WO2003082793A1 - Process for the recovery of fluorine-containing emulsifier - Google Patents

Process for the recovery of fluorine-containing emulsifier Download PDF

Info

Publication number
WO2003082793A1
WO2003082793A1 PCT/JP2003/003845 JP0303845W WO03082793A1 WO 2003082793 A1 WO2003082793 A1 WO 2003082793A1 JP 0303845 W JP0303845 W JP 0303845W WO 03082793 A1 WO03082793 A1 WO 03082793A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsifier
fluorine
fluorinated emulsifier
aqueous liquid
fluorinated
Prior art date
Application number
PCT/JP2003/003845
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Funaki
Masataka Eda
Hiroki Kamiya
Koichi Yanase
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2003082793A1 publication Critical patent/WO2003082793A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Definitions

  • the present invention relates to a method for recovering a fluorinated emulsifier contained in exhaust gas.
  • a fluorinated emulsifier contained in exhaust gas from a drying step and a heat treatment step of the fluorinated polymer is collected in a gas absorption tower.
  • Methods of contact absorption in a solvent or solution are known.
  • IER anion exchange resin
  • APFO ammonium perfluorooctanoate
  • WO 99/62830 discloses that nonionic or ionic surfactants are added to flocculated wastewater of a fluoropolymer to stabilize polytetrafluoroethylene (hereinafter referred to as PTFE) fine particles in the flocculated wastewater, A method for preventing clogging of a packed tower is described.
  • PTFE polytetrafluoroethylene
  • JP-A-55-120630, US Pat. No. 4,369,266 and DE2908001 describe that PTFE coagulated wastewater is concentrated by ultrafiltration and a part of APFO used for PTFE production is recovered, and then APER is adsorbed and recovered by IER. The method is described.
  • JP-A-55-104651, US4282162 and DE2903981 describe a method in which APFO is adsorbed on ER, and then perfluoractonic acid is desorbed and recovered using a mixture of an acid and an organic solvent.
  • WO 99Z62858 discloses that lime water is added to the coagulated waste water of a tetrafluoride tyrennoperfluoro (alkylvinyl ether) copolymer (hereinafter referred to as PFA) to adjust the pH to 6 to 7.5. After adjusting to pH, non-agglomerated PFA is aggregated by adding metal salts such as aluminum chloride and iron chloride, and then the aggregates are mechanically separated and removed. The following describes a method for preparing and adsorbing and recovering APFO using a strongly basic IER.
  • PFA tetrafluoride tyrennoperfluoro (alkylvinyl ether) copolymer
  • WO 02/10104 and WO 02/10105 further disclose adding a divalent metal salt and a trivalent metal salt to a solution containing a fluorine-based compound or a solution containing a fluorine-based compound and a fluorine-containing polymer.
  • the fluorine-based compound By precipitating a layered double hydroxide containing a compound between the layers, the fluorine-based compound is fixed at a high ratio, and if necessary, the precipitated layered double hydroxide is recovered, and the fluorine-based compound or the fluorine-containing compound between the layers is recovered.
  • a method for separating salts is described.
  • An object of the present invention is to provide a method capable of efficiently recovering a fluorine-containing emulsifier contained in an exhaust gas. Disclosure of the invention
  • the present inventors have made intensive studies on the recovery of the fluorinated emulsifier from the exhaust gas, and as a result, the exhaust gas from the drying step and the heat treatment step of the fluorinated polymer contains a large amount of carbon dioxide gas together with the fluorinated emulsifier. It has been found that the carbon dioxide gas has various effects on the recovery of the fluorine-containing emulsifier. For example, when the exhaust gas is brought into contact with the aqueous solution of the layered double hydroxide, immobilization of the fluorinated emulsifier between layers due to carbon dioxide gas or the like becomes insufficient, and the recovery cannot be increased. In addition, even when the high-concentration alkaline aqueous solution is used, difficulties such as foaming and the like arise due to contact of a large amount of carbon dioxide and the like with a high-concentration alkaline aqueous solution.
  • the present inventor has newly found that the above problems can be smoothly and advantageously solved by bringing an exhaust gas containing a fluorinated emulsifier into contact with a specific aqueous liquid to perform an absorption operation.
  • an exhaust gas (A) containing a fluorinated emulsifier is brought into contact with an aqueous liquid (B1) having a pH of 7 to less than 12, and the fluorinated emulsifier in the exhaust gas is absorbed into the aqueous liquid.
  • the present invention provides a method for bringing an exhaust gas (A) containing a fluorinated emulsifier into contact with an aqueous liquid (B1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid.
  • step (XI) for fixing the fluorinated emulsifier in the mixed aqueous liquid (B 4) between the layers of the layered double hydroxide, and the layered composite having the fluorinated emulsifier fixed between the layers obtained in the step (Y).
  • the present invention provides a method for recovering a fluorinated emulsifier, which comprises a recovery step (Z) for separating a hydroxide (C) and recovering the fluorinated emulsifier.
  • the exhaust gas (A) in the present invention is not particularly limited as long as it is an exhaust gas containing a fluorinated emulsifier, and is usually a fluorinated polymer obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorinated emulsifier. Exhaust gas from one drying and Z or heat treatment step is preferred.
  • an aqueous dispersion of a fluorinated polymer obtained by emulsion polymerization or aqueous dispersion polymerization of a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer in an aqueous medium containing a fluorinated emulsifier
  • the fluorinated polymer is coagulated and separated by salting out or the like, and the separated fluorinated polymer is discharged from the heat treatment apparatus when drying and / or heat treatment is performed using a heat treatment apparatus such as an oven.
  • Exhaust gas containing a trace amount of solid fine powder Exhaust gas containing a trace amount of solid fine powder.
  • the exhaust gas is used as the exhaust gas (A) will be described as a representative.
  • step (X) the exhaust gas (A) is brought into contact with an aqueous liquid (B 1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid. At least, an aqueous liquid (B 2) containing a fluorinated emulsifier is obtained.
  • a method for absorbing the fluorinated emulsifier into the aqueous liquid (B 2) a generally known gas absorbing device method can be used.
  • a gas absorption method a liquid film type, a droplet type, a bubble type, a foam type and the like can be used.
  • Examples of the gas absorbing device include, as a liquid film type, a packed tower, a wet wall tower, a submerged tower, a liquid jet, a ball tower, a disk tower, a toril, a seralysturil, and a Tyler absorbing device.
  • Examples of the droplet type include a spray tower, a disk rotary absorption device, a cyclone scrubber, a venturi scrubber, a packed fluidized bed absorption device, a centrifugal absorption device, and the like.
  • the bubble type includes a bubble column, a bubble stirring tank, and the like. A column can be exemplified.
  • examples of the foam type include foam separation.
  • a droplet type absorption device Z or a liquid film type absorption agent is used. It is preferable to use the device for reasons such as absorption efficiency and maintenance and inspection of the device.
  • the exhaust gas (A) may be used in a gas absorption device such as an absorption tower (hereinafter, may be represented by an absorption tower).
  • the linear velocity is not particularly limited, but is preferably from 0.01 m / sec to 10 m / sec, more preferably from 0.01 lm / sec to 5 mZ seconds, and particularly preferably from 0.01 mZ seconds to 3 mZ seconds.
  • step (X) it is also preferable to equip a gas absorption tower with a droplet separation device (demister) to prevent the droplets from being entrained in the next step.
  • a droplet separation device demister
  • the amount of the aqueous liquid (B1) used in the step (X) is not particularly limited, but when the concentration of the fluorinated emulsifier in the obtained aqueous liquid (B2) is high, the processing speed is rapidly reduced due to foaming. Therefore, control the flow rate of the exhaust gas (A) and the amount of the aqueous liquid (B1) so that the concentration of the fluorinated emulsifier in the aqueous liquid (B2) is 10% by mass or more and 1% by mass or less. Is preferred.
  • Water is usually used as a raw material of the aqueous liquid (B1) in the step (X).
  • the type of the water is not particularly limited, but adverse effects such as foaming of the aqueous liquid (B 1) or the aqueous liquid (B 2) due to the fluorinated emulsifier and contaminants contained in the exhaust gas (A), scaling to the absorption device, and the like. It is preferable to use ion-exchanged water from the viewpoint of preventing water leakage.
  • the wastewater (B3) after separating the fluorine-containing polymer in the production process of the fluorine-containing polymer can be used as the aqueous liquid (B1).
  • the aqueous liquid (B1) is preferably an aqueous liquid whose pH has been adjusted to 7 or more and less than 12 using an alkali.
  • the temperature at the time of contact between the exhaust gas (A) and the aqueous liquid (B1) in the step (X) is not particularly limited, but is usually preferably 10 to 60 ° C.
  • the temperature can be controlled by the temperature of the exhaust gas (A) and / or the aqueous liquid (B1), but it is usually practical and preferable to adjust the temperature by the temperature of the aqueous liquid (B1).
  • the temperature of the aqueous liquid (B 1) is preferably from 10 ° C. to 60 ° C. in consideration of the solubility of the alkali and the fluorinated emulsifier.
  • the alkali used for the aqueous liquid (B1) is not particularly limited, but may be sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydrogen carbonate, An example is an ammonia monitor.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, or ammonia are more likely to occur. preferable.
  • the pH of the aqueous liquid used for gas absorption is basically preferable from the viewpoint of the properties of the fluorinated emulsifier to be absorbed. Is 7 or more and less than 12.
  • the pH of the aqueous liquid (B1) is preferably 8 to 11.
  • the step (Y), that is, the step (Y) of fixing the fluorine-containing emulsifier between the layers of the layered double hydroxide to the aqueous liquid (B2) after gas absorption obtained in the step (X) is performed. Therefore, it is also preferable to previously adjust the H of the aqueous liquid (B1) to a pH suitable for the layered double hydroxide.
  • the wastewater (B3) after separating the fluoropolymer in the production process of the fluoropolymer may be used as the aqueous liquid (B1) in the step (X). Further, after passing through the step (XI) of mixing the aqueous liquid (B2) obtained in the step (X) with the waste water (B3), the mixed aqueous liquid (B4) is obtained.
  • aqueous liquid (B2) containing the fluorinated emulsifier including the case where the wastewater (B3) is used and the case where the mixed aqueous liquid (B4) is used.
  • the fluorinated emulsifier is fixed between the layers of the layered double hydroxide, and the fixation is performed by adsorbing the anion of the fluorinated emulsifier on the layered double hydroxide.
  • coprecipitation In general, three types of anion adsorption by layered double hydroxide are known: coprecipitation, ion exchange, and reconstruction. '' In the coprecipitation method, metal ions are added to the solution in which the recovery anion is dissolved to form a layered double hydroxide, and at the same time, the recovery anion is included between the layers of the layered double hydroxide. It is a way to make it.
  • the replacement method is to prepare in advance a layered double hydroxide having a structure in which anions other than the target anion (eg, chloride ion, hydroxide ion, carbonate ion, etc.) are included between the layered double hydroxide layers. In this method, the layered double hydroxide is added to a solution in which the recovery anion is dissolved, and the recovery objective anion is included between the layers so as to replace the already encapsulated anion.
  • anions other than the target anion eg, chloride ion, hydrox
  • a layered double hydroxide containing carbonate ions between the layers is synthesized, and calcined at a high temperature of 400 to 500 ° C to remove the carbonate ions inside.
  • This is a method in which the anion to be recovered is included in the layered double hydroxide by adding it to a liquid in which the anion to be recovered is dissolved.
  • any of the above-mentioned methods can be employed in the step (Y), however, because the fluorine-containing emulsifier in the aqueous liquid (B 2) can be efficiently fixed between the layers of the layered double hydroxide.
  • a coprecipitation method is employed.
  • a salt such as perfluoroalkanoic acid, ⁇ -hydroperfluoroalkanoic acid, ⁇ -chloroperfluoroalkanoic acid, or perfluoroalkanesulfonic acid having 5 to 13 carbon atoms is used. Is preferred. These may have a linear structure or a branched structure, or a mixture thereof. Further, the molecule may contain an etheric oxygen atom. When the number of carbon atoms is in this range, the effect as an emulsifier is excellent.
  • the acid salt is preferably an alkali metal salt such as a lithium salt, a sodium salt or a potassium salt, or an ammonium salt, more preferably an ammonium salt or a sodium salt, and most preferably an ammonium salt.
  • the acid include perfluoropentanoic acid and perfluorohexanoic acid.
  • Perfluoroheptanoic acid perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, ⁇ -hydroperfluoroheptanoic acid, ⁇ -hydro Perfluorooctanoic acid, ⁇ -hydroperfluorononanoic acid, ⁇ -chloroperfluoroheptanoic acid, ⁇ -chloroperfluorooctanoic acid, ⁇ monochloroperfluorononanoic acid, etc. Is mentioned.
  • ammonium salt examples include ammonium perfluoropentanoate, ammonium perfluorohexanoate, ammonium perfluoroheptanoate, ammonium perfluorooctanoate (APFO), and perfluorononanoic acid.
  • lithium salt examples include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorosiloxane, lithium perfluorononanoate, and lithium perfluoronate.
  • sodium salt examples include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluoroheptanoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorodecanoate Sodium perfluorododecanoate, sodium ⁇ -hydroperfluoroheptanoate, sodium ⁇ -hydroperfluorooctanoate, sodium ⁇ -hydroperfluorononanoate, ⁇ -sodium perfluoroheptanoate, ⁇ -clo mouth sodium perfluorooctanoate, ⁇ -clo mouth sodium perfluorononanoate and the like.
  • potassium salt examples include potassium perfluoropentanoate, potassium perfluorohexanoate, potassium perfluoroheptanoate, potassium perfluorooctanoate, potassium perfluorononanoate, and perfluorophosphate
  • Potassium decanoate Pum potassium perfluorododecanoate, potassium ⁇ -hydroperfluoroheptanoate, potassium ⁇ -hydroperfluorooctanoate, potassium ⁇ -hydroperfluorononanoate, ⁇ -cloper per Potassium fluoroheptanoate, ⁇ -chlorofluorofluorooctanoic acid rim, and ⁇ -chloroperfluorononanoic acid rim.
  • potassium perfluorohexane sulfonate potassium perfluoroheptane sulfon
  • an ammonium salt of a perfluoroalkanoic acid having 6 to 12 carbon atoms is preferable, and ammonium perfluoroheptanoate, APFO, ammonium perfluorononanoate or perfluorodenoic acid is preferable.
  • Ammonium acid is more preferred, and APFO is most preferred.
  • the waste water (B3) after separating the fluoropolymer in the production process of the fluoropolymer is defined as the copolymer of the fluoromonomer or the fluoromonomer and the monomer other than the fluoromonomer.
  • the coagulated wastewater will be described as a typical example.
  • the coagulated waste water from the above-mentioned manufacturing process refers to an emulsion polymerization or an aqueous dispersion polymerization of a fluorine-containing monomer or a fluorine-containing monomer and a monomer other than the fluorine-containing monomer in an aqueous medium containing a fluorine-containing emulsifier.
  • This refers to waste water after the fluoropolymer is aggregated and separated by salting out or the like from the aqueous dispersion of the fluoropolymer obtained as above.
  • the flocculated wastewater contains the fluorinated emulsifier used during the polymerization of the fluorinated monomer.
  • the exhaust gas (A) in the present invention is an exhaust gas from the process of producing a fluoropolymer, and the exhaust gas (A) contains the fluorinated emulsifier used during the polymerization of the fluorinated monomer. It is.
  • Including a fluorine-containing emulsifier in the exhaust gas (A)
  • the concentration of the fluorine-containing emulsifier in the exhaust gas is usually 0.001 g / Nm 3 or more and 10 gZNm 3 or less, preferably 0.01 gZNm 3 or more and 1 g / Nm 3 or less.
  • TFE tetrafluoroethylene modified styrene
  • CF 2 CFC 1
  • CFH CF 2
  • CFH CH 2
  • CF 2 CH 2
  • Referred VdF Furuoroechiren such s, the hexa full O b propylene
  • fluorinated monomers may be used alone or in combination of two or more.
  • Monomers other than the fluorinated monomer include pinyl esters such as vinyl acetate, vinyl ethers such as ethylvinyl ether, cyclohexyl vinyl ether and hydroxybutyl vinyl ether, and monomers having a cyclic structure such as norpolenene and norponadiene. And aryls such as methylaryl ether, ethylene (hereinafter referred to as E), propylene (hereinafter referred to as P), and olefins such as isobutylene. Monomers other than the fluorinated monomer may be used alone or in combination of two or more.
  • examples of the fluorine-containing polymer include PTFE, TFEZP copolymer, TFEZPZVdF copolymer, TFEZHFP copolymer, TFEZPPVE copolymer, E / TFE copolymer, polyvinylidene fluoride and the like. More preferably, it is PTFE, TFEZP copolymer, exactly £ 7? / ⁇ 01 copolymer or just FEZPPVE copolymer, most preferably PTFE.
  • the fluorinated emulsifier contained in the exhaust gas (A) can be recovered, but when the waste water (B 3) is used as the aqueous liquid (B 1) or mixed through the step (X 1)
  • the fluorinated emulsifier contained in the wastewater (B3) such as coagulated wastewater (hereinafter sometimes referred to as coagulated wastewater (B3)) is also processed.
  • the layered double hydroxide can be fixed between layers, and the fluorinated emulsifier contained in both the exhaust gas ( ⁇ ⁇ ⁇ ) and the coagulated wastewater ( ⁇ 3) can be recovered together.
  • the pH of the waste water ( ⁇ 3) is reduced by hydrochloric acid and / or sulfuric acid and / or nitric acid.
  • the layered double hydroxide used in (II) it is preferable to adjust appropriately according to the layered double hydroxide used in (II). For example, when aluminum and zinc are used, it is preferably adjusted to 6 or more and less than 8, and when aluminum and magnesium are used, it is preferably adjusted to 9 or more and less than 11. If the coagulated wastewater ( ⁇ 3) is acidic, use potassium hydroxide and / or sodium hydroxide to adjust the pH of the wastewater ( ⁇ 3). As described above, when aluminum and zinc are used, 6 or more and less than 8 When using aluminum and magnesium, it is preferable to adjust the value to 9 or more and less than 11. If the pH is outside the above range, aluminum and zinc, or aluminum and magnesium each independently form a hydroxide, and form aluminum hydroxide, zinc hydroxide, and magnesium hydroxide. Is difficult to form, and as a result, the recovery efficiency of the fluorine-containing emulsifier is significantly reduced.
  • a layered double hydroxide can be formed if the formation of hydroxides of the trivalent metal and the divalent metal overlaps or the range of formation of both hydroxides is close.
  • the trivalent metal include aluminum, bismuth, cerium, and chromium.
  • examples thereof include (III), iron (III), gallium, indium, manganese (III), titanium, and titanium.
  • aluminum is preferable because of a small load on the environment and the like and availability.
  • examples of the divalent metal include beryllium, cadmium, cobalt, chromium (11), copper (II), iron (II), magnesium, manganese (11), nickel, lead (11), platinum, and palladium.
  • zinc, tin, calcium and the like can be exemplified, zinc or magnesium is preferable, and magnesium is particularly preferable because of a small load on the environment and the like and availability.
  • the concentration of the fluorinated emulsifier in the coagulated wastewater ( ⁇ 3) and the concentration of the fluorinated emulsifier in the aqueous liquid ( ⁇ 2) are preferably 1% by mass or more and 10% by mass or less, and 10% by mass or less.
  • the content is more preferably not less than ppm and not more than 1 mass%, particularly preferably not less than 50 mass ppm and not more than 0.5 mass%.
  • the layered double hydroxide in step (Y) may cause The efficiency of capturing the fluorinated emulsifier decreases. If the concentration is higher than this, a simpler and more efficient method such as precipitation of the fluorinated emulsifier by changing pH can be used.
  • suspended solids such as non-agglomerated fluoropolymer fine particles and the like that can be suspended solids (hereinafter, these are collectively referred to as SS components) contained in the aggregated wastewater (B 3) are: It does not adversely affect the fixation and the fixation ratio of the fluorinated emulsifier in the step (Y). However, in the recovery step (Z), the fluorinated emulsifier may be hindered from being regenerated from the above-mentioned layered double hydroxide (C) force. It is preferable to remove to less than mass%.
  • the SS component is more preferably removed to 0.3% by mass or less, particularly preferably to 0.05% by mass or less.
  • Substances that can become suspended solids include metal salts used for salting-out and coagulation of fluoropolymers, Z and substances precipitated by changes in pH of coagulated wastewater (B3) and Z or coagulated wastewater (B 3) Substances that precipitate when the temperature drops or rises.
  • salting-out aggregation with a metal salt containing a polyvalent metal cation is effective.
  • the metal salt (coagulant) include aluminum chloride, aluminum chloride hexahydrate, polychlorinated aluminum, ferrous chloride, and ferric chloride.
  • Agglomerates may precipitate in a state in which a fluorinated emulsifier such as APFO is contained. Therefore, the pH is adjusted to 7 or more by adding sodium hydroxide and / or a hydration-powered rim to adjust the pH to 7 or more. It is preferred to redissolve the emulsifier from the aggregates in water.
  • a general solid-liquid separation method can be employed as a method for removing the aggregates of the SS component that is aggregated by adding the metal salt to the aggregated wastewater (B 3). It is preferable to use at least one method selected from the group consisting of a station, centrifugation, and gravity sedimentation. The filtration is also preferably performed under pressure. Further, it is preferable that the wastewater containing the aggregates is allowed to stand, the aggregates are settled, and the supernatant is filtered to remove the aggregates. From the viewpoint of facility maintenance and the like, a solid-liquid separation method using a thickener or a screw decanter is most preferable.
  • the pH at the time of mixing with the aqueous liquid (B2) or the mixed aqueous liquid (B4) is preferably adjusted to 9 or more and less than 11 when aluminum and magnesium are used.
  • the molar ratio of aluminum ion: magnesium ion is 1: 2, and the concentration of aluminum ion and magnesium ion is each 0.
  • the fluorinated emulsifier is fixed between the layers of the layered double hydroxide to be formed. . There is no problem with using any of the raw materials for aluminum ion and magnesium ion.
  • Aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, and aluminum nitrate are preferred as aluminum ion raw materials because of availability, and aluminum chloride and aluminum chloride hexahydrate are particularly preferred.
  • As a raw material of magnesium ion magnesium chloride, magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate, magnesium sulfate, magnesium sulfate heptahydrate, and magnesium carbonate are preferable, and magnesium chloride is particularly preferable.
  • Magnesium chloride hexahydrate is preferred.
  • the pH at the time of mixing with the aqueous liquid (B2) or the mixed aqueous liquid (B4) is preferably adjusted to 6 or more and less than 8.
  • an aqueous solution in which the molar ratio of aluminum ion: zinc ion is 1: 2, and the concentrations of aluminum ion and zinc ion are respectively 0.0 lmo 11 or more and 211101 ZL or less is used while stirring.
  • Aluminum and zinc ions can be used in any source.
  • aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, and aluminum nitrate are preferable as aluminum ion raw materials, and aluminum chloride and aluminum chloride hexahydrate are particularly preferable.
  • aluminum chloride and aluminum chloride hexahydrate are particularly preferable.
  • zinc chloride, zinc nitrate hexahydrate, zinc sulfate, and zinc sulfate heptahydrate are preferable, and zinc chloride is particularly preferable.
  • the metal ion aqueous solution is preferably added at a metal ion concentration of 0.01 mol / L or more and 2 mol 1 / L or less.
  • Metal ion concentration If the degree is lower than this, the amount of water will increase when the required metal is added, and as a result, the concentration of the fluorinated emulsifier will decrease, and the recovery efficiency will decrease. If the metal ion concentration is higher than this range, the metal ion aqueous solution is acidic. Therefore, by adding the aqueous solution, the optimum pH range for locally forming a layered double hydroxide in the step (Y) is obtained.
  • the metal ion is not effectively used for forming the layered double hydroxide.
  • the fluorine-containing emulsifier can be efficiently recovered by adding a metal ion aqueous solution having an appropriate concentration range again.
  • the amount of the metal ion used is such that the trivalent ion is 1 to 10 times the molar amount of the fluorinated emulsifier, and the divalent ion is the fluorinated emulsifier. It is preferable that the molar ratio of the trivalent ion to the divalent ion is 3: 1 to 1: 3 with respect to the molar ratio. The molar ratio of the trivalent ion to the divalent ion is more preferably 1: 1 to 1: 2. If the amount of the metal ion used is less than the above, the recovery of the fluorinated emulsifier is insufficient. Does not increase. Further, excessive use of the metal ions is not preferable from the viewpoint of increasing the load in the final wastewater treatment process.
  • the stirring method is not particularly limited, but a stirring method that does not mechanically destroy the formed layered double hydroxide (C) is preferable.
  • a stirring blade capable of uniformly mixing the whole liquid mixture at a low speed is preferable, and one selected from the group consisting of a full zone blade, a max blend blade and an anchor blade is preferable.
  • G value during stirring at the stirring blade is preferably from 1 ⁇ 3 0 0 s 1, more preferably 5 ⁇ 2 5 0 s _ 1, 1 0 ⁇ 2 0 0 s _ 1 is most preferred.
  • the G value refers to a value derived from the following equation.
  • is the stirring power (W)
  • V is the liquid volume (m 3 )
  • X is the liquid viscosity coefficient (P a-s).
  • step (Y) during the mixing with the aqueous metal ion solution, bubbling with an inert gas such as nitrogen gas or argon gas or the like is performed to remove carbon dioxide and / or carbon dioxide present in the system. After expelling the carbonate ions and / or carbon dioxide gas with the gas, it is preferable to seal the reaction vessel. This is because the layered double hydroxide reacts with the carbonate ion and hinders the recovery of the fluorinated emulsifier. Flow rate of the inert gas when carrying out the bubbling 0. I Nm 3 / m 3 ⁇ h ⁇ l O Nm 3 Zm 3 ⁇ h preferably, 0.
  • the step (Y) is preferably performed at a temperature of 10 to 50 ° C. If the temperature is too high or too low, the fixing rate of the fluorine-containing emulsifier by the layered double hydroxide decreases. In particular, if the temperature is too low, the fixation rate is significantly reduced. Therefore, it is preferable to equip the immobilization reactor with a heating device.
  • the layered double hydroxide (C) having the fluorinated emulsifier fixed between the layers obtained in the step (Y) is first separated.
  • the separation method is not particularly limited, and a general solid-liquid separation method can be employed. In particular, it is preferable to use one or more methods selected from the group consisting of filtration, decantation, gravity sedimentation, and centrifugation. The filtration is also preferably performed under pressure. From the viewpoint of facility maintenance and the like, a solid-liquid separation method using a thickener or a screw decanter is most preferable.
  • the separated layered double hydroxide (C) and the fluorine-containing emulsifier are regenerated and recovered.
  • the layered double hydroxide (C) is redissolved with a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid or a mixture of two or more kinds of the strong acids, and contains a precipitate precipitated from the solution.
  • a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid or a mixture of two or more kinds of the strong acids
  • the free acid of the fluorine emulsifier may be extracted with a water-insoluble organic solvent such as a fluorine-based solvent.
  • the method for recovering the fluorinated emulsifier of the present invention not only the fluorinated emulsifier, also, the present invention can be applied to low molecular weight fluorinated carboxylic acids such as trifluoroacetic acid and pentafluoropropanoic acid and / or salts thereof, trifluoromethanesulfonic acid and Z or salts thereof.
  • fluorinated carboxylic acids such as trifluoroacetic acid and pentafluoropropanoic acid and / or salts thereof, trifluoromethanesulfonic acid and Z or salts thereof.
  • the concentration of APFO, perfluorooctanoic acid (hereinafter referred to as PFOA) or sodium perfluorooctanoate is determined by using a high-speed night-time chromatographic gel mass spectrum using a mixed solution of methanol and water as a solvent. It was measured using the method. Species to be detected by this method is per full O Roo Kuta hexanoate (C 7 F 1 5 COO I).
  • the SS component in the coagulated effluent was measured (unit: mass%) by measuring 10 g of the coagulated effluent after coagulating and separating PTFE from the aqueous dispersion of PTFE, using a METTLER TOLEDO Haguchi Gen-type moisture meter HR. — Put in 73, dried at 200 ° C until the mass became constant, and the evaporation residue was used as the SS component.
  • PTFE powder was agglomerated from an aqueous PTFE dispersion produced by emulsion polymerization using APFO as an emulsifier. 10.0 kg of this PTFE powder (moisture content: 48% by mass) was placed in a hot-air circulation oven, and the temperature was gradually increased from 100 ° C to 5 ° C. Heat treated for hours. The displacement of the exhaust gas from the hot-air circulation oven was 4.5 Nm 3 . The entire amount of this exhaust gas was introduced into a spray tower having a diameter of 50 cm and a height of 500 cm. The linear velocity of the gas at this time was about 0.5 mZ seconds.
  • a 0.2 N aqueous solution of sodium hydroxide was added to adjust the pH to 10.0.
  • the liquid temperature was 26 ° C.
  • the glass beaker one 2 L the solution 1 L (AP FO content 0. 49 8 g, 1. 1 6mmo 1) were charged, mixed aqueous solution [A 1 3 + ions magnesium chloride salt aluminum Concentration 0.0 7 51110 1/1 ⁇ 2 + ion 0.15mol ZL] about 77.3mL [A1 3 + Ion total amount 5.8 Ommo and Mg 2 + ion total amount 11.6 mmol] were added dropwise over 2 hours.
  • stirring was continued using an anchor blade so that the G value became 100 s- 1 .
  • a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less.
  • Example 1 the aqueous solution in which APTFE was recovered from exhaust gas during drying and heat treatment of the PPTFE powder was 5001111 ⁇ .
  • the APFO concentration in this mixed aqueous solution was analyzed, it was 323 ppm by mass.
  • a 0.2 N aqueous sodium hydroxide solution was added to adjust the pH to 10.0.
  • the liquid temperature was 26 ° C.
  • PTFE powder was agglomerated from an aqueous PTFE dispersion produced by emulsion polymerization using APFO as an emulsifier.
  • This PTFE powder (10.0 kg, water content: 48% by mass) was placed in a hot air circulation oven, heated at a rate of 100 ° C to 5 ° CZ over time, and then heat-treated at 200 for 1 hour.
  • the displacement of the exhaust gas from the hot-air circulation oven was 4.5 Nm 3 / h.
  • the entire amount of the exhaust gas was introduced into a spray tower having a diameter of 50 cm and a height of 500 cm.
  • the linear velocity of the gas at this time was about 0.5 m / sec.
  • a 0.2 N aqueous sodium hydroxide solution was added to the coagulated wastewater in which the APFO was absorbed to adjust the pH to 10.0.
  • the liquid temperature was 26 ° C.
  • the glass-bi one car 2L, the aqueous solution 1L (APFO content 0. 640 g, 1. 48 mm o 1) were charged, mixed aqueous solution of magnesium chloride and aluminum chloride [A 1 3 + ion concentration 0. 075Mo 1 Bruno, dropwise over Mg 2 + ions 0. 15mo l / L] of 99. 3 m L [a 1 3 + ion amount 7. 4 Ommo 1, Mg 2 + ions total 14. 8mmo 1] for 2 hours did.
  • PTFE powder was agglomerated from a PTFE aqueous dispersion produced by emulsion polymerization using APFO as an emulsifier. 20 kg of this PTFE powder (moisture content: 48% by mass) was placed in a hot air circulation oven, and the temperature was gradually increased from 100 ° C to 5 ° C over time.
  • Heat treatment was performed at 200 ° C for 1 hour.
  • the displacement of the exhaust gas from the hot-air circulation oven was 1 ONm 3 .
  • the entire amount of this exhaust gas was introduced into a packed column having a diameter of 10 cm and a height of 200 cm.
  • the packed tower was filled with 5/8 inch stainless steel pole rings.
  • the linear velocity of the gas at this time was about 0.3 mZ seconds.
  • 70 kg of ion-exchanged water whose pH was adjusted to 10 using potassium hydroxide was circulated at a flow rate of 500 L Zh. Drying of the PTFE powder *
  • the APFO concentration in the alkaline water in the packed tower was analyzed and found to be 495 mass ppm.
  • ⁇ H was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to the APFO-containing aqueous solution.
  • the liquid temperature was 26.
  • the glass beaker one 2 L, the aqueous solution 1L (APFO content 0. 495 g, 1. 16 mm o 1) were charged, mixed aqueous solution of magnesium chloride and aluminum chloride [A1 3 + ion concentration 0.0 75mo 1 / L, Mg 2 + ions 0. 15mo 1 ZL] of about 76. 8 mL [a 1
  • the fluorinated polymer is obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing the fluorinated emulsifier.
  • the contained fluorine-containing emulsifier can be efficiently recovered.
  • a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer are added to an aqueous medium containing a fluorinated emulsifier.
  • aqueous dispersion of a fluoropolymer obtained by emulsion polymerization or aqueous dispersion polymerization in step (1) which is contained in the wastewater (usually flocculated wastewater) after coagulation and separation of the fluoropolymer by salting out, etc.
  • the emulsifier can also be recovered efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A process for the recovery of a fluorine-containing emulsifier which comprises bringing an exhaust gas from the step of drying and/or thermal treatment of a fluoropolymer which is produced by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorine -containing emulsifier and contains the fluorine-containing emulsifier into contact with an aqueous solution whose pH is adjusted to 7 or above but below 12 with an alkali to make the fluorine-containing emulsifier absorbed in the aqueous alkaline solution, forming a layer double hydroxide in the aqueous solution containing the fluorine-containing emulsifier, immobilizing the emulsifier among the layers, and recovering the emulsifier. According to this process, a fluorine-containing emulsifier can be withdrawn at high recovery from an exhaust gas from the step of drying and/or heat treatment of a fluoropolymer.

Description

明細書  Specification
含フッ素乳化剤の回収方法 技術分野 . 本発明は、 排ガス中に含有される含フッ素乳化剤の回収方法に関する。 背景技術 TECHNICAL FIELD The present invention relates to a method for recovering a fluorinated emulsifier contained in exhaust gas. Background art
従来から、 含フッ素ポリマーの乳化重合に使用される含フッ素乳化剤を回収す る方法として、 該含フッ素ポリマーの乾燥工程、 熱処理工程からの排気ガス中に 含まれる含フッ素乳化剤を、 ガス吸収塔において溶媒や溶液中に接触吸収させる 方法が知られている。  Conventionally, as a method for recovering a fluorinated emulsifier used for emulsion polymerization of a fluorinated polymer, a fluorinated emulsifier contained in exhaust gas from a drying step and a heat treatment step of the fluorinated polymer is collected in a gas absorption tower. Methods of contact absorption in a solvent or solution are known.
たとえば、 US 5990330、 DE 19527276, EP 731081、 特開平 8— 253439等には、 含フッ素乳化剤を含む排気ガスを、 P Hが約 1 4の高濃度アル力リ水溶液に接触吸収させ、 含フッ素乳化剤のアル力リ金属塩を 析出させることによって回収する方法が記載されている。 また、 WO98Z05 621、 EP0938464等には、 前記高濃度アル力リ水溶液を炭酸力リゥム により調整する方法が記載されている。  For example, US Pat. No. 5,990,330, DE 19527276, EP 731081, and JP-A-8-253439 describe that exhaust gas containing a fluorinated emulsifier is contact-absorbed in a high-concentration aqueous solution of PH with a pH of about 14 to form a fluorinated emulsifier. A method for recovering the metal salt by precipitation is described. Further, WO98Z05621, EP0938464, and the like describe a method of adjusting the high-concentration aqueous aluminum solution by using a carbon dioxide realm.
一方、 該含フッ素乳化剤の低濃度水溶液中からの回収方法として、 陰イオン交 換樹脂 (以下、 I ERという。 ) を用いる技術が知られている。  On the other hand, as a method for recovering the fluorinated emulsifier from a low-concentration aqueous solution, a technique using an anion exchange resin (hereinafter referred to as IER) is known.
たとえば、 特公昭 47— 51233、 US 3882153, DE 204498 6等には、 含フッ素ポリマーの凝集排水中に含まれる含フッ素乳化剤であるペル フルォロオクタン酸アンモニゥム (以下、 APFOという。 ) を I ERに吸着さ せて回収する方法が記載されている。  For example, Japanese Patent Publication No. 47-51233, US Pat. No. 3,882,153, DE 2044986, and the like describe that ammonium perfluorooctanoate (hereinafter referred to as APFO), which is a fluorine-containing emulsifier contained in coagulated wastewater of a fluorine-containing polymer, is adsorbed to the IER. It describes a method of recovering by immersion.
WO 99/62830には、 含フッ素ポリマーの凝集排水にノニオンまたは力 チオン性界面活性剤を添加し、 凝集排水中のポリ四フッ化工チレン (以下、 PT FEという。 ) 微粒子を安定化し、 I ERの充填塔の閉塞を防止する方法が記載 されている。  WO 99/62830 discloses that nonionic or ionic surfactants are added to flocculated wastewater of a fluoropolymer to stabilize polytetrafluoroethylene (hereinafter referred to as PTFE) fine particles in the flocculated wastewater, A method for preventing clogging of a packed tower is described.
特開昭 55— 120630、 US4369266および D E2908001に は、 P T F Eの凝集排水を限外ろ過法で濃縮するとともに P T F E製造に用いた APFOの一部を回収した後、 I ERで APFOを吸着'回収する方法が記載さ れている。 特開昭 55— 104651、 US4282162および DE2903981に は、 APFOを I ERに吸着させ、 ついで酸と有機溶剤との混合物を用いてペル フルォロクタン酸を脱着し回収する方法が記載されている。 JP-A-55-120630, US Pat. No. 4,369,266 and DE2908001 describe that PTFE coagulated wastewater is concentrated by ultrafiltration and a part of APFO used for PTFE production is recovered, and then APER is adsorbed and recovered by IER. The method is described. JP-A-55-104651, US4282162 and DE2903981 describe a method in which APFO is adsorbed on ER, and then perfluoractonic acid is desorbed and recovered using a mixture of an acid and an organic solvent.
WO 99Z62858には、 あらかじめ四フッ化工チレンノペルフルォロ (ァ ルキルビ二ルェ一テル) 共重合体 (以下、 PFAという。 ) の凝集排水に石灰水 を添加して pHを 6〜7. 5に調整後、 塩化アルミニウム、 塩化鉄等の金属塩を 添加して未凝集の P F Aを凝集させ、 ついで機械的に凝集物を分離 ·除去した後 に、 得られた排水の: PHを硫酸で 7以下に調製し、 強塩基性 I ERを用いて AP FOを吸着 ·回収する方法が記載されている。  WO 99Z62858 discloses that lime water is added to the coagulated waste water of a tetrafluoride tyrennoperfluoro (alkylvinyl ether) copolymer (hereinafter referred to as PFA) to adjust the pH to 6 to 7.5. After adjusting to pH, non-agglomerated PFA is aggregated by adding metal salts such as aluminum chloride and iron chloride, and then the aggregates are mechanically separated and removed. The following describes a method for preparing and adsorbing and recovering APFO using a strongly basic IER.
また、 日本化学会第 76回春季年会講演予講集 (平成 11年 8月 15日発行、 第 600頁) および日本化学会第 80回秋季年会講演予講集 (平成 13年 9月 7 日発行、 第 41頁) では、 アルミニウムと亜鉛の層状複水酸化物を用いて、 ペル フルォロクタン酸およびそのアンモニゥム塩を固定する技術が報告されている。 さらに、 WO 02ノ 10104、 WO 02/10105には、 フッ素系化合物 を含む溶液またはフッ素系化合物と含フッ素ポリマーを含む溶液に、 二価金属塩 および三価金属塩を添加して、 該フッ素系化合物を層間に含む層状複水酸化物を 沈殿させることによって、 該フッ素系化合物を高い割合で固定し、 必要に応じて 沈殿した層状複水酸化物を回収し、 層間の該フッ素系化合物またはその塩を分離 する方法が記載されている。  In addition, the 76th Annual Meeting of the Chemical Society of Japan (August 15, 1999, p. 600) and the 80th Autumn Meeting of the Chemical Society of Japan (April 7, 2001) Published in Japan, p. 41), a technique for fixing perfluoroactic acid and its ammonium salt using layered double hydroxides of aluminum and zinc is reported. WO 02/10104 and WO 02/10105 further disclose adding a divalent metal salt and a trivalent metal salt to a solution containing a fluorine-based compound or a solution containing a fluorine-based compound and a fluorine-containing polymer. By precipitating a layered double hydroxide containing a compound between the layers, the fluorine-based compound is fixed at a high ratio, and if necessary, the precipitated layered double hydroxide is recovered, and the fluorine-based compound or the fluorine-containing compound between the layers is recovered. A method for separating salts is described.
し力、し、 高濃度アルカリ水溶液を用いる排気ガスからの回収では、 吸収液中の 該含フッ素乳化剤濃度の上昇に伴い、 該含フッ素乳化剤の泡立ちを完全には抑制 することができず、 長時間の連続回収が困難であった。  In the recovery from exhaust gas using a high-concentration aqueous alkali solution, the bubbling of the fluorinated emulsifier cannot be completely suppressed with the increase in the concentration of the fluorinated emulsifier in the absorbing solution. It was difficult to continuously collect the time.
また、 I ERを用いる排水からの回収方法では I ERとの接触の前に未凝集の 含フッ素ポリマーを含む、 浮遊固体成分 (以下、 S S分と記す。 ) を除去する必 要があり、 この S S分の除去が該含フッ素乳化剤の回収効率に多大な影響を与え るだけでなく、 有効な SS分除去方法が見つかっていないなど、 実際の操作上で の課題が多く残されている。  In addition, in the recovery method from wastewater using IER, it is necessary to remove suspended solid components (hereinafter, referred to as SS components) including non-agglomerated fluoropolymer before contact with IER. The removal of SS not only has a great effect on the recovery efficiency of the fluorinated emulsifier, but there are still many practical problems such as no effective SS removal method found.
さらに、 上記の日本化学会第 76春季年会講演予講集および日本化学会第 80 秋季年会講演予講集で報告された層状複水酸化物を用いた固定技術では、 あくま でペルフルォ口クタン酸およびそのァンモニゥム塩のみが溶解した水溶液での固 定化が示されただけで、 他の夾雑物が含まれている実際の含フッ素ポリマーの凝 集排水についての回収技術を示した報告はされていない。 同様に、 WO02/1 0104、 WO 02/10105においても、 S S分等の他の夾雑物についての 認識がなされていない。 In addition, the immobilization technology using layered double hydroxides reported in the above-mentioned lectures of the 76th Annual Meeting of the Chemical Society of Japan and the 80th Annual Meeting of the Chemical Society of Japan, Only the solidification in an aqueous solution in which only the acid and its ammonium salt were dissolved was shown, but the solidification of the actual fluoropolymer containing other contaminants was shown. There are no reports showing collection techniques for collection and drainage. Similarly, WO02 / 10104 and WO02 / 10105 do not recognize other impurities such as SS.
本発明の目的は、 排ガス中に含まれる含フッ素乳化剤を効率的に回収できる方 法を提供することにある。 発明の開示  An object of the present invention is to provide a method capable of efficiently recovering a fluorine-containing emulsifier contained in an exhaust gas. Disclosure of the invention
本発明者は、 排ガス中からの含フッ素乳化剤の回収について鋭意検討を重ねた 結果、 含フッ素ポリマーの乾燥工程、 熱処理工程からの排気ガスは、 含フッ素乳 化剤とともに炭酸ガス等を多量に含み、 該炭酸ガス等が含フッ素乳化剤の回収に 対して種々影響することを見出した。 たとえば、 該排気ガスを前記層状複水酸化 物の水溶液と接触させると、 炭酸ガス等により含フッ素乳化剤の層間への固定化 が不充分となり、 回収率を高めることができない。 また、 前記高濃度アルカリ水 溶液を用いる場合にも、 前記泡立ち等の難点とともに、 多量の炭酸ガス等と高濃 度アル力リ水溶液とが接触することによる難点が生ずる。  The present inventors have made intensive studies on the recovery of the fluorinated emulsifier from the exhaust gas, and as a result, the exhaust gas from the drying step and the heat treatment step of the fluorinated polymer contains a large amount of carbon dioxide gas together with the fluorinated emulsifier. It has been found that the carbon dioxide gas has various effects on the recovery of the fluorine-containing emulsifier. For example, when the exhaust gas is brought into contact with the aqueous solution of the layered double hydroxide, immobilization of the fluorinated emulsifier between layers due to carbon dioxide gas or the like becomes insufficient, and the recovery cannot be increased. In addition, even when the high-concentration alkaline aqueous solution is used, difficulties such as foaming and the like arise due to contact of a large amount of carbon dioxide and the like with a high-concentration alkaline aqueous solution.
本発明者は、 含フッ素乳化剤を含有する排ガスと特定の水性液とを接触させて 吸収操作を行うことにより、 前記問題点が円滑有利に解消できることを新規に見 出した。  The present inventor has newly found that the above problems can be smoothly and advantageously solved by bringing an exhaust gas containing a fluorinated emulsifier into contact with a specific aqueous liquid to perform an absorption operation.
本発明は、 含フッ素乳化剤を含有する排ガス (A) と pHが 7以上 12未満の 水性液 (B 1) とを接触させ、 該排ガス中の該含フッ素乳化剤を該水性液中に吸 収せしめて、 含フッ素乳化剤を含有する水性液 (B 2) を得る工程 (X) 、 該水 性液 (B2) 中の含フッ素乳化剤を層状複水酸化物の層間に固定せしめる工程 ( Y) 、 および該工程 (Y) で得られる層間に含フッ素乳化剤が固定された層状複 水酸化物 (C) を分離し、 該含フッ素乳化剤を回収する回収工程 (Z) を含むこ とを特徴とする含フッ素乳化剤の回収方法を提供する。  In the present invention, an exhaust gas (A) containing a fluorinated emulsifier is brought into contact with an aqueous liquid (B1) having a pH of 7 to less than 12, and the fluorinated emulsifier in the exhaust gas is absorbed into the aqueous liquid. (X) to obtain an aqueous liquid (B2) containing a fluorinated emulsifier, a step (Y) of fixing the fluorinated emulsifier in the aqueous liquid (B2) between layers of the layered double hydroxide, and A layered double hydroxide (C) in which the fluorinated emulsifier is fixed between the layers obtained in the step (Y) is separated, and a recovery step (Z) for recovering the fluorinated emulsifier is included. Provided is a method for recovering a fluorine emulsifier.
また、 本発明は、 含フッ素乳化剤を含有する排ガス (A) と pHが 7以上 12 未満の水性液 (B 1) とを接触させ、 該排ガス中の該含フッ素乳化剤を該水性液 中に吸収せしめて、 含フッ素乳化剤を含有する水性液 (B2) を得る工程 (X) 、 該水性液 (B 2) と含フッ素ポリマーの製造工程における含フッ素ポリマーを 分離した後の排水 (B3) とを混合する工程 (XI) 、 該工程 (XI) で得られ る混合水性液 (B 4 ) 中の含フッ素乳化剤を層状複水酸化物の層間に固定せしめ る工程 (Y) 、 および該工程 (Y) で得られる層間に含フッ素乳化剤が固定され た層状複水酸化物 (C ) を分離し、 該含フッ素乳化剤を回収する回収工程 (Z ) を含むことを特徴とする含フッ素乳化剤の回収方法を提供する。 発明を実施するための形態 Further, the present invention provides a method for bringing an exhaust gas (A) containing a fluorinated emulsifier into contact with an aqueous liquid (B1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid. At least, a step (X) of obtaining an aqueous liquid (B2) containing a fluorinated emulsifier, the wastewater (B3) after separation of the aqueous liquid (B2) and the fluorinated polymer in the step of producing the fluorinated polymer. Mixing step (XI), obtained in step (XI) (Y) for fixing the fluorinated emulsifier in the mixed aqueous liquid (B 4) between the layers of the layered double hydroxide, and the layered composite having the fluorinated emulsifier fixed between the layers obtained in the step (Y). The present invention provides a method for recovering a fluorinated emulsifier, which comprises a recovery step (Z) for separating a hydroxide (C) and recovering the fluorinated emulsifier. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における排ガス (A) は、 含フッ素乳化剤を含有する排ガスであれば、 特に限定されないが、 通常は含フッ素乳化剤を含む水性媒体中で乳化重合または 水性分散重合して得られる、 含フッ素ポリマ一の乾燥および Zまたは熱処理工程 の排気ガスが好ましい。 典型的には、 含フッ素モノマーまたは含フッ素モノマー と該含フッ素モノマー以外のモノマーとを、 含フッ素乳化剤を含む水性媒体中で 乳化重合または水性分散重合して得られた含フッ素ポリマーの水性分散液から、 該含フッ素ポリマ一を塩析等で凝集して分離し、 該分離された含フッ素ポリマー をオーブン等の熱処理装置を用いて乾燥および/または熱処理する際に、 該熱処 理装置から排出される微量の固体の微粉を含む排気ガスが挙げられる。 以下、 該 排気ガスを排ガス (A) として用いる場合で代表させて説明する。  The exhaust gas (A) in the present invention is not particularly limited as long as it is an exhaust gas containing a fluorinated emulsifier, and is usually a fluorinated polymer obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorinated emulsifier. Exhaust gas from one drying and Z or heat treatment step is preferred. Typically, an aqueous dispersion of a fluorinated polymer obtained by emulsion polymerization or aqueous dispersion polymerization of a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer in an aqueous medium containing a fluorinated emulsifier The fluorinated polymer is coagulated and separated by salting out or the like, and the separated fluorinated polymer is discharged from the heat treatment apparatus when drying and / or heat treatment is performed using a heat treatment apparatus such as an oven. Exhaust gas containing a trace amount of solid fine powder. Hereinafter, the case where the exhaust gas is used as the exhaust gas (A) will be described as a representative.
本発明においては、 工程 (X) で排ガス (A) と p Hが 7以上 1 2未満の水性 液 (B 1 ) とを接触させ、 該排ガス中の該含フッ素乳化剤を該水性液中に吸収せ しめて、 含フッ素乳化剤を含有する水性液 (B 2 ) を得る。 該含フッ素乳化剤を 水性液 (B 2 ) 中に吸収させる方法としては、 一般に知られているガス吸収装置 •方法を利用できる。 ガス吸収方法としては液膜式、 液滴式、 気泡式、 泡沫式等 が利用できる。 また、 ガス吸収装置としては、 液膜式として、 充填塔、 濡れ壁塔 、 液中塔、 液ジェット、 連球塔、 ディスク塔、 トウリル、 セラリウストウリル、 タイラー吸収装置等が例示できる。 また、 液滴式として、 スプレー塔、 円盤回転 式吸収装置、 サイクロンスクラバー、 ベンチュリースクラバー、 充填物流動層吸 収装置、 遠心式吸収装置等が例示でき、 気泡式として、 気泡塔、 気泡撹拌槽、 段 塔が例示できる。 さらに、 泡沬式としては泡沫分離等が例示できる。  In the present invention, in step (X), the exhaust gas (A) is brought into contact with an aqueous liquid (B 1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid. At least, an aqueous liquid (B 2) containing a fluorinated emulsifier is obtained. As a method for absorbing the fluorinated emulsifier into the aqueous liquid (B 2), a generally known gas absorbing device method can be used. As a gas absorption method, a liquid film type, a droplet type, a bubble type, a foam type and the like can be used. Examples of the gas absorbing device include, as a liquid film type, a packed tower, a wet wall tower, a submerged tower, a liquid jet, a ball tower, a disk tower, a toril, a seralysturil, and a Tyler absorbing device. Examples of the droplet type include a spray tower, a disk rotary absorption device, a cyclone scrubber, a venturi scrubber, a packed fluidized bed absorption device, a centrifugal absorption device, and the like.The bubble type includes a bubble column, a bubble stirring tank, and the like. A column can be exemplified. Further, examples of the foam type include foam separation.
本発明においては、 前記工程 (X) で排ガス (A) 中の含フッ素乳化剤を該水 性液 (B 1 ) 中に吸収せしめる際に、 液滴式吸収装置おょぴ Zまたは液膜式吸収 装置を用いることが、 吸収効率、 装置の保守および点検などの理由から好ましい 該排ガス (A) の吸収塔などのガス吸収装置 (以下、 吸収塔で代表させて記す ことがある。 ) 内での線速は特に限定されないが、 0. 01m/秒以上 10m/ 秒以下が好ましく、 0. 0 lm/秒以上 5mZ秒以下がより好ましく、 特に 0. 01 mZ秒以上 3 mZ秒以下が好ましい。 余りに大きい線速では吸収塔内のホ一 ルドアップ (吸収塔内の瞬間水量) が大きくなりすぎ、 また余りに小さい線速で は処理に時間がかかるため効率的でない。 該工程 (X) においては、 飛沫分離装 置 (デミスタ) をガス吸収塔などに装備し、 飛沫が次工程に同伴するのを防ぐの も好ましい。 In the present invention, in the step (X), when the fluorinated emulsifier in the exhaust gas (A) is absorbed into the aqueous liquid (B 1), a droplet type absorption device Z or a liquid film type absorption agent is used. It is preferable to use the device for reasons such as absorption efficiency and maintenance and inspection of the device. The exhaust gas (A) may be used in a gas absorption device such as an absorption tower (hereinafter, may be represented by an absorption tower). The linear velocity is not particularly limited, but is preferably from 0.01 m / sec to 10 m / sec, more preferably from 0.01 lm / sec to 5 mZ seconds, and particularly preferably from 0.01 mZ seconds to 3 mZ seconds. If the linear velocity is too high, the hold-up in the absorption tower (instantaneous water volume in the absorption tower) will be too large, and if the linear velocity is too low, it will take time to process, and it is not efficient. In the step (X), it is also preferable to equip a gas absorption tower with a droplet separation device (demister) to prevent the droplets from being entrained in the next step.
該工程 (X) において用いる水性液 (B 1) の量は特に限定されないが、 得ら れる水性液 (B2) 中の含フッ素乳化剤の濃度が高いと、 泡立ちによって処理速 度が急激に低下するので、 排ガス (A) の流量と水性液 (B 1) の使用量をコン トロールして、 水性液 (B2) 中の含フッ素乳化剤が 10質量 ppm以上 1質量 %以下の濃度になるようにするのが好ましい。  The amount of the aqueous liquid (B1) used in the step (X) is not particularly limited, but when the concentration of the fluorinated emulsifier in the obtained aqueous liquid (B2) is high, the processing speed is rapidly reduced due to foaming. Therefore, control the flow rate of the exhaust gas (A) and the amount of the aqueous liquid (B1) so that the concentration of the fluorinated emulsifier in the aqueous liquid (B2) is 10% by mass or more and 1% by mass or less. Is preferred.
該工程 (X) における水性液 (B 1) の原料としては、 通常は水が用いられる 。 該水の種類は特に限定されないが、 排ガス (A) 中に含まれる含フッ素乳化剤 や夾雑物による水性液 (B 1) または水性液 (B 2) の泡立ち、 吸収装置などへ のスケーリング等の悪影響を防止する観点から、 イオン交換水を用いることが好 ましい。 また、 本発明においては、 含フッ素ポリマーの製造工程における含フッ 素ポリマーを分離した後の排水 (B3) を、 該水性液 (B 1) として用いること もできる。  Water is usually used as a raw material of the aqueous liquid (B1) in the step (X). The type of the water is not particularly limited, but adverse effects such as foaming of the aqueous liquid (B 1) or the aqueous liquid (B 2) due to the fluorinated emulsifier and contaminants contained in the exhaust gas (A), scaling to the absorption device, and the like. It is preferable to use ion-exchanged water from the viewpoint of preventing water leakage. Further, in the present invention, the wastewater (B3) after separating the fluorine-containing polymer in the production process of the fluorine-containing polymer can be used as the aqueous liquid (B1).
前記水性液 (B 1) は、 アルカリを用いて pHを 7以上 12未満に調整した水 性液であることが好ましい。 工程 (X) における排ガス (A) と水性液 (B 1) との接触時の温度は、 特に限定されないが、 通常は 10 以上 60°C以下が好ま しい。 該温度は排ガス (A) および /または水性液 (B 1) の温度によりコント ロールできるが、 通常は水性液 (B 1) の温度により調整するのが実際的であり 好ましい。 該水性液 (B 1) の温度は、 前記アルカリや含フッ素乳化剤の溶解度 などを考慮し、 10°C以上 60°C以下が好ましい。 前記水性液 (B 1) に用いるアルカリは特に限定されないが、 水酸化ナトリウ ム、 水酸化カリウム、 水酸化カルシウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸 カルシウム、 炭酸水素ナトリウム、 炭酸水素カリウム、 炭酸水素カルシウム、 ァ ンモニァ等を例示できる。 このうちカルシウム塩は長期間の運転によって吸収塔 内のスケーリングの原因になりやすいため、 水酸化ナトリウム、 水酸化カリウム 、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウム、 炭酸水素カリウム、 ま たはアンモニアがより好ましい。 The aqueous liquid (B1) is preferably an aqueous liquid whose pH has been adjusted to 7 or more and less than 12 using an alkali. The temperature at the time of contact between the exhaust gas (A) and the aqueous liquid (B1) in the step (X) is not particularly limited, but is usually preferably 10 to 60 ° C. The temperature can be controlled by the temperature of the exhaust gas (A) and / or the aqueous liquid (B1), but it is usually practical and preferable to adjust the temperature by the temperature of the aqueous liquid (B1). The temperature of the aqueous liquid (B 1) is preferably from 10 ° C. to 60 ° C. in consideration of the solubility of the alkali and the fluorinated emulsifier. The alkali used for the aqueous liquid (B1) is not particularly limited, but may be sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydrogen carbonate, An example is an ammonia monitor. Of these, calcium salts tend to cause scaling in the absorption tower over a long period of operation, so sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, or ammonia are more likely to occur. preferable.
前記工程 (X) においてガス吸収に用いる水性液の pHは、 基本的には被吸収 物である含フッ素乳化剤の特性からアル力リ性が好ましく、 本発明における水性 液 (B 1) の; Hは 7以上 12未満である。 該水性液 (B 1) の pHは、 好まし くは 8〜1 1である。 また、 本発明においては、 工程 (X) で得られるガス吸収 後の水性液 (B2) に対して工程 (Y) 、 すなわち含フッ素乳化剤を層状複水酸 化物の層間に固定せしめる工程 (Y) が適用されることから、 該水性液 (B 1) の: Hを該層状複水酸化物に適した p Hに予め調整しておくことも好ましい。 本発明においては、 前記のとおり、 工程 (X) で水性液 (B 1) として含フッ 素ポリマーの製造工程における含フッ素ポリマーを分離した後の排水 (B3) を 用いることがある。 また、 工程 (X) で得られた水性液 (B2) と該排水 (B3 ) とを混合する工程 (XI) を経て、 混合水性液 (B4) とした後に、 次の工程 In the step (X), the pH of the aqueous liquid used for gas absorption is basically preferable from the viewpoint of the properties of the fluorinated emulsifier to be absorbed. Is 7 or more and less than 12. The pH of the aqueous liquid (B1) is preferably 8 to 11. Further, in the present invention, the step (Y), that is, the step (Y) of fixing the fluorine-containing emulsifier between the layers of the layered double hydroxide to the aqueous liquid (B2) after gas absorption obtained in the step (X) is performed. Therefore, it is also preferable to previously adjust the H of the aqueous liquid (B1) to a pH suitable for the layered double hydroxide. In the present invention, as described above, the wastewater (B3) after separating the fluoropolymer in the production process of the fluoropolymer may be used as the aqueous liquid (B1) in the step (X). Further, after passing through the step (XI) of mixing the aqueous liquid (B2) obtained in the step (X) with the waste water (B3), the mixed aqueous liquid (B4) is obtained.
(Y) を適用することもある。 以下、 排水 (B 3) を用いた場合および混合水性 液 (B4) とした場合も含めて、 含フッ素乳化剤を含有する水性液 (B2) で代 表させて説明する。 (Y) may also apply. Hereinafter, the description will be made using the aqueous liquid (B2) containing the fluorinated emulsifier, including the case where the wastewater (B3) is used and the case where the mixed aqueous liquid (B4) is used.
工程 (Y) においては、 含フッ素乳化剤が層状複水酸化物の層間に固定せしめ られるが、 該固定は、 含フッ素乳化剤のァニオンが層状複水酸化物に吸着される ことで行われる。  In the step (Y), the fluorinated emulsifier is fixed between the layers of the layered double hydroxide, and the fixation is performed by adsorbing the anion of the fluorinated emulsifier on the layered double hydroxide.
一般に層状複水酸化物によるァニオンの吸着の方法として、 共沈法、 イオン交 換法、 再構築法の 3種類が知られている。 ' 共沈法は、 回収目的ァニオンが溶解している液中に、 金属イオンを添加して、 層状複水酸化物を形成させると同時に回収目的ァニオンを該層状複水酸化物の層 間に内包させる方法である。 ΐ換法は、 回収目的ァニオン以外のァニオン (例:塩化物イオン、 水酸 化物イオン、 炭酸イオンなど) が層状複水酸化物の層間に内包された構造の層状 複水酸化物を予め用意しておき、 該層状複水酸化物を回収目的ァニオンが溶解し ている液中に添加し、 既に内包されているァニオンと入れ替わる形で回収目的ァ 二オンを層間に内包させる方法である。 In general, three types of anion adsorption by layered double hydroxide are known: coprecipitation, ion exchange, and reconstruction. '' In the coprecipitation method, metal ions are added to the solution in which the recovery anion is dissolved to form a layered double hydroxide, and at the same time, the recovery anion is included between the layers of the layered double hydroxide. It is a way to make it. The replacement method is to prepare in advance a layered double hydroxide having a structure in which anions other than the target anion (eg, chloride ion, hydroxide ion, carbonate ion, etc.) are included between the layered double hydroxide layers. In this method, the layered double hydroxide is added to a solution in which the recovery anion is dissolved, and the recovery objective anion is included between the layers so as to replace the already encapsulated anion.
再構築法は、 層間に炭酸イオンを内包した層状複水酸化物を合成し、 それを 4 00〜500°Cの高温で焼成して内部の炭酸イオンを除去した固体を、 ァニオン 吸着物質として、 回収目的ァニオンが溶解している液中に添加することにより、 該層状複水酸化物中に回収目的ァニオンを内包させる方法である。  In the reconstruction method, a layered double hydroxide containing carbonate ions between the layers is synthesized, and calcined at a high temperature of 400 to 500 ° C to remove the carbonate ions inside. This is a method in which the anion to be recovered is included in the layered double hydroxide by adding it to a liquid in which the anion to be recovered is dissolved.
本発明においては、 工程 (Y) で前記のいずれの方法も採用できるが、 水性液 (B 2) 中の含フッ素乳化剤を層状複水酸化物の層間に効率的に固定せしめるこ とができることから、 好ましくは共沈法が採用される。  In the present invention, any of the above-mentioned methods can be employed in the step (Y), however, because the fluorine-containing emulsifier in the aqueous liquid (B 2) can be efficiently fixed between the layers of the layered double hydroxide. Preferably, a coprecipitation method is employed.
本発明において、 含フッ素乳化剤としては、 炭素原子数 5~13の、 ペルフル ォロアルカン酸、 ω—ヒドロペルフルォロアルカン酸、 ω—クロ口ペルフルォロ アルカン酸, ペルフルォロアルカンスルホン酸等の塩が好ましい。 これらは直鎖 構造でも分岐構造でもよく、 それらの混合物でもよい。 また、 分子中にエーテル 性の酸素原子を含有してもよい。 この炭素原子数の範囲にあると乳化剤としての 作用効果に優れる。 前記酸の塩としては、 リチウム塩、 ナトリウム塩、 カリウム 塩等のアル力リ金属塩またはァンモ^ウム塩が好ましく、 アンモニゥム塩または ナトリウム塩がより好ましく、 アンモニゥム塩が最も好ましい。  In the present invention, as the fluorinated emulsifier, a salt such as perfluoroalkanoic acid, ω-hydroperfluoroalkanoic acid, ω-chloroperfluoroalkanoic acid, or perfluoroalkanesulfonic acid having 5 to 13 carbon atoms is used. Is preferred. These may have a linear structure or a branched structure, or a mixture thereof. Further, the molecule may contain an etheric oxygen atom. When the number of carbon atoms is in this range, the effect as an emulsifier is excellent. The acid salt is preferably an alkali metal salt such as a lithium salt, a sodium salt or a potassium salt, or an ammonium salt, more preferably an ammonium salt or a sodium salt, and most preferably an ammonium salt.
前記酸の具体例としては、 ペルフルォロペンタン酸、 ペルフルォ口へキサン酸 Specific examples of the acid include perfluoropentanoic acid and perfluorohexanoic acid.
、 ペルフルォロヘプタン酸、 ペルフルォロオクタン酸、 ペルフルォロノナン酸、 ペルフルォロデカン酸、 ペルフルォロドデカン酸、 ω—ヒドロペルフルォロヘプ タン酸、 ω—ヒドロペルフルォロオクタン酸、 ω—ヒドロペルフルォロノナン酸 、 ω—クロ口ペルフルォロヘプタン酸、 ω—クロ口ペルフルォロオクタン酸、 ω 一クロ口ペルフルォロノナン酸等が挙げられる。 Perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, ω-hydroperfluoroheptanoic acid, ω-hydro Perfluorooctanoic acid, ω-hydroperfluorononanoic acid, ω-chloroperfluoroheptanoic acid, ω-chloroperfluorooctanoic acid, ω monochloroperfluorononanoic acid, etc. Is mentioned.
また、 CF3 CF2 CF2 OCF (CF3 ) COOH、 CF3 CF2 CF2 O CF (CF3 ) CF2 OCF (CF3 ) CO〇H、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] a CF (CF3 ) C〇OH、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 3 CF (CF3 ) CO〇H、 CF3 CF2 CF2 CF2 C F2 OCF (CF3 ) COOH等が挙げられるとともに、 ペルフルォ口へキサン スルホン酸、 ペルフルォロヘプタンスルホン酸、 ペルフルォロオクタンスルホン 酸、 ペルフルォロノナンスルホン酸、 ペルフルォロデカンスルホン酸等も挙げら れる。 CF 3 CF 2 CF 2 OCF (CF 3 ) COOH, CF 3 CF 2 CF 2 O CF (CF 3 ) CF 2 OCF (CF 3 ) CO〇H, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] a CF (CF 3 ) C〇OH, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) CO〇H, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COOH, and perfluorohexane sulfonic acid, perfluoro Loheptanesulfonic acid, perfluorooctanesulfonic acid, perfluorononanesulfonic acid, perfluorodecanesulfonic acid and the like are also included.
前記アンモニゥム塩の具体例としては、 ペルフルォロペンタン酸アンモニゥム 、 ペルフルォ口へキサン酸アンモニゥム、 ペルフルォロヘプタン酸アンモニゥム 、 ペルフルォロオクタン酸アンモニゥム (APFO) 、 ペルフルォロノナン酸ァ ンモニゥム、 ペルフルォロデカン酸アンモニゥム、 ペルフルォロドデカン酸アン モニゥム、 ω—ヒドロペルフルォロヘプタン酸アンモニゥム、 ω—ヒドロペルフ ルォロオクタン酸アンモニゥム、 ω—ヒドロペルフルォロノナン酸アンモニゥム 、 ω—クロ口ペルフルォロヘプタン酸アンモニゥム、 ω—クロ口ペルフルォロォ クタン酸アンモニゥム、 ω—クロ口ペルフルォロノナン酸アンモニゥム等が挙げ られる。  Specific examples of the ammonium salt include ammonium perfluoropentanoate, ammonium perfluorohexanoate, ammonium perfluoroheptanoate, ammonium perfluorooctanoate (APFO), and perfluorononanoic acid. Ammonium, perfluorodecanoic acid ammonium, perfluorododecanoic acid ammonium, ω-hydroperfluoroheptanoic acid ammonium, ω-hydroperfluorooctanoic acid ammonium, ω-hydroperfluorononanoic acid ammonium, ω— Ammonium perfluoroheptanoate, ω-perfluorofluorobutanoic acid ammonium, and ω-perfluorofluorononanoic acid ammonium.
また、 CF3 CF2 CF2 OCF (CF3 ) COONH4 、 CF3 CF2 CF 2 OCF (CF3 ) CF2 OCF (CF3 ) COONH4 、 CF3 CF2 CF2 〇 [CF (CF3 ) CF2 〇] 2 CF (CF3 ) COONH4 、 CF3 CF2 C F2 0 [CF (CF3 ) CF2 O] 3 CF (CF3 ) COONH4 、 CF3 CF 2 CF2 CF2 CF2 OCF (CF3 ) COONH4等が挙げられるとともに、 ペルフルォ口へキサンスルホン酸アンモニゥム、 ペルフルォロヘプタンスルホン 酸アンモニゥム、 ペルフルォロオクタンスルホン酸アンモニゥム、 ペルフルォロ ノナンスルホン酸アンモニゥム、 ペルフルォロデカンスルホン酸アンモニゥム等 も挙げられる。 CF 3 CF 2 CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 〇 [CF (CF 3 ) CF 2 〇] 2 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COONH 4 and the like, ammonium perfluorohexane sulfonate, ammonium perfluoroheptane sulfonate, ammonium perfluorooctane sulfonate, ammonium perfluoro nonane sulfonate, perfluorodecane sulfone Acid ammonium is also included.
前記リチウム塩の具体例としては、 ペルフルォロペンタン酸リチウム、 ペルフ ルォ口へキサン酸リチウム、 ペルフルォロヘプタン酸リチウム、 ペルフルォロォ ク夕ン酸リチウム、 ペルフルォロノナン酸リチウム、 ペルフルォロデカン酸リチ ゥム、 ペルフルォロドデカン酸リチウム、 ω—ヒドロペルフルォロヘプ夕ン酸リ チウム、 ω—ヒドロペルフルォロオクタン酸リチウム、 ω—ヒドロペルフルォロ ノナン酸リチウム、 ω—クロ口ペルフルォロヘプタン酸リチウム、 ω—クロロぺ ルフルォロオクタン酸リチウム、 一クロ口ペルフルォロノナン酸リチウム等が 挙げられる。 Specific examples of the lithium salt include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorosiloxane, lithium perfluorononanoate, and lithium perfluoronate. Lithium perfluorodecanoate, lithium perfluorododecanoate, lithium ω-hydroperfluorohepnoate, lithium ω-hydroperfluorooctanoate, ω-hydroperfluorononanoic acid Lithium, ω-chromium Lithium perfluoroheptanoate, ω-chloro ぺ Lithium fluorooctanoate, monoperfluorolithium perfluorononanoate and the like.
また、 CF3 CF2 CF2 〇CF (CF3 ) COOL i、 CF3 CF2 CF2 〇CF (CF3 ) CF2 OCF (CF3 ) COOL iゝ CF3 CF2 CF2 O [ CF (CF3 ) CF2 O] 2 CF (CF3 ) COOL i、 CF3 CF2 CF2CF 3 CF 2 CF 2 〇CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 〇CF (CF 3 ) CF 2 OCF (CF 3 ) COOL i ゝ CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2
[CF (CF3 ) CF2 〇] 3 CF (CF3 ) COOL i、 CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COOL i等が挙げられるとともに、 ペルフルォ 口へキサンスルホン酸リチウム、 ペルフルォロヘプタンスルホン酸リチウム、 ぺ ルフルォロオクタンスルホン酸リチウム、 ペルフルォロノナンスルホン酸リチウ ム、 ペルフルォロデカンスルホン酸リチウム等も挙げられる。 [CF (CF 3 ) CF 2 〇] 3 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COOL i, and the like. Lithium perfluoroheptanesulfonate, lithium perfluorooctanesulfonate, lithium perfluorononanesulfonate, lithium perfluorodecanesulfonate and the like are also included.
前記ナトリウム塩の具体例としては、 ペルフルォロペンタン酸ナトリウム、 ぺ ルフルォ口へキサン酸ナトリウム、 ペルフルォロヘプタン酸ナトリウム、 ペルフ ルォロオクタン酸ナトリウム、 ペルフルォロノナン酸ナトリウム、 ペルフルォロ デカン酸ナトリウム、 ペルフルォロドデカン酸ナトリウム、 ω—ヒドロペルフル ォロヘプタン酸ナトリウム、 ω—ヒドロペルフルォロオクタン酸ナトリウム、 ω ーヒドロペルフルォロノナン酸ナトリウム、 ω—クロ口ペルフルォロヘプタン酸 ナトリウム、 ω—クロ口ペルフルォロオクタン酸ナトリウム、 ω—クロ口ペルフ ルォロノナン酸ナトリゥム等が挙げられる。  Specific examples of the sodium salt include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluoroheptanoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorodecanoate Sodium perfluorododecanoate, sodium ω-hydroperfluoroheptanoate, sodium ω-hydroperfluorooctanoate, sodium ω-hydroperfluorononanoate, ω-sodium perfluoroheptanoate, ω-clo mouth sodium perfluorooctanoate, ω-clo mouth sodium perfluorononanoate and the like.
また、 CF3 CF2 CF2 OCF (CF3 ) C〇ONa、 CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) COON a、 CF3 CF2 CF2 〇 [ CF (CF3 ) CF2 O] 2 CF (CF3 ) COONa、 CF3 CF2 CF2 OCF 3 CF 2 CF 2 OCF (CF 3 ) C) ONa, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COON a, CF 3 CF 2 CF 2 〇 [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COONa, CF 3 CF 2 CF 2 O
[CF (CF3 ) CF2 O] 3 CF (CF3 ) COONa、 CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COON a等が挙げられるとともに、 ペルフルォ 口へキサンスルホン酸ナトリゥム、 ペルフルォロヘプ夕ンスルホン酸ナトリゥム ナトリゥム、 ペルフルォロデカンスルホン酸ナトリゥム等も挙げられる。 [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COONa, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COON a, etc., and perfluoro sodium hexanesulfonate, perfluorohepta Sodium sulfonate sodium, perfluorodecane sodium sulfonate and the like can also be mentioned.
前記カリウム塩の具体例としては、 ペルフルォロペンタン酸カリウム、 ペルフ ルォ口へキサン酸カリウム、 ペルフルォロヘプタン酸カリウム、 ペルフルォロォ クタン酸カリウム、 ペルフルォロノナン酸カリウム、 ペルフルォロデカン酸カリ ゥム、 ペルフルォロドデカン酸カリウム、 ω—ヒドロペルフルォロヘプタン酸力 リウム、 ω—ヒドロペルフルォロオクタン酸カリウム、 ω—ヒドロペルフルォロ ノナン酸カリウム、 ω—クロ口ペルフルォロヘプタン酸カリウム、 ω—クロロぺ ルフルォロオクタン酸力リゥム、 ω—クロ口ペルフルォロノナン酸力リゥム等が 挙げられる。 Specific examples of the potassium salt include potassium perfluoropentanoate, potassium perfluorohexanoate, potassium perfluoroheptanoate, potassium perfluorooctanoate, potassium perfluorononanoate, and perfluorophosphate Potassium decanoate Pum, potassium perfluorododecanoate, potassium ω-hydroperfluoroheptanoate, potassium ω-hydroperfluorooctanoate, potassium ω-hydroperfluorononanoate, ω-cloper per Potassium fluoroheptanoate, ω-chlorofluorofluorooctanoic acid rim, and ω-chloroperfluorononanoic acid rim.
また、 CF3 CF2 CF2 OCF (CF3 ) COOK, CF3 CF2 CF2 O CF (CF3 ) CF2 OCF (CF3 ) COOK, CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 2 CF (CF3 ) COOK, CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 3 CF (CF3 ) COOK, CF3 CF2 CF2 CF2 C F2 OCF (CF3 ) COOK等が挙げられるとともに、 ペルフルォ口へキサン スルホン酸カリウム、 ペルフルォロヘプタンスルホン酸カリウム、 ペルフルォロ オクタンスルホン酸カリウム、 ペルフルォロノナンスルホン酸カリウム、 ペルフ ルォロデカンスルホン酸カリウム等も挙げられる。 Also, CF 3 CF 2 CF 2 OCF (CF 3 ) COOK, CF 3 CF 2 CF 2 O CF (CF 3 ) CF 2 OCF (CF 3 ) COOK, CF 3 CF 2 CF 2 O (CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COOK, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COOK, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COOK, etc., as well as potassium perfluorohexane sulfonate, potassium perfluoroheptane sulfonate, potassium perfluorooctane sulfonate, potassium perfluorononane sulfonate, potassium perfluorodecane sulfonate, etc. Can be
本発明における含フッ素乳化剤としては、 特に、 炭素原子数 6〜12のペルフ ルォロアルカン酸のアンモニゥム塩が好ましく、 ペルフルォロヘプタン酸アンモ 二ゥム、 APFO、 ペルフルォロノナン酸アンモニゥムまたはペルフルォロデ力 ン酸アンモニゥムがより好ましく、 APFOが最も好ましい。  As the fluorinated emulsifier in the present invention, in particular, an ammonium salt of a perfluoroalkanoic acid having 6 to 12 carbon atoms is preferable, and ammonium perfluoroheptanoate, APFO, ammonium perfluorononanoate or perfluorodenoic acid is preferable. Ammonium acid is more preferred, and APFO is most preferred.
本発明において、 含フッ素ポリマーの製造工程における含フッ素ポリマーを分 離した後の排水 (B 3) とは、 含フッ素モノマーの重合体または含フッ素モノマ 一と該含フッ素モノマー以外のモノマーとの共重合体の製造工程からの排水を意 味し、 通常は凝集排水が好ましい。 以下、 該凝集排水を典型例として説明する。 ここで、 前記製造工程からの凝集排水とは、 含フッ素モノマーまたは含フッ素モ ノマ一と該含フッ素モノマー以外のモノマーとを、 含フッ素乳化剤を含む水性媒 体中で乳化重合または水性分散重合して得られた含フッ素ポリマーの水性分散液 から、 含フッ素ポリマーを塩析等で凝集して分離した後の排水をいう。 該凝集排 水には、 含フッ素モノマーの重合時に使用された含フッ素乳化剤が含有される。 また、 本発明における排ガス (A) は、 前記のとおり、 含フッ素ポリマーの製 造工程からの排気ガスであり、 該排ガス (A) には含フッ素モノマーの重合時に 使用された含フッ素乳化剤が含まれる。 該排ガス (A) 中の含フッ素乳化剤の含 有量は特に限定されないが、 典型的な含フッ素ポリマーの乾燥工程および/また は熱処理工程の排気ガスの場合には、 通常は該排気ガス中の含フッ素乳化剤の濃 度で 0. 001 g/Nm3 以上 10 gZNm3 以下、 好ましくは 0. 01 gZN m3 以上 1 g/Nm3以下である。 In the present invention, the waste water (B3) after separating the fluoropolymer in the production process of the fluoropolymer is defined as the copolymer of the fluoromonomer or the fluoromonomer and the monomer other than the fluoromonomer. This means wastewater from the polymer production process, and usually coagulated wastewater is preferred. Hereinafter, the coagulated wastewater will be described as a typical example. Here, the coagulated waste water from the above-mentioned manufacturing process refers to an emulsion polymerization or an aqueous dispersion polymerization of a fluorine-containing monomer or a fluorine-containing monomer and a monomer other than the fluorine-containing monomer in an aqueous medium containing a fluorine-containing emulsifier. This refers to waste water after the fluoropolymer is aggregated and separated by salting out or the like from the aqueous dispersion of the fluoropolymer obtained as above. The flocculated wastewater contains the fluorinated emulsifier used during the polymerization of the fluorinated monomer. Further, as described above, the exhaust gas (A) in the present invention is an exhaust gas from the process of producing a fluoropolymer, and the exhaust gas (A) contains the fluorinated emulsifier used during the polymerization of the fluorinated monomer. It is. Including a fluorine-containing emulsifier in the exhaust gas (A) Although the amount is not particularly limited, in the case of exhaust gas from a typical fluorine-containing polymer drying step and / or heat treatment step, the concentration of the fluorine-containing emulsifier in the exhaust gas is usually 0.001 g / Nm 3 or more and 10 gZNm 3 or less, preferably 0.01 gZNm 3 or more and 1 g / Nm 3 or less.
前記含フッ素モノマーとしては、 四フッ化工チレン (以下、 TFEという。 ) 、 CF2 =CFC 1、 CFH=CF2 、 CFH=CH2 、 CF2 =CH2 (以下 、 VdFという。 ) 等のフルォロエチレン類、 へキサフルォロプロピレン (以下 、 HEPという。 ) 、 CF2 =CHCF3等のフルォロプロピレン類、 CF2 二 CFOCF3 、 CF2 二 CFO (CF2 ) 2 CF3 (以下、 PPVEという。 ) 、 CF2 =CFO (CF2 ) 4 CF3等の炭素原子数 3〜10のペルフルォロピ ニルエーテル類、 CH2 =CH (CF2 ) 3 CF3等の炭素原子数 4〜10の ( ペルフルォロアルキル) ェチレン類等が挙げられる。 これらの含フッ素モノマー は、 単独で用いてもよいし、 2種以上を併用してもよい。 As the fluorinated monomer, tetrafluoroethylene modified styrene (hereinafter, TFE called.), CF 2 = CFC 1 , CFH = CF 2, CFH = CH 2, CF 2 = CH 2 ( hereinafter. Referred VdF) Furuoroechiren such s, the hexa full O b propylene (hereinafter. referred HEP), full O b propylene such as CF 2 = CHCF 3, CF 2 two CFOCF 3, CF 2 two CFO (CF 2) 2 CF 3 ( hereinafter, PPVE Perfluoropinyl ethers having 3 to 10 carbon atoms such as CF 2 = CFO (CF 2 ) 4 CF 3, and 4 to 10 carbon atoms such as CH 2 = CH (CF 2 ) 3 CF 3 Fluoroalkyl) ethylenes and the like. These fluorinated monomers may be used alone or in combination of two or more.
含フッ素モノマ一以外のモノマーとしては、 酢酸ビニル等のピニルエステル類 、 ェチルビ二ルェ一テル、 シクロへキシルビニルエーテル、 ヒドロキシプチルビ ニルエーテル等のビニルエーテル類、 ノルポルネン、 ノルポナジェン等の環状構 造を有する単量体、 メチルァリルエーテル等のァリルエーテル類、 エチレン (以 下、 Eという。 ) 、 プロピレン (以下、 Pという。 ) 、 イソプチレン等のォレフ イン類等が挙げられる。 含フッ素モノマーの以外のモノマーは、 単独で用いても よく、 2種以上を併用してもよい。  Monomers other than the fluorinated monomer include pinyl esters such as vinyl acetate, vinyl ethers such as ethylvinyl ether, cyclohexyl vinyl ether and hydroxybutyl vinyl ether, and monomers having a cyclic structure such as norpolenene and norponadiene. And aryls such as methylaryl ether, ethylene (hereinafter referred to as E), propylene (hereinafter referred to as P), and olefins such as isobutylene. Monomers other than the fluorinated monomer may be used alone or in combination of two or more.
本発明において、 含フッ素ポリマーとしては、 PTFE、 TFEZP共重合体 、 TFEZPZVdF共重合体、 TFEZHFP共重合体、 TFEZPPVE共 重合体、 E/TFE共重合体、 ポリフッ化ビニリデン等が挙げられる。 より好ま しくは、 PTFE、 TFEZP共重合体、 丁 £7?/¥01 共重合体または丁 FEZPPVE共重合体であり、 最も好ましくは、 PTFEである。  In the present invention, examples of the fluorine-containing polymer include PTFE, TFEZP copolymer, TFEZPZVdF copolymer, TFEZHFP copolymer, TFEZPPVE copolymer, E / TFE copolymer, polyvinylidene fluoride and the like. More preferably, it is PTFE, TFEZP copolymer, exactly £ 7? / ¥ 01 copolymer or just FEZPPVE copolymer, most preferably PTFE.
本発明においては、 前記排ガス (A) 中に含有される含フッ素乳化剤を回収で きるが、 水性液 (B 1) として前記排水 (B 3) を用いる場合、 または工程 (X 1) を経て混合水性液 (B4) とした場合は、 凝集排水などの排水 (B3) (以 下、 凝集排水 (B3) と記すことがある。 ) 中に含まれる含フッ素乳化剤も工程 (Y) で層状複水酸化物の層間に固定でき、 排ガス (Α) および凝集排水 (Β 3 ) の両方に含有される含フッ素乳化剤を一緒に回収できる。 In the present invention, the fluorinated emulsifier contained in the exhaust gas (A) can be recovered, but when the waste water (B 3) is used as the aqueous liquid (B 1) or mixed through the step (X 1) When the aqueous liquid (B4) is used, the fluorinated emulsifier contained in the wastewater (B3) such as coagulated wastewater (hereinafter sometimes referred to as coagulated wastewater (B3)) is also processed. With (Y), the layered double hydroxide can be fixed between layers, and the fluorinated emulsifier contained in both the exhaust gas (排 ガ ス) and the coagulated wastewater (Β3) can be recovered together.
本発明における工程 (Υ) では、 凝集排水 (Β 3 ) がアルカリ性の場合は塩酸 および/または硫酸および/または硝酸により、 該排水 (Β 3 ) の p Hを、 工程 In the step (Υ) of the present invention, when the coagulated waste water (Β 3) is alkaline, the pH of the waste water (Β 3) is reduced by hydrochloric acid and / or sulfuric acid and / or nitric acid.
(Υ) で用いる層状複水酸化物に応じて適宜調整するのが好ましい。 たとえば、 アルミニゥムと亜鉛を用いる場合は 6以上 8未満、 アルミニウムとマグネシウム を用いる場合は 9以上 1 1未満に調整するのが好ましい。 凝集排水 (Β 3 ) が酸 性の場合は水酸化カリウムおよび/または水酸化ナトリウムにより、 該排水 (Β 3 ) の p Hを、 前記と同様に、 アルミニウムと亜鉛を用いる場合は 6以上 8未満 、 アルミニウムとマグネシウムを用いる場合は 9以上 1 1未満に調整するのが好 ましい。 p Hが上記の範囲を外れるとアルミニウムと亜鉛、 またはアルミニウム とマグネシウムがそれぞれ独立して水酸化物を形成し、 水酸化アルミニウム、 水 酸化亜鉛、 水酸化マグネシウムを形成するため、 層状複水酸化物を形成しにくく なり、 結果として含フッ素乳化剤の回収効率が著しく低下する。 It is preferable to adjust appropriately according to the layered double hydroxide used in (II). For example, when aluminum and zinc are used, it is preferably adjusted to 6 or more and less than 8, and when aluminum and magnesium are used, it is preferably adjusted to 9 or more and less than 11. If the coagulated wastewater (Β3) is acidic, use potassium hydroxide and / or sodium hydroxide to adjust the pH of the wastewater (Β3). As described above, when aluminum and zinc are used, 6 or more and less than 8 When using aluminum and magnesium, it is preferable to adjust the value to 9 or more and less than 11. If the pH is outside the above range, aluminum and zinc, or aluminum and magnesium each independently form a hydroxide, and form aluminum hydroxide, zinc hydroxide, and magnesium hydroxide. Is difficult to form, and as a result, the recovery efficiency of the fluorine-containing emulsifier is significantly reduced.
前記工程 (Υ) において、 層状複水酸化物は 3価金属と 2価金属で水酸化物の 形成 p Hが重なっているか、 または、 両水酸化物形成 p Hの範囲が近ければ形成 できる。 該 3価金属の例としては、 アルミニウム、 ビスマス、 セリウム、 クロム In the step (II), a layered double hydroxide can be formed if the formation of hydroxides of the trivalent metal and the divalent metal overlaps or the range of formation of both hydroxides is close. Examples of the trivalent metal include aluminum, bismuth, cerium, and chromium.
(III) 、 鉄 (III) 、 ガリウム、 インジウム、 マンガン (III) 、 チタン、 タリ ゥム等を例示できるが、 環境等に対する負荷が小さいこと、 入手容易性などから 、 アルミニウムが好ましい。 一方、 該 2価金属の例としては、 ベリリウム、 カド ミゥム、 コバルト、 クロム(11)、 銅 (II) 、 鉄 (II) 、 マグネシウム、 マンガン (11)、 ニッケル、 鉛(11)、 白金、 パラジウム、 亜鉛、 錫、 カルシウム等を例示で きるが、 環境等に対する負荷が小さいこと、 入手容易性などから、 亜鉛またはマ グネシゥムが好ましく、 特にマグネシウムが好ましい。 Examples thereof include (III), iron (III), gallium, indium, manganese (III), titanium, and titanium. However, aluminum is preferable because of a small load on the environment and the like and availability. On the other hand, examples of the divalent metal include beryllium, cadmium, cobalt, chromium (11), copper (II), iron (II), magnesium, manganese (11), nickel, lead (11), platinum, and palladium. Although zinc, tin, calcium and the like can be exemplified, zinc or magnesium is preferable, and magnesium is particularly preferable because of a small load on the environment and the like and availability.
本発明において、 前記凝集排水 (Β 3 ) 中の含フッ素乳化剤の濃度および前記 水性液 (Β 2 ) 中の含フッ素乳化剤の濃度は、 1質量 p p m以上 1 0質量%以下 が好ましく、 1 0質量 p p m以上 1質量%以下がより好ましく、 とりわけ 5 0質 量 p p m以上 0 . 5質量%以下が好ましい。  In the present invention, the concentration of the fluorinated emulsifier in the coagulated wastewater (Β3) and the concentration of the fluorinated emulsifier in the aqueous liquid (Β2) are preferably 1% by mass or more and 10% by mass or less, and 10% by mass or less. The content is more preferably not less than ppm and not more than 1 mass%, particularly preferably not less than 50 mass ppm and not more than 0.5 mass%.
該含フッ素乳化剤濃度がこれより低いと、 工程 (Y) での層状複水酸化物によ る該含フッ素乳化剤の捕捉効率が低下してしまう。 またこれ以上の高濃度の場合 であれば、 p Hを変化させることにより該含フッ素乳化剤を析出させるなどのよ り簡便で効率的な方法を用いることができる。 If the concentration of the fluorinated emulsifier is lower than this, the layered double hydroxide in step (Y) may cause The efficiency of capturing the fluorinated emulsifier decreases. If the concentration is higher than this, a simpler and more efficient method such as precipitation of the fluorinated emulsifier by changing pH can be used.
本発明において、 凝集排水 (B 3 ) 中に含まれる未凝集の含フッ素ポリマー微 粒子等の浮遊固形物および浮遊固形物になりうる物質 (以下、 これらを総称して S S成分という。 ) は、 前記工程 (Y) での含フッ素乳化剤の固定および固定率 に悪影響は及ぼさない。 しかし、 回収工程 (Z ) において前記層状複水酸化物 ( C) 力 ら含フッ素乳化剤を再生する際の妨げになる可能性があるため、 該層状複 水酸化物 (C) の生成前に 1質量%以下まで除去しておくことが好ましい。 該 S S成分は、 0 . 3質量%以下まで除去するのがより好ましく、 とりわけ 0 . 0 5 質量%以下まで除去するのが好ましい。 なお、 浮遊固形物になりうる物質として は、 含フッ素ポリマーの塩析凝集に使用された金属塩および Zまたは凝集排水 ( B 3 ) の p Hの変化によって析出する物質および Zまたは凝集排水 (B 3 ) の温 度低下または温度上昇によって析出する物質などが挙げられる。  In the present invention, suspended solids such as non-agglomerated fluoropolymer fine particles and the like that can be suspended solids (hereinafter, these are collectively referred to as SS components) contained in the aggregated wastewater (B 3) are: It does not adversely affect the fixation and the fixation ratio of the fluorinated emulsifier in the step (Y). However, in the recovery step (Z), the fluorinated emulsifier may be hindered from being regenerated from the above-mentioned layered double hydroxide (C) force. It is preferable to remove to less than mass%. The SS component is more preferably removed to 0.3% by mass or less, particularly preferably to 0.05% by mass or less. Substances that can become suspended solids include metal salts used for salting-out and coagulation of fluoropolymers, Z and substances precipitated by changes in pH of coagulated wastewater (B3) and Z or coagulated wastewater (B 3) Substances that precipitate when the temperature drops or rises.
未凝集含フッ素ポリマ一等の S S成分の除去方法としては、 多価金属カチオン を含有する金属塩による塩析凝集が効果的である。 具体的な金属塩 (凝集剤) と しては、 塩化アルミニウム、 塩化アルミニウム六水和物、 ポリ塩ィ匕アルミニウム 、 塩化第一鉄、 塩化第二鉄が挙げられる。 凝集物は A P F O等の含フッ素乳化剤 が含有された状態で沈殿することがあるため、 水酸化ナトリゥムおよび/または 水酸化力リゥムを添加して p Hを 7以上に調整することにより、 該含フッ素乳化 剤を凝集物から水中に再溶解させることが好ましい。  As a method for removing the SS component such as the non-aggregated fluorine-containing polymer, salting-out aggregation with a metal salt containing a polyvalent metal cation is effective. Specific examples of the metal salt (coagulant) include aluminum chloride, aluminum chloride hexahydrate, polychlorinated aluminum, ferrous chloride, and ferric chloride. Agglomerates may precipitate in a state in which a fluorinated emulsifier such as APFO is contained. Therefore, the pH is adjusted to 7 or more by adding sodium hydroxide and / or a hydration-powered rim to adjust the pH to 7 or more. It is preferred to redissolve the emulsifier from the aggregates in water.
本発明において、 凝集排水 (B 3 ) に前記金属塩を添加して凝集させた S S成 分の凝集物を除去する方法としては、 一般的な固液分離方法が採用でき、 特に、 ろ過、 デカンテーシヨン、 遠心分離および重力沈降からなる群より選ばれる 1種 以上の方法を用いることが好ましい。 ろ過は、 加圧下に実施することも好ましい 。 また、 凝集物を含む排水を静置し、 凝集物を沈降させて、 上澄み液をろ過する ことにより凝集物を除去することが好ましい。 また、 設備メンテナンスの容易さ 等の点から、 シックナーまたはスクリューデカン夕一を用いる固液分離方法が最 も好ましい。 本発明における工程 (Y) では、 水性液 (B2) または混合水性液 (B4) と の混合時の pHを、 アルミニウムとマグネシウムを用いる場合は 9以上 11未満 に調整するのが好ましい。 通常は、 アルミニウムイオン:マグネシウムイオンの モル比が 1 : 2であり、 かつ、 アルミニウムイオンおよびマグネシウムイオンの 濃度がそれぞれ 0.
Figure imgf000015_0001
以上211101 /L以下である水溶液を用いて 、 攪拌しながら前記水性液 (B2) または混合水性液 (B4) と混合せしめて、 形成される層状複水酸化物の層間に含フッ素乳化剤を固定せしめる。 アルミニゥ ムイオンとマグネシウムイオンは、 どのような原料を用いても問題ない。 入手の 容易さから、 アルミニウムイオンの原料としては、 塩化アルミニウム、 塩化アル ミニゥム六水和物、 硫酸アルミニウム、 硝酸アルミニウムが好ましく、 特に塩化 アルミニウム、 塩化アルミニウム六水和物が好ましい。 また、 マグネシウムィォ ンの原料としては、 塩化マグネシウム、 塩化マグネシウム六水和物、 硝酸マグネ シゥム六水和物、 硝酸マグネシウム、 硫酸マグネシウム、 硫酸マグネシウム七水 和物、 炭酸マグネシウムが好ましく、 とりわけ塩化マグネシウム、 塩化マグネシ ゥム六水和物が好ましい。
In the present invention, a general solid-liquid separation method can be employed as a method for removing the aggregates of the SS component that is aggregated by adding the metal salt to the aggregated wastewater (B 3). It is preferable to use at least one method selected from the group consisting of a station, centrifugation, and gravity sedimentation. The filtration is also preferably performed under pressure. Further, it is preferable that the wastewater containing the aggregates is allowed to stand, the aggregates are settled, and the supernatant is filtered to remove the aggregates. From the viewpoint of facility maintenance and the like, a solid-liquid separation method using a thickener or a screw decanter is most preferable. In the step (Y) in the present invention, the pH at the time of mixing with the aqueous liquid (B2) or the mixed aqueous liquid (B4) is preferably adjusted to 9 or more and less than 11 when aluminum and magnesium are used. Normally, the molar ratio of aluminum ion: magnesium ion is 1: 2, and the concentration of aluminum ion and magnesium ion is each 0.
Figure imgf000015_0001
Using an aqueous solution of not less than 211101 / L and mixing with the aqueous liquid (B2) or the mixed aqueous liquid (B4) with stirring, the fluorinated emulsifier is fixed between the layers of the layered double hydroxide to be formed. . There is no problem with using any of the raw materials for aluminum ion and magnesium ion. Aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, and aluminum nitrate are preferred as aluminum ion raw materials because of availability, and aluminum chloride and aluminum chloride hexahydrate are particularly preferred. As a raw material of magnesium ion, magnesium chloride, magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate, magnesium sulfate, magnesium sulfate heptahydrate, and magnesium carbonate are preferable, and magnesium chloride is particularly preferable. Magnesium chloride hexahydrate is preferred.
また、 アルミニウムと亜鉛を用いる場合には、 水性液 (B 2) または混合水性 液 (B4) との混合時の pHを、 6以上 8未満に調整するのが好ましい。 通常は 、 アルミニウムイオン:亜鉛イオンのモル比が 1 : 2であり、 かつ、 アルミニゥ ムイオンおよび亜鉛イオンの濃度がそれぞれ 0. 0 lmo 1 1以上211101Z L以下である水溶液を用いて、 攪拌しながら前記水性液 (B 2) または混合水性 液 (B4) と混合せしめて、 形成される層状複水酸化物の層間に含フッ素乳化剤 を固定せしめる。 アルミニウムイオンと亜鉛イオンは、 どのような原料を用いて も問題ない。 入手の容易さから、 アルミニウムイオンの原料としては、 塩化アル ミニゥム、 塩化アルミニウム六水和物、 硫酸アルミニウム、 硝酸アルミニウムが 好ましく、 特に塩ィヒアルミニウム、 塩化アルミニウム六水和物が好ましい。 また 、 亜鉛イオンの原料としては、 塩化亜鉛、 硝酸亜鉛六水和物、 硫酸亜鉛、 硫酸亜 鉛七水和物が好ましく、 とりわけ塩化亜鉛が好ましい。  When aluminum and zinc are used, the pH at the time of mixing with the aqueous liquid (B2) or the mixed aqueous liquid (B4) is preferably adjusted to 6 or more and less than 8. Usually, an aqueous solution in which the molar ratio of aluminum ion: zinc ion is 1: 2, and the concentrations of aluminum ion and zinc ion are respectively 0.0 lmo 11 or more and 211101 ZL or less is used while stirring. Mix with the aqueous liquid (B2) or mixed aqueous liquid (B4) to fix the fluorinated emulsifier between the layers of the layered double hydroxide to be formed. Aluminum and zinc ions can be used in any source. From the standpoint of availability, aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, and aluminum nitrate are preferable as aluminum ion raw materials, and aluminum chloride and aluminum chloride hexahydrate are particularly preferable. As a raw material for zinc ions, zinc chloride, zinc nitrate hexahydrate, zinc sulfate, and zinc sulfate heptahydrate are preferable, and zinc chloride is particularly preferable.
本発明における工程 (Y) では、 前記金属イオン水溶液は 0. 01mo l/L 以上 2mo 1/L以下の金属イオン濃度で添加するのが好ましい。 金属イオン濃 度がこれ以下だと必要な金属を添加する際に水の量が多くなつてしまい、 結果と して該含フッ素乳化剤の濃度が下がり、 ひいては回収効率が低下してしまう。 金 属イオン濃度がこれ以上だと、 該金属イオン水溶液が酸性であるため、 水溶液の 添加により、 該工程 (Y) において局所的に層状複水酸化物を形成するのに最適 な p Hの範囲を逸脱し、 該金属イオンが層状複水酸化物形成に有効に利用されな くなつてしまう。 しかし、 一旦前記の濃度範囲を外れた金属イオン水溶液を添加 した場合でも、 改めて適切な濃度範囲の金属イオン水溶液を添加すれば、 該含フ ッ素乳化剤を効率的に回収することができる。 In the step (Y) of the present invention, the metal ion aqueous solution is preferably added at a metal ion concentration of 0.01 mol / L or more and 2 mol 1 / L or less. Metal ion concentration If the degree is lower than this, the amount of water will increase when the required metal is added, and as a result, the concentration of the fluorinated emulsifier will decrease, and the recovery efficiency will decrease. If the metal ion concentration is higher than this range, the metal ion aqueous solution is acidic. Therefore, by adding the aqueous solution, the optimum pH range for locally forming a layered double hydroxide in the step (Y) is obtained. Therefore, the metal ion is not effectively used for forming the layered double hydroxide. However, even when a metal ion aqueous solution having a concentration outside the above-described concentration range is once added, the fluorine-containing emulsifier can be efficiently recovered by adding a metal ion aqueous solution having an appropriate concentration range again.
本発明における工程 (Y) では、 該金属イオンの使用量は、 3価イオンが該含 フッ素乳化剤に対して 1モル倍以上 1 0モル倍以下であり、 2価イオンが該含フ ッ素乳化剤に対して 1モル倍以上 2 0モル倍以下であり、 かつ、 3価イオン: 2 価イオンのモル比が 3 : 1〜1 : 3であることが好ましい。 該 3価イオン: 2価 イオンのモル比は、 1 : 1〜1 : 2であることがより好ましい。 該金属イオンの 使用量が前記より少ないと該含フッ素乳化剤の回収率が不充分であり、 前記より 多いと大量の水溶液の添加によって相対的に該含フッ素乳化剤の濃度が下がり、 回収率が充分に高くならない。 また、 該金属イオンの過剰使用は最終的な排水処 理過程の負荷が増大する面からも好ましくない。  In the step (Y) of the present invention, the amount of the metal ion used is such that the trivalent ion is 1 to 10 times the molar amount of the fluorinated emulsifier, and the divalent ion is the fluorinated emulsifier. It is preferable that the molar ratio of the trivalent ion to the divalent ion is 3: 1 to 1: 3 with respect to the molar ratio. The molar ratio of the trivalent ion to the divalent ion is more preferably 1: 1 to 1: 2. If the amount of the metal ion used is less than the above, the recovery of the fluorinated emulsifier is insufficient. Does not increase. Further, excessive use of the metal ions is not preferable from the viewpoint of increasing the load in the final wastewater treatment process.
該工程 (Y) において、 含フッ素乳化剤を含有する水性液 (B 2 ) と該金属ィ オン水溶液とを混合する際には、 撹拌を施すことが好ましい。 該撹拌方法として は、 特に限定されないが、 形成された層状複水酸化物 (C ) を機械的に破壊しな い撹拌方法が好ましい。 かかる撹拌装置の撹拌翼としては、 低速回転で混合液全 体を均一に混合できる撹拌翼が好ましく、 フルゾーン翼、 マックスブレンド翼ま たはアンカ一翼からなる群より選ばれる 1種が好ましい。 該撹拌翼における撹拌 時の G値は、 1 ~ 3 0 0 s 1 が好ましく、 5〜2 5 0 s _ 1 がより好ましく、 1 0〜2 0 0 s _ 1 が最も好ましい。 ここで、 G値とは以下の式によって導かれ る値をいう。 In the step (Y), when the aqueous liquid (B 2) containing the fluorinated emulsifier is mixed with the metal ion aqueous solution, it is preferable to perform stirring. The stirring method is not particularly limited, but a stirring method that does not mechanically destroy the formed layered double hydroxide (C) is preferable. As the stirring blade of such a stirring device, a stirring blade capable of uniformly mixing the whole liquid mixture at a low speed is preferable, and one selected from the group consisting of a full zone blade, a max blend blade and an anchor blade is preferable. G value during stirring at the stirring blade is preferably from 1 ~ 3 0 0 s 1, more preferably 5~2 5 0 s _ 1, 1 0~2 0 0 s _ 1 is most preferred. Here, the G value refers to a value derived from the following equation.
P  P
G =  G =
V - μ 上記式において、 Ρは撹拌動力 (W) 、 Vは液容積 (m 3 ) 、 Xは液粘性係数 ( P a - s ) を表す。 V-μ In the above formula, Ρ is the stirring power (W), V is the liquid volume (m 3 ), and X is the liquid viscosity coefficient (P a-s).
該工程 (Y) において、 金属イオン水溶液との混合中は系内に存在する炭酸ィ オンおよび/または炭酸ガスを除去するため、 窒素ガスやアルゴンガスなどの不 活性ガスでバブリングし、 もしくは不活性ガスで炭酸イオンおよび/または炭酸 ガスを追い出した後、 反応容器を密閉するのが好ましい。 これは層状複水酸化物 が炭酸イオンと反応し、 該含フッ素乳化剤の回収の妨げになるためである。 バブ リングを実施する場合の不活性ガスの流量は 0 . I Nm3 /m3 · h〜l O Nm 3 Zm3 · hが好ましく、 0 . 1 Nm3 /m3 · h〜5 Nm3 /m3 · hがより 好ましい。 ガス流量がこれより少ないと系内の炭酸イオンおよび Zまたは炭酸ガ スの除去が充分に行われず、 これ以上の流量だと、 ガスに同伴して水が蒸発して しまうだけでなく、 気化熱によつて水溶液の温度が低下してしまう。 In the step (Y), during the mixing with the aqueous metal ion solution, bubbling with an inert gas such as nitrogen gas or argon gas or the like is performed to remove carbon dioxide and / or carbon dioxide present in the system. After expelling the carbonate ions and / or carbon dioxide gas with the gas, it is preferable to seal the reaction vessel. This is because the layered double hydroxide reacts with the carbonate ion and hinders the recovery of the fluorinated emulsifier. Flow rate of the inert gas when carrying out the bubbling 0. I Nm 3 / m 3 · h~l O Nm 3 Zm 3 · h preferably, 0. 1 Nm 3 / m 3 · h~5 Nm 3 / m 3 · h is more preferred. If the gas flow rate is lower than this, the removal of carbonate ions and Z or carbon dioxide gas in the system will not be performed sufficiently.If the flow rate is higher than this, not only will the water evaporate with the gas, but also the heat of vaporization As a result, the temperature of the aqueous solution decreases.
該工程 (Y) は、 1 0で以上 5 0 °C以下の温度で実施するのが好ましい。 この 温度が余りに高すぎたり余りに低すぎたりすると、 層状複水酸化物による含フッ 素乳化剤の固定率が低下してしまう。 特に余りに低温では固定率が著しく低下す るため、 固定化反応器には加温装置を装備するのが好ましい。  The step (Y) is preferably performed at a temperature of 10 to 50 ° C. If the temperature is too high or too low, the fixing rate of the fluorine-containing emulsifier by the layered double hydroxide decreases. In particular, if the temperature is too low, the fixation rate is significantly reduced. Therefore, it is preferable to equip the immobilization reactor with a heating device.
本発明における工程 (Z ) では、 前記工程 (Y) で得られる層間に含フッ素乳 化剤が固定された層状複水酸化物 (C) を先ず分離する。 分離方法としては、 特 に限定されることなく、 一般的な固液分離方法が採用できる。 特に、 ろ過、 デカ ンテーション、 重力沈降および遠心分離からなる群より選ばれる 1種以上の方法 を用いることが好ましい。 ろ過は、 加圧下に実施することも好ましい。 また、 設 備メンテナンスの容易さ等の点から、 シックナーまたはスクリューデカン夕一を 用いる固液分離方法が最も好ましい。  In the step (Z) in the present invention, the layered double hydroxide (C) having the fluorinated emulsifier fixed between the layers obtained in the step (Y) is first separated. The separation method is not particularly limited, and a general solid-liquid separation method can be employed. In particular, it is preferable to use one or more methods selected from the group consisting of filtration, decantation, gravity sedimentation, and centrifugation. The filtration is also preferably performed under pressure. From the viewpoint of facility maintenance and the like, a solid-liquid separation method using a thickener or a screw decanter is most preferable.
さらに、 本発明における工程 (Z ) では、 前記の分離された層状複水酸化物 ( C) 力、ら含フッ素乳化剤が再生 '回収される。 この再生'回収の方法としては、 たとえば層状複水酸化物 (C) を、 塩酸、 硫酸、 硝酸のような強酸または該強酸 の 2種以上の混合物で再溶解させ、 該溶解液から析出した含フッ素乳化剤の遊離 酸をフッ素系溶剤等の非水溶性有機溶剤で抽出するなどの方法を挙げることがで さる。  Further, in the step (Z) in the present invention, the separated layered double hydroxide (C) and the fluorine-containing emulsifier are regenerated and recovered. As a method of this regeneration, for example, the layered double hydroxide (C) is redissolved with a strong acid such as hydrochloric acid, sulfuric acid, or nitric acid or a mixture of two or more kinds of the strong acids, and contains a precipitate precipitated from the solution. For example, the free acid of the fluorine emulsifier may be extracted with a water-insoluble organic solvent such as a fluorine-based solvent.
なお、 本発明の含フッ素乳化剤の回収方法は、 前記含フッ素乳化剤だけでなく 、 トリフルォロ酢酸、 ペン夕フルォロプロパン酸等の低分子量含フッ素カルボン 酸および/またはその塩、 トリフルォロメ夕ンスルホン酸および Zまたはその塩 等にも適用できる。 In addition, the method for recovering the fluorinated emulsifier of the present invention, not only the fluorinated emulsifier, Also, the present invention can be applied to low molecular weight fluorinated carboxylic acids such as trifluoroacetic acid and pentafluoropropanoic acid and / or salts thereof, trifluoromethanesulfonic acid and Z or salts thereof.
以下に、 実施例を掲げて本発明を具体的に説明するが、 本発明はこれらに限定 されない。 なお、 APFO、 ペルフルォロオクタン酸 (以下、 PFOAという。 ) またはペルフルォロオクタン酸ナトリウムの濃度は、 メタノールと水の混合溶 液を溶媒とした高速夜体クロマトグフィ一一マススぺクトル法を用いて測定した 。 この方法で検出される種はペルフルォロォクタノエート (C7 F1 5 COO一 ) である。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. The concentration of APFO, perfluorooctanoic acid (hereinafter referred to as PFOA) or sodium perfluorooctanoate is determined by using a high-speed night-time chromatographic gel mass spectrum using a mixed solution of methanol and water as a solvent. It was measured using the method. Species to be detected by this method is per full O Roo Kuta hexanoate (C 7 F 1 5 COO I).
また、 凝集排水中の S S成分の測定 (単位:質量%) は、 PTFEの水性分散 液から P T F Eを凝集 ·分離した後の凝集排水の 1 0 gをメトラートレド製ハ口 ゲン式水分測定器 HR— 7 3に入れ、 20 0°Cで質量が一定になるまで乾燥させ た後の蒸発残分を S S成分とした。  The SS component in the coagulated effluent was measured (unit: mass%) by measuring 10 g of the coagulated effluent after coagulating and separating PTFE from the aqueous dispersion of PTFE, using a METTLER TOLEDO Haguchi Gen-type moisture meter HR. — Put in 73, dried at 200 ° C until the mass became constant, and the evaporation residue was used as the SS component.
[実施例 1 ]  [Example 1]
APFOを乳化剤として用いる乳化重合で製造した P T F E水性分散液から P TFE粉末を凝集させた。 この PTFE粉末 1 0. 0 k g (含水率 48質量%) を熱風循環式オーブンに入れ、 1 0 0°Cから 5°CZ分の速度で経時的に昇温後、 2 0 0°Cで 1時間熱処理した。 この熱風循環式オーブンからの排気ガスの排気量 は 4. 5Nm3 であった。 この排気ガスの全量を直径 5 0 cm, 高さ 5 0 0 cmのスプレー塔に導入した。 この時のガスの線速は約 0. 5 mZ秒であった。 このスプレー塔内に水酸化ナトリウムを用いて PHを 1 0に調整したイオン交換 水 3 5 k gを循環 ·噴霧させた。 PTFE粉末の乾燥 ·熱処理終了後、 スプレー 塔内のアルカリ水溶液中の APFO濃度を分析したところ、 49 8質量 p pmで あった。 PTFE powder was agglomerated from an aqueous PTFE dispersion produced by emulsion polymerization using APFO as an emulsifier. 10.0 kg of this PTFE powder (moisture content: 48% by mass) was placed in a hot-air circulation oven, and the temperature was gradually increased from 100 ° C to 5 ° C. Heat treated for hours. The displacement of the exhaust gas from the hot-air circulation oven was 4.5 Nm 3 . The entire amount of this exhaust gas was introduced into a spray tower having a diameter of 50 cm and a height of 500 cm. The linear velocity of the gas at this time was about 0.5 mZ seconds. In this spray tower, 35 kg of ion-exchanged water whose pH was adjusted to 10 using sodium hydroxide was circulated and sprayed. After the drying and heat treatment of the PTFE powder, the APFO concentration in the aqueous alkali solution in the spray tower was analyzed and found to be 498 mass ppm.
この A P F O含有水溶液に 0. 2 Nの水酸化ナトリゥム水溶液を添加して p H を 1 0. 0に調整した。 液温は 26°Cであった。 次に 2 Lのガラス製ビーカ一に 、 この溶液 1 L (AP FO含有量 0. 49 8 g、 1. 1 6mmo 1 ) を入れ、 塩 化アルミニウムと塩化マグネシウムの混合水溶液 [A 1 3 +イオン濃度 0. 0 7 51110 1 /1^ 2 +ィォン0. 1 5mo l ZL] の約 7 7. 3mL [A 1 3 +イオン総量 5. 8 Ommoし Mg2 +イオン総量 11. 6mmo l] を 2時 間かけて滴下した。 滴下中はアンカ一翼を用いて G値が 100 s— 1 になるよう に撹拌を続けた。 滴下の間 0. 2 N水酸化ナトリウム水溶液を適宜滴下して pH を 9. 8以上 10. 2以下に調整した。 To this APFO-containing aqueous solution, a 0.2 N aqueous solution of sodium hydroxide was added to adjust the pH to 10.0. The liquid temperature was 26 ° C. Then the glass beaker one 2 L, the solution 1 L (AP FO content 0. 49 8 g, 1. 1 6mmo 1) were charged, mixed aqueous solution [A 1 3 + ions magnesium chloride salt aluminum Concentration 0.0 7 51110 1/1 ^ 2 + ion 0.15mol ZL] about 77.3mL [A1 3 + Ion total amount 5.8 Ommo and Mg 2 + ion total amount 11.6 mmol] were added dropwise over 2 hours. During the dropping, stirring was continued using an anchor blade so that the G value became 100 s- 1 . During the dropwise addition, a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less.
塩化アルミニウムと塩ィ匕マグネシウムの混合水溶液の滴下直後から極く薄い乳 白色の液が凝集を始めると共に白色沈殿を生成し始めた。 この混合水溶液の滴下 開始後 2時間で沈殿の生成は終了した。 撹拌を停止すると生成した沈殿は速やか に沈降し、 約 5分間でほぼ沈降した。 沈殿物を 3 xmのメンブランフィルターで ろ過した。 この沈殿物をろ紙とともに 70°Cで 15時間乾燥した。 沈殿物の乾燥 質量は 1. 05 であった。 乾燥した沈殿物を示差熱質量分析 (DTA) 、 赤外 吸収スペクトル (I R) 、 XRDで分析したところ、 PFOAに帰属するピーク および層状複水酸化物に帰属するピークが検出された。 このことから、 この沈殿 物は PF OAが層状複水酸化物と共に沈殿したものであることが確認された。 上 澄液を分析したところ APFOの濃度は 2質量 p pmであり、 従って、 層状複水 酸化物に含まれる、 ガス回収水からの PFOAの固定率は 99. 6質量%であつ た。  Immediately after the dropwise addition of the mixed aqueous solution of aluminum chloride and magnesium salt, the extremely thin milky white liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the generated precipitate immediately settled out, and almost settled out in about 5 minutes. The precipitate was filtered through a 3 xm membrane filter. The precipitate was dried with filter paper at 70 ° C for 15 hours. The dry mass of the precipitate was 1.05. When the dried precipitate was analyzed by differential thermal mass spectrometry (DTA), infrared absorption spectrum (IR), and XRD, a peak belonging to PFOA and a peak belonging to layered double hydroxide were detected. From this, it was confirmed that this precipitate was PFOA precipitated together with the layered double hydroxide. When the supernatant was analyzed, the concentration of APFO was 2 mass ppm, and therefore, the fixing rate of PFOA from the gas recovered water contained in the layered double hydroxide was 99.6 mass%.
[実施例 2]  [Example 2]
実施例 1で P T F E粉末の乾燥および熱処理中の排気ガスから A P F Oを回収 した水溶液 5001111^と?丁 £の乳化重合後の凝集後排水 (S S成分 2300 質量 ppm含有、 AP FO濃度 148質量 p pm) 500mLを混合した。 この 混合水溶液中の APFO濃度を分析したところ、 323質量 ppmであった。 こ の混合水溶液に 0. 2 Nの水酸化ナトリゥム水溶液を添加して p Hを 10. 0に 調整した。 液温は 26°Cであった。  In Example 1, the aqueous solution in which APTFE was recovered from exhaust gas during drying and heat treatment of the PPTFE powder was 5001111 ^. 500 mL of waste water (containing 2300 mass ppm of SS component, APFO concentration of 148 mass ppm) after coagulation after the emulsion polymerization was mixed. When the APFO concentration in this mixed aqueous solution was analyzed, it was 323 ppm by mass. To this mixed aqueous solution, a 0.2 N aqueous sodium hydroxide solution was added to adjust the pH to 10.0. The liquid temperature was 26 ° C.
次に 2 Lのガラス製ビーカーに、 この水溶液 1L (八? 0含有量0. 323 g、 0. 749 mm o 1 ) を入れ、 塩化アルミニウムと塩化マグネシウムの混合 水溶液 [A 13 +イオン濃度 0. 075mo 1 /L、 Mg2 +イオン 0. 15m o 1 ZL] の 50. OmL [A 13 +イオン総量 3. 75mmo 1、 Mg2 +ィ オン総量 7. 49mmo 1] を 2時間かけて滴下した。 滴下中はアンカー翼を用 いて G値が 100 s_ 1 になるように撹拌を続けた。 滴下の間 0.2N水酸化ナ トリウム水溶液を適宜滴下して: Hを 9. 8以上 10. 2以下に調整した。 この混合水溶液の滴下開始後 2時間で沈殿の生成は終了した。 撹拌を停止する と生成した沈殿は速やかに沈降し、 約 5分間でほぼ沈降した。 沈殿物を 3 tmの メンブランフィルターでろ過した。 この沈殿物をろ紙とともに 70°Cで 15時間 乾燥した。 沈殿物の乾燥質量は 0. 65gであった。 上澄液を分析したところ A PF〇の濃度は 2質量 p pmであり、 従って、 層状複水酸化物に含まれる PFO Aの固定率は 99. 4質量%であった。 Then glass beaker 2 L, the aqueous solution 1L (eight? 0 content 0. 323 g, 0. 749 mm o 1) were charged, mixed aqueous solution of aluminum chloride and magnesium chloride [A 1 3 + ion concentration 0 . 075mo 1 / L, dropwise over Mg 2 + ions 0. 15m o 1 ZL] of 50. OmL [a 1 3 + ion amount 3. 75mmo 1, Mg 2 + I on total 7. 49mmo 1] for 2 hours did. During the dropwise addition the G value have use an anchor blade was continued stirring such that the 100 s_ 1. 0.2N hydroxide during dropping An aqueous solution of thorium was added dropwise as appropriate: H was adjusted to 9.8 or more and 10.2 or less. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the generated precipitate immediately settled, and almost settled in about 5 minutes. The precipitate was filtered through a 3 tm membrane filter. The precipitate was dried with filter paper at 70 ° C for 15 hours. The dry weight of the precipitate was 0.65 g. When the supernatant was analyzed, the concentration of APF〇 was 2 mass ppm, and therefore, the fixing rate of PFO A contained in the layered double hydroxide was 99.4 mass%.
[実施例 3]  [Example 3]
APFOを乳化剤として用いる乳化重合で製造した P T F E水性分散液から P TFE粉末を凝集させた。 この PTFE粉末 10. 0 kg (含水率 48質量%) を熱風循環式オーブンに入れ、 100°Cから 5°CZ分の速度で経時的に昇温後、 200 で 1時間熱処理した。 この熱風循環式オーブンからの排気ガスの排気量 は 4. 5Nm3 /hであった。 この排気ガスの全量を直径 50 cm、 高さ 500 cmのスプレー塔に導入した。 この時のガスの線速は約 0. 5m/秒であった。 このスプレー塔内に水酸化ナトリウムを用いて pHを 10に調整した該 P T F Eの凝集排水 (S S分 2300質量 p pm、 AP FO濃度 148質量 p pm) 3 5 kgを循環 ·噴霧させ、 排気ガス中の APFOを吸収させた。 PTFEの乾燥 •熱処理終了後、 スプレー塔内の水溶液中の APFO濃度を分析したところ、 6 40質量 p pmであった。 PTFE powder was agglomerated from an aqueous PTFE dispersion produced by emulsion polymerization using APFO as an emulsifier. This PTFE powder (10.0 kg, water content: 48% by mass) was placed in a hot air circulation oven, heated at a rate of 100 ° C to 5 ° CZ over time, and then heat-treated at 200 for 1 hour. The displacement of the exhaust gas from the hot-air circulation oven was 4.5 Nm 3 / h. The entire amount of the exhaust gas was introduced into a spray tower having a diameter of 50 cm and a height of 500 cm. The linear velocity of the gas at this time was about 0.5 m / sec. In this spray tower, 35 kg of coagulated waste water (SS content: 2300 mass ppm, AP FO concentration: 148 mass ppm) of the PTFE whose pH was adjusted to 10 using sodium hydroxide was circulated and sprayed. APFO was absorbed. Drying of PTFE • After the heat treatment, the concentration of APFO in the aqueous solution in the spray tower was analyzed and found to be 640 mass ppm.
この AP FOを吸収させた凝集排水に 0.2 Nの水酸化ナトリゥム水溶液を添 加して pHを 10. 0に調整した。 液温は 26°Cであった。 次に 2Lのガラス製 ビ一カーに、 この水溶液 1L (APFO含有量 0. 640 g、 1. 48 mm o 1 ) を入れ、 塩化アルミニウムと塩化マグネシウムの混合水溶液 [A 13 +イオン 濃度 0. 075mo 1ノ 、 Mg2 +イオン 0. 15mo l/L] の 99. 3 m L [A 13 +イオン総量 7. 4 Ommo 1、 Mg2 +イオン総量 14. 8mmo 1] を 2時間かけて滴下した。 A 0.2 N aqueous sodium hydroxide solution was added to the coagulated wastewater in which the APFO was absorbed to adjust the pH to 10.0. The liquid temperature was 26 ° C. Then the glass-bi one car 2L, the aqueous solution 1L (APFO content 0. 640 g, 1. 48 mm o 1) were charged, mixed aqueous solution of magnesium chloride and aluminum chloride [A 1 3 + ion concentration 0. 075Mo 1 Bruno, dropwise over Mg 2 + ions 0. 15mo l / L] of 99. 3 m L [a 1 3 + ion amount 7. 4 Ommo 1, Mg 2 + ions total 14. 8mmo 1] for 2 hours did.
滴下中はアンカー翼を用いて G値が 100 s— 1 になるように撹拌を続けた。 滴下の間 0.2N水酸化ナトリウム水溶液を適宜滴下して pHを 9. 8以上 10 . 2以下に調整した。 塩化アルミニウムと塩化マグネシウムの混合水溶液の滴下 直後から極く薄い乳白色の液が凝集を始めると共に白色沈殿を生成し始めた。 こ の混合水溶液の滴下開始後 2時間で沈殿の生成は終了した。 撹拌を停止すると生 成した沈殿は速やかに沈降し、 約 5分間でほぼ沈降した。 沈殿物を 3 zmのメン ブランフィルターでろ過した。 この沈殿物をろ^氏とともに 70°Cで 15時間乾燥 した。 沈殿物の乾燥質量は 1. 42 gであった。 During the dropping, stirring was continued using an anchor blade so that the G value became 100 s- 1 . During the dropwise addition, a 0.2N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less. Dropping of mixed aqueous solution of aluminum chloride and magnesium chloride Immediately after that, a very pale milky liquid began to aggregate and started to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the generated sediment rapidly settled, and almost settled in about 5 minutes. The precipitate was filtered through a 3 zm membrane filter. The precipitate was dried at 70 ° C for 15 hours together with the filter. The dry weight of the precipitate was 1.42 g.
乾燥した沈殿物を示差熱質量分析 (DTA) 、 赤外吸収スペクトル (I R) 、 XRDで分析したところ、 PFOAに帰属するピークおよび層状複水酸化物に帰 属するピークが検出された。 このことから、 この沈殿物は PF OAが層状複水酸 化物と共に沈殿したものであることが確認された。 上澄液を分析したところ AP FOの濃度は 2質量 ppmであり、 従って、 層状複水酸化物に含まれる、 ガス回 収水からの PF OAの固定率は 99. 7質量%であった。  When the dried precipitate was analyzed by differential thermal mass spectrometry (DTA), infrared absorption spectrum (IR), and XRD, peaks belonging to PFOA and peaks belonging to layered double hydroxide were detected. From this, it was confirmed that this precipitate was PFOA precipitated together with the layered double hydroxide. When the supernatant was analyzed, the concentration of AP FO was 2 mass ppm, and therefore, the fixing rate of PFOA from the gas recovery water contained in the layered double hydroxide was 99.7 mass%.
[実施例 4]  [Example 4]
A P F Oを乳化剤として用いる乳化重合で製造した P T F E水性分散液から P TFE粉末を凝集させた。 この PTFE粉末 20. O kg (含水率 48質量%) を熱風循環式オーブンに入れ、 100°Cから 5°CZ分の速度で経時的に昇温後、 PTFE powder was agglomerated from a PTFE aqueous dispersion produced by emulsion polymerization using APFO as an emulsifier. 20 kg of this PTFE powder (moisture content: 48% by mass) was placed in a hot air circulation oven, and the temperature was gradually increased from 100 ° C to 5 ° C over time.
200°Cで 1時間熱処理した。 この熱風循環式オーブンからの排気ガスの排気量 は 1 ONm3 であった。 この排気ガスの全量を直径 10 cm、 高さ 200 c mの充填塔に導入した。 充填塔内には 8分の 5ィンチのステンレス製ポールリン グを充填した。 この時のガスの線速は約 0. 3 mZ秒であった。 この吸収塔内に 水酸化カリウムを用いて pHを 10に調整したイオン交換水 70 kgを 500L Zhの流速で循環させた。 PTFE粉末の乾燥 *熱処理終了後、 充填塔内のアル カリ水中の APFO濃度を分析したところ、 495質量 p pmであった。 Heat treatment was performed at 200 ° C for 1 hour. The displacement of the exhaust gas from the hot-air circulation oven was 1 ONm 3 . The entire amount of this exhaust gas was introduced into a packed column having a diameter of 10 cm and a height of 200 cm. The packed tower was filled with 5/8 inch stainless steel pole rings. The linear velocity of the gas at this time was about 0.3 mZ seconds. In this absorption tower, 70 kg of ion-exchanged water whose pH was adjusted to 10 using potassium hydroxide was circulated at a flow rate of 500 L Zh. Drying of the PTFE powder * After the heat treatment, the APFO concentration in the alkaline water in the packed tower was analyzed and found to be 495 mass ppm.
この AP F O含有水溶液に 0.2 Nの水酸化ナ卜リゥム水溶液を添加して ρ H を 10. 0に調整した。 液温は 26でであった。 次に 2 Lのガラス製ビーカ一に 、 この水溶液 1L (APFO含有量 0. 495 g、 1. 16 mm o 1 ) を入れ、 塩化アルミニウムと塩化マグネシウムの混合水溶液 [A13 +イオン濃度 0. 0 75mo 1 /L、 Mg2 +イオン 0. 15mo 1 ZL] の約 76. 8mL [A 1Ρ H was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to the APFO-containing aqueous solution. The liquid temperature was 26. Then the glass beaker one 2 L, the aqueous solution 1L (APFO content 0. 495 g, 1. 16 mm o 1) were charged, mixed aqueous solution of magnesium chloride and aluminum chloride [A1 3 + ion concentration 0.0 75mo 1 / L, Mg 2 + ions 0. 15mo 1 ZL] of about 76. 8 mL [a 1
3 +イオン総量 5. 78mmo 1、 Mg2 +イオン総量 11. 55mmo l] を 2時間かけて滴下した。 滴下中はアンカ一翼を用いて G値が 100 s— 1 になるように撹拌を続けた。 滴下の間 0.2 N水酸化ナトリウム水溶液を適宜滴下して pHを 9. 8以上 10 . 2以下に調整した。 塩ィ匕アルミニウムと塩ィ匕マグネシウムの混合水溶液の滴下 直後から極く薄い乳白色の液が凝集を始めると共に白色沈殿を生成し始めた。 こ の混合水溶液の滴下開始後 2時間で沈殿の生成は終了した。 撹拌を停止すると生 成した沈殿は速やかに沈降し、 約 5分間でほぼ沈降した。 沈殿物を 3 /zmのメン ブランフィルタ一でろ過した。 この沈殿物をろ紙とともに 70°Cで 15時間乾燥 した。 沈殿物の乾燥質量は 1. 03 gであった。 乾燥した沈殿物を示差熱質量分 析 (DTA) 、 赤外吸収スペクトル (I R) 、 XRDで分析したところ、 PFO Aに帰属するピークおよび層状複水酸化物に帰属するピークが検出された。 この ことから、 この沈殿物は P F 0 Aが層状複水酸化物と共に沈殿したものであるこ とが確認された。 上澄液を分析したところ APFOの濃度は 2質量 p pmであり 、 従って、 層状複水酸化物に含まれる、 ガス回収水からの PFOAの固定率は 9 9. 6質量%であった。 3 + ion total amount 5.78 mmo 1, Mg 2 + ion total amount 11.55 mmol] were dropped over 2 hours. During the dropping, stirring was continued using an anchor blade so that the G value became 100 s- 1 . During the dropwise addition, a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less. Immediately after the dropwise addition of the mixed aqueous solution of Shiridani aluminum and Shiridani magnesium, the extremely thin milky white liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the generated sediment rapidly settled, and almost settled in about 5 minutes. The precipitate was filtered through a 3 / zm membrane filter. The precipitate was dried with filter paper at 70 ° C for 15 hours. The dry weight of the precipitate was 1.03 g. When the dried precipitate was analyzed by differential thermal mass analysis (DTA), infrared absorption spectrum (IR), and XRD, a peak belonging to PFO A and a peak belonging to layered double hydroxide were detected. From this, it was confirmed that this precipitate was PFOA precipitated together with the layered double hydroxide. When the supernatant was analyzed, the concentration of APFO was 2 mass ppm, and therefore, the fixing rate of PFOA from the gas-recovered water contained in the layered double hydroxide was 99.6 mass%.
本発明の含フッ素乳化剤の回収方法によれば、 含フッ素乳化剤を含む水性媒体 中で乳化重合または水性分散重合して得られる、 含フッ素ポリマーの乾燥工程お よび/または熱処理工程の排気ガス中に含まれる含フッ素乳化剤を効率的に回収 できる。 また本発明の回収方法によれば、 前記排気ガス中に含まれる含フッ素乳 化剤とともに、 含フッ素モノマーまたは含フッ素モノマーと該含フッ素モノマー 以外のモノマーとを、 含フッ素乳化剤を含む水性媒体中で乳化重合または水性分 散重合して得られた含フッ素ポリマーの水性分散液から、 含フッ素ポリマーを塩 析等で凝集して分離した後の排水 (通常は凝集排水) 中に含まれる含フッ素乳化 剤をも効率的に回収できる。  According to the method for recovering a fluorinated emulsifier of the present invention, the fluorinated polymer is obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing the fluorinated emulsifier. The contained fluorine-containing emulsifier can be efficiently recovered. Further, according to the recovery method of the present invention, together with the fluorinated emulsifier contained in the exhaust gas, a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer are added to an aqueous medium containing a fluorinated emulsifier. From the aqueous dispersion of a fluoropolymer obtained by emulsion polymerization or aqueous dispersion polymerization in step (1), which is contained in the wastewater (usually flocculated wastewater) after coagulation and separation of the fluoropolymer by salting out, etc. The emulsifier can also be recovered efficiently.

Claims

請求の範囲 The scope of the claims
1. 含フッ素乳化剤を含有する排ガス (A) と pHが 7以上 12未満の水性液 ( B 1) とを接触させ、 該排ガス中の該含フッ素乳化剤を該水性液中に吸収せしめ て、 含フッ素乳化剤を含有する水性液 (B 2) を得る工程 (X) 、 該水性液 (B 2) 中の含フッ素乳化剤を層状複水酸化物の層間に固定せしめる工程 (Y) 、 お よび該工程 (Y) で得られる層間に含フッ素乳化剤が固定された層状複水酸化物1. Contacting an exhaust gas (A) containing a fluorinated emulsifier with an aqueous liquid (B1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid, A step (X) of obtaining an aqueous liquid (B 2) containing a fluorine emulsifier, a step (Y) of fixing the fluorine-containing emulsifier in the aqueous liquid (B 2) between layers of the layered double hydroxide, and the step (Y) Layered double hydroxide having a fluorine-containing emulsifier fixed between layers obtained in (Y)
(C) を分離し、 該含フッ素乳化剤を回収する回収工程 (Z) を含むことを特徴 とする含フッ素乳化剤の回収方法。 A method for recovering a fluorinated emulsifier, comprising: a recovery step (Z) of separating (C) and recovering the fluorinated emulsifier.
2. 前記水性液 (B 1) が、 含フッ素ポリマーの製造工程における含フッ素ポリ マーを分離した後の排水 (B 3) である請求の範囲 1に記載の含フッ素乳化剤の 回収方法。  2. The method for recovering a fluorinated emulsifier according to claim 1, wherein the aqueous liquid (B1) is wastewater (B3) after separating the fluorinated polymer in the step of producing the fluorinated polymer.
3. 含フッ素乳化剤を含有する排ガス (A) と pHが 7以上 12未満の水性液 ( B 1) とを接触させ、 該排ガス中の該含フッ素乳化剤を該水性液中に吸収せしめ て、 含フッ素乳化剤を含有する水性液 (B 2) を得る工程 (X) 、 該水性液 (B 2) と含フッ素ポリマーの製造工程における含フッ素ポリマーを分離した後の排 水 (B 3) とを混合する工程 (XI) 、 該工程 (XI) で得られる混合水性液 ( B4) 中の含フッ素乳化剤を層状複水酸化物の層間に固定せしめる工程 (Y) 、 および該工程 (Y) で得られる層間に含フッ素乳化剤が固定された層状複水酸化 物 (C) を分離し、 該含フッ素乳化剤を回収する回収工程 (Z) を含むことを特 徴とする含フッ素乳化剤の回収方法。  3. Contacting the flue gas (A) containing a fluorinated emulsifier with an aqueous liquid (B1) having a pH of 7 or more and less than 12 to absorb the fluorinated emulsifier in the exhaust gas into the aqueous liquid, A step (X) of obtaining an aqueous liquid (B 2) containing a fluorine emulsifier, mixing the aqueous liquid (B 2) with the waste water (B 3) after separating the fluorine-containing polymer in the step of producing the fluorine-containing polymer (XI), the step (Y) of fixing the fluorinated emulsifier in the mixed aqueous liquid (B4) obtained in the step (XI) between the layers of the layered double hydroxide, and the step (Y). A method for recovering a fluorinated emulsifier, comprising the step of separating a layered double hydroxide (C) having a fluorinated emulsifier fixed between layers and recovering the fluorinated emulsifier.
4. 前記排ガス (A) が、 含フッ素乳化剤を含む水性媒体中で乳化重合または水 性分散重合して得られる、 含フッ素ポリマーの乾燥工程および Zまたは熱処理ェ 程の排気ガスである請求の範囲 1、 2または 3に記載の含フッ素乳化剤の回収方 法。  4. The exhaust gas (A) is an exhaust gas obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorine-containing emulsifier, which is obtained in a drying step of the fluorine-containing polymer, Z or a heat treatment step. 4. The method for recovering a fluorinated emulsifier according to 1, 2, or 3.
5. 前記水性液 (B 1) が、 アルカリを用いて pHを 7以上 12未満に調整した 水性液である請求の範囲 1、 2、 3または 4に記載の含フッ素乳化剤の回収方法  5. The method for recovering a fluorinated emulsifier according to claim 1, 2, 3 or 4, wherein the aqueous liquid (B1) is an aqueous liquid whose pH has been adjusted to 7 or more and less than 12 using an alkali.
6. 前記アルカリが、 水酸化ナトリウム、 水酸化カリウム、 水酸化カルシウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸カルシウム、 炭酸水素ナトリウム、 炭酸水 素力リゥム、 炭酸水素カルシウムおよびァンモニァからなる群から選ばれる少な くとも 1種である請求の範囲 5に記載の含フッ素乳化剤の回収方法。 6. The alkali is sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, calcium carbonate, sodium hydrogen carbonate, carbonated water 6. The method for recovering a fluorinated emulsifier according to claim 5, which is at least one member selected from the group consisting of raw lime, calcium bicarbonate, and ammonia.
7. 前記含フッ素ポリマーが、 ポリ四フッ化工チレン、 四フッ化工チレン/ェチ レン共重合体、 四フッ化工チレン プロピレン共重合体、 四フッ化工チレン Zプ Πピレン Zフッ化ビニリデン共重合体、 四フッ化工チレン/六フッ化プロピレン 共重合体、 四フッ化工チレン ZCF2 =CFO (CF2 ) 2 CF3共重合体およ びポリフッ化ビニリデンからなる群より選ばれる少なくとも 1種である請求の範 囲 2〜 6のいずれかに記載の含フッ素乳化剤の回収方法。 7. The fluoropolymer is a polytetrafluoroethylene, a tetrafluoroethylene / ethylene copolymer, a tetrafluoroethylene propylene copolymer, a tetrafluoroethylene Z-propylene a Z-vinylidene fluoride copolymer And at least one member selected from the group consisting of tetrafluoroethylene / propylene hexafluoride copolymer, tetrafluoroethylene / tetrafluoroethylene ZCF 2 = CFO (CF 2 ) 2 CF 3 copolymer and polyvinylidene fluoride 7. The method for recovering a fluorinated emulsifier according to any one of the ranges 2 to 6.
8. 前記排水 (B3) 力 浮遊固形物および浮遊固形物になりうる物質の含有量 が 10質量%以下である排水である請求の範囲 2〜 7のいずれかに記載の含フッ 素乳化剤の回収方法。  8. Recovery of the fluorine-containing emulsifier according to any one of claims 2 to 7, wherein the wastewater (B3) is a wastewater in which the content of suspended solids and substances that can be suspended solids is 10% by mass or less. Method.
9. 前記含フッ素乳化剤が、 炭素原子数が 5〜13であり、 分子中にエーテル性 の酸素原子を含有してもよい、 ペルフルォロアルカン酸、 ω—ヒドロペルフルォ ロアルカン酸、 ω—クロロペルフルォロアルカン酸およびペルフルォロアルカン スルホン酸からなる群より選ばれる酸の塩の少なくとも 1種である請求の範囲 1 〜 8のいずれかに記載の含フッ素乳化剤の回収方法。  9. The fluorinated emulsifier has 5 to 13 carbon atoms and may contain an etheric oxygen atom in the molecule. Perfluoroalkanoic acid, ω-hydroperfluoroalkanoic acid, ω-chloroper The method for recovering a fluorinated emulsifier according to any one of claims 1 to 8, wherein the method is at least one kind of a salt of an acid selected from the group consisting of fluoroalkanoic acid and perfluoroalkanesulfonic acid.
10. 前記工程 (X) において、 排ガス (Α) 中の含フッ素乳化剤を水性液 (Β 1) 中に吸収せしめる際に、 液滴式吸収装置および Ζまたは液膜式吸収装置を用 いる請求の範囲 1〜 9のいずれかに記載の含フッ素乳化剤の回収方法。  10. In the step (X), when the fluorinated emulsifier in the exhaust gas (Α) is absorbed into the aqueous liquid (Β1), a droplet type absorption device and a Ζ or liquid film type absorption device are used. The method for recovering a fluorinated emulsifier according to any one of ranges 1 to 9.
PCT/JP2003/003845 2002-03-28 2003-03-27 Process for the recovery of fluorine-containing emulsifier WO2003082793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002092032A JP2003284921A (en) 2002-03-28 2002-03-28 Recovery method for fluorine-containing emulsifier
JP2002-92032 2002-03-28

Publications (1)

Publication Number Publication Date
WO2003082793A1 true WO2003082793A1 (en) 2003-10-09

Family

ID=28671695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003845 WO2003082793A1 (en) 2002-03-28 2003-03-27 Process for the recovery of fluorine-containing emulsifier

Country Status (2)

Country Link
JP (1) JP2003284921A (en)
WO (1) WO2003082793A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015937A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Process for recovery of fluorinated carboxylic acid surfactants from exhaust gas
US20080015304A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Aqueous emulsion polymerization process for producing fluoropolymers
US20080264864A1 (en) 2007-04-27 2008-10-30 3M Innovative Properties Company PROCESS FOR REMOVING FLUORINATED EMULSIFIER FROM FLUOROPOLMER DISPERSIONS USING AN ANION-EXCHANGE RESIN AND A pH-DEPENDENT SURFACTANT AND FLUOROPOLYMER DISPERSIONS CONTAINING A pH-DEPENDENT SURFACTANT
WO2012043870A1 (en) * 2010-10-01 2012-04-05 Daikin Industries, Ltd. Method for recovering fluorosurfactant
SE541002C2 (en) * 2016-07-06 2019-02-26 Airwatergreen Group Ab Device for continuous water absorption and an air cooler
CN109876628A (en) * 2019-02-19 2019-06-14 无锡威士德气体净化科技有限公司 A kind of compound deodorizer and its preparation method and application removing house refuse stench

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990330A (en) * 1995-03-09 1999-11-23 Dyneon Gmbh Recovery of highly fluorinated carboxylic acids from the gas phase
WO2002010105A1 (en) * 2000-07-27 2002-02-07 Jemco Inc. Method of treating fluorine compound and treated substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5990330A (en) * 1995-03-09 1999-11-23 Dyneon Gmbh Recovery of highly fluorinated carboxylic acids from the gas phase
WO2002010105A1 (en) * 2000-07-27 2002-02-07 Jemco Inc. Method of treating fluorine compound and treated substance
WO2002010104A1 (en) * 2000-07-27 2002-02-07 Jemco Inc. Method of treating fluorine compound

Also Published As

Publication number Publication date
JP2003284921A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
JP4455327B2 (en) Method for recovering fluorine-containing emulsifier
JP4191929B2 (en) Method for recovering fluorine-containing emulsifier
JP4071111B2 (en) Regeneration and reuse of fluorinated carboxylic acids
JP2003220393A (en) Method for adsorptively recovering fluorine-containing emulsifier
JP5691518B2 (en) Method for purifying fluorine-containing compounds
JP2008532751A (en) Recovery of fluorinated surfactants from basic anion exchange resins with quaternary ammonium groups
JP5007965B2 (en) Treatment method for fluorine compounds
JP2007283224A (en) Method for recovering fluorine-containing emulsifier
JP2007520552A (en) Method for recovering hydrofluoric acid surfactant from adsorbent particles with hydrofluoric acid surfactant attached
JP2007520552A5 (en)
WO2003082793A1 (en) Process for the recovery of fluorine-containing emulsifier
WO2003066533A1 (en) Method of recovering fluorochemical emulsifying agent
US20100179293A1 (en) Process for removing fluorinated compounds from an aqueous phase originating from the preparation of fluoropolymers
JPWO2008004660A1 (en) Method for producing fluoropolymer aqueous dispersion and fluoropolymer aqueous dispersion
WO2012043870A1 (en) Method for recovering fluorosurfactant
WO2003066532A1 (en) Method of recovering fluorochemical emulsifying agent
JP4977970B2 (en) Method for producing nonionic surfactant aqueous composition
JP2006181416A (en) Method for regenerating adsorbent and method for recovering fluorine-containing surfactant
JP2003212921A (en) Method for recovering fluorine-containing emulsifier
JP2003212922A (en) Method for recovering fluorine-containing emulsifier
JP2003212920A (en) Method for recovering fluorine-containing emulsifier
EP3632855A1 (en) A method for providing aqueous compositions with reduced content of organic fluorinated compounds
WO2005003190A1 (en) Method for purifying material to be treated and method for producing coagulated material
EP4219412A1 (en) Closed-loop technologies for purifying fluorine containing water streams
CN110683934A (en) Method and system for purifying vinyl chloride monomer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase