WO2003082881A2 - Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors - Google Patents

Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors Download PDF

Info

Publication number
WO2003082881A2
WO2003082881A2 PCT/CA2003/000427 CA0300427W WO03082881A2 WO 2003082881 A2 WO2003082881 A2 WO 2003082881A2 CA 0300427 W CA0300427 W CA 0300427W WO 03082881 A2 WO03082881 A2 WO 03082881A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pyridoxal
phosphate
group
preparation
Prior art date
Application number
PCT/CA2003/000427
Other languages
French (fr)
Other versions
WO2003082881A3 (en
Inventor
Gilles Sauve
Brent Richard Stranix
Original Assignee
Procyon Biopharma Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA002379526A external-priority patent/CA2379526A1/en
Application filed by Procyon Biopharma Inc. filed Critical Procyon Biopharma Inc.
Priority to AU2003215469A priority Critical patent/AU2003215469A1/en
Publication of WO2003082881A2 publication Critical patent/WO2003082881A2/en
Publication of WO2003082881A3 publication Critical patent/WO2003082881A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings

Definitions

  • the present invention relates to a series of novel pyridoxal derivatives which have HTV integrase inhibitory properties that have been characterized by specific structural and physicochemical features. This inhibitory property may be advantageously used to provide compounds with antiviral properties against HTN viruses, including the HIV-l and HIV-2 viruses.
  • the pyridoxal derivatives including pharmaceutical compositions thereof may be used to inhibit the activity of HIN integrase.
  • the HTV (human immunodeficiency virus) retrovirus is the causative agent for ADDS (acquired immunodeficiency syndrome).
  • ADDS advanced immunodeficiency syndrome
  • the HIV-l retrovirus primarily uses the CD4 receptor (a 58 kDa transmembrane protein) to gain entry into cells, through high-affinity interactions between the viral envelope glycoprotein (gp 120) and a specific region of the CD4 molecule found in CD4 (+) T-helper lymphocytes and certain other cells (Lasky L. A. et al., Cell vol. 50, p. 975 - 985 (1987)).
  • HTN infection is characterized by a period immediately following infection called "asymptomatic" which is devoid of clinical manifestations in the patient.
  • AIDS-related complex characterized by symptoms such as persistent generalized lymphadenopathy, fever, weight loss, followed itself by full blown AIDS.
  • ARC AIDS-related complex
  • the reverse transcriptase encoded by the virus genome catalyzes the first of these reactions (Haseltine W. A. FASEB J. vol 5, p. 2349 - 2360 (1991)).
  • R ⁇ A-dependent D ⁇ A polymerase activity which catalyzes the synthesis of the minus strand DNA from viral RNA
  • RNase H ribonuclease H
  • DNA-dependent DNA polymerase activity which catalyzes the synthesis of a second DNA strand from the minus strand DNA template
  • provirus the viral genome now in the form of DNA (called provirus) is integrated into host genomic DNA and serves as a template for viral gene expression by the host transcription system, which leads eventually to virus replication (Roth et al.,1989).
  • the preintegration complex consists of integrase, reverse transcriptase, pl7 and proviral DNA (Bukrinsky M. L, Proc. Natn. Acad. Sci. USA vol. 89 p.6580 - 6584 (1992)).
  • the phosphorylated pl7 protein plays a key role in targeting the preintegration complex into the nucleus of the host cell (Gallay et al., 1995).
  • the primary RNA transcripts made from the provirus are synthesized by the host cell RNA polymerase II which is modulated by two virus-encoded proteins called tat and rev.
  • the viral proteins are formed as polyproteins.
  • Post-translational modifications of viral polyproteins include processing and glycosylation of Env (envelope) proteins, and myristylation of the N-terminal residue of the pl7 protein in the Gag and Gag-Pol polyproteins.
  • the viral protease is involved in processing polyproteins Gag and Gag-Pol into mature proteins, an essential step for virus infectivity.
  • a number of synthetic antiviral agents have been designed to block various stages in the replication cycle of HTV. These agents include compounds which interfere with viral binding to CD4 (+) T-lymphocytes (for example, soluble CD4), compounds which block viral reverse transcriptase (for example, didanosine and zidovudine (AZT)), budding of virion from the cell (interferon), or the viral protease (for example Ritonavir and Indinavir). Some of these agents proved ineffective in clinical tests. Others, targeting primarily early stages of viral replication, have no effect on the production of infectious virions in chronically infected cells. Furthermore, administration of many of these agents in effective therapeutic doses has led to cell-toxicity and unwanted side effects, such as anemia, neurotoxicity and bone marrow suppression.
  • Anti-protease compounds in their present form are typically large and complex molecules of peptidic nature that tend to exhibit poor bioavailability and are not generally consistent with oral administration. These compounds often exhibit side effects such as nausea, diarrhea, liver abnormalities and kidney stones. None of the known antiviral agents on the market target the HIV integrase. Accordingly, the need exists for compounds that can effectively inhibit the action of this viral enzyme and that can be used for treating HIV infections.
  • HIV integrase and integrase as used herein are used interchangeably and refer to the integrase enzyme encoded by the human immunodeficiency virus type 1 or 2. Li particular this term includes the human immunodeficiency virus type 1 integrase.
  • the present invention relates to a class of pyridoxal compounds as well as their pharmaceutically acceptable derivatives (e.g., salts).
  • the present invention in accordance with one aspect thereof provides a compound of formula I
  • R ⁇ may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, F, Cl, Br, I, -CN and -COOH, wherein R 2 may be selected from the group consisting of -COOH, -SO 2 NR 3 R 4 , -SO 2 R 5 , -CONR 3 R 4 and -COR 5 ,
  • R 3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms,
  • R 4 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH 2 CH 2 OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl,
  • R 5 may be selected from the group consisting of aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, azocanyl (i.e., the azacycloalkanes, 3 to 8 member ring systems containing at least one nitrogen ring atom) and morpholinyl, with the proviso that the R5 group is linked to the adjacent sulfur atom at or via a ring nitrogen atom thereof (e.g.
  • R 5 may be selected from among aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, azepan- 1-yl, morpholin-4-yl, etc.) and wherein m may be 0, 1, 2 or 3, wherein n may be 0 or 1.
  • Azepan-1-yl has the following structure:
  • the present invention provides, a compound(s) of formula IA
  • R 1 may be H
  • R 3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and branched alkyl group of 3 to 6 carbon atoms
  • R 4 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH 2 CH 2 OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin
  • the present invention provides, a compound(s) of formula IB,
  • R may be H, wherein R 5 may be selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl, and wherein m may be 1.
  • the present invention provides, a compound(s) of formula IC,
  • Ri may be H
  • R 3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms, and wherein R may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH 2 CH 2 OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimi
  • the present invention provides, a compound(s) of formula ID,
  • Ri may be H
  • R 5 may be selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl, and wherein m may be 1.
  • the compounds of this invention include pharmaceutically acceptable derivatives of the compounds of formula I (as well as of formulae IA, IB, IC and ID) as defined above.
  • a "pharmaceutically acceptable derivative” means any pharmaceutically acceptable salt (e.g., Na, K, Cs, etc), acetals (i.e., dimethylacetal, diethylacetal, etc), oxime, or ester (as for example, but not limited to methyl, ethyl, propyl, isopropyl esters, etc) of a compound of this invention.
  • salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N - (C ⁇ _ 4 alkyl) 4 + salts.
  • the expression "pharmaceutically acceptable derivative” is to be understood as referring to any other compound having a structure such that, upon administration to a recipient, it is capable of providing (directly or indirectly) a compound of this invention or an antivirally active metabolite or residue thereof.
  • the compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral bioavailability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
  • the compounds of the present invention including where applicable their pharmaceutically acceptable derivatives have an affinity for integrase, in particular, HTV integrase. Therefore, these compounds are useful as inhibitors of such integrase, i.e. they are in particular useful as HTV integrase inhibitors.
  • These compounds can be used alone or in combination with other therapeutic or prophylactic agents, such as antivirals, antibiotics, immunomodulators or vaccines, for the treatment or prophylaxis of viral infection.
  • the compounds of this invention are capable of inhibiting HIV viral replication in human CD4+ T-cells, by inhibiting the ability of HTV integrase to integrate the double stranded DNA into host genomic DNA for further virus replication by the host cell machinery (Sakai H., J. Virol. Vol. 67 p. 1169 - 1174 (1993)).
  • HTV integrase to integrate the double stranded DNA into host genomic DNA for further virus replication by the host cell machinery.
  • these compounds are useful as therapeutic and prophylactic agents to treat or prevent infection by HTV-1 and related viruses, which may result in asymptomatic HTV-1 infection, AIDS-related complex (ARC), acquired immunodeficiency syndrome (AIDS), AIDS-related dementia, or similar diseases of the immune system.
  • HTV-1 and related viruses which may result in asymptomatic HTV-1 infection, AIDS-related complex (ARC), acquired immunodeficiency syndrome (AIDS), AIDS-related dementia, or similar diseases of the immune system.
  • compositions comprising a pharmaceutically acceptable carrier and at least one compound of formulae I, IA, IB, IC and ID as defined herein.
  • the pharmaceutical composition may comprise, for example, a pharmaceutically effective amount of such one or more compounds of this invention.
  • the pharmaceutical compositions may be used to inhibit integrase, including HTV integrase, thus providing protection against EON infection.
  • pharmaceutically effective amount refers to an amount effective in treating HTV infection in a patient. It is also to be understood herein that a “pharmaceutically effective amount” may be interpreted as an amount giving a desired therapeutic effect, either taken into one dose or in any dosage or route or taken alone or in combination with other therapeutic agents.
  • a "pharmaceutically effective amount” may be understood as an amount having an inhibitory effect on HIV (HIV-l and HrV-2 as well as related viruses (e.g., HTLV-I and HTLN-II, and simian immunodeficiency virus) infection cycle (e.g., inhibition of replication, reinfection, maturation, budding etc.) and on any organism depending on integrase for their life cycle.
  • HIV HIV-l and HrV-2
  • related viruses e.g., HTLV-I and HTLN-II, and simian immunodeficiency virus infection cycle (e.g., inhibition of replication, reinfection, maturation, budding etc.) and on any organism depending on integrase for their life cycle.
  • prophylactically effective amount refers to an amount effective in preventing HTV infection in a patient.
  • patient refers to a mammal, including a human.
  • pharmaceutically acceptable carrier refers to a non-toxic carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof.
  • stable refers to compounds which possess stability sufficient to allow manufacture and administration to a mammal by methods known in the art. Typically, such compounds are stable at a temperature of 40°C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
  • any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein.
  • any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein.
  • a time of 1 minute or more is to be understood as specifically incorporating herein each and every individual time, as well as subrange, above 1 minute, such as for example 1 minute, 3 to 15 minutes, 1 minute to 20 hours, 1 to 3 hours, 16 hours, 3 hours to 20 hours etc.;
  • a "straight alkyl group of 1 to 6 carbon atoms” includes for example, methyl, ethyl, propyl, butyl, pentyl, hexyl.
  • branched alkyl group of 3 to 6 carbon atoms includes for example, without limitation, wo-butyl, tert-butyl, 2-pentyl (i.e. 2-methyl-butyl), 3-pentyl (i.e. 3 -methyl-butyl; isopentyl), neopentyl, tert-pentyl, etc.
  • a "cycloalkyl group having 3 to 6 carbon” includes for example, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclocyclohexyl (i.e., C 6 H ⁇ ).
  • the compound formulae each include each and every individual compound described thereby as well as each and every possible class or subgroup or sub-class of compounds whether such class or sub-class is defined as positively including particular compounds, as excluding particular compounds or a combination thereof; for example an exclusionary definition for the formulae (e.g. I) may read as follows: "provided that when one of Ri and R 2 is -COOH and the other is H, -COOH may not occupy the 4' position".
  • the compounds of this invention may be readily prepared using conventional techniques from commercially available and cheap starting materials.
  • the derivatives of the present invention may be readily obtained from pyridoxal-5-phosphate through sequences recognized by those knowledgeable in the art as straightforward, requiring readily available reagents and easy techniques.
  • pyridoxal-5-phosphate may be transformed to the desired HTV integrase inhibitors according to approaches as shown in schemes 3 and 4 which are discussed below.
  • Schemes 1 and 2 show the preparation of aminoaryl carboxamides (Scheme 1) as well as m- and p-aminoaryl sulfonamides (Scheme 2) which are used in the preparation of HTV integrase inhibitors.
  • Scheme 1 illustrates a generic example for the preparation of aminoaryl carboxamides 3.
  • R3R4NH may as shown above be replaced by an Azacycloalkyl (C 3 -C 8 ) or by an Aryl-NH 2 to lead to intermediate derivatives 2 1 or 2": (see below) which may in turn be converted to corresponding aminophenyl compounds 3' and 3" (not shown).
  • Scheme 2 illustrates a generic example for the preparation of -aminoaryl sulfonamides 6 or m-aminoaryl sulfonamides 7.
  • R3R4NH may as shown above be replaced by an Azacycloalkyl (C3-C8) or by an Aryl-NH 2 to lead to intermediate derivatives 5' or 5": (see below) which may in turn be converted to corresponding aminophenyl compounds 6' and 6" (not shown).
  • Scheme 3 illustrates a generic example for the coupling of aminoaryl carboxamides 3 with pyridoxal-5- ⁇ hosphate.
  • Derivatives 3 1 or 3" can be treated in the same fashion as compound 3.
  • Scheme 4 illustrates a generic example for the coupling of p-aminoaryl sulfonamide 6 (or m- aminoaryl sulfonamide 7) with pyridoxal-5-phosphate.
  • Derivatives 6 1 or 6" (para) and or 7" (meta) can be treated in the same fashion as compound 6 (para) or 7 (meta).
  • the diazo derivatives are known to exist in two geometric isomers (cis and trans) which can be present in our compounds.
  • the trans isomer is either the sole or the major isomer.
  • novel compounds of the present invention are excellent ligands for integrase, particularly HTV-1, and most likely HTV-2 and HTLV-1 integrase. Accordingly, these compounds are capable of targeting and inhibiting an early stage event in the replication, i.e. the integration of viral DNA into the human genome, thus preventing the replication of the virus.
  • the compounds according to this invention may also be used as inhibitory or interruptive agents for other viruses which depend on integrases, similar to HTV integrases, for obligatory events in their life cycle.
  • Such compounds inhibit the viral replication cycle by inhibiting integrase. Because integrase is essential for the production of mature virions, inhibition of that process effectively blocks the spread of virus by inhibiting the production and reproduction of infectious virions, particularly from acutely infected cells.
  • the compounds of this invention advantageously inhibit enzymatic activity of integrase and inhibit the ability of integrase to catalyze the integration of the virus into the genome of human cells.
  • the compounds of this invention may be employed in a conventional manner for the treatment or prevention of infection by HTV and other viruses which depend on integrases for obligatory events in their life cycle. Such methods of treatment, their dosage levels and requirements may be selected by those of ordinary skill in the art from available methods and techniques.
  • a compound of this invention may be combined with a pharmaceutically acceptable adjuvant for administration to a virally infected patient in a pharmaceutically acceptable manner and in an amount effective to lessen the severity of the viral infection.
  • a compound of this invention may be combined with pharmaceutically acceptable adjuvants conventionally employed in vaccines and administered in prophylactically effective amounts to protect individuals over an extended period of time against viral infections, such as HTV infection.
  • novel integrase inhibitors of this invention can be administered as agents for treating or preventing viral infections, including HTV infection, in a mammal.
  • the compounds of this invention may be administered to a healthy or HTV-infected patient either as a single agent or in combination with other antiviral agents which interfere with the replication cycle of HTV.
  • the co- administered antiviral agent can be one which targets early events in the life cycle of the virus, such as cell entry, reverse transcription and viral DNA integration into cellular DNA.
  • Antiviral agents targeting such early life cycle events include, didanosine (d ⁇ T), zalcitabine (ddC), stavudine (d4T), zidovudine (AZT), polysulfated polysaccharides, sT4 (soluble CD4) - - which blocks attachment or adsorption of the virus to host cells ⁇ and other compounds which block binding of virus to CD4 receptors on CD4-bearing T-lymphocytes.
  • Other retroviral reverse transcriptase inhibitors, such as derivatives of AZT may also be co- administered with the compounds of this invention to provide therapeutic treatment for substantially reducing or eliminating viral infectivity and the symptoms associated therewith.
  • antiviral agents examples include ganciclovir, dideoxycytidine, trisodium phosphonoformiate, eflornithine, ribavirin, acyclovir, alpha interferon and trimenotrexate.
  • non-ribonucleoside inhibitors of reverse transcriptase such as TIBO, nevirapine or delavirdine, may be used to potentiate the effect of the compounds of this invention, as may viral uncoating inhibitors, inhibitors of trans-activating proteins such as tat or rev, or inhibitors of the viral protease. These compounds may also be co-administered with other inhibitors of FUN integrase.
  • Combination therapies according to this invention exert a synergistic effect in inhibiting HIV replication because each component agent of the combination acts on a different site of HTV replication.
  • the use of such combinations also advantageously reduces the dosage of a given conventional anti-retroviral agent that would be required for a desired therapeutic or prophylactic effect as compared to when that agent is administered as a monotherapy.
  • These combinations may reduce or eliminate the side effects of conventional single anti-retroviral agent therapies while not interfering with the anti-retroviral activity of those agents.
  • These combinations reduce potential of resistance to single agent therapies, while minimizing any associated toxicity.
  • These combinations may also increase the efficacy of the conventional agent without increasing the associated toxicity.
  • Preferred combination therapies include the administration of a compound of this invention with AZT, 3TC, ddl, ddC, d4T, combivir, ziagen, sustiva, nevirapine and delavirdine.
  • the compounds of this invention may also be co-administered with other HTV protease inhibitors such as saquinavir, indinavir, nelfinavir, ritonavir and amprenavir to increase the effect of therapy or prophylaxis against various viral mutants or members of other HTV quasi species.
  • HTV protease inhibitors such as saquinavir, indinavir, nelfinavir, ritonavir and amprenavir to increase the effect of therapy or prophylaxis against various viral mutants or members of other HTV quasi species.
  • retroviral reverse transcriptase inhibitors such as derivatives of AZT or HTV aspartyl protease inhibitors.
  • the compounds of this invention can also be administered in combination with immunomodulators (e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbante, tumor necrosis factor, naltrexone and rEPO); antibiotics (e.g., pentamidine isethionate) or vaccines to prevent or combat infection and disease associated with HTV infection, such as ADDS and ARC.
  • immunomodulators e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbante, tumor necrosis factor, naltrexone and rEPO
  • antibiotics e.g., pentamidine isethionate
  • vaccines to prevent or combat infection and disease associated with HTV infection, such as AD
  • compositions according to this invention may be comprised of a combination of an integrase inhibitor of this invention and another therapeutic or prophylactic agent.
  • the compounds of this invention can also be used as inhibitory agents for other viruses that depend on similar integrases for obligatory events in their life cycle.
  • viruses include, but are not limited to, other diseases caused by retroviruses, such as simian immunodeficiency viruses, HTLN-I and HTLV-II.
  • compositions of this invention comprise any of the compounds of the present invention, and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable carrier, adjuvant or vehicle.
  • Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethyleneglycol, sodium carboxyrnethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool
  • compositions of this invention may be administered orally, parenterally by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. We prefer oral administration or administration by injection.
  • the pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically acceptable carriers, adjuvants or vehicles.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • the pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension.
  • This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • suitable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solutions.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as Ph. Helv. or a similar alcohol.
  • compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspension and solutions.
  • tablets for oral and carriers which are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
  • compositions of this invention may also be administered in the form of suppositories for rectal administration.
  • These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components.
  • suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax, and polyethylene glycols.
  • Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application.
  • the pharmaceutical composition For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water.
  • the pharmaceutical compositions can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier.
  • Suitable carriers include, but are not limited to mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
  • the pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable neat formulation. Topically-transdermal patches are also included in this invention.
  • compositions of this invention may be administered by nasal aerosol or inhalation.
  • Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
  • Dosage levels of between about 0.01 and about 25 mg kg body weight per day, preferably between about 0.5 and about 25 mg/kg body weight per day of the active ingredient compound are useful in the prevention and treatment of viral infection, including HTV infection.
  • the pharmaceutical compositions of this invention will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy.
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the patient treated and the particular mode of administration.
  • a typical preparation will contain from about 5% to about 75% active compound (w/w).
  • such preparations contain from about 20% to about 50% active compound.
  • a maintenance dose of a compound, composition or combination of this invention may be administered if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. When the symptoms have been alleviated to the desired level, treatment should cease, at least in principle. Patients may, however, require intermittent treatment on a long-term basis, upon any recurrence of disease symptoms, especially for AIDS.
  • the compounds of this invention are also useful as commercial reagents which effectively bind to integrases, particularly HTV integrase.
  • the compounds of this invention, and their derivatives may be used to block integration of a target DNA molecule by integrase, or may be derivatized to bind to a stable resin as a tethered substrate for affinity chromatography applications.
  • HTLV-I HTLV-I, - ⁇ Human T-cell lymphotropic virus type I, type II
  • ICso Inhibitory Concentration 50 the concentration of drug required to reduce the enzyme activity by 50%.
  • EC 50 Effective Concentration 50 the concentration of drug required to reduce the virus' replication in cell culture by 50%.
  • CCIC 50 Cell Culture Inhibitory Concentration 50 the concentration of drug required to reduce the cell survival by 50%.
  • analytical plates can be treated with a 0.3% ninhydrin solution in ethanol containing 3% acetic acid and/or a CAM solution made of 20 g (NH 4 ) 6 Mo 7 O 24 and 8.3 g Ce(SO 4 ) 2 polyhydrate in water (750 mL) containing concentrated sulfuric acid (90 mL).
  • Melting points (mp) were determined on a B ⁇ chi 530 melting point apparatus in capillary tubes and were uncorrected.
  • Mass spectra were recorded on a Hewlett Packard LC/MSD 1100 system APCI either in negative mode or positive mode.
  • NMR Nuclear magnetic resonance
  • Step 1 Formation of N-aryl or N-alkyl/>-acetamidoaryl sulfonamides. 10 mmol of an aryl or alkyl amine is dissolved in 50 mL acetone with 2 mL pyridine and added dropwise to a solution of 10 mmol of a p-acetamidobenzensulfonyl chloride. The solution is left to stand 12 h and, in most cases, the precipitated amide is collected. Otherwise the solution is poured in ice water containing 3 eq. of HC1 and extracted with ethyl acetate. The organic fraction is dried with MgSO 4 and evaporated to yield the desired product.
  • Step 1 Formation of m-N-(aryl or alkyl) nitroaryl sulfonamides. 10 mmol of an aryl or alkyl amine is dissolved in 50 mL acetone with 2 mL pyridine and added dropwise to a solution of 10 mmol of a m-nitrobenzenesulfonyl chloride. The solution is left to stand 12 h and in most cases the precipitated amide is collected. Otherwise the solution is poured in ice water containing 3 eq. of HC1 and extracted with ethyl acetate. The organic fraction is dried with MgSO 4 and evaporated to yield the desired product. Step 2. Formation of m-aminoaryl sulfonamides.
  • Method A 1 mmol of an aminoarene is dissolved in 5 mL 2N HCl (with ethanol to help dissolution if necessary) and cooled to 0-5°C in an ice/salt bath. 1 mmol of NaNO 2 is added portionwise and the diazonium salt is formed during 5 min. Then, 1 mmol (263 mg) of pyridoxal phosphate is dissolved in 10 mL of ice water with addition of 0.5 mL of saturated KOH. The diazonium salt is the added portionwise over a 1 min period and the resulting orange red solution left for 15 min. The solution is then warmed to RT for 1-4 h. The red solution is then cooled in an ice bath and 6N HCl is added dropwise forming a red precipitate. The precipitate is filtered off, washed with ice water and dried. The yield for this reaction ranged from 20 to 80%.
  • a pyridoxal derivative (0.1 mmol) is added to a 20% solution of hydroxylamine hydrochloride in 2-5 mL, pH 6 buffered water and stirred for 20 min. The pH is adjusted with hydrochloric acid until precipitation of the product is completed. The precipitate is filtered and dried ( ⁇ 65% yield).
  • This product was obtained from commercially available 3-amino-2-methyl benzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 85% yield.
  • This derivative was obtained from commercially available 4-aminobenzene sulfonamide and pyridoxal-5-phosphate as described in general procedure D, method A.
  • the desired material was obtained in 79% yield.
  • Step B Preparation of 6-[4-(N-(l-adamantyl)sulfamoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
  • step A The title compound was prepared from N-adamantan- l-yl-4-aminobenzenesulf onamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 84% yield.
  • Step B Preparation of 6-[3-(N-(l-adamantyl)carbarnoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
  • This compound was prepared from N-adamantan- l-yl-4-aminobenzenecarboxamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 93% yield.
  • Step B Preparation of L- ⁇ -amino-e-caprolactam hydrochloride (or (3S)-3-amino-azepan-2- one hydrochloride) (J. Org. Chem. 44, 4841 (1979))
  • Step C Preparation of N ⁇ -isobutyl-L- ⁇ -amino-e-caprolactam (or (3S)-3-isobutylamino- azepan-2-one)
  • step C The coupling of N ⁇ -isobutyl-L- ⁇ -amino-e-caprolactam (step C) with p- acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
  • Step E Preparation of 6-[4-(N-(2- ⁇ -caprolactamyl)-N-isobutylsulfamoyl)phenylazo]- pyridoxal-5-phosphate hydrochloride
  • the title compound was prepared from 4-amino-N-isobutyl-N-(2-oxo-azepan-3-yl)- benzenesulfonamide (step D) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 87% yield.
  • step A The title material was prepared from 3 -(piperidine- l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 88% yield.
  • This derivative was prepared from 4-(piperidine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 56% yield.
  • This compound was prepared from (3-aminophenyl)-piperidin-l-yl-methanone (step A) and ⁇ yridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 16% yield.
  • step A The title material was prepared from 3 -amino-N-tert-butyl-benzenesulf onamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 75% yield.
  • step A The title material was prepared from 4-amino-N-tert-butyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 82% yield.
  • This compound was prepared from 4-amino-N-tert-butyl-benzamide (step A) and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 23% yield.
  • step A The title material was prepared from 3-(pyrrolinine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 18% yield.
  • step A The compound was prepared from 3-amino-N-isobutyl-benzamide (step A) and pyridoxal-5- phosphate as described in general procedure D, method A. The final product was obtained in 14%) yield.
  • Step A Preparation of 4-amino-N-cyclohexyl-benzamide
  • the coupling of cyclohexyl amine with p-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2).
  • the title product was used as such without further purification at the next step.
  • This compound was prepared from 4-amino-N-cyclohexyl-benzamide (step A) and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 48% yield.
  • step A The title material was prepared from 4-(pyrrolinine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
  • Step B Preparation of 6-[3-(isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
  • step A The title material was prepared from 3-amino-N-isobutyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 24% yield.
  • step A The title material was prepared from 4-amino-N-cyclohexyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 25% yield.
  • Step B Preparation of 6-[3-(butylsulfarnoyl)phenylazo]-pyridoxal-5-phosphate
  • This derivative was prepared from 3-amino-N-butyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A.
  • the final product was obtained in 54% yield.
  • step A The title material was prepared from 4-amino-N-methyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 29% yield.
  • Step A Preparation of 3-amino-N-(2-hydroxyethyl)-benzenesulfonamide
  • the coupling of ethanol amine with ⁇ n-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2).
  • the title product was used as such without further purification at the next step.
  • Step B Preparation of 6-[3-(2-hydroxyethylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
  • step A The title material was prepared from 3-amino-N-(2-hydroxyethyl)-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
  • This product was obtained from commercially available 5-amino-isophthalic acid and pyridoxal-5-phosphate as described in general procedure D, method A.
  • the desired material was obtained in 70% yield.
  • Step B Preparation of 6-[4-(2,6-dimethyl-4-pyrimidinyl)sulfamoyl)phenylazo]- pyridoxal-5-phosphate
  • step A The title material was prepared from 4-amino-N-(2,6-dimethyl-pyrimidin-4-yl)- benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method B. The final product was obtained in 42% yield.
  • step A The title material was prepared from 4-amino-N-thiazol-2-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 29% yield.
  • step A The title material was prepared from 4-amino-N-pyrimidin-2-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 17% yield.
  • step A The title material was prepared from 3-(morpholine-4-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 2% yield.
  • Step B Preparation of 6-[3-(3-pyridylcarbarnoyl)phenylazo]-pyridoxal-5-phosphate
  • the compound was prepared from 3-amino-N-pyridin-3-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A.
  • the final product was obtained in 42% yield.
  • This compound was prepared from 3-amino-N-pyridin-2-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 28% yield.
  • This compound was prepared from 3-amino-N-pyridin-4-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 28% yield.
  • Step B Preparation of 6-[3-(5-isoquinolylcarbarnoyl)phenylazo]-pyridoxal-5- phosphate This derivative was prepared from 3-amino-N-isoquinolin-5-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 53% yield.
  • step A The title material was prepared from 4-amino-N-isoxazol-3-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 40% yield.
  • This product was obtained from commercially available 2-nitrophenylamine and pyridoxal-5- phosphate as described in general procedure D, method A.
  • the desired material was obtained in 27% yield.
  • This product was obtained from commercially available 3-chlorophenylamine and pyridoxal- 5-phosphate as described in general procedure D, method A.
  • the desired material was obtained in 58% yield.
  • Step B Preparation of 6-(3-sulfamoylphenylazo)-pyridoxal-5-phosphate This product was obtained from 3-aminobenzene sulfonamide (step A) and pyridoxal-5- phosphate as described in general procedure D, method A. The desired material was obtained in 22% yield.
  • Step B Preparation of 6-[3-(2-(l,4,5,6-tetrahydropyrimidyl)carbamoyl)phenylazo]- pyridoxal-5-phosphate
  • This compound was prepared from 3-amino-N-(l,4,5,6-tetrahydropyrimidin-2-yl)-benzamide (step A) and pyridoxal-5 -phosphate as described in general procedure D, method A. The final product was obtained in 8% yield.
  • Step A Preparation of 3-amino-N-(l,2,3,4-tetrahydroquinolin-5-yl)-benzamide
  • the coupling of quinolin-5-ylamine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2).
  • the quinoline ring system was partly hydrogenated at step 2.
  • the title product was used as such without further purification at the next step.
  • Step B Preparation of 6-[3-(5-(l,2,3,4-tetrahydroquinolyl)carbamoyl)phenylazo]- pyridoxal-5-phosphate
  • This derivative was prepared from 3-amino-N-(l,2,3,4-tetrahydroquinolin-5-yl)-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 10% yield.
  • This product was obtained from commercially available 3-amino-4-methyl benzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 23% yield.
  • This product was obtained from commercially available 3-amino-4-chlorobenzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
  • the title compound was obtained from commercially available 3-amino-2,5,6-trifluoro- benzoic acid and pyridoxal-5 -phosphate as described in general procedure D, method A. The final product was obtained in 11% yield.
  • This product was obtained from commercially available 4-amino-benzonitrile and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 41% yield.
  • the title compound was obtained from commercially available 4-aminobenzamide and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 15% yield.
  • Step B Preparation of 6-[4-(2-fluorophenylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
  • step A The title compound was prepared from 4-amino-N-(2-fluorophenyl)-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 42% yield.
  • This compound was prepared as described for the preparation of the analogue 6-[4-(2- fluorophenylsulfamoyl)phenylazo]-pyridoxal-5-phosphate (see example 44, steps A and B) using 3-fluoroaniline instead of 2-fluoroaniline.
  • the title compound was obtained in 57% yield.
  • This compound was prepared as described for the preparation of the analogue 6-[4-(2- fluorophenylsulfamoyl)phenylazo]-pyridoxal-5-phosphate (see example 44, steps A and B) using 4-fluoroaniline instead of 2-fluoroaniline.
  • the title compound was obtained in 54% yield.
  • This product was obtained from commercially available 3-aminophthalic acid and pyridoxal- 5-phosphate as described in general procedure D, method A.
  • the desired material was obtained in 30% yield.
  • the FHV-1 integrase inhibition assay was carried out following a known procedure (Burke, Jr. T. R. et al., J. Med. Chem. 38, 4171-4178 (1995)).
  • a suitable radiolabeled duplex substrate corresponding to the U5 end of the HTV LTR was used.
  • the compounds listed in Table 1 were prepared by following Scheme 1, 2, 3 or 4; and more particularly as described in each example listed above.
  • the numbers of the compounds listed in Table 1 correspond to the example numbers presented above.
  • the activities of the compounds are also listed in the same table, i.e. demonstrating their usefulness.
  • Table 1 compounds of formula I wherein carbon 2', 3', 4', 5'and in a case 6' (i.e. for compound no. 38) are substituted as presented in Table 1.
  • IC 50 , EC 50 as well as CCIC 50 results for compound of formula I are also presented in Table 1 illustrating their potential usefulness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A compound of formula (I), and pharmaceutically acceptable derivatives thereof Cx , R1 and R2 being as defined in the disclosure may be used to inhibit the activity of HIV integrase.

Description

PYRIDOXAL-5-PHOSPHATE DERIVATIVES AS HIV INTEGRASE INHIBITORS
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a series of novel pyridoxal derivatives which have HTV integrase inhibitory properties that have been characterized by specific structural and physicochemical features. This inhibitory property may be advantageously used to provide compounds with antiviral properties against HTN viruses, including the HIV-l and HIV-2 viruses. The pyridoxal derivatives including pharmaceutical compositions thereof may be used to inhibit the activity of HIN integrase.
BACKGROUND OF THE INVENTION
The HTV (human immunodeficiency virus) retrovirus is the causative agent for ADDS (acquired immunodeficiency syndrome). Thus the HIV-l retrovirus primarily uses the CD4 receptor (a 58 kDa transmembrane protein) to gain entry into cells, through high-affinity interactions between the viral envelope glycoprotein (gp 120) and a specific region of the CD4 molecule found in CD4 (+) T-helper lymphocytes and certain other cells (Lasky L. A. et al., Cell vol. 50, p. 975 - 985 (1987)). HTN infection is characterized by a period immediately following infection called "asymptomatic" which is devoid of clinical manifestations in the patient. Progressive HTV-induced destruction of the immune system then leads to increased susceptibility to opportunistic infections, which eventually produces a syndrome called AIDS-related complex (ARC) characterized by symptoms such as persistent generalized lymphadenopathy, fever, weight loss, followed itself by full blown AIDS. After entry of the retrovirus into a cell, viral RΝA is converted into DΝA, which is then integrated into the host cell DΝA. The reverse transcriptase encoded by the virus genome catalyzes the first of these reactions (Haseltine W. A. FASEB J. vol 5, p. 2349 - 2360 (1991)). At least three functions have been attributed to the reverse transcriptase: RΝA-dependent DΝA polymerase activity which catalyzes the synthesis of the minus strand DNA from viral RNA, ribonuclease H (RNase H) activity which cleaves the RNA template from RNA-DNA hybrids and DNA-dependent DNA polymerase activity which catalyzes the synthesis of a second DNA strand from the minus strand DNA template (Goff S. P. J. Acq. Imm. Defic. Syndr. Vol 3, p. 817 - 831 (1990)). At the end of reverse transcription, the viral genome now in the form of DNA (called provirus) is integrated into host genomic DNA and serves as a template for viral gene expression by the host transcription system, which leads eventually to virus replication (Roth et al.,1989). The preintegration complex consists of integrase, reverse transcriptase, pl7 and proviral DNA (Bukrinsky M. L, Proc. Natn. Acad. Sci. USA vol. 89 p.6580 - 6584 (1992)). The phosphorylated pl7 protein plays a key role in targeting the preintegration complex into the nucleus of the host cell (Gallay et al., 1995).
The primary RNA transcripts made from the provirus are synthesized by the host cell RNA polymerase II which is modulated by two virus-encoded proteins called tat and rev. The viral proteins are formed as polyproteins.
Post-translational modifications of viral polyproteins include processing and glycosylation of Env (envelope) proteins, and myristylation of the N-terminal residue of the pl7 protein in the Gag and Gag-Pol polyproteins. The viral protease is involved in processing polyproteins Gag and Gag-Pol into mature proteins, an essential step for virus infectivity.
A number of synthetic antiviral agents have been designed to block various stages in the replication cycle of HTV. These agents include compounds which interfere with viral binding to CD4 (+) T-lymphocytes (for example, soluble CD4), compounds which block viral reverse transcriptase (for example, didanosine and zidovudine (AZT)), budding of virion from the cell (interferon), or the viral protease (for example Ritonavir and Indinavir). Some of these agents proved ineffective in clinical tests. Others, targeting primarily early stages of viral replication, have no effect on the production of infectious virions in chronically infected cells. Furthermore, administration of many of these agents in effective therapeutic doses has led to cell-toxicity and unwanted side effects, such as anemia, neurotoxicity and bone marrow suppression. Anti-protease compounds in their present form are typically large and complex molecules of peptidic nature that tend to exhibit poor bioavailability and are not generally consistent with oral administration. These compounds often exhibit side effects such as nausea, diarrhea, liver abnormalities and kidney stones. None of the known antiviral agents on the market target the HIV integrase. Accordingly, the need exists for compounds that can effectively inhibit the action of this viral enzyme and that can be used for treating HIV infections.
The terms HIV integrase and integrase as used herein are used interchangeably and refer to the integrase enzyme encoded by the human immunodeficiency virus type 1 or 2. Li particular this term includes the human immunodeficiency virus type 1 integrase.
SUMMARY OF THE INVENTION
The present invention relates to a class of pyridoxal compounds as well as their pharmaceutically acceptable derivatives (e.g., salts).
Accordingly, the present invention in accordance with one aspect thereof provides a compound of formula I
Figure imgf000004_0001
I
and pharmaceutically acceptable derivatives thereof including where applicable or appropriate pharmaceutically acceptable salts thereof,
wherein Cx may be selected from the group consisting of -CH=O, -CH=N-OH and -CH(OCH2CH3)2,
wherein R\ may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, F, Cl, Br, I, -CN and -COOH, wherein R2 may be selected from the group consisting of -COOH, -SO2NR3R4, -SO2R5, -CONR3R4 and -COR5,
wherein R3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms,
wherein R4 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl,
and a group of formula,
Figure imgf000005_0001
(2-ε-caprolactamyl)
wherein R5 may be selected from the group consisting of aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, azocanyl (i.e., the azacycloalkanes, 3 to 8 member ring systems containing at least one nitrogen ring atom) and morpholinyl, with the proviso that the R5 group is linked to the adjacent sulfur atom at or via a ring nitrogen atom thereof (e.g. R5 may be selected from among aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, azepan- 1-yl, morpholin-4-yl, etc.) and wherein m may be 0, 1, 2 or 3, wherein n may be 0 or 1.
Azepan-1-yl has the following structure:
Figure imgf000006_0001
In a further aspect, the present invention provides, a compound(s) of formula IA
Figure imgf000006_0002
and pharmaceutically acceptable derivatives thereof including where applicable or appropriate pharmaceutically acceptable salts thereof,
wherein R1 may be H,
wherein R3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and branched alkyl group of 3 to 6 carbon atoms, and wherein R4 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl,
and a group of formula,
Figure imgf000007_0001
(2-ε-caprolactamyl) and wherein m may be 1.
In an additional aspect, the present invention provides, a compound(s) of formula IB,
Figure imgf000007_0002
and pharmaceutically acceptable derivatives thereof including where applicable or appropriate pharmaceutically acceptable salts thereof,
wherein R may be H, wherein R5 may be selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl, and wherein m may be 1.
In another aspect, the present invention provides, a compound(s) of formula IC,
Figure imgf000008_0001
and pharmaceutically acceptable derivatives thereof including where applicable or appropriate pharmaceutically acceptable salts thereof,
wherein Ri may be H,
wherein R3 may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms, and wherein R may be selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl, and a group of formula,
Figure imgf000009_0001
(2-ε-caprolactamyl)
and wherein m may be 1.
In yet another aspect, the present invention provides, a compound(s) of formula ID,
Figure imgf000009_0002
and pharmaceutically acceptable derivatives thereof including where applicable or appropriate pharmaceutically acceptable salts thereof,
wherein Ri may be H,
wherein R5 may be selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl, and wherein m may be 1. The compounds of this invention include pharmaceutically acceptable derivatives of the compounds of formula I (as well as of formulae IA, IB, IC and ID) as defined above. A "pharmaceutically acceptable derivative" means any pharmaceutically acceptable salt (e.g., Na, K, Cs, etc), acetals (i.e., dimethylacetal, diethylacetal, etc), oxime, or ester (as for example, but not limited to methyl, ethyl, propyl, isopropyl esters, etc) of a compound of this invention. Thus salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N - (Cι_4 alkyl)4 + salts.
Furthermore, the expression "pharmaceutically acceptable derivative" is to be understood as referring to any other compound having a structure such that, upon administration to a recipient, it is capable of providing (directly or indirectly) a compound of this invention or an antivirally active metabolite or residue thereof. Thus the compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral bioavailability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
The compounds of the present invention including where applicable their pharmaceutically acceptable derivatives have an affinity for integrase, in particular, HTV integrase. Therefore, these compounds are useful as inhibitors of such integrase, i.e. they are in particular useful as HTV integrase inhibitors. These compounds can be used alone or in combination with other therapeutic or prophylactic agents, such as antivirals, antibiotics, immunomodulators or vaccines, for the treatment or prophylaxis of viral infection.
According to the present invention, the compounds of this invention are capable of inhibiting HIV viral replication in human CD4+ T-cells, by inhibiting the ability of HTV integrase to integrate the double stranded DNA into host genomic DNA for further virus replication by the host cell machinery (Sakai H., J. Virol. Vol. 67 p. 1169 - 1174 (1993)). These novel compounds can thus serve to reduce the production of infectious virions from acutely infected cells, and can inhibit the initial or further infection of host cells. Accordingly, these compounds are useful as therapeutic and prophylactic agents to treat or prevent infection by HTV-1 and related viruses, which may result in asymptomatic HTV-1 infection, AIDS-related complex (ARC), acquired immunodeficiency syndrome (AIDS), AIDS-related dementia, or similar diseases of the immune system.
This invention also provides in a further aspect, pharmaceutical compositions comprising a pharmaceutically acceptable carrier and at least one compound of formulae I, IA, IB, IC and ID as defined herein. The pharmaceutical composition may comprise, for example, a pharmaceutically effective amount of such one or more compounds of this invention. The pharmaceutical compositions may be used to inhibit integrase, including HTV integrase, thus providing protection against EON infection.
The term "pharmaceutically effective amount" refers to an amount effective in treating HTV infection in a patient. It is also to be understood herein that a "pharmaceutically effective amount" may be interpreted as an amount giving a desired therapeutic effect, either taken into one dose or in any dosage or route or taken alone or in combination with other therapeutic agents. In the case of the present invention, a "pharmaceutically effective amount" may be understood as an amount having an inhibitory effect on HIV (HIV-l and HrV-2 as well as related viruses (e.g., HTLV-I and HTLN-II, and simian immunodeficiency virus) infection cycle (e.g., inhibition of replication, reinfection, maturation, budding etc.) and on any organism depending on integrase for their life cycle.
The term "prophylactically effective amount" refers to an amount effective in preventing HTV infection in a patient. As used herein, the term "patient" refers to a mammal, including a human.
The terms "pharmaceutically acceptable carrier", "pharmaceutically acceptable adjuvant" and "physiologically acceptable vehicle" refer to a non-toxic carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof.
Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term "stable", as used herein, refers to compounds which possess stability sufficient to allow manufacture and administration to a mammal by methods known in the art. Typically, such compounds are stable at a temperature of 40°C or less, in the absence of moisture or other chemically reactive conditions, for at least a week.
It is to be understood herein, that if a "range", "group of substances" or particular characteristic (e.g., temperature, concentration, time and the like) is mentioned, the present invention relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein. Thus, for example,
with respect to the number of carbon atoms, the mention of the range of 1 to 6 carbon atoms is to be understood herein as incorporating each and every individual number of carbon atoms as well as sub-ranges such as, for example, 1 carbon atoms, 3 carbon atoms, 4 to 6 carbon atoms, etc.
- with respect to reaction time, a time of 1 minute or more is to be understood as specifically incorporating herein each and every individual time, as well as subrange, above 1 minute, such as for example 1 minute, 3 to 15 minutes, 1 minute to 20 hours, 1 to 3 hours, 16 hours, 3 hours to 20 hours etc.;
- and similarly with respect to other parameters such as concentrations, elements, etc...
It is thus to be understood herein that a "straight alkyl group of 1 to 6 carbon atoms" includes for example, methyl, ethyl, propyl, butyl, pentyl, hexyl.
It is further to be understood herein that a "branched alkyl group of 3 to 6 carbon atoms" includes for example, without limitation, wo-butyl, tert-butyl, 2-pentyl (i.e. 2-methyl-butyl), 3-pentyl (i.e. 3 -methyl-butyl; isopentyl), neopentyl, tert-pentyl, etc.
It is also to be understood herein, that a "cycloalkyl group having 3 to 6 carbon" includes for example, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclocyclohexyl (i.e., C6Hπ). It is in particular to be understood herein that the compound formulae each include each and every individual compound described thereby as well as each and every possible class or subgroup or sub-class of compounds whether such class or sub-class is defined as positively including particular compounds, as excluding particular compounds or a combination thereof; for example an exclusionary definition for the formulae (e.g. I) may read as follows: "provided that when one of Ri and R2 is -COOH and the other is H, -COOH may not occupy the 4' position".
It is also to be understood herein that "g" or "gm" is a reference to the gram weight unit and "C", or " °C " is a reference to the Celsius temperature unit.
The compounds of this invention may be readily prepared using conventional techniques from commercially available and cheap starting materials. In general, the derivatives of the present invention may be readily obtained from pyridoxal-5-phosphate through sequences recognized by those knowledgeable in the art as straightforward, requiring readily available reagents and easy techniques. Using standard techniques, pyridoxal-5-phosphate may be transformed to the desired HTV integrase inhibitors according to approaches as shown in schemes 3 and 4 which are discussed below. Schemes 1 and 2 show the preparation of aminoaryl carboxamides (Scheme 1) as well as m- and p-aminoaryl sulfonamides (Scheme 2) which are used in the preparation of HTV integrase inhibitors.
Scheme 1 illustrates a generic example for the preparation of aminoaryl carboxamides 3.
As shown on Scheme 1, commercially available o-, m- orp-nitrobenzoyl chloride 1 are easily transformed into the corresponding amide 2 upon treatment with an amine (R3R4NH) in a mixture of acetone and pyridine. Subsequently, the nitro group is reduced by catalytic hydrogenation using 10% Pd/C as catalyst in MeOH, to give the amine 3. The average yield of this two step sequence is 70%. The amine (R3R NH) can easily be replaced by an Azacycloalkyl (C3-C8) or by an Aryl-NH2 to lead to derivatives 2' or 2". Scheme 1
Figure imgf000014_0001
ortho,meta or para 1
Figure imgf000014_0002
R3R4NH may as shown above be replaced by an Azacycloalkyl (C3-C8) or by an Aryl-NH2 to lead to intermediate derivatives 21 or 2": (see below) which may in turn be converted to corresponding aminophenyl compounds 3' and 3" (not shown).
Figure imgf000014_0003
Scheme 2 illustrates a generic example for the preparation of -aminoaryl sulfonamides 6 or m-aminoaryl sulfonamides 7.
As shown on Scheme 2, commercially available 4-acetamidobenzenesulfonyl chloride 4 is coupled with an amine (R3R4NH) to give the sulfonamide 5 in 85% yield. Hydrolysis of the acetamide function upon treatment with hydrochloric acid at reflux for 10 minutes lead to the corresponding p-aminoaryl sulfonamides 6 in 95% average yield. Scheme 2
Figure imgf000015_0001
Figure imgf000015_0002
R3R4NH may as shown above be replaced by an Azacycloalkyl (C3-C8) or by an Aryl-NH2 to lead to intermediate derivatives 5' or 5": (see below) which may in turn be converted to corresponding aminophenyl compounds 6' and 6" (not shown).
Figure imgf000015_0003
Using a similar reaction sequence, starting with m-nitrobenzenesulfonyl choride
Figure imgf000015_0004
7'
Scheme 3 illustrates a generic example for the coupling of aminoaryl carboxamides 3 with pyridoxal-5-ρhosphate.
Diazotation of an appropriate aminoaryl carboxamide 3 (i.e., ortho, meta or para) upon treatment with NaNO2 and hydrochloric acid gave the corresponding diazonium salt intermediate (3-N2 +Cl") which is immediately added to a basic solution of pyridoxal-5- phosphate. The resulting reaction mixture gave compound 8 in 65% average yield.
Scheme 3
Figure imgf000016_0001
5 minutes
3-N2 +
Figure imgf000016_0002
Derivatives 31 or 3" can be treated in the same fashion as compound 3.
Scheme 4 illustrates a generic example for the coupling of p-aminoaryl sulfonamide 6 (or m- aminoaryl sulfonamide 7) with pyridoxal-5-phosphate.
Diazotation of an appropriate p-aminoaryl sulfonamide 6 (or m-aminoaryl sulfonamide 7) upon treatment with NaNO2 and hydrochloric acid gave the corresponding diazonium salt intermediate (N2 +C ) which is immediately added to a basic solution of pyridoxal-5- phosphate. The resulting reaction mixture lead to compound 9 in 65% average yield. Scheme 4
Figure imgf000017_0001
para or meta 5 minutes
Figure imgf000017_0002
6 or 7 N2 +
Figure imgf000017_0003
Derivatives 61 or 6" (para) and or 7" (meta) can be treated in the same fashion as compound 6 (para) or 7 (meta).
The diazo derivatives are known to exist in two geometric isomers (cis and trans) which can be present in our compounds. However, the trans isomer is either the sole or the major isomer.
As can be appreciated by the skilled artisan, the above synthetic schemes are not intended to comprise a comprehensive list of all means by which the compounds described and claimed in this application may be synthesized. Further methods will be evident to those of ordinary skill in the art. The novel compounds of the present invention are excellent ligands for integrase, particularly HTV-1, and most likely HTV-2 and HTLV-1 integrase. Accordingly, these compounds are capable of targeting and inhibiting an early stage event in the replication, i.e. the integration of viral DNA into the human genome, thus preventing the replication of the virus.
In addition to their use in the prophylaxis or treatment of HTV infection, the compounds according to this invention may also be used as inhibitory or interruptive agents for other viruses which depend on integrases, similar to HTV integrases, for obligatory events in their life cycle. Such compounds inhibit the viral replication cycle by inhibiting integrase. Because integrase is essential for the production of mature virions, inhibition of that process effectively blocks the spread of virus by inhibiting the production and reproduction of infectious virions, particularly from acutely infected cells. The compounds of this invention advantageously inhibit enzymatic activity of integrase and inhibit the ability of integrase to catalyze the integration of the virus into the genome of human cells.
The compounds of this invention may be employed in a conventional manner for the treatment or prevention of infection by HTV and other viruses which depend on integrases for obligatory events in their life cycle. Such methods of treatment, their dosage levels and requirements may be selected by those of ordinary skill in the art from available methods and techniques. For example, a compound of this invention may be combined with a pharmaceutically acceptable adjuvant for administration to a virally infected patient in a pharmaceutically acceptable manner and in an amount effective to lessen the severity of the viral infection. Also, a compound of this invention may be combined with pharmaceutically acceptable adjuvants conventionally employed in vaccines and administered in prophylactically effective amounts to protect individuals over an extended period of time against viral infections, such as HTV infection. As such, the novel integrase inhibitors of this invention can be administered as agents for treating or preventing viral infections, including HTV infection, in a mammal. The compounds of this invention may be administered to a healthy or HTV-infected patient either as a single agent or in combination with other antiviral agents which interfere with the replication cycle of HTV. By administering the compounds of this invention with other antiviral agents which target different events in the viral replication cycle, the therapeutic effect of these compounds is potentiated. For instance, the co- administered antiviral agent can be one which targets early events in the life cycle of the virus, such as cell entry, reverse transcription and viral DNA integration into cellular DNA. Antiviral agents targeting such early life cycle events include, didanosine (dάT), zalcitabine (ddC), stavudine (d4T), zidovudine (AZT), polysulfated polysaccharides, sT4 (soluble CD4) - - which blocks attachment or adsorption of the virus to host cells ~ and other compounds which block binding of virus to CD4 receptors on CD4-bearing T-lymphocytes. Other retroviral reverse transcriptase inhibitors, such as derivatives of AZT, may also be co- administered with the compounds of this invention to provide therapeutic treatment for substantially reducing or eliminating viral infectivity and the symptoms associated therewith. Examples of other antiviral agents include ganciclovir, dideoxycytidine, trisodium phosphonoformiate, eflornithine, ribavirin, acyclovir, alpha interferon and trimenotrexate. Additionally, non-ribonucleoside inhibitors of reverse transcriptase, such as TIBO, nevirapine or delavirdine, may be used to potentiate the effect of the compounds of this invention, as may viral uncoating inhibitors, inhibitors of trans-activating proteins such as tat or rev, or inhibitors of the viral protease. These compounds may also be co-administered with other inhibitors of FUN integrase.
Combination therapies according to this invention exert a synergistic effect in inhibiting HIV replication because each component agent of the combination acts on a different site of HTV replication. The use of such combinations also advantageously reduces the dosage of a given conventional anti-retroviral agent that would be required for a desired therapeutic or prophylactic effect as compared to when that agent is administered as a monotherapy. These combinations may reduce or eliminate the side effects of conventional single anti-retroviral agent therapies while not interfering with the anti-retroviral activity of those agents. These combinations reduce potential of resistance to single agent therapies, while minimizing any associated toxicity. These combinations may also increase the efficacy of the conventional agent without increasing the associated toxicity. Preferred combination therapies include the administration of a compound of this invention with AZT, 3TC, ddl, ddC, d4T, combivir, ziagen, sustiva, nevirapine and delavirdine.
Alternatively, the compounds of this invention may also be co-administered with other HTV protease inhibitors such as saquinavir, indinavir, nelfinavir, ritonavir and amprenavir to increase the effect of therapy or prophylaxis against various viral mutants or members of other HTV quasi species. We prefer administering the compounds of this invention as single agents or in combination with retroviral reverse transcriptase inhibitors, such as derivatives of AZT or HTV aspartyl protease inhibitors. We believe that the co-administration of the compounds of this invention with retroviral reverse transcriptase inhibitors or HTV aspartyl protease inhibitors may exert a substantial synergistic effect, thereby preventing, substantially reducing, or completely eliminating viral infectivity and its associated symptoms.
The compounds of this invention can also be administered in combination with immunomodulators (e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbante, tumor necrosis factor, naltrexone and rEPO); antibiotics (e.g., pentamidine isethionate) or vaccines to prevent or combat infection and disease associated with HTV infection, such as ADDS and ARC.
When the compounds of this invention are administered in combination therapies with other agents, they may be administered sequentially or concurrently to the patient. Alternatively, pharmaceutical or prophylactic compositions according to this invention may be comprised of a combination of an integrase inhibitor of this invention and another therapeutic or prophylactic agent.
Although this invention focuses on the use of the compounds disclosed herein for preventing and treating HTV infection, the compounds of this invention can also be used as inhibitory agents for other viruses that depend on similar integrases for obligatory events in their life cycle. These viruses include, but are not limited to, other diseases caused by retroviruses, such as simian immunodeficiency viruses, HTLN-I and HTLV-II.
Pharmaceutical compositions of this invention comprise any of the compounds of the present invention, and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable carrier, adjuvant or vehicle. Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethyleneglycol, sodium carboxyrnethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
The pharmaceutical compositions of this invention may be administered orally, parenterally by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir. We prefer oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically acceptable carriers, adjuvants or vehicles. The term "parenteral" as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solutions. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, such as Ph. Helv. or a similar alcohol.
The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspension and solutions. In the case of tablets for oral and carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax, and polyethylene glycols.
Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical compositions can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable neat formulation. Topically-transdermal patches are also included in this invention.
The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
Dosage levels of between about 0.01 and about 25 mg kg body weight per day, preferably between about 0.5 and about 25 mg/kg body weight per day of the active ingredient compound are useful in the prevention and treatment of viral infection, including HTV infection. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the patient treated and the particular mode of administration. A typical preparation will contain from about 5% to about 75% active compound (w/w). Preferably, such preparations contain from about 20% to about 50% active compound.
Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. When the symptoms have been alleviated to the desired level, treatment should cease, at least in principle. Patients may, however, require intermittent treatment on a long-term basis, upon any recurrence of disease symptoms, especially for AIDS.
As the skilled artisan will appreciate, lower or higher doses than those recited above may be required. Specific dosage and treatment regimen for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the infection, the patient's disposition to the infection and the judgment of the treating physician.
The compounds of this invention are also useful as commercial reagents which effectively bind to integrases, particularly HTV integrase. As commercial reagent, the compounds of this invention, and their derivatives, may be used to block integration of a target DNA molecule by integrase, or may be derivatized to bind to a stable resin as a tethered substrate for affinity chromatography applications. These and other uses which characterize commercial integrase inhibitors will be evident to those of ordinary skill in the art.
In the description herein, the following abbreviations are used: Abbreviation Meaninε
AcOH Acetic acid
Ar Argon
ARC AIDS-related complex
AIDS Acquired Immunodeficiency Syndrome
AZT 3-Azido-3-deoxythymine (Zidovudine)
BSA Bovine serum albumin
DABCYL 4-[[4'-(dimethylamino)phenyl] azojbenzoic acid
DCE Dichloroethane
DMF Dimethylformamide
DNA Deoxyribonucleic acid
EtOH Ethyl alcohol g gram
HPLC High pressure liquid chromatography
HTV-1, -2 Human immunodeficiency virus type 1, type 2
HTLV-I, -π Human T-cell lymphotropic virus type I, type II
IL-2 Interleukine-2
M Molar
MeOH Methyl alcohol mg Milligram mp Melting point min Minute mL Milliliter mmol Millimole nM Nanomolar rEPO Recombinant erythropoietin
RNA Ribonucleic acid
3TC 2',3'-Dideoxy-3-thiacytidine
THF Tetrahydrofuran
ICso Inhibitory Concentration 50: the concentration of drug required to reduce the enzyme activity by 50%. EC50 Effective Concentration 50: the concentration of drug required to reduce the virus' replication in cell culture by 50%.
CCIC50 Cell Culture Inhibitory Concentration 50 : the concentration of drug required to reduce the cell survival by 50%.
This section describes the synthesis of several molecules that are presented in this document. These examples are for the purpose of illustration only and are not to be construed as limiting the scope of the invention in any way. This section presents the detailed synthesis of compounds no. 1 to 53 of this invention.
Materials and Methods
Analytical thin layer chromatography (TLC) was carried out with 0.25 mm silica gel E. Merck 60 F254 plates and eluted with the indicated solvent systems. Preparative chromatography was performed by flash chromatography, using silica gel 60 (EM Science) with the indicated solvent systems and positive air pressure to allow proper rate of elution. Detection of the compounds was carried out by exposing eluted plates (analytical or preparative) to iodine, UV light and/or treating analytical plates with a 2% solution of p- anisaldehyde in ethanol containing 3% sulfuric acid and 1% acetic acid followed by heating. Alternatively, analytical plates can be treated with a 0.3% ninhydrin solution in ethanol containing 3% acetic acid and/or a CAM solution made of 20 g (NH4)6Mo7O24 and 8.3 g Ce(SO4)2 polyhydrate in water (750 mL) containing concentrated sulfuric acid (90 mL).
Unless otherwise indicated, all starting materials were purchased from a commercial source such as Aldrich Co. or Sigma Co.
Melting points (mp) were determined on a Bϋchi 530 melting point apparatus in capillary tubes and were uncorrected.
Optical rotations ([c]τi) were measured using a Jasco DIP-370 digital polarimeter at 589 nm (the D line of sodium). Specific rotation is calculated from the observed rotation according to the expression:
Figure imgf000026_0001
where [ ]ϋ = specific rotation, = observed rotation, c = concentration of the sample in grams per 100 mL of solution,
1 = the length of the polarimeter tube in decimeters, t = temperature (°C).
Mass spectra were recorded on a Hewlett Packard LC/MSD 1100 system APCI either in negative mode or positive mode.
Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AMX 500 equipped with a reversed or QNP probe. Samples were dissolved in deuterochloroform (CDC13), deuterium oxide (D2O) or deuterodimethylsulf oxide (DMSO-dβ) for data acquisition using tetramethylsilane as internal standard. Chemical shifts (δ) are expressed in parts per million (ppm), the coupling constants (J) are expressed in hertz (Hz) whereas multiplicities are denoted as s for singlet, d for doublet, dd for doublet of doublets, t for triplet, q for quartet, quint for quintet m for multiplet, and br s for broad singlet.
GENERAL PROCEDURES
A. Synthesis of aminoaryl carboxamides
Step 1. Formation of nitroaryl carboxamides.
10 mmol of an aryl or alkyl amine is dissolved in 50 mL acetone with 2 mL pyridine and added dropwise to a solution of 10 mmol of a ortho-, meta- or para-nitrobenzoyl chloride. The solution is left to stand 12 h and, in most cases, the precipitated amide is collected. Otherwise, the solution is poured in ice water containing 3 eq. of HC1 and extracted with ethyl acetate. The organic fraction is dried with MgSO and evaporated to yield the desired product. Step 2. Formation of aminoaryl carboxamides
5 mmol of the nitroarylcarboxamide is dissolved in argon (Ar) saturated MeOH and 200 mg of 10% Pd/C is added. A balloon of H2 gas is then connected via a needle and left to stir for 1-8 h. The solution is purged with Ar again and filtered through celite to remove the Pd/C. The solution is then evaporated to yield the corresponding amine (> 65% two steps).
B. Synthesis of ^-aminoaryl sulfonamides
Step 1. Formation of N-aryl or N-alkyl/>-acetamidoaryl sulfonamides. 10 mmol of an aryl or alkyl amine is dissolved in 50 mL acetone with 2 mL pyridine and added dropwise to a solution of 10 mmol of a p-acetamidobenzensulfonyl chloride. The solution is left to stand 12 h and, in most cases, the precipitated amide is collected. Otherwise the solution is poured in ice water containing 3 eq. of HC1 and extracted with ethyl acetate. The organic fraction is dried with MgSO4 and evaporated to yield the desired product.
Step 2. Formation of p-aminoaryl sulfonamides
5 mmol of the acetamide is dissolved in 20 mL EtOH. Afterwards, 5 mL concentrated HC1 is added and the mixture is refluxed for 10 min. The solution is then left to cool in ice whereupon a white precipitate is formed. The precipitated aminoaryl sulfonamide hydrochloride is filtered off and used as such without further purification (> 65% two steps).
C. Synthesis of m-aminoaryl sulfonamides
Step 1. Formation of m-N-(aryl or alkyl) nitroaryl sulfonamides. 10 mmol of an aryl or alkyl amine is dissolved in 50 mL acetone with 2 mL pyridine and added dropwise to a solution of 10 mmol of a m-nitrobenzenesulfonyl chloride. The solution is left to stand 12 h and in most cases the precipitated amide is collected. Otherwise the solution is poured in ice water containing 3 eq. of HC1 and extracted with ethyl acetate. The organic fraction is dried with MgSO4 and evaporated to yield the desired product. Step 2. Formation of m-aminoaryl sulfonamides
5 mmol of the nitroarylsulfonamide is dissolved in Ar saturated MeOH and 200 mg of 10% Pd/C is added. A balloon of H2 gas is then connected via a needle and left to stir for 1-8 h. The solution is purged with Ar again and filtered through celite to remove the Pd/C. The solution is then evaporated to yield the corresponding amine (> 65% two steps).
D. General procedure for the coupling of pyridoxal-5-phosphate to diazoarenes
Method A : 1 mmol of an aminoarene is dissolved in 5 mL 2N HCl (with ethanol to help dissolution if necessary) and cooled to 0-5°C in an ice/salt bath. 1 mmol of NaNO2 is added portionwise and the diazonium salt is formed during 5 min. Then, 1 mmol (263 mg) of pyridoxal phosphate is dissolved in 10 mL of ice water with addition of 0.5 mL of saturated KOH. The diazonium salt is the added portionwise over a 1 min period and the resulting orange red solution left for 15 min. The solution is then warmed to RT for 1-4 h. The red solution is then cooled in an ice bath and 6N HCl is added dropwise forming a red precipitate. The precipitate is filtered off, washed with ice water and dried. The yield for this reaction ranged from 20 to 80%.
Method B :
1 mmol of an aminoaryl sulfonamide is dissolved in 2 mL 2N HCl (with 5 mL ethanol to help dissolution if necessary) and cooled to 0-5°C in an ice/salt bath. 1 mmol of NaNO2 is added portionwise and the diazonium salt is formed during 5 min. Then, 1 mmol (263 mg) of pyridoxal phosphate is dissolved in 2 mL of ice water with addition of 0.5 mL of saturated KOH. The diazonium salt is the added portionwise over a 1 min period and the resulting orange red solution left for 15 min. The solution is then warmed to RT for 1-4 h. The red solution is then cooled in an ice bath and diluted with ethanol until a yellow precipitate results. The precipitate is filtered and dried. The yield for this reaction ranged from 20 to 80%. E. General procedure for the ethyl acetal formation
To a suspension of a pyridoxal derivative (5 mmol) in ethanol is added 200 μL of trimethylchlorosilane. The solution becomes orange as the product is formed. The solution is filtered and the supernatant is evacuated to yield the product as a foam (> 90% yield).
F. General procedure for the oxime formation
A pyridoxal derivative (0.1 mmol) is added to a 20% solution of hydroxylamine hydrochloride in 2-5 mL, pH 6 buffered water and stirred for 20 min. The pH is adjusted with hydrochloric acid until precipitation of the product is completed. The precipitate is filtered and dried (~ 65% yield).
DETAILED DESCRIPTION OF THE INVENTION EXAMPLES:
Specific examples for the preparation of derivatives ofseneral formula I
The following compounds were prepared from either from pyridoxal-5-phosphate using the procedures summarized in schemes 1, 2, 3 and 4.
Example 1. Preparation of 6-(3-carboxy-2-methylphenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 3-amino-2-methyl benzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 85% yield.
1H NMR (D2O): δ 2.21 (s, 3H), 2.61 (s, 3H), 5.45 (s, 2H), 7.02 (t, J = 6,5, IH), 7.36 (d, J = 6.0 IH), 7.52 (d, J= 6.0, IH), 10.06 (s, IH). 31P NMR (D2O): δ 6.88 (s) Example 2. Preparation of 6-(4-sulfamoylphenylazo)-pyridoxal-5-phosphate
This derivative was obtained from commercially available 4-aminobenzene sulfonamide and pyridoxal-5-phosphate as described in general procedure D, method A. The desired material was obtained in 79% yield.
1H NMR (D2O): δ 2.33 (s, 3H), 5.63 (s, 2H), 7.97 (d, / = 8.0, 2H), 8.03 (d, J = 8.1, 2H), 10.32 (s, IH).
31P NMR (D2O): δ 7.04 (s)
Example 3. Preparation of 6-[4-(N-(l-adamantyl)sulfamoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
Step A. Preparation of N-adamantan- 1 -yl-4-aminobenzenesulf onamide
The coupling of amino adamantane with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(N-(l-adamantyl)sulfamoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
The title compound was prepared from N-adamantan- l-yl-4-aminobenzenesulf onamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 84% yield.
1H ΝMR (D2O): δ 1.45 (s, 6H), 1.66 (s, 6H), 1.88 (s, 3H), 2.33 (s, 3H), 5.63 (s, 2H), 7.97 (d, J= 8.0, 2H), 8.03 (d, J= 8.1, 2H), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.00 (s) Example 4. Preparation of 6-[3-(N-(l-adamantyl)carbamoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
Step A. Preparation of N-adamantan-l-yl-3-aminobenzenecarboxamide
The coupling of amino adamantane with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(N-(l-adamantyl)carbarnoyl)phenylazo]-pyridoxal-5- phosphate hydrochloride
This compound was prepared from N-adamantan- l-yl-4-aminobenzenecarboxamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 93% yield.
1H ΝMR (D2O): δ 1.45 (s, 6H), 1.66 (s, 6H), 1.88 (s, 3H), 2.33 (s, 3H), 5.63 (s, 2H), 7.45 (t, J= 8.0, IH), 7.72 (d, J= 7.0, IH), 7.99 (t, J= 8.1, IH), 8.11 (s, IH), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.00 (s)
Example 5. Preparation of 6-[4-(N-(2-ε-caprolactamyl)-N- isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate hydrochloride
Step A. Preparation of L-lysine methyl ester dihydrochloride MeOH (J. Org. Chem. 44, 4841 (1979))
To a stirred suspension of L-lysine monohydrochlori.de (190.7 g, 1.08 mol) in MeOH (3 L) was added (via a cannula) trimethylsilylchloride (350 mL). The mixture quickly became clear and homogeneous. The solution was stirred at reflux for 3 h and then at room temperature for 2 h. The reaction flask was left overnight in a refrigerator cooled to - 75 °C. The large crystals obtained were filtered, washed with cold MeOH (100 mL) and dried in vacuo for 24 h at room temperature. L-lysine methyl ester dihydrochloride MeOH (275.8 g) was obtained in 99.4% yield.
1H NMR (DMSO-dg): 6 1.36 (m, IH), 1.45 (m, IH), 1.58 (m, 2H), 1.81 (m, 2H), 2.74 (br s, 2H), 3.11 (s, 3H), 3.72 (s, 3H), 3.94 (t, J = 4.0, IH), 8.12 (br s, 3H), 8.72 (br s, 3H).
Step B. Preparation of L-α-amino-e-caprolactam hydrochloride (or (3S)-3-amino-azepan-2- one hydrochloride) (J. Org. Chem. 44, 4841 (1979))
Sodium methylate 58.73 g (1 mole) was dissolved in cold MeOH (1 L). About one half of this solution was cannulated into a solution of L-lysine methyl ester dihydrochloride MeOH (132.5 g, 0.5 mole) in 1 L MeOH. The suspension was allowed to warm and dissolved. The remainder sodium methylate was added with concurrent apparition of NaCl. The mixture was then allowed to reflux for 4 h, after which 5 g of NFLC1 was added. The solution then sat at RT for 18 h and was filtered through celite. Evaporation of the MeOH resulted in a thick opaque syrup. The excess NaCl was removed by redissolving the mixture in boiling glyme (100 mL, 2x), filtering through celite and evaporating in vacuo. The resulting clear oil was taken up in ethanol and acidified with IN HCl. Cooling gave a mass of fine white needles which were filtered and dried in vacuo to yield 69.71 g, 85% of the title compound, mp: 301- 306 °C
LC -MS: 129.1 (M + H)+, 99% pure.
[α]D 20 = - 24.8 (c = 3.4, IN HCl). 1H NMR (DMSO-d6): b 1.17 (q, J = 12.6, IH), 1.45 (q, J = 12.6, IH), 1.58 (q, J = 12.6, IH), 1.71 (d, J = 12.6, IH), 1.86 (d, / = 12.6, IH), 1.94 (d, J = 12.6, IH), 3.03 (m, IH), 3.15 (m, IH), 4.03 (d, J = 12.6, IH), 8.12 (br s, IH), 8.22 (br s, 3H). 13C NMR (DMSO-d6): δ 28.2, 29.7, 29.9, 41.6, 53.4, 173.2.
Step C. Preparation of Nα-isobutyl-L-α-amino-e-caprolactam (or (3S)-3-isobutylamino- azepan-2-one)
L-α-amino-e-caprolactam (60.0 g, 0.47 mol) was dissolved in dichloroethane (DCE, 100 mL) containing isobutyraldehyde (37.0 g, 0.5 mole) and stirred until the heat evolved was dissipated. Then, DCE (2 L) and AcOH (35 mL) were added to the solution followed by 0.5 mole of powdered NaBH(OAc)3. The slightly turbid mixture was stirred at 60 °C for 2 h, and at room temperature for 12 h. The solution was treated with 1M K2CO3 (1 L) and stirred for a further 2 h. The DCE layer was dried with MgSO4, filtered and evaporated. The oil thus obtained crystallizes slowly on standing (87 g, 94.5%) and was used without further purification in the next step, mp: 52-54 °C. A small sample was converted to the hydrochloride salt by adding the solid to a solution of IN HCl in 95% EtOH.
1H NMR (CDC13): δ 0.93 (d, J = 6.5, 3H), 0.97 (d, J = 6.5, 3H), 1.39 (t, J = 9.8, IH), 1.47 (m, IH), 1.78-1.65 (m, 2H), 2.00-1.93 (m, 2H), 2.32-2.2 (m, 2H), 2.38 (t, J = 9.7, IH), 3.16 (m, 3H), 6.62 (s, IH (NH)).
Step D. Preparation of 4-amino-N-isobutyl-N-(2-oxo-azepan-3-yl)-benzenesulfonamide
The coupling of Nα-isobutyl-L-α-amino-e-caprolactam (step C) with p- acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step E. Preparation of 6-[4-(N-(2-ε-caprolactamyl)-N-isobutylsulfamoyl)phenylazo]- pyridoxal-5-phosphate hydrochloride
The title compound was prepared from 4-amino-N-isobutyl-N-(2-oxo-azepan-3-yl)- benzenesulfonamide (step D) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 87% yield.
1H ΝMR (D2O): δ 10.32 (s, IH), 8.03 (d, J = 8.1, 2H), 7.97 (d, J = 8.0, 2H), 5.63 (s, 2H),
5.7 (s, IH (ΝH)), 4.48 (d, J = 10.6, IH), 3.21-3.26 (m, IH), 3.10-3.06 (m, 2H), 2.97 2.98 (m, * IH), 2.86-2.89 (m, IH), 2.33 (s, 3H), 1.96-1.99 (m, IH), 1.84-1.87 (m, IH), 1.56-1.73 (m, 4H), 1.12 (q, J= 8.3, IH), 0.80 (d, J= 6.2, 3H), 0.74 (d, J= 6.2, 3H). 31P ΝMR (D2O): δ 6.96 (s) Example 6. Preparation of 6-[3-(l-piperidinesulfonyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-(piperidine-l-sulfonyl)-phenylamine
The coupling of piperidine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(l-piperidinesulfonyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3 -(piperidine- l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 88% yield.
1H NMR (D2O): δ 1.45 (s, 2H), 1.66 (s, 4H), 1.88 (s, 3H), 2.33 (s, 3H), 3.00 (s, 4H), 5.63 (s, 2H), 7.67 (t, J= 8.0, IH), 7.72 (d, J = 7.0, IH), 8.05 (t, J= 8.1, 2H), 10.32 (s, IH). 31P NMR (D2O): δ 7.03 (s)
Example 7. Preparation of 6-[4-(l-piperidinesulfonyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-(piperidine-l-sulfonyl)-phenylamine
The coupling of piperidine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(l-piperidinesulfonyl)phenylazo]-pyridoxal-5-phosphate
This derivative was prepared from 4-(piperidine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 56% yield.
1H NMR (D2O): δ 1.45 (s, 2H), 1.66 (s, 4H), 1.88 (s, 3H), 2.33 (s, 3H), 3.00 (s, 4H), 5.63 (s, 2H), 7.97 (d, J= 8.0, 2H), 8.03 (d, J= 8.1, 2H), 10.32 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 8. Preparation of 6-[3-(l-piperidinecarbonyI)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of (3-aminophenyl)-piperidin-l-yl-methanone
The coupling of piperidine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(l-piperidinecarbonyl)phenylazo]-pyridoxal-5-phosphate
This compound was prepared from (3-aminophenyl)-piperidin-l-yl-methanone (step A) and ρyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 16% yield.
1H NMR (D2O): δ 2.26 (s, 3H), 3.28 (s, 3H), 3.56 (s, 3H), 5.50 (s, 2H), 7.24 (d, J = 7.1, IH), 7.47 (t, 7= 7.1, IH), 7.78 (s, IH), 7.91 (d, J = 7.2, IH), 10.23 (s, IH). 31P NMR (D2O): δ 7.00 (s)
Example 9. Preparation of 6-[3-(tert-butylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-tert-butyl-benzenesulfonamide
The coupling of tert-butyl amine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step. Step B. Preparation of 6-[3-(tert-butylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3 -amino-N-tert-butyl-benzenesulf onamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 75% yield.
1H ΝMR (D2O): 6 1.00 (s, 9H), 2.33 (s, 3H), 5.63 (s, 2H), 7.45 (t, J = 8.0, IH), 7.72 (d, J = 7.0, IH), 7.99 (t, J = 8.1, IH), 8.11 (s, IH), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.02 (s)
Example 10. Preparation of 6-[4-(tert-butylsuIfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-tert-butyl-benzenesulfonamide
The coupling of tert-butyl amine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(tert-butylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-tert-butyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 82% yield.
1H ΝMR (D2O): δ 1.00 (s, 9H), 2.33 (s, 3H), 5.63 (s, 2H), 7.72 (d, J = 7.0, 2H), 7.99 (d, J = 8.1, 2H), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.04 (s) Example 11. Preparation of 6-[4-(tert-butylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-tert-butyl-benzamide
The coupling of tert-butyl amine with p-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(tert-butylcarbamoyl)phenylazo]-pyridoxal-5-phosphate
This compound was prepared from 4-amino-N-tert-butyl-benzamide (step A) and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 23% yield.
1H ΝMR (D2O): δ 1.00 (s, 9H), 2.33 (s, 3H), 5.63 (s, 2H), 7.15 (t, / = 8.0, IH), 7.72 (d, J = 7.0, IH), 7.89 (t, J= 8.1, IH), 8.01 (s, IH), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.00 (s)
Example 12. Preparation of 6-[3-(l-pyrrolinesulfonyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-(pyrrolinine-l-sulfonyl)-phenylamine
The coupling of pyrrolidine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(l-pyrrolinesulfonyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3-(pyrrolinine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 18% yield.
1H NMR (D2O): δ 1.56 (s, 4H), 2.33 (s, 3H), 3.00 (s, 4H), 5.63 (s, 2H), 7.67 (t, / = 8.0, IH), 7.72 (d, J = 7.0, IH), 8.05 (t, J= 8.1, 2H), 10.32 (s, IH). 31P NMR (D2O): δ 7.00 (s)
Example 13. Preparation of 6-[3-(isobutylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-isobutyl-benzamide
The coupling of isobutylamine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(isobutylcarbamoyl)phenylazo]-pyridoxal-5-phosphate
The compound was prepared from 3-amino-N-isobutyl-benzamide (step A) and pyridoxal-5- phosphate as described in general procedure D, method A. The final product was obtained in 14%) yield.
1H ΝMR (D2O): δ 0.69 (m, 6H), 1.49 (m, IH), 2.30 (s, 3H), 2.49 (d, J = 6.2, 2H), 5.55 (s, 2H), 7.33 (t, J = 7.4, IH), 7.54 (d, j = 7.0, IH), 7.65 (d, J = 7.0, IH), 7.98 (s, IH), 10.26 (s, IH). 31P ΝMR (D2O): δ 7.00 (s)
Example 14. Preparation of 6-[4-(cyclohexylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-cyclohexyl-benzamide The coupling of cyclohexyl amine with p-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(cyclohexylcarbamoyl)phenylazo]-pyridoxal-5-phosphate
This compound was prepared from 4-amino-N-cyclohexyl-benzamide (step A) and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 48% yield.
1H ΝMR (D2O): δ 1.04 (m, 5H), 1.41 (d, J = 11.0, IH), 1.54 (d, / = 18.3, 4H), 2.31 (s, 3H), 2.70 (m, IH), 5.58 (s, 2H), 7.6 (d, J = 7.0, 2H), 7.73 (d, / = 7.2, 2H), 10.27 (s, IH). 31P NMR (D2O): δ 7.03 (s)
Example 15. Preparation of 6-[4-(l-pyrrolinesulfonyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-(pyrrolinine- 1 -sulf onyl)-phenylamine
The coupling of pyrrolidine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(l-pyrrolinesulfonyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-(pyrrolinine-l-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
1H NMR (D2O): δ 1.65 (s, 4H), 2.31 (s, 3H), 3.21 (s, 4H), 5.55 (s, 2H), 7.91 (d, J= 8.6, 2H), 8.02 (d, J = 8.4, 2H), 10.27 (s, IH). 31P NMR (D2O): δ 7.03 (s) Example 16. Preparation of 6-[3-(isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
Step A. Preparation of 3-amino-N-isobutyl-benzenesulfonamide
The coupling of isobutyl amine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B . Preparation of 6-[3-(isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3-amino-N-isobutyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 24% yield.
1H ΝMR (D2O): 6 0.69 (m, 6H), 1.49 (m, IH), 2.30 (s, 3H), 2.49 (d, J = 6.2, 2H), 5.55 (s, 2H), 7.57 (t, / = 7.7, IH), 7.72 (d, J = 7.6, IH), 7.96 (d, J = 8.0, IH), 8.13 (s, IH), 10.26 (s, IH). 31P ΝMR (D2O): δ 7.02 (s)
Example 17. Preparation of 6-[4-(isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
Step A. Preparation of 4-amino-N-isobutyl-benzenesulfonamide
The coupling of isobutyl amine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(isobutylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-isobutyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 27% yield. 1H NMR (D2O): δ 0.67 (m, 6H), 1.46 (m, IH), 2.27 (s, 3H), 2.46 (d, J = 7.0, 2H), 5.51 (s, 2H), 7.76 (d, J = 8.6, 2H), 7.90 (d, J = 8.4, 2H), 10.24 (s, IH). 31P NMR (D2O): δ 7.05 (s)
Example 18. Preparation of 6-[4-(cyclohexylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-cyclohexyl-benzenesulfonamide
The coupling of cyclohexyl amine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(cyclohexylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-cyclohexyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 25% yield.
1H ΝMR (D2O): δ 1.04 (m, 5H), 1.41 (d, / = 11.0, IH), 1.54 (d, J = 18.3, 4H), 2.31 (s, 3H), 2.69 (m, IH), 5.56 (s, 2H), 7.83 (d, J = 8.0, 2H), 7.93 (d, J= 8.2, 2H), 10.27 (s, IH). 31P ΝMR (D2O): δ 7.05 (s)
Example 19. Preparation of 6-[3-(butylsuIfamoyl)phenyIazo]-pyridoxal-5-phosphate
Step A. Preparation of 3-amino-N-butyl-benzenesulfonamide
The coupling of butyl amine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(butylsulfarnoyl)phenylazo]-pyridoxal-5-phosphate This derivative was prepared from 3-amino-N-butyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 54% yield.
1H ΝMR (D2O): δ 0.85 (t, J = 7.4, 3H), 1.31 (quint, J = 7.4, 2H), 1.54 (quint, J = 7.3, 2H), 2.31 (s, 3H), 3.34 (t, J = 7.1, 2H), 5.55 (s, 2H), 7.58 (t, J = 8.0, IH), 7.74 (d, J = 7.4, IH), 8.02 (d, J = 8.1, IH), 8.14 (s, IH), 10.28 (s, IH). 31P ΝMR (D2O): δ 7.04 (s)
Example 20. Preparation of 6-[4-(methylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
Step A. Preparation of 4-amino-N-methyl-benzenesulfonamide
The coupling of methyl amine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(methylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-methyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 29% yield.
1H ΝMR (D2O): δ 2.30 (s, 3H), 2.83 (s, 3H), 5.51 (s, 2H), 7.76 (d, J = 8.1, 2H), 7.86 (d, J = 7.6, 2H), 10.26 (s, IH).
31P NMR (D2O): δ 7.05 (s)
Example 21. Preparation of 6-[3-(2-hydroxyethylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-(2-hydroxyethyl)-benzenesulfonamide The coupling of ethanol amine with λn-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(2-hydroxyethylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
The title material was prepared from 3-amino-N-(2-hydroxyethyl)-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
1H ΝMR (D2O): δ 2.30 (s, 3H), 3.88 (br s, 2H), 5.51 (s, 2H), 7.46 (s, IH), 7.66 (s, IH), 8.00 (s, IH), 8.17 (s, IH), 10.26 (s, IH). 31P NMR (D2O): δ 6.99 (s)
Example 22. Preparation of 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 5-amino-isophthalic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The desired material was obtained in 70% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 8.21 (s, IH), 8.32 (s, 2H), 10.26 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 23. Preparation of 6-[4-(2,6-dimethyl-4-pyrimidinyI)sulfamoyl)phenylazo]- pyridoxal-5-phosphate
Step A. Preparation of 4-amino-N-(2,6-dimethyl-pyrimidin-4-yl)-benzenesulfonamide
The coupling of 2,6-dimethyl-pyrimidin-4-ylamine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step. Step B. Preparation of 6-[4-(2,6-dimethyl-4-pyrimidinyl)sulfamoyl)phenylazo]- pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-(2,6-dimethyl-pyrimidin-4-yl)- benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method B. The final product was obtained in 42% yield.
1H ΝMR (D2O): δ 1.90 (s, 3H), 2.10 (s, 3H), 2.30 (s, 3H), 5.65 (s, 2H), 6.28 (s, IH), 7.87 (s, 4H), 10.16 (s, lH). 31P ΝMR (D2O): δ 6.96 (s)
Example 24. Preparation of 6-[4-(2-thiazolylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation 4-amino-N-thiazol-2-yl-benzenesulfonamide
The coupling of thiazol-2-ylamine with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation 6-[4-(2-thiazolylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-thiazol-2-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 29% yield.
1H ΝMR (D2O): δ 2.31 (s, 3H), 5.55 (s, 2H), 6.46 (s, IH), 6.97 (s, IH), 7.88 (s, 4H), 10.26 (s, IH).
31P ΝMR (D2O): δ 7.02 (s) Example 25. Preparation of 6-[4-(2-pyrimidylsulfamoyl)phenyIazo]-pyridoxaI-5- phosphate
Step A. Preparation of 4-amino-N-pyrimidin-2-yl-benzenesulfonamide
The coupling of pyrimidin-2-ylamine with -acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(2-pyrimidylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-pyrimidin-2-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 17% yield.
1H ΝMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 6.76-6.88 (m, 3H), 7.77 (s, 4H), 10.06 (s, IH). 31P ΝMR (D2O): δ 6.88 (s)
Example 26. Preparation of 6-[3-(methylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
Step A. Preparation of 3-amino-N-methyl-benzenesulfonamide
The coupling of methyl amine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(methylsulfarnoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3-amino-N-methyl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 2% yield. 1H NMR (D2O): δ 2.29 (s, 3H), 2.86 (s, 3H), 5.52 (s, 2H), 7.55 (t, J = 7.2, IH), 7.73 (d, J = 7.5, IH), 7.98 (d, J= 7.7, IH), 8.13 (s, IH), 10.25 (s, IH). 31P NMR (D2O): δ 7.05 (s)
Example 27. Preparation of 6-[3-(morpholinesulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-(morpholine-4-sulfonyl)-phenylamine
The coupling of morpholine with m-nitrobenzenesulfonyl chloride was achieved using general procedure C (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(morpholinesulfarnoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 3-(morpholine-4-sulfonyl)-phenylamine (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 2% yield.
1H NMR (D2O): 6 2.30 (s, 3H), 3.04 (s, 4H), 3.70 (s, 4H), 5.55 (s, 2H), 7.73 (t, J = 7.8, IH), 7.78 (d, J = 7.5, IH), 8.12 (s, IH), 8.17 (d, J = 8.3, IH), 10.27 (s, IH). 31P NMR (D2O): δ 7.05 (s)
Example 28. Preparation of 6-[3-(3-pyridylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-pyridin-3-yl-benzamide
The coupling of 3-aminopyridine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(3-pyridylcarbarnoyl)phenylazo]-pyridoxal-5-phosphate The compound was prepared from 3-amino-N-pyridin-3-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 42% yield.
1H ΝMR (D2O): δ 2.31 (s, 3H), 5.55 (s, 2H), 7.30 (t, J = 6.5 Hz, IH), 7.53 (m, 2H), 7.91 (d,
J = 8.1, IH), 7.96 (d, J = 7.9, IH), 8.07 (d, J = 6.6, IH), 8.22 (s, IH), 8.34 (s, IH), 10.26 (s,
IH).
31P ΝMR (D2O): δ 7.03 (s)
Example 29. Preparation of 6-[3-(2-pyridylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-pyridin-2-yl-benzamide
The coupling of 2-aminopyridine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(2-pyridylcarbarnoyl)phenylazo]-pyridoxal-5-phosphate
This compound was prepared from 3-amino-N-pyridin-2-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 28% yield.
1H ΝMR (D2O): δ 2.31 (s, 3H), 5.56 (s, 2H), 6.97 (m, IH), 7.53 (m, 2H), 7.67 (t, J = 7.5, IH), 7.87 (d, J= 7.5, IH), 7.95 (m, 2H), 8.26 (s, IH), 10.27 (s, IH). 31P ΝMR (D2O): δ 7.03 (s) Example 30. Preparation of 6-[3-(4-pyridylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-pyridin-4-yl-benzamide
The coupling of 4-aminopyridine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(4-pyridylcarbarnoyl)phenylazo]-pyridoxal-5-phosphate
This compound was prepared from 3-amino-N-pyridin-4-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 28% yield.
1H ΝMR (D2O): δ 2.32 (s, 3H), 5.56 (s, 2H), 7.12 (d, J = 7.0, 2H), 7.54 (t, J= 7.5, IH), 7.89 (d, /= 7.8, IH), 7.95 (d, J = 7.9, IH), 8.24 (d, / = 7.2, 2H), 8.33 (s, IH), 10.26 (s, IH). 31P NMR (D2O): δ 7.03 (s)
Example 31. Preparation of 6-[3-(5-isoquinolylcarbamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 3-amino-N-isoquinolin-5-yl-benzamide
The coupling of isoquinolin-5-ylamine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(5-isoquinolylcarbarnoyl)phenylazo]-pyridoxal-5- phosphate This derivative was prepared from 3-amino-N-isoquinolin-5-yl-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 53% yield.
1H ΝMR (D2O): δ 2.31 (s, 3H), 5.55 (s, 2H), 7.32 (d, J = 7.7, IH), 7.57 (d, J = 8.0, 2H), 7.75 (d, J = 7.8, 2H), 7.98 (d, J= 7.5, IH), 8.04 (d, J= 7.2, IH), 8.23 (d, J= 7.1, IH), 8.42 (s, IH), 9:10 (s, lH), 10.26 (s, lH). 31P ΝMR (D2O): δ 7.05 (s)
Example 32. Preparation of 6-[4-(3-isoazolylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-isoxazol-3-yl-benzenesulfonamide
The coupling of amino isooxazole with p-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(3-isoazolylsulfamoyl)phenylazo]-pyridoxal-5-phosphate
The title material was prepared from 4-amino-N-isoxazol-3-yl-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 40% yield.
1H ΝMR (D2O): δ 2.33 (s, 3H), 5.63 (s, 2H), 6.42 (s, IH), 7.97 (d, J = 8.0, 2H), 8.03 (d, J = 8.1, 2H), 8.65 (s, IH), 10.32 (s, IH). 31P ΝMR (D2O): δ 7.06 (s) Example 33. Preparation of 6-(2-nitrophenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 2-nitrophenylamine and pyridoxal-5- phosphate as described in general procedure D, method A. The desired material was obtained in 27% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.46 (s, 2H), 7.44 (t, J = 6.7, IH), 7.67-7.71 (m, 2H), 7.82 (t, J = 6.5, IH), 10.22 (s, IH). 31P NMR (D2O): δ 7.04 (s)
Example 34. Preparation of 6-(3-chlorophenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 3-chlorophenylamine and pyridoxal- 5-phosphate as described in general procedure D, method A. The desired material was obtained in 58% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.46 (s, 2H), 7.24-7-36 (m, IH), 7.67 (t, J = 5.5, 2H), 7.82 (s, IH), 10.12 (s, lH). 31P NMR (D2O): δ 7.04 (s)
Example 35. Preparation of 6-(3-sulfamoylphenylazo)-pyridoxal-5-phosphate
Step A. Preparation of 3-aminobenzene sulfonamide
To a solution of 3 -nitrobenzene sulfonamide (5 mmol) dissolved in argon (Ar) saturated MeOH was suspended 200 mg of 10% Pd/C. A balloon of H2 gas was connected via a needle to the reaction mixture which was left to stir for 5 h. The solution was purged with Ar again and filtered through celite to remove the Pd C. The solution was evaporated to give 3- aminobenzene sulfonamide (95%) which was used without further purification at the next step.
Step B. Preparation of 6-(3-sulfamoylphenylazo)-pyridoxal-5-phosphate This product was obtained from 3-aminobenzene sulfonamide (step A) and pyridoxal-5- phosphate as described in general procedure D, method A. The desired material was obtained in 22% yield.
1H NMR (D2O): δ 2.27 (s, 3H), 5.52 (s, 2H), 7.56 (t, / = 7.1, IH), 7.77 (t, J= 7.1, IH), 7.93 (t, /= 7.1, IH), 8.10 (s, IH), 10.23 (s, IH). 31P NMR (D2O): δ 6.99 (s)
Example 36. Preparation of 6-[3-(2-(l,4,5,6-tetrahydropyrimidyl)carbamoyl) phenylazo]-pyridoxal-5-phosphate
Step A. Preparation of 3-amino-N-(l,4,5,6-tetrahydropyrimidin-2-yl)-benzamide
The coupling of pyrimidin-2-ylamine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The pyrirnidine ring system was partly hydrogenated at step 2. The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(2-(l,4,5,6-tetrahydropyrimidyl)carbamoyl)phenylazo]- pyridoxal-5-phosphate
This compound was prepared from 3-amino-N-(l,4,5,6-tetrahydropyrimidin-2-yl)-benzamide (step A) and pyridoxal-5 -phosphate as described in general procedure D, method A. The final product was obtained in 8% yield.
1H ΝMR (D2O): δ 1.68-1.81 (m, 4H), 2.22 (s, 3H), 2.56 (t, J = 5.3, 2H), 5.44 (br s, 2H), 6.85-6.89 (m 2H), 7.70-7.8 (m, 2H), 8.11 (s IH), 10.16 ( br s, IH). 31P ΝMR (D2O): δ 6.78 (s)
Example 37. Preparation of 6-[3-(5-(l,2,3,4-tetrahydroquinoIyl)carbamoyI)phenylazo]- pyridoxal-5-phosphate
Step A. Preparation of 3-amino-N-(l,2,3,4-tetrahydroquinolin-5-yl)-benzamide The coupling of quinolin-5-ylamine with m-nitrobenzoyl chloride was achieved using general procedure A (steps 1 and 2). The quinoline ring system was partly hydrogenated at step 2. The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[3-(5-(l,2,3,4-tetrahydroquinolyl)carbamoyl)phenylazo]- pyridoxal-5-phosphate
This derivative was prepared from 3-amino-N-(l,2,3,4-tetrahydroquinolin-5-yl)-benzamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 10% yield.
1H ΝMR (D2O): δ 1.81 (t, J = 5.2, 2H), 2.22 (s, 3H), 2.56 (t, J = 5.3, 2H), 3.75 (t, J = 5.2, 2H), 5.44 (br s, 2H), 6.85-6.89 (m, 2H), 7.12 (t, / = 7.1, IH), 7.42 (t, J= 7.1, IH), 7.64 (d, J = 7.4 1H), 7.78 (d, J = 7.5, IH), 8.11 (s, IH), 10.16 ( br s, IH). 31P ΝMR (D2O): δ 6.68 (s)
Example 38. Preparation of 6-(5-carboxy-2-methylphenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 3-amino-4-methyl benzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 23% yield.
1H ΝMR (D2O): δ 2.28 (s, 3H), 2.56 (s, 3H), 5.54 (s, 2H), 7.34 (d, J = 7.2, IH), 7.73 (d, J = 7.2, IH), 7.96 (s, IH), 10.23(s, IH). 31P ΝMR (D2O): δ 6.94 (s)
Example 39. Preparation of 6-(3-carboxy-2-chlorophenylazo)-pyridoxal-5-phosphate
The title compound was obtained from commercially available 3-amino-2-chlorobenzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield. 1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.21 (t, J = 5.1, 2H), 7.77 (d, J = 5.1, 2H),
10.29 (s, IH). 31P NMR (D2O): δ 7.00 (s)
Example 40. Preparation of 6-(5-carboxy-2-chlorophenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 3-amino-4-chlorobenzoic acid and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 21% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.56 (s, IH), 7.88-7.91 (m, 2H), 10.26 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 41. Preparation of 6-(3-carboxy-2,4,5-trifluorophenylazo)-pyridoxal-5- phosphate
The title compound was obtained from commercially available 3-amino-2,5,6-trifluoro- benzoic acid and pyridoxal-5 -phosphate as described in general procedure D, method A. The final product was obtained in 11% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.72 (s, IH), 10.16 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 42. Preparation of 6-(4-cyanophenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 4-amino-benzonitrile and pyridoxal- 5-phosphate as described in general procedure D, method A. The final product was obtained in 41% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.86 (d, J = 7.1, 2H), 7.94 (d, / = 7.1, 2H),
10.30 (s, IH). 31P NMR (D2O): δ 7.02 (s) Example 43. Preparation of 6-(4-carbamoylphenylazo)-pyridoxal-5-phosphate
The title compound was obtained from commercially available 4-aminobenzamide and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 15% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.86 (d, J = 7.1, 2H), 7.94(d, J = 7.1, 2H), 10.30 (s, IH).
31P NMR (D2O): δ 7.00 (s)
Example 44. Preparation of 6-[4-(2-fluorophenylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
Step A. Preparation of 4-amino-N-(2-fluorophenyl)-benzenesulfonamide
The coupling of 2-fluoroaniline with ^-acetamidobenzenesulfonyl chloride was achieved using general procedure B (steps 1 and 2). The title product was used as such without further purification at the next step.
Step B. Preparation of 6-[4-(2-fluorophenylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
The title compound was prepared from 4-amino-N-(2-fluorophenyl)-benzenesulfonamide (step A) and pyridoxal-5-phosphate as described in general procedure D, method A. The final product was obtained in 42% yield.
1H ΝMR (D2O): δ 2.26 (s, 3H), 5.49 (br s, 2H), 6.75-6.94 (m, 4H), 7.79 (d, J = 7.9, 4H), 7.86 (d, J = 7.9, 2H), 10.23 (s, IH). 31P ΝMR (D2O): δ 6.97 (s) Example 45. Preparation of 6-[4-(3-fluorophenylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
This compound was prepared as described for the preparation of the analogue 6-[4-(2- fluorophenylsulfamoyl)phenylazo]-pyridoxal-5-phosphate (see example 44, steps A and B) using 3-fluoroaniline instead of 2-fluoroaniline. The title compound was obtained in 57% yield.
1H NMR (D2O): δ 2.26 (s, 3H), 5.49 (br s, 2H), 6.47-6.59 (m, 3H), 6.99 (s, IH), 7.80 (d, J = 7.9, 4H), 7.86 (d, J= 7.9, 2H), 10.23 (s, IH). 31P NMR (D2O): δ 6.92 (s)
Example 46. Preparation of 6-[4-(4-fluorophenylsulfamoyl)phenylazo]-pyridoxal-5- phosphate
This compound was prepared as described for the preparation of the analogue 6-[4-(2- fluorophenylsulfamoyl)phenylazo]-pyridoxal-5-phosphate (see example 44, steps A and B) using 4-fluoroaniline instead of 2-fluoroaniline. The title compound was obtained in 54% yield.
1H NMR (D2O): δ 2.46 (s, 3H), 5.75 (br s, 2H), 7.07 (s, 4H), 7.70 (br s, 2H), 8.07 (br s, 2H), 10.46 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 47. Preparation of 6-(2,3-dicarboxyphenylazo)-pyridoxal-5-phosphate
This product was obtained from commercially available 3-aminophthalic acid and pyridoxal- 5-phosphate as described in general procedure D, method A. The desired material was obtained in 30% yield.
1H NMR (D2O): δ 2.21 (s, 3H), 5.45 (s, 2H), 7.22 (t, J = 4,5, IH), 7.56 (d, / = 5.0, IH), 7.72 (d, J= 5.0 IH), 10.06 (s, lH). 31P NMR (D2O): δ 6.99 (s)
Example 48. Preparation of 6-(2-carboxyphenylazo)-pyridoxal-5-phosphate
This derivative was obtained from commercially available anthranilic acid and pyridoxal-5- phosphate as described in general procedure D, method A. The title compound was obtained in 31%) yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 7.33 (s, IH), 7.51 (s, 2H), 7.86 (s, IH), 10.30 (s, IH).
31P NMR (D2O): δ 6.37 (s)
Example 49. Preparation of 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate methanesulfonic acid salt
This material was prepared following the procedure described for the preparation of 6-(3,5- dicarboxyphenylazo)-pyridoxal-5-phosphate (example 22) using methanesulfonic acid for the acidification step instead of hydrochloric acid. The desired material was obtained in 55% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 2.45 (s, 3H), 2.67 (s, 3H), 5.65 (s, 2H), 8.21 (s, IH), 8.32 (s, 2H), 10.26 (s, IH). 31P NMR (D2O): δ 7.02 (s)
Example 50. Preparation of 6-(3,5-dicarboxyphenyIazo)-pyridoxal-5-phosphate penta- potassium salt
This product was obtained from 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate (example 22) as described in general procedure D, method B. The desired material was obtained in 60% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 8.21 (s, IH), 8.32 (s, 2H), 10.26 (s, IH). 31P NMR (D2O): δ 7.02 (s) Example 51. Preparation of 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate diethylacetal
This compound was obtained from 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate phosphate penta-potassium salt (example 50) as described in . general procedure E. The desired material was obtained in 90% yield.
1H NMR (DMSO-d6): δ 1.05 (t, / = 6.1, 6H), 2.35 (s, 3H), 3.68-3.91 (m, 4H), 5.55 (s, 2H), 6.20 (s, IH), 8.52-8.54 (m, 3H). 31P NMR (DMSO-d6): δ 6.02 (s)
Example 52. Preparation of 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate oxime
This product was obtained from 6-(3,5-dicarboxyphenylazo)-pyridoxal-5-phosphate (example 22) as described in general procedure F. The desired material was obtained in 34% yield.
1H NMR (D2O): δ 2.30 (s, 3H), 5.65 (s, 2H), 8.03 (s, IH), 8.21 (s, IH), 8.27 (s,2H). 31P NMR (D2O): δ 7.00 (s)
Example 53. Preparation of 6-[4-(2-pyrimidylsulfamoyl)phenylazo]-pyridoxal-5- phosphate oxime
This derivative was obtained from 6-[4-(2-pyrimidylsulfamoyl)phenylazo]-pyridoxal-5- phosphate (example 25) as described in general procedure F. The desired material was obtained in 5% yield.
1H NMR (D2O): δ 2.20 (s, 3H), 5.45 (s, 2H), 6.76-6.88 (m, 3H), 6.96 (s, IH), 7.87 (s, 4H). BIOLOGICAL EVALUATION
Integrase inhibition assay in vitro
For the purpose of Table 1, the FHV-1 integrase inhibition assay was carried out following a known procedure (Burke, Jr. T. R. et al., J. Med. Chem. 38, 4171-4178 (1995)). A suitable radiolabeled duplex substrate corresponding to the U5 end of the HTV LTR was used.
Anti-viral and cytotoxicity assays in vitro
To evaluate the EC50 of our compounds, various drug concentrations are incubated with the infected cell for six days and then the metabolic activity of the cells is monitored by the MTT assay. (See A. J. Japour et al, Antimicrobial Agents and Chemotherapy, 37, 1095-1101 , 1993 and R. Pauwels et al. Journal of Nirological Methods, 20, 309-321 ,
1988).
We use the laboratory viral strain ΝL4.3 as wild type virus and the cell line used is MT-4 which is a T-cell line highly sensitive to HTV-1. We also use some WT clinical strains. To address the resistance issue we assay the inhibitors with NL4.3 mutants which are designed to be resistant to specific commercially available inhibitors. The following reagents were obtained through the AIDS Research and Reference Reagent Program, division of AIDS, NIAID, NTH : pNL4.3 from Dr. Malcolm Martin; MT-4 cell line from Dr. Douglas Richman. Wild type (WT) clinical strains were obtained from "Laboratoire de sante publique du Quebec". The same MTT assay is used to evaluate the CCIC50 of our compounds except that the virus is omitted.
The compounds listed in Table 1 were prepared by following Scheme 1, 2, 3 or 4; and more particularly as described in each example listed above. The numbers of the compounds listed in Table 1 (Ex. No.) correspond to the example numbers presented above. The activities of the compounds are also listed in the same table, i.e. demonstrating their usefulness. In Table 1 are shown compounds of formula I wherein carbon 2', 3', 4', 5'and in a case 6' (i.e. for compound no. 38) are substituted as presented in Table 1. IC50, EC50 as well as CCIC50 results for compound of formula I are also presented in Table 1 illustrating their potential usefulness.
Table 1. Anti-integrase activity of pyridoxal-5-phosphate derivatives of formula I and analogs
Figure imgf000059_0001
Ex. Cx 2' 3' 4' 5' ICso EC5o CCIC50
No. (nM) (nM) (nM)
1 CHO CH3 COOH H H 1200 2000 > 100000
2 CHO H H S02NH2 H 250 5000 > 100000
3 CHO H H S02NH-(Λ/- H 200 19800 12000 (adamantan-1-yl))
4 CHO H CONH-(Λ/-(adamantan-1 - H H 400 50000 13000 yi))
5 CHO H H S02N-(Λ/-isobutyl)-(Λ/- H 600 17000 > 100000 (ε-caprolactam-2-yl))
6 CHO H S02-(piperidin-1-yl) H H 4370 ND ND
7 CHO H H S02-(piperidin-1-yl) H 2500 12500 > 100000
8 CHO H CO-(piperidin-l-yl) H H 2800 ND ND
9 CHO H S02NH-(Λ/-tert-butyl) H H 3000 15000 57000
10 CHO H H S02NH-(Λ/-tert-butyl) H 4250 ND ND
11 CHO H H CONH-(Λ/-tert-butyl) H 2730 ND ND
12 CHO H S02-(pyrrolidin-1 -yl) H H 2900 ND ND
13 CHO H CONH-(Λ/-isobutyl) H H 1300 50000 90000
14 CHO H H CONH-(Λ/-cyclo exyl) H 4360 ND ND
15 CHO H H S02-(pyrrolidin-1-yl) H 1700 ND ND
16 CHO H S02NH-(Λ/-isobutyl) H H 1900 ND ND
17 CHO H H S02NH-(Λ/-isobutyl) H 2450 ND ND
18 CHO H H S02NH-(Λ/-cyclohexyl) H 2200 ND ND
19 CHO H S02NH-(Λ/-butyl) H H 2000 ND ND
20 CHO H H S02NH-(Λ/-CH3) H 1200 ND ND
21 CHO H S02NH-(Λ/-CH2CH2OH) H H 2450 ND ND
22 CHO H COOH H COOH 430 ND > 100000
23 CHO H H S02NH-(Λ/-(2,6- H 2750 ND ND dimethylpyrimidin-4-yl))
24 CHO H H S02NH-(Λ/-thiazol-2-yl) H 365 23000 > 100000
25 CHO H H S02NH-(Λ/-pyrimidin-2- H 300 4300 > 100000 yi) CHO H S02NH-(Λ/-CH3) H H 3700 ND ND CHO H SO2-(morpholin-4-yl) H H 1100 27500 > 100000 CHO H CONH-(Λ/-pyridin-3-yl) H H 3250 6250 50000 CHO H C0NH-(Λ/-pyridin-2-yl) H H 3850 24000 > 100000 CHO H C0NH-(Λ/-pyridin-4-yl) H H 3150 20000 87000 1 CHO H CONH-(Λ/-isoquinolin-5-'yl) H H 3250 15000 > 100000 CHO H H S02NH-(Λ/-isoazol-3-yl) H 3000 50000 ND - CHO N02 H H H 5250 33000 ND CHO H Cl H H 2600 45000 ND CHO H S02NH2 H H 12850 ND ND CHO H CONH-(Λ/-(1 ,4,5,6- H H 6200 ND ND tetrahydropyrimidin-2-yl) CHO H CONH-(Λ/-(1 , 2,3,4- H H 3300 26000 84000 tetrahydroquinolin-5-yl) * CHO H COOH (and 6'-CH3) H H 2300 50000 > 100000 CHO Cl COOH H H 2600 1800 > 100000 CHO Cl H COOH H 3350 17000 > 100000 1 CHO F COOH F F 2000 14000 > 100000 CHO H H CN H 11300 ND > 100000 CHO H H CONH2 H 8700 ND ND CHO H H S02NH-(Λ/-(2- H 7700 ND ND fluorophenyl)) CHO H H S02NH-(Λ/-(3- H 10450 ND ND fluorophenyl)) CHO H H S02NH-(Λ/-(4- H 1500 ND 32000 fluorophenyl))
CHO COOH COOH H H 165 10000 17000
CHO COOH H H H 345 > 20000 > 100000 ** CHO H COOH H COOH 500 275 12000
CHO H COOK H COOK 470 5000 > 100000 1 CH(OCH2 H COOH H COOH 125 350 > 100000 CH8)2
CH=NOH H COOH H COOH 8750 15000 60000
CH=NOH H H S02NH-(Λ/-pyrimidin-2- H 2000 15000 ND yi)
*(and at 6' has a -CH3) **Methanesulfonic acid salt

Claims

We claim
1. A compound of formula I
Figure imgf000061_0001
wherein Cx is selected from the group consisting of -CH=O, -CH=N-OH and -CH(OCH2CH3)2,
wherein Ri is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, F, Cl, Br, I, -CN and -COOH,
wherein R2 is selected from the group consisting of -COOH, -SO2NR3R , -SO2R5, -CONR3R4 and -COR5,
wherein R3 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms,
wherein R4 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl and a group of formula
Figure imgf000061_0002
wherein R5 is selected from group consisting of aziridin-1-yl, azetidin-1-yl, pyrrolidin-1-yl, piperidin-1-yl, azepan-1-yl, azocanyl (i.e., the azacycloalkanes, 3 to 8 member ring system) and morpholin-4-yl, and wherein m is 0, 1, 2 or 3, wherein n is 0 or 1.
2. A compound as defined in claim 1, wherein Cx is -CHO, m is 0 and n is 1.
3. A compound as defined in claim 1, wherein Cx is -CHO, m is 1 and n is 1.
4. A compound as defined in claim 3, wherein R is -CH3 and R2 is -CO2H.
5. A compound as defined in claim 3, wherein Ri is -CO2H and R2 is -CO2H.
6. A compound as defined in claim 3, wherein Ri is Cl and R2 is -CO2H.
7. A compound as defined in claim 5, wherein R is -CO2H at position 3' and R2 is -
CO2H at position 5'.
8. A compound as defined in claim 6, wherein R] is Cl at position 2', R2 is -CO H at position 3'.
9. A compound of formula IA
Figure imgf000063_0001
wherein R3 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms, and wherein R4 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-tyl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimid-4-yl, thiazol-2-yl and a group of formula
Figure imgf000063_0002
10. A compound as defined in claim 9, wherein the sulfonamide group, -SO2NR3R > is located at position 3'.
11. A compound as defined in claim 9, wherein the sulfonamide group, -SO2NR3R , is located at position 4' .
12. A compound of formula IB
Figure imgf000064_0001
wherein R5 is selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl.
13. A compound as defined in claim 12, wherein the group, -SO2R is located at position 3'.
14. A compound as defined in claim 12, wherein the group, -SO2R5) is located at position 4'.
15. A compound of formula IC
Figure imgf000064_0002
wherein R3 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, and a branched alkyl group of 3 to 6 carbon atoms, and wherein R4 is selected from the group consisting of H, a straight alkyl group of 1 to 6 carbon atoms, a branched alkyl group of 3 to 6 carbon atoms, a cycloalkyl group of 3 to 8 carbon atoms, adamantan-1-yl, -CH2CH2OH, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 1,2,3,4- tetrahydroquinolin-5-yl, isoquinolin-5-yl, isoazol-3-yl, 2-halogeno-phenyl, 3-halogeno- phenyl, 4-halogeno-phenyl (halogeno being F, Cl, Br or I), l,4,5,6-tetrahydropyrimidin-2-yl, pyrimidin-2-yl, 2,6-dimethylpyrimidin-4-yl, thiazol-2-yl and a group of formula
Figure imgf000065_0001
16. A compound as defined in claim 15, wherein the amide group, -CONR3R , is located at position 3'.
17. A compound as defined in claim 15, wherein the amide group, -CONR3R4, is located at position 4'.
18. A compound of formula ID
Figure imgf000066_0001
wherein R5 is selected from the group consisting of pyrrolidin-1-yl, piperidin-1-yl and morpholin-4-yl.
19. A compound as defined in claim 18, wherein the group, -COR5, is located at position
3'.
20. A compound as defined in claim 18, wherein the group, -COR5, is located at position 4'.
21. A compound as defined in claim 11, wherein R3 is H and R is H.
22. A compound as defined in claim 11, wherein R3 is H and R is pyrimid-4-yl.
23. A compound as defined in claim 7 as its methanesulfonic acid salt.
24. A compound as defined in claim 7 as its penta-potassium salt.
25. A compound as defined in claim 1, wherein Cx is -CH(OCH2CH3)2, Ri is -CO2H at position 3', R2 is -CO2H at position 5', m is 1 and n is 1.
26. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and at least one compound as defined in claim 1.
PCT/CA2003/000427 2002-03-28 2003-03-19 Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors WO2003082881A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003215469A AU2003215469A1 (en) 2002-03-28 2003-03-19 Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA2,379,526 2002-03-28
CA002379526A CA2379526A1 (en) 2002-03-28 2002-03-28 Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors
US10/183,468 2002-06-28
US10/183,468 US6638921B1 (en) 2002-03-28 2002-06-28 Pyridoxal-5-phosphate derivatives as HIV integrase inhibitors

Publications (2)

Publication Number Publication Date
WO2003082881A2 true WO2003082881A2 (en) 2003-10-09
WO2003082881A3 WO2003082881A3 (en) 2003-12-04

Family

ID=28675950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2003/000427 WO2003082881A2 (en) 2002-03-28 2003-03-19 Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors

Country Status (2)

Country Link
AU (1) AU2003215469A1 (en)
WO (1) WO2003082881A2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039803A2 (en) * 2002-10-31 2004-05-13 Pfizer Inc. Hiv-integrase inhibitors, pharmaceutical compositions, and methods for their use
WO2005090367A1 (en) * 2004-03-15 2005-09-29 Bristol-Myers Squibb Company Prodrugs of piperazine and substituted piperidine antiviral agents
WO2005103051A1 (en) * 2004-04-26 2005-11-03 Pfizer Inc. Inhibitors of the hiv integrase enzyme
US7183284B2 (en) 2004-12-29 2007-02-27 Bristol-Myers Squibb Company Aminium salts of 1,2,3-triazoles as prodrugs of drugs including antiviral agents
EP1873155A1 (en) * 2004-04-26 2008-01-02 Pfizer Inc. Inhibitors of the HIV integrase enzyme
US7468375B2 (en) 2004-04-26 2008-12-23 Pfizer Inc. Inhibitors of the HIV integrase enzyme
WO2009005469A2 (en) * 2007-07-03 2009-01-08 David Erlinge The use of compounds such as pyridoxal derivatives for the treatment of diabetes or diseases associated with the metabolic syndrome
CN1953985B (en) * 2004-03-15 2010-06-09 布里斯托尔-迈尔斯斯奎布公司 Prodrugs of piperazine and substituted piperidine antiviral agents
US7807671B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-piperazine and piperidine derivatives as antiviral agents
US7829711B2 (en) 2004-11-09 2010-11-09 Bristol-Myers Squibb Company Crystalline materials of 1-(4-benzoyl-piperazin-1-yl)-2-[4-methoxy-7-(3-methyl-[1,2,4]triazol-1-yl)-1H-pyrrolo[2,3-C]pyridine-3-yl]-ethane-1,2-dione
US7851476B2 (en) 2005-12-14 2010-12-14 Bristol-Myers Squibb Company Crystalline forms of 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-YL)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-C]pyridin-3-YL]-1,2-dioxoethyl]-piperazine
EP2853565A1 (en) * 2013-09-27 2015-04-01 Consejo Superior De Investigaciones Científicas Glutamate receptor photomodulators
CN110330454A (en) * 2019-08-28 2019-10-15 北华航天工业学院 A kind of synthetic method of pyridine heterocycle azobenzene
JP2020524135A (en) * 2017-06-06 2020-08-13 アンスティテュ ナシオナル ドゥ ラ サントゥ エ ドゥ ラ ルシェルシェ メディカル(イーエヌエスエーエールエム) RAC1 inhibitor and its use for inducing bronchodilation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059867A1 (en) * 1999-03-30 2000-10-12 Pharmacor Inc. Hydroxyphenyl derivatives with hiv integrase inhibitory properties
US6313177B1 (en) * 1999-04-30 2001-11-06 Pharmacor Inc. D-mannitol derivatives as HIV aspartyl protease inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059867A1 (en) * 1999-03-30 2000-10-12 Pharmacor Inc. Hydroxyphenyl derivatives with hiv integrase inhibitory properties
US6313177B1 (en) * 1999-04-30 2001-11-06 Pharmacor Inc. D-mannitol derivatives as HIV aspartyl protease inhibitors

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM ET AL.: "Structure-Activity Relationships of Pyridoxal Phosphate Derivatives as Potent and Selective Antagonists of P2X1 Receptors" J. MED. CHEM., vol. 44, 2001, pages 340-349, XP001018799 *
KIM ET AL.: "Synthesis and Structure-Activity Relationships of Pyridoxal-6-arylazo-5'-phosphate and Phosphonate Derivatives as P2 Receptor Antagonists" DRUG DEVELOPMENT RESEARCH, vol. 45, 1998, pages 52-66, XP002170147 *
ZIGANSHIN ET AL.: "Effect of new pyridoxal phosphate aryalzo derivatives on the ECTO-ATPase activity in Guinea pig tissues" PHARMACEUTICAL CHEMISTRY JOURNAL, vol. 34, no. 5, 2000, pages 226-228, XP001000528 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135482B2 (en) 2002-10-31 2006-11-14 Agouron Pharmaceuticals, Inc. HIV-integrase inhibitors, pharmaceutical compositions, and methods for their use
WO2004039803A3 (en) * 2002-10-31 2004-09-16 Pfizer Hiv-integrase inhibitors, pharmaceutical compositions, and methods for their use
WO2004039803A2 (en) * 2002-10-31 2004-05-13 Pfizer Inc. Hiv-integrase inhibitors, pharmaceutical compositions, and methods for their use
US7368571B2 (en) 2002-10-31 2008-05-06 Pfizer Inc HIV-Integrase inhibitors, pharmaceutical compositions and methods for their use
NL1024676C2 (en) * 2002-10-31 2005-12-14 Pfizer HIV integrase inhibitors, pharmaceutical preparations and methods for their use.
US8461333B2 (en) 2004-03-15 2013-06-11 Bristol-Myers Squibb Company Salts of prodrugs of piperazine and substituted piperidine antiviral agents
CN1953985B (en) * 2004-03-15 2010-06-09 布里斯托尔-迈尔斯斯奎布公司 Prodrugs of piperazine and substituted piperidine antiviral agents
WO2005090367A1 (en) * 2004-03-15 2005-09-29 Bristol-Myers Squibb Company Prodrugs of piperazine and substituted piperidine antiviral agents
US8168615B2 (en) 2004-03-15 2012-05-01 Bristol-Myers Squibb Company Prodrugs of piperazine and substituted piperidine antiviral agents
US7745625B2 (en) 2004-03-15 2010-06-29 Bristol-Myers Squibb Company Prodrugs of piperazine and substituted piperidine antiviral agents
US8871771B2 (en) 2004-03-15 2014-10-28 Bristol-Myers Squibb Company Salts of prodrugs of piperazine and substituted piperidine antiviral agents
US11369624B2 (en) 2004-03-15 2022-06-28 Viiv Healthcare Uk (No. 4) Limited Salts of prodrugs of piperazine and substituted piperidine antiviral agents
US7468375B2 (en) 2004-04-26 2008-12-23 Pfizer Inc. Inhibitors of the HIV integrase enzyme
US7692014B2 (en) 2004-04-26 2010-04-06 Pfizer, Inc. Inhibitors of the HIV integrase enzyme
WO2005103051A1 (en) * 2004-04-26 2005-11-03 Pfizer Inc. Inhibitors of the hiv integrase enzyme
EP1873155A1 (en) * 2004-04-26 2008-01-02 Pfizer Inc. Inhibitors of the HIV integrase enzyme
JP2007534738A (en) * 2004-04-26 2007-11-29 ファイザー・インク Inhibitor of HIV integrase enzyme
US7829711B2 (en) 2004-11-09 2010-11-09 Bristol-Myers Squibb Company Crystalline materials of 1-(4-benzoyl-piperazin-1-yl)-2-[4-methoxy-7-(3-methyl-[1,2,4]triazol-1-yl)-1H-pyrrolo[2,3-C]pyridine-3-yl]-ethane-1,2-dione
US7183284B2 (en) 2004-12-29 2007-02-27 Bristol-Myers Squibb Company Aminium salts of 1,2,3-triazoles as prodrugs of drugs including antiviral agents
US7851476B2 (en) 2005-12-14 2010-12-14 Bristol-Myers Squibb Company Crystalline forms of 1-benzoyl-4-[2-[4-methoxy-7-(3-methyl-1H-1,2,4-triazol-1-YL)-1-[(phosphonooxy)methyl]-1H-pyrrolo[2,3-C]pyridin-3-YL]-1,2-dioxoethyl]-piperazine
US7807671B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-piperazine and piperidine derivatives as antiviral agents
US7807676B2 (en) 2006-04-25 2010-10-05 Bristol-Myers Squibb Company Diketo-Piperazine and Piperidine derivatives as antiviral agents
WO2009005469A3 (en) * 2007-07-03 2009-02-26 David Erlinge The use of compounds such as pyridoxal derivatives for the treatment of diabetes or diseases associated with the metabolic syndrome
WO2009005469A2 (en) * 2007-07-03 2009-01-08 David Erlinge The use of compounds such as pyridoxal derivatives for the treatment of diabetes or diseases associated with the metabolic syndrome
EP2853565A1 (en) * 2013-09-27 2015-04-01 Consejo Superior De Investigaciones Científicas Glutamate receptor photomodulators
WO2015044358A3 (en) * 2013-09-27 2015-06-11 Consejo Superior De Investigaciones Científicas Glutamate receptor photomodulators
JP2020524135A (en) * 2017-06-06 2020-08-13 アンスティテュ ナシオナル ドゥ ラ サントゥ エ ドゥ ラ ルシェルシェ メディカル(イーエヌエスエーエールエム) RAC1 inhibitor and its use for inducing bronchodilation
US11607419B2 (en) 2017-06-06 2023-03-21 Inserm (Institut National De La Sante Et De La Recherche Medicale) Inhibitors of RAC1 and uses thereof for inducing bronchodilatation
JP7247114B2 (en) 2017-06-06 2023-03-28 アンスティテュ ナシオナル ドゥ ラ サントゥ エ ドゥ ラ ルシェルシェ メディカル(イーエヌエスエーエールエム) RAC1 inhibitors and their use for inducing bronchodilation
CN110330454A (en) * 2019-08-28 2019-10-15 北华航天工业学院 A kind of synthetic method of pyridine heterocycle azobenzene

Also Published As

Publication number Publication date
AU2003215469A1 (en) 2003-10-13
AU2003215469A8 (en) 2003-10-13
WO2003082881A3 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
KR101942151B1 (en) Novel antiviral agents against hbv infection
AU2005226359B2 (en) 9-substituted 8-oxoadenine compound
US7388008B2 (en) Lysine based compounds
JP5250732B2 (en) Aromatic derivatives as HIV aspartyl protease inhibitors
WO2003082881A2 (en) Pyridoxal-5-phosphate derivatives as hiv integrase inhibitors
EP1686113B1 (en) Inhibitors of aspartyl protease
KR20010033595A (en) Prodrugs of aspartyl protease inhibitors
WO1999033792A2 (en) Prodrugs os aspartyl protease inhibitors
EA003509B1 (en) Sulphonamide derivatives as prodrugs of aspartyl protease inhibitors
CA2401821C (en) Amino acid derivatives as hiv aspartyl protease inhibitors
CA2440931C (en) Hiv protease inhibitors based on amino acid derivatives
JPH04300834A (en) Synergistic action of hiv reverse transcriptase inhibitor
EP2064177A2 (en) Protease inhibitors
Tan et al. Potential anti-AIDS naphthalenesulfonic acid derivatives. Synthesis and inhibition of HIV-1 induced cytopathogenesis and HIV-1 and HIV-2 reverse transcriptase activities
US6638921B1 (en) Pyridoxal-5-phosphate derivatives as HIV integrase inhibitors
EP1480941B1 (en) Urea derivatives as hiv aspartyl protease inhibitors
CA2560071C (en) Lysine based compounds
CN102834381A (en) Derivatives of pyridoxine for inhibiting HIV integrase
EP1906958A2 (en) Pyrazolo[3,4-b]pyridin-2-yl]-benzoic acid derivatives as hiv integrase inhibitors
WO2005087759A1 (en) Qiunolin-4-ones as inhibitors of retroviral integrase for the treatment of hiv, aids and aids related complex (arc)
US6528532B1 (en) Urea derivatives as HIV aspartyl protease inhibitors
US6313177B1 (en) D-mannitol derivatives as HIV aspartyl protease inhibitors
JPH09316076A (en) 9-substituted purine derivative and its application as antiviral agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP