WO2003066533A1 - Method of recovering fluorochemical emulsifying agent - Google Patents

Method of recovering fluorochemical emulsifying agent Download PDF

Info

Publication number
WO2003066533A1
WO2003066533A1 PCT/JP2003/000659 JP0300659W WO03066533A1 WO 2003066533 A1 WO2003066533 A1 WO 2003066533A1 JP 0300659 W JP0300659 W JP 0300659W WO 03066533 A1 WO03066533 A1 WO 03066533A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsifier
layered double
double hydroxide
fluorinated
fluorine
Prior art date
Application number
PCT/JP2003/000659
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Yanase
Masataka Eda
Hiroki Kamiya
Kota Omori
Takeshi Kamiya
Original Assignee
Jemco Inc.
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jemco Inc., Asahi Glass Company, Limited filed Critical Jemco Inc.
Priority to AU2003203383A priority Critical patent/AU2003203383A1/en
Publication of WO2003066533A1 publication Critical patent/WO2003066533A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/301Detergents, surfactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers

Definitions

  • the present invention relates to a method for recovering a fluorinated emulsifier using a layered double hydroxide.
  • IER anion exchange resin
  • Patent Document 2 (US 3882153) describes a method in which a dilute emulsifier aqueous solution is brought into contact with a weakly basic IER within a pH range of 0 to 7 to adsorb the emulsifier and desorb it with aqueous ammonia. .
  • Patent Document 3 discloses that a nonionic or cationic surfactant is added to coagulated waste water of a fluorine-containing polymer, and fine particles of polytetrafluoroethylene (hereinafter referred to as PTFE) in the coagulated waste water. Methods are described to stabilize and prevent clogging of the packed tower of the IER.
  • PTFE polytetrafluoroethylene
  • Patent Document 4 Japanese Patent Application Laid-Open No. 55-120630
  • Patent Document 5 US Pat. No. 4,369,266
  • Patent Document 6 DE 2908001
  • Patent Document 2 Japanese Patent Application Laid-Open No. 55-104651
  • Patent Document 8 Japanese Patent Application Laid-Open No. 55-104651
  • Patent Document 8 DE 2903981
  • Patent Document 9 discloses a coagulated drainage of a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA). Then, lime water is added in advance to adjust the pH to 6 to 7.5, and a metal salt such as aluminum chloride or iron chloride is added to coagulate unagglomerated PFA. A method is described in which after separation and removal, the pH of the obtained wastewater is adjusted to 7 or less with sulfuric acid, and the fluorinated emulsifier is adsorbed and recovered using a strongly basic IER.
  • PFA tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2000-61231 discloses a method of desorbing a fluorine-containing emulsifier adsorbed on an ion-exchange resin using a mixed solution of water, an alkali and an organic solvent. Is described.
  • Non-Patent Document 1 (Chemical Proceedings of the 76th Annual Meeting of the Chemical Society of Japan, Published on March 15, 2001, p. 600) and Non-Patent Document 2 (Chemical Society of Japan No. 80 Proceedings of the Annual Meeting of the Autumn Meeting, published on September 7, 2001, p. 41), using perfluorooctanoic acid and its ammonium salt using layered double hydroxides of aluminum and zinc. Insertion and fixation techniques have been reported.
  • Non-patent Documents 1 and 2 only shows insertion fixing with an aqueous solution in which only perfluorooctanoic acid and its ammonium salt are dissolved.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for easily recovering a fluorine-containing emulsifier from a coagulated drainage of a fluorine-containing polymer containing a fluorine-containing emulsifier using a layered double hydroxide. I have. Disclosure of the invention
  • the present invention provides a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion, a fluorinated emulsifier, and a content of a suspended solid and a substance that can be a suspended solid.
  • the wastewater after polymerization of the fluorine-containing polymer of 1% by mass or less is maintained at a pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed.
  • a method for recovering a fluorinated emulsifier, comprising extracting the fluorinated emulsifier is provided.
  • the present invention provides a method of adding a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion to an aqueous solution maintained at pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed.
  • a layered double hydroxide is generated in advance and added to wastewater after polymerization of a fluorine-containing polymer containing a fluorine-containing emulsifier and containing 1% by mass or less of a suspended solid and a substance that can become a suspended solid.
  • a layered double hydroxide containing a fluorinated emulsifier between layers dissolve the layered double hydroxide separated from the wastewater in a mineral acid, and use the fluorinated hydrocarbon from the dissolved solution.
  • a method for recovering a fluorine-containing emulsifier comprising extracting the fluorine-containing emulsifier.
  • the present invention provides a method in which a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion is added to the aqueous solution maintained at ⁇ at which the layered double hydroxide of the divalent metal and the trivalent metal is formed.
  • a layered double hydroxide in which the anion contained therein has been desorbed is generated, and this is a material containing a fluorine emulsifier, which can be a suspended solid and a substance that can be a suspended solid.
  • a method for recovering a fluorinated emulsifier comprising: dissolving fluorinated emulsifier in a mineral acid; and extracting the fluorinated emulsifier from the solution using a fluorinated hydrocarbon.
  • the divalent metal ion is preferably one or two selected from a magnesium ion and a zinc ion, and the trivalent metal ion is preferably an aluminum ion.
  • the mineral acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid and sulfuric acid.
  • the fluoropolymer includes polytetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene-propylene / vinylidene fluoride copolymer, and tetrafluoroethylene.
  • Chemical styrene ⁇ hexafluoride Kapuguchipi alkylene copolymer, tetrafluoroethylene modified styrene / CF 2 CFO (CF 3 ⁇ 4 ) 2 CF 3 copolymer, ⁇ And one or more selected from polyvinylidene fluoride.
  • the fluorine-containing emulsifier is ammonium perfluorooctanoate.
  • the fluorinated emulsifier salts such as perfluoroalkanoic acid, ⁇ -hydroperfluoroalkanoic acid, ⁇ -chloroperfluoroalkanoic acid, and perfluoroalkanesulfonic acid having 5 to 13 carbon atoms are used. It is preferable that they have a linear structure or a branched structure, or a mixture thereof. Further, the molecule may contain an etheric oxygen atom. When the number of carbon atoms is in this range, the effect as an emulsifier is excellent.
  • an alkali metal salt such as a lithium salt, a sodium salt, and a potassium salt or an ammonium salt is preferable, an ammonium salt or a sodium salt is more preferable, and an ammonium salt is most preferable.
  • the acid include perfluoropentanoic acid, perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, and perfluoropentanoic acid.
  • ammonium salts include 'acid ammonium, Ammonium perfluorohexanoate, ammonium perfluoroheptanoate, ammonium perfluorooctanoate (hereinafter referred to as APFO), ammonium perfluorononanoate, ammonium perfluorodecanoate, ammonium perfluorodecanoate, ⁇ -hydroperfluoroheptanoate ammonium, ⁇ -hydroperfluorooctanoate ammonium, ⁇ -hydroperfluorononanoate ammonium, ⁇ -cloperperfluoroheptanoate ammonium, ⁇ -clo Oral perfluorooctanoic acid ammonium, ⁇ -chloroperfluorononanoic acid ammonium, etc.
  • APFO ammonium perfluorononanoate
  • ammonium perfluorodecanoate ammonium perfluorodecano
  • ammonium perfluorohexane sulfonate ammonium perfluoroheptane sulfonate, ammonium perfluorooctane sulfonate, ammonium perfluorononane sulfonate, ammonium perfluorodecane sulfonate, and the like.
  • lithium salt examples include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorooctanoate, lithium perfluorononanoate, and lithium perfluoronate.
  • CF 3 CF 2 CF 2 OCF (CF 3 ) COOL i CF 3 CF 2 CF 2 ⁇ CF (CF 3 ) CF 2 OCF (CF 3 ) COOL i, CF 3 CF 2 CF 20 (CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 20 ] 3 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 CF 2 OCF ( CF 3 ) COOL i, etc.
  • Lithium perfluorohexane sulfonate Lithium, lithium perfluorooctanesulfonate,
  • sodium salt examples include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluorohepnoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorononate, sodium perfluorodenoate, Sodium perfluorododecanoate, Sodium hydroperfluoroheptanoate, Sodium hydroperfluorooctanoate, Sodium hydroperfluorononanoate, Sodium hydroperfluorononanoate, Sodium heptanoate, sodium ⁇ -cloper perfluorooctanoate, sodium ⁇ -cloper perfluorononanoate, etc.
  • CF 3 CF 2 CF 2 OCF (CF 3 ) COON a CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COON a, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COON a, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 20 ] 3 CF (CF 3 ) COON a, CF 3 CF 2 CF 2 CF 2 OCF (CF 3 ) COONa and the like, sodium acid, sodium perfluorooctanesulfonate, sodium perfluorononanesulfonate, sodium perfluorodecanesulfonate and the like.
  • potassium salt examples include potassium perfluoropentanoate, potassium perfluorohexanoate, potassium perfluoroheptanoate, potassium perfluorooctanoate, potassium perfluorononanoate, and perfluolonate.
  • potassium perfluoronate and potassium perfluorodecane sulfonate are preferable, and ammonium perfluoroheptanoate, APFO, ammonium perfluorononanoate or perfluonium Ammonium orolodecanoate is more preferred, and APFO is most preferred.
  • the effluent after polymerization of the fluorinated polymer is the effluent after separating the fluorinated polymer obtained by polymerizing at least one fluorinated monomer in an aqueous medium containing a fluorinated emulsifier.
  • coagulation wastewater of the fluoropolymer after emulsion polymerization is preferable, and coagulation wastewater from the process of producing a polymer of the fluoromonomer or a copolymer of the fluoromonomer and a monomer other than the fluoromonomer is particularly preferable. .
  • the coagulated waste water from the production step is obtained by emulsion polymerization or aqueous dispersion polymerization of a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer in an aqueous medium containing a fluorinated emulsifier.
  • This refers to waste water obtained by coagulating a fluoropolymer from the obtained aqueous dispersion of a fluoropolymer by salting out or the like and separating the fluoropolymer.
  • the wastewater contains not only the fluorinated emulsifier used in the polymerization of the fluorinated monomer but also an SS component such as a non-aggregated fluorinated polymer.
  • an SS component such as a non-aggregated fluorinated polymer.
  • VdF vinylene fluoride
  • HEP hexafluoropropylene
  • Monomers other than the fluorinated monomer include vinyl esters such as vinyl acetate, pinyl ethers such as ethyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether; monomers having a cyclic structure such as norpolenene and norbonagen; Examples thereof include aryl ethers such as a lyl ether, ethylene (hereinafter, referred to as E), propylene (hereinafter, referred to as P), and olefins such as isobutylene. Monomers other than the fluorinated monomer may be used alone or in combination of two or more.
  • examples of the fluoropolymer include PTFE, TFE / P copolymer, TFEZPZVd F copolymer, TFE / HFP copolymer, PFA / PPVE copolymer, EZTFE copolymer, polyvinylidene fluoride and the like.
  • PTFE PTFE
  • TFEZP copolymer TFE / PZVdF copolymer
  • PFA / PPVE copolymer EZTFE copolymer
  • polyvinylidene fluoride and the like can be More preferably, it is PTFE, TFEZP copolymer, TFE / PZVdF copolymer or PFA / PPVE copolymer, most preferably PTFE.
  • a method of adding divalent and trivalent metal ions to the coagulated waste water of a fluorine-containing polymer (hereinafter referred to as a coprecipitation method), A method of adding a layered double hydroxide formed in a solution containing no emulsifier to the coagulated wastewater of a fluorine-containing polymer (hereinafter referred to as an ion exchange method); and a method of forming a layered double hydroxide formed in a solution containing no fluorine-containing emulsifier. It is possible to use a method in which the hydroxide is calcined and then added to the coagulated wastewater of the fluorine-containing polymer (hereinafter referred to as a reconstitution method).
  • potassium hydroxide and / or sodium hydroxide are added in advance to adjust the PH of the wastewater. Adjust to 6 or more and 9 or less when using aluminum ion and zinc ion, and 9 or more and 11 or less when using aluminum ion and magnesium ion. If the pH is out of the above range, In the method of adding a salt of aluminum and zinc or a salt of aluminum and magnesium to water, these metals form hydroxides individually and form aluminum hydroxide, zinc hydroxide, and magnesium hydroxide.
  • the concentration of the fluorinated emulsifier to be recovered is preferably 1 ppm (based on mass, the same applies hereinafter) or more and 10 mass% or less, more preferably 10 ppm or more and 1 mass% or less, particularly preferably 50 ppm or less.
  • the content is preferably at least 0.5% by mass.
  • concentration of the fluorinated emulsifier is 1 ppm or more, there is no problem that the efficiency of capturing the fluorinated emulsifier by the layered double hydroxide in the recovered liquid is reduced.
  • the concentration of the fluorine-containing emulsifier is higher than 10% by mass, a simpler and more efficient method such as precipitation of the fluorine-containing emulsifier by changing pH can be used.
  • Substances that can become suspended solids and suspended solids, such as unagglomerated fluoropolymer fine particles, contained in the flocculated wastewater are used to recover the fluorine-containing emulsifier and Although it does not adversely affect the recovery rate, it may hinder the regeneration of the fluorinated emulsifier from the generated layered double hydroxide, so remove it to 1% by mass or less before forming the layered double hydroxide. It is important to keep.
  • the SS component in the coagulated wastewater is more preferably removed to 0.3% by mass or less, particularly preferably to 0.05% by mass or less.
  • the substance that can become a suspended solid include a metal salt used for salting out and coagulation of a fluoropolymer and / or a substance that precipitates due to a change in pH of the coagulated wastewater.
  • salting out by adding a metal salt containing a polyvalent metal cation to coagulate the S S component is effective.
  • the metal salt include metal chlorides such as aluminum chloride, polyaluminum chloride, ferrous chloride, and ferric chloride.
  • Agglomerates generated by salting out should precipitate in the state containing APFO. Therefore, it is preferable to re-dissolve APFO from aggregates in water by adjusting the pH to 7 or more by adding sodium hydroxide and / or Z or a hydroxylating steam.
  • a common solid-liquid separation method can be used as a method for removing the SS component aggregates obtained by adding the above-mentioned metal chloride to the aggregated wastewater, particularly from filtration, decantation, centrifugation and thickener. It is more preferable to use one or more methods selected from the group consisting of: The filtration is also preferably performed under pressure. Further, it is preferable that the wastewater containing the aggregate is allowed to stand still, the aggregate is settled, and the supernatant is filtered to remove the aggregate. Thickeners or screw decanters are most preferable in terms of facility maintenance.
  • a trivalent metal (a metal that becomes a trivalent ion when ionized) and a divalent metal (a metal that becomes divalent ion when ionized) used to form the layered double hydroxide are used.
  • Metal has a range in which the pH of the ion of the trivalent metal forms a hydroxide overlaps with the range of the pH in which the ion of the divalent metal forms a hydroxide, or If the range of H is close, a layered double hydroxide can be formed.
  • Examples of the divalent metal include beryllium, cadmium, cobalt, chromium (II), copper (II), iron (II), magnesium, manganese (II), nickel, lead, platinum, palladium, zinc, tin, and calcium. And the like.
  • Examples of the trivalent metal include aluminum, bismuth, cerium, chromium (II), iron (III), gallium, indium, manganese (III), titanium, and thallium. In consideration of the effect on the environment and the availability, in the present invention, it is preferable to use one or two selected from magnesium and zinc as the divalent metal and to use aluminum as the trivalent metal. .
  • the preferable divalent metal and trivalent metal are used will be described.
  • the pH of the wastewater is 9 or more when the layered double hydroxide of aluminum and magnesium is used. Adjust to the following. Then, an aqueous solution in which the molar ratio of aluminum ion: magnesium ion is 1: 2 and the concentration of aluminum ion and magnesium ion is 0.0 lmo 1 ZL or more and 2 mo 1 ZL or less is added while stirring. I do.
  • Aluminum There is no problem with using any kind of raw material, but aluminum ion is preferably aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, or aluminum nitrate because of its availability. Aluminum chloride, aluminum chloride hexahydrate Japanese is more preferred.
  • magnesium chloride magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate, magnesium oxide, magnesium sulfate, magnesium sulfate heptahydrate, and magnesium carbonate
  • chloride Magnesium and magnesium chloride hexahydrate are preferred.
  • the pH of the wastewater is adjusted to 6 or more and 9 or less when the layered double hydroxide of aluminum and zinc is used as described above. Then, an aqueous solution in which the molar ratio of aluminum ion: zinc ion is 1: 2 and the concentration of aluminum ion and zinc ion is 0.0 lmo 1 / L or more and 2 mo 1 ZL or less is added with stirring.
  • Aluminum ion and zinc ion can be made of any raw material, but aluminum ion is preferably aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, or aluminum nitrate because of availability. More preferably, aluminum chloride and aluminum chloride hexahydrate are used.
  • As a raw material for zinc ions it is preferable to use zinc chloride, zinc nitrate hexahydrate, zinc oxide, zinc sulfate, and zinc sulfate heptahydrate, and zinc chloride is more preferable.
  • a mixed aqueous solution containing divalent and trivalent metal ions (hereinafter, referred to as a metal ion aqueous solution) is preferably used in an aqueous solution having a concentration of not less than 0.01 mO 17 and not more than 211101 ZL. If the metal ion concentration is lower than this, the amount of water increases when the required metal is added, and the total amount of the layered double hydroxide dissolved in the aqueous solution increases, which is not preferable.
  • the metal ion concentration is higher than this, since the metal ion aqueous solution is acidic, when forming the layered double hydroxide, a part of the aqueous solution is locally layered double hydroxide by adding the metal ion aqueous solution.
  • the metal ion is not effectively used for forming a layered double hydroxide.
  • a layered double hydroxide can be synthesized by adding a metal ion aqueous solution having an appropriate concentration range again.
  • the amount of the layered double hydroxide to be added to the coagulated waste water of the fluoropolymer is as follows: 03 00659
  • the trivalent ions in the double hydroxide are at least 1 mol times and at most 30 mol times with respect to the fluorinated emulsifier, and the divalent ions are at least 1 mol time and at most 60 mol times with respect to the fluorinated emulsifier. preferable.
  • the molar ratio of trivalent ions to divalent ions in the layered double hydroxide is 3
  • : 1: 1: 3 is preferable, and 1: 1 to 1: 3 is more preferable.
  • the amount of the calcined layered double hydroxide 1 mole or more the recovery rate of the fluorinated emulsifier is improved, and the amount of the layered double hydroxide to be added is within the above range. Since the ratio of the fluorinated emulsifier to the layered double hydroxide becomes too small, it is possible to eliminate the problem that the final regeneration efficiency of the fluorinated emulsifier is reduced. In addition, excessive use of the layered double hydroxide is not preferable from the viewpoint of increasing the load in the final wastewater treatment process due to the contained metal component.
  • the stirring method is not particularly limited, but is preferably a method that does not mechanically destroy the aggregate particles generated by the stirring.
  • a stirring blade of such a stirring device a stirring blade capable of uniformly mixing the entire wastewater at a low rotation speed is preferable, and one type selected from the group consisting of a full zone blade, a max blend blade, and an anchor blade is preferable.
  • G value during stirring at the stirring blade is preferably from 1 to 3 0 0 s-1, more preferably from 5 to 2 5 0 s 1,
  • the G value is a value derived by the following equation.
  • the firing of the layered double hydroxide is preferably performed at a temperature of at least 300 ° C. and less than 600 ° C., more preferably at least 400 and less than 500 ° C. At temperatures lower than this, the contained carbonate ions are not sufficiently desorbed, or it takes a long time for sufficient desorption. If the temperature is higher than this, the crystal structure of the layered double hydroxide collapses, which causes a reduction in the recovery efficiency of the fluorinated emulsifier.
  • the reaction is preferably carried out at a water temperature of 10 ° C. or more and 50 ° C. or less. If the water temperature is lower or higher than this, the recovery of the fluorinated emulsifier by the layered double hydroxide decreases. In particular, it is preferable to equip the reactor with a heating device because the recovery rate at a lower water temperature is significantly reduced.
  • a layered double hydroxide containing a fluorinated emulsifier between layers is generated in the coagulated wastewater.
  • the fluorinated emulsifier is separated from the coagulated wastewater. Can be recovered.
  • a well-known solid-liquid separation method can be used as appropriate, and in particular, at least one selected from the group consisting of filtration, decantation, centrifugation, and thickener It is more preferable to use the method described above.
  • the filtration is also preferably performed under pressure.
  • the fluorinated emulsifier recovered in the form of being encapsulated in the layered double hydroxide is, for example, redissolved the layered double hydroxide with hydrochloric acid and / or sulfuric acid and a strong acid such as Z or nitric acid. It can be regenerated by a method such as extraction from a liquid with a water-insoluble organic solvent.
  • Mineral acids used in the present invention include hydrochloric acid, sulfuric acid, and nitric acid.
  • hydrochloric acid is preferred.
  • Hydrochloric acid is an acid having a boiling point of 85 ° C, and hydrochloric acid mixed into the extract can be easily removed from the extract by a subsequent concentration operation.
  • the fluorinated hydrocarbon in the present invention those having 2 or 3 carbon atoms and containing one or more hydrogen atoms and one or more fluorine atoms are preferable.
  • the boiling point of the fluorinated hydrocarbon is preferably 5 to 120 ° C, more preferably 10 to 80 ° C. When it is in this range, the fluorinated hydrocarbon can be easily distilled and recovered, which is preferable.
  • C 3 HC 1 2 F 5 and C 3 H 3 F 1 or more to 5 selected from the group consisting of.
  • C 3 H 3 F 5 examples include CF 3 CH 2 CHF 2 , CF 3 CHFCH 2 F, and CHF 2 CH FCH F 2 , with CF 3 CH 2 CHF 2 being most preferred.
  • the fluorine-containing hydrocarbon and most preferably CF 3 CF 2 CHC 1 2, CC 1 F 2 CF 2 CHC 1 F and CF 3 CH 2 1 or more selected from the group consisting of CHF 2.
  • chlorinated hydrocarbons when chlorinated hydrocarbons are used for the extraction of fluorinated emulsifiers, it is necessary to treat chlorinated hydrocarbons that dissolve in the aqueous phase, whereas the solubility of fluorinated hydrocarbons in water is chlorinated hydrocarbons. Such a process is not necessary because it is lower.
  • conventionally used devices and equipment can be used for the above-mentioned extraction operation of the fluorinated emulsifier.
  • the extraction device include a batch extraction device, a cocurrent multiple extraction device, a countercurrent multistage extraction device, and a continuous countercurrent extraction device.
  • the extraction conditions were as follows: at a temperature lower than the boiling point of the solvent, a layered double hydroxide containing a fluorinated emulsifier was added between the layers.
  • the acid solution and the extraction solvent are mixed. Usually, 20 to 100% by mass, preferably 30 to 50% by mass of the extraction solvent is added to the acid solution.
  • the extraction rate of the fluorinated emulsifier is improved, but the throughput of the solvent in steps such as concentration is increased.
  • the extraction medium is dispersed in the acid solution by stirring, flowing, shaking, or the like.
  • the dispersion is performed so that the diameter of the droplets of the extraction medium is 0.1 mm or less, the extraction is completed in less than 10 minutes.
  • the extraction is completed, allow to stand to separate the aqueous and medium phases. Separation is required until the interface between the two phases is clear, but this is usually achieved in less than 10 minutes.
  • the concentration of APFO, perfluorooctanoic acid (hereinafter referred to as PFOA) or sodium perfluorooctanoate is determined by a high-performance liquid chromatography using a mixed solution of methanol and water as a solvent. It was measured using the Kuttle method. Species to be detected by this method is per full O Roo Kuta Noe Ichito (C 7 F 15 COO I).
  • the concentration of APF ⁇ in the waste water after coagulation after emulsion polymerization of PTFE was 148 ppm when measured.
  • the pH was adjusted to 10.0 by adding a 0.2 N aqueous solution of sodium hydroxide to this aqueous solution.
  • the liquid temperature was 26 ° C.
  • this solution 10 L (80 content 1. 48 g, 3. 43mmo 1) aluminum and mixed aqueous solution of chloride mug Neshiumu chloride [A 1 3+ ion concentration 0. 075mo 1 ZL, Mg 2+ ions 0. Approximately 229 mL [A 1 total ion amount 17.2 mmo 1, Mg 2+ total ion amount 34.3 mmo 1] was dropped over 2 hours.
  • the concentration of APFO was 2 ppm, and thus the fixation rate of PFOA contained in the layered double hydroxide was 98.6%.
  • a 10 mass% hydrochloric acid 10 0 g was added, After stirring at room temperature for 3 hours CF 2 C 1 CF 2 CHC 1 F / CF 3 CF 2 CHC 1 2 mixed medium (molar ratio 55/45, 30 g of Asahi Glass 225 (hereinafter, referred to as AK 225) was added and shaken vigorously for 10 minutes. After allowing this solution to stand and separate into two phases, the upper aqueous phase contained 0.14% by weight of PFOA and the lower AK225 phase contained 4.03% by weight of PFOA. The recovery rate from the original coagulated wastewater was 85.1%.
  • Aqueous mixed solution of aluminum chloride and zinc chloride [A13 + ion concentration 0.075mo1 / L, Zn2 + ion 0.15mo1ZL] Approx.45.8mL [Total amount of A13 + ion 3. 43 mmol, Zn 2+ ion total amount 6.86 mmol 1] was dropped over 2 hours. During the dropping, stirring was continued using an anchor blade so that the G value became 100 s _1 . During the addition of the metal ion aqueous solution, the coagulated waste water was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 Zm 3 ⁇ h to remove dissolved carbonate ions and carbon dioxide in the aqueous solution. During the dropping, add 0.2 N sodium hydroxide aqueous solution appropriately to adjust the pH to 6.5 or more.
  • Example 2 The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1 except that the pH was adjusted to 10.0 using potassium hydroxide instead of sodium hydroxide. .
  • the fixed rate of PFOA contained in the layered double hydroxide was 97.5%, and when AK 225 was extracted in the same manner as in Example 1, the recovery from the original wastewater was 84.1%. .
  • Example 2 The same operation as in Example 2 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 2, except that the pH was adjusted to 7.0 using potassium hydroxide instead of sodium hydroxide. .
  • the fixed rate of PFO A contained in the layered double hydroxide was 98.6%, and when AK 225 was extracted in the same manner as in Example 1, the recovery from the original wastewater was 84.9%. there were.
  • Example 2 The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1 except that 30 g of trichloromethane was used as an extraction medium.Layered PFOA contained in double hydroxide The fixed rate was 98.1%, and the recovery rate from the original wastewater was 76.7% after trichloromethane extraction.
  • Example 5 The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE, except that 30 g of dichloromethane was used as the extraction medium. Fixation of PF OA contained in the layered double hydroxide The recovery was 97.8%, and the recovery from the original wastewater was 70.2% after dichloromethane extraction. [Example 5]
  • Example 2 The same fixing operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1.
  • the fixing rate of PFO A contained in the layered double hydroxide was 97.8%.
  • AK 225 extraction was performed in the same manner as in Example 1 except that 100 g of 3% by mass sulfuric acid was used instead of 100% of 10% by mass hydrochloric acid as a mineral acid used for dissolving the layered double hydroxide.
  • the recovery rate from the original wastewater was 83.7%
  • Example 2 The same fixing operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTF E as in Example 1.
  • the fixed rate of PFOA contained in the layered double hydroxide was 98.1%.
  • Extraction of AK225 was performed in the same manner as in Example 1 except that 100 g of 10% by mass of nitric acid was used instead of 100% of 10% by mass of hydrochloric acid as the mineral acid used for dissolving the layered double hydroxide.
  • the recovery rate from wastewater was 84.5%.
  • the pH was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to distilled water.
  • the liquid temperature was 26 ° C.
  • a 1 3+ ions total 1 I .2 mmo1, Mg 2 + ion total amount of 34.3 mmo 13 was added dropwise over 2 hours.
  • the G value using an anchor blade was continued stirring such that the 100 s 1.
  • the coagulated wastewater was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 / m 3 ⁇ h to remove dissolved carbonate ions and carbon dioxide gas in the aqueous solution.
  • a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less.
  • the extremely pale milky liquid began to aggregate and began to form a white precipitate.
  • the formation of the precipitate was completed. When the stirring was stopped, the precipitate formed slowly settled. The precipitate was collected by filtration through a membrane filter having an average diameter of 3 m.
  • PTFE water obtained by polymerizing TFE using APFO as an emulsifier PTFE is flocculated from the aqueous dispersion.
  • Coagulated wastewater after separation (SS component: 400 ppm, APF ⁇ concentration: 148 ppm, pH 4.5).
  • the precipitate was added and stirred at room temperature for 1 hour. When the stirring was stopped, the precipitate settled out slowly.
  • the precipitate was collected by filtration through a membrane filter having an average diameter of 3 m.
  • the concentration of APFO was 63 ppm, and therefore, the fixing ratio of PFOA contained in the layered double hydroxide was 57.4%.
  • the pH was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to distilled water.
  • the liquid temperature was 26 ° C.
  • 1.82 g (17.2 mmo 1) of sodium carbonate was dissolved.
  • the total amount was 17.2 mmo, and Mg 2+ ion total amount 34.3 mmo 1] was added dropwise over 2 hours.
  • the coagulated wastewater was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 Zm 3 ⁇ h to remove dissolved carbonate ions and carbon dioxide gas in the aqueous solution.
  • the G value by using the anchor part is stirring was continued so that the 100 s 1.
  • a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less.
  • the extremely pale milky liquid began to aggregate and began to form a white precipitate.
  • PTFE is coagulated from an aqueous dispersion of PTFE obtained by polymerizing TFE using APFO as an emulsifier.
  • Coagulated wastewater after separation (SS component is 400 ppm
  • the precipitate was collected by filtration through a membrane filter having an average diameter of 3 / im.
  • the concentration of APFO was 121 ppm, and therefore, the fixing rate of PFOA contained in the layered double hydroxide was 18.2%.
  • APFO was fixed to the layered double hydroxide in the same manner as in Example 1 with respect to the coagulated waste water after emulsion polymerization of PTFE as in Example 1.
  • Fixed rate of P FO A contained in the layered double hydroxide is 8% 97., followed by the same method as in Example 1 except for using 30 g of C HF 2 CH 2 CF 3 in place of AK 225 When the extraction operation was performed, the recovery rate from the original wastewater was 79.4%.
  • a fluorine-containing emulsifier can be economically recovered by a simple operation.

Abstract

A method of recovering a fluorochemical emulsifying agent with a lamellar composite hydroxide from a wastewater resulting from polymerization for fluoropolymer production and containing the fluorochemical emulsifying agent, which comprises yielding a lamellar composite hydroxide containing the fluorochemical emulsifying agent trapped between sheets thereof, separating the lamellar composite hydroxide from the coagulation wastewater, dissolving the hydroxide in a mineral acid, and extracting the fluorochemical emulsifying agent from the solution with a fluorinated hydrocarbon. The fluorochemical emulsifying agent can be economically recovered through a simple procedure.

Description

明細書 含フッ素乳化剤の回収法 技術分野  Description Recovery method of fluorine-containing emulsifier
本発明は、 層状複水酸化物を用いた含フッ素乳化剤の回収法に関する。 背景技術  The present invention relates to a method for recovering a fluorinated emulsifier using a layered double hydroxide. Background art
従来、 含フッ素ポリマーの乳化重合に使用される含フッ素乳化剤の回収方法と して、 陰イオン交換樹脂 (以下、 I ERという。 ) を用いる技術が知られている 特許文献 1 (特公昭 47— 51233号公報) には、 乳化重合のラテックスを 凝集 ·洗浄し、 乳化剤を水溶液として捕集し、 濃縮後有機溶剤で該含フッ素乳化 剤を回収する方法が記載されており、 本文中には I ERを用いた該含フッ素乳化 剤の回収方法も記載されている。  Conventionally, as a method for recovering a fluorinated emulsifier used for emulsion polymerization of a fluorinated polymer, a technique using an anion exchange resin (hereinafter referred to as IER) is known. No. 51233) describes a method of coagulating and washing an emulsion polymerization latex, collecting an emulsifier as an aqueous solution, concentrating the solution, and recovering the fluorinated emulsifier with an organic solvent. A method for recovering the fluorinated emulsifier using ER is also described.
特許文献 2 (US 3882153) には、 希薄乳化剤水溶液を p H 0〜 7の範 囲で弱塩基性 I ERに接触させ、 該乳化剤を吸着させ、 アンモニア水で脱着させ る方法が記載されている。  Patent Document 2 (US 3882153) describes a method in which a dilute emulsifier aqueous solution is brought into contact with a weakly basic IER within a pH range of 0 to 7 to adsorb the emulsifier and desorb it with aqueous ammonia. .
特許文献 3 (WO 99/62830) には、 含フッ素ポリマーの凝集排水にノ 二オン又はカチオン性界面活性剤を添加し、 凝集排水中のポリ四フッ化工チレン (以下、 PTFEという。 ) 微粒子を安定化し、 I ERの充填塔の閉塞を防止す る方法が記載されている。  Patent Document 3 (WO 99/62830) discloses that a nonionic or cationic surfactant is added to coagulated waste water of a fluorine-containing polymer, and fine particles of polytetrafluoroethylene (hereinafter referred to as PTFE) in the coagulated waste water. Methods are described to stabilize and prevent clogging of the packed tower of the IER.
特許文献 4 (特開昭 55 - 120630号公報) 、 特許文献 5 (US 4369 266) 及び特許文献 6 (DE 290800 1) には、 PTFEの凝集排水を限 外ろ過法で濃縮するとともに PTFE製造に用いた含フッ素乳化剤の一部を回収 した後、 I ERで含フッ素乳化剤を吸着 ·回収する方法が記載されている。 前記特許文献 2、 及び特許文献 7 (特開昭 55— 104651号公報) 、 特許 文献 8 (DE 2903981) には、 含フッ素乳化剤を I E Rに吸着させ、 つい で酸と有機溶剤との混合物を用いてペルフルォロオクタン酸を脱着し回収する方 法が開示されている。  Patent Document 4 (Japanese Patent Application Laid-Open No. 55-120630), Patent Document 5 (US Pat. No. 4,369,266) and Patent Document 6 (DE 2908001) condense the coagulated PTFE wastewater by ultrafiltration and use it for PTFE production. It describes a method of recovering a part of the used fluorinated emulsifier and then adsorbing and recovering the fluorinated emulsifier by ER. Patent Document 2, Patent Document 7 (Japanese Patent Application Laid-Open No. 55-104651), and Patent Document 8 (DE 2903981) describe that a fluorine-containing emulsifier is adsorbed on an IER, and then a mixture of an acid and an organic solvent is used. Thus, a method for desorbing and recovering perfluorooctanoic acid has been disclosed.
特許文献 9 (WO 99/62858) には、 予め四フッ化工チレン/ペルフル ォロ (アルキルビニルエーテル) 共重合体 (以下、 PFAという。 ) の凝集排水 に、 予め石灰水を添加して p Hを 6〜7 . 5に調整後、 塩化アルミニウム、 塩化 鉄等の金属塩を添加して未凝集の P F Aを凝集させ、 ついで機械的に凝集物を分 離 -除去した後に、 得られた排水の p Hを硫酸で 7以下に調整し、 強塩基性 I E Rを用いて該含フッ素乳化剤を吸着 ·回収する方法が記載されている。 Patent Document 9 (WO 99/62858) discloses a coagulated drainage of a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer (hereinafter referred to as PFA). Then, lime water is added in advance to adjust the pH to 6 to 7.5, and a metal salt such as aluminum chloride or iron chloride is added to coagulate unagglomerated PFA. A method is described in which after separation and removal, the pH of the obtained wastewater is adjusted to 7 or less with sulfuric acid, and the fluorinated emulsifier is adsorbed and recovered using a strongly basic IER.
特許文献 1 0 (特開 2 0 0 1 - 6 2 3 1 3号公報) には、 イオン交換樹脂に吸 着した含フッ素乳化剤を水、 アルカリ、 有機溶剤の混合溶液を用いて脱着する方 法が記載されている。  Patent Document 10 (Japanese Patent Application Laid-Open No. 2000-61231) discloses a method of desorbing a fluorine-containing emulsifier adsorbed on an ion-exchange resin using a mixed solution of water, an alkali and an organic solvent. Is described.
また、 非特許文献 1 (日本化学会第 7 6回春季年会講演予稿集、 平成 1 1年 3 月 1 5日発行、 第 6 0 0頁) 及び非特許文献 2 (日本化学会第 8 0回秋季年会講 演予稿集、 平成 1 3年 9月 7日発行、 第 4 1頁) では、 アルミニウムと亜鉛の層 状複水酸化物を用いて、 パーフルォロオクタン酸及びそのアンモニゥム塩を挿入 固定する技術が報告されている。  In addition, Non-Patent Document 1 (Chemical Proceedings of the 76th Annual Meeting of the Chemical Society of Japan, Published on March 15, 2001, p. 600) and Non-Patent Document 2 (Chemical Society of Japan No. 80 Proceedings of the Annual Meeting of the Autumn Meeting, published on September 7, 2001, p. 41), using perfluorooctanoic acid and its ammonium salt using layered double hydroxides of aluminum and zinc. Insertion and fixation techniques have been reported.
しかしながら I E Rを用いる方法では、 I E Rとの接触の前に未凝集の含フッ 素ポリマーを含む、 浮遊固形成分 (以下、 S S分と記す) を除去する必要があり 、 この S S分の除去が該含フッ素乳化剤の回収効率に多大な影響を与えるだけで なく、 S S分を除去するための簡便且つ高効率の方法が見つかっていないなど、 実際の操作上での課題が多く残されている。  However, in the method using the IER, it is necessary to remove suspended solid components (hereinafter, referred to as SS components) including unagglomerated fluorine-containing polymer before contacting with the IER. In addition to having a great effect on the recovery efficiency of the fluorine emulsifier, there are still many problems in actual operation, such as no simple and efficient method for removing SS has been found.
また、 非特許文献 1、 2で報告された層状複水酸化物を用いた挿入固定方法で は、 あくまでパーフルォロオクタン酸及びそのアンモニゥム塩のみが溶解した水 溶液での揷入固定が示されただけで、 他の夾雑物が含まれている実際の含フッ素 ポリマーの凝集排水を用いて実際に挿入固定を示した報告は知られていない。 本発明は上記事情に鑑みてなされたもので、 含フッ素乳化剤を含有する含フッ 素ポリマーの凝集排水などから層状複水酸化物を用いて含フッ素乳化剤を簡便に 回収する方法の提供を目的としている。 発明の開示  In addition, the insertion fixing method using a layered double hydroxide reported in Non-patent Documents 1 and 2 only shows insertion fixing with an aqueous solution in which only perfluorooctanoic acid and its ammonium salt are dissolved. However, there is no known report that shows insertion and fixation using actual flocculated wastewater of a fluoropolymer containing other contaminants. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for easily recovering a fluorine-containing emulsifier from a coagulated drainage of a fluorine-containing polymer containing a fluorine-containing emulsifier using a layered double hydroxide. I have. Disclosure of the invention
上記目的を達成するために、 本発明は、 2価金属イオンと 3価金属イオンを含 む混合水溶液と、 含フッ素乳化剤を含み、 かつ浮遊固形分及び浮遊固形分になり うる物質の含有量が 1質量%以下である含フッ素ポリマーの重合後の排水とを、 前記 2価金属と前記 3価金属との層状複水酸化物が形成される p Hに保ちながら 混合し、 含フッ素乳化剤を層間に含む層状複水酸化物を生成させ、 続いて該排水 から分離した該層状複水酸化物を鉱酸に溶解し、 該溶解液から含フッ素炭化水素 を用いて該含フッ素乳化剤を抽出することを特徴とする含フッ素乳化剤の回収法 を提供する。 In order to achieve the above object, the present invention provides a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion, a fluorinated emulsifier, and a content of a suspended solid and a substance that can be a suspended solid. The wastewater after polymerization of the fluorine-containing polymer of 1% by mass or less is maintained at a pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed. Mixing to form a layered double hydroxide containing a fluorinated emulsifier between layers, subsequently dissolving the layered double hydroxide separated from the wastewater in a mineral acid, and using a fluorinated hydrocarbon from the dissolved solution. A method for recovering a fluorinated emulsifier, comprising extracting the fluorinated emulsifier is provided.
また、 本発明は、 2価金属イオンと 3価金属イオンを含む混合水溶液を、 前記 2価金属と前記 3価金属との層状複水酸化物が形成される p Hに保った水溶液に 加えて層状複水酸化物を予め生成させ、 これを含フッ素乳化剤を含み、 浮遊固形 分及び浮遊固形分になりうる物質の含有量が 1質量%以下の、 含フッ素ポリマー の重合後の排水に添加して、 含フッ素乳化剤を層間に含む層状複水酸化物を生成 させ、 続いて該排水から分離した該層状複水酸化物を鉱酸に溶解し、 該溶解液か ら含フッ素炭化水素を用いて該含フッ素乳化剤を抽出することを特徴とする含フ ッ素乳化剤の回収法を提供する。  Further, the present invention provides a method of adding a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion to an aqueous solution maintained at pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed. A layered double hydroxide is generated in advance and added to wastewater after polymerization of a fluorine-containing polymer containing a fluorine-containing emulsifier and containing 1% by mass or less of a suspended solid and a substance that can become a suspended solid. To form a layered double hydroxide containing a fluorinated emulsifier between layers, then dissolve the layered double hydroxide separated from the wastewater in a mineral acid, and use the fluorinated hydrocarbon from the dissolved solution. There is provided a method for recovering a fluorine-containing emulsifier, comprising extracting the fluorine-containing emulsifier.
さらに、 本発明は、 2価金属イオンと 3価金属イオンを含む混合水溶液を、 前 記 2価金属と前記 3価金属との層状複水酸化物が形成される ρ Ηに保った水溶液 に加えて生成した層状複水酸化物を焼成することにより、 内包するァニオンを脱 離させた層状複水酸化物を生成させ、これをフッ素乳化剤を含み、浮遊固形分及び 浮遊固形分になりうる物質の含有量が 1質量%以下の、 含フッ素ポリマーの重合 後の排水に添加して含フッ素乳化剤を層間に含む層状複水酸化物を生成させ、 続 いて該排水から分離した該層状複水酸化物を鉱酸に溶解し、 該溶解液から含フッ 素炭化水素を用いて該含フッ素乳化剤を抽出することを特徴とする含フッ素乳化 剤の回収法を提供する。  Furthermore, the present invention provides a method in which a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion is added to the aqueous solution maintained at ρΗ at which the layered double hydroxide of the divalent metal and the trivalent metal is formed. By firing the layered double hydroxide produced in this way, a layered double hydroxide in which the anion contained therein has been desorbed is generated, and this is a material containing a fluorine emulsifier, which can be a suspended solid and a substance that can be a suspended solid. A layered double hydroxide containing a fluorine-containing emulsifier between layers by adding to a wastewater after polymerization of a fluorine-containing polymer having a content of 1% by mass or less, and then separating the layered double hydroxide from the wastewater A method for recovering a fluorinated emulsifier, comprising: dissolving fluorinated emulsifier in a mineral acid; and extracting the fluorinated emulsifier from the solution using a fluorinated hydrocarbon.
本発明においては、 前記 2価金属イオンがマグネシウムイオン及び亜鉛イオン から選ばれる 1種又は 2種であり、 前記 3価金属イオンがアルミニウムイオンで あることが好ましい。  In the present invention, the divalent metal ion is preferably one or two selected from a magnesium ion and a zinc ion, and the trivalent metal ion is preferably an aluminum ion.
本発明の含フッ素乳化剤の回収法において、 前記鉱酸は、 塩酸、 硝酸及び硫酸 からなる群から選ばれる 1種以上であることが好ましい。  In the method for recovering a fluorinated emulsifier of the present invention, the mineral acid is preferably at least one selected from the group consisting of hydrochloric acid, nitric acid and sulfuric acid.
また、 前記含フッ素ポリマーは、 ポリ四フッ化工チレン、 四フッ化工チレン Ζ エチレン共重合体、 四フッ化工チレン/プロピレン共重合体、 四フッ化工チレン Ζプロピレン/フッ化ビニリデン共重合体、 四フッ化工チレン Ζ六フッ化プ口ピ レン共重合体、 四フッ化工チレン/ C F 2 = C F O ( C F ¾ ) 2 C F 3共重合体、 及 びポリフッ化ビニリデンから選ばれる一種又は二種以上であることが好ましい。 さらに、 前記含フッ素乳化剤は、 ペルフルォロオクタン酸アンモニゥムである ことが好ましい。 In addition, the fluoropolymer includes polytetrafluoroethylene, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene-propylene / vinylidene fluoride copolymer, and tetrafluoroethylene. Chemical styrene Ζ hexafluoride Kapuguchipi alkylene copolymer, tetrafluoroethylene modified styrene / CF 2 = CFO (CF ¾ ) 2 CF 3 copolymer,及 And one or more selected from polyvinylidene fluoride. Further, it is preferable that the fluorine-containing emulsifier is ammonium perfluorooctanoate.
また前記含フッ素乳化剤の濃度が 1質量!) pm以上 10質量%以下である該含 フッ素ポリマーの重合後の排水から、 該含フッ素乳化剤を回収することが好まし い。 発明を実施するための形態 '  In addition, it is preferable to recover the fluorinated emulsifier from waste water after polymerization of the fluorinated polymer having a concentration of the fluorinated emulsifier of 1 mass% or more and 10 mass% or less. MODES FOR CARRYING OUT THE INVENTION ''
本発明において、 含フッ素乳化剤としては、 炭素原子数 5〜13の、 ペルフル ォロアルカン酸、 ω—ヒドロペルフルォロアルカン酸、 ω—クロ口ペルフルォロ アルカン酸, ペルフルォロアルカンスルホン酸等の塩が好ましく、 これらは直鎖 構造でも分岐構造でもよく、 それらの混合物でも良い。 また、 分子中にエーテル 性の酸素原子を含有してもよい。 この炭素原子数の範囲にあると乳化剤としての 作用効果に優れる。 前記酸の塩としては、 リチウム塩、 ナトリウム塩、 カリウム 塩等のアルカリ金属塩又はアンモニゥム塩が好ましく、 アンモニゥム塩又はナ卜 リウム塩がより好ましく、 アンモニゥム塩が最も好ましい。  In the present invention, as the fluorinated emulsifier, salts such as perfluoroalkanoic acid, ω-hydroperfluoroalkanoic acid, ω-chloroperfluoroalkanoic acid, and perfluoroalkanesulfonic acid having 5 to 13 carbon atoms are used. It is preferable that they have a linear structure or a branched structure, or a mixture thereof. Further, the molecule may contain an etheric oxygen atom. When the number of carbon atoms is in this range, the effect as an emulsifier is excellent. As the salt of the acid, an alkali metal salt such as a lithium salt, a sodium salt, and a potassium salt or an ammonium salt is preferable, an ammonium salt or a sodium salt is more preferable, and an ammonium salt is most preferable.
前記酸の具体例としては、 ペルフルォロペンタン酸、 ペルフルォ口へキサン酸 、 ペルフルォロヘプタン酸、 ペルフルォロオクタン酸、 ペルフルォロノナン酸、 ペルフルォロデカン酸、 ペルフルォロドデカン酸、 ω—ヒドロペルフルォロヘプ タン酸、 ω—ヒドロペルフルォロオクタン酸、 ω—ヒドロペルフルォロノナン酸 、 ω—クロ口ペルフルォロヘプタン酸、 ω—クロ口ペルフルォロオクタン酸、 ω 一クロ口ペルフルォロノナン酸等、  Specific examples of the acid include perfluoropentanoic acid, perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, and perfluoropentanoic acid. Fluorododecanoic acid, ω-hydroperfluoroheptanoic acid, ω-hydroperfluorooctanoic acid, ω-hydroperfluorononanoic acid, ω-cloperperfluoroheptanoic acid, ω— Black mouth perfluorooctanoic acid, ω Black mouth perfluorononanoic acid, etc.
CF3CF2CF2OCF (C F 3) CO〇H、 CF3CF2CF2OCF (CF3 ) CF2OCF (C F3) COOH、 CF3CF2CF2〇 [C F (CF3) C F20 ] 2 C F (CF3) COOH、 CF3CF2CF20 [CF (C F3) CF2〇] 3C F (CFJ COOH、 CF,CF CF9CF?CF2OCF (C FJ COOH等
Figure imgf000006_0001
CF 3 CF 2 CF 2 OCF (CF 3 ) CO〇H, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH, CF 3 CF 2 CF 2 〇 (CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COOH, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 〇] 3 CF (CFJ COOH, CF, CF CF 9 CF ? CF 2 OCF (C FJ COOH etc.
Figure imgf000006_0001
ンスルホン酸等、 が挙げられる。 And sulfonic acid.
アンモニゥム塩の具体例としては、 '酸アンモニゥム、 ぺ ルフルォ口へキサン酸アンモニゥム、 ペルフルォロヘプタン酸アンモニゥム、 ぺ ルフルォロオクタン酸アンモニゥム (以下、 APFOと記す。 ) 、 ペルフルォロ ノナン酸アンモニゥム、 ペルフルォロデカン酸アンモニゥム、 ペルフルォロドデ カン酸アンモニゥム、 ω—ヒドロペルフルォロヘプタン酸アンモニゥム、 ω—ヒ ドロペルフルォロオクタン酸アンモニゥム、 ω—ヒドロペルフルォロノナン酸ァ ンモニゥム、 ω—クロ口ペルフルォロヘプタン酸アンモニゥム、 ω—クロ口ペル フルォロオクタン酸アンモニゥム、 ω—クロ口ペルフルォロノナン酸アンモニゥ ム等、 Specific examples of ammonium salts include 'acid ammonium, Ammonium perfluorohexanoate, ammonium perfluoroheptanoate, ammonium perfluorooctanoate (hereinafter referred to as APFO), ammonium perfluorononanoate, ammonium perfluorodecanoate, ammonium perfluorodecanoate, ω-hydroperfluoroheptanoate ammonium, ω-hydroperfluorooctanoate ammonium, ω-hydroperfluorononanoate ammonium, ω-cloperperfluoroheptanoate ammonium, ω-clo Oral perfluorooctanoic acid ammonium, ω-chloroperfluorononanoic acid ammonium, etc.
CF3CF2CF2OCF (CF3) COONH4、 CF3CF2CF2OCF (C F 3) CF2OCF (CF3) COONH4、 CF3CF2CF20 [CF (CF3) C F20] 2C F (CF3) COONH4、 CF3CF2CF20 [CF (CF3) C F2Ol 3C F (C F 3) COONH4、 CF3CF2CF2CF2CF2OCF (CF 3) COONH4等、 CF 3 CF 2 CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 Ol 3 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COONH 4 etc.
ペルフルォ口へキサンスルホン酸アンモニゥム、 ペルフルォロヘプタンスルホ ン酸アンモニゥム、 ペルフルォロオクタンスルホン酸アンモニゥム、 ペルフルォ ロノナンスルホン酸アンモニゥム、 ペルフルォロデカンスルホン酸アンモニゥム 等、 が挙げられる。  And ammonium perfluorohexane sulfonate, ammonium perfluoroheptane sulfonate, ammonium perfluorooctane sulfonate, ammonium perfluorononane sulfonate, ammonium perfluorodecane sulfonate, and the like.
リチウム塩の具体例としては、 ペルフルォロペンタン酸リチウム、 ペルフルォ 口へキサン酸リチウム、 ペルフルォロヘプタン酸リチウム、 ペルフルォロォクタ ン酸リチウム、 ペルフルォロノナン酸リチウム、 ペルフルォロデカン酸リチウム 、 ペルフルォロドデカン酸リチウム、 ω—ヒドロペルフルォロヘプタン酸リチウ ム、 ω—ヒドロペルフルォロオクタン酸リチウム、 ω—ヒドロペルフルォロノナ ン酸リチウム、 ω—クロ口ペルフルォロヘプタン酸リチウム、 ω—クロ口ペルフ ルォロオクタン酸リチウム、 ω—クロ口ペルフルォロノナン酸リチウム等、  Specific examples of the lithium salt include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorooctanoate, lithium perfluorononanoate, and lithium perfluoronate. Lithium orthodecanoate, lithium perfluorododecanoate, lithium ω-hydroperfluoroheptanoate, ω-lithium lithium hydroperfluorooctanoate, ω-lithium lithium hydroperfluorononate, ω -Lithium perfluoroheptanoate, ω-Lithium perfluorooctanoate, ω-Lithium perfluorononanoate, etc.
CF3CF2CF2OCF (C F3) COOL i、 CF3CF2CF2〇CF (CF 3) CF2OCF (CF3) COOL i、 CF3CF2CF20 [CF (C F3) CF 20] 2CF (CF3) COOL i、 CF3CF2CF20 [CF (CF3) C F20 ] 3CF (CF3) COOL i、 CF3CF2CF2CF2CF2OCF (CF3) C OOL i等、 CF 3 CF 2 CF 2 OCF (CF 3 ) COOL i, CF 3 CF 2 CF 2 〇CF (CF 3 ) CF 2 OCF (CF 3 ) COOL i, CF 3 CF 2 CF 20 (CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 20 ] 3 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 CF 2 CF 2 OCF ( CF 3 ) COOL i, etc.
ペルフルォ口へキサンスルホン酸リチウム、 リチウム、 ペルフルォロオクタンスルホン酸リチウム、 Lithium perfluorohexane sulfonate, Lithium, lithium perfluorooctanesulfonate,
ホン酸リチウム、 ペルフルォロデカンスルホン酸リチウム等、 が挙げられる。 ナトリウム塩の具体例としては、 ペルフルォロペンタン酸ナトリウム、 ペルフ ルォ口へキサン酸ナトリウム、 ペルフルォロヘプ夕ン酸ナトリウム、 ペルフルォ 口オクタン酸ナトリウム、 ペルフルォロノナン酸ナトリウム、 ペルフルォロデ力 ン酸ナトリウム、 ペルフルォロドデカン酸ナトリウム、 ω—ヒドロペルフルォロ ヘプタン酸ナトリウム、 ω—ヒドロペルフルォロオクタン酸ナトリウム、 ω—ヒ ドロペルフルォロノナン酸ナトリウム、 ω—クロ口ペルフルォロヘプタン酸ナト リウム、 ω—クロ口ペルフルォロオクタン酸ナトリウム、 ω—クロ口ペルフルォ ロノナン酸ナトリウム等、 And lithium perfluorodecane sulfonate. Specific examples of the sodium salt include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluorohepnoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorononate, sodium perfluorodenoate, Sodium perfluorododecanoate, Sodium hydroperfluoroheptanoate, Sodium hydroperfluorooctanoate, Sodium hydroperfluorononanoate, Sodium hydroperfluorononanoate, Sodium heptanoate, sodium ω-cloper perfluorooctanoate, sodium ω-cloper perfluorononanoate, etc.
CF3CF2CF2OCF (CF3) COON a, CF3CF2CF2OCF (C F 3) CF2OCF (CF3) COON a, CF3CF2CF20 [C F (CF3) CF 20] 2CF (CF3) COON a, CF3CF2CF20 [CF (CF3) C F20 ] 3CF (CF3) COON a, CF3CF2CF2CF2CF2OCF (CF3) C OON a等、 酸ナトリウム、 ペルフルォロオクタンスルホン酸ナ卜リゥム、 ペルフルォロノナ ンスルホン酸ナトリウム、 ペルフルォロデカンスルホン酸ナトリウム等、 が挙げ られる。 CF 3 CF 2 CF 2 OCF (CF 3 ) COON a, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COON a, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 0] 2 CF (CF 3 ) COON a, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 20 ] 3 CF (CF 3 ) COON a, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COONa and the like, sodium acid, sodium perfluorooctanesulfonate, sodium perfluorononanesulfonate, sodium perfluorodecanesulfonate and the like.
カリウム塩の具体例としては、 ペルフルォロペンタン酸カリウム、 ペルフルォ 口へキサン酸カリウム、 ペルフルォロヘプタン酸カリウム、 ペルフルォロォクタ ン酸カリウム、 ペルフルォロノナン酸カリウム、 ペルフルォロデカン酸カリウム 、 ペルフルォロドデカン酸カリウム、 ω—ヒドロペルフルォロヘプタン酸力リウ ム、 ω_ヒドロペルフルォロオクタン酸カリウム、 ω—ヒドロペルフルォロノナ ン酸カリウム、 ω—クロ口ペルフルォロヘプタン酸カリウム、 ω—クロ口ペルフ ルォ口才クタン酸カリゥム、 ω—クロロペルフルォロノナン酸力リゥム等、 Specific examples of the potassium salt include potassium perfluoropentanoate, potassium perfluorohexanoate, potassium perfluoroheptanoate, potassium perfluorooctanoate, potassium perfluorononanoate, and perfluolonate. Potassium orolodecanoate, potassium perfluorododecanoate, potassium ω-hydroperfluoroheptanoate, potassium ω_hydroperfluorooctanoate, potassium ω-hydroperfluorononanoate, ω-potassium perfluoroheptanoate, ω-potassium perfluoride potassium tannate, ω-chloroperfluoronanoic acid potassium, etc.
CF3CF2CF2OCF (CF3) COOK, CF3CF2CF2OCF (CF3 ) CF2〇CF (CF3) COOK, CF3CF2CF20 [CF (CF3) C F20 ] 2CF (CF3) COOK, CF3CF2C F20 [CF (CF3) C F20] 3C F (CF3) COOK、 CF3CF2CF2CF2CF2OCF (C F3) COOK等 ペルフルォ口へキサンスルホン酸力リゥム、 CF 3 CF 2 CF 2 OCF (CF 3 ) COOK, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 〇CF (CF 3 ) COOK, CF 3 CF 2 CF 2 0 [CF (CF 3 ) CF 2 0 ] 2 CF (CF 3 ) COOK, CF 3 CF 2 CF 20 [CF (CF 3 ) CF 20 ] 3 C F (CF 3 ) COOK, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COOK, etc.
カリウム、 ペルフルォロオクタンスルホン酸カ
Figure imgf000009_0001
Potassium, perfluorooctanesulfonic acid
Figure imgf000009_0001
ホン酸カリウム、 ペルフルォロデカンスルホン酸カリウム等、 が挙げられる。 本発明における含フッ素乳化剤としては、 特に、 炭素原子数 6〜12のペルフ ルォロアルカン酸のアンモニゥム塩が好ましく、 ペルフルォロヘプタン酸アンモ 二ゥム、 APFO、 ペルフルォロノナン酸アンモニゥム又はペルフルォロデカン 酸アンモニゥムがより好ましく、 APFOが最も好ましい。 And potassium perfluoronate and potassium perfluorodecane sulfonate. As the fluorinated emulsifier in the present invention, in particular, an ammonium salt of a perfluoroalkanoic acid having 6 to 12 carbon atoms is preferable, and ammonium perfluoroheptanoate, APFO, ammonium perfluorononanoate or perfluonium Ammonium orolodecanoate is more preferred, and APFO is most preferred.
本発明において、 含フッ素ポリマーの重合後の排水とは、 含フッ素乳化剤を含 む水性媒体中で少なくとも 1種の含フッ素モノマーを重合させて得られる含フッ 素ポリマーを分離した後の排水であり、 通常は乳化重合後含フッ素ポリマーの凝 集排水が好ましく、 特に含フッ素モノマーの重合体又は含フッ素モノマーと含フ ッ素モノマー以外のモノマーとの共重合体の製造工程からの凝集排水が好ましい 。 具体的に、 前記製造工程からの凝集排水とは、 含フッ素モノマー又は含フッ素 モノマーと含フッ素モノマー以外のモノマーとを、 含フッ素乳化剤を含む水性媒 体中で乳化重合又は水性分散重合して得られた含フッ素ポリマー水分散液から、 含フッ素ポリマーを塩析等で凝集して、 該含フッ素ポリマーを分離した後の排水 をいう。 該排水には、 含フッ素モノマーの重合時に使用された含フッ素乳化剤が 含有されるほか、 未凝集の含フッ素ポリマーなどの S S成分も含まれる。 以下、 該凝集排水を典型例として説明する。  In the present invention, the effluent after polymerization of the fluorinated polymer is the effluent after separating the fluorinated polymer obtained by polymerizing at least one fluorinated monomer in an aqueous medium containing a fluorinated emulsifier. Usually, coagulation wastewater of the fluoropolymer after emulsion polymerization is preferable, and coagulation wastewater from the process of producing a polymer of the fluoromonomer or a copolymer of the fluoromonomer and a monomer other than the fluoromonomer is particularly preferable. . Specifically, the coagulated waste water from the production step is obtained by emulsion polymerization or aqueous dispersion polymerization of a fluorinated monomer or a fluorinated monomer and a monomer other than the fluorinated monomer in an aqueous medium containing a fluorinated emulsifier. This refers to waste water obtained by coagulating a fluoropolymer from the obtained aqueous dispersion of a fluoropolymer by salting out or the like and separating the fluoropolymer. The wastewater contains not only the fluorinated emulsifier used in the polymerization of the fluorinated monomer but also an SS component such as a non-aggregated fluorinated polymer. Hereinafter, the coagulated wastewater will be described as a typical example.
フッ素含有モノマーとしては、 四フッ化工チレン (テトラフルォロエチレン、 以下、 TFEという。 ) 、 CF2 = CFC 1、 CFH=CF2、 CFH=CH2Examples of the fluorine-containing monomers include tetrafluoroethylene (tetrafluoroethylene, hereinafter referred to as TFE), CF 2 = CFC 1, CFH = CF 2 , CFH = CH 2 ,
CF2 = CH2 (フッ化ビニリデン、 以下、 VdFという。 ) 等のフルォロェチレ ン、 六フッ化プロピレン (へキサフルォロプロピレン、 以下、 HEPという。 )CF 2 = CH 2 (vinylidene fluoride, hereafter referred to as VdF), such as fluoroethylene, propylene hexafluoride (hexafluoropropylene, hereafter referred to as HEP)
、 CF2 = CHCF3等のフルォロプロピレン、 CF2 = CFOCF3、 C F2 = CFull O b propylene such as CF 2 = CHCF 3, CF 2 = CFOCF 3, CF 2 = C
FO (CF2) 2CF3 (以下、 PPVEという。 ) 、 CF2 = CFO (CF2) 4 FO (CF 2 ) 2 CF 3 (hereinafter referred to as PPVE), CF 2 = CFO (CF 2 ) 4
CF 3等の炭素原子数 3〜 10のペルフルォロビニルエーテル、 CH2==CH (C F2) 3CF3等の炭素原子数 4〜10の (ペルフルォロアルキル) エチレン等が 挙げられる。 これらのフッ素含有モノマーは、 単独で用いてもよいし、 2種以上 を併用してもよい。 本発明においてフッ素含有モノマーの少なくとも 1種は TF Eであることが好ましい。 Pel full O b vinyl carbon atoms 3-10 of CF 3 and the like, CH 2 == CH (C Examples thereof include (perfluoroalkyl) ethylene having 4 to 10 carbon atoms, such as F 2 ) 3 CF 3 . These fluorine-containing monomers may be used alone or in combination of two or more. In the present invention, at least one of the fluorine-containing monomers is preferably TFE.
含フッ素モノマ一以外のモノマーとしては、 酢酸ビニル等のビニルエステル、 ェチルビニルエーテル、 シクロへキシルビニルエーテル、 ヒドロキシブチルビ二 ルエーテル等のピニルエーテル、 ノルポルネン、 ノルボナジェン等の環状構造を 有する単量体、 メチルァリルエーテル等のァリルエーテル、 エチレン (以下、 E という。 ) 、 プロピレン (以下、 Pという。 ) 、 イソブチレン等のォレフィン等 が挙げられる。 含フッ素モノマーの以外のモノマ一は、 単独で用いてもよく、 2 種以上を併用してもよい。  Monomers other than the fluorinated monomer include vinyl esters such as vinyl acetate, pinyl ethers such as ethyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether; monomers having a cyclic structure such as norpolenene and norbonagen; Examples thereof include aryl ethers such as a lyl ether, ethylene (hereinafter, referred to as E), propylene (hereinafter, referred to as P), and olefins such as isobutylene. Monomers other than the fluorinated monomer may be used alone or in combination of two or more.
本発明において、 含フッ素ポリマーとしては、 PTFE、 TFE/P共重合体 、 TFEZPZVd F共重合体、 TFE/HFP共重合体、 PFA/PPVE共 重合体、 EZTFE共重合体、 ポリフッ化ビニリデン等が挙げられる。 より好ま しくは、 PTFE、 TFEZP共重合体、 TFE/PZVd F共重合体又は P F A/P P VE共重合体であり、 最も好ましくは、 PTFEである。  In the present invention, examples of the fluoropolymer include PTFE, TFE / P copolymer, TFEZPZVd F copolymer, TFE / HFP copolymer, PFA / PPVE copolymer, EZTFE copolymer, polyvinylidene fluoride and the like. Can be More preferably, it is PTFE, TFEZP copolymer, TFE / PZVdF copolymer or PFA / PPVE copolymer, most preferably PTFE.
層間に含フッ素乳化剤を含む層状複水酸化物を生成させるにあたっては、 含フ ッ素ポリマーの凝集排水に 2価及び 3価の金属イオンを添加する方法 (以下共沈 法と記す) 、 含フッ素乳化剤を含まない溶液中で生成させた層状複水酸化物を含 フッ素ポリマーの凝集排水に添加する方法 (以下イオン交換法と記す) 、 及び含 フッ素乳化剤を含まない溶液中で生成させた層状複水酸化物を焼成した後含フッ 素ポリマーの凝集排水に添加する方法 (以下再構成法と記す) を用いることがで きる。  To form a layered double hydroxide containing a fluorine-containing emulsifier between layers, a method of adding divalent and trivalent metal ions to the coagulated waste water of a fluorine-containing polymer (hereinafter referred to as a coprecipitation method), A method of adding a layered double hydroxide formed in a solution containing no emulsifier to the coagulated wastewater of a fluorine-containing polymer (hereinafter referred to as an ion exchange method); and a method of forming a layered double hydroxide formed in a solution containing no fluorine-containing emulsifier. It is possible to use a method in which the hydroxide is calcined and then added to the coagulated wastewater of the fluorine-containing polymer (hereinafter referred to as a reconstitution method).
本発明において、 含フッ素ポリマーの凝集排水、 及びイオン交換法、 再構成法 における含フッ素乳化剤を含まない溶液には、 あらかじめ水酸化カリウム及び / 又は水酸化ナトリウムを添加して該排水の PHを、 アルミニウムイオンと亜鉛ィ オンを用いる場合は 6以上 9以下、 アルミニウムイオンとマグネシウムイオンを 用いる場合は 9以上 1 1以下に調整する。 pHが上記の範囲を外れた場合、 該排 水にアルミニウムと亜鉛の塩、 又はアルミニウムとマグネシウムの塩を添加する 方法ではこれらの金属がそれぞれ個別に水酸化物を形成し、 水酸化アルミニウム 、 水酸化亜鉛、 水酸化マグネシウムを形成するため、 層状複水酸化物を形成しに くくなり、 結果として含フッ素乳化剤の回収効率が著しく低下する。 また、 該排 水に層状複水酸化物を添加する方法では層状複水酸化物からこれらの金属が溶出 し、 結果として含フッ素乳化剤の回収効率が著しく低下する。 In the present invention, to the flocculant wastewater of the fluoropolymer, and the solution containing no fluorinated emulsifier in the ion exchange method and the reconstitution method, potassium hydroxide and / or sodium hydroxide are added in advance to adjust the PH of the wastewater. Adjust to 6 or more and 9 or less when using aluminum ion and zinc ion, and 9 or more and 11 or less when using aluminum ion and magnesium ion. If the pH is out of the above range, In the method of adding a salt of aluminum and zinc or a salt of aluminum and magnesium to water, these metals form hydroxides individually and form aluminum hydroxide, zinc hydroxide, and magnesium hydroxide. It becomes difficult to form double hydroxide, and as a result, the recovery efficiency of the fluorinated emulsifier is significantly reduced. In addition, in the method of adding a layered double hydroxide to the wastewater, these metals are eluted from the layered double hydroxide, and as a result, the recovery efficiency of the fluorinated emulsifier is significantly reduced.
本発明において、 回収目的物である含フッ素乳化剤の濃度は 1 p p m (質量基 準、 以下同様) 以上 1 0質量%以下が好ましく、 1 0 p p m以上 1質量%以下が より好ましく、 とりわけ 5 0 p p m以上 0 . 5質量%以下が好ましい。 該含フッ 素乳化剤濃度が 1 p p m以上であれば、 回収液中での層状複水酸化物による該含 フッ素乳化剤の捕捉効率が低下してしまう不具合を生じることがない。 また含フ ッ素乳化剤の濃度が 1 0質量%より高濃度の場合は p Hを変化させることにより 該含フッ素乳化剤を析出させるなど、 より簡便で効率的な方法を用いることがで さる。  In the present invention, the concentration of the fluorinated emulsifier to be recovered is preferably 1 ppm (based on mass, the same applies hereinafter) or more and 10 mass% or less, more preferably 10 ppm or more and 1 mass% or less, particularly preferably 50 ppm or less. The content is preferably at least 0.5% by mass. When the concentration of the fluorinated emulsifier is 1 ppm or more, there is no problem that the efficiency of capturing the fluorinated emulsifier by the layered double hydroxide in the recovered liquid is reduced. When the concentration of the fluorine-containing emulsifier is higher than 10% by mass, a simpler and more efficient method such as precipitation of the fluorine-containing emulsifier by changing pH can be used.
凝集排水中に含まれる未凝集の含フッ素ポリマー微粒子等の浮遊固形分及び浮 遊固形分になりうる物質 (以下、 これらを総称して S S成分という。 ) は、 含フ ッ素乳化剤の回収及び回収率に悪影響は及ぼさないものの、 生成した層状複水酸 化物から該含フッ素乳化剤を再生する際の妨げになる可能性があるため、 層状複 水酸化物生成前に 1質量%以下まで除去しておくことが重要である。 該凝集排水 中の S S成分は 0 . 3質量%以下まで除去するのがより好ましく、 とりわけ 0 . 0 5質量%以下まで除去するのが好ましい。 なお、 浮遊固形分になりうる物質と しては、 含フッ素ポリマーの塩析凝集に使用された金属塩及び/又は該凝集排水 の p Hの変化によって析出する物質などが挙げられる。  Substances that can become suspended solids and suspended solids, such as unagglomerated fluoropolymer fine particles, contained in the flocculated wastewater (hereinafter collectively referred to as SS components) are used to recover the fluorine-containing emulsifier and Although it does not adversely affect the recovery rate, it may hinder the regeneration of the fluorinated emulsifier from the generated layered double hydroxide, so remove it to 1% by mass or less before forming the layered double hydroxide. It is important to keep. The SS component in the coagulated wastewater is more preferably removed to 0.3% by mass or less, particularly preferably to 0.05% by mass or less. Examples of the substance that can become a suspended solid include a metal salt used for salting out and coagulation of a fluoropolymer and / or a substance that precipitates due to a change in pH of the coagulated wastewater.
未凝集の含フッ素ポリマー等の S S成分の除去方法としては、 多価金属カチォ ンを含有する金属塩を添加して S S成分を凝集させる塩析が効果的である。 金属 塩の具体例としては、 塩化アルミニウム、 ポリ塩化アルミニウム、 塩化第一鉄、 塩化第二鉄等の金属塩化物が挙げられる。  As a method for removing the non-aggregated S S component such as a fluoropolymer, salting out by adding a metal salt containing a polyvalent metal cation to coagulate the S S component is effective. Specific examples of the metal salt include metal chlorides such as aluminum chloride, polyaluminum chloride, ferrous chloride, and ferric chloride.
また、 塩析により生成した凝集物は A P F Oが含有された状態で沈殿すること があるため、 水酸化ナ卜リゥム及び Z又は水酸化力リゥムを添加して p Hを 7以 上に調整することにより、 A P F Oを凝集物から水中に再溶解させることが好ま しい。 Agglomerates generated by salting out should precipitate in the state containing APFO. Therefore, it is preferable to re-dissolve APFO from aggregates in water by adjusting the pH to 7 or more by adding sodium hydroxide and / or Z or a hydroxylating steam.
凝集排水に前記金属塩化物を添加して凝集させた S S成分の凝集物を除去する 方法としては、 一般的な固液分離方法が採用でき、 特に、 ろ過、 デカンテーショ ン、 遠心分離及びシックナ一からなる群より選ばれる 1種以上の方法を用いるこ とがより好ましい。 ろ過は、 加圧下に実施することも好ましい。 また凝集物を含 む排水を静置し、 凝集物を沈降させて、 上澄み液をろ過することにより凝集物を 除去することが好ましい。 また、 設備メンテナンスの容易さ等の点から、 シック ナー又はスクリューデカンターが最も好ましい。  A common solid-liquid separation method can be used as a method for removing the SS component aggregates obtained by adding the above-mentioned metal chloride to the aggregated wastewater, particularly from filtration, decantation, centrifugation and thickener. It is more preferable to use one or more methods selected from the group consisting of: The filtration is also preferably performed under pressure. Further, it is preferable that the wastewater containing the aggregate is allowed to stand still, the aggregate is settled, and the supernatant is filtered to remove the aggregate. Thickeners or screw decanters are most preferable in terms of facility maintenance.
本発明において、 前記層状複水酸化物を形成するのに用いられる 3価金属 (ィ オン化したときに 3価のイオンとなる金属) と 2価金属 (イオン化したときに 2 価のイオンとなる金属) は、 該 3価金属のイオンが水酸化物を形成する p Hの範 囲と、 該 2価金属のイオンが水酸化物を形成する p Hの範囲が重なっているか、 又はこれらの p Hの範囲が近ければ層状複水酸化物が形成され得る。 該 2価金属 の例としてはベリリウム、 カドミウム、 コバルト、 クロム (II) 、 銅 (II) 、 鉄 (II) 、 マグネシウム、 マンガン (II) 、 ニッケル、 鉛、 白金、 パラジウム、 亜 鉛、 錫、 カルシウムなどを例示できる。 また、 該 3価金属の例としてはアルミ二 ゥム、 ビスマス、 セリウム、 クロム (ΠΙ) 、 鉄 (III) 、 ガリウム、 インジウム、 マンガン (III) 、 チタン、 タリウムなどを例示できる。 環境への影響や入手の容 易性を考慮すると、 本発明においては、 2価金属としてマグネシウム及び亜鉛か ら選ばれる 1種又は 2種を用い、 3価金属としてアルミニウムを用いることが好 ましい。 以下、 該好ましい 2価金属と 3価金属とを用いる場合について説明する 本発明において、 前記のように該排水の p Hを、 アルミニウムとマグネシウム の層状複水酸化物を用いる場合は 9以上 1 1以下に調整する。 ついで、 アルミ二 ゥムイオン:マグネシウムイオンのモル比が 1 : 2、 かつアルミニウムイオン及 ぴ、 マグネシウムイオンの濃度がいずれも、 0 . 0 l m o 1 Z L以上 2 m o 1 Z L以下である水溶液を攪拌しながら添加する。 アルミニウムィォ: ムイオンは、 どのような原料を用いても問題ないが、 入手の容易さから、 アルミ ニゥムイオンは塩化アルミニウム、 塩化アルミニウム六水和物、 硫酸アルミニゥ ム、 硝酸アルミニウムが好ましく、 塩化アルミニウム、 塩化アルミニウム六水和 物がより好ましい。 マグネシウムイオンの原料としては塩化マグネシウム、 塩化 マグネシウム六水和物、 硝酸マグネシウム六水和物、 硝酸マグネシウム、 酸化マ グネシゥム、 硫酸マグネシウム、 硫酸マグネシウム七水和物、 炭酸マグネシウム を用いるのが好ましく、 とりわけ塩化マグネシウム、 塩化マグネシウム六水和物 が好ましい。 In the present invention, a trivalent metal (a metal that becomes a trivalent ion when ionized) and a divalent metal (a metal that becomes divalent ion when ionized) used to form the layered double hydroxide are used. Metal) has a range in which the pH of the ion of the trivalent metal forms a hydroxide overlaps with the range of the pH in which the ion of the divalent metal forms a hydroxide, or If the range of H is close, a layered double hydroxide can be formed. Examples of the divalent metal include beryllium, cadmium, cobalt, chromium (II), copper (II), iron (II), magnesium, manganese (II), nickel, lead, platinum, palladium, zinc, tin, and calcium. And the like. Examples of the trivalent metal include aluminum, bismuth, cerium, chromium (II), iron (III), gallium, indium, manganese (III), titanium, and thallium. In consideration of the effect on the environment and the availability, in the present invention, it is preferable to use one or two selected from magnesium and zinc as the divalent metal and to use aluminum as the trivalent metal. . Hereinafter, the case where the preferable divalent metal and trivalent metal are used will be described. In the present invention, as described above, the pH of the wastewater is 9 or more when the layered double hydroxide of aluminum and magnesium is used. Adjust to the following. Then, an aqueous solution in which the molar ratio of aluminum ion: magnesium ion is 1: 2 and the concentration of aluminum ion and magnesium ion is 0.0 lmo 1 ZL or more and 2 mo 1 ZL or less is added while stirring. I do. Aluminum: There is no problem with using any kind of raw material, but aluminum ion is preferably aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, or aluminum nitrate because of its availability. Aluminum chloride, aluminum chloride hexahydrate Japanese is more preferred. It is preferable to use magnesium chloride, magnesium chloride hexahydrate, magnesium nitrate hexahydrate, magnesium nitrate, magnesium oxide, magnesium sulfate, magnesium sulfate heptahydrate, and magnesium carbonate as a raw material for magnesium ions, and in particular, chloride Magnesium and magnesium chloride hexahydrate are preferred.
本発明において、 前記のように該排水の P Hをアルミニウムと亜鉛の層状複水 酸化物を用いる場合は 6以上 9以下に調整する。 ついで、 アルミニウムイオン: 亜鉛イオンのモル比が 1 : 2、 かつアルミニウムイオン及び亜鉛イオンの濃度が いずれも、 0 . 0 l m o 1 /L以上 2 m o 1 ZL以下である水溶液を攪拌しなが ら添加する。 アルミニウムイオンと亜鉛イオンは、 どのような原料を用いても問 題ないが、 入手の容易さから、 アルミニウムイオンは塩化アルミニウム、 塩化ァ ルミ二ゥム六水和物、 硫酸アルミニウム、 硝酸アルミニウムが好ましく、 塩化ァ ルミ二ゥム、 塩化アルミニウム六水和物がより好ましい。 亜鉛イオンの原料とし ては塩化亜鉛、 硝酸亜鉛六水和物、 酸化亜鉛、 硫酸亜鉛、 硫酸亜鉛七水和物を用 いるのが好ましく、 塩化亜鉛がより好ましい。  In the present invention, the pH of the wastewater is adjusted to 6 or more and 9 or less when the layered double hydroxide of aluminum and zinc is used as described above. Then, an aqueous solution in which the molar ratio of aluminum ion: zinc ion is 1: 2 and the concentration of aluminum ion and zinc ion is 0.0 lmo 1 / L or more and 2 mo 1 ZL or less is added with stirring. I do. Aluminum ion and zinc ion can be made of any raw material, but aluminum ion is preferably aluminum chloride, aluminum chloride hexahydrate, aluminum sulfate, or aluminum nitrate because of availability. More preferably, aluminum chloride and aluminum chloride hexahydrate are used. As a raw material for zinc ions, it is preferable to use zinc chloride, zinc nitrate hexahydrate, zinc oxide, zinc sulfate, and zinc sulfate heptahydrate, and zinc chloride is more preferable.
2価及び 3価金属イオンを含む混合水溶液 (以下金属イオン水溶液と記す) は 0 . 0 l m o 1 7 以上2 111 0 1 ZL以下の水溶液で用いるのが好ましい。 金属 イオン濃度がこれ以下だと必要な金属を添加する際に水の量が多くなつてしまい 、 層状複水酸化物の水溶液への溶解総量が多くなるため、 好ましくない。 金属ィ オン濃度がこれ以上だと、 該金属イオン水溶液が酸性であるため、 層状複水酸化 物を形成させるときに、 金属イオン水溶液の添加により、 水溶液の一部が局所的 に層状複水酸化物を形成するのに最適な p Hの範囲を逸脱し、 該金属イオンが層 状複水酸化物形成に有効に利用されなくなってしまう。 しかし、 一旦前記の濃度 範囲を外れた金属イオン水溶液を添加した場合でも、 改めて適切な濃度範囲の金 属イオン水溶液を添加すれば、 層状複水酸化物の合成は可能である。  A mixed aqueous solution containing divalent and trivalent metal ions (hereinafter, referred to as a metal ion aqueous solution) is preferably used in an aqueous solution having a concentration of not less than 0.01 mO 17 and not more than 211101 ZL. If the metal ion concentration is lower than this, the amount of water increases when the required metal is added, and the total amount of the layered double hydroxide dissolved in the aqueous solution increases, which is not preferable. If the metal ion concentration is higher than this, since the metal ion aqueous solution is acidic, when forming the layered double hydroxide, a part of the aqueous solution is locally layered double hydroxide by adding the metal ion aqueous solution. When the pH is out of the optimum range for forming a product, the metal ion is not effectively used for forming a layered double hydroxide. However, even if an aqueous metal ion solution outside the above concentration range is once added, a layered double hydroxide can be synthesized by adding a metal ion aqueous solution having an appropriate concentration range again.
該層状複水酸化物の該含フッ素ポリマーの凝集排水に対する添加量は、 該層状 03 00659 The amount of the layered double hydroxide to be added to the coagulated waste water of the fluoropolymer is as follows: 03 00659
12 複水酸化物中の 3価イオンが該含フッ素乳化剤に対して 1モル倍以上 3 0モル倍 以下、 かつ 2価イオンが該含フッ素乳化剤に対して 1モル倍以上 6 0モル倍以下 が好ましい。 また、 該層状複水酸化物中の 3価イオン: 2価イオンのモル比は 312 The trivalent ions in the double hydroxide are at least 1 mol times and at most 30 mol times with respect to the fluorinated emulsifier, and the divalent ions are at least 1 mol time and at most 60 mol times with respect to the fluorinated emulsifier. preferable. The molar ratio of trivalent ions to divalent ions in the layered double hydroxide is 3
: 1〜1 : 3が好ましく、 1 : 1〜1 : 3がより好ましい。 該層状複水酸化物焼 成物の添加量を 1モル倍以上とすることによって、 該含フッ素乳化剤の回収率が 良好となり、 該層状複水酸化物の添加量を上記範囲以下とすることで該含フッ素 乳化剤の該層状複水酸化物に対する比率が小さくなりすぎるため、 最終的な該含 フッ素乳化剤の再生効率が低下してしまう不具合を無くすることができる。 また 、 該層状複水酸化物の過剰使用は、 含有する金属成分のため、 最終的な排水処理 過程の負荷が増大する面からも好ましくない。 : 1: 1: 3 is preferable, and 1: 1 to 1: 3 is more preferable. By making the amount of the calcined layered double hydroxide 1 mole or more, the recovery rate of the fluorinated emulsifier is improved, and the amount of the layered double hydroxide to be added is within the above range. Since the ratio of the fluorinated emulsifier to the layered double hydroxide becomes too small, it is possible to eliminate the problem that the final regeneration efficiency of the fluorinated emulsifier is reduced. In addition, excessive use of the layered double hydroxide is not preferable from the viewpoint of increasing the load in the final wastewater treatment process due to the contained metal component.
本発明において、 含フッ素乳化剤含有排水、 又は水に該金属イオン水溶液を添 加する時に、 含フッ素乳化剤含有排水、 又は水を撹拌することが好ましい。 撹拌 方法としては、 特に限定されないが、 撹拌によって生成した凝集物粒子を機械的 に破壊しないものが好ましい。 かかる撹拌装置の撹拌翼としては、 低速回転で排 水全体を均一に混合できる撹拌翼が好ましく、 フルゾーン翼、 マックスブレンド 翼、 及びアンカー翼からなる群より選ばれる 1種が好ましい。 該撹拌翼における 攪拌時の G値は、 1〜3 0 0 s— 1が好ましく、 5〜2 5 0 s 1がより好ましく、In the present invention, it is preferable to stir the fluorinated emulsifier-containing wastewater or water when adding the metal ion aqueous solution to the fluorinated emulsifier-containing wastewater or water. The stirring method is not particularly limited, but is preferably a method that does not mechanically destroy the aggregate particles generated by the stirring. As a stirring blade of such a stirring device, a stirring blade capable of uniformly mixing the entire wastewater at a low rotation speed is preferable, and one type selected from the group consisting of a full zone blade, a max blend blade, and an anchor blade is preferable. G value during stirring at the stirring blade is preferably from 1 to 3 0 0 s-1, more preferably from 5 to 2 5 0 s 1,
1 0〜2 0 0 s— 1が最も好ましい。 ここで、 G値とは以下の式によって導かれる 値をいう。 10-20 s- 1 is most preferred. Here, the G value is a value derived by the following equation.
P P
G =  G =
V ' η  V 'η
[式中、 Ρは攪拌動力 (W) 、 Vは液容積 (m 3) 、 7?は液粘性係数 (P a ' s ) をあらわす。 ] [Where 式 represents the stirring power (W), V represents the liquid volume (m 3 ), and 7? Represents the liquid viscosity coefficient (P a 's). ]
共沈法、及びイオン交換法において、金属イオン水溶液滴下中は系内に存在する 炭酸イオン及び Z又は炭酸ガスを除去するため、 窒素ガスやアルゴンガスなどの 不活性ガスでパブリング、 又は不活性ガスで炭酸イオン及び Z又は炭酸ガスを追 い出したあと、 反応容器を密閉するのが好ましい。 これは層状複水酸化物が炭酸 イオンと反応し、 該含フッ素乳化剤の回収の妨げになるためである。 パブリング を実施する場合の不活性ガスの流量は 0 . I Nm3/ !!〜 1 0 Nm3/ hが好まし く、 0 . l Nm3Z l·!〜 δ Νπι3/ !!がより好ましい。 ガス流量を 0 . 1 Nm3Z m3 · h以上とすることで系内の炭酸イオン等の除去が十分に行われるようになり 、 1 0 Nm3Zm3 · h以下とすることで、 気化熱によって水溶液の温度が低下し てしまう不具合を防ぐことができる。 In the coprecipitation method and the ion exchange method, during the dropping of the metal ion aqueous solution, elimination of carbonate ions and Z or carbon dioxide gas present in the system is performed by publishing with an inert gas such as nitrogen gas or argon gas, or inert gas. After expelling the carbonate ion and Z or carbon dioxide gas with the above, the reaction vessel is preferably sealed. This is because the layered double hydroxide reacts with the carbonate ion and hinders the recovery of the fluorinated emulsifier. Publishing The flow rate of the inert gas is 0. I Nm 3 /! ~ 10 Nm 3 / h is preferred, 0. L Nm 3 Z l! ~ Δ Νπι 3 / !! is more preferable. The gas flow rate 0. 1 Nm 3 Z m 3 · h or more and the carbonate ions in the system by removing becomes to be sufficiently performed, it is set to lower than or equal to 1 0 Nm 3 Zm 3 · h , vaporized The problem that the temperature of the aqueous solution decreases due to heat can be prevented.
再構成法における、 層状複水酸化物の焼成は、 3 0 0 °C以上 6 0 0 °C未満で行 う事が望ましく、 4 0 0で以上 5 0 0 °C未満がより望ましい。これより低い温度で は内包する炭酸イオンが充分に脱離されない、 又は充分な脱離のために長時間を 要する。 また、 これより高い温度では層状複水酸化物の結晶構造の崩壊が起き、 含フッ素乳化剤の回収効率を低下させる原因となる。  In the reconstruction method, the firing of the layered double hydroxide is preferably performed at a temperature of at least 300 ° C. and less than 600 ° C., more preferably at least 400 and less than 500 ° C. At temperatures lower than this, the contained carbonate ions are not sufficiently desorbed, or it takes a long time for sufficient desorption. If the temperature is higher than this, the crystal structure of the layered double hydroxide collapses, which causes a reduction in the recovery efficiency of the fluorinated emulsifier.
反応中の水温は 1 0 °C以上 5 0 °C以下で実施するのが好ましい。 水温がこれよ り低くても高くても、 層状複水酸化物による含フッ素乳化剤の回収率が低下して しまう。 特にこれより低い水温での回収率は著しく低下するため、 反応器には加 温装置を装備するのが好ましい。  The reaction is preferably carried out at a water temperature of 10 ° C. or more and 50 ° C. or less. If the water temperature is lower or higher than this, the recovery of the fluorinated emulsifier by the layered double hydroxide decreases. In particular, it is preferable to equip the reactor with a heating device because the recovery rate at a lower water temperature is significantly reduced.
このようにして、 凝集排水中において、 含フッ素乳化剤を層間に含む層状複水 酸化物が生成されるので、 生成された層状複水酸化物を凝集排水から分離するこ とにより、 含フッ素乳化剤を回収することができる。  In this way, a layered double hydroxide containing a fluorinated emulsifier between layers is generated in the coagulated wastewater. By separating the generated layered double hydroxide from the coagulated wastewater, the fluorinated emulsifier is separated from the coagulated wastewater. Can be recovered.
層状複水酸化物を凝集排水から分離する方法としては、 周知の固液分離方法を 適宜用いることができ、 特に、 ろ過、 デカンテーシヨン、 遠心分離及びシックナ —からなる群より選ばれる 1種以上の方法を用いることがより好ましい。 ろ過は 、 加圧下に実施することも好ましい。  As a method for separating the layered double hydroxide from the coagulated wastewater, a well-known solid-liquid separation method can be used as appropriate, and in particular, at least one selected from the group consisting of filtration, decantation, centrifugation, and thickener It is more preferable to use the method described above. The filtration is also preferably performed under pressure.
さらに、 層状複水酸化物に内包された形で回収された含フッ素乳化剤は、 例え ば層状複水酸化物を、 塩酸及び/又は硫酸及び Z又は硝酸のような強酸で再溶解 させ、 該溶解液から非水溶性有機溶剤で抽出するなどの方法により再生すること ができる。  Furthermore, the fluorinated emulsifier recovered in the form of being encapsulated in the layered double hydroxide is, for example, redissolved the layered double hydroxide with hydrochloric acid and / or sulfuric acid and a strong acid such as Z or nitric acid. It can be regenerated by a method such as extraction from a liquid with a water-insoluble organic solvent.
本発明において用いられる鉱酸としては、 塩酸、 硫酸、 硝酸が挙げられる。 特 に、 塩酸が好ましい。 塩酸は沸点が一 8 5 °Cの酸であり、 抽出液に混入する塩酸 は後の濃縮操作により容易に抽出液から除去できる。 本発明における含フッ素炭化水素としては、 炭素原子数が 2又は 3個であり、 かつ 1個以上の水素原子及び 1個以上のフッ素原子を含むものが好ましい。 該含 フッ素炭化水素の沸点は 5〜120°Cが好ましく、 10〜80°Cがより好ましい 。 この範囲にあると該含フッ素炭化水素の留去、 回収が容易であり好ましい。 その具体例としては、 C3HC 12F5及び C3H3F5からなる群から選ばれる 1種以上であることがより好ましい。 Mineral acids used in the present invention include hydrochloric acid, sulfuric acid, and nitric acid. In particular, hydrochloric acid is preferred. Hydrochloric acid is an acid having a boiling point of 85 ° C, and hydrochloric acid mixed into the extract can be easily removed from the extract by a subsequent concentration operation. As the fluorinated hydrocarbon in the present invention, those having 2 or 3 carbon atoms and containing one or more hydrogen atoms and one or more fluorine atoms are preferable. The boiling point of the fluorinated hydrocarbon is preferably 5 to 120 ° C, more preferably 10 to 80 ° C. When it is in this range, the fluorinated hydrocarbon can be easily distilled and recovered, which is preferable. As specific examples, and more preferably C 3 HC 1 2 F 5 and C 3 H 3 F 1 or more to 5 selected from the group consisting of.
C3HC 12F5としては、 CF3CF2CHC 12、 CC 1 F2CF2CHC 1 F 、 CC 1 F2CHFCC 1 F2、 CF3CHFCC 12F、 C F3CHC 1 C C 1 F 2が挙げられ、 CF3CF2CHC 12、 CC 1 F2CF2CHC 1 Fが最も好まし い。 C 3 The HC 1 2 F 5, CF 3 CF 2 CHC 1 2, CC 1 F 2 CF 2 CHC 1 F, CC 1 F 2 CHFCC 1 F 2, CF 3 CHFCC 1 2 F, CF 3 CHC 1 CC 1 F 2 is mentioned, and CF 3 CF 2 CHC 1 2 and CC 1 F 2 CF 2 CHC 1 F are most preferred.
C3H3F5としては、 CF3CH2CHF2、 CF3CHFCH2F、 CHF2CH FCH F 2が挙げられ、 C F 3 C H2 C H F 2が最も好ましい。 Examples of C 3 H 3 F 5 include CF 3 CH 2 CHF 2 , CF 3 CHFCH 2 F, and CHF 2 CH FCH F 2 , with CF 3 CH 2 CHF 2 being most preferred.
すなわち、 含フッ素炭化水素としては、 C F 3 C F 2 C H C 12、 C C 1 F2C F 2CHC 1 F及び CF3CH2CHF 2からなる群から選ばれる 1種以上であること が最も好ましい。 That is, the fluorine-containing hydrocarbon, and most preferably CF 3 CF 2 CHC 1 2, CC 1 F 2 CF 2 CHC 1 F and CF 3 CH 2 1 or more selected from the group consisting of CHF 2.
C3HC 12F5及び C3H3F5に対する含フッ素乳化剤の溶解度はジクロロメ タン、 クロ口ホルムよりも大きく、 より少量の媒体で含フッ素乳化剤を抽出でき る。 また、 いずれも不燃性で、従来の塩素化炭化水素に比べて低毒性であり、 その 沸点、 蒸発潜熱が濃縮や回収操作に適するので好ましい。 また、 従来の塩素化炭 化水素に比べて化学的に安定であり、 多数回にわたり反復して濃縮及び回収に使 用できる。 さらに、 含フッ素乳化剤の抽出に塩素化炭化水素を用いた場合、 水相 に溶解する塩素化炭化水素の処理が必要になるのに対し、 含フッ素炭化水素の水 への溶解度は塩素化炭化水素よりも低いためこのような処理は不要である。 また 、 抽出操作後に塩素化炭化水素の場合よりも速やかに水相と含フッ素炭化水素相 との間に明瞭な液 ·液界面が形成されるという利点がある。 C 3 HC 1 2 F 5 and C 3 H 3 F solubility of the fluorinated emulsifier for 5 Jikurorome Tan, larger than black opening Holm, Ru can extract the fluorinated emulsifier in the smaller amount of medium. In addition, all are nonflammable and have low toxicity compared to conventional chlorinated hydrocarbons, and their boiling points and latent heats of vaporization are suitable for concentration and recovery operations. It is also chemically more stable than conventional chlorinated hydrocarbons and can be used repeatedly for concentration and recovery. Furthermore, when chlorinated hydrocarbons are used for the extraction of fluorinated emulsifiers, it is necessary to treat chlorinated hydrocarbons that dissolve in the aqueous phase, whereas the solubility of fluorinated hydrocarbons in water is chlorinated hydrocarbons. Such a process is not necessary because it is lower. In addition, there is an advantage that a clear liquid-liquid interface is formed between the aqueous phase and the fluorinated hydrocarbon phase more quickly than in the case of the chlorinated hydrocarbon after the extraction operation.
本発明において、 上記の含フッ素乳化剤の抽出操作には、 従来用いられている 装置、 設備が利用できる。 抽出装置としては回分式抽出装置、 並流多回抽出装置 、 向流多段抽出装置、 連続向流抽出装置等が挙げられる。 抽出条件としては、 溶 剤の沸点未満の温度において層間に含フッ素乳化剤を含有する層状複水酸化物の 酸溶解液と抽出溶剤とを混合する。 通常、 該酸溶解液に対して 20〜100質量 %、 好ましくは 30~50質量%の抽出溶剤を添加する。 より大量の抽出溶剤を 用いることにより含フッ素乳化剤の抽出率は向上するが濃縮等の工程での溶剤の 処理量は増大する。 混合に際しては攪拌、 流動、 振盪などにより該酸溶解液中に 抽出媒体を分散させる。 抽出媒体の液滴の直径が 0. 1mm以下となるように分 散を行った場合 10分未満の混合時間で抽出が完了する。 抽出完了後静置して水 相と媒体相を分離させる。 両相の界面が明瞭になるまで分離させることが要求さ れるがこれは通常 10分未満の静置時間で達成される。 In the present invention, conventionally used devices and equipment can be used for the above-mentioned extraction operation of the fluorinated emulsifier. Examples of the extraction device include a batch extraction device, a cocurrent multiple extraction device, a countercurrent multistage extraction device, and a continuous countercurrent extraction device. The extraction conditions were as follows: at a temperature lower than the boiling point of the solvent, a layered double hydroxide containing a fluorinated emulsifier was added between the layers. The acid solution and the extraction solvent are mixed. Usually, 20 to 100% by mass, preferably 30 to 50% by mass of the extraction solvent is added to the acid solution. By using a larger amount of extraction solvent, the extraction rate of the fluorinated emulsifier is improved, but the throughput of the solvent in steps such as concentration is increased. Upon mixing, the extraction medium is dispersed in the acid solution by stirring, flowing, shaking, or the like. When the dispersion is performed so that the diameter of the droplets of the extraction medium is 0.1 mm or less, the extraction is completed in less than 10 minutes. After the extraction is completed, allow to stand to separate the aqueous and medium phases. Separation is required until the interface between the two phases is clear, but this is usually achieved in less than 10 minutes.
次に実施例をあげて本発明を具体的に説明するが、 本発明はこれらに限定され ない。 なお、 APFO、 ペルフルォロオクタン酸 (以下、 PFOAと記す。 ) 又 はペルフルォロオクタン酸ナトリウムの濃度は、 メタノールと水の混合溶液を溶 媒とした高速液体クロマトグフィ一一マススぺクトル法を用いて測定した。 この 方法で検出される種はペルフルォロォクタノエ一ト (C7F15COO一) である。 Next, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto. The concentration of APFO, perfluorooctanoic acid (hereinafter referred to as PFOA) or sodium perfluorooctanoate is determined by a high-performance liquid chromatography using a mixed solution of methanol and water as a solvent. It was measured using the Kuttle method. Species to be detected by this method is per full O Roo Kuta Noe Ichito (C 7 F 15 COO I).
[実施例 1 ]  [Example 1]
PTFEの乳化重合後の凝集後排水について、 A P F〇の濃度を測定したとこ ろ 148 p pmであった。 この水溶液に 0.2 Nの水酸化ナトリウム水溶液を添加 して pHを 10. 0に調整した。 液温は 26°Cであった。 次にこの溶液 10 L ( 八 0含有量1. 48 g、 3. 43mmo 1 ) に塩化アルミニウムと塩化マグ ネシゥムの混合水溶液 [A 13+イオン濃度 0. 075mo 1 ZL、 Mg2+イオン 0. 1 5mo 1 /L] 約 229mL [A 1 イオン総量 17. 2mmo 1、 Mg 2+イオン総量 34. 3mmo 1 ] を 2時間かけて滴下した。 滴下中はアンカー翼 を用いて G値が 100 s""1になるように攪拌を続けた。 また、 該金属イオン水溶 液滴下中は窒素ガスを 1 Nm3Zm3 · hの一定流量で該凝集排水をパブリングし 、 水溶液中の溶存炭酸イオン及び炭酸ガスを除去させた。 滴下の間 0.2 N水酸化 ナトリウム水溶液を適宜滴下して pHを 9. 8以上 10. 2以下に調整した。 塩 化アルミニウムと塩化マグネシゥムの混合水溶液の滴下直後から極く薄い乳白色 の液が凝集を始めると共に白色沈殿を生成し始めた。 この混合水溶液の滴下開始 後 2時間で沈殿の生成は終了した。 攪拌を停止すると生成した沈殿は速やかに沈 降し、 約 10分で完全に沈降した。 上澄液は無色透明であった。 沈殿物を平均口 径 3 mのメンブランフィルターで濾取した。 この沈殿物を濾紙ごと Ί 0°Cで 1 5時間乾燥した。沈殿物の乾燥重量は 25. 0gであった。乾燥した沈殿物を示差 熱重量分析 (DTA) 、 赤外吸収スペクトル (I R) 、 XRDで分析したところ 、 P T F Eに帰属するピークと P F OAに帰属するピーク及び層状複水酸化物に 帰属するピークが検出された。 このことから、 この沈殿物は PTFEと P FOA が層状複水酸化物と共に沈殿したものであることが確認された。 上澄液を分析し たところ APFOの濃度は 2 ppmであり、 従って、 層状複水酸化物に含まれる PFOAの固定率は 98.6%であった。 ついで該沈殿物に 10質量%の塩酸 10 0 gを添加し、室温で 3時間攪拌したのち CF2C 1 CF2CHC 1 F/CF3CF 2CHC 12混合媒体 (モル比 55/45, 旭硝子社商品名:アサヒクリン 225 、 以下、 AK 225という。 ) の 30 gを加えて 10分間激しく振盪した。 この 液を静置して 2相に分離した後の上層の水相には 0. 14質量%の PFOA、 下 層の AK225相には 4. 03質量%のP FOAが含有された。 元の凝集排水か らの回収率は 85. 1 %であった。 The concentration of APF〇 in the waste water after coagulation after emulsion polymerization of PTFE was 148 ppm when measured. The pH was adjusted to 10.0 by adding a 0.2 N aqueous solution of sodium hydroxide to this aqueous solution. The liquid temperature was 26 ° C. Then this solution 10 L (80 content 1. 48 g, 3. 43mmo 1) aluminum and mixed aqueous solution of chloride mug Neshiumu chloride [A 1 3+ ion concentration 0. 075mo 1 ZL, Mg 2+ ions 0. Approximately 229 mL [A 1 total ion amount 17.2 mmo 1, Mg 2+ total ion amount 34.3 mmo 1] was dropped over 2 hours. During the dropping, stirring was continued using an anchor blade so that the G value became 100 s "" 1 . Further, under the aqueous solution of metal ions, nitrogen gas was bubbled at a constant flow rate of 1 Nm 3 Zm 3 · h through the coagulated waste water to remove dissolved carbonate ions and carbon dioxide in the aqueous solution. During the dropwise addition, a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less. Immediately after the dropwise addition of the mixed aqueous solution of aluminum chloride and magnesium chloride, the extremely pale milky liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the generated precipitate immediately settled, and completely settled in about 10 minutes. The supernatant was colorless and transparent. Average mouth of sediment The solution was collected by a 3 m-diameter membrane filter. The precipitate was dried together with the filter paper at 0 ° C. for 15 hours. The dry weight of the precipitate was 25.0 g. The dried precipitate was analyzed by differential thermogravimetric analysis (DTA), infrared absorption spectrum (IR), and XRD. was detected. From this, it was confirmed that this precipitate was PTFE and PFOA precipitated together with the layered double hydroxide. When the supernatant was analyzed, the concentration of APFO was 2 ppm, and thus the fixation rate of PFOA contained in the layered double hydroxide was 98.6%. Then added a 10 mass% hydrochloric acid 10 0 g to precipitate, After stirring at room temperature for 3 hours CF 2 C 1 CF 2 CHC 1 F / CF 3 CF 2 CHC 1 2 mixed medium (molar ratio 55/45, 30 g of Asahi Glass 225 (hereinafter, referred to as AK 225) was added and shaken vigorously for 10 minutes. After allowing this solution to stand and separate into two phases, the upper aqueous phase contained 0.14% by weight of PFOA and the lower AK225 phase contained 4.03% by weight of PFOA. The recovery rate from the original coagulated wastewater was 85.1%.
[実施例 2 ]  [Example 2]
実施例 1と同じ PTFEの乳化重合後の凝集後排水について、 この水溶液に 0. The same effluent after coagulation after PTFE emulsion polymerization as in Example 1 was added to this aqueous solution.
2Nの水酸化ナトリウム水溶液を添加して pHを 7. 0に調整した。 液温は 26 °Cであった。 次にこの溶液 10 L (八? 0含有量1. 48 g、 3. 43mmoThe pH was adjusted to 7.0 by addition of a 2N aqueous sodium hydroxide solution. The liquid temperature was 26 ° C. Then 10 L of this solution (8? 0 content 1.48 g, 3.43 mmo
1) に塩化アルミニウムと塩化亜鉛の混合水溶液 [A 13+イオン濃度 0. 075 mo 1 /L、 Z n2+イオン 0. 15mo 1 ZL] 約 45. 8mL [A 13+イオン 総量 3. 43mmo l、 Zn2+イオン総量 6. 86mmo 1 ] を 2時間かけて滴 下した。 滴下中はアンカー翼を用いて G値が 100 s _1になるように攪拌を続け た。 また、 該金属イオン水溶液滴下中は窒素ガスを 1 Nm3Zm3 · hの一定流量 で該凝集排水をバブリングし、 水溶液中の溶存炭酸イオン及び炭酸ガスを除去さ せた。 滴下の間 0.2 N水酸化ナトリウム水溶液を適宜滴下して pHを 6. 5以上1) Aqueous mixed solution of aluminum chloride and zinc chloride [A13 + ion concentration 0.075mo1 / L, Zn2 + ion 0.15mo1ZL] Approx.45.8mL [Total amount of A13 + ion 3. 43 mmol, Zn 2+ ion total amount 6.86 mmol 1] was dropped over 2 hours. During the dropping, stirring was continued using an anchor blade so that the G value became 100 s _1 . During the addition of the metal ion aqueous solution, the coagulated waste water was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 Zm 3 · h to remove dissolved carbonate ions and carbon dioxide in the aqueous solution. During the dropping, add 0.2 N sodium hydroxide aqueous solution appropriately to adjust the pH to 6.5 or more.
7. 5以下に調整した。 塩化アルミニウムと塩化亜鉛の混合水溶液の滴下直後か ら極く薄い乳白色の液が凝集を始めると共に白色沈殿を生成し始めた。 この混合 水溶液の滴下開始後 2時間で沈殿の生成は終了した。 攪拌を停止すると生成した 沈殿は速やかに沈降し、 約 10分で完全に沈降した。 上澄液は無色透明であった 。 沈殿物を平均口径 3 xmのメンブランフィル夕一で濾取した。 上澄液を分析し たところ APFOの濃度は 2 p pmであり、 従って、 層状複水酸化物に含まれる P FOAの固定率は 98.9 %であった。 ついで該沈殿物に 10質量%の塩酸 10 0 gを添加し、室温で 3時間攪拌したのち AK 225の 30 gを加えて 10分間激 しく振盪した。 この液を静置して 2相に分離した後の上層の水相には 0. 14質 量%の PFOA、 下層の AK 225相には 4. 06質量%の P FOAが含有され た。 元の凝集排水からの回収率は 85. 8 %であった。 Adjusted to 7.5 or less. Immediately after the dropwise addition of the mixed aqueous solution of aluminum chloride and zinc chloride, the extremely pale milky liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the precipitate formed quickly settled out, and completely settled in about 10 minutes. The supernatant was colorless and transparent . The precipitate was collected by filtration through a membrane filter having an average diameter of 3 xm. When the supernatant was analyzed, the concentration of APFO was 2 ppm, and thus the fixation rate of PFOA contained in the layered double hydroxide was 98.9%. Then, 100 g of 10% by mass hydrochloric acid was added to the precipitate, and the mixture was stirred at room temperature for 3 hours. Then, 30 g of AK 225 was added, followed by vigorous shaking for 10 minutes. After allowing this solution to stand and separate into two phases, the upper aqueous phase contained 0.14% by weight PFOA and the lower AK225 phase contained 4.06% by weight PFOA. The recovery from the original flocculated wastewater was 85.8%.
[実施例 3 ]  [Example 3]
実施例 1と同じ P T F Eの乳化重合後の凝集後排水について、 水酸化ナトリウ ムの代わりに水酸化カリウムを用いて pHを 10. 0に調整すること以外は実施 例 1と同様の操作を行った。 層状複水酸化物に含まれる PFOAの固定率は 97 . 5%であり、 実施例 1と同様の方法により AK 225抽出を行ったところ元の 排水からの回収率は 84. 1 %であった。  The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1 except that the pH was adjusted to 10.0 using potassium hydroxide instead of sodium hydroxide. . The fixed rate of PFOA contained in the layered double hydroxide was 97.5%, and when AK 225 was extracted in the same manner as in Example 1, the recovery from the original wastewater was 84.1%. .
[実施例 4]  [Example 4]
実施例 2と同じ PTFEの乳化重合後の凝集後排水について、 水酸化ナトリウ ムの代わりに水酸化カリウムを用いて pHを 7. 0に調整すること以外は実施例 2と同様の操作を行った。 層状複水酸化物に含まれる PFO Aの固定率は 98. 6%であり、 実施例 1と同様の方法により AK 225抽出を行ったところ元の排 水からの回収率は 84. 9%であった。  The same operation as in Example 2 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 2, except that the pH was adjusted to 7.0 using potassium hydroxide instead of sodium hydroxide. . The fixed rate of PFO A contained in the layered double hydroxide was 98.6%, and when AK 225 was extracted in the same manner as in Example 1, the recovery from the original wastewater was 84.9%. there were.
[比較例 1 ]  [Comparative Example 1]
実施例 1と同じ PTFEの乳化重合後の凝集後排水について、 抽出媒体として トリクロロメタンの 30 gを用いる以外は実施例 1と同様の操作を行った. 層状 複水酸化物に含まれる P F OAの固定率は 98. 1 %であり、 トリクロロメタン 抽出を行ったところ元の排水からの回収率は 76. 7%であった。  The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1 except that 30 g of trichloromethane was used as an extraction medium.Layered PFOA contained in double hydroxide The fixed rate was 98.1%, and the recovery rate from the original wastewater was 76.7% after trichloromethane extraction.
[比較例 2 ]  [Comparative Example 2]
実施例 1と同じ PTFEの乳化重合後の凝集後排水について、 抽出媒体として ジクロロメタンの 30 gを用いる以外は実施例 1と同様の操作を行った. 層状複 水酸化物に含まれる P F OAの固定率は 97. 8%であり、 ジクロロメタン抽出 を行ったところ元の排水からの回収率は 70. 2 %であった。 [実施例 5 ] The same operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE, except that 30 g of dichloromethane was used as the extraction medium. Fixation of PF OA contained in the layered double hydroxide The recovery was 97.8%, and the recovery from the original wastewater was 70.2% after dichloromethane extraction. [Example 5]
実施例 1と同じ PTFEの乳化重合後の凝集後排水について実施例 1と同様の 固定操作を行った。 層状複水酸化物に含まれる PFO Aの固定率は 97. 8%で あった。 層状複水酸化物の溶解に用いる鉱酸として 10質量%の塩酸 100 gの 代わりに 3質量%の硫酸 100 gを使用すること以外は実施例 1と同様の方法に より AK 225抽出を行ったところ元の排水からの回収率は 83. 7%であった  The same fixing operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTFE as in Example 1. The fixing rate of PFO A contained in the layered double hydroxide was 97.8%. AK 225 extraction was performed in the same manner as in Example 1 except that 100 g of 3% by mass sulfuric acid was used instead of 100% of 10% by mass hydrochloric acid as a mineral acid used for dissolving the layered double hydroxide. However, the recovery rate from the original wastewater was 83.7%
[実施例 6 ] [Example 6]
実施例 1と同じ P T F Eの乳化重合後の凝集後排水について実施例 1と同様の 固定操作を行った。 層状複水酸化物に含まれる PFOAの固定率は 98. 1 %で あった。 層状複水酸化物の溶解に用いる鉱酸として 10質量%の塩酸 100 gの 代わりに 10質量%の硝酸 100 gを使用すること以外は実施例 1と同様の方法 により AK225抽出を行ったところ元の排水からの回収率は 84. 5 %であつ た。  The same fixing operation as in Example 1 was performed on the waste water after coagulation after the emulsion polymerization of PTF E as in Example 1. The fixed rate of PFOA contained in the layered double hydroxide was 98.1%. Extraction of AK225 was performed in the same manner as in Example 1 except that 100 g of 10% by mass of nitric acid was used instead of 100% of 10% by mass of hydrochloric acid as the mineral acid used for dissolving the layered double hydroxide. The recovery rate from wastewater was 84.5%.
[実施例 7 ]  [Example 7]
蒸留水に 0.2 Nの水酸化ナトリウム水溶液を添加して pHを 10. 0に調整し た。 液温は 26°Cであった。 次にこの溶液 1 Lに塩化アルミニウムと塩化マグネ シゥムの混合水溶液 [A 13+イオン濃度 0. 075mo 1 ZL、 Mg2+イオン 0 . 15mo 1 ZL] 約 229mL [A 13+イオン総量 1 Ί . 2mmo 1、 Mg2 + イオン総量 34. 3mmo 13 を 2時間かけて滴下した。 滴下中はアンカー翼を 用いて G値が 100 s 1になるように攪拌を続けた。 また、 該金属イオン水溶液 滴下中は窒素ガスを 1 Nm3/m3 · hの一定流量で該凝集排水をバブリングし、 水溶液中の溶存炭酸イオン及び炭酸ガスを除去させた。滴下の間 0.2 N水酸化ナ トリウム水溶液を適宜滴下して pHを 9. 8以上 10. 2以下に調整した。 塩化 アルミニウムと塩化マグネシウムの混合水溶液の滴下直後から極く薄い乳白色の 液が凝集を始めると共に白色沈殿を生成し始めた。 この混合水溶液の滴下開始後 2時間で沈殿の生成は終了した。 攪拌を停止すると生成した沈殿はゆつくりと沈 降した。 沈殿物を平均口径 3 mのメンブランフィル夕一で濾取した。 The pH was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to distilled water. The liquid temperature was 26 ° C. Then the solution 1 L aluminum mixed aqueous solution of chloride magnetic Shiumu chloride [A 1 3+ ion concentration 0. 075mo 1 ZL, Mg 2+ ions 0. 15mo 1 ZL] about 229 mL [A 1 3+ ions total 1 I .2 mmo1, Mg 2 + ion total amount of 34.3 mmo 13 was added dropwise over 2 hours. During the dropwise addition the G value using an anchor blade was continued stirring such that the 100 s 1. During the addition of the metal ion aqueous solution, the coagulated wastewater was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 / m 3 · h to remove dissolved carbonate ions and carbon dioxide gas in the aqueous solution. During the dropwise addition, a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less. Immediately after the dropwise addition of the mixed aqueous solution of aluminum chloride and magnesium chloride, the extremely pale milky liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the precipitate formed slowly settled. The precipitate was collected by filtration through a membrane filter having an average diameter of 3 m.
ついで、 乳化剤として A P F Oを使用して T F Eを重合して得た P T F Eの水 性分散液から PTFEを凝集 ·分離した後の凝集排水 (S S成分が 400 p pm 、 AP F〇濃度は 148 p pm、 pH4. 5) の 10 Lに対して上記で濾取した 層状複水酸化物の沈殿を添加し、室温で 1時間攪拌した。攪拌を停止すると沈殿は ゆっくりと沈降した。 沈殿物を平均口径 3 mのメンブランフィルターで濾取し た。 上澄液を分析したところ APFOの濃度は 63 p pmであり、 従って、 層状 複水酸化物に含まれる P FOAの固定率は 57.4%であった。 ついで該沈殿物に 10質量%の塩酸 100 gを添加し、室温で 3時間攪拌したのち AK 225の 30 gを加えて 1 0分間激しく振盪した。 この液を静置して 2相に分離した後の上層 の水相には 0. 05質量%の P FOA、 下層の AK 225相には 2. 58質量% の PFOAが含有された。 元の凝集排水からの回収率は 53. 7%であった。 Next, PTFE water obtained by polymerizing TFE using APFO as an emulsifier PTFE is flocculated from the aqueous dispersion. Coagulated wastewater after separation (SS component: 400 ppm, APF〇 concentration: 148 ppm, pH 4.5). The precipitate was added and stirred at room temperature for 1 hour. When the stirring was stopped, the precipitate settled out slowly. The precipitate was collected by filtration through a membrane filter having an average diameter of 3 m. When the supernatant was analyzed, the concentration of APFO was 63 ppm, and therefore, the fixing ratio of PFOA contained in the layered double hydroxide was 57.4%. Then, 100 g of 10% by mass hydrochloric acid was added to the precipitate, and the mixture was stirred at room temperature for 3 hours. Then, 30 g of AK 225 was added, and the mixture was vigorously shaken for 10 minutes. After allowing this solution to stand and separate into two phases, the upper aqueous phase contained 0.05% by weight of PFOA, and the lower AK 225 phase contained 2.58% by weight of PFOA. The recovery from the original coagulated wastewater was 53.7%.
[実施例 8 ]  [Example 8]
蒸留水に 0.2 Nの水酸化ナトリウム水溶液を添加して pHを 10. 0に調整し た。 液温は 26 °Cであった。 そこに炭酸ナトリウム 1. 82 g (17. 2mmo 1) を溶解させた。 つぎにこの希薄炭酸ナトリウム水溶液 1 Lに塩化アルミニゥ ムと塩化マグネシウムの混合水溶液 [A l 3+イオン濃度 0. 075mo l ZL、 Mg2+イオン 0. 15mo 1 ZL] 約 229mL [A 13+イオン総量 17. 2 m mo し Mg2+イオン総量 34. 3mmo 1 ] を 2時間かけて滴下した。 また、 該金属イオン水溶液滴下中は窒素ガスを lNm3Zm3 · hの一定流量で該凝集排 水をパブリングし、 水溶液中の溶存炭酸イオン及び炭酸ガスを除去させた。 滴下 中はアンカ一翼を用いて G値が 100 s 1になるように攪拌を続けた。 滴下の間 0.2 N水酸化ナトリウム水溶液を適宜滴下して pHを 9. 8以上 10. 2以下に 調整した。 塩化アルミニウムと塩化マグネシゥムの混合水溶液の滴下直後から極 く薄い乳白色の液が凝集を始めると共に白色沈殿を生成し始めた。 この混合水溶 液の滴下開始後 2時間で沈殿の生成は終了した。 攪拌を停止すると生成した沈殿 はゆつくりと沈降した。 沈殿物を平均口径 3 mのメンブランフィルターで濾取 した。 沈殿を濾紙ごと電気炉を用いて 400°Cで 3時間焼成した。 沈殿物の焼成 後重量は 1. 4 であった。 The pH was adjusted to 10.0 by adding a 0.2 N aqueous sodium hydroxide solution to distilled water. The liquid temperature was 26 ° C. There, 1.82 g (17.2 mmo 1) of sodium carbonate was dissolved. Then a mixed aqueous solution of magnesium chloride and chloride Aruminiu arm to the dilute sodium carbonate solution 1 L [A l 3+ ion concentration 0. 075mo l ZL, Mg 2+ ions 0. 15mo 1 ZL] about 229 mL [A 1 3+ ions The total amount was 17.2 mmo, and Mg 2+ ion total amount 34.3 mmo 1] was added dropwise over 2 hours. During the addition of the metal ion aqueous solution, the coagulated wastewater was bubbled with nitrogen gas at a constant flow rate of 1 Nm 3 Zm 3 · h to remove dissolved carbonate ions and carbon dioxide gas in the aqueous solution. During the dropwise addition the G value by using the anchor part is stirring was continued so that the 100 s 1. During the dropwise addition, a 0.2 N aqueous sodium hydroxide solution was appropriately added dropwise to adjust the pH to 9.8 or more and 10.2 or less. Immediately after the dropwise addition of the mixed aqueous solution of aluminum chloride and magnesium chloride, the extremely pale milky liquid began to aggregate and began to form a white precipitate. Two hours after the start of the dropwise addition of the mixed aqueous solution, the formation of the precipitate was completed. When the stirring was stopped, the precipitate formed slowly settled. The precipitate was collected by filtration through a membrane filter having an average diameter of 3 m. The precipitate was calcined together with the filter paper at 400 ° C for 3 hours using an electric furnace. The weight of the precipitate after firing was 1.4.
一方、 乳化剤として APFOを使用して TFEを重合して得た P T F Eの水性 分散液から PTFEを凝集 .分離した後の凝集排水 (S S成分が 400 p pm, APFO濃度は 148 p pm、 pH4. 5) の 10 Lに対して上記で焼成した層 状複水酸化物の沈殿を添加し、室温で 1時間攪拌した.攪拌を停止すると沈殿はゆ つくりと沈降した。 沈殿物を平均口径 3 /imのメンブランフィルターで濾取した 。 上澄液を分析したところ APFOの濃度は 121 p pmであり、 従って、 層状 複水酸化物に含まれる PFOAの固定率は 18. 2%であった。 ついで該沈殿物 に 10質量%の塩酸 100 gを添加し、室温で 3時間攪拌したのち AK 225の 3 0 gを加えて 10分間激しく振盪した。 この液を静置して 2相に分離した後の上 層の水相には 0. 01質量%の PFOA、 下層の AK 225相には 0. 85質量 %の P FOAが含有された。 元の凝集排水からの回収率は 17. 4%であった。 On the other hand, PTFE is coagulated from an aqueous dispersion of PTFE obtained by polymerizing TFE using APFO as an emulsifier. Coagulated wastewater after separation (SS component is 400 ppm, To 10 L of an APFO concentration of 148 ppm, pH 4.5) was added the layered double hydroxide precipitate calcined above, and the mixture was stirred for 1 hour at room temperature. did. The precipitate was collected by filtration through a membrane filter having an average diameter of 3 / im. When the supernatant was analyzed, the concentration of APFO was 121 ppm, and therefore, the fixing rate of PFOA contained in the layered double hydroxide was 18.2%. Then, 100 g of 10% by mass hydrochloric acid was added to the precipitate, and the mixture was stirred at room temperature for 3 hours. Then, 30 g of AK 225 was added, followed by vigorous shaking for 10 minutes. After the solution was allowed to stand and separated into two phases, the upper aqueous phase contained 0.01% by weight of PFOA and the lower AK225 phase contained 0.85% by weight of PFOA. The recovery from the original flocculated wastewater was 17.4%.
[実施例 9 ]  [Example 9]
実施例 1と同じ PTFEの乳化重合後の凝集後排水について、 実施例 1と同様 の方法により層状複水酸化物に APFOの固定操作を行った。 層状複水酸化物に 含まれる P FO Aの固定率は 97. 8%であり、 ついで AK 225の代わりに C HF2CH2CF3の 30 gを用いる以外は実施例 1と同様の方法により抽出操作 を行ったところ元の排水からの回収率は 79. 4%であった。 産業上の利用可能性 APFO was fixed to the layered double hydroxide in the same manner as in Example 1 with respect to the coagulated waste water after emulsion polymerization of PTFE as in Example 1. Fixed rate of P FO A contained in the layered double hydroxide is 8% 97., followed by the same method as in Example 1 except for using 30 g of C HF 2 CH 2 CF 3 in place of AK 225 When the extraction operation was performed, the recovery rate from the original wastewater was 79.4%. Industrial applicability
本発明の回収法によれば、 簡便な操作により経済的に含フッ素乳化剤を回収す ることができる。  According to the recovery method of the present invention, a fluorine-containing emulsifier can be economically recovered by a simple operation.

Claims

請求の範囲 The scope of the claims
1 . 2価金属イオンと 3価金属イオンを含む混合水溶液と、 含フッ素乳化剤を含 み、 かつ浮遊固形分及び浮遊固形分になりうる物質の含有量が 1質量%以下であ る含フッ素ポリマーの重合後の排水とを、 前記 2価金属と前記 3価金属との層状 複水酸化物が形成される p Hに保ちながら混合し、 含フッ素乳化剤を層間に含む 層状複水酸化物を生成させ、 続いて該排水から分離した該層状複水酸化物を鉱酸 に溶解し、 該溶解液から含フッ素炭化水素を用いて該含フッ素乳化剤を抽出する 含フッ素乳化剤の回収法。 1. A mixed aqueous solution containing divalent metal ions and trivalent metal ions, and a fluorine-containing polymer containing a fluorine-containing emulsifier and containing 1% by mass or less of suspended solids and substances that can become suspended solids Is mixed with the waste water after the polymerization while maintaining the pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed, to form a layered double hydroxide containing a fluorinated emulsifier between the layers. Then, the layered double hydroxide separated from the wastewater is dissolved in a mineral acid, and the fluorinated emulsifier is extracted from the solution using a fluorinated hydrocarbon.
2 . 2価金属イオンと 3価金属イオンを含む混合水溶液を、 前記 2価金属と前記 3価金属との層状複水酸化物が形成される p Hに保つた水溶液に加えて層状複水 酸化物を予め生成させ、 これを含フッ素乳化剤を含み、 浮遊固形分及び浮遊固形 分になりうる物質の含有量が 1質量%以下の、 含フッ素ポリマーの重合後の排水 に添加して、 含フッ素乳化剤を層間に含む層状複水酸化物を生成させ、 続いて該 排水から分離した該層状複水酸化物を鉱酸に溶解し、 該溶解液から含フッ素炭化 水素を用いて該含フッ素乳化剤を抽出することを特徴とする含フッ素乳化剤の回 収法。  2. A mixed aqueous solution containing a divalent metal ion and a trivalent metal ion is added to an aqueous solution maintained at a pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed, and the layered double hydroxide is added. A product containing a fluorine-containing emulsifier, containing 1% by mass or less of suspended solids and substances that can become suspended solids, is added to wastewater after polymerization of a fluorine-containing polymer to produce a fluorine-containing product. A layered double hydroxide containing an emulsifier between layers is generated. Subsequently, the layered double hydroxide separated from the wastewater is dissolved in a mineral acid, and the fluorine-containing emulsifier is dissolved from the solution using a fluorine-containing hydrocarbon. A method for recovering a fluorinated emulsifier, characterized by extracting.
3 . 2価金属イオンと 3価金属イオンを含む混合水溶液を、 前記 2価金属と前記 3価金属との層状複水酸化物が形成される p Hに保つた水溶液に加えて生成した 層状複水酸化物を焼成することにより、 内包するァニオンを脱離させた層状複水 酸化物を生成させ、これをフッ素乳化剤を含み、浮遊固形分及び浮遊固形分になり うる物質の含有量が 1質量%以下の、 含フッ素ポリマーの重合後の排水に添加し て含フッ素乳化剤を層間に含む層状複水酸化物を生成させ、 続いて該排水から分 離した該層状複水酸化物を鉱酸に溶解し、 該溶解液から含フッ素炭化水素を用い て該含フッ素乳化剤を抽出することを特徴とする含フッ素乳化剤の回収法。  3. A layered complex formed by adding a mixed aqueous solution containing a divalent metal ion and a trivalent metal ion to an aqueous solution maintained at pH at which a layered double hydroxide of the divalent metal and the trivalent metal is formed. By firing the hydroxide, a layered double hydroxide in which anions contained therein are eliminated is generated, and the content of the solid containing a fluorine emulsifier and a substance capable of forming a suspended solid is 1 mass%. % Of the fluorinated polymer added to the wastewater after polymerization to form a layered double hydroxide containing a fluorinated emulsifier between layers, and then the layered double hydroxide separated from the wastewater is converted into a mineral acid. A method for recovering a fluorinated emulsifier, comprising dissolving and extracting the fluorinated emulsifier from the solution using a fluorinated hydrocarbon.
4 . 前記 2価金属イオンがマグネシウムイオン及び亜鉛イオンから選ばれる 1種 又は 2種であり、 前記 3価金属イオンがアルミニウムイオンである請求の範囲 1 〜 3のいずれかに記載の含フッ素乳化剤の回収法。  4. The fluorine-containing emulsifier according to any one of claims 1 to 3, wherein the divalent metal ion is one or two selected from a magnesium ion and a zinc ion, and the trivalent metal ion is an aluminum ion. Recovery method.
5 . 前記鉱酸が、 塩酸、 硝酸及び硫酸からなる群から選ばれる 1種以上である請 求の範囲 1〜4のいずれかに記載の含フッ素乳化剤の回収法。 5. The mineral acid is at least one selected from the group consisting of hydrochloric acid, nitric acid and sulfuric acid. The method for recovering a fluorinated emulsifier according to any one of claims 1 to 4.
6. 前記含フッ素ポリマーが、 ポリ四フッ化工チレン、 四フッ化工チレン/ェチ レン共重合体、 四フッ化工チレン/プロピレン共重合体、 四フッ化工チレン Zプ ロピレン フッ化ビニリデン共重合体、 四フッ化工チレン /六フッ化プロピレン 共重合体、 四フッ化工チレン/ CF2 = CFO (CF2) 2CF3共重合体、 及びポ リフッ化ビニリデンから選ばれる一種又は二種以上である請求の範囲 1〜 5のい ずれかに記載の含フッ素乳化剤の回収法。 6. The fluorine-containing polymer is polytetrafluoroethylene, tetrafluoroethylene / ethylene copolymer, tetrafluoroethylene / propylene copolymer, tetrafluoroethylene Zpropylene, vinylidene fluoride copolymer, tetrafluoride modified styrene / hexafluoropropylene copolymer is tetrafluoroethylene modified styrene / CF 2 = CFO (CF 2 ) 2 CF 3 copolymer, and one or more selected from Po Rifu' fluoride according The method for recovering a fluorinated emulsifier according to any one of ranges 1 to 5.
7. 前記含フッ素乳化剤が、 ペルフルォロオクタン酸アンモニゥムである請求の 範囲 1〜 6のいずれかに記載の含フッ素乳化剤の回収法。  7. The method for recovering a fluorinated emulsifier according to any one of claims 1 to 6, wherein the fluorinated emulsifier is ammonium perfluorooctanoate.
8. 前記含フッ素乳化剤の濃度が 1質量 p pm以上 10質量%以下である該含フ ッ素ポリマーの重合後の排水から、 該含フッ素乳化剤を回収する請求の範囲 1〜 7のいずれかに記載の含フッ素乳化剤の回収法。  8. The method according to any one of claims 1 to 7, wherein the fluorinated emulsifier is recovered from waste water after polymerization of the fluorinated polymer having a concentration of the fluorinated emulsifier of 1 to 10% by mass. The method for recovering a fluorinated emulsifier according to the above.
PCT/JP2003/000659 2002-01-25 2003-01-24 Method of recovering fluorochemical emulsifying agent WO2003066533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003203383A AU2003203383A1 (en) 2002-01-25 2003-01-24 Method of recovering fluorochemical emulsifying agent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002016619 2002-01-25
JP2002-16619 2002-01-25
JP2002-368453 2002-12-19
JP2002368453A JP2003285076A (en) 2002-01-25 2002-12-19 Recovery method for fluorine-containing emulsifier

Publications (1)

Publication Number Publication Date
WO2003066533A1 true WO2003066533A1 (en) 2003-08-14

Family

ID=27736418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000659 WO2003066533A1 (en) 2002-01-25 2003-01-24 Method of recovering fluorochemical emulsifying agent

Country Status (3)

Country Link
JP (1) JP2003285076A (en)
AU (1) AU2003203383A1 (en)
WO (1) WO2003066533A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400956A (en) * 2015-10-29 2016-03-16 赣州腾远钴业有限公司 Treatment method for fluorine-containing and phosphorus-containing wastewater generated during recycling of lithium ion batteries
CN113710620A (en) * 2019-04-26 2021-11-26 大金工业株式会社 Water treatment method and composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492612B2 (en) * 2004-05-10 2010-06-30 ダイキン工業株式会社 Process object purification method
JP4806978B2 (en) * 2004-12-28 2011-11-02 ダイキン工業株式会社 Aqueous liquid purification method and fluoropolymer aqueous dispersion manufacturing method
JP2007002072A (en) * 2005-06-22 2007-01-11 Daikin Ind Ltd Method for producing nonionic surfactant aqueous composition
CN102740974A (en) * 2010-02-03 2012-10-17 旭硝子株式会社 Method of recovering anionic fluorinated emulsifiers
EP2756884B1 (en) * 2011-09-13 2018-04-25 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
CN114669083B (en) * 2022-03-12 2024-01-02 信丰华锐钨钼新材料有限公司 Method for separating tungsten and molybdenum organic phases by using N1923 weak alkaline extraction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648742A (en) * 1992-07-27 1994-02-22 Nitto Chem Ind Co Ltd Interlaminar compound
JPH10279307A (en) * 1997-03-31 1998-10-20 Co-Op Chem Co Ltd Composite of laminar multiple hydroxide and saccharide, its production, and recovering material for saccharide
WO1999062830A1 (en) * 1998-06-02 1999-12-09 Dyneon Gmbh & Co. Kg Method for recovering fluorinated alkanoic acids from waste waters
WO2000059629A1 (en) * 1999-04-06 2000-10-12 Japan Science And Technology Corporation Process for producing anion-layered double hydroxide intercalation compounds and products thus produced

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648742A (en) * 1992-07-27 1994-02-22 Nitto Chem Ind Co Ltd Interlaminar compound
JPH10279307A (en) * 1997-03-31 1998-10-20 Co-Op Chem Co Ltd Composite of laminar multiple hydroxide and saccharide, its production, and recovering material for saccharide
WO1999062830A1 (en) * 1998-06-02 1999-12-09 Dyneon Gmbh & Co. Kg Method for recovering fluorinated alkanoic acids from waste waters
WO2000059629A1 (en) * 1999-04-06 2000-10-12 Japan Science And Technology Corporation Process for producing anion-layered double hydroxide intercalation compounds and products thus produced

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIYOSHI NUNODA: "Perfluoro kaimen kasseizai ion no sangyonai kaishu eno sojo kagobutsu no oyo", CSJ: THE CHEMICAL SOCIETY OF JAPAN, KOEN YOKOSHU, no. 80, 7 September 2001 (2001-09-07), pages 41, XP002968455 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400956A (en) * 2015-10-29 2016-03-16 赣州腾远钴业有限公司 Treatment method for fluorine-containing and phosphorus-containing wastewater generated during recycling of lithium ion batteries
CN113710620A (en) * 2019-04-26 2021-11-26 大金工业株式会社 Water treatment method and composition

Also Published As

Publication number Publication date
JP2003285076A (en) 2003-10-07
AU2003203383A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4191929B2 (en) Method for recovering fluorine-containing emulsifier
JP4455327B2 (en) Method for recovering fluorine-containing emulsifier
JP2003220393A (en) Method for adsorptively recovering fluorine-containing emulsifier
JP5244298B2 (en) Method for producing fluoropolymer dispersion
JP2007283224A (en) Method for recovering fluorine-containing emulsifier
EP2298726B1 (en) Fluorine-containing compound purification method
WO2002014223A1 (en) Method of separating anionic fluorochemical surfactant
KR20080046684A (en) Method of making a fluoropolymer
JP2009161794A (en) Method for recovering lithium, and lithium recovering apparatus using the method
JP2008532751A (en) Recovery of fluorinated surfactants from basic anion exchange resins with quaternary ammonium groups
WO2003066533A1 (en) Method of recovering fluorochemical emulsifying agent
JP2007520552A (en) Method for recovering hydrofluoric acid surfactant from adsorbent particles with hydrofluoric acid surfactant attached
JP2007520552A5 (en)
US20100179293A1 (en) Process for removing fluorinated compounds from an aqueous phase originating from the preparation of fluoropolymers
WO2003082793A1 (en) Process for the recovery of fluorine-containing emulsifier
WO2003066532A1 (en) Method of recovering fluorochemical emulsifying agent
JP2003212921A (en) Method for recovering fluorine-containing emulsifier
JPWO2020071505A1 (en) How to remove fluorine-containing compounds from wastewater
JP2003212920A (en) Method for recovering fluorine-containing emulsifier
JP2003212922A (en) Method for recovering fluorine-containing emulsifier
JP2006181416A (en) Method for regenerating adsorbent and method for recovering fluorine-containing surfactant
WO2020078710A1 (en) A method for providing aqueous compositions with reduced content of organic fluorinated compounds
WO2005003190A1 (en) Method for purifying material to be treated and method for producing coagulated material
CN112010416B (en) Method for removing arsenic and chlorine in ultrasonic-enhanced contaminated acid
JP7485978B2 (en) Method for removing fluorine-containing compounds from wastewater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase