oral, topical, parenteral (including subcutaneous, intramuscular and intravenous administration), vaginal, rectal, nasal, ophthalmic, intraperitoneal administration, etc. For example, the electrophoresis method or virus infection may be used. For methods for oral introduction, the double-stranded polynucleotide can be mixed directly with the food of the organism. Furthermore, when introduced into an individual, it can be administered, for example, by administration as an implanted long-term release preparation or the like, or by ingesting an introduced body into which a double-stranded polynucleotide has been introduced. The amount of the double-stranded polynucleotide to be introduced can be appropriately selected depending on the transductant and the target gene, but it is preferable to introduce an amount sufficient to introduce at least one copy per cell. Specifically, for example, when the transfectant is a cultured human cell and a double-stranded polynucleotide is introduced by a calcium phosphate method, 0.1 to 100 OnM is preferable.
R N Aインターフェアレンスによる本発明の遺伝子の導入体内での発現抑制に より、 本発明の遺伝子がコードするタンパク質の機能の確認、 あるいは新たな機 能の解析等を行うことができる。  By suppressing the expression of the gene of the present invention in the transfected body by the RNA interference, it is possible to confirm the function of the protein encoded by the gene of the present invention or to analyze a new function.
( 4 ) 本発明のタンパク質に特異的に結合する抗体  (4) an antibody that specifically binds to the protein of the present invention
本発明のタンパク質と特異的に結合する抗体の調製方法としては、 通常用いら れる公知の方法を用いることができ、 抗原として用いられるポリぺプチドについ ても、 公知の方法に従って抗原性が高くェピトープ (抗原決定基) として適した 配列を選択して用いることができる。 ェピトープの選択方法としては、 例えばAs a method for preparing an antibody that specifically binds to the protein of the present invention, a commonly used known method can be used. For the polypeptide used as an antigen, Even in this case, a sequence having high antigenicity and suitable as an epitope (antigenic determinant) can be selected and used according to a known method. As a method of selecting the epitope, for example,
Epitope Adviser (富士通九州システムエンジニアリング社製) 等の市販のソフト ウェアを用いることができる。 Commercial software such as Epitope Adviser (manufactured by Fujitsu Kyushu System Engineering Co., Ltd.) can be used.
上記の抗原として用いるポリべプチドは、 公知の方法に従って合成した合成ぺ プチドでも、 また本発明のタンパク質そのものを用いることもできる。 抗原とな るポリペプチドは、 公知の方法に従って適当な溶液等に調製して、 哺乳動物、 例 えば、 ゥサギ、 マウス、 ラット等に免疫を行えばよいが、 安定的な免疫を行った り抗体価を高めるために抗原ぺプチドを適当なキャリアタンパク質とのコンジュ ゲートにして用いたり、 アジュバント等を加えて免疫を行うのが好ましい。  As the polypeptide used as the above antigen, a synthetic peptide synthesized according to a known method, or the protein of the present invention itself can be used. A polypeptide serving as an antigen may be prepared in an appropriate solution or the like according to a known method and immunized to a mammal, for example, a heron, a mouse, a rat, or the like. In order to increase the titer, it is preferable to use the antigen peptide in the form of a conjugate with an appropriate carrier protein, or to carry out immunization by adding an adjuvant or the like.
免疫に際しての抗原の投与経路は特に限定されず、 例えば皮下、 腹腔内、 静脈 内、あるいは筋肉内等のいずれの経路を用いてもよレ、。具体的には、例えば BALB/c マウスに抗原ポリぺプチドを数日〜数週間おきに数回接種する方法等が用いられ る。 また、 抗原の摂取量としては、 抗原がポリペプチドの場合 0 . 3〜0 . 5 m g Z l回程度が好ましいが、 ポリペプチドの種類、 また免疫する動物種によっては 適宜調節される。  The route of administration of the antigen upon immunization is not particularly limited. For example, any route such as subcutaneous, intraperitoneal, intravenous, or intramuscular route may be used. Specifically, for example, a method of inoculating a BALB / c mouse several times every several days to several weeks with an antigen polypeptide is used. The antigen intake is preferably about 0.3 to 0.5 mg Zl times when the antigen is a polypeptide, but is appropriately adjusted depending on the type of the polypeptide and the animal species to be immunized.
免疫後、適宜試験的に採血を行って固相酵素免疫検定法(以下、 これを 「ELISA 法」 と称することがある) やウェスタンブロッテイング等の方法で抗体価の上昇 を確認し、 十分に抗体価の上昇した動物から採血を行う。 これに抗体の調製に用 いられる適当な処理を行えばポリク口ーナル抗体を得ることができる。 具体的に は、 例えば、 公知の方法に従い血清から抗体成分を精製した精製抗体を取得する 方法等が挙げられる。抗体成分の精製は、遠析、イオン交換ク口マトグラフィー、 ァフィ二ティーク口マトグラフィ一等の方法を用いることができる。  After immunization, test blood is collected as appropriate, and a rise in antibody titer is confirmed by enzyme-linked immunosorbent assay (hereinafter sometimes referred to as “ELISA”) or Western blotting. Blood is collected from animals with elevated antibody titers. By subjecting this to an appropriate treatment used for the preparation of the antibody, a polyclonal antibody can be obtained. Specifically, for example, a method of obtaining a purified antibody obtained by purifying an antibody component from serum according to a known method, and the like can be mentioned. The antibody component can be purified by a method such as iontophoresis, ion exchange chromatography, affinity chromatography, and the like.
また、 該動物の脾臓細胞とミエローマ細胞とを用いて公知の方法に従って融合 させたハイプリ ドーマを用いる (Milstein, et al. , ature, 256, 495 (1975) ) こと によりモノクローナル抗体を作製することもできる。 モノクローナル抗体は、 例 えば以下の方法により取得することができる。 まず、 上記した抗原の免疫により抗体価の高まった動物から抗体産生細胞を取 得する。 抗体産生細胞は、 形質細胞、 及ぴその前駆細胞であるリンパ球であり、 これは個体の何れから取得してもよいが、 好ましくは脾臓、 リンパ節、 末梢血等 から取得する。 これらの細胞と融合させるミエローマとしては、 一般的にはマウ スから得られた株化細胞、 例えば 8—ァザグァニン耐性マゥス (BALB/c由来等) ミエローマ細胞株である P3X63- Ag8. 653 (ATCC: CRL-1580) 、 P3-NSl/lAg4. 1 (理研 セルバンク: RCB0095)等が好ましく用いられる。 細胞の融合は、抗体産生細胞と ミエローマ細胞を適当な割合で混合し、 適当な細胞融合培地、 例えば RPMI1640や イスコフ改変ダルベッコ培地 (IMM) 、 あるいはダルベッコ改変イーグル培地Alternatively, a monoclonal antibody can be prepared by using a hybridoma fused with spleen cells and myeloma cells of the animal according to a known method (Milstein, et al., Ature, 256, 495 (1975)). it can. A monoclonal antibody can be obtained, for example, by the following method. First, antibody-producing cells are obtained from an animal whose antibody titer has been raised by immunization with the above-mentioned antigen. The antibody-producing cells are plasma cells and lymphocytes which are precursor cells thereof, which may be obtained from any individual, but preferably obtained from spleen, lymph nodes, peripheral blood and the like. The myeloma to be fused with these cells is generally a cell line obtained from a mouse, for example, an 8-azaguanine-resistant mouse (such as BALB / c-derived) myeloma cell line, P3X63-Ag8.65 (ATCC: CRL-1580), P3-NSl / lAg4.1 (RIKEN cell bank: RCB0095) and the like are preferably used. For cell fusion, antibody-producing cells and myeloma cells are mixed at an appropriate ratio, and an appropriate cell fusion medium such as RPMI1640, Iskov's modified Dulbecco's medium (IMM), or Dulbecco's modified Eagle's medium is used.
(DMEM)等に、 5 0 %ポリエチレングリコール (PEG) を溶解したもの等を用いる ことにより行うことができる。 また電気融合法 (U. Zimmer- mann. et al. , Naturwissensc aften, 68, 577 (1981) ) によっても行うことができる。 (DMEM) or the like in which 50% polyethylene glycol (PEG) is dissolved. It can also be carried out by an electrofusion method (U. Zimmermann. Et al., Naturwissenscaften, 68, 577 (1981)).
ハイプリ ドーマは、 用いたミエローマ細胞株が 8—ァザグァニン耐性株である ことを利用して適量のヒポキサンチン'アミノプテリン'チミジン (HAT)液を含 む正常培地 (HAT培地) 中で 5 % C O 2、 3 7 °Cで適当時間培養することにより選 択することができる。 この選択方法は用いるミエローマ細胞株によって適宜選択 して用いることができる。 選択されたハイプリ ドーマが産生する抗体の抗体価を 上記した方法により解析し、 抗体価の高い抗体を産生するハイプリ ドーマを限界 希釈法等により分離し、 分離した融合細胞を適当な培地で培養して得られる培養 上清から硫安分画、 ァフィ-テイクロマトググラフィ一等の適当な方法により精 製してモノクローナル抗体を得ることができる。 また精製には市販のモノクロー ナル抗体精製キットを用いることもできる。 さらには、 免疫した動物と同系統の 動物、 またはヌードマウス等の腹腔内で上記で得られた抗体産生ハイプリ ドーマ を増殖させることにより、 本発明のモノクローナル抗体を大量に含む腹水を得る こともできる。 High Priestess dormer is myeloma cell line 8 Azaguanin resistance by utilizing the fact that a strain suitable amount of hypoxanthine 'aminopterin' thymidine (HAT) solution including normal medium (HAT medium) in 5% CO 2 using , At 37 ° C for an appropriate time. This selection method can be appropriately selected and used depending on the myeloma cell line to be used. The antibody titer of the antibody produced by the selected hybridoma is analyzed by the method described above, the hybridoma producing the antibody with a high antibody titer is separated by a limiting dilution method, etc., and the separated fused cells are cultured in an appropriate medium. A monoclonal antibody can be obtained from the culture supernatant obtained by purification by an appropriate method such as ammonium sulfate fractionation, affinity chromatography, etc. A commercially available monoclonal antibody purification kit can also be used for purification. Furthermore, ascites containing a large amount of the monoclonal antibody of the present invention can also be obtained by growing the antibody-producing hybridoma obtained above in the abdominal cavity of an animal of the same strain as the immunized animal or a nude mouse. .
また、 本発明のタンパク質としてヒト由来のものを取得した場合には、 かかる ポリペプチド、 あるいはその部分ペプチドを抗原として、 ヒト末梢血リンパ球を 移植した Severe combined immune deficiency (SCID) マウスに上記した方法と同 様にして免疫し、 該免疫動物の抗体産生細胞とヒトのミエローマ細胞とのハイブ リ ドーマを作製することによってもヒト型抗体を作製することができる(Mosier, D. E. , et al. ature, 335, 256-259 (1988); Duchosal, M. A., et al. , Nature, 355, 258-262 (1992) ) 。 When a human-derived protein is obtained as the protein of the present invention, human peripheral blood lymphocytes can be obtained by using the polypeptide or a partial peptide thereof as an antigen. A humanized antibody can also be prepared by immunizing transplanted Severe combined immune deficiency (SCID) mice in the same manner as described above, and preparing a hybridoma between antibody-producing cells of the immunized animal and human myeloma cells. (Mosier, DE, et al. Ature, 335, 256-259 (1988); Duchosal, MA, et al., Nature, 355, 258-262 (1992)).
また、取得したヒト型抗体を産生するハイプリ ドーマから RNAを抽出し、 目的の ヒト型抗体をコードする遺伝子をクローユングして、 この遺伝子を適当なベクタ 一に挿入し、 これを適当な宿主に導入して発現させることにより、 さらに大量に ヒト型抗体を作製することができる。 ここで、 抗原との結合性の低い抗体は、 そ れ自体既知の進化工学的手法を用レ、ることによりさらに結合性の高い抗体として 取得することもできる。 一価性抗体等の部分フラグメントは、 例えばパパイン等 を用いて Fab部分と Fc部分を切断し、 ァフィ二ティカラム等を用いて Fab部分を回 収することによつて作製することができる。  In addition, RNA is extracted from the obtained hybridoma producing the human antibody, the gene encoding the desired human antibody is cloned, this gene is inserted into an appropriate vector, and this is introduced into an appropriate host. Thus, human antibodies can be produced in larger quantities. Here, an antibody having a low binding property to an antigen can be obtained as an antibody having a higher binding property by using an evolutionary engineering technique known per se. A partial fragment such as a monovalent antibody can be prepared by, for example, cleaving the Fab portion and the Fc portion using papain or the like, and recovering the Fab portion using an affinity column or the like.
かくして得られる本発明のタンパク質と特異的に結合する抗体は、 本発明のタ ンパク質に特異的に結合することによって該タンパク質が有する活性を阻害する 中和抗体として用いることもできる。 タンパク質が有する活性を阻害するものの 選択方法としては特に制限はないが、 例えば、 上記 (2 ) で作製した D N A導入 体に抗体を接触させ、 導入体中の目的タンパク質の機能が阻害されるか否かを解 析する方法等が挙げられる。  The antibody that specifically binds to the protein of the present invention thus obtained can also be used as a neutralizing antibody that specifically binds to the protein of the present invention and thereby inhibits the activity of the protein. There is no particular limitation on the method for selecting those that inhibit the activity of the protein. For example, contacting the antibody with the DNA transfectant prepared in (2) above to determine whether the function of the target protein in the transfectant is inhibited And a method of analyzing the above.
かかる中和抗体は、 臨床へ応用するに際し、 上記有効成分を単独で用いること も可能であるが、 薬学的に許容され得る担体と配合して医薬品組成物として用い ることもできる。 この時の有効成分の担体に対する割合は、 1〜9 0重量%の間 で変動され得る。 また、 力かる薬剤は種々の形態で投与することができ、 それら の投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あるいはシロップ剤等 による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐薬剤等による非経口 投与を挙げることができる。 また、 その投与量は、 症状、 年齢、 体重等によって 適宜選択することができる。 ( 5 ) 本発明のタンパク質が有する活性の確認おょぴ機能の解析 本発明のタンパク質は、 これを上記 (2) に記載のとおり組み換えタンパク質 として調製し、 この機能を解析することにより上記 (1) で推測した活性を有し ていることを確認することができる。 さらに上記 (4) のとおりに作製した抗体 等との組み合わせにより解析することもできる。 Such a neutralizing antibody can be used alone for the clinical application, but can also be used as a pharmaceutical composition by mixing with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. In addition, a powerful drug can be administered in various forms, such as tablets, capsules, granules, powders, or syrups, orally, or injections, drops, ribosomes. And parenteral administration using suppositories and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like. (5) Analysis of the activity of the protein of the present invention Analysis of the function The protein of the present invention is prepared as a recombinant protein as described in the above (2) and analyzed for this function to obtain the above (1) ) Can be confirmed to have the activity estimated. Furthermore, analysis can also be performed in combination with the antibody or the like prepared as described in (4) above.
本発明のタンパク質が有する活性は、 例えば、 次の通り検定することができる 、これらの方法に限定されるものではない。また、これらの機能アツセィ系は、 後述する本発明のタンパク質の機能賦活物資や機能阻害物質のスクリーニングや 本発明のタンパク質の発現調節物質のスクリーニングにも用いることができる。  The activity of the protein of the present invention can be assayed, for example, as follows, but is not limited to these methods. In addition, these functional assays can be used for screening of a function activator or a function inhibitor of the protein of the present invention and a screening of a protein expression regulator of the present invention, which will be described later.
(5- 1) I L一 1様活性  (5-1) I L-like activity
1 ー1様活性は、 例えば、 LAF (リンパ球活性化因子) 活性測定法により 解析することができる。 具体的には、 例えば、 本発明のタンパク質、 あるいはこ れを活性化させるかも知れない限定分解酵素、 例えばカスパーゼ 1等で処理した タンパク質を、 5%牛胎児血清を含む RPM 1 1640培地にて適当な濃度に希 釈する。 その希釈液の 50μ1を 96穴組織培養用マイクロプレートのゥエルに入れ、 これに 50// g/ml濃度のフイトへマグルチニン液の 50 μ1 を添加する。 更に、 C 3 H/He系マウス (6〜: 10週齢) から採取した胸腺細胞の懸濁液(1 X107個/ ml) 100 μ ΐ を添加し、 37°Cで 5%炭酸ガス存在下で 2日間培養後、 3Hチミジン 1 /iCiを添加し、 更に 18時間培養する。 細胞をセルハーべスターにより、 ガラス繊 維製フィルター上に捕集し、細胞中に取り込まれた 3Hチミジン量(cpm) を計測 する。 検液の代わりに培地を添カ卩した測定系における 3Hチミジンの取り込み量 を基準として、 3Hチミジン取り込み量の増加から LAF活性を評価することが できる。 The 1-1-like activity can be analyzed by, for example, an LAF (lymphocyte activating factor) activity measuring method. Specifically, for example, the protein of the present invention or a restriction enzyme that may activate the protein, such as a protein treated with caspase 1 or the like, is appropriately treated in RPM11640 medium containing 5% fetal bovine serum. Dilute to an appropriate concentration. Transfer 50 µl of the diluted solution to the wells of a 96-well tissue culture microplate, and add 50 µl of the maglutinin solution to a 50 // g / ml phyte solution. Further, 100 μΐ of a suspension of thymocytes (1 × 10 7 cells / ml) collected from C 3 H / He mice (6 to 10 weeks old) was added, and 5% CO 2 gas was added at 37 ° C. After cultivation for 2 days, add 3H-thymidine 1 / iCi and culture for an additional 18 hours. Cells are collected on a glass fiber filter using a cell harvester, and the amount of 3H-thymidine (cpm) incorporated into the cells is measured. LAF activity can be evaluated based on the increase in 3H-thymidine incorporation based on the amount of 3H-thymidine incorporation in a measurement system in which a medium is added instead of a test solution.
また、 本発明のタンパク質について、 I L—1受容体ファミリーとの結合性を 指標としてその活性を解析する方法としては、 例えば、 本発明のタンパク質ある いはこれを活性化させるかも知れない限定分解酵素、 例えばカスパーゼ 1などで 処理したタンパク質と、 I L一 1受容体あるいはそのアナログ受容体 IL一 18受容 体、 ST2/T1などとの結合は、 標識したリガンドを用いた通常の結合実験や表面プ ラズモン共鳴を用いた試験で検討することができる。 In addition, methods for analyzing the activity of the protein of the present invention using the binding property to the IL-1 receptor family as an index include, for example, the protein of the present invention or a restriction enzyme that may activate the protein. For example, proteins treated with caspase 1 etc. and IL-11 receptor or its analog receptor IL-18 receptor Binding to the body, ST2 / T1, etc. can be examined by ordinary binding experiments using labeled ligands or tests using surface plasmon resonance.
(5-2) 性腺刺激ホルモン活性  (5-2) Gonadotropin activity
性腺刺激ホルモン活性は、 例えば、 以下の様にして検定することができる。 本発明のタンパク質のゴナドトロピン等の性腺刺激ホルモン受容体への相互作 用活性を指標としてその活性を解析する方法としては、 例えば、 ゴナドトロピン αサブュニット遺伝子とともにトランスフエクションして得られたへテ口ダイマ 一と、 ゴナドトロピン受容体あるいはそのアナログ受容体などとの結合は、 標識 したリガンドを用いた通常の結合実験や表面プラズモン共鳴を用いた試験で検討 することができる。 Gonadotropin activity can be assayed, for example, as follows. A method for analyzing the activity of the protein of the present invention using the activity of interacting with a gonadotropin receptor such as gonadotropin as an index includes, for example, Hete dimer obtained by transfection with the gonadotropin α- subunit gene. First, binding to the gonadotropin receptor or its analog receptor can be examined by ordinary binding experiments using labeled ligands or tests using surface plasmon resonance.
(5-3) タンパク質相互作用活性  (5-3) Protein interaction activity
タンパク質一タンパク質結合活性の確認は、 例えば in vitro translationとタ ンパク質一タンパク質結合ァッセィによつて次の通り行うことができる  Confirmation of protein-protein binding activity can be performed, for example, by in vitro translation and protein-protein binding assay as follows.
(Journal of Biological Chemistry 275, 7894—7901 (2000) )0 (Journal of Biological Chemistry 275, 7894—7901 (2000)) 0
結合活性を測定しょうとする該タンパク質を Aとし、 その相手を Bとする。 A の完全長 c DNAと Bの完全長 c DNAを含むプラスミド p GEM— Aとプラス ミド pGST— B (Trends Biochem. Sci. 21, 208-214 (1996)) を、 Promega社 TNT SP6 polymerase— coupled reticulocyte lysate systemによる in vitro transcriptionと translationに用 ヽる。 そのとき、 [35S] methionine (Amersham社) 40 μαを全容量 50 μ 1に加えることにより、 放射性物質標識することができる。 翻訳産物は in vitroタンパク質一タンパク質結合に供する。 In vitro結合に関 しては、 例えば、 50μ1の [35S]methionineラベルしたタンパク質 Aを、 GSTと Bの 融合タンパク質 GST-B 4 - 5 を含むグルタチオン樹脂でインキュベートする。 反応は、 binding buffer (150 mM NaCl, 0.1% Nonidet P- 40, 50 mM Hepes (pH 7.5))、 lmMPMSF、 タンパク質分解酵素阻害剤を用いて、 4 °C、 4時間、 緩やかに 揺することで行うことができる。 The protein whose binding activity is to be measured is A, and its partner is B. Plasmid p GEM—A and plasmid pGST—B (Trends Biochem. Sci. 21, 208-214 (1996)) containing the full-length cDNA of A and B, and TNT SP6 polymerase—coupled by Promega Used for in vitro transcription and translation by reticulocyte lysate system. At this time, radioactive substance labeling can be performed by adding [ 35 S] methionine (Amersham) 40 μα to a total volume of 50 μl. The translation product is subjected to in vitro protein-protein binding. For in vitro binding, for example, 50 μl of [ 35 S] methionine-labeled protein A is incubated with a glutathione resin containing the GST-B fusion protein GST-B4-5. The reaction is carried out using a binding buffer (150 mM NaCl, 0.1% Nonidet P-40, 50 mM Hepes (pH 7.5)), lmMPMSF, and protease inhibitor with gentle rocking at 4 ° C for 4 hours. be able to.
樹脂表面に形成されたタンパク質一タンパク質複合体は、 4°Cで、 14,000rpml 分間超遠心分離し、 樹脂は 4 °Cで 1 mlの cold binding bufferで 5回洗浄する。 樹 脂に結合した GST融合タンパク質 Bと結合したタンパク質 Aは、 SDS-12% polyacrylamide gel上で分離され, gelを乾燥した後、 autoradiographyを実施す ることにより、 タンパク質 Aと Bの結合活性を検討することができる。 The protein-protein complex formed on the resin surface is 14,000 rpm at 4 ° C. Centrifuge for 1 min and wash the resin 5 times with 1 ml cold binding buffer at 4 ° C. Protein A bound to GST fusion protein B bound to resin is separated on SDS-12% polyacrylamide gel, and after drying the gel, autoradiography is performed to examine the binding activity between protein A and B can do.
( 5 - 4 ) R I M結合活性  (5-4) R I M binding activity
先ず、本発明において、 R I M結合活性を有するタンパク質とは、 Rab3Aの標的 タンパクである RIM (Rab3- interacting molecule) に結合し得る能力を有するタ ンパク質、 即ち R I M結合タンパク質 (RIM- binding protein) を意味する。  First, in the present invention, a protein having RIM binding activity refers to a protein having an ability to bind to RIM (Rab3- interacting molecule) which is a target protein of Rab3A, that is, a RIM-binding protein (RIM-binding protein). means.
低分子量 GTP結合タンパク質の一つである Rabフアミリ一タンパク質は、 真核細 胞で細胞内小胞輸送を制御している重要な因子である。特に、 Rab3Aは脳内で大量 に発現してシナプス小胞に濃縮されており、 神経伝達物質の放出をはじめとする 調節性分泌に関与している。 Rab3Aの標的タンパクである RIM (Rab3 - interacting molecule) は千数百ァミノ酸からなる巨大分子であり、 rabphilinと同様に N端側 に zinc finger domainを、 C端側に 2つの C2 domainを持ち、 さらに中央部には PDZ domain構造 (シグナル分子の細胞内膜移行に関与する) を有し、 シナプスのァク ティブゾーンに局在している。 RIMの詳細な機能は不明であるが、シナプス小胞の シナプス アクティブゾーンへの結合や神経伝達物質の放出に関与するのではな いかと考えられている。最近、 RIM結合タンパク質をコードする遺伝子がクロー二 ングされたが (J. Biol. Chem. 275, 26 (2000) 20033-20044) 、 3つの SH3 domain と 3つの fibronectin type III domainを有しており、 SH3 domainを介して RIMに 結合している。 また、 シナプスアクティブゾーンのマトリックスに付着し神経伝 達物質の放出を制御しているのではないかと考えられている。  Rab family protein, one of the small GTP-binding proteins, is an important factor that controls intracellular vesicle trafficking in eukaryotic cells. In particular, Rab3A is abundantly expressed in the brain and concentrated in synaptic vesicles, and is involved in regulatory secretion including neurotransmitter release. RIM (Rab3-interacting molecule), a target protein of Rab3A, is a macromolecule consisting of several hundred amino acids, and has a zinc finger domain on the N-terminal side and two C2 domains on the C-terminal side, like rabphilin. Furthermore, it has a PDZ domain structure (involved in the translocation of signal molecules into the intracellular membrane) in the center, and is located in the active zone of the synapse. Although the detailed function of RIM is unknown, it is thought to be involved in synaptic vesicle binding to the synaptic active zone and in the release of neurotransmitters. Recently, the gene encoding the RIM-binding protein has been cloned (J. Biol. Chem. 275, 26 (2000) 20033-20044), but has three SH3 domains and three fibronectin type III domains. , And is linked to RIM via the SH3 domain. It is also thought that they attach to the matrix of the synaptic active zone and control the release of neurotransmitters.
本発明のタンパク質は、 RIM結合タンパク質 2とそれぞれ 7 2 %および 7 5 %の. 相同性を有することから、 RIM結合タンパク質フアミリー分子と思われる。  The protein of the present invention has 72% and 75% homology with RIM binding protein 2, respectively. Therefore, it is considered to be a RIM binding protein family molecule.
本発明のタンパク質と RIMとの結合は、それ自体既知の方法、例えば以下の様にBinding of the protein of the present invention to RIM can be performed by a method known per se, for example, as follows.
GSTプルダウンアツセィを用いて確認することができる (J. Biol. Chem. 275, 26 (2000) 20033-20044)。 先ずラット脳を 0. 5 °/。 TritonX - 100, 1 mM EDTA, 0. l M NaCl, protease inhibitors, 及ぴ 50 mM Hepes- NaOH (pH7. 4)を含むサンプルバッファー を用いてホモジナイズし、 遠心により全脳画分を得る。 本発明のタンパク質の N 末端または C末端に GSTを連結させた融合タンパク質をグルタチオンァガロースビ ーズに結合させ、 これに RIMを可溶化させるため SDS処理を施した脳ホモジネート を加え、 4°Cにてー晚インキュベーションを行う。サンプノレバッファーでビーズを 洗浄し非特異的吸着物質を除いた後、ビーズ結合物を回収し、 SDSゲル電気泳動後、 抗 RIM抗体を用いて免疫プロッティングを行うことにより、本発明のタンパク質と RIMとの特異的結合能の有無を検討することができる。 It can be confirmed using a GST pull-down assay (J. Biol. Chem. 275, 26 (2000) 20033-20044). First, rat brain was 0.5 ° /. TritonX-100, 1 mM EDTA, 0.l M NaCl, Homogenize using a sample buffer containing protease inhibitors and 50 mM Hepes-NaOH (pH 7.4), and centrifuge to obtain a whole brain fraction. A fusion protein in which GST is linked to the N-terminus or C-terminus of the protein of the present invention is bound to glutathione agarose beads, and brain homogenate that has been treated with SDS to solubilize RIM is added thereto. Perform incubation at C. After washing the beads with Sampnole buffer to remove non-specifically adsorbed substances, collecting the bound beads, performing SDS gel electrophoresis, and performing immunoblotting using an anti-RIM antibody, the protein of the present invention and The ability to specifically bind to RIM can be examined.
また、 本発明のタンパク質による神経伝達物質の遊離活性の検討は以下の様に して実施することができる。 例えば、 ヒ ト成長ホルモンをコードするベクター 1 と、 本発明のタンパクをコードする遺伝子を組み込んだベクター 2あるいは空の ベクター 2を、 PC12細胞に遺伝子導入を行レ、、 3日後に KC 1による脱分極刺激を加 え、 培地中に遊離されたヒト成長ホルモンを定量することにより神経伝達物質の 遊離活性を検討できる。  The study of the activity of releasing the neurotransmitter by the protein of the present invention can be carried out as follows. For example, a gene encoding human growth hormone 1 and a vector 2 containing a gene encoding the protein of the present invention or an empty vector 2 were transfected into PC12 cells, and three days later, KC1 was used to remove the gene. By applying polarized stimulation and quantifying the amount of human growth hormone released into the medium, the release activity of neurotransmitters can be examined.
( 5 - 5 ) アポトーシス抑制機能  (5-5) Apoptosis inhibitory function
本発明のアポトーシス抑制機能を有するタンパク質は、 Baculoviral IAP repeat-containing proteinおよび Inhibitor of apoptosis proteinと構造上類似 していることから、 上記機能 (アポトーシス抑制作用) を有する分子であること が推測された。  Since the protein having an apoptosis-suppressing function of the present invention is structurally similar to Baculoviral IAP repeat-containing protein and Inhibitor of apoptosis protein, it was presumed that it was a molecule having the above function (apoptosis-suppressing action).
アポトーシス抑制作用は、 例えば以下の方法により検証することができる (Nature 379 (1996) 349-353) 。 本発明タンパク質をコードする遺伝子を発現さ せるためのベクターとネガティブコントローノレ用のィンサートを含まないベタタ 一を、アデノゥィルス法やリボフヱクトアミン法などの定法に従い CH0細胞、 Hela 細胞、 または Rat- 1細胞などに一過性に遺伝子導入した後、 血清除去、 menadione 処理(1 Mm〜50 μ Μ)、または TNF - a処理(TNF- a 20 units/ml及び cycloheximide 30 μ g/ml) などによるアポトーシス誘導後、 1日から 3日間培養を行いトリパンブ ルー染色、 MTT染色、 または溶出 LDL活性などの測定を行い生存率を算出すること により本発明タンパク質のアポトーシス抑制活性を検討することができる。 The inhibitory effect on apoptosis can be verified, for example, by the following method (Nature 379 (1996) 349-353). A vector for expressing the gene encoding the protein of the present invention and a beta control containing no insert for a negative control were added to CH0 cells, Hela cells, or Rat-1 according to a conventional method such as the adenovirus method or the ribofectamine method. Transient gene transfer into cells, etc., apoptosis due to serum removal, menadione treatment (1 Mm-50 μ50), or TNF-a treatment (TNF-a 20 units / ml and cycloheximide 30 μg / ml) After induction, culture for 1 to 3 days, and measure viability by trypan blue staining, MTT staining, or measurement of eluted LDL activity. Thus, the apoptosis inhibitory activity of the protein of the present invention can be examined.
( 5— 6 ) ゥロモジュリン様活性  (5-6) Peromodulin-like activity
本発明のゥロモジュリン様活性を有するタンパク質は、 GPIアンカーを介して分 泌顆粒膜に結合し、 分泌顆粒の集合や分泌に関与する機能を有する糖タンパクで あることが推測される。  The protein having peromodulin-like activity of the present invention is presumed to be a glycoprotein that binds to the secretory granule membrane via a GPI anchor and has a function related to the assembly and secretion of secretory granules.
本発明のタンパク質の PI-PLCによる切断遊離活性は、 それ自体既知の方法、 例 えば以下の様に行うことで検討できる (Proc. Natl. Acad. Sci. USA 89, (1992) 1189-1193) 。  The cleavage release activity of the protein of the present invention by PI-PLC can be examined by a method known per se, for example, as follows (Proc. Natl. Acad. Sci. USA 89, (1992) 1189-1193). .
先ず、 本発明のタンパク質をコードする遺伝子を発現させるためのベクターを 構築し、 CH0細胞、 COS細胞、 脳下垂体細胞などに一過性に遺伝子導入し発現させ た細胞、 あるいは内在性に発現する組織から分泌顆粒を定法に従い抽出し、 膜画 分を得る。 次に、 膜 2 0 ^u g/mlを 50 の 20 mM MES (pH 7. 0), 80 raM KC1, 0. 05 μ g PI-PLC. 及ぴトリプシンィンヒビター (aprotinin 20 u/ml, FOY- 305 40 μ g/ml) 存在下で処理し、 遠心後の上清を電気泳動した後、 ナイロン膜に転写し、 本タン パク質に対する特異的抗体並びに 2次抗体を用いて染色することにより PI - PLCに よって切断されたことが確認できる。  First, a vector for expressing the gene encoding the protein of the present invention is constructed, and the gene is transiently introduced into and expressed in CH0 cells, COS cells, pituitary cells, or the like, or expressed endogenously. The secretory granules are extracted from the tissue according to a standard method to obtain a membrane fraction. Next, 20 ^ ug / ml of the membrane was added to 50 mM of 20 mM MES (pH 7.0), 80 raM KC1, 0.05 μg PI-PLC. And trypsin inhibitor (aprotinin 20 u / ml, FOY- 305 (40 μg / ml), centrifuged supernatant is electrophoresed, transferred to nylon membrane, and stained with a specific antibody against this protein and a secondary antibody. -It can be confirmed that the connection has been disconnected by the PLC.
次に、 本発明のタンパク質の自己集合活性を測定することもできる。 上記の方 法で得た本発明のタンパク質を以下に示すイオン濃度で室温にて 16時間インキュ ペートする。 水素イオン濃度は pH 5〜pH 8の範囲で好ましくは p H 5. 5にて、 カル シゥムイオン濃度は 0Mm〜20 mMの範囲で好ましくは 15mMにて、ナトリゥムイオン 濃度は 100 μ M〜100 mMの範囲で好ましくは 50mMにて行う。 この溶液を 220, 000xg にて 90分間遠心し、上清と沈澱物に分離しそれぞれを SDS電気泳動を行レ、、銀染色 法にて検出することにより自己集合活性を検定できる。  Next, the self-assembly activity of the protein of the present invention can also be measured. The protein of the present invention obtained by the above method is incubated at room temperature for 16 hours at the following ion concentration. The hydrogen ion concentration is in the range of pH 5 to pH 8, preferably at pH 5.5, the calcium ion concentration is in the range of 0 to 20 mM, preferably 15 mM, and the sodium ion concentration is in the range of 100 μM to 100 mM. And preferably at 50 mM. This solution is centrifuged at 220,000 × g for 90 minutes, separated into a supernatant and a precipitate, subjected to SDS electrophoresis, and detected by a silver staining method, whereby the self-assembly activity can be assayed.
( 5 - 7 ) 脂質結合活性  (5-7) Lipid binding activity
脂質結合活性は、 それ自体既知の通常用いられる方法により確認することがで きる。 例えば、 放射性物質にて標識したコレステロールエステル (C E ) 、 トリ グリセリ ド (T G) 、 またはフォスファチジルコリン (P C ) などと概タンパク 質を共存させ、 通常の結合試験で結合活性を測定することができる。 また、 概タ ンパク質をあらかじめチップに固定しておき、 C E、 T G、 または P Cなどの脂 質を添カ卩し表面プラズモン共鳴法で結合を検出することができる。 さらに、 リポ タンパク質の転送活性は、 例えば C E部分を 1 4 Cまたは 3 Hで標識したドナー リポタンパク質 (通常は H D L ) と非標識のァクセプターリポタンパク質 (通常 は V L D Lまたは L D L )とを一定の比率で混合し、これに概タンパク質を加え、 一定時間ィンキュベートした後、 へパリンマンガン沈降法または超遠心法にてド ナーリポタンパク質とァクセプターリポタンパク質を分離させ、 ドナーの放射活 性の減少またはァクセプターの放射活性の増加を指標として測定することができ る (Methods Enzymol. 129, (1986) 797-816 ) 。 The lipid binding activity can be confirmed by a commonly used method known per se. For example, cholesterol ester (CE), triglyceride (TG), or phosphatidylcholine (PC) labeled with radioactive substances The binding activity can be measured by a common binding test in the presence of the protein. In addition, proteins can be preliminarily immobilized on a chip, and lipids such as CE, TG, or PC can be added thereto, and binding can be detected by surface plasmon resonance. In addition, the transfer activity of lipoproteins can be determined, for example, by combining a donor lipoprotein (usually HDL) with a CE moiety labeled with 14 C or 3 H and an unlabeled receptor lipoprotein (usually VLDL or LDL). Mix at a ratio, add the protein to the mixture, incubate for a certain period of time, then separate donor lipoprotein and axceptor lipoprotein by heparin manganese sedimentation method or ultracentrifugation method to reduce donor radioactivity. Alternatively, it can be measured using an increase in the radioactivity of the receptor as an index (Methods Enzymol. 129, (1986) 797-816).
これらの機能ァッセィ系は、 後述する本発明のタンパク質の機能賦活物資や機 能阻害物質のスクリーニングや本発明のタンパク質の発現調節物質のスクリー二 ングにも用いることができる。  These functional assay systems can also be used for screening for a function activator or a function inhibitor of the protein of the present invention described later, and for screening of a protein expression regulator of the present invention.
本発明のタンパク質の機能解析方法として一般的には、 例えば、 (i) 各組織、 疾患、 あるいは発生段階における発現状態を比較解析する方法、 (ii) 他のタン パク質、 D N Aとの相互作用を解析する方法、 (iii)適当な細胞あるいは個体へ 導入し、 表現型の変化を解析する方法、 (iv) 適当な細胞あるいは個体において 該タンパク質の発現を阻害して表現型の変化を解析する方法などが挙げられる。 また、 このような方法によれば、 対象タンパク質に特異的な活性を多面的に解析 することができる。  Examples of the method for analyzing the function of the protein of the present invention include, for example, (i) a method for comparative analysis of the expression state in each tissue, disease, or developmental stage, and (ii) an interaction with other proteins and DNA. (Iii) a method of analyzing the phenotype by introducing the protein into an appropriate cell or individual, and (iv) analyzing the phenotypic change by inhibiting the expression of the protein in the appropriate cell or individual. And the like. Further, according to such a method, the activity specific to the target protein can be analyzed from many aspects.
上記 (i) の方法においては、 本発明のタンパク質の発現を、 m R NAレベルあ るいはタンパク質レベルで解析することができる。 m R N Aレベルで発現量を解 析する場合は、 例えば、 in situハイプリダイゼーシヨン法 (In situ  In the method (i), the expression of the protein of the present invention can be analyzed at the mRNA or protein level. When the expression level is analyzed at the mRNA level, for example, the in situ hybridization method (in situ
hybridization: Application to Developmental Biology & Medicine., Ed. by Harris, N. and Wilkinson, D. G. , Cambridge University Press (1990) ) 、 D N Aチップを利用したハイプリダイゼーション法、定量 P C R法等が用いられる。 また、 タンパク質レベルで解析する場合には、 後述する本発明のタンパク質に特 異的に結合する抗体を用いた E L I S A、 ウェスタンプロット法か組織染色法な どが挙げられる。 ここで、 解析対象タンパク質に公知のバリアントが存在する場 合には、 解析対象タンパク質をコードする c D N Aにのみ存在し、 公知のバリア ントをコードする c D NAとはハイブリダィズしないプローブを用いることが好 ましい。 定量 P C R法の場合には、 対象 c D NAと公知バリアント間で異なる長 さの増幅断片ができるプライマーを選択して行う方法 (Wong, Y. , Neuroscience Let. , 320: 141-145 (2002) ) 等が挙げられる。 また、 タンパク質レベルで解析 する場合にも、 対象タンパク質にのみ反応し、 公知のバリアントには反応しない 抗体を用いることが好ましい。 hybridization: Application to Developmental Biology & Medicine., Ed. by Harris, N. and Wilkinson, DG, Cambridge University Press (1990)), a hybridization method using a DNA chip, a quantitative PCR method, and the like. In addition, when analyzing at the protein level, the protein of the present invention described below is particularly useful. Examples include ELISA using an antibody that binds differently, Western blotting, or tissue staining. Here, if a known variant exists in the protein to be analyzed, a probe that exists only in the cDNA encoding the protein to be analyzed and does not hybridize with the cDNA encoding the known variant may be used. It is good. In the case of the quantitative PCR method, a method of selecting primers that can generate amplified fragments of different lengths between a target cDNA and a known variant (Wong, Y., Neuroscience Let., 320: 141-145 (2002)) ) And the like. Also, when analyzing at the protein level, it is preferable to use an antibody that reacts only with the target protein and does not react with a known variant.
上記 (ii) の方法においては、 本発明のタンパク質と既知のタンパク質との相 互作用の有無を調べて、 本発明のタンパク質の機能を解析することができる。 相 互作用の解析法としては、 それ自体既知の常法を用いることができるが、 具体的 には、 例えば、 酵母ツーハイブリッド法、 蛍光偏光解消法、 表面プラズモン法、 ファージディスプレイ法、 リボソ一マルディスプレイ法等が挙げられる。 該方法 においても、 解析対象タンパク質に公知のバリアントが存在する場合には、 公知 のバリアントも同様にして相互作用する物質を解析し、 対象タンパク質特異的に 相互作用する物質を同定することが好ましい。  In the above method (ii), the function of the protein of the present invention can be analyzed by examining the presence or absence of interaction between the protein of the present invention and a known protein. As a method for analyzing the interaction, a conventional method known per se can be used. Specifically, for example, yeast two-hybrid method, fluorescence depolarization method, surface plasmon method, phage display method, ribosomal method Display method and the like can be mentioned. Also in this method, when a known variant is present in the protein to be analyzed, it is preferable that the known variant is similarly analyzed for interacting substances, and a substance that specifically interacts with the target protein is identified.
上記(iii)の方法では、本発明の c D NAを導入する細胞は特に制限はないが、 ヒト培養細胞等が特に好ましく用いられる。 D N Aの細胞への導入法としては、 上記 (2 ) に記載のものが挙げられる。 さらに導入細胞の表現型としては、 細胞 の生死、 細胞の増殖速度、 細胞の分化、 細胞が神経細胞の場合には神経突起の伸 長度、 細胞内タンパク質の局在や移行など顕微鏡等で観察可能なものや、 細胞内 の特定タンパク質の発現変化など生化学的実験により解析可能なものも含む。 こ れらの表現型は、 対象タンパク質に公知のバリアントが存在する場合には、 公知 のものも同様に細胞へ導入し、 比較解析することにより、 対象タンパク質が関連 する表現型を同定することができる。 また、 本発明のタンパク質は上記したそれ ぞれの活性を有するものであることがわかっているので、 これらの活性に関連す る疾患に見られる表現型等に注目して解析することも好ましい。 In the method (iii), the cells into which the cDNA of the present invention is introduced are not particularly limited, but human cultured cells and the like are particularly preferably used. Methods for introducing DNA into cells include those described in (2) above. In addition, the phenotype of the introduced cells can be observed with a microscope, such as cell viability, cell growth rate, cell differentiation, neurite elongation, localization and migration of intracellular proteins, etc. And those that can be analyzed by biochemical experiments, such as changes in the expression of specific proteins in cells. When a known variant exists in the target protein, these phenotypes can be similarly introduced into cells, and the phenotype associated with the target protein can be identified by comparative analysis. it can. In addition, since the protein of the present invention is known to have each of the above activities, It is also preferable to analyze by paying attention to the phenotype and the like found in the disease.
上記 ( ) の方法では、 後述するオリゴヌクレオチドを用いた方法や、 R NA インターフェアレンス法により効率的に行うことができる。この方法においても、 解析対象タンパク質に、 公知のバリアントが存在する場合には、 公知のパリアン トやその他のバリアントについても同様の解析を行い、 比較解析することにより 対象タンパク質特異的な機能を同定することができる。 .  In the above method (), the method can be efficiently performed by a method using an oligonucleotide described below or an RNA interference method. In this method, if a known variant is present in the protein to be analyzed, a similar analysis is performed for a known variant and other variants, and a function specific to the target protein is identified by comparative analysis. be able to. .
( 6 ) 本発明のタンパク質が有する活性を調節する分子のスクリーニング 本発明のタンパク質に特異的に結合し、かつ本発明のタンパク質の機能(活性) を阻害、 拮抗または増強する作用を有する分子 (物質) をスクリーニングするこ とにより本発明のタンパク質の機能調節物質 (以下、 これを 「調節物質」 と称す ることがある) を得ることができる。  (6) Screening for a molecule that regulates the activity of the protein of the present invention A molecule (substance) that specifically binds to the protein of the present invention and has an action of inhibiting, antagonizing, or enhancing the function (activity) of the protein of the present invention. ) To obtain a function modulator of the protein of the present invention (hereinafter, this may be referred to as “modulator”).
この調節物質のスクリーニング方法は、本発明のタンパク質に特異的に結合し、 且つ該タンパク質の活性を阻害、 拮抗または増強する作用を有する物質が得られ る方法であれば如何なるものであってもよい。 例えば、 まず本発明のタンパク質 と被検物質とを接触させ、該タンパク質との結合性等を指標として選抜した後に、 本発明のタンパク質が有する活性の変化を指標として被検物質を選抜する方法を 用いることができる。  This method of screening for a regulatory substance may be any method as long as it can obtain a substance that specifically binds to the protein of the present invention and has an activity of inhibiting, antagonizing, or enhancing the activity of the protein. . For example, a method of first contacting a protein of the present invention with a test substance, selecting the test substance based on the binding property to the protein, and the like, and then selecting the test substance using the change in the activity of the protein of the present invention as an index. Can be used.
被検物質としては、 本発明のタンパク質と相互作用して、 該タンパク質が有す る活性に影響を及ぼす可能性のある物質であれば如何なるものであってもよい。 具体的には、 例えば、 ペプチド、 タンパク質、 非ペプチド性化合物、 低分子化合 物、 合成化合物、 発酵生産物、 細胞抽出液、 動物組織抽出液等が挙げられる。 こ れらの物質は新規な物質であってもよいし、 公知の物質であってもよい。  The test substance may be any substance that interacts with the protein of the present invention and may affect the activity of the protein. Specific examples include peptides, proteins, non-peptidic compounds, low-molecular compounds, synthetic compounds, fermentation products, cell extracts, animal tissue extracts, and the like. These substances may be novel substances or known substances.
被検物質と本発明のタンパク質の相互作用の解析は、 それ自体既知の通常用い られる方法により行うことができる。 具体的には、 例えば、 酵母ツーハイブリツ ド法、 蛍光偏光解消法、 表面プラズモン法、 ファージディスプレイ法、 リポソ一 マルディスプレイ法、 あるいは上記 (4 ) に記載した抗体との競合解析法等が挙 げられる。 このような方法により、 本発明のタンパク質に結合する活性を見いだ された物質は、 次に該物質の存在下で本発明のタンパク質が有する活性がどのよ うな影響を受けるかを解析することによって、 調節物質として用いられるか否か が同定される。 Analysis of the interaction between the test substance and the protein of the present invention can be performed by a commonly used method known per se. Specific examples include the yeast two-hybrid method, the fluorescence depolarization method, the surface plasmon method, the phage display method, the liposomal display method, and the competition analysis method with the antibody described in (4) above. . By such a method, the activity of binding to the protein of the present invention was found. Next, by analyzing how the activity of the protein of the present invention is affected in the presence of the substance, whether or not the substance is used as a modulator is identified.
ここで、 医薬活性成分のスクリーニングを目的とするために用いる本発明の D NA、 あるいは組み換えタンパク質については、 上記したヒトのホモログを用い ることが好ましい。 さらに上記方法によってでスクリーニングされた物質は、 こ れらの生体内でのスクリーニングによって医薬候補としての選択を行ってもよい c 具体的には、 例えば、 次の方法により本発明のタンパク質が有する活性を調節 する分子の解析を行うことができる。 Here, for the DNA or recombinant protein of the present invention used for the purpose of screening for a pharmaceutically active ingredient, it is preferable to use the above-mentioned human homolog. Furthermore screened material by the foregoing method, also good c specifically performing selection as a drug candidate by screening in vivo of these, for example, activity possessed by the protein of the present invention by the following method The analysis of the molecules that regulate the expression can be performed.
( 6— 1 ) I L一 1受容体ファミリーとの相互作用活性を調節する物質の解析 I L一 1受容体フアミリーとの相互作用活性の変化の解析は、 上記した本発明 のタンパク質の性質および機能アツセィ法 (活性の確認法) に基づいて、 それ自 体既知の通常用いられる方法により行うことができる。 例えば、 上記 (2 ) に記 載した D N A導入体に受容体おょぴその基質となるタンパク質も同様の方法で導 入する。 この導入体について選択された物質の存在下/または非存在下で基質と なるタンパク質の脱リン酸化をそれ自体既知の通常用いられる方法により解析す る。 具体的には、 上記 (5— 1 ) に記載の方法等を用いて行うことができる。 L A F活性あるいは I L— 1受容体フアミリーとの結合性が、 物質の非存在下の場 合と比べて増加した場合には、 該物質は I L _ l受容体ファミリーとの相互作用 活性化物質として機能する可能性があり、 また低下または阻害された場合には、 該物質は I L一 1受容体フアミリーとの相互作用活性の阻害物質として機能する 可能性があると同定できる。 さらに上記方法でスクリーニングされた物質は、 こ れらの生体内でのスクリーユングによって医薬候補としての選択を行なってもよ レ、。  (6-1) Analysis of a substance that regulates the interaction activity with the IL-11 receptor family The analysis of the change in the interaction activity with the IL-11 receptor family is based on the above-mentioned properties and functions of the protein of the present invention. Based on the method (confirmation method of activity), it can be carried out by a commonly used method known per se. For example, a receptor or a protein serving as its substrate is introduced into the DNA transductant described in (2) in the same manner. The dephosphorylation of the protein serving as a substrate in the presence / absence of the selected substance with respect to the introduced substance is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in (5-1) above. If the activity of LAF or the binding to IL-1 receptor family is increased compared to the absence of the substance, the substance interacts with the IL_l receptor family and functions as an activator If the substance is reduced or inhibited, it can be identified that the substance may function as an inhibitor of the activity of interacting with the IL-11 receptor family. Further, the substances screened by the above method may be selected as drug candidates by screening in vivo in these organisms.
本発明のタンパク質が有する I L— 1受容体フアミリーとの相互作用活性とし ては、 例えば、 炎症などの免疫ス トレスを引き起こしたり、 あるいは、 抗炎症活 性等である。 そこで、 本スクリーニング方法により同定できる物質は、 抗炎症剤 として用いられ得るものである。 The interaction activity of the protein of the present invention with the IL-1 receptor family is, for example, to cause immune stress such as inflammation, or to have anti-inflammatory activity. Therefore, substances that can be identified by this screening method are anti-inflammatory drugs It can be used as
(6-2) 性腺刺激ホルモン活性を調節する物質の解析  (6-2) Analysis of substances that regulate gonadotropin activity
性腺刺激ホルモン活性の変化の解析は、 上記した本発明のタンパク質の性質お よび機能アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いられ る方法により行うことができる。 具体的には、 上記 (2) に記載した DN A導入 体に受容体となるタンパク質も同様の方法で導入する。 この導入体について選択 された物質の存在下 Zまたは非存在下で、 本発明のタンパク質と受容体との相互 作用をそれ自体既知の通常用いられる方法により解析する。具体的には、上記(5 -2) に記載の方法等を用いて行うことができる。 ゴナドトロピン受容体等の性 腺刺激ホルモン受容体への結合量等が、 物質の非存在下の場合と比べて増加した 場合には、 該物質は性腺刺激ホルモン活性化物質として機能する可能性があり、 また低下または阻害された場合には該物質は性腺刺激ホルモン阻害物質として機 能する可能性があると同定できる。  Analysis of changes in gonadotropin activity can be performed by a method known per se and generally used, based on the above-mentioned properties and functions of the protein of the present invention (method for confirming activity). Specifically, a protein serving as a receptor is introduced into the DNA transfectant described in (2) above in the same manner. The interaction between the protein of the present invention and the receptor in the presence or absence of the substance selected for the transductant is analyzed by a commonly used method known per se. Specifically, it can be performed using the method described in (5-2) above. If the amount of binding to gonadotropin receptor such as gonadotropin receptor is increased as compared with the absence of the substance, the substance may function as a gonadotropin activating substance When the substance is reduced or inhibited, it can be identified that the substance may function as a gonadotropin inhibitor.
本発明の性腺刺激ホルモン活性を有するタンパク質は、 胎盤から分泌される絨 毛性性腺刺激ホルモン、 下垂体から分泌される卵胞刺激ホルモン (FSH) 、 黄 体形成ホルモン (LH)、及ぴ甲状腺刺激ホルモン (TSH)等が知られている。 いずれも糖タンパク質であり、 女性では F SHは卵胞の発育を促進し、 LHは F SHとの共同作用によりエストロゲンの産生 ·分泌を刺激し、 さらに成熟卵胞に 作用して排卵を誘発し、 黄体を形成する。 また黄体に作用してプロジェステロン の分泌を促進する。 このように LHと F SHは正常婦人の月経周期の形成に重要 な役割を果たす。 男性では、 F SHは精子形成を LHはテストステロンの分泌を 促進する。 絨毛性性腺刺激ホルモンは、 主に LH様作用を有する。  The protein having gonadotropin activity of the present invention includes chorionic gonadotropin secreted from the placenta, follicle stimulating hormone (FSH) secreted from the pituitary gland, luteinizing hormone (LH), and thyroid stimulating hormone. (TSH) and the like are known. Both are glycoproteins, and in women, FSH promotes follicle development, LH stimulates estrogen production and secretion in cooperation with FSH, and further acts on mature follicles to induce ovulation, To form It also acts on the corpus luteum to promote progesterone secretion. Thus, LH and FSH play important roles in the formation of the menstrual cycle in normal women. In men, FSH promotes spermatogenesis and LH promotes testosterone secretion. Chorionic gonadotropin has a mainly LH-like effect.
そこで、 本スクリ一エング方法により同定できる物質は、 下垂体性性腺機能低 下や潜伏性睾丸等の避妊治療剤として用いられ得るものである。  Therefore, substances that can be identified by the present screening method can be used as therapeutic agents for contraception, such as hypopituitary gland function and latent testes.
(6-3) タンパク質相互作用活性を調節する物質の解析  (6-3) Analysis of substances that regulate protein interaction activity
タンパク質相互作用活性の変化の解析は、 上記した本発明のタンパク質の性質 および機能アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いら れる方法により行うことができる。 Analysis of changes in protein interaction activity is based on the above-mentioned properties and functions of the protein of the present invention (method of confirming the activity), and is based on the known methods used in the art. It can be performed by a method.
本スクリーニング方法により同定できる物質は、 例えば、 循環器疾患、 精神 · 神経疾患、 代謝性疾患等の治療剤として用いられる得るものである。  Substances that can be identified by the present screening method are, for example, those that can be used as therapeutic agents for cardiovascular diseases, psychiatric / neurological diseases, metabolic diseases and the like.
( 6 - 4 ) R I M結合活性を調節する物質の解析  (6-4) Analysis of substances that regulate RIM binding activity
R I M結合活性の変化の解析は、 上記した本発明のタンパク質の性質および機 能アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いられる方法 により行うことができる。  The analysis of the change in RIM binding activity can be performed by a method known per se and generally used, based on the above-mentioned properties of the protein of the present invention and the functional assay (activity confirmation method).
本発明の R I M結合活性を有するタンパク質は、 諸種の生理機能に関与する制 御因子として重要な機能を有しており、 生体内における該タンパク質の異常は 様々な疾患の原因となる。 従って、 上記スクリーニング方法により得られた R I M結合活†生の調節物質は、 諸種の疾患の治療剤、 例えば神経伝達の異常に関与す る疾患、例えばアルツハイマー型痴呆、パーキンソン病、舞踏病、虚血性脳疾患、 糖尿病性末梢神経障害などの治療薬として用いられ得るものである。  The protein having an RIM binding activity of the present invention has an important function as a control factor involved in various physiological functions, and abnormality of the protein in a living body causes various diseases. Therefore, the modulator of the RIM binding activity obtained by the above screening method can be used as a therapeutic agent for various diseases, for example, a disease related to abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic disease. It can be used as a therapeutic agent for brain diseases, diabetic peripheral neuropathy and the like.
( 6 - 5 ) アポトーシス抑制機能を調節する物質の解析  (6-5) Analysis of substances that regulate apoptosis inhibitory function
アポトーシス抑制機能の変化の解析は、 上記した本発明のタンパク質の性質お ょぴ機能アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いられ る方法により行うことができる。 アポトーシスの抑制活性が、 物質の非存在下の 場合と比べて増加した場合には、 該物質はアポトーシスの抑制活性化物質として 機能する可能性があり、 また低下、 または阻害された場合には該物質はアポトー シスの抑制阻害物質として機能する可能性があると同定できる。  The analysis of the change in the apoptosis-suppressing function can be carried out by a method known per se, which is known per se, based on the above-mentioned properties of the protein of the present invention and the function assay (activity confirmation method). If the apoptosis-inhibiting activity is increased compared to the absence of the substance, the substance may function as an apoptosis-inhibiting activator. The substance can be identified as potentially acting as an inhibitor of apoptosis.
本発明タンパク質はアポトーシス抑制作用を有すると思われるので、 本発明の タンパク質の発現制御物質、 機能賦活物資、 または機能阻害物質は、 ァルツハイ マー病、 パーキンソン病、 、 虚血性脳障害などの神経変性疾患の他、 癌、 筋萎縮 症、 後天' 1·生免疫不全症候群、 免疫疾患、 内毒素性ショックのような腫瘍壌死因子 Since the protein of the present invention is thought to have an apoptosis-suppressing action, the protein of the present invention may be a neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, or ischemic encephalopathy. Other tumor oncolytic factors such as cancer, muscular atrophy, acquired '1' live immunodeficiency syndrome, immune diseases, endotoxin shock
(TNF) および他のサイトカイン (IL- 1、 IL- 6等) の関与する疾患などの予防また は治療用の医薬組成物として用いられ得るものである。 (TNF) and other cytokines (IL-1, IL-6, etc.) can be used as a pharmaceutical composition for preventing or treating diseases and the like.
( 6 - 6 ) ゥロモジュリン様活性を調節する物質の解析 ゥロモジュリン様活性の変化の解析は、 上記した本発明のタンパク質の性質お ょぴ機能アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いられ る方法により行うことができる。 (6-6) Analysis of substances regulating peromodulin-like activity The analysis of the change in peromodulin-like activity can be carried out by a method known per se, which is known per se, based on the above-mentioned properties of the protein of the present invention and the functional assay (activity confirmation method).
本発明のタンパク質は、 GPIアンカーを介して分泌顆粒膜に結合し、分泌顆粒の 集合や分泌に関与する機能を有する糖タンパクであることが推測されるので、 本 発明のタンパク質の活性調節物質、 即ち発現制御物質、 機能賦活物質または機能 阻害物質は、 脖臓、 腎臓、 脳下垂体、 卵巣、 卵管、 精巣、 輸精管などからの分泌 制御の異常に関連する種々の疾患、 例えば、 膝炎、 腎炎、 脳下垂体、 卵管、 輸精 管などからの分泌異常症などの治療剤として用いられ得るものである。  Since the protein of the present invention is presumed to be a glycoprotein that binds to the secretory granule membrane via the GPI anchor and has a function related to the assembly and secretion of secretory granules, the activity modulator of the protein of the present invention, That is, the expression controlling substance, the function activating substance or the function inhibiting substance is used for various diseases related to abnormal secretion control from the kidney, kidney, pituitary gland, ovary, fallopian tube, testis, vas deferens, etc. It can be used as a therapeutic agent for nephritis, pituitary gland, oviduct, vas deferens and other secretory disorders.
( 6 - 7 ) 脂質結合活性を調節する物質の解析  (6-7) Analysis of substances that regulate lipid binding activity
脂質結合活性の変化の解析は、 上記した本発明のタンパク質の性質および機能 アツセィ法 (活性の確認法) に基づいて、 それ自体既知の通常用いられる方法に より行うことができる。  The analysis of the change in lipid binding activity can be carried out based on the above-mentioned properties and functions of the protein of the present invention by an assay method (confirmation method of activity) by a method known per se and generally used.
本発明の脂質結合活性を有するタンパク質は、 諸種の生理機能に関与する制御 因子として重要な機能を有しており、 生体内における該タンパク質の異常は様々 な疾患の原因となる。 従って、 上記スクリーニング方法により得られた脂質結合 活性の調節物質は、 諸種の疾患の治療剤、 例えば、 抗癌剤 (抗腫瘍剤) 、 抗炎症 剤、 神経変性疾患の治療剤、 循環器疾患の治療剤、 血液凝固系疾患の治療剤等と して用いられ得るものである。  The protein having a lipid binding activity of the present invention has an important function as a control factor involved in various physiological functions, and abnormality of the protein in a living body causes various diseases. Accordingly, the modulator of lipid binding activity obtained by the above screening method can be used as a therapeutic agent for various diseases, for example, an anticancer agent (antitumor agent), an anti-inflammatory agent, a therapeutic agent for neurodegenerative disease, a therapeutic agent for cardiovascular disease It can be used as a therapeutic agent for blood coagulation diseases and the like.
上記方法で解析 ·同定された調節物質は、 臨床へ応用するに際し、 上記有効成 分を単独で用いることも可能であるが、 薬学的に許容され得る担体と配合して医 薬品組成物として用いることもできる。この時の有効成分の担体に対する割合は、 1〜9 0重量%の間で変動され得る。 また、 力かる薬剤は種々の形態で投与する ことができ、 それらの投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あ るいはシロップ剤等による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐 薬剤等による非経口投与を挙げることができる。 また、 その投与量は、 症状、 年 齢、 体重等によって適宜選択することができる。 ( 7 ) 本発明の D N Aの発現調節物質のスクリーニング The modulator identified and analyzed by the above method can be used alone for the clinical application, but it can be used as a pharmaceutical composition in combination with a pharmaceutically acceptable carrier. You can also. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. In addition, a powerful drug can be administered in various forms, such as tablets, capsules, granules, powders, orally administered by syrup, injections, drops, Parenteral administration with ribosomes, suppositories and the like can be mentioned. The dose can be appropriately selected depending on the symptoms, age, body weight, and the like. (7) Screening of the DNA expression regulator of the present invention
スクリーニングの方法としては、 被検物質の存在下で本発明のタンパク質、 あ るいはそれをコードする! R N Aの発現量を解析する方法等が挙げられる。 具体 的には、 例えば、 上記 (2 ) に記載した本発明のタンパク質を発現する細胞を被 検物質を含む適当な培地で培養し、 該細胞内に発現している本発明のタンパク質 量を E L I S A等の常法を用いて解析するか、 あるいは該細胞内の本発明のタン パク質をコードする! n R NA量を、定量的逆転写 PCR法や、ノーザンプロット法等 により解析することにより行うことができる。  Examples of the screening method include a method of analyzing the expression level of the protein of the present invention or the encoding of the protein of the present invention in the presence of the test substance, and the like. Specifically, for example, cells expressing the protein of the present invention described in (2) above are cultured in an appropriate medium containing a test substance, and the amount of the protein of the present invention expressed in the cells is determined by ELISA. Or by encoding the protein of the present invention in the cells! N RNA is analyzed by quantitative reverse transcription PCR, Northern blotting, etc. be able to.
被検物質としては、 上記 (6 ) に記載のものを用いることができる。 この解析 により、 被検物質の非存在下で培養された当該細胞内で発現されたタンパク質、 あるいは m R N A量と比べてその量が増加すれば、 物質は本発明の D N Aの発現 促進物質として機能する可能性があり、 逆に減少した場合には、 物質は本発明の D N Aの発現阻害物質として用いられ得ると判断することができる。  As the test substance, those described in the above (6) can be used. As a result of this analysis, if the amount of the protein or mRNA expressed in the cells cultured in the absence of the test substance increases compared to the amount of the protein, the substance functions as a substance for promoting the expression of the DNA of the present invention. If the substance decreases, it can be determined that the substance can be used as a substance for inhibiting the expression of the DNA of the present invention.
かかる発現調節物質は、 臨床へ応用す'るに際し、 上記有効成分を単独で用いる ことも可能である力 薬学的に許容され得る担体と配合して医薬品組成物として 用いることもできる。 この時の有効成分の担体に対する割合は、 1〜9 0重量% の間で変動され得る。 また、 かかる薬剤は種々の形態で投与することができ、 そ れらの投与形態としては、 錠剤、 カプセル剤、 顆粒剤、 散剤、 あるいはシロップ 剤等による経口投与、 または注射剤、 点滴剤、 リボソーム剤、 坐薬剤等による非 経口投与を挙げることができる。 また、 その投与量は、 症状、 年齢、 体重等によ つて適宜選択することができる。  When applied to clinical applications, such an expression regulator can be used alone as the active ingredient, and can be used as a pharmaceutical composition in combination with a pharmaceutically acceptable carrier. At this time, the ratio of the active ingredient to the carrier can be varied between 1 and 90% by weight. The drug can be administered in various forms. Examples of the dosage form include tablet, capsule, granule, powder, syrup, and the like, oral administration, injection, drip, ribosome And parenteral administration with suppositories and the like. In addition, the dose can be appropriately selected depending on symptoms, age, weight, and the like.
( 8 ) 本発明の D N A導入動物  (8) The DNA-introduced animal of the present invention
上記 (1 ) に記載の、 本発明の D N Aを含む導入 D N Aを構築し、 ヒト以外の 哺孚し動物の受精卵に導入して、 これを雌個体子宮に移植して発生させることによ り、本発明の D N Aが導入された非ヒト哺乳動物を作製することができる。より、 具体的には、 例えば、 雌個体をホルモン投与により過剰排卵させた後、 雄と交配 し、 交配後 1 日目の卵管から受精卵を摘出し、 該受精卵に導入 D N Aをマイクロ インジェクション等の方法により導入する。 この後、 適当な方法で培養した後、 生存している受精卵を、 偽妊娠させた雌個体 (仮親) の子宮に移植して出産させ る。 新生仔に目的の D NAが導入されているか否かは、 該個体の細胞から抽出し た D NAのサザンプロット解析を行うことにより同定することができる。 ヒト以 外の哺¾動物としては、 例えばマウス、 ラット、 モルモッ ト、 ハムスター、 ゥサ ギ、 ャギ、 ブタ、 ィヌ、 ネコ等が挙げられる。 The transfected DNA containing the DNA of the present invention described in the above (1) is constructed, introduced into fertilized eggs of a non-human suckling animal, and transplanted into a female individual uterus to generate it. Thus, a non-human mammal into which the DNA of the present invention has been introduced can be produced. More specifically, for example, a female individual is superovulated by hormone administration, then mated with a male, a fertilized egg is excised from the oviduct on the first day after mating, and the introduced DNA is microscopically introduced into the fertilized egg. It is introduced by a method such as injection. Then, after culturing by an appropriate method, the surviving fertilized eggs are transplanted into the uterus of a pseudopregnant female individual (foster parent) to give birth. Whether or not the desired DNA has been introduced into the newborn can be identified by Southern blot analysis of the DNA extracted from the cells of the individual. Non-human mammals include, for example, mice, rats, guinea pigs, hamsters, rabbits, goats, pigs, dogs, cats, and the like.
かくして得られた本発明の D NA導入動物は、 この個体を交配し、 導入された D N Aが安定的に保持されていることを確認しながら通常の飼育環境で継代飼育 することによりその子孫を得ることができる。 また、 体外受精を繰り返すことに よりその子孫を得て、 系統を維持することもできる。  The thus-obtained DNA-introduced animal of the present invention is used to breed this individual and subculture them in a normal breeding environment while confirming that the introduced DNA is stably retained, thereby obtaining the offspring. Obtainable. In addition, by repeating in vitro fertilization, the progeny can be obtained and the strain can be maintained.
本発明の D N Aが導入された非ヒト哺乳動物は、 本発明の D NAの生体内にお ける機能の解析や、 またこれを調節する物質のスクリーニング系等として用いる ことができる。  The non-human mammal into which the DNA of the present invention has been introduced can be used as an analysis of the function of the DNA of the present invention in a living body, or as a screening system for a substance regulating the function.
( 9 ) 本発明のタンパク質及ぴそれをコードする塩基配列を含む D N Aの他の利 用  (9) Other uses of the protein of the present invention and the DNA containing the nucleotide sequence encoding it
本発明のタンパク質は、 それを基盤上に結合させた担体として利用することが できる。 また、 本発明のタンパク質をコードする塩基配列、 例えば、 配列表に記 載の塩基配列を有する D N A及びその部分断片は、 それらを基板上に結合させた 担体として用いることができる。 これらを、 以下、 「プロテインチップ」 、 「D NAチップ」 または 「D NAアレイ」 (D NAマイクロアレイ及び D NAマクロ アレイ) と称することがある。 これらのプロテインチップ、 又は D NAチップも しくはアレイには、 本発明のタンパク質や D NA以外に、 他のタンパク質や D N Aが含まれていてもよい。  The protein of the present invention can be used as a carrier having it bound on a substrate. In addition, a nucleotide sequence encoding the protein of the present invention, for example, DNA having a nucleotide sequence described in the sequence listing and a partial fragment thereof can be used as a carrier to which they are bound on a substrate. Hereinafter, these may be referred to as “protein chips”, “DNA chips” or “DNA arrays” (DNA microarrays and DNA macroarrays). These protein chips or DNA chips or arrays may contain other proteins and DNA in addition to the proteins and DNA of the present invention.
ここで、 タンパク質や D NAを結合させる基盤としては、 ナイロン膜、 ポリプ ロピレン膜等の樹脂基板、 ニトロセルロース膜、 ガラスプレート、 シリコンプレ ート等が用いられるが、 ハイブリダィゼーシヨンの検出を非 R I的に、 例えば、 蛍光物質等を用いて行う場合には、 蛍光物質を含まないガラスプレート、 シリコ ンプレート等が好適に用いられる。 また該基盤へのタンパク質、 あるいは DNA の結合は、 それ自体公知の通常用いられる方法により容易に行うことができる。 これらのプロテインチップ、 DNAチップ、 あるいは DNAアレイも、 本発明の 範囲に含まれる。 Here, a resin substrate such as a nylon film or a polypropylene film, a nitrocellulose film, a glass plate, a silicon plate, or the like is used as a substrate for binding a protein or DNA, and the detection of hybridization is performed. For non-RI, for example, when using a fluorescent substance, a glass plate containing no fluorescent substance, silicon A plate or the like is preferably used. The binding of the protein or DNA to the substrate can be easily performed by a commonly used method known per se. These protein chips, DNA chips, or DNA arrays are also included in the scope of the present invention.
また、 本発明のタンパク質のアミノ酸配列及び DNAの塩基配列は、 配列情報 としても用いることができる。 ここで、 D N Aの塩基配列には対応する RN Aの 塩基配列も含まれる。 すなわち、 得られたアミノ酸配列や塩基配列をコンビユー ターが読みとり可能な所定の形式で適当な記録媒体に格納することにより、 アミ ノ酸配列や塩基配列のデータベースが構築できる。 このデータベースには、 他の 種類のタンパク質やそれをコードする D N Aの塩基配列が含まれていてもよい。 また、本発明においてデータベースとは、上記配列を適当な記録媒体に書き込み、 所定のプログラムに従って検索を行うコンピューターシステムをも意味する。 こ こで適当な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、 磁気テープ等の磁気媒体、' CD-ROM MO、 CD-R, CD-RW, DVD 一 R、 DVD— RW等の光ディスク、 半導体メモリ等を挙げることができる。 実施例  In addition, the amino acid sequence of the protein of the present invention and the nucleotide sequence of DNA can also be used as sequence information. Here, the nucleotide sequence of DNA also includes the nucleotide sequence of the corresponding RNA. That is, a database of amino acid sequences and base sequences can be constructed by storing the obtained amino acid sequences and base sequences in an appropriate recording medium in a predetermined format readable by a computer. This database may contain the nucleotide sequences of other types of proteins and the DNA encoding them. Further, in the present invention, the database also means a computer system that writes the above-mentioned sequence on an appropriate recording medium and performs a search according to a predetermined program. Suitable recording media include, for example, magnetic media such as flexible disks, hard disks, and magnetic tapes, optical disks such as CD-ROM MO, CD-R, CD-RW, DVD-R, and DVD-RW, and semiconductors. Memory and the like can be mentioned. Example
以下、 実施例を挙げて本発明を詳細に説明するが、 本発明の範囲はこれらの実 施例により限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples.
実施例 1 cDNAライブラリーの調製 Example 1 Preparation of cDNA Library
(1) mRNAの調製  (1) Preparation of mRNA
mRNA調製マウス (C 57 B L/6) 各器官または組織 0. 5〜: L gを 10 m 1の懸濁液でホモジェナイズし、 pH4.0 の 2M酢酸ナトリウム 1 m 1 と、 同量のフエノール Zクロ口ホルム(体積比 5 : 1)混液を加え抽出した。 抽出後水 層に同量のィソプロパノールを加えると、 RNAが水相から分離沈澱した。  mRNA-prepared mouse (C57BL / 6) Each organ or tissue 0.5 or more: Lg is homogenized with a 10 ml suspension, and the same amount of phenol Z as 1 ml of 2 M sodium acetate at pH 4.0 A mixed solution of black-mouthed form (5: 1 by volume) was added for extraction. When the same amount of isopropanol was added to the aqueous layer after the extraction, RNA separated and precipitated from the aqueous phase.
この試料を氷の上で 1時間ィンキュベーションした後、 1 5分間 4, 000 r p mで冷却遠心機にかけ、沈澱物を回収した。この検体を 70 %エタノールで洗い、 8 m 1の水に溶角後 2m lの 5M N a C l、 l % CTAB (cetyltrimethy- 1 ammonium bromide), 4M尿素、 5 0 mM T r i sを含む p H 7. 0 の水溶液 1 6m lを加えることで RNAを沈澱させ、ポリサッカライドを除いた(CTAB 沈澱) 。 After incubating the sample on ice for 1 hour, the precipitate was collected in a refrigerated centrifuge at 4,000 rpm for 15 minutes. Wash this sample with 70% ethanol, After melting in 8 ml of water, 16 ml of an aqueous solution of pH 7.0 containing 2 ml of 5 M NaCl, l% CTAB (cetyltrimethy-1 ammonium bromide), 4 M urea, and 50 mM Tris RNA was precipitated by addition to remove polysaccharide (CTAB precipitation).
続いて室温で 4, 0 0 0 r .p m、 1 5分間遠心機にかけ、 RNAを 4m lの 7 Mグァニジン一 C 1に溶解した。 そして 2倍量のエタノールを加えた後、 氷上で 1時間インキュベーションし、 4, 0 0 0 r pm、 1 5分間遠心機にかけ、 生じ た沈澱物を 7 0%エタノールで洗い RNAを回収した、 これを再度水に溶解し、 RNAの純度を OD比 2 6 0ダ2 8 0 (> 1. 8) と 2 30/2 6 0 « 0. 4 5) を読むことによって計測した。  Subsequently, the RNA was dissolved in 4 ml of 7 M guanidine-C1 by centrifugation at room temperature at 4,000 rpm for 15 minutes. After adding 2 volumes of ethanol, the mixture was incubated on ice for 1 hour, centrifuged at 4.00 rpm for 15 minutes, and the resulting precipitate was washed with 70% ethanol to collect RNA. Was re-dissolved in water, and the purity of the RNA was measured by reading the OD ratios 260-280 (> 1.8) and 230/260 <0.45).
(2) 第 1鎖 c DNAの調製  (2) Preparation of first strand cDNA
上記 (1) で調製した mRNA 1 5 μ gを使って逆転写酵素 3, 0 0 0 u n i t により、最終容量 1 6 5 μ 1の反応液中で、 5—メチルー d CTP、 d AT P、 d TTP、 d GT Pを各々 0. 5 4 mM、 0. 6Mトレハロース、 5 0 mM T r i s—HC l ( p H 8. 3) 、 7 5 mM KC 1、 3 mM Mg C 1 2、 1 OmM DTT、 5 2 n g / μ 1 B SA、 RN a s eインヒビター 5 u n i tの条件下で逆転写反応を行った。 制限酵素 Xh o Iの認識配列を含むオリゴヌ クレオチド (配列番号 3) (配列中、 Vは A, G, 又は Cを示し、 Nは A, G, C, 又は Tを示す) 1 2. 6 μ 1をプライマーとして用いた。 Using 15 μg of the mRNA prepared in (1) above, 3,000 units of reverse transcriptase were used to prepare 5-methyl-dCTP, dATP, d TTP, each 0. 5 4 mM of d GT P, 0. 6M trehalose, 5 0 mM T ris-HC l (p H 8. 3), 7 5 mM KC 1, 3 mM Mg C 1 2, 1 OmM DTT , 52 ng / μ1 BSA and 5 units of RNase inhibitor were used to perform a reverse transcription reaction. Oligonucleotide containing the recognition sequence of the restriction enzyme Xho I (SEQ ID NO: 3) (in the sequence, V indicates A, G, or C, and N indicates A, G, C, or T) 12.6 μm 1 was used as a primer.
この反応を始める際、 反応液の 1/4を採取し、 それに 1. 5 μ 1の [α—32 Ρ] ― d GTP (3 0 00 C i /mm o l、 1 0 C i μ 1 ; Am e r s h a m社製) を加えるここ^により、 第 1鎖 c DNAの合成効率を測定した。 R I標 識した反応液の 0. 5 μ 1を DE— 8 1ペーパー上にスポットし、 0. 5Mリン 酸ナトリウム緩衝液 (pH 7. 0) で 3回洗った前後の R I活性を測定し、 計算 した。 その後、 R I標識した反応液と非標識の反応液を混合し、 0. 5M ED TA 8 μ Κ 1 0 % S D S 2 μ 1、プロテイ^ "一ゼ(P r o t e i n a s e ) K 2 0 をカ卩え、 45 °Cで 1 5分間加熱した。 フエノール クロ口ホルムに よる抽出、 エタノール沈澱後、 沈澱を RNa s e フリーに処理してある水 (以 下 RNa s eフリー水とする) 47μ 1に溶解した。 At the beginning of this reaction, the 1/4 of the reaction solution was taken and thereto 1. 5 mu 1 of [α- 32 Ρ] - d GTP (3 0 00 C i / mm ol, 1 0 C i μ 1; Am The efficiency of the synthesis of the first-strand cDNA was measured. 0.5 μl of the RI-labeled reaction solution was spotted on DE-81 paper, and the RI activity was measured before and after washing three times with 0.5 M sodium phosphate buffer (pH 7.0). Calculated. Then, the RI-labeled reaction solution and the unlabeled reaction solution were mixed, and 0.5 M EDTA 8 μΚ 10% SDS 2 μ 1, proteinase K 20 was added. Heated for 15 minutes at 45 ° C. After extraction and ethanol precipitation, the precipitate was dissolved in 47 μl of RNase-free water (hereinafter referred to as RNase-free water).
(3) 5, キャップ構造及び 3, 末端へのピオチン付加  (3) 5, cap structure and 3, addition of biotin to terminal
RN Αジオールのビォチン化 RN Αのジオール部位 (C a p構造のある 5, 末 端と、 ポリ A鎖のある 3, 末端のリボースの双方に存在) にビォチンを結合させ るために、 2段階の反応を行った。 それらは、 ジオール基の酸ィ匕とそれに続くビ ォチンヒドラジドと酸化 RNA体のカップリング反応である。 まず、 逆転写反応 で得られた RNA—第 1鎖 c DNA複合体 15 /Z gを、 6. 6 mM酢酸ナトリウ ム緩衝液 (PH4. 5) と、 酸化剤として過ヨウ素酸ナトリウムを用いて 50 1の反応液中で処理した。この酸化反応は遮光条件の下、氷上で 45分間行った。 続いて、 5M塩化ナトリウム 1 1 μ 1、 10 % S D S 0. 5 μ 1、 そして同 量のイソプロパノールを加え、 60分間氷上に放置した後、 4 °Cで 15分間 1 5, 000 r pm遠心し沈澱を取得した。 沈澱物は 70%エタノールで洗い、 RNa s eフリー水 50 μ 1に再溶解させる。その試料に 1M酢酸ナトリウム(ρΗ6. 1 ) 5 μ Κ 10 % S D S 5 μ 1、 10 mMビォチンヒドラジド ( S i gm a社製) 150 /i 1を加え、 室温 (22〜26°C) で終夜反応させた。 最後に、 5 μ 1の 5M Na C 1、 1 M酢酸ナトリウム (pH6. 1) 75 μ 1、及ぴ 2. 5倍量のエタノールを加え、 1時間の氷上冷却後、 4 °Cにおいて 1 5分間遠心し、 ビォチン化した。 反応後、 反応液を 15分間遠心し、 再度 RNA— DNA複合体 を沈澱させた。 沈澱物は 70%エタノールで 1回、 更に 80%エタノールで 1回 洗い、 RNa s eフリー水 70 μ 1に溶解した。  Biotinylation of RN Α diol Two steps to bind biotin to the diol site of RN ((present at both the 5 'end of the Cap structure and the 3' end of the poly A chain ribose). The reaction was performed. These are the diol group oxidation and the subsequent coupling reaction of biotin hydrazide and oxidized RNA. First, 15 / Z g of the RNA-first strand cDNA complex obtained by the reverse transcription reaction was combined with 6.6 mM sodium acetate buffer (PH4.5) and sodium periodate as an oxidizing agent. The reaction was performed in 501 reactions. This oxidation reaction was performed on ice for 45 minutes under light-shielded conditions. Then, add 11 μl of 5 M sodium chloride, 0.5 μl of 10% SDS and 0.5 μl of the same amount of isopropanol, leave on ice for 60 minutes, and centrifuge at 15,000 rpm at 4 ° C for 15 minutes. A precipitate was obtained. The precipitate is washed with 70% ethanol and redissolved in 50 μl of RNase-free water. Add 1 M sodium acetate (ρΗ6.1) 5 μΚ 10% SDS 5 μl, 10 mM biotin hydrazide (manufactured by Sigma) 150 / i 1 to the sample, and add room temperature (22 to 26 ° C) For overnight. Finally, add 5 μl of 5 M NaC1, 75 μl of 1 M sodium acetate (pH 6.1) and 2.5 volumes of ethanol, and cool on ice for 1 hour. Centrifuged for 10 minutes and biotinylated. After the reaction, the reaction solution was centrifuged for 15 minutes to precipitate the RNA-DNA complex again. The precipitate was washed once with 70% ethanol and once with 80% ethanol, and dissolved in 70 μl of RNase-free water.
(4) RNa s e Iによる完全長 c D N Aの選択  (4) Selection of full-length c DN A by RNa s e I
上記 (3) で取得したピオチン化 RNA— DNA複合体について、 1本鎖 RN Aを消化する RN a s e Iで処理することにより、 逆転写反応時に完全な c DN Aの伸長が得られなかった mRNA、 および mRNAの 3, 末端に標識されたビ ォチン残基を取り除いた。 具体的には、 上記 (3) で得られた試料 70 μ 1に 1 0 XRN a s e Iバッファー ( 10 OmM T r i s— HC 1 (pH7. 5) 、 5 OmM EDTA、 2M N a OAc) 1 0 1、 RN a s e I (RN a s e On e™ ; P r om e g a社製) 20 0 u n i tを加えて、 3 7 で 1 5分間 1 本鎖 RNAを消化した。 By treating the biotinylated RNA-DNA complex obtained in (3) above with RNase I, which digests single-stranded RNA, mRNA whose complete cDNA extension was not obtained during the reverse transcription reaction , And the labeled biotin residue at the 3, terminal of the mRNA were removed. Specifically, 10 XRNase I buffer (10 OmM Tris-HC1 (pH 7.5), 70 μl of the sample obtained in (3) above, 5 OmM EDTA, 2M Na OAc) 101, and 200 units of RNase I (RNase One ™; manufactured by Promega) were added, and the single-stranded RNA was digested with 37 for 15 minutes for 15 minutes. .
(5) 完全長 c DNAの採取  (5) Collection of full-length cDNA
ストレプトアビジンコートしたマグネティックビーズに c DN Aが非特異的吸 着するのを防止するため、 1 0 0 μ gの酵母 t RNA (DN a s e I処理した もの) を 5m g (5 0 0 μ 1 ) のマグネティックビーズ (m a g n e t i c p o r o u s g l a s s (MP G) p a r t i c l e s c o a t e d w i t h s t r e p t a v i d i n (C PG, N J ) ) に加え、 1時間氷上に放置し た後、 5 OmM EDTA、 2M N a C 1の溶液にて洗った。  To prevent nonspecific adsorption of cDNA to streptavidin-coated magnetic beads, 100 mg of yeast tRNA (treated with DNase I) was added to 5 mg (500 μl) of yeast tRNA. Was added to the magnetic beads (magnetic porous glass (MPG) particles coated with reptavidin (CPG, NJ)), left on ice for 1 hour, and then washed with a solution of 5 OmM EDTA and 2 M NaC1.
このビーズを 5 OmM EDTA、 2M N a C 1の溶液 5 0 0 μ 1中に懸濁 し、 上記 (4) で取得した RN a s e I処理を施された c DNAを加えた。 室温 にて 3 0分間撹拌することで、 マグネティックビーズと完全長 c DNAを結合さ せた。 完全長 c DN Aを捕獲したビーズを 5 OmM EDTA、 2M N a C 1 の溶液で 4回、 0. 4%SD S、 5 0 μ g/μ 1酵母 t RNAで 1回、 1 0 mM Na C 1、 0. 2mM EDTA、 1 0 mMT r i s—HC l (p H 7. 5) 、 20% グリセロールで 1回、 5 0 μ 1酵母 t RNA水溶液で 1回、 RN a s e Hバッファー (2 OmMT r i s—HC l (p H 7. 5) 、 1 OmM M g C l 2、 20 mM KC 1、 0. 1 mM EDTA、 0. 1 mM ジチオスレィ トール (DTT) で 1回洗浄した後、 RN a s e H用バッファー 1 0 0 1に懸 濁し、 RN a s e H 3 u n i tを加え、 3 7 °C下 3 0分間加温した。 その後、 1 0 % S D S l l、 0. 5M EDTA 2 μ 1を加えて、 1 0分間、 6 5 °C に曝し、 その上清を回収した。 The beads were suspended in 500 μl of a solution of 5 OmM EDTA and 2 M NaCl, and the RNase I-treated cDNA obtained in (4) above was added. By stirring for 30 minutes at room temperature, the magnetic beads and the full-length cDNA were bound. Beads capturing full-length cDNA were treated 4 times with a solution of 5 OmM EDTA and 2 M NaC1, 0.4% SDS, 50 μg / μl once with yeast tRNA, and 10 mM Na C 1, 0.2 mM EDTA, 10 mM Tris—HCl (pH 7.5), once with 20% glycerol, once with 50 μl yeast tRNA aqueous solution, RNase H buffer (2 OmMT ris -HC l (p H 7. 5) , 1 OmM M g C l 2, 20 mM KC 1, 0. 1 mM EDTA, washed once with 0. 1 mM Jichiosurei Torr (DTT), a RN ase H After suspending in buffer 1001, 3 units of RNase H were added, and the mixture was heated at 37 ° C for 30 minutes, and then added with 10% SDS II and 2 μl of 0.5M EDTA to add 10 μl. Exposure to 65 ° C for 1 min and the supernatant was collected.
このようにして回収された 1本鎖完全長 c DNAはフエノール Zク口口ホルム で抽出され、 スピードバッグにて液量を 1 0 0 1以下に減じてから G 2 5 /G l O O S e p h a d e xクロマトグラフィ一に付した。 R I活性を持った分画は シリコン処理したマイクロチューブに収集するとともに、 グリコーゲン 2 μ g を加え、 エタノール沈澱にて得られた沈澱物を 30 μ 1の超純水に溶解した。The single-stranded full-length cDNA recovered in this manner is extracted with phenol Z-form and reduced to less than 1001 in a speed bag, and then subjected to G25 / GlOOS ephadex chromatography. I attached it. Fractions with RI activity are collected in siliconized microtubes and glycogen 2 μg Was added, and the precipitate obtained by ethanol precipitation was dissolved in 30 μl of ultrapure water.
(6) 1本鎖 c DNAへのオリゴ d G付カロ (6) Caro with oligo d G to single-stranded cDNA
上記 (5) で回収された 1本鎖 c DNA3 0 μ 1は、 最終容量 50 μ 1の反応 液中で、 20 OmM力コジル酸ナトリウム (pH6. 9) 、 1 mM M g C 12、 ImM C o C l 2、 1 mM 2—メルカプトエタノール、 1 00 M d GTP の条件のもと、 ターミナルデォキシヌクレオチジルトランスフェラーゼ (T a K a R a社製) 32 u n i tを用いて 3 7。じで 30分間のォリゴ d G付加反応に付 した。 反応終了時に EDTAを 5 OmMとなるように加え、 一連のフエノール/ クロ口ホルムによる抽出、エタノール沈澱を経て、 3 1 μ 1の超純水に溶解した。30 μl of the single-stranded cDNA recovered in the above (5) was used in a final volume of 50 μl of the reaction solution at 20 OmM strength sodium codylate (pH 6.9), 1 mM MgCl 2 , ImM C o C l 2, 1 mM 2- mercaptoethanol, 1 00 M d under the conditions of GTP, terminal de o carboxymethyl nucleotidyl transferase (T a K a R a, Inc.) 32 using the Unit 3 7. The mixture was subjected to Oligo dG addition reaction for 30 minutes. At the end of the reaction, EDTA was added to 5 OmM, and it was dissolved in 31 μl of ultrapure water through a series of extraction with phenol / chloroform and ethanol precipitation.
(7) 第 2鎖 cDNA合成 (7) Second strand cDNA synthesis
第 1鎖 cDNAを铸型にした第 2鎖 c DNAの合成は以下のように行った。 最 終容量 60 μ 1の反応系で、 第 2鎖低バッファー (20 OmM T r i s— HC The synthesis of the second-strand cDNA obtained by converting the first-strand cDNA into type II was performed as follows. In a reaction system with a final volume of 60 μl, a second-strand low buffer (20 OmM Tris—HC
1 (pH8. 75) 、 1 0 OmM KC 1、 1 0 OmM (NH4) 2S04、 20m1 (pH8. 75), 1 0 OmM KC 1, 1 0 OmM (NH 4) 2 S0 4, 20m
M Mg S04、 1 %T r i t o n X— 1 00、 lmg/ μ 1 B S A) 3 μ 1、 第 2鎖高バッファー (20 OmM T r i s一 HC 1 (pH9. 2) 、 6 00m M Mg S0 4, 1% T riton X- 1 00, lmg / μ 1 BSA) 3 μ 1, second Kusaridaka buffer (20 OmM T ris one HC 1 (pH9. 2), 6 00m
M KC 1、 2 OmM M g C 12) 3 /i l、 d CTP、 dATP、 dTTP、 dM KC 1, 2 OmM M g C 1 2 ) 3 / il, d CTP, dATP, dTTP, d
GTP各々 0. 2 5mM、 β -NADH 6 μ 1、 オリゴ d G付加された第 1鎖 c DNA3 1 /z l、 第 2鎖プライマ——アダプター (配列番号 4) 600 n gを 加え、 E x T a q DNAポリメラーゼ (Ta Ka R a E x T a q ; T aGTP 0.25 mM, β-NADH 6 μl, oligo dG-added first-strand cDNA 31 / zl, second-strand primer—600 ng of adapter (SEQ ID NO: 4), and ExTaq DNA polymerase (Ta KaRaExTaq; Ta
Ka R a社製) 1 5 u n i t、 耐熱性 D N Aリガーゼ (Am 1 i g a s e ; E p i c e n t r e社製) 1 50 u n i t、 耐熱性 R Na s e H (Hy b r i d a s e ; E p i c e n t r e社製) 3 u n i tによって第 2鎖 c D N Aを合成し 十 /' o Ka Ra) 15 units, thermostable DNA ligase (Am1 igase; E picentre) 150 units, thermostable R Nase H (Hybridase; E picentre) 2 units c Synthesize DNA / 'o
0. 5M EDTAを 1 μ 1加えることで反応を停止させ、 更にタンパク成分 を溶解するために、 1 0%SD S 1 μ 1、 プロテイ^ "一ゼ (P r o t e i n a s e) K 1 0 μ gの存在下に 45。Cで 1 5分間加熱し、 最終的にフエノール Z クロ口ホルムによる抽出、 エタノール沈澱にて精製した 2本鎖完全長 c DNAを 得た。 The reaction was stopped by adding 1 μl of 0.5 M EDTA, and 1 μl of 10% SDS and 10 μg of proteinase K were added to dissolve the protein components. Heat at 45.C for 15 minutes, and finally extract the double-stranded full-length cDNA by phenol Z Obtained.
(8) ライブラリーの調製  (8) Library preparation
以上の方法により得られた二本鎖完全長 c DNAは、 λ ΖΑΡ Ι I Iベクター に挿入し、 ライブラリ一として回収した。 え ZAP I I Iベクターは λ Ζ ΑΡ I I (S TRATAGENE) ベクターのマルチクローユングサイトの一部の配列 である配列番号 5を配列番号 6に改変し、 二つの S f i Iサイトを新たに導入し たものである。  The double-stranded full-length cDNA obtained by the above method was inserted into a λΖΑΡII vector and recovered as a library. The ZAP III vector is obtained by modifying SEQ ID NO: 5, which is a partial sequence of the multicloning site of the λΖII (S TRATAGENE) vector, to SEQ ID NO: 6, and introducing two new Sfi I sites. It is.
さらに; P S (R I KEN) ベクターを作製し、 cDNAを挿入した。 PS (R I KEN) (λ— FLC— 1と命名(FLCとは FULL— LENGTH c DNAを意味する) ) とは、 Mo B i T e c社 (ドイツ) の λ P Sベクターを c DNA用に改変したものである。 即ち l O kb p s t u f f e rの両側に存在 するクローユングサイトに c DNA挿入に便利な B a mH Iならびに S a 1 Iを 各々導入するとともに、 0. 5 k bから 1 3 k b程度までの cDNAがクロー二 ングできるように Xb a Iサイトに 6 k bの DNA断片を揷入したものである Further, a PS (RIKEN) vector was prepared and cDNA was inserted. PS (RI KEN) (named λ-FLC-1 (FLC means FULL-LENGTH cDNA)) is a modification of the λPS vector of MoBiTec (Germany) for cDNA. Things. That is, BamHI and Sa1I, which are convenient for cDNA insertion, are respectively introduced into the closing sites present on both sides of the lOkb pstuffer, and cDNA from about 0.5 kb to about 13 kb is cloned. A 6 kb DNA fragment was inserted into the XbaI site to allow
(特開 2000— 325080号公報) 。 この; L— FLC— 1を用いると、 例え ば肺臓 c DNAライブラリーの場合には、 インサートの平均鎖長は 2. 5 7 k b となり、 実際に 0. 5 k bから 12 k bまでのインサートをクローニングするこ とが出来た。 従来法の λ ZAPの場合には、 インサートの平均鎖長は 0. 97 k bであったことから、 え一 FLC— 1を用いることによって、 サイズの大きな c DNAも L ZAPに比べて効率よくクローニングできることがわかる。 (Japanese Patent Laid-Open No. 2000-325080). When L-FLC-1 is used, for example, in the case of a lung cDNA library, the average chain length of the insert is 2.57 kb, and the insert from 0.5 kb to 12 kb is actually cloned. I was able to do it. In the case of conventional λ ZAP, the average insert length was 0.97 kb, so using Eichi FLC-1 to clone large cDNAs more efficiently than L ZAP We can see that we can do it.
実施例 2 完全長 cDNAライブラリーのノーマライゼーションノサブトラクシ ョ Example 2 Normalization of a full-length cDNA library No subtraction
(1) ドライバーの調製  (1) Preparation of driver
実施例 1 (1) で作製した mRNA (以下、 これを 「 (a) RNAドライバー」 と称することがある) 、 及ぴ i n v i t r o転写反応で作成した RNAをドラ ィバーとして用いた。 後者の RNAはさらに 2種類 (以下、 これを 「 (b) RN Aドライバー、 及ぴ 「 (c) RNAドライバー」 と称する) に分けられる。 1つ はノーマライゼーションにより除かれた RNA— c DNAから c DNAを回収し、 ファージベクターにクローユングしたものである。 大腸菌に感染後 1つの出発材 料あたり 1000から 2000プラークを混ぜ合わせて 1つのライブラリー (ミ 二ライブラリー) とし、 常法によりプラスミド DNAに変換する (ファージをへ ルパーファージとともに再度大腸菌に感染させ、 ファージミ ドとし、 さらにもう 一度感染させてプラスミド DNAを得る) 。 The mRNA prepared in Example 1 (1) (hereinafter, this may be referred to as “(a) RNA driver”) and the RNA prepared by in vitro transcription reaction were used as drivers. The latter RNA is further divided into two types (hereinafter referred to as “(b) RNA driver” and “(c) RNA driver”). One Is a cDNA obtained by recovering cDNA from RNA-cDNA removed by normalization and cloning it into a phage vector. After infection with Escherichia coli, 1000 to 2000 plaques are mixed per starting material into one library (mini-library) and converted to plasmid DNA by a standard method. Phagemid, and re-infected to obtain plasmid DNA).
得られた DNAについて i n V i t r o転写反応 (T 3 RNAポリメラーゼ または T 7 RNAポリメラーゼを用いる) を行い、 DNa s e l (RQ 1 -RN a s e f r e e ; P r ome g a社^) 、 P r o t e i n a s e K処理後、 フエノール クロ口ホルム抽出をして RNA (b) RNAドライバーを得た。 こ の際、 通常出発材料としては 9種類(すい臓、肝臓、肺、 腎臓、脳、脾臓、睾丸、 小腸、 胃) の組織からそれぞれミニライブラリーを作成して、 9種類のミニライ ブラリーを混合して RNAを得る。 もう一つの RNAはすでに重複のないクロー ンとして保存されているライブラリー (クローン数約 2万個) を培養し、 得られ た DNAについて (b) RNAドライバーと同様に i n v i t r o転写反応を 行い (c) RN Aドライパーとした。  The obtained DNA was subjected to an in vitro transcription reaction (using T3 RNA polymerase or T7 RNA polymerase), followed by treatment with DNasel (RQ 1-RNasefree; Promega ^), Proteinase K, and phenol. The RNA (b) RNA driver was obtained by extraction of black form. In this case, as a starting material, mini-libraries are usually prepared from nine types of tissues (pancreas, liver, lung, kidney, brain, spleen, testes, small intestine, stomach), and the nine types of mini-libraries are mixed. To obtain RNA. Another RNA is cultured from a library (about 20,000 clones) that has already been stored as a non-overlapping clone, and the resulting DNA is subjected to (b) in vitro transcription reaction in the same manner as the RNA driver (c ) RNA Dryer.
これら 3種の RNAは、 L a b e l— I T B i o t i n L a b e l i n g K i t (M i r u s Co r p o r a t i o n製) を用いてピオチン化標識を行 つたあと、 1 : 1 : 1の割合でテスター c DNAに添加し、 Ro t 10での反応 These three types of RNA were labeled with biotin using the Label-ITB iotin Labeling Kit (manufactured by Mirus Corporation) and then added to tester cDNA at a ratio of 1: 1: 1. Reaction at t 10
(42°C) を行い、 ストレプトアビジンビーズ (CPG) 処理を行って回収した 上清について、 第 2鎖の合成を行った。 (42 ° C), and the second strand was synthesized from the supernatant collected after the treatment with streptavidin beads (CPG).
実施例 3 完全長 c D N Aクローンの塩基配列決定 Example 3 Nucleotide sequencing of full-length cDNA clone
( 1 ) クローンの r e a r r a y  (1) r e a r r a y of the clone
各クラスタからひとつの代表クローンを選んだ。代表クローンは Q—b o t (G ENET I X L I M I TED製) で選択し、 384穴プレートに a r r a yィ匕 した。 その際、 大腸菌は 30 °Cで 18〜 24時間、 50 Αί 1の L Β培地で培養し た。 このとき、 c DNAライブラリーが P Sベクターに導入され大腸菌 DH 10 Bを形質転換している場合には 10 Omg/m 1のアンピシリン及ぴ 5 Omg/ m 1のカナマイシンを添加し、 Z a pベクターに導入し、 SOLRシステムに導 入している場合には 10 Omg/m 1のアンピシリン及ぴ 25mg/m 1のスト レプトァビジンを添加して行った。 One representative clone was selected from each cluster. Representative clones were selected using Q-bot (manufactured by G ENET IXLIMI TED) and arrayed on a 384-well plate. At that time, E. coli was cultured at 50 ° C in LΒ medium at 30 ° C for 18 to 24 hours. At this time, the cDNA library was introduced into the PS vector and E. coli DH10 If B is transformed, add 10 Omg / m1 ampicillin and 5 Omg / m1 kanamycin, introduce into the Zap vector, and 10 Omg if introduced into the SOLR system. / m1 of ampicillin and 25 mg / m1 of streptavidin.
(2) プラスミドの抽出と I n s S i z i n g  (2) Extraction of plasmid and InsSizinng
上記 (1) で培養した各クローンは、 さらに 10 OmgZm 1のアンピシリン を含む 1. 3m 1の HT液中で培養され、 遠心分離により菌体を回収した後、 Q Each clone cultured in (1) above is further cultured in 1.3 ml HT solution containing 10 OmgZm1 ampicillin, and after collecting cells by centrifugation, Q
I Ap r e p 96 Tu r b o (Q I AG E N社製) を用いてプラスミド DN Aを回収、 精製した。 取得されたプラスミド中に挿入されている c DNAの鎖長 を調べるために、 上記で取得したプラスミド DNAの 1Z30を制限酵素 P V uPlasmid DNA was recovered and purified using I-Ap 96 Turbo (manufactured by QIAGEN). To check the chain length of the cDNA inserted in the obtained plasmid, 1Z30 of the plasmid DNA obtained above was
I Iで消化し、 1%の a g a r o s eゲル電気泳動を行った。 After digestion with II, 1% agarose gel electrophoresis was performed.
(3) 配列決定  (3) Sequence determination
かくして取得されたプラスミド中に挿入された完全長 c DN Aの全長の塩基配 列解析には、 3種類のシークェンサを用いた。 また、 プラスミドは挿入配列の長 さが 2.5 k bより短いものと長いものの 2つのカテゴリに分けた。このうち 2. 5 k bより短い挿入配列を有するクローンについては両端から塩基配列を解析し た。 その際、 プラスミ ドはベクターが P Sの場合には配列番号 7 (センス鎖) 、 及ぴ 8 (アンチセンス鎖) に記載のプライマーを用いて、 またベクターが Z a p の場合には配列番号 9 (センス鎖) 、 及ぴ 10 (アンチセンス鎖) に記載のプラ ィマーを用レヽて T h e rmo s e q u e n a s e P r i me r Cy c l e S e q u e n c i n g K i t Am e r s h am Ph a rma c i a B i Three types of sequencers were used for full-length nucleotide sequence analysis of the full-length cDNA inserted into the plasmid thus obtained. Plasmids were divided into two categories: those with insert sequences shorter than 2.5 kb and those with longer insert sequences. Of these clones, the clone having an insertion sequence shorter than 2.5 kb was analyzed for the nucleotide sequence from both ends. At this time, the plasmid was prepared using the primers described in SEQ ID NO: 7 (sense strand) when the vector was PS, and the primers described in SEQ ID NO: 8 (antisense strand), and SEQ ID NO: 9 (sense strand) when the vector was Zap. The primers described in (sense strand) and (antisense strand) 10 are used to determine the terminology of the primers.
0 t e c h社製) で反応し、 L i c o r DNA 4200 (l o n g r e a d s e q u e n c e r) を用いて解析した。 The reaction was performed using a DNA polymerase 4100 (LonggrEadseqeqencer).
上記塩基配列解析により解析ができなかつたギヤップは、 プライマウォーキン グ法により決定した。その際、 AB I P r i s m377及び/または AB I P r i sm3700 (Ap p l i e d B i o s y s t ems I n c. 製) と B The gap that could not be analyzed by the above nucleotide sequence analysis was determined by the primer walking method. At this time, AB I P r i s m377 and / or AB I P r i sm 3700 (manufactured by Appli i e D B i o s y s t ems I n c.) And B
1 g D y e t e rm i n a t o r k i tと Cy c l e S e q e n c i n g F S r e a d y Re a c t i o n K i t (A p l i e d B i o s y s t erns I n c. 製) を用レヽた。 1 g D yete rm inatorkit and Cycle S eqencin g FS ready Reaction Kit (made by Applied Biosystems Inc.) was used.
また、 挿入されている cDNAが 2. 5 k bより長いクローンの配列決定は、 ショットガン法によった。 その際、 Sh i ma d z u R I SA 384と DY En am i c ET t e rm i n a t o r c y c l e s e qu e n c i n g k i t (Am e r s h a m Ph a rma c i a B i o t e c h社製) を 用いた。 ショットガンライブラリを作製するために、 48の独立な代表クローン から PC Rで増殖した 48の DN Aフラグメントを用いた。 増幅された DN A断 片の末端を T 4 DNAポリメラーゼによって平滑化した。  In addition, sequencing of clones with inserted cDNAs longer than 2.5 kb was performed by the shotgun method. At that time, ShimadzuRISA 384 and DYEnamicETterminanatorcyclesesequenccinnggkit (Amersham PharmaciabBiotech) were used. To generate a shotgun library, 48 DNA fragments grown in PCR from 48 independent representative clones were used. The ends of the amplified DNA fragments were blunt-ended with T4 DNA polymerase.
この DNA断片を、 pUC 1 8ベクターへ挿入し、 更に該組み換えベクターに より大腸菌 DH10 Bを形質転換した。 この大腸菌から上記 (2) と同様にして プラスミド DN Aを調製した。  This DNA fragment was inserted into a pUC18 vector, and Escherichia coli DH10B was transformed with the recombinant vector. Plasmid DNA was prepared from this E. coli in the same manner as in (2) above.
それらの代表クローンについては、 両末端からの塩基配列解析によつて塩基配 列を決定し、 該塩基配列をコンピューター上で連結した後、 D o ub l e S t r o k e S h e a r i n g De v i c e (F i o r e I n c. 製) 【こよる s h e a r i n gを行った。 ショットガン法による塩基配列決定は、 12〜15 クローンの重複をもって行った。 この塩基配列決定により配列が決定できなかつ たギャップは、 上曾己と同様にプライマウォーキングによつて決定した。  For these representative clones, the nucleotide sequence was determined by nucleotide sequence analysis from both ends, and the nucleotide sequences were ligated on a computer, followed by double-stroke S hearing device (Fiore In c.) [Shearing was performed. Nucleotide sequencing by the shotgun method was performed with duplication of 12 to 15 clones. The gap for which the sequence could not be determined by the nucleotide sequence determination was determined by primer walking as in the case of KamiSonomi.
実施例 4 塩基配列の解析 Example 4 Analysis of base sequence
(1) d n a f o rm56243 (配列番号 1、 2 )  (1) d n a f o rm56243 (SEQ ID NOS: 1, 2)
d n a f o rm56243は、配列番号 1に示すように、 582塩基から成り、 そのうち塩基番号 290〜871までがオープンリーディングフレーム (終止コ ドンを含む) になっていた。 オープンリーディングフレームから予測されるアミ ノ酸配列は、 1 93アミノ酸残基から成る (配列番号 2)。配列番号 1に示す塩基 配列がコードするアミノ酸配列について B LASTを用いて相同性検索を行った ところ、 S PTRタンパク質データベース (SWI S S— PROTタンパク質配 列データベースと T r EMB L核酸翻訳データベースを統合したもの) 中に、 (1) データベース登録記号 Q9NZH8、 I NTERLEUK I N— 1 HO MO LOG 1 ( I NTERLEUK I N_ 1 E P S I L O N) 力 e— v a 1 u e : 7. 2 X 10— 3°で、 また 146アミノ酸残基に亘り 60%の一致度で、 ま た (i i) データベース登録記号 Q 9 UHA 7、 F I L 1 EPS I LONが、 e— v a l u e : 7. 3 X 10— 24で、 149ァミノ酸残基に亘り 46. 3 %の一 致度で、 さらに (i i i) データベース登録記号 Q 9 UHA 5、 F I L 1 ET Aが、 e— v a l u e : 6. 5 X 10— 21で、 144ァミノ酸残基に亘り 44. 5% の一致度でヒットした。 これらの結果より、 配列番号 2に示すァミノ酸配列から なるタンパク質は I L一 1受容体フアミリーとの相互作用活性を有することが推 測された。 As shown in SEQ ID NO: 1, dnafo rm56243 consists of 582 bases, of which base numbers 290 to 871 constitute an open reading frame (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 193 amino acid residues (SEQ ID NO: 2). When a homology search was performed using BLAST on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1, the S PTR protein database (SWI SS-PROT protein sequence database and the TrEMBL nucleic acid translation database were integrated. Stuff) (1) Database registration mark Q9NZH8, I NTERLEUK IN- 1 HO MO LOG 1 (I NTERLEUK I N_ 1 EPSILON) force e- va 1 ue: 7. In 2 X 10- 3 °, also over 146 amino acid residues 60 % in the degree of coincidence, or (ii) a database registration mark Q 9 UHA 7, FIL 1 EPS I LON is, e- value: 7. in 3 X 10- 24, over 149 Amino acid residue 46.3% in one致度further (iii) a database registration mark Q 9 UHA 5, FIL 1 ET a is, e- value: 6. in 5 X 10- 21, 144 Amino over acid residue 44.5% match Hit in degrees. From these results, it was estimated that the protein comprising the amino acid sequence shown in SEQ ID NO: 2 had an activity of interacting with the IL-11 receptor family.
また、 上記 (i) のタンパク質は、 データベース中の文献情報 (J. Biol. Chem. 2000, 275 (14): 10308-14) からィンターフェロン yまたは TNF α処理によりケ ラチノサイトでの発現が誘導されることが、 また上記 (i i) のタンパク質は、 データベース中の文献情報 (J. Biol. Chem. 275: 1169-1175 (2000) ) から脾臓、 胸腺、 白血球に発現しており、 LP S処理によりモノサイトでの発現が誘導され ること力 さらに上記(i i i) のタンパク質は、データベース中の文献情報(J. Biol. Chem. 275:1169-1175 (2000)) から骨髄や扁桃腺に発現しており、 LP S 処理によりモノサイトでの発現が誘導されることがそれぞれ明らかとなった。 また、 配列番号 1に示す塩基配列がコードするアミノ酸配列について、 HMM P F AMによるタンパク質特徴検索を行つたところ配列番号 1の塩基番号 440 〜868がコードするアミノ酸配列に I L— 1の特徴を示す配列 (P f amに I L 1としてエントリーされる塩基配列) を見出した。  In addition, the protein of the above (i) is induced in keratinocytes by treatment with interferon y or TNFα from literature information (J. Biol. Chem. 2000, 275 (14): 10308-14) in the database. The protein of (ii) is expressed in the spleen, thymus, and leukocytes according to literature information in the database (J. Biol. Chem. 275: 1169-1175 (2000)). The protein of (iii) is expressed in bone marrow and tonsils from the literature information in the database (J. Biol. Chem. 275: 1169-1175 (2000)). Thus, it was clarified that LPS treatment induced expression in monosites. When the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 1 was searched for protein characteristics using HMM PFAM, the amino acid sequence encoded by nucleotide numbers 440 to 868 in SEQ ID NO: 1 showed a sequence exhibiting IL-1 characteristics. (Base sequence that is entered as IL-1 in P f am).
これらのことから配列番号 1に示す塩基配列がコ一ドするタンパク質は、 I L 一 1受容体フアミリーとの相互作用活性を有し、 免疫応答や炎症反応を制御する 機能を有することが推測された。  From these facts, it was conjectured that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 1 had an interaction activity with IL-11 receptor family and had a function of controlling immune response and inflammatory response. .
(2) d n a f o rm60876 (配列番号 1 1、 12)  (2) d n a f o rm60876 (SEQ ID NOS: 11, 12)
d n a f o rm60876は、 配列番号 1 1に示すように、 1618塩基から 成り、 そのうち塩基番号 246〜509までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るアミノ酸配列は、 8 7アミノ酸残基から成る (配列番号 1 2)。配列番号 1 1に 示す塩基配列がコードするァミノ酸配列について BLASTを用いて相同性検索 を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタン パク質配列データベースと T r EMB L核酸翻訳データベースを統合したもの) 中に、 ( i)データベース登録記号 Q 98849、 GONADOTROP I N B ETA- I I CHA I N PRECURSOR (GTH- I I -BETA) (LUTE I N I Z I NG HORMONE- L I KE GTH)が e— v a l u e : 3 X 10 16で、 、 83アミノ酸残基に亘り 45%の一致度で、 また (i i) データベース登録記号 AAKO 7414. 1、 (AF 319960) l ii t e i n i a z l n g h o rmo n e b e t a s u b un i t力 e— v a l u e : 6 X 10 16で、 、 83アミノ酸残基に!:り 45%の一致度で、 さらに ( i i i ) データベース登録記号 CAB 93504. 1、· (AJ 251658) f o l 1 i c l e— s t imu l a t i n g h o rmo n e力 S e v a l u e : 4X 10 14で、 、 86アミノ酸残基に亘り 43%の一致度で、 さらに、 (i V) デー タベース登録記号 AAK08643. 1, (AY 026359) c h o r i o n i c g o n a d o t r o p i n b e t a s u b u n i t 1力 S e— v a l u e : 1 X 10-1°で、 、 86アミノ酸残基に亘り 37%の一致度でヒットした。 これらの結果より配列番号 1 2に示すァミノ酸配列からなるタンパク質は性腺刺 激ホルモン活性を有することが推測された。 dnafo rm60876 is, as shown in SEQ ID NO: 11, from 1618 bases. Of which, base numbers 246 to 509 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 87 amino acid residues (SEQ ID NO: 12). When a homology search was performed using BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 11, the S PTR protein database (SWI SS-PROT protein sequence database and the TrEMB L nucleic acid translation database were compared). during integrated ones), (i) a database registration mark Q 98849, GONADOTROP INB ETA- II CHA iN PRECURSOR (GTH- II -BETA) (LUTE INIZI NG HORMONE- LI KE GTH) is e- value: 3 X 10 16 in, at 45% of the degree of coincidence over the 83 amino acid residues, also (ii) a database registration mark AAKO 7414. 1, (AF 319960) l ii teiniazlngho rmo nebetasub un forces e- value: at 6 X 10 16, To 83 amino acid residues! : Ri 45% degree of coincidence, further (iii) a database registration mark CAB 93504. 1, · (AJ 251658 ) fol 1 icle- st imu latingho rmo ne force S evalue: at 4X 10 14,, 86 amino acid residues (I V) database registration code AAK08643.1, (AY 026359) chorionicgonadotropin betasubunit 1 force Se—value: 1 X 10 -1 °, over 86 amino acid residues Hits with 37% match. From these results, it was presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 12 had gonad stimulating hormone activity.
また、 配列番号 1 1に示す塩基配列がコードするアミノ酸配列について、 HM MPF AMによるタンパク質特徴検索を行ったところ配列番号 1 1の塩基番号 1 99〜531がコードするアミノ酸配列に糖タンパク質ホルモンの特徴を示す配 列 (P f amに 「Cy s— k n o t」 としてエントリーされる塩基配列) を見出 した。  The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 11 was subjected to a protein feature search using HM MPF AM, which revealed that the amino acid sequence encoded by the nucleotide numbers 199 to 531 in SEQ ID NO: 11 showed the characteristics of glycoprotein hormones. (A nucleotide sequence entered as “Cys-knot” in P f am) was found.
これらのことから配列番号 1 1に示す塩基配列がコードするタンパク質は性腺 刺激ホルモンとして機能する糖タンパク質ホルモンであることが推測された。 (3) dn a f o rm35363 (配列番号 13、 1 7) From these facts, it was presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 11 was a glycoprotein hormone that functions as a gonadotropin. (3) dn afo rm35363 (SEQ ID NOs: 13, 17)
d n a f o rm35363は、 配列番号 1 3に示すように、 3133塩基から 成り、そのうち塩基番号 43〜1 788までがオープンリーディングフレーム(終 止コドンを含む) になっていた。 オープンリーディングフレームから予測される ァミノ酸配列は、 58 1ァミノ酸残基から成る (配列番号 1 7)。配列番号 13に 示す塩基配列がコードするァミノ酸配列について BLASTを用いて相同性検索 を行ったところ、 S PTRタンパク質データベース (SWI S S—PROTタン パク質配列データベースと Tr EMBL核酸翻訳データベースを統合したもの) 中に、 ( i )データベース登録記号 A B 000216,RatmRNAfor CCA3, complete cds.力 S、 e— v a 1 u e : 0で、 また 542ァミノ酸残基に亘り 61 %の一致度 で、 ( i i )データベース登録記号 AF060219、 RCCl-like G exchanging factor RLG I e— v a l u e : 4X 1 (T12で、 152ァミノ酸残基に亘り 26 %の一致度 でヒットした。 これらの結果より配列番号 1 7に示すァミノ酸配列からなるタン パク質はタンパク質相互作用に関わることが推測された。 As shown in SEQ ID NO: 13, dnafo rm35363 consists of 3133 bases, of which base numbers 43 to 1788 constitute an open reading frame (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 58 1 amino acid residues (SEQ ID NO: 17). When a homology search was performed using BLAST on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 13, the S PTR protein database (SWI SS-PROT protein sequence database and Tr EMBL nucleic acid translation database integrated) (I) Database registration code AB 000216, RatmRNA for CCA3, complete cds. Force S, e-va 1 ue: 0, and 61% identity over 542 amino acid residues, (ii) Database registration mark AF060219, RCCl-like G exchanging factor RLG I e- value:. in 4X 1 (T 12, 152 Amino hit in 26% of the degree of coincidence over the acid residue Amino shown in SEQ ID NO: 1 7 from these results It was speculated that the protein consisting of the acid sequence is involved in protein interaction.
また、上記( i i )のタンパク質は、データベース中の文献情報(Genomics 1998 Nov 15 ;54(1) :99 - 106) から RCC1- related GEF familyらしいことが明らかとなつ た。  In addition, the above-mentioned protein (ii) was found to be RCC1-related GEF family from literature information (Genomics 1998 Nov 15; 54 (1): 99-106) in the database.
また、 配列番号 1 3に示す塩基配列がコードするァミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行ったところ 383- 499 のアミノ酸配列に タンパク質二量化に関わる特徴を示す配列(P f amに BTBとしてエントリーされ る塩基配列) を見出した。 また、 ankyrin repeat (P f a mエントリー ank) も 3 ケ所に見出された。  In addition, the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 13 was subjected to a protein feature search using HMMP FAM. As a result, the amino acid sequence of 383 to 499 showed a sequence (P f am Base sequence entered as BTB in Japan). Ankyrin repeat (Pfam entry ank) was also found in three places.
これらのことから配列番号 1 3に示す塩基配列がコードするタンパク質は細胞 内タンパク質相互作用ネットワークを解明するためのツールとして有用であるこ とが推測された。  From these facts, it was inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 13 is useful as a tool for elucidating the intracellular protein interaction network.
(4) dn a f o rm48060 (配列番号 14、 18)  (4) dn a f o rm48060 (SEQ ID NOs: 14, 18)
dn a f o rm48060は、 配列番号 14に示すように、 3824塩基から 成り、 そのうち塩基番号 84〜1883までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るァミノ酸配列は、 599ァミノ酸残基から成る (配列番号 18)。配列番号 14 に示す塩基配列がコードするアミノ酸配列について B LASTを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r EMB L核酸翻訳データベースを統合したも の) 中に、 ( i ) データベース登録記号 AB 0002 16、 Rat mRNA for CCA3, complete cds.力 e— v a l u e : 0. 0で、 また 560ァミノ酸残基に亘り 6 1 %の一致度で、 ( i i )データベース登録記号 AF060219、RCC1- like G exchanging factor RLGが、 e—v a l u e : 4X l CT12で、 1 52ァミノ酸残基に亘り 26 % の一致度でヒットした。 これらの結果より配列番号 1 8に示すアミノ酸配列から なるタンパク質はタンパク質相互作用に関わることが推測された。 dn afo rm48060, as shown in SEQ ID NO: 14, from 3824 bases Of which, base numbers 84 to 1883 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 599 amino acid residues (SEQ ID NO: 18). When a homology search was performed using BLAST on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 14, the SPTR protein database (SWI SS-PROT protein sequence database and the TrEMBL nucleic acid translation database were compared). (I) Database registration code AB000216, Rat mRNA for CCA3, complete cds. Force e—value: 0.0, and 61% identity over 560 amino acid residues in, (ii) a database registration mark AF060219, is RCC1- like G exchanging factor RLG, e -value: at 4X l CT 12, hit 26% degree of coincidence over 1 52 Amino acid residues. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 18 is involved in protein interaction.
また、上記( i i )のタンパク質は、データベース中の文献情報(Genomics 1998 Nov 15;54(1) :99-106) から RCC1 - related GEF familyらしいことが明らかとなつ た。  Further, it was revealed from the literature information (Genomics 1998 Nov 15; 54 (1): 99-106) that the protein of (ii) above seems to be the RCC1-related GEF family.
さらに、 配列番号 14に示す塩基配列がコ一ドするァミノ酸配列について、 H MMPF AMによるタンパク質特徴検索を行ったところ 401〜 517のァミノ 酸配列にタンパク質二量化に関わる特徴を示す配列(P f amに BTBとしてェント リーされる塩基配列) を見出した。 また、 ankyrin repeat (P f amエントリー ank) も 3ケ所に見出した。  Furthermore, a protein characteristic search by HMMPFAM was performed on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 14, and it was found that the amino acid sequences of 401 to 517 showed characteristics related to protein dimerization (Pf am, a base sequence that is entered as a BTB). Ankyrin repeat (P fam entry ank) was also found in three places.
これらのこと力ゝら、 配列番号 14に示す塩基酉己列がコードするタンパク質は細 胞内タンパク質相互作用ネットワークを解明するためのツールとして有用である ことが推測された。  From these facts, it was speculated that the protein encoded by the base sequence shown in SEQ ID NO: 14 is useful as a tool for elucidating the intracellular protein interaction network.
(5) d n a f o rm40331 (配列番号 15、 1 9)  (5) d n a f o rm40331 (SEQ ID NO: 15, 19)
d n a f o rm40331は、 配列番号 15に示すように、 4446塩基から 成り、 そのうち塩基番号 204〜1004までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るアミノ酸配列は、 266アミノ酸残基から成る (配列番号 19)。配列番号 1 5 に示す塩基配列がコードするァミノ酸配列について BLASTを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r EMB L核酸翻訳データベースを統合したも の)中に、 ( i ) データベース登録記号 A L 035703、 novel BTB/POZ domain containing zinc finger protein力 S、 e— v a l u e : 3 X 10一92で、 また 23 3アミノ酸残基に亘り 74%の一致度で、 ( i i ) データベース登録記号 Q 1 3 105、 Zinc finger protein 151が、 e— v a l u e : 8 X 1 CT15で、 255ァ ミノ酸残基に!:り 27%の一致度でヒットした。 これらの結果より配列番号 1 9 に示すァミノ酸配列からなるタンパク質はタンパク質相互作用に関わることが推 測された。 As shown in SEQ ID NO: 15, dnafo rm40331 consists of 4446 bases, of which base numbers 204 to 1004 constitute an open reading frame (including a stop codon). Predicted from open reading frames The amino acid sequence consists of 266 amino acid residues (SEQ ID NO: 19). When a homology search was performed using BLAST on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 15, the SPTR protein database (SWISS-PROT protein sequence database and the TrEMBL nucleic acid translation database) during also show) with integrated, (i) a database registration mark AL 035703, novel BTB / POZ domain containing zinc finger protein force S, e- value: with 3 X 10 one 92, also over 23 3 amino acid residues 74 in% degree of coincidence, (ii) a database registration mark Q 1 3 105, Zinc finger protein 151 is, e- value: at 8 X 1 CT 15, 255 § amino acid residue! : R Hit with 27% match. From these results, it was estimated that the protein consisting of the amino acid sequence shown in SEQ ID NO: 19 is involved in protein interaction.
また、 上記 (i i) のタンパク質は、 データベース中の文献情報 (Curr Top Microbiol Immunol 1997 ;224: 137-46) から Mycタンパク質と相互作用することが 明らかとなった。  In addition, the above-mentioned protein (ii) was found to interact with the Myc protein from literature information in the database (Curr Top Microbiol Immunol 1997; 224: 137-46).
さらに、 配列番号 15に示す塩基配列がコードするァミノ酸配列について、 H MMP F AMによるタンパク質特徴検索を行ったところ 8〜 1 17のアミノ酸配 列にタンパク質二量化に関わる特徴を示す配列(P f a mに BTBとしてェントリー される塩基配列) を見出した。  Further, the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 15 was searched for protein characteristics by HMMP FAM. As a result, the amino acid sequence of 8 to 117 showed a sequence (P fam (A base sequence that is entered as a BTB).
これらのこと力、ら、 配列番号 15に示す塩基配列がコードするタンパク質は細 胞内タンパク質相互作用ネットワークを解明するためのツールとして有用である ことが推測された。  From these facts, it was presumed that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 15 was useful as a tool for elucidating the intracellular protein interaction network.
(6) dn a f o rm39540 (配列番号 16、 20 )  (6) dn a f o rm39540 (SEQ ID NO: 16, 20)
dn a f o rm39540は、 配列番号 1 6に示すように、 2752塩基から 成り、 そのうち塩基番号 1 1 7〜2387までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るァミノ酸配列は、 756ァミノ酸残基から成る (配列番号 20)。配列番号 1 6 に示す塩基配列がコードするアミノ酸配列について B LAS Tを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r EMBL核酸翻訳データベースを統合したも の) 中に、 ( i )データベース登録記号 BC016477、Unknown (protein for MGC: 17368) が、 e_v a l u e : 5 X l (Γ110で、 また 248ァミノ酸残基に亘り 78 %の一 致度で、 ( i i )データベース登録記号 AF349561、 myoneurinが、 e— v a 1 u e : 3 X 10-71で、 665アミノ酸残基に亘り 28%の一致度でヒットした。 これら の結果より配列番号 20に示すアミノ酸配列からなるタンパク質はタンパク質相 互作用に関わることが推測された。 As shown in SEQ ID NO: 16, dnafo rm39540 was composed of 2752 bases, of which base numbers 117 to 2387 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 756 amino acid residues (SEQ ID NO: 20). The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 16 was subjected to homology detection using BLAST. The search revealed that in the SPTR protein database (the SWI SS—PROT protein sequence database and the TrEMBL nucleic acid translation database were integrated), (i) the database registration code BC016477, Unknown (protein for MGC: 17368) is, e_v alue: 5 X l (in gamma 110, and in 78% one致度over 248 Amino acid residues, (ii) a database registration mark AF349561, myoneurin, e- va 1 ue : 3 X A hit was found with 28% identity over 665 amino acid residues from 10 to 71. These results suggest that a protein consisting of the amino acid sequence shown in SEQ ID NO: 20 is involved in protein interaction.
また、上記( i i )のタンパク質は、データベース中の文献情報(BiochemBiophys Res Co腿 un 2000 Jun 24; 273 (1) :385 - 91) から、 様々な種で転写の活性化と抑制 の両方に関わることが明らかとなつた。  In addition, the protein (ii) is involved in both transcriptional activation and repression in various species, based on the literature information in the database (Biochem Biophys Res Co., 2000 Jun 24; 273 (1): 385-91). It became clear.
さらに、 配列番号 16に示す塩基配列がコードするアミノ酸配列について、 H MMPF AMによるタンパク質特徵検索を行ったところ 9〜121のアミノ酸配 列にタンパク質二量化に関わる特徴を示す配列(P f amに BTBとしてェントリー される塩基配列) を見出した。 また, Zinc finger domain (P f a mの zf - C2H2 エントリー)も 7ケ所で見出した。  Furthermore, a protein-specific search was performed on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 16 by using HMMPFAM. As a result, the amino acid sequence of 9 to 121 showed a sequence (Pfam containing BTB (A base sequence that is entered as a). We also found the Zinc finger domain (Zf-C2H2 entry of P fam) in seven places.
これらのことから、 配列番号 16に示す塩基配列がコードするタンパク質は細 胞内タンパク質相互作用ネットワークを解明するためのツールとして有用である ことが推測された。  From these facts, it was presumed that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 16 was useful as a tool for elucidating the intracellular protein interaction network.
(7) d n a f o r m43059 (配列番号 21、 23)  (7) dnaform43059 (SEQ ID NOS: 21, 23)
d n a f o rm43059は、 配列番号 21に示すように、 3421塩基から 成り、 そのうち塩基番号 297〜2507までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るァミノ酸配列は、 736ァミノ酸残基から成る (配列番号 23)。配列番号 21 に示す塩基配列がコードするァミノ酸配列について B L A S Tを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r E MB L核酸翻訳データベースを統合したも の) 中に、 (i ) データベース登録記号 HSAB2316、 KIAA0318 gene, partial cds (Homo sapiens)が、 e— v a l u e : 0で、 7 2 5ァミノ酸残基に亘り 7 5 %の 一致度で、 また (i i ) データべ一ス登録記号 AY072908、 RIM- binding protein 2 (chicken)が、 e— v a l u e : 0で、 7 2 2ァミノ酸残基に亘り 72 %の一致度 でヒットし、 さらに (i i i ) データベース登録記号 AF039571、 peripheral benzodiazepine receptor interacting protein (Homo sapiens) 力 e— v a 1 u e : 5 X 1 0— 118で、 7 6 6アミノ酸残基に;!:り 3 7%の一致度でヒッ トした。 これらの結果より、 配列番号 2 1に示す塩基配列がコードするタンパク質、 また は配列番号 2 3に示すァミノ酸配列からなるタンパク質は RIM - binding proteinの 1種であることが推測された。 As shown in SEQ ID NO: 21, dnafo rm43059 consists of 3421 bases, of which base numbers 297 to 2507 constitute an open reading frame (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 736 amino acid residues (SEQ ID NO: 23). When a homology search was performed using BLAST on the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 21, the S PTR protein database (SWI SS—PROT protein sequence database and the TrEML nucleic acid translation database) Also integrated In (i) the database registration symbols HSAB2316, KIAA0318 gene, partial cds (Homo sapiens) have an e-value of 0, with 75% identity over 72 amino acid residues, and ( ii) Database registration code AY072908, RIM-binding protein 2 (chicken) hit with 72% identity over 72 amino acid residues at e-value: 0, and (iii) database registration symbol AF039571, peripheral benzodiazepine receptor interacting protein ( Homo sapiens) force e- va 1 ue: in 5 X 1 0- 118, 7 6 6 to amino acid residues;! : 37 Hits with 7% match. From these results, it was inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 21 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 23 is a kind of RIM-binding protein.
RIM- binding proteinは神経伝達物質の分泌に関与していると考えられるので、 本発明タンパク質の発現制御物質、 機能賦活物質、 あるいは機能阻害物質は、 神 経伝達の異常に関与する疾患、 例えばアルツハイマー型痴呆、 パーキンソン病、 舞踏病、 虚血性脳疾患、 糖尿病性末梢神経障害などの治療薬として開発できる可 能性がある。  Since the RIM-binding protein is considered to be involved in the secretion of neurotransmitters, the expression regulator, function activator, or function inhibitor of the protein of the present invention may be a disease involved in abnormal neurotransmission, such as Alzheimer's disease. It may be developed as a therapeutic agent for type dementia, Parkinson's disease, chorea, ischemic brain disease, diabetic peripheral neuropathy, etc.
(8) d n a f o r m5 0 0 3 4 (配列番号 2 2、 24)  (8) d n a f o r m5 0 0 3 4 (SEQ ID NOS: 22, 24)
d n a f o r m5 0 0 34は、 配列番号 2 2に示すように、 4 0 8 0塩基から 成り、 そのうち塩基番号 7 24〜3 9 3 9までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るァミノ酸配列は、 1 0 7 1ァミノ酸残基から成る (配列番号 2 4)。配列番号 2 2に示す塩基配列がコードするァミノ酸配列について B LAS Tを用いて相同性 検索を行ったところ、 S PTRタンパク質データベース (SW I S S— PROT タンパク質配列データベースと T r EMB L核酸翻訳データベースを統合したも の) 中に、 (i ) データベース登録記号 HSAB2316、 KIAA0318 gene, partial cds (Homo sapiens) fK e - v a l u e : 0で、 1 0 7 7ァミノ酸残基に亘り 8 1 % の一致度で、 また (i i ) データベース登録記号 AY072908、 RIM- binding protein 2 (chicken)が、 e— v a 1 u e : 0で、 8 1 3ァミノ酸残基に亘り 7 5 %の一致 度でヒッ トし、 さらに (i i i ) データベース登録記号 AF199337、 RIM binding protein 1A (RbplA) mRNA, partial cds (Rattus) 力 S、 e— v a l u e : 5 X 1 0一111で、 84 3アミノ酸残基に亘り 3 5%の一致度でヒットした。 これらの結果 より、 配列番号 2 2に示す塩基配列がコードするタンパク質、 または配列番号 2 4に示すアミノ酸配列からなるタンパク質は RIM- binding proteinの 1種である ことが推測された。 As shown in SEQ ID NO: 22, dnaform50434 was composed of 480 bases, of which base numbers 724 to 3939 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 1071 amino acid residues (SEQ ID NO: 24). When a homology search was performed using the BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 22, the S PTR protein database (SW ISS—PROT protein sequence database and the TrEMB L nucleic acid translation database were compared). (I) Database registration symbols HSAB2316, KIAA0318 gene, partial cds (Homo sapiens) fK e-value: 0, with 81% identity over 107,7 amino acid residues And (ii) the database registration symbol AY072908, RIM-binding protein 2 (chicken) has an e-va 1 ue of 0 and a 75% agreement over 813 amino acid residues Was hit in degrees, yet (iii) a database registration mark AF199337, RIM binding protein 1A (RbplA ) mRNA, partial cds (Rattus) force S, e- value: at 5 X 1 0 one 111, to 84 3 amino acid residues Hits were made with a matching score of 35%. From these results, it was inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 22 or the protein consisting of the amino acid sequence shown in SEQ ID NO: 24 was a kind of RIM-binding protein.
RIM - binding proteinは神経伝達物質の分泌に関与していると考えられるので、 本発明タンパク質の発現制御物質、 機能賦活物質、 あるいは機能阻害物質は、 神 経伝達の異常に関与する疾患、 例えばアルツハイマー型痴呆、 パーキンソン病、 舞踏病、 虚血性脳疾患、 糖尿病性末梢神経障害などの治療薬として開発できる可 能性がある。  Since RIM-binding protein is considered to be involved in the secretion of neurotransmitters, the expression regulator, function activator, or function inhibitor of the protein of the present invention may be used in diseases involving abnormal neurotransmission, such as Alzheimer's disease. It may be developed as a therapeutic agent for type dementia, Parkinson's disease, chorea, ischemic brain disease, diabetic peripheral neuropathy, etc.
(9) d n a f o r m5448 2 (配列番号 25、 26)  (9) dnaform5448 2 (SEQ ID NOS: 25 and 26)
d n a f o r m5448 2は、 配列番号 2 5に示すように、 1 5 3 1塩基から 成り、 そのうち塩基番号 1 2 5〜59 5までがオープンリ一ディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るアミノ酸配列は、 1 5 6アミノ酸残基から成る (配列番号 26)。配列番号 2 5 に示す塩基配列がコードするアミノ酸配列について B LASTを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r EMB L核酸翻訳データベースを統合したも の) 中に、 ( i ) データベース登録記号 Q13490、 Baculoviral IAP  As shown in SEQ ID NO: 25, dnaform54482 was composed of 1531 bases, of which base numbers 125 to 595 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 156 amino acid residues (SEQ ID NO: 26). When a homology search was performed using BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 25, the SPTR protein database (SWISS-PROT protein sequence database and the TrEMBL nucleic acid translation database) (I) Database registration code Q13490, Baculoviral IAP
repeat-containing protein 3力 s、 e— v a l u e : 2 X 1 0— 20で、 ま 7こ 1 5 6ァ ミノ酸残基に亘り 3 5 %の一致度で、また i )データベース登録記号 Q90660、 Inhibitor of apoptosis protein力、 e— v a 1 u e : 1 X 1 0一18で、、 6 ί 7 ^ ノ酸残基に亘り 5 3 %の一致度で、さらに( i i i )データベース登録記号 P41436、 Apoptosis inhibitor IAPが、 e— v a l u e : 2 X 1 0_17で、 1 54ァミノ酸残 基に亘り 30%の一致度でヒッ トした。 これらの結果より配列番号 26に示すァ ミノ酸配列からなるタンパク質はアポトーシス抑制作用を有するタンパク質であ ることが推測された。 repeat-containing protein 3 s , e—value: 2 X 10-20 , with 7% of the amino acid residues at 35% identity, and i) database registration symbols Q90660, Inhibitor of apoptosis protein force, e- va 1 ue: 1 in X 1 0 one 18 ,, 6 ί 7 ^ Bruno over acid residues 5 3% degree of coincidence, further (iii) a database registration mark P41436, apoptosis inhibitor IAP but, e- value: in 2 X 1 0 _17, was hit with 30% degree of coincidence over 1 54 Amino acid residues. From these results, the protein consisting of the amino acid sequence shown in SEQ ID NO: 26 has apoptosis-suppressing activity. Was speculated.
また、上記( i )のタンパク質は、データベース中の文献情報(Nat. Struct. Biol. 6:648-651(1999)) からアポトーシスの抑制に関わることが、 また上記( i i) の タンパク質は、 データベース中の文献情報 (DNA Cell Biol. 15: 981-988 (1996)) から T細胞のアポトーシスの抑制に関わることが、 さらに上記(i i i) のタンパ ク質は、 データベース中の文献情報 (J. Virol. 67:2168-2174(1993)) から細胞 のアポトーシスの抑制に関わることがそれぞれ明らかとなつた。  The protein (i) is related to the inhibition of apoptosis based on literature information (Nat. Struct. Biol. 6: 648-651 (1999)) in the database, and the protein (ii) is From the literature information (DNA Cell Biol. 15: 981-988 (1996)), it is implicated in the suppression of T cell apoptosis, and the protein (iii) is described in the database information (J. Virol 67: 2168-2174 (1993)), it was clarified that they are involved in the suppression of cell apoptosis.
また、 配列番号 25に示す塩基配列がコードするアミノ酸配列について、 HM MP F AMによるタンパク質モチーフ検索を行ったところ配列番号 26のァミノ 酸番号 96〜 1 56に Baculovirus Inhibitor of apoptosis protein Repeat (P f amに BIRとしてエントリーされるアミノ酸配列、 IAP repeatとも記載される) を見出した。  The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 25 was searched for a protein motif using HMMP FAM.As a result, amino acid numbers 96 to 156 in SEQ ID NO: 26 were found to have Baculovirus Inhibitor of apoptosis protein Repeat (P f am Amino acid sequence that is entered as BIR, also described as IAP repeat).
これらのことから配列番号 25に示す塩基配列がコードするタンパク質はアポ トーシスの抑制に関わる機能を有するタンパク質であることが推測された。  From these facts, it was presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 25 was a protein having a function related to suppression of apoptosis.
(10) dn a f o rm36789 (配列番号 27、 28)  (10) dn a f o rm36789 (SEQ ID NOs: 27 and 28)
d n a f o rm36789は、 配列番号 27に示すように、 3541塩基から 成り、 そのうち塩基番号 1372〜26 1 3までがオープンリーディングフレー ムになっていた。オープンリーディングフレームから予測されるアミノ酸配列は、 413ァミノ酸残基から成る (配列番号 28)。配列番号 27に示す塩基配列がコ 一ドするアミノ酸配列について B LASTを用いて相同性検索を行ったところ、 S PTRタンパク質データベース (SWI S S— PRO Tタンパク質配列データ ベースと T r EMB L核酸翻訳データベースを統合したもの) 中に、 ( i) デー タへース登録 gii号 P27590、 Uromodulin precursor (Tamm-Horsf all urinary glycoprotein)が、 e— v a l u e : l X l CT23で、 31 3アミノ酸残基に亘り 2 9%の一致度で、 また (i i ) データベース登録記号 M58716、 zymogen granule membrane protein GP - 2が、 e—v a l u e : l X l 0— 16で、 また 285アミノ酸 残基に亘り 29%の一致度で、 さらに (i i i) データベース登録記号 U44949、 zona pellucida A glycoprotein homolog力 S、 e— v a l u e : 1 X 1 0一14で、 2 6 5ァミノ酸残基に 1り 2 3 %の一致度でヒットした。 これらの結果より配列 番号 2 8に示すアミノ酸配列からなるタンパク質は分泌顆粒膜に存在する糖タン パク質であることが推測された。 As shown in SEQ ID NO: 27, dnafo rm36789 was composed of 3541 bases, of which base numbers 1372 to 2613 were open reading frames. The amino acid sequence predicted from the open reading frame consists of 413 amino acid residues (SEQ ID NO: 28). When a homology search was performed using BLAST for the amino acid sequence encoding the nucleotide sequence shown in SEQ ID NO: 27, the S PTR protein database (SWI SS-PRO T protein sequence database and the TrEMBL nucleic acid translation database) during those that have been integrated) a, is (i) over to the data be registered gii No. P27590, Uromodulin precursor (Tamm-Horsf all urinary glycoprotein), e- value: in l X l CT 23, over a period of 31 3 amino acid residues 2 9% degree of coincidence, also (ii) a database registration mark M58716, zymogen granule membrane protein GP - 2 is, e-value: at l X l 0- 16, also 29% of the degree of coincidence over the 285 amino acid residues And (iii) the database registration symbol U44949, zona pellucida A glycoprotein homolog force S, e- value: 1 X 1 0 one 14 was hit by one are two 3% coincidence degree 2 6 5 Amino acid residues. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 28 was a glycoprotein present in secretory granule membrane.
また、 上記 (i ) のタンパク質である THP (Ta腿 - Horsfallタンパク質、 腎臓膜 タンパク質) および GP-2 (膝臓の分泌顆粒膜の主要な糖タンパク質) は、 glycosylphosphatidylinositol (GPI)を介して先端分泌コンパ一トメントの分泌 顆粒膜に結合しており、 p Hやイオン依存的に集合し顆粒の分泌に関与することが 報告されている (Proc. Natl. Acad. Sci. USA 89,(1992) 1189 - 1193) 。 上記 ( i i ) のタンパク質 GP- 2 (勝臓の酵素前駆体顆粒膜の主要な糖タンパク質) は、 デ ータベース中の文献情報 (J. Biol. Chem. 266 (1991) 4257-63) から GPIをアンカ 一として分泌膜に結合しており膝臓細胞の先端表面から分泌されることが、 それ ぞれ明らかとなった。  In addition, the above-mentioned proteins (i), THP (Ta thigh-horsfall protein, kidney membrane protein) and GP-2 (a major glycoprotein of secretory granule membrane of the knee) are secreted apically via glycosylphosphatidylinositol (GPI). Compartment secretion It has been reported that it is bound to the granule membrane and aggregates in a pH- and ion-dependent manner and is involved in the secretion of granules (Proc. Natl. Acad. Sci. USA 89, (1992) 1189) -1193). The above-mentioned (ii) protein GP-2 (the major glycoprotein of the zymogen granule membrane of the viscera) can be obtained from the GPI based on literature information (J. Biol. Chem. 266 (1991) 4257-63) in the database. It was revealed that the anchor was bound to the secretory membrane and secreted from the apical surface of the knee cell.
また、 配列番号 2 7に示す塩基配列がコードするァミノ酸配列について、 HM M P F AMによるタンパク質特徴検索を行ったところ塩基番号 1 6 3 6〜2 3 6 8がコードするアミノ酸配列に受容体様の糖タンパク質の特徴を示す配列 (P f a mに Zona pellucida- like domainとしてェントリーされる塩基配列) を見出し た。また、この配列の下流には GPIアンカー領域が繋がることが多いことも知られ ている。  In addition, the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 27 was subjected to a protein feature search using HM MPF AM, and the amino acid sequence encoded by nucleotide numbers 1636 to 2368 was found to have a receptor-like amino acid sequence. A sequence exhibiting the characteristics of a glycoprotein (a base sequence that is entered as a Zona pellucida-like domain in P fam) was found. It is also known that a GPI anchor region is often connected downstream of this sequence.
さらに、 配列番号 2 7に示す塩基配列がコードするアミノ酸配列について、 膜 貫通へリックスを予測するプログラム t mHMM (S. Moller, M. D. R. Croning, R. Apweiler. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics, 17 (7) : 646- 653, 2001. ) を用いて膜貫通部位を予測 したところ、 配列番号 2 8のァミノ酸番号 3 6 6〜 3 8 8に膜貫通部位が予測さ れた。 このことから、 該塩基配列がコードするタンパク質は、 膜に局在すること が推測された。  Furthermore, for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 27, a program for predicting a transmembrane helix t mHMM (S. Moller, MDR Croning, R. Apweiler.Evaluation of methods for the prediction of membrane spanning regions. When transmembrane sites were predicted using Bioinformatics, 17 (7): 646-653, 2001.), transmembrane sites were predicted at amino acids 36-38 of SEQ ID NO: 28. This suggested that the protein encoded by the nucleotide sequence was localized on the membrane.
これらのことから配列番号 2 7に示す塩基配列がコードするタンパク質は、 GPI ァンカーを介して分泌顆粒膜に結合し、 分泌顆粒の集合や分泌に関与する機能を 有する糖タンパク質、 即ちゥロモジュリン様活性を有するタンパク質であること が推測された。 From these facts, the protein encoded by the nucleotide sequence of SEQ ID NO: 27 is a GPI It was presumed that it was a glycoprotein that binds to the secretory granule membrane via an anchor and has a function related to the assembly and secretion of secretory granules, that is, a protein having peromodulin-like activity.
(1 1) dn a f o rm28658 (配列番号 29、 31)  (1 1) dn a f o rm28658 (SEQ ID NO: 29, 31)
d n a f o rm28658は、 配列番号 29に示すように、 2313塩基から 成り、 そのうち塩基番号 68〜1597までがオープンリーディングフレーム (終止コドンを含む)になっていた。オープンリーディングフレームから予測され るアミノ酸配列は、 509アミノ酸残基から成る (配列番号 3 1)。配列番号 29 に示す塩基配列がコードするアミノ酸配列について B LAS Tを用いて相同性検 索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROTタ ンパク質配列データベースと T r EMB L核酸翻訳データベースを統合したも の) 中に、 (i) データベース登録記号 P17453、 Bactericidal  As shown in SEQ ID NO: 29, dnaform28658 was composed of 2313 bases, of which base numbers 68 to 1597 were open reading frames (including a stop codon). The amino acid sequence predicted from the open reading frame consists of 509 amino acid residues (SEQ ID NO: 31). When a homology search was performed using the BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 29, the SPTR protein database (SWISS-PROT protein sequence database and TrEMBL nucleic acid translation database) (I) Database registration code P17453, Bactericidal
permeability— increasing protein precursor力、 e— v a l u e : 2 X 10 "2 で、 また 476アミノ酸残基に亘り 28%の一致度で、 また (i i) データべ一 ス登 己号 Ρ55065、 Phospholipid transfer protein precursor力 \ e— v a 1 u e : 4X 10— 37で、 497アミノ酸残基に亘り 23%の一致度で、 さらに (i i i ) データベース登録言己"^ PI 7454、 Lipopolysaccharide-binding protein precursorが、 e— v a l u e : 9 X 10— 35で、 457ァミノ酸残基に!:り 23 % の一致度でヒットした。 これらの結果より配列番号 31に示すアミノ酸配列から なるタンパク質は脂質結合タンパク質であることが推測された。 permeability—increase protein precursor power, e—value: 2 × 10 " 2 , with 28% identity over 476 amino acid residues, and (ii) database No. 己 55065, Phospholipid transfer protein precursor power \ e- va 1 ue: at 4X 10- 37, at 23% of the degree of match over the 497 amino acid residues, and further (iii) database registration saying his own "^ PI 7454, Lipopolysaccharide-binding protein precursor is, e- value: 9 X 10—35 to 457 amino acid residues! : Hit with a 23% match. From these results, it was inferred that the protein consisting of the amino acid sequence shown in SEQ ID NO: 31 was a lipid binding protein.
また、 上記 (i) のタンパク質は、 データベース中の文献情報 (Nucleic Acids Res. 18:3052-3052(1990))からグラム陰性菌に対する細胞毒活性に関わることが、 また上記 (i i) のタンパク質は、 データベース中の文献情報 (J. Biol. Chem. 270: 17133 - 17138 (1995)) から HDLなどのリン脂質の輸送と調節に関わることが、 さらに上記 (i i i) のタンパク質は、 データベース中の文献情報 (Science 249:1429-1431 (1990) )からリポ多糖類との結合に関わることがそれぞれ明らかと なった。 また、 配列番号 29に示す塩基配列がコードするァミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行つたところ配列番号 31のアミノ酸番 号 26〜 242に脂質結合の糖タンパク質の特徴を示す配列 (P f a mに LBP— BPI— CETP— Cとしてエントリーされる塩基配列) を見出した。 The protein (i) may be involved in cytotoxic activity against Gram-negative bacteria from literature information (Nucleic Acids Res. 18: 3052-3052 (1990)) in the database, and the protein (ii) From the literature information in the database (J. Biol. Chem. 270: 17133-17138 (1995)), it is involved in the transport and regulation of phospholipids such as HDL. Information (Science 249: 1429-1431 (1990)) has revealed that each is involved in binding to lipopolysaccharides. The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 29 was subjected to protein characteristic search using HMMP FAM. As a result, it was found that amino acids 26 to 242 of SEQ ID NO: 31 show characteristics of lipid-linked glycoprotein (Base sequence entered as PBP as LBP-BPI-CETP-C).
これらのことから配列番号 29に示す塩基配列がコードするタンパク質は脂質 結合タンパク質であることが推測された。  From these facts, it was presumed that the protein encoded by the nucleotide sequence of SEQ ID NO: 29 was a lipid-binding protein.
(12) d n a f o rm25641 (配列番号 30、 32)  (12) d n a f o rm25641 (SEQ ID NOS: 30, 32)
d n a f o rm25641は、 配列番号 30に示すように、 1782塩基から 成り、 そのうち塩基番号 57〜151 7までがオープンリーディングフレーム As shown in SEQ ID NO: 30, dnaform25641 consists of 1782 bases, of which base numbers 57 to 1517 have an open reading frame.
(終止コドンを含む) になっていた。 オープンリーディングフレームから予測さ れるァミノ酸配列は、 486ァミノ酸残基から成る (配列番号 32)。配列番号 3 0に示す塩基配列がコードするァミノ酸配列について B L A S Tを用いて相同性 検索を行ったところ、 S PTRタンパク質データベース (SWI S S— PROT タンパク質配列データペースと T r EMB L核酸翻訳データベースを統合したも の) 中に、 (i) データベース登録記号 P17213、 Bactericidal (Including the stop codon). The amino acid sequence predicted from the open reading frame consists of 486 amino acid residues (SEQ ID NO: 32). A homology search was performed using BLAST for the amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30, and the S PTR protein database (SWI SS—PROT protein sequence database and T r EMB L nucleic acid translation database were integrated. (I) Database registration code P17213, Bactericidal
permeability— increasing protein precursor力 Λ、 e—— v a l u e : 5 X丄 0一148 で、 また 484アミノ酸残基に亘り 53%の一致度で、 また (i i) データべ一 ス登驟 H己号 18428、 Lipopolysaccharide— binding protein precursor力 S、 e— v a 1 u e : 2 X 10— 96で、 472ァミノ酸残基に亘り 38 %の一致度で、 さらに i i i ) ァータベー
Figure imgf000071_0001
Phospholipid transfer protein precursor 力 e— v a 1 u e : 2 X 10— 33で、 476ァミノ酸残基に亘り 25 % の一致度でヒットした。 これらの結果より配列番号 32に示すァミノ酸配列から なるタンパク質は脂質結合タンパク質であることが推測された。
permeability- increasing protein precursor force Λ, e-- value: 5 X丄0 in one 148, also at 53% degree of coincidence over the 484 amino acid residues, also (ii) data base one scan Noboru驟H himself No. 18428, Lipopolysaccharide- binding protein precursor force S, e- va 1 ue: with 2 X 10- 96, with 38% degree of coincidence over the 472 Amino acid residue, further iii) Atabe
Figure imgf000071_0001
From Phospholipid transfer protein precursor force e- va 1 ue: with 2 X 10- 33, hit with 25% degree of coincidence over the 476 Amino acid residues. From these results, it was presumed that the protein consisting of the amino acid sequence shown in SEQ ID NO: 32 was a lipid binding protein.
また、 上記 (i) のタンパク質は、 データベース中の文献情報 (J. Biol. Chem. 269:17411-17416(1994)) からリポ多糖類との結合に関わること力 また上記(i i )のタンパク質は、データベース中の文献情報 (Science 249: 1429-1431 (1990) ) からリポ多糖類との結合に関わること力 さらに上記(i i i)のタンパク質は、 データベース中の文献情報 (J. Biol. Chem. 270: 17133-17138 (1995) ) から HDL などのリン脂質の輸送と調節に関わることがそれぞれ明らかとなった。 In addition, the protein of the above (i) has the ability to be involved in binding to lipopolysaccharides from the literature information in the database (J. Biol. Chem. 269: 17411-17416 (1994)). From the literature information in the database (Science 249: 1429-1431 (1990)), the ability to participate in binding to lipopolysaccharides. Literature information in the database (J. Biol. Chem. 270: 17133-17138 (1995)) revealed that it is involved in the transport and regulation of phospholipids such as HDL, respectively.
また、 配列番号 30に示す塩基配列がコードするアミノ酸配列について、 HM MP F AMによるタンパク質特徴検索を行つたところ配列番号 32のァミノ酸番 号 28〜242に脂質結合の糖タンパク質の特徴を示す配列 (P f amに LBP— BPI—CETPとしてェントリーされる塩基配列) を見出した。  The amino acid sequence encoded by the nucleotide sequence shown in SEQ ID NO: 30 was subjected to a protein feature search using HMMP FAM. As a result, the amino acid numbers 28 to 242 in SEQ ID NO: 32 showed the amino acid sequences having lipid-linked glycoprotein characteristics. (Base sequence that is entered as LBP-BPI-CETP at P f am).
これらのこと力 ら配列番号 30に示す塩基配列がコードするタンパク質は脂質 結合タンパク質であることが推測された。  From these results, it was inferred that the protein encoded by the nucleotide sequence shown in SEQ ID NO: 30 was a lipid-binding protein.
実施例 5 DN Aマイクロアレーを用いた組織発現解析 Example 5 Analysis of tissue expression using DNA microarray
組織発現解析は、 Miki, R., et al. , Proc. Natl. Acad. Sci. USA, 98, 2199-2204 (2001)の記載に従つて行つた。  Tissue expression analysis was performed as described in Miki, R., et al., Proc. Natl. Acad. Sci. USA, 98, 2199-2204 (2001).
(1) DNAマイクロアレーの作成  (1) Preparation of DNA microarray
解析対象のマウス完全長 c DNAの塩基配列 (d n a f o rm35363およ ぴ d n a f o rm48060) と同じクラスタに属するマウス c DNAライブラ リー FAN TOM (http://fantom.gsc.riken.go.jp/) 由来の c DNAの塩基酉己 列 (F ANTOM NO : 6330404E 16) を、 M1 3フォヮ一ドおよび リバースプライマーを用いて増幅後、 この PC R産物をィソプロパノールにて沈 澱させ 15/ 1の 3 X S S C液に溶解した。 この DN A溶液をポリ Lリジンコー トしたガラススライドに、 16チップ (SMP 3、 T e l e Ch em I n t e r n a t i o n a l、 Sunny v a l e、 C A) の DNAァレイヤーを用いてス ポットし、 DNAマイクロアレーを作成した (方法の詳細は  The mouse cDNA library FAN TOM (http://fantom.gsc.riken.go.jp/) belonging to the same cluster as the nucleotide sequence of the mouse full-length cDNA to be analyzed (dnafo rm35363 and ぴ dnafo rm48060) After amplifying the base sequence of cDNA (F ANTOM NO: 6330404E 16) using M13 fold and reverse primer, the PCR product was precipitated with isopropanol and 15/1 3XSSC Dissolved in the liquid. This DNA solution was spotted on a glass slide coated with poly-L-lysine using a DNA layer of 16 chips (SMP3, Telechem International, Sunny vale, CA) to prepare a DNA microarray (Method The details of
http://cmgm. Stanford, edu/pbrown/mguide/index. htmlに目己 ¾され飞レヽな)。 この 場合、 マウス j3ァクチンとダリセルアルデヒド- 3 -フォスフエ一トデヒドロゲ ナーゼの cDNAをポジティブコントローノレとし、 シロイヌナズナの c DNAを ネガティブコントロー^^として用いた。 http: // cmgm. Stanford, edu / pbrown / mguide / index. In this case, the cDNA of mouse j3 actin and dariceraldehyde-3-phosphate dehydrogenase was used as a positive control, and the Arabidopsis thaliana cDNA was used as a negative control.
この DNAマイクロアレーの検出感度は、 1細胞当たり mRNA 1ないし 3 コピーであった。 ターゲット配列との一致度がおよそ 80%のクローンのシグナ ル強度は、 完全に配列が一致するクローンの 1 0分の 1であった。 ターゲット配 列との一致度が 8 0 %未満のクローンのシグナル強度は、 パックグランドレベル であった。 The detection sensitivity of this DNA microarray was 1 to 3 copies of mRNA per cell. A clone with approximately 80% identity to the target sequence The intensities were 10 times lower than those of perfectly matched clones. The signal intensity of clones with less than 80% match with the target sequence was at the background level.
(2) プローブの調製  (2) Preparation of probe
C 5 7 B L/6 Jマウスの胎児、 新生仔、 アダルトの 4 9組織 (腎臓、 脳、 脾 臓、 肺、 肝臓、 精巣、 膝臓、 胃、 小腸、 結腸、 盲腸、 胎盤、 心臓、 舌、 胸腺、 胸 腺 (妊娠 1日目) 、 小脳、 延髄、 嗅脳、 副精巣、 眼球、 皮質、 小胞腺、 子宮、 卵 巣および子宮 (妊娠 1 1日目) 、 骨、 筋肉、 乳腺 (授乳 1 0日目) 、 1 0日齢胎 児全身、 1 1日齢胎児全身、 1 3日齢胎児全身、 1 1日齢胎児頭部、 1 2日齢胎 児頭部、 1 3日齢胎児頭部、 1 5日齢胎児頭部、 1 6日齢胎児頭部、 1 7日齢胎 児頭部、 1 6日齢胎児肺、 1 3日齢胎児肝臓、 1 4日齢胎児肝臓、 0日齢新生児 全頭部、 6日齢新生児全頭部、 1 0日齢新生児全頭部、 1 0日齢新生児腸、 0日 齢新生児肺、 1 0日齢新生児小脳、 0日齢新生児皮膚、 1 0日齢新生児皮膚、 S V40感染) から抽出した mRNA 1 μ gを定法に従いランダムプライム逆転 写反応を行い蛍光色素 C y 3 (Am e r s h a m P h a r m a c i a社) を取 りこませた。 他方、 1 7. 5日齢の胎児全身から抽出した mRNA l gをラ ンダムプライム逆転写反応を行い、 蛍光色素 C y 5を取りこませ発現解析のリフ ァレンスとした。 C y Dy e標識 c DNAプローブは、 C y S c r i b e GFX P u r i f i c a t i o K i t (Am e r s h a m P h a r ma c i a社) を用いて精製し、 滅菌水 1 7 μ 1にてカラムから溶出した。 これに 3 μ 1の 1 0 μ g/μ 1 o l i g o (d A) , 3 μ 1の酵母 t RNA 2 0 μ g/μ 1 , 1 β 1 の 2 0 μ g/ 1マウス C ο t 1 DNA, 5. 1 μ 1の 2 0 X S S C, および 0. 9 μ 1の 1 0%SD Sからなるブロッキング溶液を混和して C yD y e標識 c DNAプローブを調製した。  49 Fetal, neonatal, and adult tissues of C5 7 BL / 6J mice (kidney, brain, spleen, lung, liver, testis, knee, stomach, small intestine, colon, cecum, placenta, heart, tongue, Thymus, thymus (first day of pregnancy), cerebellum, medulla oblongata, olfactory brain, epididymis, eyeball, cortex, vesicle, uterus, ovary and uterus (first day of pregnancy), bone, muscle, breast (lactation 1) Day 0), 10-day-old fetus, 11-day-old fetus, 13-day-old fetus, 11-day-old fetus, 12-day-old fetus, 13-day-old fetus Part, 15-day-old fetal head, 16-day-old fetal head, 17-day-old fetal head, 16-day-old fetal lung, 13-day-old fetal liver, 14-day-old fetal liver, 0 day Age newborn whole head, 6 day old newborn whole head, 10 day old newborn whole head, 10 day old newborn intestine, 0 day old newborn lung, 10 day old newborn cerebellum, 0 day old newborn skin, 1 1 μm mRNA extracted from 0-day-old neonatal skin, SV40 infection) g was subjected to a random prime reverse transcription reaction according to an ordinary method to incorporate a fluorescent dye Cy3 (AmershamPhamramcia). On the other hand, random-primed reverse transcription reaction was performed on mRNA lg extracted from the whole body of the fetal body at 17.5 days of age, and the fluorescent dye Cy5 was taken in as a reference for expression analysis. The CyDye-labeled cDNA probe was purified using CyScribe GFX PurifaicatioKit (AmershhamPharmacia) and eluted from the column with 17 μl of sterile water. 3 μl of 10 μg / μ1 oligo (d A), 3 μl of yeast tRNA 20 μg / μ1, 1 β1 of 20 μg / 1 mouse Cοt1 DNA , 5.1 μl of 20 XSSC and 0.9 μl of 10% SDS were mixed to prepare a CyDye-labeled cDNA probe.
(3) DNAマイクロアレーのハイブリダィゼイシヨン  (3) DNA microarray hybridization
発現解析対象組織由来 c DN Aプローブ(C y 3標識)とリファレンスの 1 7. 5日齢胎児由来 c DNAプローブ(C y 5標識)を混和した溶液 3 0 μ 1を 9 5°C にて 1分間熱処理を行い室温にて冷却した。 DNAマイクロアレーに上記プロ一 ブ溶液を添加し力バースリップを被せ、 Hy b r i c a s e t t e (Ar r a y I t社) 中にて 65 °C—晚ハイブリダィズさせた。 次に、 DNAマイクロアレー を 2XS SC, 0. 1%SDSを用いて洗浄し、 続いて 1 XS SCにて 2分間、 0. 1 XS SCにて 2分間リンスした。 マイクロアレーは S c a nAr r a y 5 000共焦点レーザースキャナーを用いてスキャンし、画像を I MAGENE (B i oD i s c o v e r y社) で解析した。 A 30 μl solution of a cDNA probe (Cy3 label) derived from the tissue to be analyzed for expression and a reference cDNA probe (Cy5 label) derived from a 17.5-day-old fetus at 95 ° C For 1 minute and cooled at room temperature. The probe solution was added to the DNA microarray, covered with a force bar slip, and hybridized at 65 ° C.- 晚 in a Hy bricasette (Ar ray It). Next, the DNA microarray was washed with 2 × SSC, 0.1% SDS, and then rinsed with 1 × SSC for 2 minutes and with 0.1 × SSC for 2 minutes. The microarray was scanned using a ScanArray 5000 confocal laser scanner and the images were analyzed with I MAGENE (BioDiscovery).
(4) データ解析  (4) Data analysis
各組織中の mRNA量 (Cy 3標識) は、 リファレンスの 1 7. 5日齢の胎児 全身 mRNA量 (Cy 5標識) との比 (C y 3/C y 5) を対数 ( 1 o g 2) で 表示した。 すなわち、 解析対象とする各マウス全長 c DN Aに対応する mRNA 発現量が、 リファレンス組織中よりも各組識中の方が多い場合は正の数値で、 少 ない場合は負の数値で、 等しい場合は 0で示される。 データの正確性を増すため に実験は独立に 2回行レ、、再現性の有る結果を採用した。その結果を表 1に示す。 一般的に、 DN Aアレーを使用した発現解析では、 2倍程度の増減は実験誤差 とみなされる。 このことから、 表 1に示す結果の数値が 1以上の場合にはある組 織中の mRNA量が対照である 17. 53齢の胎児全身の mRNA量と比較して 2倍以上であり、 有意に増加していると解釈した。 逆に、 結果の数値が一 1以下 の場合は、 ある組織中の mRNA量が対照である 1 7. 5日齢の胎児全身の mR NA量と比較して 2分の 1以下であり、 有意に減少していると解釈した。 また、 任意の組織間の mRNA発現量を比較検討する際は、 各組織における数値の差が 1であれば: mRNA量は 2倍、 2であれば mRNA量は 4倍であり、 逆に、 組織 間の数値の差が— 1であれば mRNA量は 1 /2倍、 一 2であれば mRNA量は 1/4倍であることを意味する。 The mRNA level (Cy 3 labeling) in each tissue is the logarithm (1 og 2 ) of the ratio (Cy 3 / Cy 5) to the reference 17.5-day-old fetal whole-body mRNA level (Cy 5 labeling). Displayed with. That is, if the expression level of mRNA corresponding to the full-length cDNA of each mouse to be analyzed is greater in each tissue than in the reference tissue, a positive value is used, and if it is less, it is a negative value and equal. The case is indicated by 0. In order to increase the accuracy of the data, the experiments were run independently twice and reproducible results were used. The results are shown in Table 1. Generally, in an expression analysis using a DNA array, an increase or decrease of about 2 times is regarded as an experimental error. Therefore, when the value of the result shown in Table 1 is 1 or more, the mRNA level in a certain tissue is more than twice as large as that of the whole 17.53-year-old fetus, which is a control. Was interpreted as increasing. Conversely, when the result value is 11 or less, the amount of mRNA in a certain tissue is less than one-half that of the mRNA of the whole body of the control 17.5-day-old fetus, and is significant. Was interpreted as a decrease. Also, when comparing the mRNA expression level between any tissues, if the difference between the values in each tissue is 1: mRNA level is 2 times, if 2 the mRNA level is 4 times, conversely, If the difference between the tissues is -1, the mRNA amount is 1/2 times, and if it is 12, the mRNA amount is 1/4 times.
なお、 マイクロアレイにスポットした DNA (F ANTOM NO: 6330 40 E 16) は、 解析対象 c DNAと同じクラスタに属し、 該 DN Aと少なくと も 200塩基に亘り 80%以上の塩基配列の一致度を有する領域を有するので、 表 1には、 マイクロアレイにスポットした DNAの測定結果の数値を、 解析対象 c DNA (d n a f o rm35363およぴ d n a f o rm48060) の結果 として記載した。 The DNA spotted on the microarray (F ANTOM NO: 633040E16) belongs to the same cluster as the cDNA to be analyzed, and has a match of 80% or more of the nucleotide sequence with the DNA for at least 200 bases. Because it has an area with Table 1 shows the numerical values of the measurement results of the DNA spotted on the microarray as the results of the cDNAs to be analyzed (dnafo rm35363 and dnafo rm48060).
解析対象 cDN マイクロアレ一にスポットし 脾臓 肺 Analysis target Spot on cDN microarray Spleen Lung
A た DNA A was DNA
dnaform35363 FANTO NO:6330404E16 -0.640374 0.521857 -0.163217 -0/750867 dnaform48060 FANTOM NO:6330404E16 - 0.640374 0.521857 -0.163217 -0.750867 解析対象 cDN マイクロアレーにスポットし 肝臓 膝臓 dnaform35363 FANTO NO: 6330404E16 -0.640374 0.521857 -0.163217 -0/750867 dnaform48060 FANTOM NO: 6330404E16-0.640374 0.521857 -0.163217 -0.750867 Spot on the analysis target cDN microarray Liver Knee
A た DNA A was DNA
dnaform35363 FANTOM NO:6330404E16 -0.886283 -1.22711 -0.715842 0.277707 dnaform48060 FANTOM NO:6330404E16 -0.886283 -1.22711 -0.715842 0.277707 解析対象 cDN マイクロアレ一にスポットし 小腸 胎盤 心臓 A た DNA dnaform35363 FANTOM NO: 6330404E16 -0.886283 -1.22711 -0.715842 0.277707 dnaform48060 FANTOM NO: 6330404E16 -0.886283 -1.22711 -0.715842 0.277707 Target for analysis cDN
dnaform35363 FANTOM NO:6330404E16 -0.735236 -0.556797 0 -0.463735 dnaform48060 FANTOM NO:6330404E16 -0.735236 -0.556797 0 -0.463735 解析対象 cDN マイクロアレーにスポットし 胸腺 小脳 子宮 dnaform35363 FANTOM NO: 6330404E16 -0.735236 -0.556797 0 -0.463735 dnaform48060 FANTOM NO: 6330404E16 -0.735236 -0.556797 0 -0.463735 Analysis target Spot on CDN microarray Thymus cerebellum Uterus
A た DNA A was DNA
dnaform35363 FANTOM NO:6330404E16 0.400214 0.755633 0.21892 -0.463978 dnaform48060 FANTOM NO:6330404E16 0.400214 0.755633 0.21892 -0.463978 解析対象 cDN マイクロアレーにスポットし 筋肉 背側腎臓由 副精巣由来 内臓脂肪 A た DNA 来脂肪細胞 脂肪細胞 dnaform 35363 FANTOM NO: 6330404E16 0.400214 0.755633 0.21892 -0.463978 dnaform48060 FANTOM NO: 6330404E16 0.400214 0.755633 0.21892 -0.463978 Analyzed cDN Microarray spotted Muscle Dorsal kidney Derived visceral fat A
dnaform35363 FANTOM NO:6330404E16 0 -0.531442 -1.06521 -0762478 dnaform48060 FANTOM NO:6330404E16 0 -0.531442 -1.06521 -0.762478 解析対象 cDN マイクロアレーにスポットし 10日齢新 10日齢新生 dnaform35363 FANTOM NO: 6330404E16 0 -0.531442 -1.06521 -0762478 dnaform48060 FANTOM NO: 6330404E16 0 -0.531442 -1.06521 -0.762478 Target to be analyzed Spot on the cDN microarray 10 days old New 10 days old
A た DNA —生児 児皮膚  A DNA — live skin
dnaform35363 FANTOM NO:6330404E16 0.154544 0.432329 dnaform35363 FANTOM NO: 6330404E16 0.154544 0.432329
dnaform48060 FANTOM NO:6330404E16 0.154544 0.432329 表 1から明らかなとおり、 d n a f o rm35363と d n a f o rm480 60は、 精巣と副精巣由来脂肪細胞において、 他の組織に比べて約 1/2倍の発 現の減少が考えられる。 dnaform48060 FANTOM NO: 6330404E16 0.154544 0.432329 As is evident from Table 1, the expression of dnafo rm35363 and dnafo rm48060 in testis and epididymis-derived fat cells can be reduced by about 1/2 times compared to other tissues. .
実施例 6 タンパク質一タンパク質相互作用角! _析 哺乳動物細胞における t wo— h y b r i d法 (Suzuki, H., et al. , Genome Research, 11, 1758-1765 (2001)) を用いて、 1種類のマウス完全長 c DNAの 塩基配列 (d n a f o rm39540) のタンパク質コード配列がコードするタ ンパク質のタンパク質ータンパク質相互作用を網羅的に解析した。 Example 6 Protein-protein interaction angle! Using the two-hybrid method in mammalian cells (Suzuki, H., et al., Genome Research, 11, 1758-1765 (2001)), the nucleotide sequence of one mouse full-length cDNA (dnafo rm39540) A comprehensive analysis of the protein-protein interaction of the protein encoded by the protein coding sequence was performed.
(1) PCR法を用いた迅速なサンプル調製  (1) Rapid sample preparation using PCR method
哺乳動物細胞での two_hy b r i d実験は、 Ch e c kMa t e m a mm a 1 i a n two— hy b r i d s y s t em (P r ome g a千土) 禾 lj用し た。 タンパク質一タンパク質相互解析用のサンプルは、 CMVプロモーターの下 流に Ga 1 4遺伝子の DNA結合領域を挿入したプラスミドベクター pB I ND、 CMVプロモーターの下流に VP 16遺伝子の転写活性化領域を挿入したプラス ミドベクター pACT, および 5個の Ga 1 4結合領域と TAT Aボックスの下 流にレポーターであるルシフェラーゼ遺伝子を挿入したプラスミドベクター p G 5 1 u cを錄型として調製した。 Ga 1 4遺伝子と 1種類のマウス完全長 c D N Aの塩基配列 (d n a f o r m39540) のタンパク質コード配列との融合遺 伝子、 並びに VP 16遺伝子とマウス c DNAライブラリー F ANTOM  Two_hybrid experiments on mammalian cells were performed using CheckMatemmm a1 i an two-hybridsystem (Promega a Chisato). Samples for protein-protein interaction analysis were plasmid vector pBIND with the DNA binding region of the Ga14 gene inserted downstream of the CMV promoter, and plasmid vector with the transcriptional activation region of the VP16 gene inserted downstream of the CMV promoter. The mid vector pACT and the plasmid vector p G51 uc in which the luciferase gene as a reporter was inserted downstream of the five Ga14 binding regions and the TATA box were prepared as type III. Fusion gene between Ga14 gene and one kind of mouse full-length cDNA nucleotide sequence (dnaform39540), and VP16 gene and mouse cDNA library FANTOM
(htt : //fantom. gsc. riken. go. jp/) の各ク口ーンが有する完全長 c D N Aのタ ンパク質コード配列との融合遺伝子は、 基本的に P r ome g a社のプロトコ一 ルに従い共通配列部分を用いた連結と 2段階 PCR法を組み合わせて作成した (htt: // fantom. gsc. riken. go. jp /) The fusion gene with the protein coding sequence of the full-length cDNA of each clone is basically the protocol of Promega. Was created by combining ligation using a common sequence and two-step PCR.
(Suzuki, H. , et al. , Genome Research, 11, 1758 - 1765 (2001)の図 1参照) 。 マウス c DNAのタンパク質コード配列を、 5' 側に共通配列をもち 3, 側に 遺伝子特異的な配列をもつフォヮ一ドプライマ一おょぴ Ml 3ユニバーサルプラ イマ一とを用いて P CR増幅した後、 上記増幅産物と pB I NDまたは pACT の PCR増幅産物 (3' 側に共通配列を付加した) とを混和し、 それぞれネステ イドプライマーを用いて第 2段の P CR増幅を行い、 Ga 1 4とマウスタンパク 質の融合タンパク質を発現させるベクター (B I NDサンプル) または VP 16 とマウスタンパク質の融合タンパク質を発現させるベクター (ACTサンプル) を構築した。 (2) ハイスループットな哺乳動物細胞での two— hy b r i d実験 (See FIG. 1 of Suzuki, H., et al., Genome Research, 11, 1758-1765 (2001)). After PCR amplification of the mouse cDNA protein coding sequence using a formal primer Ml3 universal primer with a common sequence on the 5 'side and a gene-specific sequence on the 3 side Then, the above amplification product is mixed with the PCR amplification product of pBIND or pACT (with a common sequence added to the 3 'side), and the second stage PCR amplification is performed using nested primers, and Ga14 We constructed a vector that expresses a fusion protein of mouse and mouse protein (BIND sample) or a vector that expresses a fusion protein of VP16 and mouse protein (ACT sample). (2) Two-hybrid experiments with high-throughput mammalian cells
PCR法で調製した B I NDおよび ACTサンプルは、 それ以上の精製を行わ ずに直接使用した。 B I NDサンプルおよび ACTサンプルのそれぞれ 0. 25 μ 1 , 30 n gの pG5 1 u c、 および 9. 5 1の Op t i—MEM培地 (L i f e t e c h社) を 384ゥエルプレートに分注した。 Op t i—MEM培地 にて 32倍希釈した LF 2000トランスフエクション試薬 (L i f e t e c h 社) 10 1をゥエルに加えて混和し 20分間インキュベーション後、 F 12培 地にて 1, 300細胞/ μ 1に懸濁した C HO— K1チャイニーズハムスター細 胞液 20 μ 1を加えて良く懸濁した。アツセィサンプルを C02インキュベーター 内で 20時間培養後、 ルシフェラーゼ活性は S t e a d y-G 1 o Lu c i f e r a s e As s a y Sy s t em (P r ome g a社) を用レヽて濟 J定し、 相互作用を確認した。 その結果を、 表 2および表 3に示す。 表 2 : The BIND and ACT samples prepared by PCR were used directly without further purification. 0.25 μl, 30 ng of pG5 1 uc, and 9.51 Opti-MEM medium (Lifetech) of the BI ND sample and the ACT sample, respectively, were dispensed into 384 μl plates. Add LF2000 Transfection Reagent (Lifetech) 101 diluted 32 times in Opti-MEM medium to the wells, mix, incubate for 20 minutes, and bring to 1,300 cells / μ1 in F12 medium. The suspended CHO-K1 Chinese hamster cell solution (20 µl) was added and the cells were well suspended. Atsu Si samples after 20 hours of culture in a C0 2 incubator, the luciferase activity was濟J constant Te use Rere the S tead yG 1 o Lu ciferase As say Sy st em (P r ome ga Inc.) to confirm the interaction . The results are shown in Tables 2 and 3. Table 2:
dnaf orm 相互作用した 相互作用した FANT0Mのマウスクローン No. FANT0Mのマウスクの有する CDNAがコードするタンパク質 ローン No. の機能  dnaf orm interacted FANT0M mouse clone No. FANT0M mouse clone protein encoded by cDNA Loan No. function
39540 3110001122 推定タンパク質 HSPC206 [ヒ卜]に相同 39540 3110001122 Homologous to putative protein HSPC206 [human]
表 3 Table 3
Figure imgf000078_0001
表 2から明らかなとおり、 マウス完全長 c DNAの塩基配列 (d n a f o rm 39540) によりコードされるタンパク質 (タンパク質結合活性を有するタン パク質) は、 マウス c DNAライブラリー FANTOM
Figure imgf000078_0001
As is clear from Table 2, the protein (protein having protein binding activity) encoded by the nucleotide sequence (dnafo rm 39540) of the mouse full-length cDNA was obtained from the mouse cDNA library FANTOM.
(http://fantom. gsc. riken. go. jp/) の特定のクローンが有する c DNAの塩基 配列によりコードされるタンパク質と相互作用を有することが明らかとなった。 即ち、 dn a f o rm39540によりコードされるタンパク質は、 hypothetical protein HSPC206と相互作用することが認められた。 この HSPC206 は、 CD34+ hematopoietic stem/progenitor cells力 ら取られ 7こ Μ Η子でめる (Genome Res. 2000, 10(10): 1546-60)。 このように HSPC206は、 造血幹細胞から 得られていることから、 d n a f o r m39540によりコードされるタンパク 質は、 該組織における細胞分化 ·増殖、 また、 癌 ·免疫 ·炎症 'アレルギー等に 関わる可能性が推測された。 (http: // fantom. gsc. riken. go. jp /) It was revealed that the clone has an interaction with the protein encoded by the cDNA base sequence of the specific clone. That is, it was confirmed that the protein encoded by dnafo rm39540 interacts with the hypothetical protein HSPC206. This HSPC206 is obtained from the CD34 + hematopoietic stem / progenitor cells and is collected in 7 cells (Genome Res. 2000, 10 (10): 1546-60). Thus, HSPC206 is derived from hematopoietic stem cells. From these results, it was speculated that the protein encoded by dnaform m39540 may be involved in cell differentiation / proliferation in the tissue, and also in cancer, immunity, inflammation and allergy.
また、 表 3から明らかな通り、 マウス完全長 c DN Aの塩基配列 (d n a f o r m54482) によりコードされるタンパク質 (アポ一トーシス抑制作用を有 するタンパク質) は、 次の通り、 マウス c DNAライブラリー FANTOM  As is clear from Table 3, the protein encoded by the mouse full-length cDNA cDNA (dnaform m54482) (a protein that has an apoptosis inhibitory effect) is as follows in the mouse cDNA library FANTOM.
(http://fantom.gsc.riken.go. jp/) の特定のクローンが有する c DNAの塩基 配列によりコードされるタンパク質と相互作用を有することが明らかとなった。 即ち、 dn a f o r m54482によりコードされるタンパク質は、 cell division cycle protein 23 (CDC23)と相互作用することが認められた。 CDC23は、 細胞分裂後期へと導く機能を持つ。 本タンパク質が CDC23と相互作用することは、 細胞分裂の制御に関わり、 アポトーシスに影響を与えることが推測された。 さら に、 CDC23の変異は発癌と関わっており(Oncogene 2003, 22(10): 1486-90)、 本タ ンパク質がその過程を制御する可能性が推測された。  (http://fantom.gsc.riken.go.jp/) It was revealed that the specific clone has an interaction with a protein encoded by the nucleotide sequence of cDNA contained in the specific clone. That is, it was confirmed that the protein encoded by dnaform54482 interacted with cell division cycle protein 23 (CDC23). CDC23 has the function of leading to late cell division. It was speculated that the interaction of this protein with CDC23 is involved in cell division control and affects apoptosis. In addition, mutations in CDC23 have been implicated in carcinogenesis (Oncogene 2003, 22 (10): 1486-90), suggesting that this protein may regulate this process.
に、 本タンノ ク質は、 cytokeratin 10、 keratin (homolog to high sulfur protein B2F) あるレヽ fま、 putative keratin— associated proteinとのネ目互作用を することが認められた。 表皮細胞が形成されるとき、 それは基底層で生まれ、 外 皮に向かって移動し、 顆粒細胞層に至ると部分的アポトーシス機構により核や細 胞小器官を徐々に失い、 ケラチン化していく。 本タンパク質は、 このような分化 過程を制御することが推測された。  In addition, the protein was found to interact with cytokeratin 10, keratin (homolog to high sulfur protein B2F), and putative keratin-associated protein. When epidermal cells are formed, they are born in the basal layer, migrate toward the integument, and, at the granular cell layer, gradually lose nuclei and organelles and become keratinized by a partial apoptotic mechanism. It was speculated that this protein controls such a differentiation process.
ま 7こ、 本タンノ ク質は、 leucine— rich repeat— containing proteinとネ目 作用 することが認められた。 Leucine - rich repeat (LRR) は、 多くのタンパク質に、 直列に並んで見られる 20乃至 29アミノ酸残基のモチーフである。 これを持つタン パク質は、 ホルモン一レセプター相互作用、 酵素阻害、 細胞接着、 細胞内輸送な ど多くの機能に関わる。 また、 最近の知見から、 LRRタンパク質は、哺乳類初期発 生、 神経系発生、 細胞分極、 遺伝子発現調節、 アポトーシスシグナリングに関わ ることも知られている。 LRRは、 これら多様な機能を発揮させる構造的フレームヮ ークを成すと考えられている。 したがって、 本タンパク質は、 細胞分裂 '分化 · アポトーシス等の制御に関わっている可能性が推測された。 Furthermore, this protein was found to have a negative effect on leucine-rich repeat-containing protein. Leucine-rich repeat (LRR) is a 20-29 amino acid residue motif found in many proteins in tandem. These proteins are involved in many functions such as hormone-receptor interaction, enzyme inhibition, cell adhesion, and intracellular transport. Recent findings also indicate that LRR proteins are involved in early mammalian development, nervous system development, cell polarization, regulation of gene expression, and apoptotic signaling. LRR is a structural frame that performs these various functions. It is thought to form a workweek. Therefore, it was speculated that this protein may be involved in the control of cell division, differentiation, apoptosis, etc.
また、本タン ヽク質は、 hypothetical outer arm dyne in light chain 1 structure containing proteinと木目互作用すること力 s認められた。 Outer arm dyneinは、 モ 一タータンパク質の 1つであり、 AAA+ファミリー ATPaseに属し、 繊毛や鞭毛の運 動を担う 「軸糸ダイニン」 と細胞内において膜小胞などの輸送や細胞分裂などを 担う「細胞質ダイニン」の 2種類がある。本タンパク質が、 hypothetical outer arm dynein light chain 1 structure containing proteinとネ日互1乍用し 7こ と力 り、 本タンパク質が、 繊毛や鞭毛の運動、 または、 細胞内において膜小胞などの輸送 や細胞分裂などに関連することが推測された。 また、 beta- adrenergic receptor のァゴニスト刺激が、 気道上皮細胞において outer arm dyneinのリン酸化をもた らすことが知られており(J. Allergy Clin. Immunol. 2002, 110 (6Suppl): S275- 81)、 気管の繊毛運動等を介して気管支喘息等の呼吸器疾患との関連がある ことが推測された。 In addition, the present tankヽclick proteins was observed hypothetical outer arm dyne in light chain 1 structure containing protein and that the force acting grain each other s. Outer arm dynein is one of the motor proteins and belongs to the AAA + family ATPase, which is responsible for ciliary and flagellar movements, and is responsible for intracellular transport and cell division such as membrane vesicles There are two types, "cytoplasmic dynein". This protein works with the hypothetical outer arm dynein light chain 1 structure containing protein for 7 days, and this protein is used for the movement of cilia and flagella, or for the transport of membrane vesicles and the like in cells. It was presumed to be related to cell division and the like. It is also known that agonist stimulation of beta-adrenergic receptor leads to phosphorylation of outer arm dynein in airway epithelial cells (J. Allergy Clin. Immunol. 2002, 110 (6Suppl): S275-81) ), It was speculated that there is a connection with respiratory diseases such as bronchial asthma via ciliary movement of the trachea.
実施例 7 P C R法を用いた組織発現解析 Example 7 Tissue expression analysis using PCR method
本発明のタンパク質をコードする ni R N Aの正常マウスおよび疾患マウスでの 組織発現変動を検討するために、 定法 (Higuchi R, et al. , Biotechnology, 11: 1026-30 (1993) ) に従い、 P C R法を用いた組織発現解析を行った。  In order to examine the changes in tissue expression of niRNA encoding the protein of the present invention in normal mice and diseased mice, PCR was performed according to a conventional method (Higuchi R, et al., Biotechnology, 11: 1026-30 (1993)). Was used to perform tissue expression analysis.
( 1 ) c D NA合成  (1) cDNA synthesis
以下のマウス (森脇和郎、 外 1名編、 Molecular Medicine別冊、 Vol. 36 「自然 発症疾患モデル動物 」 、 中山書店、 1999年) の 1 9組織からトータル RNAを抽出 し、 オリゴ d Tをプライマーとして逆転写酵素を用いて c D NA合成を行った。 ( a ) 正常マゥスの組織およぴ糖尿病モデルマゥスの組織  Total RNA was extracted from 19 tissues of the following mice (Kazuo Moriwaki, 1st edition, Molecular Medicine, Supplement, Vol. 36 “Spontaneous Disease Model Animal”, Nakayama Shoten, 1999), and oligo dT was used as a primer. CDNA synthesis was performed using reverse transcriptase. (a) Tissue of normal mice and tissue of diabetic model mice
①対照マウス C57BL/KsJ - +m/+m Jcl (メス、 8週齢) の全脳、 視床、 肺、 腎 臓、 骨髄、 膝臓、 脂肪細胞、 肝臓、 眼  ① Control mouse C57BL / KsJ-+ m / + m Jcl (female, 8 weeks old) whole brain, thalamus, lung, kidney, bone marrow, knee, adipocyte, liver, eye
②糖尿病モデルマウス C57BL/KsJ - db/db Jcl (メス、 8週齢) の脖臓、 脂肪 細胞、 肝臓、 眼 (b) 老化促進マウスの組織 ② Diabetes model mouse C57BL / KsJ-db / db Jcl (female, 8 weeks old) glands, fat cells, liver, eyes (b) Aging-promoting mouse tissue
①正常老化マウス SAM Rl/TA Sic (ォス、 13週齢) の海馬、 前頭葉皮質 (1) Hippocampus and frontal cortex of normal aging mouse SAM Rl / TA Sic (13 weeks old)
②老化促進マウス SAM P8/Ta Sic (ォス、 15週齢) の海馬、 前頭葉皮質② Senescence-accelerated mouse SAM P8 / Ta Sic (Oss, 15 weeks old) hippocampus, frontal cortex
(c) 癌転移モデルマウスの組織 (c) Tissue of cancer metastasis model mouse
①対照マウス Balb/c (メス、 5週齢) の正常結腸  ① Normal colon of control mouse Balb / c (female, 5 weeks old)
②癌転移モデルマウス Balb/c (メス、 6週齢) の結腸癌 (マウス腹腔に結腸 癌細胞 Colon26を移植し、 2週間後に結腸癌を摘出)  ② Colon metastasis of cancer metastasis model mouse Balb / c (female, 6 weeks old) (Colony 26 colon cancer cells are transplanted into the abdominal cavity of the mouse and colon cancer is removed 2 weeks later)
(2) PCR法による定量  (2) Quantification by PCR method
下記の 5個の、 本発明のタンパク質をコードしている mRNAの発現は、 ライ トサイクラ一定量 PCR装置 (ロシュ 'ダイァグノステイタス社製) と  The following five mRNAs encoding the protein of the present invention were expressed using a light cycler constant-quantity PCR device (Roche's Diagnostic Status).
LightCycler-FastStart DNAマスター SYBR Green I試薬を用いて、 製品に添付 されているプロトコールに従い定量した。定量 PCRに用いた合成 DNA配列を以下 に示す。 Quantification was performed using LightCycler-FastStart DNA Master SYBR Green I reagent according to the protocol attached to the product. The synthetic DNA sequences used for quantitative PCR are shown below.
( a ) d n a f o rm5 o 243  (a) d n a f o rm5 o 243
5, 側プライマー: (TTCTCTMGACTGMGTGGTCCM) (配列番号 33 )  5, Side primer: (TTCTCTMGACTGMGTGGTCCM) (SEQ ID NO: 33)
3, 側プライマー: (TGGTATGMTCAGGCCMTG) (配列番号 34)  3, primer: (TGGTATGMTCAGGCCMTG) (SEQ ID NO: 34)
(b) dn a f o rm43059  (b) dn a f o rm43059
5, 側プライマー: (AGACACCGTGCCTTACCCTA) (配列番号 35)  5, Side primer: (AGACACCGTGCCTTACCCTA) (SEQ ID NO: 35)
3, 側プライマー: (AGGCTCATGCGTGTCTCTTT) (配列番号 36)  3, primer: (AGGCTCATGCGTGTCTCTTT) (SEQ ID NO: 36)
(c) dn a f o rm50034  (c) dn a f o rm50034
5, 側プライマー: (CAAACAGCTTGCCAAAAGTG) (配列番号 37 )  5. Side primer: (CAAACAGCTTGCCAAAAGTG) (SEQ ID NO: 37)
3, 側プライマー: (TTCTCGATCAGCGCCTTAGT) (配列番号 38)  3. Side primer: (TTCTCGATCAGCGCCTTAGT) (SEQ ID NO: 38)
(d) dn a f o rm54482  (d) dn a f o rm54482
5, 側プライマー: (GCAGCTTGCAGTTAGMGCA) (配列番号 39 )  5, side primer: (GCAGCTTGCAGTTAGMGCA) (SEQ ID NO: 39)
3 ' 側プライマー: (TACTCTCAGGCCCCATGGM) (配列番号 40 )  3 'primer: (TACTCTCAGGCCCCATGGM) (SEQ ID NO: 40)
(e) d n a f o rm36789  (e) d n a f o rm36789
5, 側プライマー: (ATCCAGACCGACGACTTCAG) (配列番号 41) 3, 側プライマー: (CTGGCACGGCACTATACAGA) (配列番号 42) 5, side primer: (ATCCAGACCGACGACTTCAG) (SEQ ID NO: 41) 3, primer: (CTGGCACGGCACTATACAGA) (SEQ ID NO: 42)
定量結果は Glyceraldehyde 3- phosphate dehydrogenase (GAP DH) を内部 標準として、 補正した。 即ち、 各組織での対象遺伝子の発現量 (コピー数/ μ 1 ) を GAPDHの発現量 (コピー数/ μ 1 ) で除し、 定数 ( 1 X 106) (注: 10の 6 乗) を乗して表示した。 その結果を表 4に示す。 表 4 : The quantitative results were corrected using Glyceraldehyde 3-phosphate dehydrogenase (GAP DH) as an internal standard. That is, the expression level (copy number / μ1) of the target gene in each tissue is divided by the GAPDH expression level (copy number / μ1), and the constant (1 × 10 6 ) (Note: 10 to the sixth power) is calculated. It was raised and displayed. The results are shown in Table 4. Table 4:
Figure imgf000082_0001
表 4から明らかな通り、 d n a f o rm56243は骨髄、 肺おょぴ脂肪細胞 で強く発現し、 糖尿病の膝臓および結腸癌で発現が増加した。 d n a f o r m4 3059は脳での発現が高く、糖尿病の膝臓で発現が増加し、結腸癌で減少した。 d n a f o rm50034は脳で発現が高く、 糖尿病の膝臓で発現が増加し、 結 腸癌で減少した。 dn a f o rm54482は眼で強く発現し、 肺での発現が高 かった。 d n a f o rm36789は脳おょぴ眼に発現が観察され、 糖尿病の脂 肪細胞で発現が増強した。 上記クローンの c DNAおよぴ該 c DNAによってコードされるタンパク質は、 糖尿病や癌などの治療や診断に応用できる。 また該 cDNAによってコードされ るタンパク質は、 上記のような mRN A発現の変動が見られる組織あるいは mR N A発現量の多レ、組織に関わる疾患に関与している可能性がある。
Figure imgf000082_0001
As is clear from Table 4, dnafo rm56243 was strongly expressed in bone marrow and lung and adipocytes, and increased in diabetic knee and colon cancer. dnafor m4 3059 was highly expressed in the brain, increased in the diabetic knee, and decreased in colon cancer. dnafo rm50034 was highly expressed in brain, increased in diabetic knees, and decreased in colon cancer. dnafo rm54482 was strongly expressed in the eyes and highly expressed in the lungs. Expression of dnafo rm36789 was observed in the brain and eyes, and expression was enhanced in diabetic fat cells. The cDNA of the clone and the protein encoded by the cDNA can be applied to the treatment and diagnosis of diabetes, cancer and the like. In addition, the protein encoded by the cDNA may be involved in a tissue in which the mRNA expression is fluctuated as described above, or a high mRNA expression level, or a tissue-related disease.
実施例 8 ハエホモログを用いた RN A i法による機能解析 Example 8 Functional analysis by RN Ai method using fly homolog
(1) マウス c DN Aのハエホモログの解析おょぴ取得  (1) Analysis of fly homologue of mouse cDNA
上記で得られたマウス全長 c DN Aの塩基配列 (クローン名: d n a f o rm 54482) に対するハエ遺伝子のホモログを以下に示す配列解析により予測し た。 配列解析は、 OR Fから翻訳されるタンパク質を考え、 アミノ酸配列レベ/レ で行った。 マウスクローン d n a f o rm54482として、 配列番号 26に示 すアミノ酸配歹 1Jを含むマウス全長 cDNAクローン (配列番号 25 ) とハエクロ 一ン (Berkeley Drosophila Genome Project (BDGP) Drosophila Genomic Sequence Release 3.0)との間においてペアワイズな配列比較を NCBI BLASTP 2.2.2  The homologue of the fly gene to the nucleotide sequence of the full-length mouse cDNA obtained above (clone name: dnaform 54482) was predicted by the following sequence analysis. The sequence analysis was performed at the amino acid sequence level, considering the protein translated from the ORF. The mouse clone dnafo rm54482 was pair-wise between the mouse full-length cDNA clone (SEQ ID NO: 25) containing the amino acid sequence 1J shown in SEQ ID NO: 26 and the fly clone (Berkeley Drosophila Genome Project (BDGP) Drosophila Genomic Sequence Release 3.0). NCBI BLASTP 2.2.2
(Altschul et al. , Nucleic Acids Res. 25, 3389-3402 (1997)) により行い、 2 種のクローン間において互いに最も良い E- valueの値を示した関係にあるハエの 遺伝子を、 予測されたホモログとして同定した (Tatusov, Koonin & Lipman, Science 278, 631 (1997)) 。 結果として、 マウス c DNA (d n a f o rm54 482) に対するハエホモログを見つけることができた。 ハエホモログの遺伝子 番号は、 マウス: 54482 (d n a f o rm54482) に対してハエ: C G 12284 (トランスクリプト番号: CG 12284— PC) であった。  (Altschul et al., Nucleic Acids Res. 25, 3389-3402 (1997)), predicting the flies genes that showed the best E-value between each other between the two clones. It was identified as a homolog (Tatusov, Koonin & Lipman, Science 278, 631 (1997)). As a result, a fly homologue against mouse cDNA (dnaform54482) could be found. The gene number of the fly homolog was mouse: 54482 (dnaform54482) and fly: CG12284 (transcript number: CG12284-PC).
(2) ハエ系統の樹立  (2) Establishment of fly strain
(i) 逆方向反復配列 (inverted repeat) ベクターの作製  (i) Construction of an inverted repeat vector
上記ハエ c DNA (CG 12284)の ORF、 5,側約 500 b の断片(以 下これを 「目的の cDNA」 と称することがある) を、 ハエの cDNAライブラ リー (Berkeley Drosophila Genome Project ( httpV/www. fruitfly. org) "C|PJ/E された unigeneset; Invitrogen社) を铸型とした PCRによつて増幅した。 P C Rプライマーは、 Cp o I A7 (配列番号 43: AAATTTCGGACCGの 3, 末端に、 目 的の c DNAの 5' 末端の 2 1ベースの塩基配列を結合させたもの) と S f i I A 3 (配列番号 44 : MATTTGGCCATATAGGCCの 3, 末端に、 目的の c DNAの 3, 末端の 2 1ベースの塩基配列を結合させたもの) のセット、 および S f i I B 7The ORF of the above fly cDNA (CG12284), a fragment of about 500 b on the 5th side (hereinafter, this may be referred to as “target cDNA”) was obtained by using the fly cDNA library (Berkeley Drosophila Genome Project (httpV / www. fruitfly.org) "C | PJ / E generated unigeneset; Invitrogen) was amplified by PCR using type I. The PCR primer was Cpo I A7 (SEQ ID NO: 43: 3 'end of AAATTTCGGACCG). , Eye 21 'base sequence of 5' end of target cDNA and S fi IA 3 (SEQ ID NO: 44: 3 end of MATTTGGCCATATAGGCC, 3 end of target cDNA, 21 base of end) And the combination of S fi IB 7
(配列番号 45 : MATTTGGCCTACATGGCCに記載の塩基配列の 3,末端に、 目的の c DNAの 5,末端の 2 1ベースの塩基配列を結合させたもの)と Cp o I B 3 (配 列番号 4 6 : AAATTTCGGTCCGの 3 '末端に、 目的の c D N Aの 3, 末端の 2 1ベー スの塩基配列を結合させたもの) のセットを用いた。 (SEQ ID NO: 45: the base sequence described in MATTTGGCCTACATGGCC, in which the base 3 of the target cDNA is linked to the base 3 of base 21 of the target cDNA 5, 2) and Cpo IB 3 (SEQ ID NO: 46: AAATTTCGGTCCG with the 3 'end of the target cDNA linked to the 3' end of the 3 'end was used.
S f i I A3と S f i I B 7プライマーを用いて PCR増幅した約 500 b pの DNA断片を S f i Iで消化し、この消化断片をハエクローユング用ベクター(p UASTCS 1 :上田龍他、 細胞工学、 vol21, No.8, 923-932 (2002) ) を S i i Iで消化したサイト間に挿入しクローニングした。 さらに、 このベクターを C p o Iで消化したサイト間に、 上記 C p o I A7と C p o I B 3プライマーを用い て PCR増幅した DNA断片を Cp o I消化した DNA断片を挿入しクローニン グした。 この 2回のサブクローニングにより、 ハエ c DNAの ORFの約 500 b pの断片が、 UAS配列 (GAL上流活性化配列) の下流に隣接したヒートシ ョックプロテイン 70のベーシックプロモーターの制御下に、 逆向きで 2力所挿 入されたべクタ一 (inverted repeat ベクター) が取得された。  A DNA fragment of about 500 bp amplified by PCR using S fi I A3 and S fi IB7 primers is digested with S fi I, and this digested fragment is used as a flyclothing vector (p UASTCS1: Ryu Ueda et al., Cell Engineering , Vol21, No. 8, 923-932 (2002)) were inserted between the sites digested with SiiI and cloned. Furthermore, a CpoI-digested DNA fragment obtained by PCR-amplification of the DNA fragment using the above-mentioned CpoI A7 and CpoIB3 primers was inserted between the sites where this vector was digested with CpoI and cloned. These two subclones result in approximately 500 bp fragment of the fly cDNA ORF, two reverse turns under the control of the heat shock protein 70 basic promoter downstream of the UAS sequence (GAL upstream activation sequence). The inserted vector (inverted repeat vector) was obtained.
上記で用いたハエトランスフォーメション用ベクターである pUASTベクタ 一はトランスポゾン P因子を利用したベクターで、 UAS配列とヒートショック プロテイン 7 0のベーシックプロモーターを利用して、 転写促進タンパク質 G A L 4が UAS配列に結合することにより U AS配列の下流に挿入した逆方向反復 配列の転写を誘導できるベクターである。  The pUAST vector, a fly transformation vector used above, is a vector that uses the transposon P factor, and uses the UAS sequence and the basic promoter of heat shock protein 70 to convert the transcription promoting protein GAL4 into the UAS sequence. This vector is capable of inducing transcription of an inverted repeat sequence inserted downstream of a UAS sequence by ligation.
(ii) ハエの形質転換  (ii) Transformation of fly
通常の P因子形質転換法である、 上田龍他、 細胞工学、 vol21, No.8,  Ryu Ueda et al., Cell Engineering, vol.21, No.8
923- 932 (2002)に記載の方法に則って、 上記 (i) で調製した inverted repeatベ クタ一 DNAを W1118系統のハエ (Indiana stock center: According to the method described in 923-932 (2002), the inverted repeat vector DNA prepared in the above (i) was used for the fly W1118 strain (Indiana stock center:
http://flybase. bio. indiana. edu/stocks/fbstock. hform)の初期胚にマイクロマ ニュピレーターを用いて微量注入した。 これを培養して孵化させ、 成虫とした後 に、 上記文献記載の手順に準じて交配を行った。 この交配で、 ダブルバランサー として W1118系統の S p/SMl, Cy: P r/TM3、 S b S e rを用いた。 この交配により、 上記 inverted repeatベクターが挿入した染色体を、 ホモ接合に 持ったハエ (以下、 これを 「I R系統」 と称する) が作製された。 (http://flybase.bio.indiana.edu/stocks/fbstock.hform) Microinjection was performed using a nupilator. After this was cultured and hatched to obtain an adult, mating was carried out according to the procedure described in the above-mentioned literature. In this cross, S p / SMl of W 1118 system as a double-balancer, Cy: using the P r / TM3, S b S er. By this crossing, a fly (hereinafter, referred to as “IR strain”) having a homozygous chromosome inserted by the inverted repeat vector was produced.
(3) RNA i効果の誘導  (3) Induction of RNAi effect
( i) GAL 4ドライバーとの交配による変異誘導  (i) Mutation induction by mating with GAL 4 driver
上記 (2) で得られた I R系統のハエを A c t 5 C— GAL 4系統のハエ (Indiana stock center:  The fly of the IR strain obtained in the above (2) was transformed into the fly of Act 5 C—GAL 4 strain (Indiana stock center:
http://f lybase. bio. indiana. edu/stocks/fbstock. hform と交 3した (図 1 ) 。 Ac t 5 C— GAL 4は、 全身の細胞で発現する細胞性ァクチン遺伝子 (Act5C) のプロモーターに酵母 GAL 4遺伝子をつないだ fusion geneを遺伝子導入した 系統である。 従って、 この Ac t 5 C— GAL 4導入遺伝子を持ったハエでは全 ての細胞で、 GAL 4タンパク質が発現している。 http: // flybase. bio. indiana. edu / stocks / fbstock. hform (Fig. 1). Act 5 C—GAL 4 is a strain in which a fusion gene in which the yeast GAL 4 gene is linked to the promoter of the cellular actin gene (Act5C) expressed in whole body cells is introduced. Therefore, the GAL4 protein is expressed in all cells in the fly having the Act5C-GAL4 transgene.
I R系統のハエと、 Ac t 5 C— GAL 4系統のハエを交配した子孫 (F 1世 代、 以下これを 「RNA i個体」 と称する) では、 図 1にあるように 2種類の導 入遺伝子が存在する。 従って、 全ての細胞で GAL 4タンパク質が発現し、 I R ベクターを強制転写するため、 d s RNAが細胞に出現し、 RNA i効果を発揮 し、 ターゲット mRNAが発現した場合にこれを分解する。 従って、 その個体の 全ての細胞でターゲット遺伝子の機能阻害が起こる。 ターゲット mRNAが発現 していなレ、細胞では何の効果ももたらさない。  In the offspring (F1 generation, hereafter referred to as “RNAi individuals”) in which the IR strain fly and the Act 5 C—GAL 4 strain fly were crossed, two types of transfection were carried out as shown in FIG. Gene is present. Therefore, the GAL4 protein is expressed in all cells, and since the I R vector is forcibly transcribed, ds RNA appears in the cells, exerts the RNAi effect, and degrades when the target mRNA is expressed. Therefore, the function of the target gene is inhibited in all cells of the individual. If the target mRNA is not expressed, it has no effect on cells.
(4) 表現型の解析および結果  (4) Phenotype analysis and results
上記 (3) で誘導された RN A i効果で、 マウス c DNA ( d n a f o r m 5 4482) のハエホモログの機能が阻害されたことによるハエ個体の表現型の変 化を観察した。 その結果、 RNA i個体は半致死、 即ち蛹にはなるが脱皮して成 虫となる個体は 5 %以下であることが判明した。  A change in the phenotype of a fly individual due to the inhibition of the function of the fly homolog of mouse cDNA (dnaform544822) due to the RNAi effect induced in the above (3) was observed. As a result, it was found that less than 5% of the RNAi individuals were semi-lethal, ie, they became pupae but molted and became adults.
RNA i技術を用いて上記ハエ遺伝子の発現抑制を行い機能阻害することによ り、 ハエ個体が半致死となったことから、 該遺伝子は初期発生あるいは個体の生 存'機能維持に重要な役割を果たしていることが分かった。 前記の通り、 d n a f o rm54482 (配列番号 25、 26) によりコードされるタンパク質は、 アポトーシス抑制作用を有することが推測されており、 RNA i個体中において、 ハエホモログ遺伝子のアポトーシス抑制作用が阻害されたことにより、 個体の発 生 ·分化の過程で、 アポトーシスが正常に進行せず、 個体は半致死となったもの と考えられる。 この様に、 d n a f o r m54482によりコードされるタンパ ク質は、 アポトーシス抑制作用を有しており、 発生 ·分ィ匕 ·生理的機能あるいは 病態との関連で重要な役割を果たしていることが推察される。 上記実施例 5〜 8の組織発現および機能解析結果から、本発明のタンパク質は、 次の性質を有することが明らかになつた。 By inhibiting the expression of the above fly gene using RNAi technology and inhibiting its function, In addition, since the fly individual became semi-lethal, it was found that the gene plays an important role in early development or maintenance of the individual's survival function. As described above, the protein encoded by dnafo rm54482 (SEQ ID NOS: 25 and 26) is estimated to have an apoptosis-suppressing effect, and in RNAi individuals, the apoptosis-suppressing effect of the fly homolog gene is inhibited. However, during the development and differentiation of the individual, apoptosis did not proceed normally, and the individual is considered to have become semi-lethal. As described above, the protein encoded by dnaform m54482 has an apoptosis-suppressing effect, and it is presumed that it plays an important role in relation to development, disruption, physiological functions, or disease states. . From the results of tissue expression and function analysis in Examples 5 to 8 above, it was revealed that the protein of the present invention has the following properties.
1) d n a f o rm56243 (配列番号 1 )によりコードされるタンパク質は、 実施例 4より、 I L一 1受容体フアミリーとの相互作用活性を有し、 免疫応答や 炎症反応を制御する機能を有することが推測され、 実施例 7より、 骨髄、 肺およ ぴ脂肪細胞で強く発現し、 糖尿病の膝臓および結腸癌で発現が増加することが示 された。 これらのこと力 ら、本タンパク質は、免疫疾患、呼吸器系疾患、糖尿病、 癌等に関連することが示唆され、 本発明タンパク質の発現制御物質、 機能賦活物 質、 あるいは機能阻害物質は、免疫疾患(例えば、慢性間接リュウマチ、乾癬) 、 呼吸器系疾患 (例えば 気管支喘息、 肺炎) 、 糖尿病、 癌、 等の治療薬として開 発できる可能性がある。  1) From Example 4, it is assumed that the protein encoded by dnafo rm56243 (SEQ ID NO: 1) has an activity of interacting with IL-11 receptor family, and has a function of controlling an immune response and an inflammatory response. Example 7 showed that it was strongly expressed in bone marrow, lung and fat cells, and increased in diabetic knee and colon cancer. From these results, it is suggested that the present protein is associated with immune diseases, respiratory diseases, diabetes, cancer, etc., and that the expression regulator, function activator, or function inhibitor of the protein of the present invention is immune-related. It may be developed as a therapeutic agent for diseases (eg, chronic joint rheumatism, psoriasis), respiratory diseases (eg, bronchial asthma, pneumonia), diabetes, cancer, and the like.
2) d n a f o rm43059 (配列番号 21) によりコードされるタンパク質 は、 実施例 4より、 RIM - binding proteinの 1種であることが推測された。  2) From Example 4, the protein encoded by dnaform43059 (SEQ ID NO: 21) was estimated to be one type of RIM-binding protein.
RIM- binding proteinは神経伝達物質の分泌に関与していると考えられる。 また、 実施例 7より、 脳での発現が高く、 糖尿病の脖臓で発現が増加し、 結腸癌で減少 していることも角军つた。  RIM-binding protein is thought to be involved in secretion of neurotransmitters. In addition, it was also found from Example 7 that the expression was higher in the brain, increased in diabetic kidney, and decreased in colon cancer.
以上のことから、 本発明タンパク質の発現制御物質、 機能賦活物質、 あるいは 機能阻害物質は、神経伝達の異常に関与する疾患、例えばアルツハイマー型痴呆、 パーキンソン病、 舞踏病、 虚血性脳疾患、 糖尿病性末梢神経障害などの治療薬と して開発できる可能性がある。 また、 糖尿病、 癌等の治療薬として開発できる可 能性がある。 From the above, the expression control substance, the function activator, or Functional inhibitors may be developed as therapeutics for diseases associated with abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic peripheral neuropathy. In addition, it may be developed as a therapeutic drug for diabetes, cancer, etc.
3) d n a f o rm50034 (配列番号 22) によりコードされるタンパク質 は、 実施例 4より、 RIM- binding proteinの 1種であることが推測された。  3) From Example 4, the protein encoded by dnaform50034 (SEQ ID NO: 22) was estimated to be one type of RIM-binding protein.
RIM - binding proteinは神経伝達物質の分泌に関与していると考えられる。 また、 実施例 7より、 脳での発現が高く、 糖尿病の脖臓で発現が増加し、 結腸癌で減少 していることも解った。  RIM-binding protein is thought to be involved in neurotransmitter secretion. In addition, it was found from Example 7 that the expression was high in the brain, increased in diabetic kidney, and decreased in colon cancer.
以上のことから、 本発明タンパク質の発現制御物質、 機能賦活物質、 あるいは 機能阻害物質は、神経伝達の異常に関与する疾患、例えばアルツハイマー型痴呆、 パーキンソン病、 舞踏病、 虚血性脳疾患、 糖尿病性末梢神経障害などの治療薬と して開発できる可能性がある。 また、 糖尿病、 癌等の治療薬として開発できる可 能性がある。 ·  From the above, the expression control substance, function activator or function inhibitor of the protein of the present invention is useful for diseases related to abnormal neurotransmission, such as Alzheimer's dementia, Parkinson's disease, chorea, ischemic brain disease, and diabetic. It may be developed as a therapeutic drug for peripheral neuropathy. In addition, it may be developed as a therapeutic drug for diabetes, cancer, etc. ·
4) d n a f o rm54482 (配列番号 25 ) によりコードされるタンパク質 は、実施例 4よりアポトーシスの抑制に関与することが示唆され、実施例 7より、 眼で強く発現し、 肺での発現が高いことが示され、 実施例 6でも、 タンパク質一 タンパク質相互作用の実験結果から本タンパク質はアポトーシスの抑制や癌と関 係すること、 呼吸器系疾患と関係することが示唆された。 また、 実施例 8では、 ハエのホモログの RNAiの効果で半致死であったことから、本タンパク質は、発 生 ·分化等において重要な役割を果たし、 眼の疾患や肺等の呼吸器系疾患や癌と の関連が示唆された。 これらのことから、 本タンパク質の発現制御物質、 機能賦 活物質、 あるいは機能阻害物質は、 眼の疾患や肺や気管等の呼吸器系疾患や癌の 治療薬として開発できる可能性がある。  4) The protein encoded by dnafo rm54482 (SEQ ID NO: 25) is suggested to be involved in the suppression of apoptosis from Example 4, and from Example 7, it is strongly expressed in eyes and high in lung. As shown in Example 6, the experimental results of protein-protein interaction also suggested that this protein is related to suppression of apoptosis, cancer, and respiratory diseases. In Example 8, the protein was semi-lethal due to the effect of the RNAi of the fly homolog, and therefore, this protein plays an important role in development and differentiation, etc. And a connection with cancer was suggested. From these facts, there is a possibility that the expression regulator, function activator, or function inhibitor of this protein can be developed as a therapeutic agent for ocular diseases, respiratory diseases such as lungs and trachea, and cancer.
5) d n a f o rm36789 (配列番号 27) によりコードされるタンパク質 は、 実施例 4より、 膝臓の分泌顆粒等の膜に存在する糖タンパク質であることが 推測され、 実施例 7より、 脳おょぴ眼に発現が観察され、 糖尿病の脂肪細胞で発 現が増強したことから、 本タンパク質の発現制御物質、 機能賦活物質、 あるいは 機能阻害物質は、 糖尿病や神経伝達の異常に関与する疾患、 例えばアルッハイマ 一型痴呆、 パーキンソン病、 舞踏病、 虚血性脳疾患、 糖尿病性末梢神経障害など の治療薬として開発できる可能性がある。 5) From Example 4, the protein encoded by dnafo rm36789 (SEQ ID NO: 27) was presumed to be a glycoprotein present in membranes such as secretory granules of the knee. Expression is observed in the eyes, and is expressed in diabetic fat cells. Because of the increased current, expression regulators, function activators, or function inhibitors of this protein may be used in diseases involving diabetes and abnormalities in neurotransmission, such as Alzheimer's type 1 dementia, Parkinson's disease, chorea, and ischemic brain. It may be developed as a therapeutic agent for diseases, diabetic peripheral neuropathy, etc.
6) d n a f o rm39540 (配列番号 16 ) によりコードされるタンパク質 は、 実施例 6より、 hypothetical protein HSPC206と相互作用することが認めら れた。 この HSPC206は、 CD34+ hematopoietic stem/progenitor cells力 ら取られ た遺伝子である(Genome Res. 2000, 10(10): 1546 - 60)。 このように HSPC206は、 造血幹細胞から得られていることから、 d n a f o rm39540によりコード されるタンパク質は該組織における細胞分化 ·増殖、 また、 癌 ·免疫 ·炎症 ·ァ レルギ一等に関わる可能性が推測された。 本タンパク質の発現制御物質、 機能賦 活物質、 あるいは機能阻害物質は、 癌 ·免疫疾患 ·炎症性疾患 'アレルギー疾患 等の治療薬として開発できる可能性がある。 産業上の利用可能性  6) From Example 6, it was confirmed that the protein encoded by dnaform39540 (SEQ ID NO: 16) interacts with the hypothetical protein HSPC206. HSPC206 is a gene obtained from the CD34 + hematopoietic stem / progenitor cells (Genome Res. 2000, 10 (10): 1546-60). Thus, since HSPC206 is obtained from hematopoietic stem cells, it is speculated that the protein encoded by dnafo rm39540 may be involved in cell differentiation / proliferation in the tissue, and also in cancer, immunity, inflammation, allergy, etc. Was done. There is a possibility that the expression regulator, function activator, or function inhibitor of this protein can be developed as a therapeutic drug for cancer, immune disease, inflammatory disease, allergic disease and the like. Industrial applicability
本発明のタンパク質およびそれをコードする D N Aは、 前記した諸種の活性を 有することから、 該タンパク質あるいはそれをコードする DNAを用いて該活性 を調節する物質をスクリーニングすることができ、 また該タンパク質が関連する 疾患等に作用し得る医薬の開発に用いることができる。 本出願は、 2002年 4月 19日付けの日本特許出願(特願 2002-11 78 47)、 2002年 4月 26日付けの日本特許出願(特願 2002— 125414)、 2002年 4月 30日付けの日本特許出願(特願 2002— 128447) 、 20 02年 12月 4日付けの日本特許出願(特願 2002— 352588) 、 2002 年 4月 30日付けの日本特許出願(特願 2002— 128807) 、 2002年 4 月 30日付けの日本特許出願(特願 2002— 128859) 、 2002年 12月 4日付けの日本特許出願(特願 2002— 352641) 、 2002年 4月 30日 付けの日本特許出願(特願 2002-128867)および 2002年 5月 2日付 けの日本特許出願(特願 2002-130940) に基づくものであり、 その内容 はここに参照として取り込まれる。また、本明細書にて引用した文献の内容もここ に参照として取り込まれる。 Since the protein of the present invention and the DNA encoding the same have the various activities described above, a substance that regulates the activity can be screened using the protein or the DNA encoding the same. It can be used for the development of drugs that can act on related diseases and the like. This application is filed with Japanese Patent Application dated April 19, 2002 (Japanese Patent Application 2002-11 78 47), Japanese Patent Application dated April 26, 2002 (Japanese Patent Application 2002—125414), April 30, 2002. Japanese Patent Application (Japanese Patent Application No. 2002-128447), Japanese Patent Application dated December 4, 2002 (Japanese Patent Application No. 2002-352588), Japanese Patent Application Application on Japanese Patent Application No. ), Japanese patent application dated April 30, 2002 (Japanese Patent Application 2002-128859), Japanese patent application dated December 4, 2002 (Japanese Patent Application 2002-352641), April 30, 2002 Japanese Patent Application (Japanese Patent Application No. 2002-128867) and Japanese Patent Application (No. 2002-130940) filed on May 2, 2002, the contents of which are incorporated herein by reference. The contents of the documents cited in this specification are also incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
1. 以下の (a) または (b) のタンパク質。  1. The following protein (a) or (b):
( a ) 配列番号 2に記載のァミノ酸配列からなるタンパク質。  (a) a protein comprising the amino acid sequence of SEQ ID NO: 2;
( b ) 配列番号 2に記載のァミノ酸配列において 1若しくは数個のァミノ酸が欠 失、 置換及び/または付加されたアミノ酸配列からなり、 かつ I L— 1受容体フ アミリーとの相互作用活性を有するタンパク質。  (b) consists of an amino acid sequence in which one or several amino acids are deleted, substituted and / or added in the amino acid sequence of SEQ ID NO: 2, and has an interaction activity with IL-1 receptor family. Protein.
2. 請求項 1に記載のタンパク質をコードする DNA。  2. A DNA encoding the protein of claim 1.
3. 請求項 1に記載のタンパク質をコードする完全長 cDNA。  3. A full-length cDNA encoding the protein of claim 1.
4. 以下の (a) 、 (b)又は (c) の何れかの DNA。  4. DNA of any of the following (a), (b) or (c):
( a ) 配列番号 1に記載の塩基配列を有する D NA。  (a) DNA having the nucleotide sequence of SEQ ID NO: 1.
(b) 配列番号 1に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置 換及び Zまたは付加された塩基配列を有し、 かつ I L一 1受容体フアミリーとの 相互作用活性を有するタンパク質をコードする D N A。  (b) in the nucleotide sequence of SEQ ID NO: 1, one or several nucleotides are deleted, replaced, Z- or added, and have an activity of interacting with IL-11 receptor family. DNA encoding a protein having
( c ) 配列番号 1に記載の塩基配列を有する D N Aあるいはその相捕配列とスト リンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 かつ I L一 1受容体ファミリーとの相互作用活性を有するタンパク質をコードする D NA。  (c) an interaction with the IL-11 receptor family, which has a nucleotide sequence capable of hybridizing under stringent conditions with DNA having the nucleotide sequence of SEQ ID NO: 1 or its complementary sequence, and DNA encoding an active protein.
5. 以下の (a) または (b) のタンパク質。  5. The following (a) or (b) protein:
( a ) 配列番号 12に記載のァミノ酸配列からなるタンパク質。  (a) a protein comprising the amino acid sequence of SEQ ID NO: 12;
( b ) 配列番号 12に記載のァミノ酸配列において 1若しくは数個のァミノ酸が 欠失、 置換及び/または付加されたァミノ酸配列からなり、 かつ性腺刺激ホルモ ン活性を有するタンパク質。  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted and / or added in the amino acid sequence of SEQ ID NO: 12, and which has gonad-stimulating hormone activity;
6. 請求項 5に記載のタンパク質をコードする DNA。  6. A DNA encoding the protein of claim 5.
7. 請求項 5に記載のタンパク質をコードする完全長 c D NA。  7. A full-length cDNA encoding the protein of claim 5.
8. 以下の (a)、 (b) または (c) のいずれかの DNA。 8. Any of the following DNA (a), (b) or (c):
(a) 配列番号 1 1に記載の塩基配列を有する DNA。  (a) a DNA having the nucleotide sequence of SEQ ID NO: 11;
(b) 配列番号 1 1に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及び zまたは付加された塩基配列を有し、 かつ性腺刺激ホルモン活性を有す るタンパク質をコードする DNA。 (b) in the nucleotide sequence of SEQ ID NO: 11, one or several bases are deleted, DNA encoding a protein having a substitution and z or an added nucleotide sequence and having gonadotropin activity.
(c) 配列番号 1 1に記載の塩基配列あるいはその相補配列を有する DNAとス トリンジェントな条件下でハイブリダイズする塩基配列を有し、 かつ性腺刺激ホ ルモン活性を有するタンパク質をコードする DNA。  (c) a DNA having a nucleotide sequence that hybridizes under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 11 or a sequence complementary thereto, and encoding a protein having gonad-stimulating hormonal activity.
9. 以下の (a) または (b) のタンパク質。  9. The following (a) or (b) protein:
(&)配列番号1 7〜20のいずれかに記載のアミノ酸配列からなるタンパク質。 (b) 配列番号 1 7〜20のいずれかに記載のアミノ酸配列において 1若しくは 数個のアミノ酸が欠失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 か つタンパク質相互作用活性を有するタンパク質。  (&) A protein consisting of the amino acid sequence of any one of SEQ ID NOs: 17 to 20. (b) a protein comprising an amino acid sequence of any one of SEQ ID NOs: 17 to 20, wherein one or several amino acids are deleted, substituted, and Z or added, and has protein interaction activity. .
10. 請求項 9に記載のタンパク質をコードする DNA。  10. A DNA encoding the protein of claim 9.
11. 請求項 9に記載のタンパク質をコードする完全長 c DNA。  11. A full-length cDNA encoding the protein of claim 9.
12. 以下の (a)、 (b) または (c) のいずれかの DNA。  12. DNA of any of the following (a), (b) or (c):
(a) 配列番号 13〜16のいずれかに記載の塩基配列を有する DNA。  (a) DNA having the nucleotide sequence of any one of SEQ ID NOs: 13 to 16.
(b) 配列番号 13〜1 6のいずれかに記載の塩基配列において、 1若しくは数 個の塩基が欠失、 置換及ぴ Zまたは付加された塩基配列を有し、 かつタンパク質 相互作用活性を有するタンパク質をコードする DNA。  (b) in the nucleotide sequence of any one of SEQ ID NOs: 13 to 16, having a nucleotide sequence in which one or several bases are deleted, substituted, and Z or added, and has a protein interaction activity DNA that encodes a protein.
(c) 配列番号 13〜16のいずれかに記載の塩基配列あるいはその相補配列を 有する DNAとストリンジェントな条件下でハイプリダイズすることができる塩 基配列を有し、 かつタンパク質相互作用活性を有するタンパク質をコードする D NA。  (c) having a base sequence capable of hybridizing under stringent conditions to a DNA having the base sequence of any of SEQ ID NOs: 13 to 16 or a sequence complementary thereto, and having a protein interaction activity DNA encoding a protein.
13. 以下の (a) または (b) のタンパク質。  13. The following protein (a) or (b):
( a ) 配列番号 23または 24に記載のァミノ酸配列からなるタンパク質。  (a) a protein comprising the amino acid sequence of SEQ ID NO: 23 or 24;
(b) 配列番号 23または 24に記載のアミノ酸配列において 1若しくは数個の アミノ酸が欠失、 置換及ぴ Zまたは付加されたアミノ酸配列からなり、 かつ R I (b) an amino acid sequence represented by SEQ ID NO: 23 or 24 wherein one or several amino acids are deleted, substituted and Z or added, and
M結合活性を有するタンパク質。 A protein having M binding activity.
14. 請求項 13に記載のタンパク質をコードする DNA。 14. A DNA encoding the protein of claim 13.
15. 請求項 1 3に記載のタンパク質をコードする完全長 cDNA。 15. A full-length cDNA encoding the protein of claim 13.
16. 以下の (a) 、 (b)または (c) の何れかの DNA。  16. DNA of any of the following (a), (b) or (c):
(a) 配列番号 21または 22に記載の塩基配列を有する DNA。  (a) DNA having the nucleotide sequence of SEQ ID NO: 21 or 22.
(b) 配列番号 21または 22に記載の塩基配列において、 1若しくは数個の塩 基が欠失、 置換及び Zまたは付加された塩基配列を有し、 かつ R IM結合活性を 有するタンパク質をコードする DNA。  (b) coding for a protein having the base sequence of SEQ ID NO: 21 or 22 wherein one or several bases have a base sequence in which deletion, substitution, Z or addition has been made, and which has RIM binding activity; DNA.
(c) 配列番号 21または 22に記載の塩基配列あるいはその相捕配列を有する DNAとストリンジユントな条件下でハイブリダィズすることができる塩基配列 を有し、 かつ R IM結合活性を有するタンパク質をコードする DNA。  (c) Encoding a protein having a base sequence capable of hybridizing under stringent conditions with a DNA having the base sequence of SEQ ID NO: 21 or 22 or its complementary sequence and having RIM binding activity DNA.
17. 以下の (a) または (b) のタンパク質。  17. The following (a) or (b) protein:
( a ) 配列番号 26に記載のァミノ酸配列からなるタンパク質。  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 26;
( b ) 配列番号 26に記載のァミノ酸配列において 1若しくは数個のァミノ酸が 欠失、 置換及び または付加されたァミノ酸配列からなり、 かつアポトーシス抑 制機能を有するタンパク質。  (b) A protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence of SEQ ID NO: 26, and which has an apoptosis-suppressing function.
18. 請求項 1 7に記載のタンパク質をコードする DNA。  18. A DNA encoding the protein of claim 17.
19. 請求項 1 7に記載のタンパク質をコードする完全長 c DNA。  19. A full-length cDNA encoding the protein of claim 17.
20. 以下の (a) 、 (b)または (c) の何れかの DNA。 20. DNA of any of the following (a), (b) or (c):
( a ) 配列番号 25に記載の塩基配列を有する DNA。  (a) a DNA having the nucleotide sequence of SEQ ID NO: 25;
( b ) 配列番号 25に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及び Zまたは付加された塩基配列を有し、 かつアポトーシス抑制機能を有す るタンパク質をコードする DNA。  (b) DNA encoding a protein having a base sequence of SEQ ID NO: 25 in which one or several bases are deleted, substituted, Z or added, and which has an apoptosis-suppressing function.
(c) 配列番号 25に記載の塩基配列あるいはその相補配列を有する DNAとス トリンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 か つアポトーシス抑制機能を有するタンパク質をコードする DNA。  (c) DNA encoding a protein having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 25 or its complementary sequence and having an apoptosis-suppressing function .
21. 以下の (a) または (b) のタンパク質。  21. The following (a) or (b) protein:
( a ) 配列番号 28に記載のァミノ酸配列からなるタンパク質。  (a) a protein consisting of the amino acid sequence of SEQ ID NO: 28;
( b ) 配列番号 28に記載のァミノ酸配列において 1若しくは数個のァミノ酸が 欠失、 置換及び Zまたは付加されたァミノ酸配列からなり、 かつゥロモジュリン 様活性を有するタンパク質。 (b) one or several amino acids in the amino acid sequence of SEQ ID NO: 28 A protein comprising a deletion, substitution and Z or an added amino acid sequence, and having peromodulin-like activity.
22. 請求項 2 1に記載のタンパク質をコードする DNA。  22. A DNA encoding the protein of claim 21.
23. 請求項 2 1に記載のタンパク質をコードする完全長 cDNA。  23. A full-length cDNA encoding the protein of claim 21.
24. 以下の (a) 、 (b)または (c) の何れかの DNA。  24. DNA of any of the following (a), (b) or (c):
(a) 配列番号 27に記載の塩基配列を有する DNA。  (a) a DNA having the nucleotide sequence of SEQ ID NO: 27;
(b) 配列番号 27に記載の塩基配列において、 1若しくは数個の塩基が欠失、 置換及び Zまたは付加された塩基配列を有し、 かつゥロモジュリン様活性を有す るタンパク質をコードする DNA。  (b) DNA encoding a protein having a base sequence in which one or several bases are deleted, substituted, Z or added in the base sequence set forth in SEQ ID NO: 27, and which has peromodulin-like activity.
( c ) 配列番号 27に記載の塩基配列あるいはその相補配列を有する D N Aとス トリンジェントな条件下でハイブリダイズすることができる塩基配列を有し、 か っゥロモジュリン様活性を有するタンパク質をコードする DNA。  (c) a DNA having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 27 or a sequence complementary thereto, and encoding a protein having a purlomodulin-like activity .
25. 以下の (a) または (b) のタンパク質。 25. The following (a) or (b) protein:
( a ) 配列番号 31または 32に記載のァミノ酸配列からなるタンパク質。 (a) a protein comprising the amino acid sequence of SEQ ID NO: 31 or 32;
(b) 配列番号 31または 32に記載のアミノ酸配列において 1若しくは数個の アミノ酸が欠失、 置換及び/または付加されたアミノ酸配列からなり、 かつ脂質 結合活性を有するタンパク質。 (b) a protein consisting of the amino acid sequence of SEQ ID NO: 31 or 32 in which one or several amino acids have been deleted, substituted and / or added, and which has a lipid binding activity.
26. 請求項 25に記載のタンパク質をコードする DNA。  26. A DNA encoding the protein of claim 25.
27. 請求項 25に記載のタンパク質をコードする完全長 cDNA。 27. A full-length cDNA encoding the protein of claim 25.
28. 以下の (a) 、 (b)または (c) の何れかの DNA。 28. DNA of any of the following (a), (b) or (c):
( a ) 配列番号 29または 30に記載の塩基配列を有する D N A。  (a) DNA having the nucleotide sequence of SEQ ID NO: 29 or 30.
( b ) 配列番号 29または 30に記載の塩基配列において、 1若しくは数個の塩 基が欠失、 置換及び Zまたは付加された塩基配列を有し、 かつ脂質結合活性を有 するタンパク質をコードする DNA。  (b) encoding a protein having the nucleotide sequence of SEQ ID NO: 29 or 30, wherein one or several bases have a deletion, substitution, Z or addition of a base, and a lipid-binding activity DNA.
( c ) 配列番号 29または 30に記載の塩基配列あるいはその相補配列を有する D N Aとストリンジェントな条件下でハイブリダイズすることができる塩基配列 を有し、 かつ脂質結合活性を有するタンパク質をコードする DNA。 (c) a DNA having a nucleotide sequence capable of hybridizing under stringent conditions with a DNA having the nucleotide sequence of SEQ ID NO: 29 or 30 or a sequence complementary thereto, and encoding a protein having a lipid binding activity .
29. 請求項 2〜4、 6〜8、 10〜1 2、 14〜16、 18〜20、 22〜 2 4、 26〜28のいずれかに記載の DN Aを含む組換えベクター。 29. A recombinant vector comprising the DNA according to any one of claims 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18 to 20, 22 to 24, and 26 to 28.
30. 請求項 2〜4、 6〜8、 10〜12、 14〜16、 18〜20、 22〜 2 4、 26〜28のいずれかに記載の DN Aまたは請求項 29に記載の組み換えべ クタ一を導入した遺伝子導入細胞または該細胞からなる個体。  30. The DNA according to any one of claims 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18 to 20, 22 to 24, 26 to 28, or the recombinant vector according to claim 29. A transgenic cell into which one has been introduced or an individual comprising the cell.
31. 請求項 30に記載の細胞により産生される、 請求項 1、 5、 9、 1 3、 1 7、 21または 25に記載のタンパク質。  31. The protein of claim 1, 5, 9, 13, 17, 17, 21 or 25 produced by the cell of claim 30.
32. 請求項 2〜4、 6〜8、 10〜12、 14〜: 16、 18〜20、 22〜 2 4、 26〜28のいずれかに記載の DN Aの塩基配列中の連続した 5〜100塩 基と同じ配列を有するセンスオリゴヌクレオチド、 当該センスオリゴヌクレオチ ドと相補的な配列を有するアンチセンスオリゴヌクレオチド、 及ぴ、 当該センス 又はアンチセンスオリゴヌクレオチドのオリゴヌクレオチド誘導体から成る群か ら選ばれるオリゴヌクレオチド。  32. Consecutive 5 to 5 in the nucleotide sequence of the DNA according to any one of claims 2 to 4, 6 to 8, 10 to 12, 14 to: 16, 18 to 20, 22 to 24, 26 to 28. 100 selected from the group consisting of a sense oligonucleotide having the same sequence as the base, an antisense oligonucleotide having a sequence complementary to the sense oligonucleotide, and an oligonucleotide derivative of the sense or antisense oligonucleotide. Oligonucleotides.
33. 請求項 1、 5、 9、 1 3、 1 7、 21または 25に記載のタンパク質に特 異的に結合する抗体あるいはその部分フラグメント。  33. An antibody or a partial fragment thereof that specifically binds to the protein of claim 1, 5, 9, 13, 17, 17, 21 or 25.
34. 抗体がモノク口ーナル抗体である請求項 33に記載の抗体。  34. The antibody of claim 33, wherein the antibody is a monoclonal antibody.
35. モノクローナル抗体が請求項 1、 5、 9、 1 3、 1 7、 21または 25に 記載のタンパク質の活性を中和する作用を有することを特徴とする請求項 34に 記載の抗体。 '  35. The antibody according to claim 34, wherein the monoclonal antibody has an action of neutralizing the activity of the protein according to claim 1, 5, 9, 13, 17, 17, 21 or 25. '
36. 請求項 1、 5、 9、 1 3、 1 7、 21、 25のいずれかに記載のタンパク 質と被検物質を接触させ、 該被検物質による該タンパク質が有する活性の変化を 測定することを特徴とする、該タンパク質の活性調節物質のスクリ一ユング方法。  36. The protein according to any one of claims 1, 5, 9, 13, 13, 17, 21, and 25 is brought into contact with a test substance, and a change in the activity of the protein caused by the test substance is measured. A method for screening a substance that regulates the activity of said protein.
37. 請求項 30に記載の遺伝子導入細胞と被検物質を接触させ、 該細胞に導入 されている DNAの発現レベルの変化を検出することを特徴とする、 該 DNAの 発現調節物質のスクリーニング方法。 37. A method for screening a substance for regulating the expression of a DNA, comprising bringing the test substance into contact with the gene-transfected cell according to claim 30, and detecting a change in the expression level of the DNA introduced into the cell. .
38. 請求項 1、 5、 9、 1 3、 1 7、 21、 25のいずれかに記載のタンパク 質のアミノ酸配列から選択される少なくとも 1以上のァミノ酸配列情報おょぴ Z または請求項 2〜4、 6〜8、 10〜12、 14〜16、 18〜20、 22〜 2 4、 26〜28のいずれかに記載の DNAの塩基配列から選択される少なくとも 1以上の塩基配列情報を保存したコンピュータ読み取り可能記録媒体。 38. Information of at least one amino acid sequence selected from the amino acid sequence of the protein according to any one of claims 1, 5, 9, 13, 13, 17, 21, and 25 Or at least one or more bases selected from the base sequence of the DNA according to any one of claims 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18 to 20, 22 to 24, and 26 to 28. A computer-readable recording medium that stores sequence information.
39. 請求項 1、 5、 9、 1 3、 1 7、 21、 25のいずれかに記載のタンパク 質および Zまたは請求項 2〜4、 6〜8、 10〜12、 14〜16、 18〜20、 22〜24、 26〜 28のいずれかに記載の DNAを結合させた担体。 39. The protein and Z according to any one of claims 1, 5, 9, 13, 17, 17, 21 or 25 or claims 2 to 4, 6 to 8, 10 to 12, 14 to 16, 18 to A carrier to which the DNA according to any one of 20, 22 to 24 and 26 to 28 is bound.
PCT/JP2003/004984 2002-04-19 2003-04-18 Novel proteins and dnas encoding the same WO2003089646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003227429A AU2003227429A1 (en) 2002-04-19 2003-04-18 Novel proteins and dnas encoding the same

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2002-117847 2002-04-19
JP2002117847 2002-04-19
JP2002125414 2002-04-26
JP2002-125414 2002-04-26
JP2002128859 2002-04-30
JP2002-128447 2002-04-30
JP2002-128859 2002-04-30
JP2002128867 2002-04-30
JP2002128447 2002-04-30
JP2002-128867 2002-04-30
JP2002128807 2002-04-30
JP2002-128807 2002-04-30
JP2002-130940 2002-05-02
JP2002130940 2002-05-02
JP2002-352641 2002-12-04
JP2002352588 2002-12-04
JP2002-352588 2002-12-04
JP2002352641 2002-12-04

Publications (1)

Publication Number Publication Date
WO2003089646A1 true WO2003089646A1 (en) 2003-10-30

Family

ID=29255775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004984 WO2003089646A1 (en) 2002-04-19 2003-04-18 Novel proteins and dnas encoding the same

Country Status (2)

Country Link
AU (1) AU2003227429A1 (en)
WO (1) WO2003089646A1 (en)

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 16 April 2002 (2002-04-16), ADACHI J. ET AL., XP002970461, Database accession no. (AK081783) *
DATABASE GENBANK [online] 26 December 2001 (2001-12-26), TAYLOR S.L. ET AL.: "Genomic organization of the interleukin-1 locus", XP002970460, Database accession no. (AY071843) *
DATABASE SWISSPROT [online] 28 February 2003 (2003-02-28), TAYLOR S.L. ET AL.: "Interleukin 1 family member 9(IL-1F9)", XP002970462, Database accession no. (Q8R460) *
GENOMICS, vol. 79, 2002, pages 726 - 733 *
GENOMICS, vol. 79, no. 5, 2002, pages 726 - 733 *
SANJAY KUMAR ET AL.: "Identification and initial characterization of four novel members of the interleukin-1 family", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 14, 2000, pages 10308 - 10314, XP000938731 *
TAYLOR S.L. ET AL.: "Genomic organization of the interleukin-1 locus", GENOMICS, vol. 79, no. 5, May 2002 (2002-05-01), pages 726 - 733, XP004465145 *

Also Published As

Publication number Publication date
AU2003227429A8 (en) 2003-11-03
AU2003227429A1 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
Xie et al. Differential gene expression in fully-grown oocytes between gynogenetic and gonochoristic crucian carps
CN114686584A (en) Screening device and screening method for candidate substance of active ingredient for preventing or treating kidney disease
JP2002525067A (en) Leptin-inducible gene
WO2006068326A1 (en) Novel polypeptide and the use thereof
WO2000011161A1 (en) Novel collectin
Haller et al. Structure, chromosomal localization and expression of the mouse regulator of G-protein signaling10 gene (mRGS10)
WO2003089646A1 (en) Novel proteins and dnas encoding the same
US20100035803A1 (en) Polypeptides and Polynucleotides Encoding the same
Luk et al. Acrosome‐specific gene AEP1: Identification, characterization and roles in spermatogenesis
WO2001059107A1 (en) Novel scavenger receptors
JPWO2008111634A1 (en) Biomarkers specific to the brain and nerves or specific to neural differentiation
US20040038252A1 (en) Method of testing for allergic diseases
WO2003089643A1 (en) Novel proteins and dnas encoding the same
JP2006320201A (en) Method for ameliorating disease symptom caused by mood disorder or related disorder
WO2004074485A1 (en) Novel proteins and dnas encoding the same
WO2003089466A1 (en) Novel proteins and dnas encoding the same
WO2004099408A1 (en) Novel protein and dna coding for the same
JP2004229649A (en) New protein and dna encoding the same
JP2004261179A (en) New protein and dna encoding the same
WO2003091435A1 (en) Novel proteins and dnas encoding the same
JP2004229646A (en) New protein and dna encoding the same
WO2003091428A1 (en) Novel proteins and dnas encoding the same
JP2004229653A (en) New protein and dna encoding the same
JP2004229642A (en) Protein and dna encoding the same
JP2004229650A (en) New protein and dna encoding the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase