WO2003085837A1 - Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles - Google Patents

Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles Download PDF

Info

Publication number
WO2003085837A1
WO2003085837A1 PCT/CN2002/000234 CN0200234W WO03085837A1 WO 2003085837 A1 WO2003085837 A1 WO 2003085837A1 CN 0200234 W CN0200234 W CN 0200234W WO 03085837 A1 WO03085837 A1 WO 03085837A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time
trellis
coding
space
Prior art date
Application number
PCT/CN2002/000234
Other languages
English (en)
French (fr)
Other versions
WO2003085837A8 (fr
Inventor
Yonghui Li
Hanyu Li
Yi Li
Original Assignee
Linkair Communications, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linkair Communications, Inc. filed Critical Linkair Communications, Inc.
Priority to AU2002252941A priority Critical patent/AU2002252941A1/en
Priority to PCT/CN2002/000234 priority patent/WO2003085837A1/zh
Priority to CNA028181263A priority patent/CN1555604A/zh
Publication of WO2003085837A1 publication Critical patent/WO2003085837A1/zh
Publication of WO2003085837A8 publication Critical patent/WO2003085837A8/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • H03M13/251Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM] with block coding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/25Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding

Definitions

  • the present invention relates to the field of communication technology, and in particular to a space-time block coding method based on the principle of superset partitioning. Background technique
  • STBC Space Time Block Codes
  • An object of the present invention is to provide a space-time block coding method based on a superset partitioning principle.
  • the present invention is a spatio-temporal block coding method based on superset partitioning, which includes: using a multi-dimensional TRELLIS phase modulation superset partitioning algorithm to divide a set of signals, and obtain a TRELLIS trellis of the spatiotemporal block coding. Encoding to obtain space-time block encoding.
  • the steps include:
  • the distance between signal points in each divided subset should be set.
  • the distance must be greater than before the division; at least the number of points with the smallest distance in the subset should be as small as possible, so in each set division, the points with the smallest distance should be separated as much as possible;
  • a block code is used to represent the set of each column vector
  • c i is (2, 1)
  • a block code containing two elements, [00], [11], the Hamming distance between elements is 2; a (2, 0) block code containing one element, [0 0], a Hamming between elements
  • the distance is ⁇ .
  • a divided TRELLIS trellis diagram is obtained, and the TRELLIS coding of the corresponding coding structure and the space-time block coding are used to finally obtain the optimized space-time block coding.
  • the steps further include:
  • the two symbols to be sent can be c ,, c 2 and S ,, S 2 after modulation, and coded as follows: s, ⁇ s. S 2
  • the signal in the first row is transmitted on antenna 1, and the signal in the second row is transmitted on antenna 2.
  • the signal in the first column represents the signal to be transmitted at time T, and the signal in the second column represents the signal to be transmitted at time T + 1.
  • the beneficial effects of the present invention are: The present invention can obtain a large coding gain, so the coding method has excellent performance.
  • Figure 1 is a 1-dimensional 8QPSK signal constellation diagram
  • Figure 2 shows the division of the 8PSK signal constellation
  • FIG. 3 is a block diagram of the STTD signal structure
  • Figure 4 shows the constellation of the QPSK signal
  • Figure 5 shows the TRELLIS trellis optimized for space-time block coding.
  • Figure 6 shows the performance simulation results of spatio-temporal block coding based on superset partitioning.
  • the basic rule for set division is that the distance between signal points must be greater than before the division in each divided subset; if this cannot be guaranteed, the number of points with the smallest distance in the subset should be as small as possible. Therefore, in each division, the points with the smallest distance should be separated as much as possible.
  • 2x8PSK Since 2x8PSK includes 6 bits, it has a total of 64 signal points.
  • the set that has not been set divided as ⁇ . ,get on! After the sub-set is divided, the subset containing all zero terms is recorded as ⁇ . Below, we will see that when the set is divided,
  • the block code C ⁇ represents a block code with 2 ⁇ 'codewords, and each time we divide, we must divide the block code to which one of the column vectors belongs, so that we can represent P in ⁇ ⁇ as a constituent
  • the sum of all m ,. of the set, i.e.; ⁇ ,., So this value is unique, and every
  • FIG. 3 it is a block diagram of the signal structure of STTD.
  • Table 2 Superset partitioning of 2x8PSK Number of partitions p Minimum squared distance in the set
  • Split mode 1 ([ ⁇ ] [ ⁇ ] [ ⁇ ] [ ⁇ ⁇ ]) Split into ([00] [11]) and ([01] [10])
  • Split mode 2 ([ ⁇ ] [ ⁇ ] [ ⁇ ] [ ⁇ ⁇ ]) is split into ([00] [10]) and ([01] [11]) Since the input is 4 bits, there should be at least 16 states when there is no parallel path. Although parallel paths will affect the performance of the system, when the state is less than 16, it is the only way.
  • the TRELLIS trellis obtained by using the above splitting method 2 is shown below, as shown in FIG. 5, and when the 3/4 encoding structure is used, and the reference [4] [5], based on The same eigenvalue algorithm gives the same, which is optimal for space-time block coding, as shown in Figure 5, where the parentheses are parallel paths, and the arrangement of each state is referred to the reference [12] Design method of TRELLIS in fading channels.
  • the space-time coding structure of the 4/5 bit rate is the same as that in Reference [12], and will not be described in detail here.
  • the simulation results of the optimized space-time block coding obtained by using the method obtained above are shown below, as shown in FIG. 6.
  • the 3/4 encoding shown in FIG. 6 can obtain a gain of about 1.5dB compared with the 4/5 encoding of reference [12], and relative to The original space-time coding can gain about 5dB. Therefore, it can be seen that the present invention can obtain great coding gain, and the coding scheme has excellent performance.
  • VVGinzburg "Multidimensional signals for a continuous channel”
  • Problemy Peredachi Informatsii [Probl. Inform. Transmission], vol.20, No.l pp.28-46, Jan.-Mar. 1984 (in Russian).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)

Description

一种基于超集划分原理的时空分组编码方法 技术领域
本发明涉及通信技术领域, 具体的讲是一种基于超集划分原理的时空 分组编码方法。 背景技术
时空分组编码( Space Time Block Codes ,简记为 STBC ),最初由 Alamout i 提出 (参见参考文献 [1] ), 由于其结构简单, 可以获得全分集增益(虽然 不能获得很大的编码增益) 因而受到了广大的关注。 并且已被 3GCDMA的标 准 WCDMA (参见参考文献 [2] )、 CDMA2000 (参见参考文献 [2] )采用, 作为 发射分集技术的备选方案。
尽管 STBC问世以来受到了很大的关注, 但是很少有人致力于其算法的 优化和改善。 在参考文献 [4]、 [5]中, 作者将两个天线上的发射信号, 构 成了一个超集, 提出了一种基于等特征值原理的集划分原理。 由于要两两 计算信号点的行列式值, 因而计算量很大, 而且在天线数目变多时, 这种 方法是不切实际的。
发明内容
本发明的目的在于, 提供一种基于超集划分原理的时空分组编码方法。 通过将在参考文献 [6]中提出的一种用于多维 TRELLIS相位调制的超集划分 算法, 应用于时空分组编码的超集划分中 (参见参考文献 [7] ) ,得到了一 组优化的时空分组编码 TRELLIS格图设计的算法。
本发明为一种基于超集划分的时空分组编码方法, 其中包括: 采用多 维 TRELLIS相位调制的超集划分算法对信号进行集划分, 并得出时空分组 编码的 TRELLIS格图, 经相应编码结构的编码, 得到时空分组编码。
所述的方法, 其步骤包括:
在对信号进行集划分时, 应使每次划分后的子集中, 信号点之间的距 离都要大于划分前; 至少使子集中具有最小距离的点的个数应尽可能的少, 因此在每次集划分中, 应尽量将具有最小距离的点分开;
采用分组码的形式来表示每个列向量构成的集合;
可设 Cm,是包含列向量 的分组码, 其中 ,. 表示是属于哪一类分组码; 因为分组码 cm,表示一个有 个码字的分组码, 例如, 对于 L=2, 定义分 组码 c。为 (2, 2)分组码, 包含 4个元素, [0 0], [0 1], [1 0], [1 1] , 码字间的汉明距为 1; ci为(2, 1)分组码, 包含两个元素, [00], [11], 元素间的汉明距为 2; 为 (2, 0)分组码, 包含一个元素, [0 0] , 元 素间的汉明距为∞。 每次划分, 都要把其中一个列向量所属的分组码划分, 这样可以把 Ωρ中的 P表示成构成子集 Ωρ的所有 m,.的和, 即 ρ = ^ ,., 因而
=0
这个值是唯一的, 而且每次划分后值都递增 1; 而 p的范围是从 0到 IL, 其中对于 MPSK, l = log2 M ;
. 为了表示 y 的每一列属于哪一个分组码, 我们可以将 Ωρ表示为 Q(Cm2,cmi,cmo); 因为 c。包含了所有可能的长度为 2的 2进制向量, 因此 Ω° 可以写为 Ω。 = Q(C0 ,C0,C0);
计算集内最小平方距离;
•依据计算得到的集内最小平方距离和超集划分准则, 确定子集的分裂 方式。 在每次划分时, 应将具有最小距离的 Cm,划分, 这样才能保证划分后 子集内的距离大于划分前;
依据给定的状态数, 得到划分后的 TRELLIS 格图, 经相应编码结构的 TRELLIS编码, 和时空分组编码, 最终得到优化后的时空分组编码。
所述的方法, 其步骤进一步包括:
可设待发送的两个符号为 c,,c2, 调制后为 S,,S2, 进行如下的编码: s, ■s. s2
-s, s、 其中第一行的信号在天线 1上发射, 第二行的信号在天线 2上发射, 第 1列的信号表示时刻 T时要发送的信号, 而第 2列的信号表示时刻 T+1 时要发送的信号;
用 0: = [<^,0:2 表示为时空编码后的第 1列信号向量, 其中 ()≤( , , C2≤3, 可以将 C表示为 C = 4C1 + C2, 因而 C为 cpc2构成的超集, 为 2 x QPSK信号; 对该超集进行划分, 构成时空分组码的 TRELLIS , TRELLIS的输出再进行时 空分组编码。
本发明的有益效果为: 本发明可以获得很大的编码增益, 因此该编码 方法具有极好的性能。
附图说明
图 1 为 1维 8QPSK的信号星座图;
图 2 为 8PSK信号星座图的划分;
图 3 为 STTD的信号构造框图;
图 4 为 QPSK信号星座图;
图 5 为时空分组编码优化的 TRELLIS格图;
. 图 6 为基于超集划分的时空分组编码的性能仿真结果。
具体实施方式
在本发明的具体实施方式中, 首先说明这种超集划分原理, 然后将其 应用于时空分组编码中。
( 1 )超集划分的基本原理:
在任何的 TCM的集划分中, 都要遵循的一个原则, 我们称之为集划分 基本设计准则, 即:
集划分基本准则就是在每次划分后的子集中, 信号点之间的距离都要 大于划分前; 如果不能保证这一点, 要保证子集中具有最小距离的点的个 数应尽可能的少, 因此在每次划分中, 应尽量将具有最小距离的点分开。
我们首先以 2 x 8PSK为例来阐述多维 TRELLIS划分的基本方法。 这种方 法很容易扩展到其他调制方式和其他维数的 TRELLIS划分中。
如图 1所示, 为 1维 8PSK的信号星座图, 我们分别用 i, e{0,l,2,...,7} 来表示两个 8PSK 中的信号点, 我们采用 自然序的映射方式, 即 y} <- ex y T 14), j = 1,2。 同时我们也可以将 ,,^ ε {0,1,2,··., 7}用 2 进制向量来表 示, 3 =0], 0 01), 则有 =4 +2 X_/ = l,2, 这说明 ^代表最 高位, ^代表最低位。
如图 2所示为 8PSK的 TRELLIS的集划分,为表示 2x8PSK的信号星座点, 我们将其用 2x3的矩阵来表示:
Figure imgf000006_0001
Figure imgf000006_0003
2x8PSK由于包括 6个比特, 因而共有 64个信号点, 我们记未进行集 划分的集合为 Ω。,进行!)次集划分后, 包含全零项的子集记为 Ω 在下面, 我们会看到, 在集划分时,
Figure imgf000006_0002
成^集合进行划分。
因此, 我们采用分组码的形式来表示每个列向量构成的集合。 我们采 用参考文献 [8]、 [9]中的表示方法。 设 是包含列向量 的分组码, 其中 m,. 表示是属于哪一类分组码。 例如, 对于 L=2, 定义分组码 c。为 (2, 2) 分组码, 包含 4 个元素, [0 0] , [0 1] , [1 0] , [1 1] , 码字间的汉明距 为 1; <^为 (2, 1)分组码, 包含两个元素, [0 0], [1 1], 元素间的汉 明距为 2; <^为 (2, 0)分组码, 包含一个元素, [0 0] , 元素间的汉明 距为 00。
因为分组码 C ^表示一个有 2^ '个码字的分组码, 而且每次划分, 我们 都要把其中一个列向量所属的分组码划分, 这样我们可以把 Ωρ中的 Ρ表示 成构成子集 的所有 m,.的和, 即;=^ ,., 因而这个值是唯一的, 而且每
=0 次划分后值都递增 1。 而 p 的范围是从 0 到 IL, 其中 (对于, MPSK, / = log2 w )。 为了表示 y 的每一列属于哪一个分组码, 我们可以将 其表示 为 Q(cm2,cmi,cm。)。 因为 c。包含了所有可能的长度为 2 的 2进制向量, 因此
Ω0可以写为 Ω。 =Q(C。,C。,C0)。
下面我们介绍集内最小平方距离 (Minimum Squared Subset Distance, 简记为 MMSD) 的计算方法。 参考文献 [10]、 [11]中介绍了 MMSD的下界,
△ ≥ min( 2— , ,--,S^dmi, S dm。 ) 对于 2x8PSK, 我们有
Ap 2≥mm(4dm2,2dmi,0M6dma) 依据集划分基本设计准则, 我们得到 2x8PSK信号的超集划分, 在每次 划分时, 应将具有最小距离的<^划分, 这样才能保证划分后子集内的距离 大于划分前, 得到的结果如表 1所示:
表 1 2x8PSK的超集划
划分次数 p 集内最小平方距离
(V)
0 ^(C0, C0, CQ ) min(4,2,0.586) = 0.586
1 n(c0,c0,cx) min(4,2,1.172) = 1.172
2 ^( 0 ,C0,C2) min(4,2,oo) = 2.0
1
Ψ
3 . Q(C0,C,,C2) min(4,4, oo) = 4.0
1
Ψ
4 , C2, C2 ) min(4, oo, co) = 4.0
Figure imgf000007_0001
5 ^(C] , C2 , C2 ) min(8, oo, oo) = 8.0
1
6 Q(C2 , C2 , C2 ) min(oo,oo, oo) =∞ 对于 8PSK, 可以证明, 这种划分是最优的。 当 L=3时, 虽然, 某些最 优的划分不遵循这个准则, 但是, 性能相差并不是 4艮大。
( 2 )我们利用上面介绍的超集划分准则,来设计时空分组码的 TRELLIS 格图, 并进行集划分。为此我们先简单介绍以下时空分组编码(STTD, Space Time Transmit Diversity )参考文献 [1]。
设待发送的两个符号为 C,,C2, 调制后为 S,,S2, 我们进行如下的编码: s2' -s2 *
-s2* 5, * 其中第一行的信号在天线 1上发射, 第二行的信号在天线 2上发射, 第 1列的信号表示时刻 T时要发送的信号, 而第 2列的信号表示时刻 T+1 时要发送的信号。 如图 3所示, 为 STTD的信号构造框图。
我们用(^[ ^^表示为时空编码后的第 1 列信号向量, 其中 o<c1;c2<3, 我们可以将 C表示为 C = 4C,+C2。 因而 C为 c,,c2构成的超集, 为 2xQPSK 信号。 因而现在我们对这个超集进行划分, 构成时空分组码的 TRELLIS, TRELLIS的输出再进行时空分组编码。
基于上面介绍的超集划分的方法, 2xQPSK的划分结果如表 2所示: 表 2 2x8PSK的超集划分 划分次数 p 集内最小平方距离
0 "(C0,C0) min(4,2) = 2
1 Ω(Ο0,^) min(4,4) = 4
1
2 "(C0,C2) min(4,∞) = 4.0
1
3 (C,,C2) min(8,∞) = 8.0
i
4 Q(c2,c2) min(oo,∞) =∞ 如图 4 所示, QPSK 的信号星座图中
Figure imgf000008_0001
, 由于 的分裂 方式有两种, 划分后的子集内的 Δ 距离都是 4。
分裂方式 1 : ([θθ][θΐ][ΐθ][ΐ ΐ] )分裂为 ( [00] [11] )和 ( [ 01] [10] ) 分裂方式 2: ([θθ][θΐ][ΐθ][ΐ ΐ] )分裂为 ( [00] [10] )和 ( [01] [11] ) 由于输入为 4个比特, 因而没有并行路径时, 应该至少有 16个状态。 有并行路径虽然会影响系统的性能,但是当状态小于 16时, 为唯一的方式。
下面给出状态数为 8 时, 如杲采用上面的分裂方式 2得到的 TRELLIS 格图, 如图 5所示, 以及采用 3/4编码结构时, 与参考文献 [4] [5]中, 基 于等特征值算法给出的相同, 对时空分组编码而言是最优的, 如图 5所示, 其中括号内的为并行路径, 而各状态的排列是参考了参考文献 [12]中所述 的在衰落信道下的 TRELLIS的设计方法。
而 4/5码率的时空编码结构与参考文献 [12]中的相同, 这里不再详述。 下面给出采用上面得到的方法得到的优化时空分组编码的仿真结果, 如图 6所示。
从图中可以看出 10E-6的误码率时,图 6所示的 3/4编码,与文献 [12] 的 4/5编码相比, 可以获得大约 1. 5dB的增益, 而相对于原有的时空编码 可以获得大约 5dB 的增益。 因此可以看出, 本发明可以获得很大的编码增 益, 该编码方案具有极好的性能。
以上具体实施方式仅限于说明本发明, 而非用于限定本发明。
本发明涉及的参考文献为:
[1] S.M.Alamouti, "A simple transmitter diversity scheme for wireless communications," IEEE JSAC, vol.l6.pp.l451-1458,Oct.l998.
[2] 3GPP TS25.211 ,3GPP FDD系统物理层规范.
[3] TIA/EIA/IS-2000.2, CDMA2000物理层规范 pp.3-69—- 3-72.
[4] K.K.Mukkavilli, " Transmitter Diversity and Coding Scheme", Rice University Thesis, Houston, Texas, April, 2000.
[5] Krishna K.Mukkavilli, D.Ionescu and Behnaam Aazhang, "Design of Space-Time Codes with Optimal Coding Gain", in Proc. IEEE International Conference on Personal, Indoor and Mobile Radio Communication, PIMRC,London, UK, September 2000. [6] Steven S.Pietrobon, Robert H.Deng, Alain Lafanechere, Gottfried Ungerboeck, Daniel JU.Costello, " Trellis-Coded Multidimensional Phase Modulation", IEEE Transactions on Information Theory, Vol.36, No.l, Jan 1990.
[7] Yonghui Li, Hanyu Li, Daoben Li, Qishan Zhang, " Optimized Design of Space Time Block Codes based on Supper Set Partitioning," Submitted to IEE Electronic Letters.
[8] H.Imai and S.Hirakawa, "A new multilevel coding method using error correcting codes," IEEE Trans. Inform. Theory, vol.IT-23, pp.371-377, May 1977.
- [9] E.L.Cusack, "Error control codes for QAM signaling," Electron. Lett. Vol.20, No.2, pp.62-63, 19 Jan.1984.
[10] V.V.Ginzburg, "Multidimensional signals for a continuous channel," Problemy Peredachi Informatsii [Probl. Inform. Transmission], vol.20, No.l pp.28-46, Jan.-Mar. 1984 (in Russian).
; [11] S.LSayegh. " A class of optimum block codes in signal space," IEEE Trans. Commun., vol.COM-34, pp.1043-1045, Oct.1986.
[12] C.Schlegel and DJ.Costello, "Bandwidth efficient coding for fading channels: Code construction and performance analysis," IEEE JSAC., vol.SAC-7,pp.1356-1368, Dec.1989.

Claims

权 利 要 求
1. 一种基于超集划分原理的时空分组编码方法, 其中包括: 采用多维 TRELLIS 相位调制的超集划分算法对信号进行集划分, 并得出时空分组编 码的 TRELLIS格图, 经相应编码结构的编码, 得到时空分组编码。
2. 根据权利要求 1所述的方法, 其步骤包括:
在对信号进行集划分时, 应使每次划分后的子集中, 信号点之间的距 离都要大于划分前; 至少使子集中具有最小距离的点的个数应尽可能的少, 因此在每次集划分中, 应尽量将具有最小距离的点分开;
采用分组码的形式来表示每个列向量构成的集合;
可设 cmi是包含列向量 的分组码, 其中 m,. 表示是属于哪一类分组码; 因为分组码^表示一个有 -"1'个码字的分组码, 而且每次划分, 都要把其 中一个列向量所属的分组码划分, 这样可以把 Ωρ中的 ρ表示成构成子集 的所有 ,的和, 即;^ , 因而这个值是唯一的, 而且每次划分后值都递 增 1; 而 p的范围是从 0到 IL, 其中对于 MPSK, / = iog2 w
• 为了表示 y 的每一列属于哪一个分组码, 我们可以将 表示为 Q(cffl2,cmi,cmo); 因为 c。包含了所有可能的长度为 2的 2进制向量, 因此 Ω。 可以写为 Ω。 = Q(C0, C0,C0);
计算集内最小平方距离;
'依据计算得到的集内最小平方距离和超集划分准则, 确定子集的分裂 方式;在每次划分时, 应将具有最小距离的 Cm,划分, 这样才能保证划分后 子集内的距离大于划分前;
依据给定的状态数, 得到划分后的 TRELLIS格图, 经相应编码结构的 TRELLIS编码, 和时空分组编码, 最终得到优化后的时空分组编码。
3. 根据权利要求 1所述的方法, 其步骤进一步包括: 可设待发送的两个符号为 c c2, 调制后为 S,,S2, 进行如下的编码:
其中第一行的信号在天线 1上发射, 第二行的信号在天线 2上发射, 第 1列的信号表示时刻 T时要发送的信号, 而第 2列的信号表示时刻 T+1 时要发送的信号;
用 = [(^1,<2]71表示为时空编码后的第 1列信号向量, 其中 0≤C,,C2≤3, 可以将 C表示为 C = 4C,+C2, 因而 C为 d,C2构成的超集, 为 2xQPSK信号; 对该超集进行划分, 构成时空分组码的 TRELLIS, TRELLIS的输出再进行时 空分组编码。
PCT/CN2002/000234 2002-04-04 2002-04-04 Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles WO2003085837A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002252941A AU2002252941A1 (en) 2002-04-04 2002-04-04 A method for time-space block coding based on hyper-set partition
PCT/CN2002/000234 WO2003085837A1 (fr) 2002-04-04 2002-04-04 Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles
CNA028181263A CN1555604A (zh) 2002-04-04 2002-04-04 一种基于超集划分原理的时空分组编码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2002/000234 WO2003085837A1 (fr) 2002-04-04 2002-04-04 Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles

Publications (2)

Publication Number Publication Date
WO2003085837A1 true WO2003085837A1 (fr) 2003-10-16
WO2003085837A8 WO2003085837A8 (fr) 2003-12-18

Family

ID=28679890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000234 WO2003085837A1 (fr) 2002-04-04 2002-04-04 Procede de codage espace-temps en blocs base sur la division d'hyper-ensembles

Country Status (3)

Country Link
CN (1) CN1555604A (zh)
AU (1) AU2002252941A1 (zh)
WO (1) WO2003085837A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017080A1 (de) * 2005-04-08 2006-10-19 Accelant Communications Gmbh Übertragungsverfahren in einem Funksystem mit mehreren Sende-/Empfangszweigen in der Basisstation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2320400A (en) * 1996-12-13 1998-06-17 Hw Communications Limited Communications system using block coding
US5870414A (en) * 1996-09-18 1999-02-09 Mcgill University Method and apparatus for encoding and decoding digital signals
WO1999023766A2 (en) * 1997-10-31 1999-05-14 At & T Wireless Services, Inc. Maximum likelihood detection of concatenated space-time codes for wireless applications with transmitter diversity
US5944850A (en) * 1996-12-10 1999-08-31 U.S. Philips Corporation Digital transmission system and method comprising a punctured product code combined with a quadrature amplitude modulation
WO2000014921A1 (en) * 1998-09-04 2000-03-16 At & T Corp. Combined channel coding and space-block coding in a multi-antenna arrangement
WO2001050671A1 (en) * 1999-12-29 2001-07-12 Nokia Corporation Space-time code design for fading channels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5870414A (en) * 1996-09-18 1999-02-09 Mcgill University Method and apparatus for encoding and decoding digital signals
US5944850A (en) * 1996-12-10 1999-08-31 U.S. Philips Corporation Digital transmission system and method comprising a punctured product code combined with a quadrature amplitude modulation
GB2320400A (en) * 1996-12-13 1998-06-17 Hw Communications Limited Communications system using block coding
WO1999023766A2 (en) * 1997-10-31 1999-05-14 At & T Wireless Services, Inc. Maximum likelihood detection of concatenated space-time codes for wireless applications with transmitter diversity
WO2000014921A1 (en) * 1998-09-04 2000-03-16 At & T Corp. Combined channel coding and space-block coding in a multi-antenna arrangement
WO2001050671A1 (en) * 1999-12-29 2001-07-12 Nokia Corporation Space-time code design for fading channels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017080A1 (de) * 2005-04-08 2006-10-19 Accelant Communications Gmbh Übertragungsverfahren in einem Funksystem mit mehreren Sende-/Empfangszweigen in der Basisstation
DE102005017080B4 (de) * 2005-04-08 2007-07-26 Accelant Communications Gmbh Übertragungsverfahren in einem Funksystem mit mehreren Sende-/Empfangszweigen in der Basisstation

Also Published As

Publication number Publication date
CN1555604A (zh) 2004-12-15
WO2003085837A8 (fr) 2003-12-18
AU2002252941A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
Chen et al. An improved space-time trellis coded modulation scheme on slow Rayleigh fading channels
US6889355B1 (en) Method and apparatus for data transmission using multiple transmit antennas
Liang A high-rate orthogonal space-time block code
JP4939468B2 (ja) 通信機
Siwamogsatham et al. Improved high-rate space-time codes via concatenation of expanded orthogonal block code and M-TCM
Ng et al. Iteratively decoded variable length space-time coded modulation: Code construction and convergence analysis
JP3883998B2 (ja) 移動通信システムで多重アンテナを通じた信号の送/受信装置及び方法
WO2003085837A1 (fr) Procede de codage espace-temps en blocs base sur la division d&#39;hyper-ensembles
EP1552638A1 (en) Simplified implementation of optimal decoding for cofdm transmitter deversity system
Ma et al. Multilevel concatenated space-time block codes
WO2003092206A1 (fr) Procede et dispositif de codage pour mettre en cascade un code produit «turbo» et un code treillis espace-temps (sttc)
Lee et al. Super-orthogonal space-time block code using a unitary expansion
Yuan et al. Multilevel codes (MLC) with multiple antennas over Rayleigh fading channels
de Noronha-Neto et al. Space-time convolutional codes over GF (p) achieving full 2-level diversity
Kavitha et al. Multilevel Coding for Multiple Input Multiple Output System
Berthet et al. Space-time BICM versus space-time trellis code for MIMO block fading multipath AWGN channel
Sokoya et al. Performance of super-orthogonal space-time trellis code in a multipath environment
Lamarca et al. Random labeling: A new approach to achieve capacity in MIMO quasi-static fading channels
Li et al. Optimization of space-time block codes based on multidimensional super-set partitioning
Mishra et al. A Review Paper On Orthogonal Space Time Block Coded MIMO Systems with Full Rate and Full Diversity Code
Capirone et al. Optimal and suboptimal receivers for maximal-rate root-LDPC codes over MIMO block-fading channels
Smith Super-Orthogonal Co-ordinate Interleaved Orthogonal Designs
Lamarca et al. Spectrally efficient MIMO transmission schemes based on multilevel codes
Han et al. A study on the design of flash analog to quaternary converter uSIng DLC comparator
Dayal et al. Algebraic space-time codes that achieve maximal diversity and/or capacity optimality with low peak-to mean power ratio

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page

Free format text: UNDER (54) PUBLISHED TITLE IN CHINESE REPLACED BY CORRECT TITLE

WWE Wipo information: entry into national phase

Ref document number: 20028181263

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP