WO2003083372A1 - Method for oxygen doping using a pulsed combustion - Google Patents

Method for oxygen doping using a pulsed combustion Download PDF

Info

Publication number
WO2003083372A1
WO2003083372A1 PCT/FR2003/000914 FR0300914W WO03083372A1 WO 2003083372 A1 WO2003083372 A1 WO 2003083372A1 FR 0300914 W FR0300914 W FR 0300914W WO 03083372 A1 WO03083372 A1 WO 03083372A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
oxidant
injected
flow
oxygenated gas
Prior art date
Application number
PCT/FR2003/000914
Other languages
French (fr)
Inventor
Luc Jarry
Gérard Le Gouefflec
Original Assignee
L'air, Societe Anonyme A Direction Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges, Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air, Societe Anonyme A Direction Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges, Claude filed Critical L'air, Societe Anonyme A Direction Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges, Claude
Priority to AU2003233850A priority Critical patent/AU2003233850A1/en
Publication of WO2003083372A1 publication Critical patent/WO2003083372A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2205/00Pulsating combustion
    • F23C2205/20Pulsating combustion with pulsating oxidant supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/32Technologies related to metal processing using renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a method for doping oxygen in a furnace comprising at least one burner supplied with a fuel and an oxidant, said oxidant comprising oxygen, and in which a gas flow is injected in addition to the oxidant. oxygenated with a higher oxygen concentration than the oxidizer.
  • Oxygen injectors are generally installed near or in place of air fuel injectors. This operation is called doping using an oxygen lance.
  • staged combustion To limit the formation of NO x during doping with oxygen, it has been proposed to carry out a staged combustion in space: the air flow reaching the burner is reduced so as to obtain a sub-stoichiometric combustion with a low flame temperature, then this first combustion is completed by a second combustion, obtained by injecting a secondary oxidant such as oxygen, in the products resulting from the first combustion.
  • a secondary oxidant such as oxygen
  • pulsed combustion As for example described in EP-B1 -0 524 880, another solution is the use of pulsed combustion as for example described in EP-B1 -0 524 880.
  • the pulsed combustion consists in passing alternately from a fuel-rich combustion mixture to a lean combustion mixture in fuel. Rich and poor flames have lower temperatures than the stoichiometric mixture. Consequently, rich and poor flames produce less NO x than a stoichiometric flame.
  • the forced combustion it is possible to obtain an overall stoichiometric flame by a regular succession of poor flames and rich flames, the overall flame ensuring good combustion while limiting the emission of NO x .
  • the pulsation is implemented on the fuel and provided that the latter is gaseous.
  • the forced combustion is not necessarily advantageous: the rapid movements of the gaseous fuel valve can cause mechanical problems (availability of the pressure of the gaseous fuel) or chemical (wear, corrosion).
  • the gaseous fuel can be the fatal non-constant product of another process, such as for example gaseous waste to be incinerated or mixtures of steel gases.
  • the advantages of pulsed combustion are only obtained if the fuel and the oxidizer keep the same composition during the process.
  • the implementation of the combustion drawn from the oxidizer can also prove difficult for technical reasons (difficult pulsation on fluids with large flow rates and at low pressure such as air) or for cost reasons (dimensioning of the adapt to the air).
  • the object of the present invention is to propose a simplified implementation of the pulsed combustion when the pulsation of the pulsed combustion is implemented on the oxidant.
  • the invention relates to a method of doping with oxygen a furnace comprising at least one burner supplied with a fuel and an oxidizer, said oxidant comprising oxygen, and into which a gas flow is injected oxygenated and with an oxygen concentration greater than the oxygen concentration of the oxidant in a cyclic manner in addition to the oxidant, the cycle comprising a first phase during which the flow of oxygenated gas is not injected and a second phase during which the flow of oxygenated gas is injected.
  • FIG. 1 groups together curves plotting the quantity of NO x produced as a function of the stoichiometry of the flame for different levels of enrichment of the oxidizer
  • FIG. 2 shows a cycle of the total oxygen flow rate injected into the process of the invention.
  • sub-stoichiometric combustion the combustion of a mixture of oxidizer and fuel in which the quantity of fuel is greater than the quantity necessary for stoichiometric combustion
  • the invention therefore relates to a method for doping oxygen in a furnace comprising at least one burner supplied with a fuel and an oxidizer, said oxidant comprising oxygen, into which a stream of oxygenated and concentrated gas is injected. in oxygen higher than the oxygen concentration of the oxidant in a cyclic manner in addition to the oxidant, the cycle comprising a first phase during which the flow of oxygenated gas is not injected and a second phase during which the flow of gas oxygenated is injected.
  • the burner is first of all essentially supplied by an oxidizer and a fuel; this oxidizer comprises oxygen and is called basic oxidizer.
  • this oxidizer comprises oxygen and is called basic oxidizer.
  • a flow of oxygenated gas is injected in addition to this basic oxidant cyclically.
  • the oxidizer can be air or oxygen-enriched air.
  • the flow of oxygenated gas injected in addition to the basic oxidant must have a higher oxygen concentration than the oxygen concentration of the basic oxidant.
  • the oxygenated gas injected in addition to the basic oxidant can be injected either directly into the basic oxidant flow, or near this flow, or at a distance from this flow at any suitable point in the combustion chamber.
  • the injection of oxygenated gas can be done using a lance.
  • the oxygenated gas is introduced for example into the vein of the oxidant; this injection can be done before or during the passage of the basic oxidant in the regenerators or recuperators of the oven which serve to preheat the basic oxidant, generally air.
  • cyclic injection is meant the fact that the flow rate of the injected oxygenated gas flow is subject to a cyclic variation. This cyclic variation comprises two phases: during the first phase, the oxygenated gas is not injected, and only the basic oxidant is injected into the burner.
  • the oxygenated gas is injected; all of the oxidizers injected into the burner includes both the basic oxidant and the flow of oxygenated gas subjected to the cyclic variation.
  • the cyclic variation of the process generally has a frequency between 0.1 and 10 Hz, preferably between 0.3 and 2 Hz; the value of the frequency can for example be fixed so that the cycle period is less than the residence time of the combustion products in the oven.
  • the duration (F2) of the phase during which the oxygenated gas is injected in addition to the oxidizer is strictly less than the duration (F1) of the phase during which the oxygenated gas n is not injected in addition to the oxidant, preferably strictly less than 50% of the duration of the total cycle (F1 + F2), and even more preferably at least equal to 5% of the duration of the total cycle.
  • the succession of the two phases of the process cycle according to the invention is generally obtained by alternately closing and opening a valve placed on the means for injecting the oxygenated gas.
  • the injection of the oxygenated gas can be done in the injection means of the basic oxidant or directly in the burner near or at a distance from the injection point of the basic oxidant.
  • the flow (Q2) of the flow of oxygenated gas subjected to the cyclic variation is at least equal to 3% of the flow (Q1 + Q2) of total oxygen injected into the burner, and even more preferably at most 50 %.
  • the flow rate of the basic oxidant injected into the burner is fixed so that sub-stoichiometric combustion is obtained during the first phase of the cycle where the flow of oxygenated gas is not injected .
  • the exact values of the duration (F2) of the second phase of injection of the oxygenated gas and of the value (Q2) of the flow rate of the oxygenated gas flow can be fixed according to the configuration of the oven, the nature of the bath heat and / or the nature of the fuel used, and in particular depending on the average stoichiometry desired for the combustion process.
  • the plotting of the curves as defined in FIG. 1 for each specific case makes it possible to evaluate these values.
  • the flow of oxygenated gas injected in addition to the oxidizer generally comprises at least 88% by volume of oxygen, preferably at least 90%.
  • the flow of oxygenated gas can comprise 2 to 5% by volume of argon, the balance being nitrogen.
  • the flow of oxygenated gas comprises more than 99.5% by volume of oxygen; this type of oxygenated gas flow can be obtained by a VSA type device ("vacuum swing adsorption" in English).
  • the oxygen purity of the injected oxygenated gas flow is greater than the oxygen purity of the basic oxidant.
  • the method according to the invention therefore makes it possible to modify the oxygen concentration of the oxidant during the pulsed combustion process, and very particularly to increase the oxygen concentration of the oxidant during the second phase of the cycle, during which the combustion is over-stoichiometric.
  • the flame temperature and the NO x emission are also greater, this increase in the oxygen concentration during the combustion phase of the oxidant-rich mixture ensures total combustion.
  • the implementation of the invention is illustrated in FIG. 1.
  • the curves of this FIG. 1 were obtained by implementing a pulsed combustion process according to the prior art: they indicate on the ordinate the amount of NO x produced as a function of the stoichiometry of the flame in relation to the oxygen concentration.
  • Figure 2 illustrates the type of cycle of the total oxygen flow rate injected into the burner (coming from both the base oxidant (q1) and the oxygen gas flow injected in addition to the base oxidant (q2)) depending on the setting.
  • the duration (F2) of the phase during which the oxygenated gas is injected in addition to the oxidizer is less than the duration (F1) of the phase during which the oxygenated gas is not injected in addition to the oxidant.
  • the method according to the invention has the advantage of being able to be implemented on a pulsed combustion process without significant modification of the existing device: it suffices to insert a valve for injecting an oxygenated gas on the oxidizer injector .
  • Another advantage of the invention is that the process does not generate any variation in the smoke-producing power of the combustion. It is therefore possible to implement the method according to the invention on existing ovens without modifying the stability of the operation of these ovens.
  • Another advantage of the process of the invention is that it is possible to adapt it to increasingly strict environmental standards: it suffices to increase the oxygen enrichment of the oxidizer and to adapt the cycle of the process.
  • Another advantage of the method according to the invention is that the choice of the durations of the first and second phases of the cycle makes it possible to obtain an overall more or less reducing atmosphere above the charge to be heated depending on the nature of said charge.
  • Another advantage is that the method according to the invention makes it possible to lower the temperature of the roof of the oven compared to a method of doping with an oxygenated gas of the prior art.

Abstract

The invention relates to a method for oxygen doping in a furnace comprising at least one burner supplied with a fuel and oxidant, said oxidant comprising oxygen and into which a flow of oxygen gas is injected with a higher oxygen concentration than the oxygen concentration of the oxidant in a cyclical manner as an adjunct to the oxidant. The cycle comprises a first phase during which the oxygen flow is not injected and a second phase during which the oxygen flow is injected.

Description

Procédé de dopage à l'oxygène utilisant une combustion puisée Oxygen doping process using pulsed combustion
La présente invention concerne un procédé de dopage à l'oxygène d'un four comportant au moins un brûleur alimenté par un combustible et un comburant, ledit comburant comprenant de l'oxygène, et dans lequel on injecte en complément du comburant un flux de gaz oxygéné de concentration en oxygène plus élevée que le comburant.The present invention relates to a method for doping oxygen in a furnace comprising at least one burner supplied with a fuel and an oxidant, said oxidant comprising oxygen, and in which a gas flow is injected in addition to the oxidant. oxygenated with a higher oxygen concentration than the oxidizer.
Il est connu, notamment dans les fours de verre, d'enrichir à l'oxygène les procédés de combustion aérocombustibles. Les raisons sont diverses : augmentation de la capacité de production, compensation de la chute de température, etc ... Les injecteurs d'oxygène sont en général installés à proximité ou à la place des injecteurs aérocombustibles. Cette opération est appelée dopage à l'aide d'une lance d'oxygène.It is known, in particular in glass furnaces, to enrich the air-fuel combustion processes with oxygen. The reasons are various: increase in production capacity, compensation for temperature drop, etc. Oxygen injectors are generally installed near or in place of air fuel injectors. This operation is called doping using an oxygen lance.
Ces procédés de dopage peuvent conduire à une augmentation des émissions de NOx. Or les émissions de polluants tels que NOx sont de plus en plus limitées et de nouvelles normes environnementales imposent aux utilisateurs de fours de trouver des moyens de réduire ces émissions. La formation des NOx est principalement liée à la concentration en azote dans le comburant et à la température élevée de la flamme. Dans le cas des procédés de dopage à l'oxygène, la concentration en azote diminue, mais la température augmente, d'où l'augmentation des NOx. Pour limiter la formation des NOx lors du dopage à l'oxygène, il a été proposé de réaliser une combustion étagée dans l'espace : le débit d'air parvenant au brûleur est réduit de manière à obtenir une combustion sous-stoechiométrique avec une faible température de flamme, puis cette première combustion est complétée par une seconde combustion, obtenue par l'injection d'un oxydant secondaire tel que l'oxygène, dans les produits issus de la première combustion. L'inconvénient de la combustion étagée apparaît lorsque la combustion étagée doit être mise en œuvre sur un four déjà existant : en effet, les coûts des travaux nécessaires à l'injection du deuxième oxydant dans le four peuvent être élevés.These doping processes can lead to an increase in NO x emissions. Emissions of pollutants such as NO x are becoming increasingly limited and new environmental standards require oven users to find ways to reduce these emissions. The formation of NO x is mainly linked to the nitrogen concentration in the oxidizer and to the high flame temperature. In the case of oxygen doping processes, the nitrogen concentration decreases, but the temperature increases, hence the increase in NO x . To limit the formation of NO x during doping with oxygen, it has been proposed to carry out a staged combustion in space: the air flow reaching the burner is reduced so as to obtain a sub-stoichiometric combustion with a low flame temperature, then this first combustion is completed by a second combustion, obtained by injecting a secondary oxidant such as oxygen, in the products resulting from the first combustion. The disadvantage of staged combustion appears when staged combustion must be implemented on an already existing oven: indeed, the costs of the work necessary for the injection of the second oxidant in the oven can be high.
Pour limiter les émissions de NOx au cours du dopage à l'oxygène, une autre solution est l'utilisation de la combustion puisée telle que par exemple décrite dans EP-B1 -0 524 880. La combustion puisée consiste à passer alternativement d'un mélange de combustion riche en combustible à un mélange de combustion pauvre en combustible. Les flammes riches et pauvres présentent des températures inférieures à celle du mélange stœchiométrique. Par conséquent, les flammes riches et pauvres produisent moins de NOx qu'une flamme stœchiométrique. Par la combustion puisée, il est possible d'obtenir une flamme globalement stœchiométrique par une succession régulière de flammes pauvres et de flammes riches, la flamme globale assurant une bonne combustion tout en limitant l'émission des NOx. Généralement, la pulsation est mise en œuvre sur le combustible et à condition que ce dernier soit gazeux. En effet, une oscillation rapide du débit de combustible n'est pas possible pour des combustibles solides ou liquides. Toutefois, même avec un combustible gazeux, la combustion puisée n'est pas forcément avantageuse : les mouvements rapides de la vanne de combustible gazeux peuvent engendrer des problèmes mécaniques (disponibilité de la pression du combustible gazeux) ou chimiques (usure, corrosion). Enfin, le combustible gazeux peut être le produit fatal non constant d'un autre procédé, comme par exemple des déchets gazeux à incinérer ou des mélanges de gaz sidérurgiques. Or, les avantages de la combustion puisée ne sont obtenus que si le combustible et le comburant gardent la même composition au cours du procédé. La mise en œuvre de la combustion puisée sur le comburant peut s'avérer également difficile pour des raisons techniques (pulsation difficile sur les fluides à débits importants et à faible pression tels que l'air) ou des raisons de coût (dimensionnement du four à adapter à l'air).To limit NO x emissions during doping with oxygen, another solution is the use of pulsed combustion as for example described in EP-B1 -0 524 880. The pulsed combustion consists in passing alternately from a fuel-rich combustion mixture to a lean combustion mixture in fuel. Rich and poor flames have lower temperatures than the stoichiometric mixture. Consequently, rich and poor flames produce less NO x than a stoichiometric flame. By the forced combustion, it is possible to obtain an overall stoichiometric flame by a regular succession of poor flames and rich flames, the overall flame ensuring good combustion while limiting the emission of NO x . Generally, the pulsation is implemented on the fuel and provided that the latter is gaseous. Indeed, a rapid oscillation of the fuel flow is not possible for solid or liquid fuels. However, even with a gaseous fuel, the forced combustion is not necessarily advantageous: the rapid movements of the gaseous fuel valve can cause mechanical problems (availability of the pressure of the gaseous fuel) or chemical (wear, corrosion). Finally, the gaseous fuel can be the fatal non-constant product of another process, such as for example gaseous waste to be incinerated or mixtures of steel gases. However, the advantages of pulsed combustion are only obtained if the fuel and the oxidizer keep the same composition during the process. The implementation of the combustion drawn from the oxidizer can also prove difficult for technical reasons (difficult pulsation on fluids with large flow rates and at low pressure such as air) or for cost reasons (dimensioning of the adapt to the air).
Le but de la présente invention est de proposer une mise en œuvre simplifiée de la combustion puisée lorsque la pulsation de la combustion puisée est mise en œuvre sur le comburant. Dans ce but, l'invention concerne un procédé de dopage à l'oxygène d'un four comportant au moins un brûleur alimenté par un combustible et un comburant, ledit comburant comprenant de l'oxygène, et dans lequel on injecte un flux de gaz oxygéné et de concentration en oxygène supérieure à la concentration en oxygène du comburant de manière cyclique en complément du comburant, le cycle comprenant une première phase au cours de laquelle le flux de gaz oxygéné n'est pas injecté et une deuxième phase au cours de laquelle le flux de gaz oxygéné est injecté.The object of the present invention is to propose a simplified implementation of the pulsed combustion when the pulsation of the pulsed combustion is implemented on the oxidant. To this end, the invention relates to a method of doping with oxygen a furnace comprising at least one burner supplied with a fuel and an oxidizer, said oxidant comprising oxygen, and into which a gas flow is injected oxygenated and with an oxygen concentration greater than the oxygen concentration of the oxidant in a cyclic manner in addition to the oxidant, the cycle comprising a first phase during which the flow of oxygenated gas is not injected and a second phase during which the flow of oxygenated gas is injected.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre. Des formes et des modes de réalisation de l'invention sont donnés à titre d'exemples non limitatifs, illustrés par les dessins joints dans lesquels :Other characteristics and advantages of the invention will appear on reading the description which follows. Forms and embodiments of the invention are given by way of nonlimiting examples, illustrated by the accompanying drawings in which:
- la figure 1 regroupe des courbes traçant la quantité de NOx produite en fonction de la stœchiométrie de la flamme pour différents niveaux d'enrichissement du comburant,FIG. 1 groups together curves plotting the quantity of NO x produced as a function of the stoichiometry of the flame for different levels of enrichment of the oxidizer,
- la figure 2 représente un cycle du débit d'oxygène total injecté dans le procédé de l'invention.- Figure 2 shows a cycle of the total oxygen flow rate injected into the process of the invention.
Dans la description, on entend par :In the description, by:
- "combustion sous-stœchiométrique" : la combustion d'un mélange de comburant et de combustible dans lequel la quantité de combustible est supérieure à la quantité nécessaire pour une combustion stœchiométrique,- "sub-stoichiometric combustion": the combustion of a mixture of oxidizer and fuel in which the quantity of fuel is greater than the quantity necessary for stoichiometric combustion,
- "combustion sur-stœchiométrique" : la combustion d'un mélange de comburant et de combustible dans lequel la quantité de combustible est inférieure à la quantité nécessaire pour une combustion stœchiométrique. L'invention concerne donc un procédé de dopage à l'oxygène d'un four comportant au moins un brûleur alimenté par un combustible et un comburant, ledit comburant comprenant de l'oxygène, dans lequel on injecte un flux de gaz oxygéné et de concentration en oxygène supérieure à la concentration en oxygène du comburant de manière cyclique en complément du comburant, le cycle comprenant une première phase au cours de laquelle le flux de gaz oxygéné n'est pas injecté et une deuxième phase au cours de laquelle le flux de gaz oxygéné est injecté. Selon le procédé de l'invention, le brûleur est tout d'abord essentiellement alimenté par un comburant et un combustible ; ce comburant comprend de l'oxygène et est dénommé comburant de base. En outre, selon une caractéristique principale de l'invention, un flux de gaz oxygéné est injecté en complément de ce comburant de base de manière cyclique. Le comburant peut être de l'air ou de l'air enrichi en oxygène. Le flux de gaz oxygéné injecté en complément du comburant de base doit présenter une concentration en oxygène plus élevée que la concentration en oxygène du comburant de base. Le gaz oxygéné injecté en complément du comburant de base peut être injecté soit directement dans le flux de comburant de base, soit à proximité de ce flux, soit à distance de ce flux en n'importe quel point approprié de la chambre de combustion. Lors de l'injection à distance ou à proximité du flux de comburant de base, l'injection du gaz oxygéné peut se faire à l'aide d'une lance. Lors de l'injection directement dans le flux de comburant de base, le gaz oxygéné est introduit par exemple dans la veine du comburant ; cette injection peut se faire avant ou lors du passage du comburant de base dans les régénérateurs ou récupérateurs du four qui servent à préchauffer le comburant de base, généralement de l'air. Par injection de manière cyclique, on entend le fait que le débit du flux de gaz oxygéné injecté est soumis à une variation cyclique. Cette variation cyclique comprend deux phases : au cours de la première phase, le gaz oxygéné n'est pas injecté, et seul le comburant de base est injecté dans le brûleur. Au cours de la deuxième phase, le gaz oxygéné est injecté ; la totalité des comburants injectés dans le brûleur comprend à la fois le comburant de base et le flux de gaz oxygéné soumis à la variation cyclique. La variation cyclique du procédé présente en général une fréquence comprise entre 0,1 et 10 Hz, de préférence entre 0,3 et 2 Hz ; la valeur de la fréquence peut être par exemple fixée de manière à ce que la période du cycle soit inférieure au temps de résidence des produits de combustion dans le four.- "over-stoichiometric combustion": the combustion of a mixture of oxidizer and fuel in which the amount of fuel is less than the amount necessary for stoichiometric combustion. The invention therefore relates to a method for doping oxygen in a furnace comprising at least one burner supplied with a fuel and an oxidizer, said oxidant comprising oxygen, into which a stream of oxygenated and concentrated gas is injected. in oxygen higher than the oxygen concentration of the oxidant in a cyclic manner in addition to the oxidant, the cycle comprising a first phase during which the flow of oxygenated gas is not injected and a second phase during which the flow of gas oxygenated is injected. According to the method of the invention, the burner is first of all essentially supplied by an oxidizer and a fuel; this oxidizer comprises oxygen and is called basic oxidizer. In addition, according to a main characteristic of the invention, a flow of oxygenated gas is injected in addition to this basic oxidant cyclically. The oxidizer can be air or oxygen-enriched air. The flow of oxygenated gas injected in addition to the basic oxidant must have a higher oxygen concentration than the oxygen concentration of the basic oxidant. The oxygenated gas injected in addition to the basic oxidant can be injected either directly into the basic oxidant flow, or near this flow, or at a distance from this flow at any suitable point in the combustion chamber. When injecting at a distance or near the flow of basic oxidant, the injection of oxygenated gas can be done using a lance. During injecting directly into the flow of basic oxidant, the oxygenated gas is introduced for example into the vein of the oxidant; this injection can be done before or during the passage of the basic oxidant in the regenerators or recuperators of the oven which serve to preheat the basic oxidant, generally air. By cyclic injection is meant the fact that the flow rate of the injected oxygenated gas flow is subject to a cyclic variation. This cyclic variation comprises two phases: during the first phase, the oxygenated gas is not injected, and only the basic oxidant is injected into the burner. During the second phase, the oxygenated gas is injected; all of the oxidizers injected into the burner includes both the basic oxidant and the flow of oxygenated gas subjected to the cyclic variation. The cyclic variation of the process generally has a frequency between 0.1 and 10 Hz, preferably between 0.3 and 2 Hz; the value of the frequency can for example be fixed so that the cycle period is less than the residence time of the combustion products in the oven.
Selon une mise en œuvre préférée du procédé selon l'invention, la durée (F2) de la phase pendant laquelle le gaz oxygéné est injecté en complément du comburant est strictement inférieure à la durée (F1 ) de la phase pendant laquelle le gaz oxygéné n'est pas injecté en complément du comburant, de préférence strictement inférieure à 50 % de la durée du cycle total (F1 + F2), et encore plus preferentiellement au moins égale à 5 % de la durée du cycle total. La succession des deux phases du cycle du procédé selon l'invention est généralement obtenue par la fermeture et l'ouverture alternativement d'une vanne placée sur le moyen d'injection du gaz oxygéné. Comme indiqué précédemment, l'injection du gaz oxygéné peut se faire dans le moyen d'injection du comburant de base ou directement dans le brûleur à proximité ou à distance du point d'injection du comburant de base.According to a preferred implementation of the method according to the invention, the duration (F2) of the phase during which the oxygenated gas is injected in addition to the oxidizer is strictly less than the duration (F1) of the phase during which the oxygenated gas n is not injected in addition to the oxidant, preferably strictly less than 50% of the duration of the total cycle (F1 + F2), and even more preferably at least equal to 5% of the duration of the total cycle. The succession of the two phases of the process cycle according to the invention is generally obtained by alternately closing and opening a valve placed on the means for injecting the oxygenated gas. As indicated previously, the injection of the oxygenated gas can be done in the injection means of the basic oxidant or directly in the burner near or at a distance from the injection point of the basic oxidant.
De préférence, le débit (Q2) du flux de gaz oxygéné soumis à la variation cyclique est au moins égal à 3 % du débit (Q1 + Q2) d'oxygène total injecté dans le brûleur, et encore plus preferentiellement d'au plus 50 %. Selon le procédé de l'invention, le débit du comburant de base injecté dans le brûleur est fixé de manière à ce qu'une combustion sous-stœchiométrique soit obtenue pendant la première phase du cycle où le flux de gaz oxygéné n'est pas injecté. Les valeurs exactes de la durée (F2) de la deuxième phase d'injection du gaz oxygéné et de la valeur (Q2) du débit du flux de gaz oxygéné peuvent être fixées en fonction de la configuration du four, de la nature du bain à chauffer et/ou de la nature du combustible utilisé, et notamment en fonction de la stœchiométrie moyenne recherchée pour le procédé de combustion. Le tracé des courbes telles que définies sur la figure 1 pour chaque cas d'espèce permet d'évaluer ces valeurs.Preferably, the flow (Q2) of the flow of oxygenated gas subjected to the cyclic variation is at least equal to 3% of the flow (Q1 + Q2) of total oxygen injected into the burner, and even more preferably at most 50 %. According to the method of the invention, the flow rate of the basic oxidant injected into the burner is fixed so that sub-stoichiometric combustion is obtained during the first phase of the cycle where the flow of oxygenated gas is not injected . The exact values of the duration (F2) of the second phase of injection of the oxygenated gas and of the value (Q2) of the flow rate of the oxygenated gas flow can be fixed according to the configuration of the oven, the nature of the bath heat and / or the nature of the fuel used, and in particular depending on the average stoichiometry desired for the combustion process. The plotting of the curves as defined in FIG. 1 for each specific case makes it possible to evaluate these values.
Le flux de gaz oxygéné injecté en complément du comburant comprend généralement au moins 88 % en volume d'oxygène, de préférence au moins 90 %. Selon une première variante, le flux de gaz oxygéné peut comprendre 2 à 5 % en volume d'argon, le complément étant de l'azote. Selon une deuxième variante, le flux de gaz oxygéné comprend plus de 99,5 % en volume d'oxygène ; ce type de flux de gaz oxygéné peut être obtenu par un appareil type VSA ("vacuum swing adsorption" en anglais). Avantageusement, la pureté en oxygène du flux de gaz oxygéné injecté est supérieure à la pureté en oxygène du comburant de base.The flow of oxygenated gas injected in addition to the oxidizer generally comprises at least 88% by volume of oxygen, preferably at least 90%. According to a first variant, the flow of oxygenated gas can comprise 2 to 5% by volume of argon, the balance being nitrogen. According to a second variant, the flow of oxygenated gas comprises more than 99.5% by volume of oxygen; this type of oxygenated gas flow can be obtained by a VSA type device ("vacuum swing adsorption" in English). Advantageously, the oxygen purity of the injected oxygenated gas flow is greater than the oxygen purity of the basic oxidant.
Le procédé selon l'invention permet donc de modifier la concentration en oxygène du comburant au cours du procédé de combustion puisée, et tout particulièrement d'augmenter la concentration en oxygène du comburant lors de la deuxième phase du cycle, au cours de laquelle la combustion est sur- stœchiométrique. Bien que la température de flamme et l'émission de NOx soient également plus importante, cette augmentation de la concentration en oxygène au cours de la phase de combustion du mélange riche en comburant assure une combustion totale. La mise en œuvre de l'invention est illustrée par la figure 1. Les courbes de cette figure 1 ont été obtenues par mise en œuvre d'un procédé de combustion puisée selon l'art antérieur : elles indiquent en ordonnée la quantité de NOx produite en fonction de la stœchiométrie de la flamme par rapport à la concentration en oxygène. Chacune a été obtenue pour un comburant présentant une concentration en oxygène spécifique, que l'on a fait varier entre 21 % en volume (air) et 100 % (oxygène pur). Lors de la mise en œuvre d'un procédé de combustion puisée selon l'art antérieur, la concentration en oxygène du comburant ne varie pas. Ainsi, le procédé oscille entre les deux points A et B, sur- et sous- stœchiométrique de la même courbe. Dans le procédé selon l'invention, au cours d'une phase du procédé de combustion puisée, la concentration en oxygène du comburant augmente et assure une combustion plus complète. Toutefois, on note que le point B' sous-stœchiométrique ne se trouve plus sur la même courbe que le point A ; en effet, le point B' est sur une courbe correspondant à un enrichissement en oxygène plus élevé. On observe que ce point B' présente une ordonnée plus élevée que B : la quantité moyenne de NOx produite peut être plus élevée. Pour éviter cette émission plus importante de NOx, la mise en œuvre préférée de l'invention prévoit de diminuer la durée de la deuxième phase du cycle.The method according to the invention therefore makes it possible to modify the oxygen concentration of the oxidant during the pulsed combustion process, and very particularly to increase the oxygen concentration of the oxidant during the second phase of the cycle, during which the combustion is over-stoichiometric. Although the flame temperature and the NO x emission are also greater, this increase in the oxygen concentration during the combustion phase of the oxidant-rich mixture ensures total combustion. The implementation of the invention is illustrated in FIG. 1. The curves of this FIG. 1 were obtained by implementing a pulsed combustion process according to the prior art: they indicate on the ordinate the amount of NO x produced as a function of the stoichiometry of the flame in relation to the oxygen concentration. Each was obtained for an oxidizer having a specific oxygen concentration, which was varied between 21% by volume (air) and 100% (pure oxygen). During the implementation of a pulsed combustion process according to the prior art, the oxygen concentration of the oxidizer does not vary. Thus, the process oscillates between the two points A and B, over and under stoichiometric of the same curve. In the process according to the invention, during a phase of the pulsed combustion process, the oxygen concentration of the oxidant increases and ensures more complete combustion. However, we note that point B 'sub-stoichiometric is no longer on the same curve as point A; indeed, point B 'is on a curve corresponding to a higher oxygen enrichment. It is observed that this point B 'has a higher ordinate than B: the average amount of NO x produced can be higher. To avoid this greater NOx emission, the preferred implementation of the invention provides for reducing the duration of the second phase of the cycle.
La figure 2 illustre le type de cycle du débit d'oxygène total injecté dans le brûleur (provenant à la fois du comburant de base (q1 ) et du flux de gaz oxygéné injecté en complément du comburant de base (q2)) selon la mise en œuvre préférée du procédé de l'invention. On observe que la durée (F2) de la phase pendant laquelle le gaz oxygéné est injecté en complément du comburant est inférieure à la durée (F1) de la phase pendant laquelle le gaz oxygéné n'est pas injecté en complément du comburant. Le procédé selon l'invention présente l'avantage de pouvoir être mis en œuvre sur un procédé de combustion puisée sans modification importante du dispositif existant : il suffit d'insérer une vanne d'injection d'un gaz oxygéné sur l'injecteur de comburant.Figure 2 illustrates the type of cycle of the total oxygen flow rate injected into the burner (coming from both the base oxidant (q1) and the oxygen gas flow injected in addition to the base oxidant (q2)) depending on the setting. preferred implementation of the method of the invention. It is observed that the duration (F2) of the phase during which the oxygenated gas is injected in addition to the oxidizer is less than the duration (F1) of the phase during which the oxygenated gas is not injected in addition to the oxidant. The method according to the invention has the advantage of being able to be implemented on a pulsed combustion process without significant modification of the existing device: it suffices to insert a valve for injecting an oxygenated gas on the oxidizer injector .
Un autre avantage de l'invention est que le procédé ne génère aucune variation du pouvoir fumigène de la combustion. On peut donc mettre en oeuvre le procédé selon l'invention sur des fours existants sans modifier la stabilité de la conduite de ces fours.Another advantage of the invention is that the process does not generate any variation in the smoke-producing power of the combustion. It is therefore possible to implement the method according to the invention on existing ovens without modifying the stability of the operation of these ovens.
Un autre avantage du procédé de l'invention est qu'il est possible de l'adapter à des normes environnementales de plus en plus sévères : il suffit d'augmenter l'enrichissement en oxygène du comburant et d'adapter le cycle du procédé.Another advantage of the process of the invention is that it is possible to adapt it to increasingly strict environmental standards: it suffices to increase the oxygen enrichment of the oxidizer and to adapt the cycle of the process.
Un autre avantage du procédé selon l'invention est que le choix des durées des première et deuxième phases du cycle permet d'obtenir une atmosphère globalement plus ou moins réductrice au-dessus de la charge à chauffer en fonction de la nature de ladite charge.Another advantage of the method according to the invention is that the choice of the durations of the first and second phases of the cycle makes it possible to obtain an overall more or less reducing atmosphere above the charge to be heated depending on the nature of said charge.
Un autre avantage est que le procédé selon l'invention permet d'abaisser la température de la voûte du four par rapport à un procédé de dopage avec un gaz oxygéné de l'art antérieur. Another advantage is that the method according to the invention makes it possible to lower the temperature of the roof of the oven compared to a method of doping with an oxygenated gas of the prior art.

Claims

REVENDICATIONS
1. Procédé de dopage à l'oxygène d'un four comportant au moins un brûleur alimenté par un combustible et un comburant, ledit comburant comprenant de l'oxygène, caractérisé en ce qu'on injecte un flux de gaz oxygéné et de concentration en oxygène supérieure à la concentration en oxygène du comburant de manière cyclique en complément du comburant, le cycle comprenant une première phase au cours de laquelle le flux de gaz oxygéné n'est pas injecté et une deuxième phase au cours de laquelle le flux de gaz oxygéné est injecté.1. A method of doping the oxygen of an oven comprising at least one burner supplied with a fuel and an oxidizer, said oxidant comprising oxygen, characterized in that a stream of oxygenated gas and of concentration in oxygen higher than the oxygen concentration of the oxidant in a cyclic manner in addition to the oxidant, the cycle comprising a first phase during which the flow of oxygenated gas is not injected and a second phase during which the flow of oxygenated gas is injected.
2. Procédé selon la revendication 1 , caractérisé en ce que la variation cyclique présente une fréquence comprise entre 0,1 et 10 Hz.2. Method according to claim 1, characterized in that the cyclic variation has a frequency between 0.1 and 10 Hz.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la durée (F2) de la phase pendant laquelle le flux de gaz oxygéné est injecté en complément du comburant est strictement inférieure à la durée (F1) de la phase pendant laquelle le lux de gaz oxygéné n'est pas injecté en complément du comburant.3. Method according to claim 1 or 2, characterized in that the duration (F2) of the phase during which the flow of oxygenated gas is injected in addition to the oxidant is strictly less than the duration (F1) of the phase during which the lux of oxygenated gas is not injected in addition to the oxidizer.
4. Procédé selon la revendication 3, caractérisé en ce que la durée (F2) de la phase pendant laquelle le flux de gaz oxygéné est injecté en complément du comburant est strictement inférieure à 50 % de la durée du cycle total.4. Method according to claim 3, characterized in that the duration (F2) of the phase during which the flow of oxygenated gas is injected in addition to the oxidant is strictly less than 50% of the duration of the total cycle.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la durée de la phase pendant laquelle le flux de gaz oxygéné est injecté en complément du comburant est au moins égale à 5 % de la durée du cycle total.5. Method according to one of the preceding claims, characterized in that the duration of the phase during which the flow of oxygenated gas is injected in addition to the oxidant is at least equal to 5% of the duration of the total cycle.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que le débit du flux de gaz oxygéné est au moins égal à 3 % du débit d'oxygène total injecté dans le brûleur.6. Method according to one of the preceding claims, characterized in that the flow rate of the flow of oxygenated gas is at least equal to 3% of the flow rate of total oxygen injected into the burner.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz oxygéné injecté en complément du comburant comprend au moins 88 % en volume d'oxygène, de préférence au moins 90 %. 7. Method according to one of the preceding claims, characterized in that the flow of oxygenated gas injected in addition to the oxidizer comprises at least 88% by volume of oxygen, preferably at least 90%.
PCT/FR2003/000914 2002-03-29 2003-03-21 Method for oxygen doping using a pulsed combustion WO2003083372A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003233850A AU2003233850A1 (en) 2002-03-29 2003-03-21 Method for oxygen doping using a pulsed combustion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0203976A FR2837913B1 (en) 2002-03-29 2002-03-29 OXYGEN DOPING PROCESS USING PULSED COMBUSTION
FR02/03976 2002-03-29

Publications (1)

Publication Number Publication Date
WO2003083372A1 true WO2003083372A1 (en) 2003-10-09

Family

ID=27839325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000914 WO2003083372A1 (en) 2002-03-29 2003-03-21 Method for oxygen doping using a pulsed combustion

Country Status (3)

Country Link
AU (1) AU2003233850A1 (en)
FR (1) FR2837913B1 (en)
WO (1) WO2003083372A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427261A (en) * 2005-06-17 2006-12-20 Laidlaw Drew Ltd Fuel Injector for a Glass Melting Furnace
US20120328994A1 (en) * 2010-03-01 2012-12-27 Tomoyuki Haneji Method for burning burner
US20130095436A1 (en) * 2010-06-29 2013-04-18 Taiyo Nippon Sanso Corporation Burner combustion method
WO2017067540A1 (en) * 2015-10-19 2017-04-27 Karlsruher Institut für Technologie Firing system and method for operating same
WO2018168160A1 (en) * 2017-03-13 2018-09-20 大陽日酸株式会社 Method and device for heating to-be-heated object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2892497B1 (en) * 2005-10-24 2008-07-04 Air Liquide COMBUSTION METHOD MIXED IN A REGENERATING OVEN

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473348A (en) * 1980-08-18 1984-09-25 Nauchno-Proizvodstvennoe Obiedinenie Po Tekhnologii Mashinostroenia "Tsniitmash" Method for pulse-burning fuel gases in industrial furnaces
DE3340472A1 (en) * 1983-11-09 1985-05-15 Axel Friedrich 6670 St Ingbert Gonschorek LD CONVERTER WITH AFTERBURN
US5302111A (en) * 1991-07-23 1994-04-12 Frair Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for pulsed combustion
US5639233A (en) * 1995-07-07 1997-06-17 Ruark; Ralph E. Kiln construction and method of firing the same
DE19619919A1 (en) * 1996-05-17 1997-08-14 Sorg Gmbh & Co Kg Glass furnace fuel and oxygen introduced in alternating pulses
EP0866295A1 (en) * 1997-03-18 1998-09-23 The BOC Group plc Operation of rotary kilns
EP0978571A1 (en) * 1998-08-04 2000-02-09 Linde Aktiengesellschaft Process for the pulsed introduction of oxygen and/or oxygen-containing gas mixtures into a melt
FR2823290A1 (en) * 2001-04-06 2002-10-11 Air Liquide COMBUSTION PROCESS INCLUDING SEPARATE INJECTIONS OF FUEL AND OXIDIZING AND BURNER ASSEMBLY FOR IMPLEMENTATION OF THIS PROCESS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725299B2 (en) * 1997-06-19 2005-12-07 株式会社パウダリングジャパン Combustor for both normal and pulse combustion
US6454562B1 (en) * 2000-04-20 2002-09-24 L'air Liquide-Societe' Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxy-boost control in furnaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473348A (en) * 1980-08-18 1984-09-25 Nauchno-Proizvodstvennoe Obiedinenie Po Tekhnologii Mashinostroenia "Tsniitmash" Method for pulse-burning fuel gases in industrial furnaces
DE3340472A1 (en) * 1983-11-09 1985-05-15 Axel Friedrich 6670 St Ingbert Gonschorek LD CONVERTER WITH AFTERBURN
US5302111A (en) * 1991-07-23 1994-04-12 Frair Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for pulsed combustion
US5639233A (en) * 1995-07-07 1997-06-17 Ruark; Ralph E. Kiln construction and method of firing the same
DE19619919A1 (en) * 1996-05-17 1997-08-14 Sorg Gmbh & Co Kg Glass furnace fuel and oxygen introduced in alternating pulses
EP0866295A1 (en) * 1997-03-18 1998-09-23 The BOC Group plc Operation of rotary kilns
EP0978571A1 (en) * 1998-08-04 2000-02-09 Linde Aktiengesellschaft Process for the pulsed introduction of oxygen and/or oxygen-containing gas mixtures into a melt
FR2823290A1 (en) * 2001-04-06 2002-10-11 Air Liquide COMBUSTION PROCESS INCLUDING SEPARATE INJECTIONS OF FUEL AND OXIDIZING AND BURNER ASSEMBLY FOR IMPLEMENTATION OF THIS PROCESS

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427261A (en) * 2005-06-17 2006-12-20 Laidlaw Drew Ltd Fuel Injector for a Glass Melting Furnace
US20120328994A1 (en) * 2010-03-01 2012-12-27 Tomoyuki Haneji Method for burning burner
US9157631B2 (en) * 2010-03-01 2015-10-13 Taiyo Nippon Sanso Corporation Method for burning burner
US20130095436A1 (en) * 2010-06-29 2013-04-18 Taiyo Nippon Sanso Corporation Burner combustion method
US9581332B2 (en) * 2010-06-29 2017-02-28 Taiyo Nippon Sanso Corporation Burner combustion method
KR101778706B1 (en) * 2010-06-29 2017-09-14 타이요 닛폰 산소 가부시키가이샤 Burner Combustion Method
WO2017067540A1 (en) * 2015-10-19 2017-04-27 Karlsruher Institut für Technologie Firing system and method for operating same
WO2018168160A1 (en) * 2017-03-13 2018-09-20 大陽日酸株式会社 Method and device for heating to-be-heated object
US11534823B2 (en) 2017-03-13 2022-12-27 Taiyo Nippon Sanso Corporation Method and device for heating object to be heated

Also Published As

Publication number Publication date
FR2837913A1 (en) 2003-10-03
FR2837913B1 (en) 2004-11-19
AU2003233850A1 (en) 2003-10-13

Similar Documents

Publication Publication Date Title
EP0782973B1 (en) Process for heating the charge of a glass melting furnace
EP3241808B1 (en) Combustion method for glass melting
EP2288851B1 (en) Low-nox gas injector
EP2240417A1 (en) Method for heating a low-nox glass furnace having high heat transfer
FR2488678A1 (en) METHOD AND APPARATUS FOR COMBUSTION TO SIGNIFICANTLY REDUCE THE EMISSION OF NITROGEN COMPOUNDS FORMED DURING COMBUSTION
EP1379810A1 (en) Combustion method comprising separate injections of fuel and oxidant and burner assembly therefor
EP0524880A1 (en) Process and installation for pulsating combustion
EP1913321B1 (en) Method for calcination of a material with low nox emissions
WO2003083372A1 (en) Method for oxygen doping using a pulsed combustion
KR840002978A (en) Dew point process
FR2863692A1 (en) Burning fuel, comprises injecting jet of fuel and at least two jets of oxidant, with primary oxidant jet in center of and surrounding fuel jet
EP1618334B1 (en) Staged combustion method for a liquid fuel and an oxidant in a furnace
CA2657537C (en) Burner and method for the alternate implementation of oxycombustion and aerocombustion
FR2895490A1 (en) Fuel combustion method, involves injecting fuel jet and oxygen gas jets in combustion chamber, introducing primary gas jet through hole of specific diameter, where diameter and distance of emerging fuel jet ratio is at preset range
EP1946004B1 (en) Method for carrying out combined burning in a recovering furnace
WO2006117336A1 (en) Method for the smelting of a ferrous load
WO2006072723A1 (en) Method for burning a liquid fuel by variable speed spraying
EP0319505B1 (en) Method of ore reduction in a shaft furnace
FR2863689A1 (en) Staged combustion of a fuel and oxidant, useful for the recovery of heat energy from furnaces
SU1244187A1 (en) Method of heating high-temperature regenerator
FR2830606A1 (en) Combustion process, useful in e.g. foundry, involves using burner with at least one oxidant and at least one fuel, in which power and/or equivalent speed of burner are varied independently of each other
FR2969267A1 (en) DISCONTINUOUS LOAD FUSION PROCESS
SU1019166A1 (en) Gaseous fuel combustion method
FR2777073A1 (en) Reduction of furnace produced nitrogen oxide levels in high temperature applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP