WO2003081282A1 - Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector - Google Patents

Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector Download PDF

Info

Publication number
WO2003081282A1
WO2003081282A1 PCT/JP2002/002962 JP0202962W WO03081282A1 WO 2003081282 A1 WO2003081282 A1 WO 2003081282A1 JP 0202962 W JP0202962 W JP 0202962W WO 03081282 A1 WO03081282 A1 WO 03081282A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
radiation
module
detection
detector
Prior art date
Application number
PCT/JP2002/002962
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Kitaguchi
Kazuma Yokoi
Kensuke Amemiya
Yuuichirou Ueno
Norihito Yanagida
Shinichi Kojima
Kikuo Umegaki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2003578962A priority Critical patent/JP4231414B2/en
Priority to PCT/JP2002/002962 priority patent/WO2003081282A1/en
Publication of WO2003081282A1 publication Critical patent/WO2003081282A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4411Constructional features of apparatus for radiation diagnosis the apparatus being modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors

Definitions

  • Radiation imaging apparatus Description Radiation imaging apparatus, radiation imaging system, imaging method using radiation, and radiation detector
  • the present invention relates to a radiation imaging apparatus for imaging radiation, a radiation imaging system including a radiation generator, an imaging method using radiation, and a radiation detector thereof.
  • Detectors which are sensors used in these methods, all have a radiation sensitive thickness of several 10 ⁇ to several 100 / m, and after imaging, develop or read image information by laser. Is necessary indirect imaging. Further, a radiation imaging apparatus using such an indirect imaging method has a small radiation sensitive thickness and a low radiation detection sensitivity, so that a large amount of radiation is required for imaging. This does not adversely affect the human body, but there was a request to minimize the radiation exposure of patients.
  • an imaging method using a flat panel sensor equipped with a phosphor with a thickness of several hundred ⁇ and a TFT (Thin Film Transistor) as a detector is attracting attention.
  • This imaging method can obtain a real-time image, and is called direct imaging in contrast to the indirect imaging described above.
  • radiation imaging devices capable of direct imaging are being widely used as important devices for mass screening and medical diagnosis.
  • the main purpose of the conventional radiation imaging apparatus is to perform X-ray imaging of a patient, and the target energy of the radiation is about 100 keV (the effective average energy is about 50 keV).
  • RI Radio Isotope
  • Tc-99 m 141 KeV
  • O-l5 and F-18 51 keV
  • PET PET
  • the above-mentioned RI is a high-energy source compared to the energy of X-rays used for X-ray imaging. Therefore, when imaging such a radiation source with a conventional radiation imaging device, the sensitivity of the detector is further insufficient, so that the imaging time is prolonged and exposure of the patient may become a problem. There is. Also, depending on the type of radiation source, sufficient detection sensitivity cannot be secured, and the required image may not be obtained. From this point of view, there is a demand for the development of a radiation imaging apparatus equipped with a detector having appropriate sensitivity to the radiation source used.
  • the present invention provides flexible imaging conditions for imaging performed using radiation.
  • the purpose is to be able to respond flexibly and quickly obtain the required image. It is another object of the present invention to minimize the exposure dose of a subject by flexibly responding to imaging conditions. DISCLOSURE OF THE INVENTION.
  • a radiation imaging apparatus having a radiation detector configured by arranging rectangular detection elements according to an imaging target.
  • the detection element is desirably mounted on the holder as a detection module. If the detection modules are arranged based on the imaging parameters, such as the type of radiation source, the body shape of the imaging target, and the imaging site, it is possible to reliably obtain the required image. Further, as the detection element, any of a compound semiconductor such as CdTe, CZT, and GaAs, or a semiconductor such as Si can be used. Further, it is desirable that the radiation imaging apparatus includes a holder for arranging the detection modules.
  • a holder there is a configuration having a plate for positioning the detection module while sliding the detection module and a long hole. If the gap between the detection elements when the detection modules are arranged in the holder is 2 mm or less, the gap at the time of arrangement can be minimized, and the required image can be obtained reliably. In addition, if a concave portion or a convex portion for assisting the arrangement is provided in the detection module, the arrangement work becomes easy.
  • the detection module arrangement work may be done manually, but a handling mechanism is provided, the detector module is automatically transported from the storage position to the holder, and when assembled, the detector is set up quickly. It becomes possible.
  • FIG. 1 is a diagram showing a configuration of a radiation imaging system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram when a radiation imaging device is used as an X-ray imaging device.
  • FIG. 3 is a configuration diagram of a module detection unit.
  • FIG. 4 is a view taken along line AA of FIG.
  • FIG. 5 is a schematic diagram illustrating an arrangement of an image of an imaging target and a module detection unit.
  • FIG. 6 is a diagram showing the main medical radiation sources used in nuclear medicine.
  • FIG. 7 is a diagram showing the relationship between the thickness of the detection element and the amount of absorbed radiation.
  • FIG. 8 is (a) a side view and (b) a front view showing the structure of the holder.
  • FIG. 9 is a flowchart of an imaging process in the radiation imaging system.
  • FIG. 10 is a diagram showing a configuration of the radiation imaging apparatus according to the embodiment of the present invention.
  • FIG. 11 is a perspective view of a module detection unit.
  • FIG. 12 is a diagram showing an arrangement state of the module detection units shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating a configuration of a radiation imaging system according to the present embodiment.
  • FIG. 2 is a conceptual diagram when a radiation imaging apparatus is used as an X-ray imaging apparatus.
  • a radiation imaging system 1 is an X-ray generator 2 that emits X-rays as radiation, and an X-ray that is transmitted through a specific part (imaging target) of a patient.
  • the radiation imaging apparatus 3 is included.
  • a bed 4 on which the person to be imaged lays, a holding means (not shown) for holding the X-ray generator 2 and the like may be included.
  • the holding means is composed of a C-shaped arm or the like, and the X-ray generator 2 and its detector 6 are fixed to both ends of the arm so as to face each other.
  • the radiation imaging device 3 shown in FIG. 1 includes a detector 6 for detecting radiation from an imaging target, a data collection device 7 functioning as an interface for collecting imaging data output from the detector 6, and an imaging device.
  • An operator console 10 that includes a processing device 8 that is a computer that performs image creation and the like and a display device 9 that is an output unit that displays the created captured image.
  • the operator console 10 performs operations of each unit and inputs parameters during imaging. It has.
  • the detector 6 is configured to include a module detection unit 11 that is a detection module that captures an image of an imaging target with one or a plurality of assemblies, and a holder 12 that holds the module detection unit 11. I have.
  • FIG. 3 is a configuration diagram of the module detection unit
  • FIG. 4 is a view taken along the line AA of FIG. 3.
  • the module detection unit 11 of the detector 6 includes A detector element 21 that generates a charge (electron-hole pair) due to the incident light and forms a rectangular detection surface in a plate shape, a readout circuit 22 for reading out the charge from the detection element 21, and a detection element It has an information controller 23 that functions as an interface to smoothly transfer the huge amount of two-dimensional information from 21 and these are housed in a housing (see FIG. 2) not shown in FIG. It is connected to a data collection device 7 (see FIG. 1) by a cable 24.
  • the detection element 21 has a width W, a length, and a thickness t, and sandwiches the semiconductor 2 la, which is a detection unit that absorbs radiation and generates electric charge, and the semiconductor 2 la. And a force source electrode 21 b and an anode electrode 21 c for applying an electric field to the semiconductor 21 a in order to extract electric charges.
  • the semiconductor 2 la for example, a compound semiconductor such as CdTe (cadmium telluride), CZT (cadmium zinc telluride), GaAs (gallium arsenide) or a semiconductor such as Si is used.
  • the cathode electrode 2 lb is provided on the entire surface of the semiconductor 21a using a gold or platinum film.
  • the anode electrode 21c is a signal for each area (pixel) divided into each mesh. It is formed independently so that it can be taken out. For example, when the area of the semiconductor film 21a is 40.times.40 mm and the anode electrode 21c is formed so as to have a mesh of 0.2 mm, the number of nodes becomes 4.0000.
  • the electric charge generated when the radiation is incident on the semiconductor 21a is taken out from each node, read in real time as a detection signal, and becomes information of a two-dimensional radiation image (the above-described imaging data).
  • the total number of pixels of the image created using the detection unit 11 is 400000 pixels.
  • the applied voltage for creating an electric field in the semiconductor element 21a is supplied from the data collection device 7 via the high voltage supply wiring 21d shown in FIG.
  • the read circuit 22 shown in FIG. 3 is composed of ASIC (application specific IC) and LSI.
  • ASIC application specific IC
  • LSI LSI.
  • a bump (fine pole-shaped solder) 25 is used to connect the readout circuit 22 to the anode electrode 21c.
  • the readout circuit 22 and the information controller 23 have a size that does not protrude from the detection element 21 in order to minimize the insensitive part (the part where no image is obtained) when the module detection part 11 is used in combination. is there.
  • the housing 26 shown in FIG. 2 is for integrally housing and holding the detection element 21 including the above-described high-voltage supply wiring 21 d, the data readout circuit 22, and the information controller 23. And has a thickness of about 0.5 mm to 1 mm.
  • a cable 24 extending from the take-out unit 27 on the back of the module detection unit 11 transmits a signal from the information controller 23 to the data collection device 7 or transmits a signal from the data collection device 7 to the detection element 21. It is used to supply voltage to the power supply. It is desirable that the cable 24 be provided with a connector or the like and be detachable from the take-out portion 27 of the housing 26.
  • an optimal and minimum detector 6 is configured by arbitrarily combining the module detection sections 11, so that it is easy to handle and a small detection suitable for intraoperative imaging or the like.
  • Container 6 is realized. This will be described with reference to the schematic diagram of FIG. 5 as an example.
  • the dimensions of the object to be imaged by the radiation imaging apparatus 3 differ greatly depending on the site (organ or bone).
  • FIG. 5 (a) shows the result of imaging the chest, that is, the moon market W1 as the imaging target.
  • FIG. 2 also shows a combination of the module detection units 11, and each of the square cells corresponds to the detection element 21 of the module detection unit 11.
  • the lung W1 since the lung W1 is the largest object to be imaged, a total of 16 module detectors 11 in four rows and four columns are mounted in combination with the holder 12 to form a substantially square imaging area. Imaging is being performed.
  • the grid-like area 29 is an insensitive part where an image cannot be obtained due to the housing 26 of the module detection unit 11, so that an actual image cannot be obtained.
  • it since it has a very small area, it is developed in the processing device 8. 'Sufficient compensation is possible with the processing of the image processing software to be started. In order to minimize this area 29, it is desirable that each module detector 11 be arranged so that adjacent module detectors 11 contact each other.
  • the region 29 can be minimized when the housing 26 is not provided on the outer periphery of the detection element 21, and the width of the region 29 is “0 mm”.
  • the width of the region 29 is preferably within “2 mni”. This is to prevent the lesion from being overlooked due to the lack of a real image.
  • FIG. 5 (b) shows the result of imaging the stomach W2 using eight module detectors 11 as an imaging target.
  • the module detection unit 11 combines four, three, and one three rows from the lower part to the upper part of the stomach W 2, so that a total of eight pieces are aligned so that the ends of each row are aligned.
  • the imaging target is the liver W3 shown in FIG. 5 (c)
  • imaging is performed by combining the module detection units 11 in two rows of three.
  • the imaging target is the module detection unit 11 in the kidney W4 (Fig. 5 (d)), the pancreas W5 (Fig. 5 (e)), and the hand W6 (Fig. 5 (f)). Two single rows, two two rows, and two two rows are combined for imaging.
  • Figure 6 shows the main medical radiation sources used in nuclear medicine.
  • the energy of the radioactive material (RI) source is large at 80 keV, 150 keV, and 500 keV. It can be divided into three areas. If an X-ray source is used, its energy will be about 75 keV to 140 keV. Since the generated energy of the X-ray source indicates the maximum energy, the effective energy (average energy) is less than about 1/2 of the maximum energy. That is, the effective energy of the X-ray source ranges from 40 to 70 keV.
  • the optimum detecting element thickness should be used for these energy regions, that is, the thickness of the detecting surface should be adjusted according to the energy region. It is desirable to choose. Generally, in order to obtain sufficient imaging sensitivity with respect to the energy of each incident radiation, it is necessary to absorb at least 10% or more.
  • V collection voltage
  • a relationship between the thickness of the detection element 21 and the amount of absorbed radiation is obtained as shown in FIG. Assuming that the amount of absorbed radiation is 10% or more, a detector element of 5001 ?: 5111111 thickness for 6 ⁇ , 2 mm thickness for 150 keV, and lmm or less for 80 keV or less can be selected as optimal. .
  • the S / N By optimizing the S / N by selecting the detection element thickness for each radiation energy in this way, the imaging time can be shortened, and this has the effect of greatly reducing the exposure of the imaging patient.
  • a module detector 11 having a small area is prepared in accordance with the energy of radiation, and the radiation source, the imaging area, the body shape of the subject, etc. are changed by changing the combination of such module detectors 11.
  • the most suitable imaging device suitable for is easily realized.
  • FIG. 1 The holder 12 shown in FIG. 1 is used for arranging the module detectors 11 used for imaging and maintaining the arrangement state. An example of such a holder 12 will be described with reference to FIGS. 8 (a) and 8 (b).
  • FIG. 8 (a) is a side view of the holder
  • FIG. 8 (b) is a front view of the holder.
  • the holder 12 has a housing 31 which is in contact with at least one of the back and side surfaces of the module detection unit 11.
  • the housing 31 has a bottom surface 32, a side surface 33, a back surface 34, and a top surface 35. It is desirable not to provide a side surface on the surface facing the side surface 33, but a side surface may be provided. The reason why no side surface is provided on the surface facing the side surface 33 is to facilitate attachment of the module detection unit 11 to the holder 12.
  • the rear surface 34 is a plate with which the rear surface of each module detection unit 11 abuts to arrange the detection elements 21 in the same plane.
  • Elongated holes 36 used for positioning are provided.
  • the elongated hole 36 is formed in accordance with the arrangement direction of the module detectors 11, for example, a holder 12 that can arrange four module detectors 11 in four rows. For example, four rows and four rows of long holes 36 are arranged.
  • the elongated hole 36 does not necessarily need to penetrate the back surface 34. Further, in FIG. 8, the shape is elongated in the horizontal direction, but may be elongated in the vertical direction.
  • the module detectors 11 When arranging the module detectors 11 in the holder 12 shown in FIG. 8, as shown by the broken line in the figure, the module detectors 11 should be inserted into the slots 36 with a gap between them. Insert the extraction part 27 of the cable 24, and then slide the module detection part 11 along the elongated hole 36 in the direction of the arrow. When the take-out part 27 comes into contact with one end of the elongated hole 36, the module detection part 11 is positioned, the adjacent module detection parts 11 come into contact, and the vertically continuous module detection parts 11 are arranged. The module detector 11 is slid because it can be easily mounted without touching the detection element 21 at the time of mounting.
  • the back surface 34 may be provided with a means for gripping the take-out portion 27 to prevent the positioned module detection portion 11 from moving, and a fitting portion with the take-out portion 27. It is preferable that the cable 24 of the module detection unit 11 be detachably configured and attached to the extraction unit 27 after the positioning of the module detection unit 11 with respect to the holder 12 is completed.
  • the holder 12 is a holder capable of imaging the lung W1 in FIG. 5 (a), but the detector 6 is intended for intraoperative imaging, and the detector does not need to image the lung W1.
  • the holder 12 it is possible to make the holder 12 of an arbitrary shape. Examples of such holders 12 include holders in which module detectors 11 can be arranged in three rows and two columns at maximum, and holders in which four or more module detectors 11 can be arranged in three rows.
  • the processing device 8 shown in FIG. 1 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory) for performing data processing, a predetermined electric and electronic circuit, and a ROM (Memory) for storing data and programs. It has a storage device such as a read only memory or a hard disk, and may include various drive devices for reading and writing data.
  • the storage device stores a database used when selecting an imaging condition by receiving an imaging parameter described later. This day
  • the database is a table constructed by associating the imaging parameters with the imaging conditions. By performing a database search using a set of imaging parameters as a keyword, a set of imaging conditions can be obtained.
  • the imaging parameters “selection of X-ray imaging and RI imaging”, “type of radiation to be used”, “dose to a patient in the case of RI imaging ′ administration time”, “imaging target”, “Patient's body shape” is an example.
  • “the type of radiation to be used” is used for selecting the module detecting section 11 having the optimum detecting element thickness.
  • the “dose to the patient in the case of RI imaging / administration time” is used to determine the imaging time. As shown in Fig. 6, a medical RI with a short half-life is used, so the amount of radiation emitted from the RI according to the time elapsed from the time of administration to the time of imaging, that is, emitted from the subject The radiation dose changes.
  • the “imaging target” is used to determine the number and combination of the module detectors 11 according to the site as described above.
  • the ⁇ patient's shape '' refers to the patient's height, weight, age, gender, etc., and depending on whether the patient is a child, an adult, or a woman, the measurement position and required modules Used to modify the number and combination of detectors 11.
  • the imaging conditions include radiation energy and imaging time, the arrangement (combination and number) of the module detector 11, the aperture when the X-ray source is an X-ray source, and the module detector 11 when an RI is used.
  • the conditions for setting the collimator to be arranged are given.
  • the setting conditions of the collimator determine the aperture diameter and its direction based on the position of the imaging target and the energy of radiation. '
  • step S1 the radiation imaging apparatus 3 acquires imaging parameters. This process is performed by the doctor or X-ray imaging technician on the operator console 10 (see Figure 1). ) Is input by inputting various imaging parameters.
  • step S2 the processing device 8 automatically determines an imaging condition based on the various imaging parameters input in step S1, and causes the display device 9 to display the imaging condition. That is, the processing device 8 performs a database search using the imaging parameters, determines the number of module detection units 11 based on the size of the imaging target, and determines the number of module detection units 11 according to the shape (type) of the imaging target. To determine the two-dimensional array of In addition, the imaging time is determined as described above, and the module detection unit 11 having a different detection element thickness (detection surface thickness) is determined as necessary.
  • step S3 the processing device 8 waits for input of approval / disapproval of the presented imaging condition.
  • the doctor or X-ray imaging technician checks the imaging conditions displayed on the screen, and if it is determined that correction is necessary (NO in step S3), the process proceeds to step S4. On the other hand, if it is determined that no correction is necessary (YES in step S3), the photographing conditions are approved, and the flow advances to step S5. The confirmation at this time is input from the operator console 10.
  • the manual correction of the imaging conditions in step S4 can be performed for each item such as the imaging time for the imaging conditions displayed on the screen.
  • the cursor is moved to the item to be corrected. And enter the required numbers
  • step S3 After performing the manual correction, the process returns to step S3, and waits for input of approval / denial of the imaging condition.
  • step S5 imaging preparation is performed based on the authenticated imaging conditions.
  • the processing device 8 outputs a control signal for moving the holder 12 of the module detection unit 11 to the measurement position facing the target site, and turns on a lamp that notifies the start of imaging. It is desirable that the module detection unit 11 be mounted before the holder 12 is moved.
  • step S6 imaging is performed.
  • the imaging time is counted from the emission of X-rays.
  • the imaging time is counted from the time when the module detector 11 is arranged at the measurement position.
  • the detection element 21 of the module detection unit 11 generates an electric charge according to the incidence of radiation. This electric charge is transmitted to the processing device 8 for each module detection unit 11 via the cable 24, and the processing device 8 processes the image data and causes the display device 9 to display the image of the imaging site.
  • step S7 end processing of imaging is performed.
  • necessary processing such as stopping the output of the X-ray generator 2, leaving the module detector 11 from the measurement position, and stopping the image data collection of the processor 8 are performed.
  • the captured image is temporarily stored in the processing device 8, and is stored in a storage device, an external recording medium, or output to a printing device as necessary.
  • Such a radiation detector 6, or a radiation imaging apparatus 3 including the detector 6, or a radiation imaging system 1 including an X-ray generator 2 can be used in a variety of conditions such as a patient's body shape and an imaging site. In this case, the imaging conditions can be easily set, and more practical imaging can be efficiently performed. In the above, acquisition of the imaging parameters, determination of the number and arrangement of the module detectors 11, selection of the detection element thickness performed as necessary, and module detectors 11 to the holder 12 are performed. The process including the sequence of and is the assembly process of the detector 6.
  • FIG. 10 is a diagram schematically illustrating the entire configuration of the radiation imaging apparatus according to the present embodiment.
  • the radiation imaging apparatus 51 is connected to a detector 6 including a module detection unit 11 a, lib, 11 c for capturing an image of an object to be imaged and its holder 12, and to the detector 6.
  • Data collection device 7 and a processing device that creates captured images 8 a display device 9 for displaying the created captured image, a module tray 52 for storing each of the module detectors 11a to l1c 52a, 52b, 52c, and a module tray 52a , 52b, 53c, necessary module detectors 11a-: Includes a handling mechanism 53 for taking out L1c and attaching it to the holder 12. Operation of each part and parameters for imaging An operator console 10 is provided for inputting data.
  • the module detection unit in the present embodiment includes three types of module detection units 11 a, lib, and 11 c having different thicknesses of the semiconductor element 2 la of the detection element 21 shown in FIG. Is prepared.
  • the three types of module detectors 11a, li, and 11c have good sensitivity to the three types of energy (80 keV, 150 keV, and 500 keV) shown in Fig. 7, respectively. 1mm, 2mm and 5mm thick as obtained.
  • three module trays 52a, 52b, and 52c are also provided to separately store the three types of module detectors 11a, lib, and 11c with different film thicknesses. Have been.
  • the nozzle ring mechanism 53 includes a gripper-type hand 54 that transports the module detectors 11 a, lib, and 11 c between the module trays 52 a, 52 b, and 52 c and the holder 12. It is composed to include 5 5. Specific examples of such a handling mechanism 53 include a rail laid from the module trays 52 a, 52 b, 52 c to the holder 12, and a traveling vehicle movable on the rail.
  • a multi-indirect robot as a map epilator 55 mounted on a vehicle, and a trolley. Various motors for driving each joint of the multi-indirect robot.
  • the position of the hand 54 is controlled by a control signal output from the processing device 8.
  • the positions of the holders 12, the positions of the module trays 52a, 52b, 52c, and the module trays 52a, 52b, 52c are provided.
  • the stored module detectors 11a, lib, and 11c are registered in advance.
  • a rectangular coordinate robot or other numerical control It is possible to employ a known means for moving 54 in the horizontal and vertical directions. A configuration may be adopted in which the module detectors 11 a to l 1 c are conveyed by rotating the manipulator 55 without providing a rail for moving the manipulator 55 and a traveling carriage.
  • the module trays 52a, 52b, and 52c have storage holes 56 that can store and store the maximum number of the module detectors 11a, lib, and 11c that can be mounted on the holder 12. That is, if the maximum imaging area is 40 ⁇ 40 cm and one imaging area of the module detectors 11 a, lib, 11 c is 4 ⁇ 4 cm, one type of module tray 52 a, 52 b, 52 c Each of them has one hundred accommodation holes 56, and stores one hundred module detection units 11a, lib, and 11c, respectively.
  • the orientation and arrangement of the receiving holes 56 can be of any form, but the depth of the receiving holes 56 is such that at least a part of the front of the module detectors 11 a, lib, and 11 c to be stored is It is desirable that the depth is such that it is exposed. This is because the grip 54 grips the side surface of the housing 26 when the handling mechanism 53 conveys the module detectors lla, lib, and 11c.
  • the radiation imaging apparatus 51 obtains imaging parameters input by the doctor or X-ray imaging technician from the operator console 10 (step S1 in FIG. 9), and based on the imaging parameters, detects the module detection unit 11 a , Li, and 11c, the imaging conditions such as type, number, sink, and array are automatically determined and displayed on the display device 9 (step S2). If the imaging conditions are approved by a doctor or an X-ray imaging technician (YES in step S3) after the imaging conditions are manually corrected as needed (step S4), a control signal is output from the processing unit 8. And preparation for shooting is started (Step S5)
  • the processing device 8 includes the types of the module detection units 11 obtained from the imaging conditions approved in step S3 and the arrangement of the module detection units 12 and the module detection units 11a, lib, A control signal is output to the handling mechanism 53 from the position of 1 1 c.
  • the handling mechanism 53 grips the hand 54 with the corresponding module detector 11a, lib, 11c, and holds the holder 1 2 from the module tray 52a, 52b, 52c. To a predetermined position.
  • the traveling carriage or the manipulator 55 is moved to the position of the module detecting section 11a accommodated in the module tray 52a.
  • the manipulator 55 is advanced toward the module tray 52a with the hand 54 opened.
  • the hand 54 is closed and the side surface of the housing 26 (see FIG. 2) of the module detecting section 11a is grasped
  • the maupilator 55 is retracted from the module tray 52a, and then toward the holder 12.
  • the height of the module is adjusted by the manipulator 55, and the module detector 11a is mounted on the holder 12 at a predetermined position.
  • the node 54 is returned to the module tray 52a, and the above processing is repeated until all the necessary module detecting sections 11a are mounted on the holder 12.
  • the imaging is performed (step S6).
  • the charge generated by the detection element 21 of the module detection unit 11 in response to the incidence of radiation is processed in the processing device 8 and displayed on the display device 9 as an image of the imaging site.
  • the imaging is terminated (step S7).
  • the types of detector modules 11a, lib, and 11c and the arrangement of the detector modules are determined based on the input of the imaging parameters, and the handling mechanism 53 automatically determines the type. And arranging the detector modules 11a, lib, and 11c on the holder 12.
  • Such a radiation imaging apparatus 51 includes module trays 52 a, 52 b, 52 c And the handling mechanism 53, it is possible to automatically assemble the optimal detector 6 based on the imaging conditions. This makes it possible to quickly and easily set the most appropriate imaging device for the imaging region of the patient. Furthermore, the burden on doctors and imaging technicians who perform imaging is greatly reduced, and imaging efficiency can be greatly improved. If a radiation imaging system is constructed by adding the X-ray generator shown in FIG. 1 to the radiation imaging apparatus 51, X-ray imaging can be performed efficiently.
  • the present embodiment relates to a module detection unit that can easily perform a two-dimensional array.
  • FIG. 11 is a perspective view, and FIG. 12 shows the arrangement state, respectively.
  • the module detector 61 includes a detection element 21, a readout circuit 22, and an information controller 23 as shown in FIG. It has a configuration housed in 66.
  • the housing 66 includes a clamp convex portion 71 for forming a fitted state with another module detecting portion 61, and a clamp concave portion 72 that can be engaged with the clamp convex portion 71 of the same shape on the opposite surface. Yes.
  • a clamp convex portion 71 and a clamp concave portion 72 are provided at positions different in phase by 90 degrees from the clamp convex portion 71 and the clamp concave portion 72, respectively.
  • the clamp convex portion 71 has a flange portion 74 having a larger diameter than the shaft portion 73.
  • the clamp concave portion 72 is formed by a groove penetrating to the cable 24 take-out side. The inside of this groove has a width substantially equal to the diameter of the flange portion 74 of the clamp convex portion 71.
  • the two-dimensional array of the module detectors 6 1 having the clamp convex portions 7 1 and the clamp concave portions 7 2 is, for example, a clamp convex portion 7 1 of the module detector 6 1 a located in the middle of the left column in FIG.
  • Adjacent upper module detector 6 Clamp recess of 1 b 7 2 and the clamp concave portion 72 of the module detecting portion 61a is formed by the clamp convex portion of the adjacent module detecting portion 61c of the adjacent side and the convex portion of the lower module detecting portion 61d. 7 Mates with 1. Since the respective module detectors 61 are connected by fitting, the arrangement of the module detectors 61 is facilitated, and the relative displacement of the module detectors 61 can be prevented.
  • a band 63 is wound around the outer periphery of the module detection unit group 62. Is also good. It is desirable that the band 63 has a hook-and-loop fastener or the like, and has a configuration that allows easy adjustment of the length and easy attachment and detachment.
  • the module detection unit 61 thus combined receives a voltage supply from the processing device 8 as shown in FIG. 1, and generates an electric signal for each radiation incident position.
  • the result of image processing performed by the processing device 8 that has collected the electric signals is output to the display device 9.
  • the combination of the module detectors 61 in a number arrangement is determined by the imaging parameters input from the operation console 10, and the combination of the module detectors 61 is handled as shown in FIG.
  • the mechanism 53 may be configured to perform the processing automatically.
  • the present invention can be widely applied without being limited to the above embodiments.
  • the module detection units 11 and 61 using the semiconductor element 21 a are described.
  • a plurality of module trays 52a, 52b, 52 are provided with module detectors 11a, lib, 11c having a plurality of types of detection element thicknesses. May be stored and stored. Since the optimum detector 6 can be formed according to the energy of the radiation, the amount of exposure of the patient can be minimized, and a clearer image can be obtained.
  • the module detector 61 of the third embodiment is added to the first and second embodiments. It is also possible to use.
  • a lighting means such as an indicator lamp is provided for each of the module trays 52a, 52b, 52c so that the module detectors 11a, lib, 11c indicated by the imaging conditions can be visually checked. By doing so, it becomes possible to assemble the detector 6 reliably during manual work. Similarly, if lighting means for visually confirming the arrangement of the module detectors 11 determined by the imaging conditions are provided for each array position of the module detectors 11 in the holder 12, the detectors can be surely provided during manual work. 6 can be assembled. As described above, according to the present invention, it is possible to perform optimal radiation imaging corresponding to the body shape of the imaging target (patient, subject), the imaging site, the target radiation source, and the time since RI administration. Therefore, the automatic imaging system that reduces the exposure of the patient can be easily realized.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

A radiation image pickup apparatus (3) comprising an X-ray generator (2) and a detector (6) which detects X-rays which has transmitted through a specific part (an object for image pickup) of a patient, and outputs an image thereof. The detector (6) has a configuration in which module detection units (11) having detection elements (21) are arrayed in a holder (12), and the array of the module detection units (11) is determined by a processor (8) according to the size and the shape of the image pickup object which has been input by using an operator console (10). A requested image can be captured rapidly by flexibly meeting the image pickup condition.

Description

明 細 書 放射線撮像装置および放射線撮像システムな らびに放射線を用 いた撮像方法および放射線検出器 技術分野  Description Radiation imaging apparatus, radiation imaging system, imaging method using radiation, and radiation detector
本発明は、 放射線を撮像する放射線撮像装置、 および、 放射発生装置を含む放 射線撮像システム、 放射線を用いた撮像方法、 ならびに、 その放射線検出器に関 する。 背景技術  The present invention relates to a radiation imaging apparatus for imaging radiation, a radiation imaging system including a radiation generator, an imaging method using radiation, and a radiation detector thereof. Background art
従来の放射線を利用した放射線撮像装置としては、 フィルム法ゃィメージング プレート (I P ) 法 (参考文献: RDI0IS0T0PES: 44, 433 (1995) ) などがあげられ る。 これらの方法に用いられるセンサである検出器は、 いずれも放射線の有感部 厚が数 1 0 μ πιから数 1 0 0 / m程度であり、 撮像後に現像処理やレーザによる イメージ情報の読み取り処理が必要な間接撮像である。 また、 このような間接撮 像方法を利用した放射線撮像装置は、 その放射線の有感部厚が薄く、 放射線の検 出感度が小さいので、 撮像には多くの放射線量が必要となる。 これは、 人体に悪 影響を及ぼすものではないが、 患者の放射線の被曝量を最小限に止めたいという 要望があった。  As a conventional radiation imaging apparatus using radiation, there are a film method and an imaging plate (IP) method (reference: RDI0IS0T0PES: 44, 433 (1995)). Detectors, which are sensors used in these methods, all have a radiation sensitive thickness of several 10 μπι to several 100 / m, and after imaging, develop or read image information by laser. Is necessary indirect imaging. Further, a radiation imaging apparatus using such an indirect imaging method has a small radiation sensitive thickness and a low radiation detection sensitivity, so that a large amount of radiation is required for imaging. This does not adversely affect the human body, but there was a request to minimize the radiation exposure of patients.
そこで、 近年では数 1 0 0 μ πι厚の蛍光体と T F T (Thin Film Transistor)を 備えるフラットパネルセンサを検出器として用いる撮像法 (参考文献:電気学会 研究会資料;原子力研究会、 NE- 01- 25,P21 (2001) ) が注目を集めている。 この撮 像法は、 リアルタイムの映像を得ることができ、 前記の間接撮像と対比して直接 撮像と呼ばれる。 このため、 直接撮像が可能な放射線撮像装置は集団検診や医療 診断の重要な機器として、 広く活用されつつある。 また、 従来の放射線撮像装置の主たる使用目的は患者の X線撮像であり、 放射 線の対象エネルギが 1 0 0 k e V程度 (実効平均エネルギは 5 0 k e V程度) で あった。 一方、 最近の核医学の放射線撮像技術では、 患者に放射性物質 (R I : R adio Isotope) を投与して撮像する診断が極めて多くなつている。 このような撮 像ではガンマカメラ用の T c一 9 9 m (1 4 1 K e V) や P E T (Positron Emiss ion Tomography) 用の O—l 5や F— 1 8 ( 5 1 1 k e V) が主な R Iとなる。 しかしながら、 前記した R Iは、 X線撮像に用いる X線のエネルギに比べ、 高 エネルギの線源である。 このため、 このような線源に対して従来の放射線撮像装 置で撮像を行う場合には、 さらに検出器の感度が不足するので撮像時間が長くな り、 患者の被曝が問題となる可能性がある。 また、 放射線源の種類によっては、 充分な検出感度を確保できず、 必要な像が得られない可能性もある。 このような 観点から、 用いる放射線源に対して適切な感度となる検出器を備えた放射線撮像 装置の開発が要望されている。 Therefore, in recent years, an imaging method using a flat panel sensor equipped with a phosphor with a thickness of several hundred μππ and a TFT (Thin Film Transistor) as a detector (Reference: IEEJ Technical Meeting Materials; Nuclear Research Meeting, NE-01 -25, P21 (2001)) is attracting attention. This imaging method can obtain a real-time image, and is called direct imaging in contrast to the indirect imaging described above. For this reason, radiation imaging devices capable of direct imaging are being widely used as important devices for mass screening and medical diagnosis. In addition, the main purpose of the conventional radiation imaging apparatus is to perform X-ray imaging of a patient, and the target energy of the radiation is about 100 keV (the effective average energy is about 50 keV). On the other hand, in recent radiological imaging techniques of nuclear medicine, the number of diagnoses of imaging by administering a radioactive substance (RI: Radio Isotope) to a patient is increasing. For such images, Tc-99 m (141 KeV) for gamma cameras and O-l5 and F-18 (51 keV) for PET (Positron Emission Tomography) Is the main RI. However, the above-mentioned RI is a high-energy source compared to the energy of X-rays used for X-ray imaging. Therefore, when imaging such a radiation source with a conventional radiation imaging device, the sensitivity of the detector is further insufficient, so that the imaging time is prolonged and exposure of the patient may become a problem. There is. Also, depending on the type of radiation source, sufficient detection sensitivity cannot be secured, and the required image may not be obtained. From this point of view, there is a demand for the development of a radiation imaging apparatus equipped with a detector having appropriate sensitivity to the radiation source used.
さらに、 X線 ·核医学の撮像対象には、 最も大面積の胸部全体から小面積の胆 嚢、 腎臓まで大きさの異なる多くの対象が存在しており、 従来の放射線撮像装置 の検出器は最も面積の大きい胸部の大きさに合わせて製造されている。 しかしな がら、 そのような大きい検出器は取り扱いに不便であった。 また、 腎臓など小さ い部位を撮像対象とする場合には、 他の不要な部分も撮像されてしまうため、 必 要な部位のみを撮像したいという要望があった。 このような要望は術中に行われ る局部的な撮像においては、 顕著に表れる。 そして、 このような要望に応えるた めには放射線源の種類、 撮像対象の面積に合った検出器や、 そのような検出器を 備える放射線撮像装置を全て揃える必要があるが、 例えば、 線源のエネルギを 3 種、 撮像部位 (撮像臓器など) を 3 0種、 幼児、 子供、 大人の体形を 3種とする と、 2 7 0種類の放射線撮像装置をあらかじめ所有しなければならないことにな り、 保管スペースや、 管理費用の観点からは望ましくない。  Furthermore, there are many X-ray and nuclear medicine imaging targets that differ in size, from the largest area of the entire breast to the small area of the gall bladder and kidneys. It is manufactured to the size of the largest breast area. However, such large detectors were inconvenient to handle. In addition, when a small site such as a kidney is to be imaged, other unnecessary portions are also imaged. Therefore, there has been a demand that only the necessary site be imaged. Such a demand is prominent in intraoperative local imaging. In order to respond to such demands, it is necessary to prepare all types of radiation sources, detectors that match the area of the imaging target, and radiation imaging devices equipped with such detectors. If three types of energy are used, 30 types of imaging parts (imaging organs, etc.), and 3 types of infants, children, and adults are required, it is necessary to have 270 types of radiation imaging devices in advance. This is not desirable in terms of storage space and management costs.
したがって、 本発明は、 放射線を用いて行われる撮像において、 撮像条件に柔 軟に対応し、 必要な像を速やかに得られるようにすることを目的とする。 また、 撮像条件に柔軟に対応することで被撮像者の被曝量を最低限に止めることを目的 とする。 発明の開示 . Therefore, the present invention provides flexible imaging conditions for imaging performed using radiation. The purpose is to be able to respond flexibly and quickly obtain the required image. It is another object of the present invention to minimize the exposure dose of a subject by flexibly responding to imaging conditions. DISCLOSURE OF THE INVENTION.
前記の課題を解決するための手段としては、 方形の検出素子を撮像対象に合わ せて配列させることで放射線の検出器を構成した放射線撮像装置があげられる。 検出素子は検出モジュールとして保持具に装着されることが望ましい。 検出モジ ユールの配列は放射線の線源の種類、 撮像対象の体形、 撮像部位などの撮像パラ メータに基づいて行うと、 必要な像を確実に得ることが可能になる。 また、 検出 素子としては、 C d T e、 C Z T、 G a A s等の化合物半導体、 あるいは、 S i 等の半導体のいずれかを用いることができる。 さらに、 放射線撮像装置は、 検出 モジュールを配列するための保持具を備えることが望ましい。 このような保持具 としては、 検出モジュールをスライドさせながら位置決めするプレートおよぴ長 穴を備えた構成があげられる。 そして、 保持具に検出モジュールを配列した際の 検出素子間の隙間は 2 mm以下とすると、 配列時の隙間を最小限に止め、 必要な 像を確実に得ることができる。 なお、 配列を補助するための凹部や凸部を検出モ ジュールに設けると配列作業が容易になる。 ここで、 検出モジュールの配列作業 は人手で行っても構わないが、 ハンドリング機構を設け、 検出モジュールの保管 位置から保持具まで自動で搬送し、 組み立てると、 検出器のセットアップを速や かに行うことが可能になる。 図面の簡単な説明  As a means for solving the above-mentioned problem, there is a radiation imaging apparatus having a radiation detector configured by arranging rectangular detection elements according to an imaging target. The detection element is desirably mounted on the holder as a detection module. If the detection modules are arranged based on the imaging parameters, such as the type of radiation source, the body shape of the imaging target, and the imaging site, it is possible to reliably obtain the required image. Further, as the detection element, any of a compound semiconductor such as CdTe, CZT, and GaAs, or a semiconductor such as Si can be used. Further, it is desirable that the radiation imaging apparatus includes a holder for arranging the detection modules. As such a holder, there is a configuration having a plate for positioning the detection module while sliding the detection module and a long hole. If the gap between the detection elements when the detection modules are arranged in the holder is 2 mm or less, the gap at the time of arrangement can be minimized, and the required image can be obtained reliably. In addition, if a concave portion or a convex portion for assisting the arrangement is provided in the detection module, the arrangement work becomes easy. Here, the detection module arrangement work may be done manually, but a handling mechanism is provided, the detector module is automatically transported from the storage position to the holder, and when assembled, the detector is set up quickly. It becomes possible. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態における放射線撮像システムの構成を示す図である < 第 2図は、 放射線撮像装置を X線撮像装置として用いた場合の概念図である。 FIG. 1 is a diagram showing a configuration of a radiation imaging system according to an embodiment of the present invention. FIG. 2 is a conceptual diagram when a radiation imaging device is used as an X-ray imaging device.
第 3図は、 モジュール検出部の構成図である。 第 4図は、 図 3の A— A線矢視図である。 FIG. 3 is a configuration diagram of a module detection unit. FIG. 4 is a view taken along line AA of FIG.
第 5図は、 撮像対象の像とモジュール検出部の配置を説明する模式図である。 第 6図は、 核医学に用いられる主な医療用の放射線源を示した図である。 FIG. 5 is a schematic diagram illustrating an arrangement of an image of an imaging target and a module detection unit. FIG. 6 is a diagram showing the main medical radiation sources used in nuclear medicine.
第 7図は、 検出素子の厚さと放射線の吸収量との関係を示す図である。 FIG. 7 is a diagram showing the relationship between the thickness of the detection element and the amount of absorbed radiation.
第 8図は、 保持具の構成を示す、 (a ) 側面図、 (b ) 正面図である。 FIG. 8 is (a) a side view and (b) a front view showing the structure of the holder.
第 9図は、 放射線撮像システムにおける撮像処理のフローチヤ一トである。 FIG. 9 is a flowchart of an imaging process in the radiation imaging system.
第 1 0図は、 本発明の実施形態における放射線撮像装置の構成を示す図である。 第 1 1図は、 モジュール検出部の斜視図である。 FIG. 10 is a diagram showing a configuration of the radiation imaging apparatus according to the embodiment of the present invention. FIG. 11 is a perspective view of a module detection unit.
第 1 2図は、 図 1 1に示すモジュール検出部の配列状態を示す図である。 発明を実施するための最良の形態 FIG. 12 is a diagram showing an arrangement state of the module detection units shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(第一実施形態)  (First embodiment)
本発明の第一実施形態について図面を参照しながら詳細に説明する。  A first embodiment of the present invention will be described in detail with reference to the drawings.
図 1は本実施形態における放射線撮像システムの構成を示す図である。 図 2は 放射線撮像装置を X線撮像装置として用いた場合の概念図である。  FIG. 1 is a diagram illustrating a configuration of a radiation imaging system according to the present embodiment. FIG. 2 is a conceptual diagram when a radiation imaging apparatus is used as an X-ray imaging apparatus.
図 1に示すように放射線撮像システム 1は、 放射線としての X線を出射する X 線発生装置 2と、 患者の特定部位 (撮像対象) を透過した X線を検出し、 その像 を出力させるための放射線撮像装置 3と含んで構成されている。 また、 図 2に示 すように、 被撮像者が横たわるベッド 4や、 X線発生装置 2などを保持する図示 しない保持手段を含んで構成しても良い。 保持手段は C字形状のアームなどから 構成され、 アームの両端には X線発生装置 2と、 その検出器 6とが対向して固定 される。 このようなアームを患者の撮像対象 Wに対して進退させたり、 X方向 · Y方向に回転させることで放射線撮像を行うことが可能になる。 なお、 患者に R I (放射性物質) を投与するガンマカメラや S P E C T (Single Photon Emissio n CT) 撮像のために用いる放射線撮像装置 3においては、 撮像対象そのものから 放射線が放出されるため、 X線発生装置 2は不要となる。 図 1に示す放射線撮像装置 3は、 撮像対象からの放射線を検出する検出器 6と 、 検出器 6からの出力である撮像データを収集するためのインターフェイスとし て機能するデータ収集装置 7と、 撮像イメージの作成などを行うコンピュータで ある処理装置 8と、 作成した撮像イメージを表示する出力手段である表示装置 9 とを含み、 各部の操作や、 撮像時のパラメータの入力を行うオペレータコンソー ル 1 0を備えている。 さらに、 検出器 6は、 一つまたは複数の集合体で撮像対象 を撮像する検出モジュールであるモジュール検出部 1 1と、 モジュール検出部 1 1を保持する保持具 1 2とを含んで構成されている。 As shown in Fig. 1, a radiation imaging system 1 is an X-ray generator 2 that emits X-rays as radiation, and an X-ray that is transmitted through a specific part (imaging target) of a patient. The radiation imaging apparatus 3 is included. Further, as shown in FIG. 2, a bed 4 on which the person to be imaged lays, a holding means (not shown) for holding the X-ray generator 2 and the like may be included. The holding means is composed of a C-shaped arm or the like, and the X-ray generator 2 and its detector 6 are fixed to both ends of the arm so as to face each other. It is possible to perform radiation imaging by moving such an arm forward and backward with respect to the imaging target W of the patient, or by rotating the arm in the X and Y directions. In a gamma camera that administers a radioactive substance (RI) to a patient or a radiation imaging device 3 used for SPECT (Single Photon Emission CT) imaging, radiation is emitted from the imaging target itself, so an X-ray generator 2 becomes unnecessary. The radiation imaging device 3 shown in FIG. 1 includes a detector 6 for detecting radiation from an imaging target, a data collection device 7 functioning as an interface for collecting imaging data output from the detector 6, and an imaging device. An operator console 10 that includes a processing device 8 that is a computer that performs image creation and the like and a display device 9 that is an output unit that displays the created captured image. The operator console 10 performs operations of each unit and inputs parameters during imaging. It has. Further, the detector 6 is configured to include a module detection unit 11 that is a detection module that captures an image of an imaging target with one or a plurality of assemblies, and a holder 12 that holds the module detection unit 11. I have.
モジュール検出部 1 1の構成について、 図 3およぴ図 4を用いて説明する。 な お、 図 3はモジュール検出部の構成図であり、 図 4は図 3の A— A矢視図である 図 3に示すように、 検出器 6を構成するモジュール検出部 1 1は、 放射線の入 射により電荷 (電子一正孔対) を発,生する板状で方形の検出面となる検出素子 2 1と、 検出素子 2 1から電荷を読み出すための読み出し回路 2 2と、 検出素子 2 1からの膨大な二次元情報をスムーズにデータ転送するためのインターフェイス として機能する情報コントローラ 2 3とを有し、 これらが図 3には図示しないハ ウジング (図 2参照) に収容されており、 ケーブル 2 4によりデータ収集装置 7 (図 1参照) に連結される。  The configuration of the module detection unit 11 will be described with reference to FIGS. FIG. 3 is a configuration diagram of the module detection unit, and FIG. 4 is a view taken along the line AA of FIG. 3. As shown in FIG. 3, the module detection unit 11 of the detector 6 includes A detector element 21 that generates a charge (electron-hole pair) due to the incident light and forms a rectangular detection surface in a plate shape, a readout circuit 22 for reading out the charge from the detection element 21, and a detection element It has an information controller 23 that functions as an interface to smoothly transfer the huge amount of two-dimensional information from 21 and these are housed in a housing (see FIG. 2) not shown in FIG. It is connected to a data collection device 7 (see FIG. 1) by a cable 24.
図 4に示すように、 検出素子 2 1は、 幅 W、 長さ 、 厚さ tを有し、 放射線を 吸収して電荷を発生する検出部である半導体 2 1 aと、 半導体 2 l aを挟むよう に配置され、 電荷を取り出すために半導体 2 1 aに電界をかける力ソード電極 2 1 bおよびアノード電極 2 1 cを備えている。 半導体 2 l aは、 例えば、 C d T e (テルル化カドミウム) 、 C Z T (亜鉛テルル化カドミウム) 、 G a A s (ガ リウムヒ素) などの化合物半導体あるいは S iなどの半導体が用いられる。 カソ ード電極 2 l bは、 金や白金の膜を用い、 半導体 2 1 aの全面に設けられている 。 アノード電極 2 1 cは、 各メッシュに分けられた領域 (ピクセル) ごとの信号 を取り出せるように独立に形成してある。 例えば、 この半導体膜 2 1 aの面積を 4 0 X 4 O mmとし、 0 . 2 mmメッシュとなるようにアノード電極 2 1 cを形 成すると、 ノード数が 4 0 0 0 0となる。 半導体 2 1 aに放射線が入射した際に 発生する電荷は、 この各ノードから取り出され、 検出信号としてリアルタイムで 読み取られ、 二次元の放射線イメージの情報 (前記した撮像データ) となるので 、 このモジュール検出部 1 1を用いて作成される像の総ピクセル数は 4 0 0 0 0 ピクセルとなる。 なお、 半導体素子 2 1 aに電界を作るための印可電圧は、 図 3 に示す高電圧供給配線 2 1 dを介して、 データ収集装置 7から供給される。 As shown in FIG. 4, the detection element 21 has a width W, a length, and a thickness t, and sandwiches the semiconductor 2 la, which is a detection unit that absorbs radiation and generates electric charge, and the semiconductor 2 la. And a force source electrode 21 b and an anode electrode 21 c for applying an electric field to the semiconductor 21 a in order to extract electric charges. As the semiconductor 2 la, for example, a compound semiconductor such as CdTe (cadmium telluride), CZT (cadmium zinc telluride), GaAs (gallium arsenide) or a semiconductor such as Si is used. The cathode electrode 2 lb is provided on the entire surface of the semiconductor 21a using a gold or platinum film. The anode electrode 21c is a signal for each area (pixel) divided into each mesh. It is formed independently so that it can be taken out. For example, when the area of the semiconductor film 21a is 40.times.40 mm and the anode electrode 21c is formed so as to have a mesh of 0.2 mm, the number of nodes becomes 4.0000. The electric charge generated when the radiation is incident on the semiconductor 21a is taken out from each node, read in real time as a detection signal, and becomes information of a two-dimensional radiation image (the above-described imaging data). The total number of pixels of the image created using the detection unit 11 is 400000 pixels. The applied voltage for creating an electric field in the semiconductor element 21a is supplied from the data collection device 7 via the high voltage supply wiring 21d shown in FIG.
図 3に示す読み出し回路 2 2は、 A S I C (特定用途向け I C ) や L S Iから 構成されている。 詳細な二次元情報を個別に収集するために、 読み出し回路 2 2 とアノード電極 2 1 cとの接続にはバンプ (微細ポール状はんだ) 2 5を用いて いる。 読み出し回路 2 2および情報コントローラ 2 3は、 モジュール検出部 1 1 を組み合わせて用いる場合の不感部分 (像が得られない部分) をできるだけ少な くするために検出素子 2 1からはみ出さない大きさである。  The read circuit 22 shown in FIG. 3 is composed of ASIC (application specific IC) and LSI. In order to collect detailed two-dimensional information individually, a bump (fine pole-shaped solder) 25 is used to connect the readout circuit 22 to the anode electrode 21c. The readout circuit 22 and the information controller 23 have a size that does not protrude from the detection element 21 in order to minimize the insensitive part (the part where no image is obtained) when the module detection part 11 is used in combination. is there.
図 2に示すハウジング 2 6は、 前記した高電圧供給配線 2 1 dを含む検出素子 2 1、 データ読み出し回路 2 2、 および、 情報コントローラ 2 3を一体的に収容 し、 保持するためのものであり、 0 . 5 mmから 1 mm程度の板厚を有している 。 また、 モジュール検出部 1 1の背面の取り出し部 2 7から延設されるケーブル 2 4は情報コントローラ 2 3からの信号をデータ収集装置 7に伝達したり、 デー タ収集装置 7から検出素子 2 1などへの電圧の供給に用いられる。 このケーブル 2 4はコネクタなどを備え、 ハウジング 2 6の取り出し部 2 7から着脱自在であ ることが望ましい。  The housing 26 shown in FIG. 2 is for integrally housing and holding the detection element 21 including the above-described high-voltage supply wiring 21 d, the data readout circuit 22, and the information controller 23. And has a thickness of about 0.5 mm to 1 mm. A cable 24 extending from the take-out unit 27 on the back of the module detection unit 11 transmits a signal from the information controller 23 to the data collection device 7 or transmits a signal from the data collection device 7 to the detection element 21. It is used to supply voltage to the power supply. It is desirable that the cable 24 be provided with a connector or the like and be detachable from the take-out portion 27 of the housing 26.
ここで、 本実施形態では、 モジュール検出部 1 1を任意に組み合わせて、 最適 、 かつ、 最小限の検出器 6を構成させることで、 取り扱いが容易で、 術中撮像な どに好適な小型の検出器 6を実現している。 このことについて、 図 5の模式図を 例にして説明する。 放射線撮像装置 3の撮像対象には、 その部位 (臓器や骨) によっては寸法が大 きく異なる。 例えば、 図 5 ( a ) には、 撮像対象として、 胸部、 つまり、 月市 W 1 の撮像を行った結果が図示されている。 また、 この図にはモジュール検出部 1 1 の組み合わせについても図示されており、 四角いマスの一つ一つがモジュール検 出部 1 1の検出素子 2 1に相当している。 すなわち、 肺 W 1は撮像対象として最 も大きいので、 縦横に四個ずつの計十六個のモジュール検出部 1 1を保持具 1 2 に組み合わせて装着し、 略正方形の撮像領域を形成して撮像を行っている。 なお 、 格子状の領域 2 9はモジュール検出部 1 1のハウジング 2 6により像が得られ ない不感部分であるので実際の像を得ることはできないが、 微小面積であるため 、 処理装置 8に展開 '起動させる画像処理ソフトウェアの処理で、 充分に補うこ とが可能である。 この領域 2 9を最小限に止めるために、 各モジュール検出部 1 1は隣り合うモジュール検出部 1 1が互いに接触するように配列されることが望 ましい。 この際、 最も領域 2 9を小さくできるのは、 検出素子 2 1の外周にハウ ジング 2 6がない場合であり、 領域 2 9の幅は 「0 mm」 となる。 一方、 検出素 子 2 1の外周をハウジング 2 6で覆い、 不感部分を画像処理により補う場合には 、 領域 2 9の幅は 「2 mni」 以内であることが望ましい。 これは、 実像が得られ ないことによる病巣の見落としを防止するためである。 Here, in the present embodiment, an optimal and minimum detector 6 is configured by arbitrarily combining the module detection sections 11, so that it is easy to handle and a small detection suitable for intraoperative imaging or the like. Container 6 is realized. This will be described with reference to the schematic diagram of FIG. 5 as an example. The dimensions of the object to be imaged by the radiation imaging apparatus 3 differ greatly depending on the site (organ or bone). For example, FIG. 5 (a) shows the result of imaging the chest, that is, the moon market W1 as the imaging target. FIG. 2 also shows a combination of the module detection units 11, and each of the square cells corresponds to the detection element 21 of the module detection unit 11. In other words, since the lung W1 is the largest object to be imaged, a total of 16 module detectors 11 in four rows and four columns are mounted in combination with the holder 12 to form a substantially square imaging area. Imaging is being performed. Note that the grid-like area 29 is an insensitive part where an image cannot be obtained due to the housing 26 of the module detection unit 11, so that an actual image cannot be obtained. However, since it has a very small area, it is developed in the processing device 8. 'Sufficient compensation is possible with the processing of the image processing software to be started. In order to minimize this area 29, it is desirable that each module detector 11 be arranged so that adjacent module detectors 11 contact each other. At this time, the region 29 can be minimized when the housing 26 is not provided on the outer periphery of the detection element 21, and the width of the region 29 is “0 mm”. On the other hand, when the outer periphery of the detection element 21 is covered with the housing 26 and the insensitive part is supplemented by image processing, the width of the region 29 is preferably within “2 mni”. This is to prevent the lesion from being overlooked due to the lack of a real image.
同様に、 図 5 ( b ) には胃 W 2を撮像対象としてモジュール検出部 1 1を八個 用いて撮像した結果が示されている。 この場合のモジュール検出部 1 1は胃 W 2 の下部から上部にかけて四個、 三個、 一個の三列の計八個を、 各列の端部を揃え るようにして組み合わせている。 また、 撮像対象が図 5 ( c ) に示す肝臓 W 3で あれば、 三個ずつ二列にモジュール検出部 1 1を組み合わせて撮像している。 そ して、 撮像対象が、 腎臓 W 4 (図 5 ( d ) ) 、 すい臓 W 5 (図 5 ( e ) ) 、 手 W 6 (図 5 ( f ) ) ではモジュール検出部 1 1を、 それぞれ、 二個一列、 二個二列 、 二個二列に組み合わせて撮像している。 ここで、 すい臓 W 5を撮像する場合に は、 形状が細長いので、 一列目の二個のモジュール検出部 1 1と、 二列目の二個 のモジュール検出部 11とを、 モジュール検出部一個部だけずらして組み合わせ ている。 一方、 手 W6を撮像する場合には、 手 W6の外形が方形に近いので、 二 個ずつの二列が並列になるようにモジュール検出部 11を組み合わせている。 さらに、 患者の被爆量を最小限に止めたり、 より鮮明な像を得るためには、 検 出素子 21の感度を最適化する必要があるが、 これについて放射線源のエネルギ (図 6) と、 検出素子 21の厚さと放射線の吸収量の関係 (図 7) などを参照し ながら説明する。 なお、 図 4に示す力ソード電極 21 b、 ァノード電極 21 cの 厚さは半導体素子 21 aに比べて充分に薄いため、 検出素子 21の厚さは検出用 の半導体素子 21 aの厚さと同義として説明する。 Similarly, FIG. 5 (b) shows the result of imaging the stomach W2 using eight module detectors 11 as an imaging target. In this case, the module detection unit 11 combines four, three, and one three rows from the lower part to the upper part of the stomach W 2, so that a total of eight pieces are aligned so that the ends of each row are aligned. If the imaging target is the liver W3 shown in FIG. 5 (c), imaging is performed by combining the module detection units 11 in two rows of three. The imaging target is the module detection unit 11 in the kidney W4 (Fig. 5 (d)), the pancreas W5 (Fig. 5 (e)), and the hand W6 (Fig. 5 (f)). Two single rows, two two rows, and two two rows are combined for imaging. Here, when imaging the pancreas W5, since the shape is elongated, two module detectors 11 in the first row and two module detectors in the second row are used. The module detection unit 11 is combined with the module detection unit 11 shifted by one module detection unit. On the other hand, when the image of the hand W6 is taken, the outer shape of the hand W6 is close to a square, so that the module detection units 11 are combined so that two rows of two hands are arranged in parallel. In addition, in order to minimize the exposure of the patient and obtain a clearer image, it is necessary to optimize the sensitivity of the detector 21, which involves the energy of the radiation source (Fig. 6), This will be described with reference to the relationship between the thickness of the detection element 21 and the amount of absorbed radiation (FIG. 7). Note that the thickness of the force source electrode 21b and the anode electrode 21c shown in FIG. 4 is sufficiently thinner than the semiconductor element 21a, so that the thickness of the detection element 21 is equivalent to the thickness of the semiconductor element 21a for detection. It will be described as.
核医学に用いられる主な医療用の放射線源を示した図 6力ゝら明らかなように、 放射性物質 (R I ) の線源のエネルギは大きく 80 k eV、 150 k eV、 50 0 k eVの 3領域に分けることができる。 また、 X線源を用いる場合にはそのェ ネルギは 75 k eVから 140 k e V程度となる。 X線源の発生エネルギは最大 エネルギを示しているので、 実効的なエネルギ (平均エネルギ) は最大エネルギ の約 1/2以下程度となる。 すなわち、 X線源の実効エネルギは 40から 70 k eVとなる。 エネルギの大きさによって、 検出素子 21の単位厚さあたりの吸収 量が異なるので、 これらのエネルギ領域に対して最適な検出素子厚を用いること 、 すなわち、 エネルギ領域に応じて検出面の厚さを選択することが望ましい。 一般に、 各入射放射線のエネルギに対し、 充分な撮像感度を得るためには、 最 低でも 10%以上の吸収量が必要とされている。 ここで、 検出素子 21の厚さ ( t) が厚くなると、 放射線の入射で発生する電荷の収集電圧 (V) を高くする必 要がある。 この関係は半導体素子 21 aを構成する材料によっても若干異なるが 、 ほぼ、 t c Vの関係になる。 また、 放射線検出の SZNは漏洩電流 I dに左右 されるが、 I dと Vの関係は I d V ( = ΛΓ t ) となる。 したがって、 放射線 検出の SZNは Ι/ Γΐで悪くなる傾向にある。 つまり、 これらの関係から、 撮 像に用いる放射線のエネルギに応じて最適な検出素子厚さを有するモジュール検 出部 11を選定する必要があることが分かる。 Figure 6 shows the main medical radiation sources used in nuclear medicine. As is clear from the figure, the energy of the radioactive material (RI) source is large at 80 keV, 150 keV, and 500 keV. It can be divided into three areas. If an X-ray source is used, its energy will be about 75 keV to 140 keV. Since the generated energy of the X-ray source indicates the maximum energy, the effective energy (average energy) is less than about 1/2 of the maximum energy. That is, the effective energy of the X-ray source ranges from 40 to 70 keV. Since the amount of absorption per unit thickness of the detecting element 21 differs depending on the magnitude of the energy, the optimum detecting element thickness should be used for these energy regions, that is, the thickness of the detecting surface should be adjusted according to the energy region. It is desirable to choose. Generally, in order to obtain sufficient imaging sensitivity with respect to the energy of each incident radiation, it is necessary to absorb at least 10% or more. Here, as the thickness (t) of the detection element 21 increases, it is necessary to increase the collection voltage (V) of the charge generated by the incidence of radiation. This relationship is slightly different depending on the material constituting the semiconductor element 21a, but is approximately a relationship of tcV. The SZN for radiation detection depends on the leakage current Id, but the relationship between Id and V is IdV (= ΛΓt). Therefore, the SZN of radiation detection tends to be worse at Ι / Γΐ. In other words, based on these relationships, module detection with the optimum detection element thickness according to the energy of the radiation used for imaging. It turns out that it is necessary to select the outlet 11.
なお、 半導体素子 21 aとして C dT eを用いる場合は、 図 7に示すような検 出素子 21の厚さと放射線の吸収量との関係が得られる。 放射線の吸収量を 10 %以上確保するとして、 5001?: 6 ¥に対して5111111厚、 150 k eVに対して 2 mm厚、 80 k eV以下に対して lmm以下の検出素子が最適と選定できる。 このように検出素子厚さを放射線のエネルギごとに選定することで S/Nを最適 化すると、 撮像時間を短縮できるので、 撮像患者の被曝量を大幅に低減できると いう効果を発揮する。 本実施形態では、 放射線のエネルギに対応させて小面積の モジュール検出部 1 1を用意し、 そのようなモジュール検出部 1 1の組み合わせ を変えることによって放射線源、 撮像面積、 被検者の体形などに適合した最適な 撮像装置を容易に実現している。  When CdTe is used as the semiconductor element 21a, a relationship between the thickness of the detection element 21 and the amount of absorbed radiation is obtained as shown in FIG. Assuming that the amount of absorbed radiation is 10% or more, a detector element of 5001 ?: 5111111 thickness for 6 ¥, 2 mm thickness for 150 keV, and lmm or less for 80 keV or less can be selected as optimal. . By optimizing the S / N by selecting the detection element thickness for each radiation energy in this way, the imaging time can be shortened, and this has the effect of greatly reducing the exposure of the imaging patient. In the present embodiment, a module detector 11 having a small area is prepared in accordance with the energy of radiation, and the radiation source, the imaging area, the body shape of the subject, etc. are changed by changing the combination of such module detectors 11. The most suitable imaging device suitable for is easily realized.
図 1に示した保持具 1 2は、 撮像に用いるモジュール検出部 1 1を配列させ、 かつ、 配列状態を維持させるために用いられる。 このような保持具 1 2の一例と して図 8 (a) 、 (b) を用いて説明する。 なお、 図 8 (a) は保持具の側面図 であり、 図 8 (b) は保持具の正面図である。  The holder 12 shown in FIG. 1 is used for arranging the module detectors 11 used for imaging and maintaining the arrangement state. An example of such a holder 12 will be described with reference to FIGS. 8 (a) and 8 (b). FIG. 8 (a) is a side view of the holder, and FIG. 8 (b) is a front view of the holder.
図 8 (a) , (b) に示すように保持具 1 2には、 モジュール検出部 1 1の背 面おょぴ側面の少なくとも一面に当接する筐体 31を有している。 筐体 31は、 底面 32、 側面 33、 背面 34、 および、 上面 35を有している。 側面 33に対 向する面には側面を設けないことが望ましいが、 側面を有しても良い。 側面 33 に対向する面には側面を設けないのは、 保持具 12へのモジュール検出部 1 1の 取り付けを容易にするためである。  As shown in FIGS. 8 (a) and 8 (b), the holder 12 has a housing 31 which is in contact with at least one of the back and side surfaces of the module detection unit 11. The housing 31 has a bottom surface 32, a side surface 33, a back surface 34, and a top surface 35. It is desirable not to provide a side surface on the surface facing the side surface 33, but a side surface may be provided. The reason why no side surface is provided on the surface facing the side surface 33 is to facilitate attachment of the module detection unit 11 to the holder 12.
背面 34は、 検出素子 21を同一平面状に並べるために各モジュール検出部 1 1の背面が当接するプレートであり、 モジュール検出部 1 1のケーブル 24を取 り出したり、 モジュール検出部 1 1の位置決めに使われたりする長穴 36が配設 されている。 長穴 36はモジュール検出部 1 1の配列方向に合わせて形成されて おり、 例えば、 四個のモジュール検出部 11を四列配置できる保持具 1 2であれ ば、 四個四列の長穴 3 6が配列される。 なお、 この長穴 3 6は必ずしも背面 3 4 を貫通する必要はない。 また、 図 8においては横方向に細長形状を有しているが 、 上下方向に細長形状を有しても良い。 The rear surface 34 is a plate with which the rear surface of each module detection unit 11 abuts to arrange the detection elements 21 in the same plane. Elongated holes 36 used for positioning are provided. The elongated hole 36 is formed in accordance with the arrangement direction of the module detectors 11, for example, a holder 12 that can arrange four module detectors 11 in four rows. For example, four rows and four rows of long holes 36 are arranged. The elongated hole 36 does not necessarily need to penetrate the back surface 34. Further, in FIG. 8, the shape is elongated in the horizontal direction, but may be elongated in the vertical direction.
図 8に示す保持具 1 2においてモジュール検出部 1 1を配列する場合には、 図 中に破線で示すように隣り合うモジュール検出部 1 1と隙間を持たせた状態で、 長穴 3 6にケーブル 2 4の取り出し部 2 7を挿入し、 その後にモジュール検出部 1 1を長穴 3 6に沿って矢印方向にスライドさせる。 取り出し部 2 7が長穴 3 6 の一端に当接するとモジュール検出部 1 1が位置決めされ、 隣り合うモジュール 検出部 1 1が当接し、 かつ、 上下に連続するモジュール検出部 1 1が並ぶ。 モジ ユール検出部 1 1をスライドさせるのは、 装着時に検出素子 2 1を触ることなく 容易に装着できるからである。 背面 3 4には位置決めされたモジュール検出部 1 1の移動を防止するために取り出し部 2 7を把持する手段や、 取り出し部 2 7と の嵌合部を設けても良い。 なお、 モジュール検出部 1 1のケーブル 2 4は着脱自 在に構成され、 保持具 1 2に対するモジュール検出部 1 1の位置決めが終了した 後に取り出し部 2 7に装着されることが望ましい。  When arranging the module detectors 11 in the holder 12 shown in FIG. 8, as shown by the broken line in the figure, the module detectors 11 should be inserted into the slots 36 with a gap between them. Insert the extraction part 27 of the cable 24, and then slide the module detection part 11 along the elongated hole 36 in the direction of the arrow. When the take-out part 27 comes into contact with one end of the elongated hole 36, the module detection part 11 is positioned, the adjacent module detection parts 11 come into contact, and the vertically continuous module detection parts 11 are arranged. The module detector 11 is slid because it can be easily mounted without touching the detection element 21 at the time of mounting. The back surface 34 may be provided with a means for gripping the take-out portion 27 to prevent the positioned module detection portion 11 from moving, and a fitting portion with the take-out portion 27. It is preferable that the cable 24 of the module detection unit 11 be detachably configured and attached to the extraction unit 27 after the positioning of the module detection unit 11 with respect to the holder 12 is completed.
この保持具 1 2は図 5 ( a ) の肺 W 1を撮像対象とすることができる保持具で あるが、 術中撮像を目的とする検出器 6や、 肺 W 1を撮像する必要のない検出器 6などの場合には、 任意の形状の保持具 1 2とすることが可能である。 このよう な保持具 1 2の例としては、 モジュール検出部 1 1を最大で三個二列に配列でき る保持具や、 最大で四個三列に配列できる保持具があげられる。  The holder 12 is a holder capable of imaging the lung W1 in FIG. 5 (a), but the detector 6 is intended for intraoperative imaging, and the detector does not need to image the lung W1. In the case of the container 6 or the like, it is possible to make the holder 12 of an arbitrary shape. Examples of such holders 12 include holders in which module detectors 11 can be arranged in three rows and two columns at maximum, and holders in which four or more module detectors 11 can be arranged in three rows.
図 1に示す処理装置 8は、 データ処理を行うための C P U (Central Processin g Unit) や R AM (Random Access Memory) 、 所定の電気 ·電子回路と、 データ やプログラムを記憶するための R OM (Read Only Memory) やハードディスクな どの記憶装置を備えており、 これにデータの読み取りや書き込みを行う各種ドラ イブ装置を含んでも良い。 記憶装置には、 後に説明する撮像パラメータの入力を 受けて撮像条件を選択する際に用いるデータベースが記録されている。 このデー タベースは撮像パラメータと撮像条件とを対応づけて構築したテーブルであり、 —組の撮像パラメータをキーヮードとしてデータベース検索を行うと、 一組の撮 像条件を得ることができる。 The processing device 8 shown in FIG. 1 includes a CPU (Central Processing Unit) and a RAM (Random Access Memory) for performing data processing, a predetermined electric and electronic circuit, and a ROM (Memory) for storing data and programs. It has a storage device such as a read only memory or a hard disk, and may include various drive devices for reading and writing data. The storage device stores a database used when selecting an imaging condition by receiving an imaging parameter described later. This day The database is a table constructed by associating the imaging parameters with the imaging conditions. By performing a database search using a set of imaging parameters as a keyword, a set of imaging conditions can be obtained.
ここで、 撮像パラメータとしては、 「X線撮影と R I撮影の選択」 、 「使用す る放射線の種類」 、 「R I撮影の場合に患者への投与量'投与時刻」 、 「撮像対 象」 、 「患者の体形」 があげられる。 このうち、 「使用する放射線の種類」 は、 最適な検出素子厚さを有するモジュール検出部 1 1の選定に用いられる。 「R I 撮影の場合に患者への投与量 ·投与時刻」 は、 撮像時間の決定に用いられる。 医 療用の R Iは、 図 6に示すように半減期が短いものを用いるので、 投与した時刻 から撮像までに経過した時間により R Iから放出される放射線量、 すなわち、 撮 像対象から放出される放射線量が変化する。 このため、 投与時刻を取得すること で、 內部タイマの現在時刻とから投与から撮像までの経過時間を演算し、 最適な 撮像時間の決定を行うことにしている。 「撮像対象」 は、 前記したように部位に 合わせてモジュール検出部 1 1の数や、 組み合わせを決定するために用いる。 「 患者の体形」 は、 患者の身長や、 体重、 年齢、 性別などであり、 患者が子供であ るか、 大人であるか、 あるいは、 女性であるかなどにより、 測定位置や、 必要な モジュール検出部 1 1の数や組み合わせに修正を加えるために用いられる。  Here, as the imaging parameters, “selection of X-ray imaging and RI imaging”, “type of radiation to be used”, “dose to a patient in the case of RI imaging ′ administration time”, “imaging target”, "Patient's body shape" is an example. Among them, “the type of radiation to be used” is used for selecting the module detecting section 11 having the optimum detecting element thickness. The “dose to the patient in the case of RI imaging / administration time” is used to determine the imaging time. As shown in Fig. 6, a medical RI with a short half-life is used, so the amount of radiation emitted from the RI according to the time elapsed from the time of administration to the time of imaging, that is, emitted from the subject The radiation dose changes. Therefore, by obtaining the administration time, the elapsed time from administration to imaging from the current time of the internal timer is calculated, and the optimal imaging time is determined. The “imaging target” is used to determine the number and combination of the module detectors 11 according to the site as described above. The `` patient's shape '' refers to the patient's height, weight, age, gender, etc., and depending on whether the patient is a child, an adult, or a woman, the measurement position and required modules Used to modify the number and combination of detectors 11.
撮影条件としては、 放射線のエネルギと撮像時間、 モジュール検出部 1 1の配 置 (数と組み合わせ) 、 線源が X線源である場合の絞り、 R Iを用いる場合のモ ジュール検出部 1 1に配置されるコリメータの設置条件があげられる。.コリメ一 タの設置条件は、 撮像対象の位置や、 放射線のエネルギなどにより開口径とその 向きを決定するものである。 '  The imaging conditions include radiation energy and imaging time, the arrangement (combination and number) of the module detector 11, the aperture when the X-ray source is an X-ray source, and the module detector 11 when an RI is used. The conditions for setting the collimator to be arranged are given. The setting conditions of the collimator determine the aperture diameter and its direction based on the position of the imaging target and the energy of radiation. '
次に、 放射線撮像装置 3を用いた放射線撮像システム 1における撮像処理につ いて、 主に図 9のフローチャートを用いて説明する。  Next, imaging processing in the radiation imaging system 1 using the radiation imaging apparatus 3 will be described mainly with reference to the flowchart in FIG.
まず、 ステップ S 1として、 放射線撮像装置 3は撮像パラメータを取得する。 この処理は、 医師あるいは X線撮像技師がオペレータコンソール 1 0 (図 1参照 ) から各種の撮像パラメータを入力することにより行われる。 First, as step S1, the radiation imaging apparatus 3 acquires imaging parameters. This process is performed by the doctor or X-ray imaging technician on the operator console 10 (see Figure 1). ) Is input by inputting various imaging parameters.
ステップ S 2では、 ステップ S 1で入力された各種の撮像パラメータに基づい て処理装置 8が撮像条件を自動的に決定し、 表示装置 9に表示させる。 すなわち 、 処理装置 8は、 撮像パラメータでデータベース検索を行い、 撮像対象の大きさ に基づいてモジュール検出部 1 1の数を決定すると共に、 撮像対象の形状 (種類 ) に応じてモジュール検出部 1 1の二次元配列を決定する。 また、 前記したよう に撮像時間を決定したり、 必要に応じて検出素子厚 (検出面の厚さ) の異なるモ ジュール検出部 1 1を決定する。  In step S2, the processing device 8 automatically determines an imaging condition based on the various imaging parameters input in step S1, and causes the display device 9 to display the imaging condition. That is, the processing device 8 performs a database search using the imaging parameters, determines the number of module detection units 11 based on the size of the imaging target, and determines the number of module detection units 11 according to the shape (type) of the imaging target. To determine the two-dimensional array of In addition, the imaging time is determined as described above, and the module detection unit 11 having a different detection element thickness (detection surface thickness) is determined as necessary.
ステップ S 3では、 処理装置 8が、 提示した撮像条件の認否の入力待ちを行う 。 すなわち、 医師あるいは X線撮像技師が画面表示された撮像条件を確認し、 修 正の必要があると判断 (ステップ S 3で N O) したらステップ S 4に進む。 一方 、 修正の必要がないと判断 (ステップ S 3で Y E S ) したら撮影条件を承認し、 ステップ S 5に進む。 この際の確認は、 オペレータコンソール 1 0から入力され る。  In step S3, the processing device 8 waits for input of approval / disapproval of the presented imaging condition. In other words, the doctor or X-ray imaging technician checks the imaging conditions displayed on the screen, and if it is determined that correction is necessary (NO in step S3), the process proceeds to step S4. On the other hand, if it is determined that no correction is necessary (YES in step S3), the photographing conditions are approved, and the flow advances to step S5. The confirmation at this time is input from the operator console 10.
ステップ S 4の撮像条件のマニュアル修正は、 画面表示される撮像条件につい て、 撮像時間などの各項目ごとに行うことが可能であり、 オペレータコンソール 1 0を操作して、 修正したい項目にカーソルを合わせ、 必要な数字を入力したり The manual correction of the imaging conditions in step S4 can be performed for each item such as the imaging time for the imaging conditions displayed on the screen. By operating the operator console 10, the cursor is moved to the item to be corrected. And enter the required numbers
、 表示される選択肢の中から選択することにより行われる。 例えば、 モジュール 検出部 1 1の配置は、 図 5 ( c ) に示す配列に対して 9 0度回転させた配列など が侯補として表示される。 マニュアル修正を行った後は、 再ぴステップ S 3に戻 り、 撮像条件の認否の入力待ちを行う。 This is done by selecting from the displayed options. For example, as the arrangement of the module detection unit 11, an array rotated 90 degrees with respect to the array shown in FIG. 5C is displayed as a candidate. After performing the manual correction, the process returns to step S3, and waits for input of approval / denial of the imaging condition.
ステップ S 5では、 認証された撮像条件に基づいて、 撮像準備を行う。 処理装 置 8は、 モジュール検出部 1 1の保持具 1 2を対象部位に臨む測定位置に移動さ せる制御信号を出力したり、 撮像の開始を告知するランプを点灯させる。 なお、 モジュール検出部 1 1は、 保持具 1 2を移動させる前に装着されることが望まし い。 続くステップ S 6で、 撮像を実施する。 撮像時間は、 X線発生装置 2を用いる 場合には、 X線の出射からカウントし、 R Iの場合は、 モジュール検出部 1 1が 測定位置に配置された時点からカウントする。 撮像を実施すると、 モジュール検 出部 1 1の検出素子 2 1が放射線の入射に応じて電荷を発生する。 この電荷は、 ケーブル 2 4を介してモジュール検出部 1 1ごとに処理装置 8に送信され、 処理 装置 8は画像データを処理して撮像部位の像を表示装置 9に表示させる。 In step S5, imaging preparation is performed based on the authenticated imaging conditions. The processing device 8 outputs a control signal for moving the holder 12 of the module detection unit 11 to the measurement position facing the target site, and turns on a lamp that notifies the start of imaging. It is desirable that the module detection unit 11 be mounted before the holder 12 is moved. In the following step S6, imaging is performed. In the case of using the X-ray generator 2, the imaging time is counted from the emission of X-rays. In the case of RI, the imaging time is counted from the time when the module detector 11 is arranged at the measurement position. When the imaging is performed, the detection element 21 of the module detection unit 11 generates an electric charge according to the incidence of radiation. This electric charge is transmitted to the processing device 8 for each module detection unit 11 via the cable 24, and the processing device 8 processes the image data and causes the display device 9 to display the image of the imaging site.
さらに、 ステップ S 7では、 撮像の終了処理を行う。 撮影時間が終了したら、 X線発生装置 2の出力停止や、 モジュール検出部 1 1の測定位置からの離脱、 処 理装置 8の画像データの収集停止などの必要な処理を行う。 この際に、 撮影した 像は、 一時的に処理装置 8に保持され、 必要に応じて記憶装置や、 外部記録媒体 に記憶したり、 印刷装置に出力したりする。  Further, in step S7, end processing of imaging is performed. When the imaging time is over, necessary processing such as stopping the output of the X-ray generator 2, leaving the module detector 11 from the measurement position, and stopping the image data collection of the processor 8 are performed. At this time, the captured image is temporarily stored in the processing device 8, and is stored in a storage device, an external recording medium, or output to a printing device as necessary.
このような放射線の検出器 6、 あるいは、 検出器 6を備えた放射線撮像装置 3 、 または、 X線発生装置 2を含む放射線撮像システム 1は、 患者の体形や、 撮像 部位などの多種多様な条件に対しても、 撮像条件を容易に設定することができ、 より実用的な撮像を効率良く行うことが可能になる。 なお、 前記において撮像パ ラメータの取得と、 モジュール検出部 1 1の数おょぴ配列の決定と、 必要に応じ て行われる検出素子厚の選択と、 保持具 1 2へのモジュール検出部 1 1の配列と を含む工程が、 検出器 6の組立工程である。  Such a radiation detector 6, or a radiation imaging apparatus 3 including the detector 6, or a radiation imaging system 1 including an X-ray generator 2 can be used in a variety of conditions such as a patient's body shape and an imaging site. In this case, the imaging conditions can be easily set, and more practical imaging can be efficiently performed. In the above, acquisition of the imaging parameters, determination of the number and arrangement of the module detectors 11, selection of the detection element thickness performed as necessary, and module detectors 11 to the holder 12 are performed. The process including the sequence of and is the assembly process of the detector 6.
(第二実施形態)  (Second embodiment)
本発明の第二実施形態について図面を参照して詳細に説明する。 なお、 前記第 一実施形態と同じ構成要素については同一の符号を付してその詳細な説明を省略 する。  A second embodiment of the present invention will be described in detail with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 1 0は本実施形態における放射線撮像装置の全体構成を模式的に示した図で ある。 図 1 0に示すように放射線撮像装置 5 1は、 撮像対象を撮像するモジユー ル検出部 1 1 a, l i b , 1 1 cおよびその保持具 1 2を含む検出器 6と、 検出 器 6に接続されるデータ収集装置 7と、 撮像イメージの作成などを行う処理装置 8と、 作成した撮像イメージを表示する表示装置 9と、 各モジュール検出部 1 1 a〜l 1 cを保管するためのモジュールトレー 5 2 a, 5 2 b, 52 cと、 モジ ユールトレー 5 2 a, 5 2 b, 5 3 cから必要なモジュール検出部 1 1 a〜: L 1 cを取り出して保持具 1 2に装着するためのハンドリング機構 5 3を含み、 各部 の操作や、 撮像時のパラメータの入力を行うオペレータコンソール 1 0を備えて いる。 FIG. 10 is a diagram schematically illustrating the entire configuration of the radiation imaging apparatus according to the present embodiment. As shown in FIG. 10, the radiation imaging apparatus 51 is connected to a detector 6 including a module detection unit 11 a, lib, 11 c for capturing an image of an object to be imaged and its holder 12, and to the detector 6. Data collection device 7 and a processing device that creates captured images 8, a display device 9 for displaying the created captured image, a module tray 52 for storing each of the module detectors 11a to l1c 52a, 52b, 52c, and a module tray 52a , 52b, 53c, necessary module detectors 11a-: Includes a handling mechanism 53 for taking out L1c and attaching it to the holder 12. Operation of each part and parameters for imaging An operator console 10 is provided for inputting data.
本実施形態におけるモジュール検出部は、 図 3に示す検出素子 21の半導体素 子 2 l aの厚さ、 つまり、 検出面の厚さが異なる三種類のモジュール検出部 1 1 a , l i b, 1 1 cが用意されている。 この三種類のモジュール検出部 1 1 a, l i , 1 1 cは、 それぞれ図 7に示す三種類のエネルギ (8 0 k e V、 1 50 k e V、 5 00 k e V) に対して良好な感度が得られるように 1 mm厚、 2 mm 厚、 5 mm厚である。 また、 このように膜厚の異なる三種類のモジュール検出部 1 1 a , l i b, 1 1 cをそれぞれ区別して保管するために、 モジュールトレー 5 2 a, 5 2 b, 52 cも三つ配設されている。  The module detection unit in the present embodiment includes three types of module detection units 11 a, lib, and 11 c having different thicknesses of the semiconductor element 2 la of the detection element 21 shown in FIG. Is prepared. The three types of module detectors 11a, li, and 11c have good sensitivity to the three types of energy (80 keV, 150 keV, and 500 keV) shown in Fig. 7, respectively. 1mm, 2mm and 5mm thick as obtained. In addition, three module trays 52a, 52b, and 52c are also provided to separately store the three types of module detectors 11a, lib, and 11c with different film thicknesses. Have been.
ノヽンドリング機構 53は、 モジュールトレー 5 2 a, 5 2 b, 52 cと保持具 1 2との間でモジュール検出部 1 1 a, l i b, 1 1 cを搬送するグリップ式の ハンド 54を備えるマエピユレータ 5 5を含んで構成されている。 このようなハ ンドリング機構 5 3の具体例としては、 モジュールトレー 5 2 a , 5 2 b, 5 2 cから保持具 1 2に至るまで敷設されたレールと、 レール上を移動可能な走行台 車に載置されたマエピユレータ 5 5としての多間接ロボットと、 走行台車おょぴ 多間接ロボットの各関節を駆動させる各種のモータなどがあげられる。 ハンド 5 4の位置は処理装置 8から出力される制御信号により制御される。 このため、 処 理装置 8には、 保持具 1 2の位置や、 各モジュールトレー 5 2 a, 5 2 b, 5 2 cの位置、 各モジュールトレー 5 2 a, 5 2 b, 5 2 cに保管されているモジュ ール検出部 1 1 a, l i b, 1 1 cの種類などがあらかじめ登録されている。 な お、 多間接ロボットの代わりに直角座標ロボットや、 その他の数値制御でハンド 54を水平方向、 垂直方向に移動させる公知の手段を採用することが可能である 。 マニュピレータ 55をスライ ド移動させるレールと走行台車を備えずに、 マ二 ュピレータ 55を回転させることでモジュール検出部 1 1 a〜l 1 cを搬送する 構成としても良い。 The nozzle ring mechanism 53 includes a gripper-type hand 54 that transports the module detectors 11 a, lib, and 11 c between the module trays 52 a, 52 b, and 52 c and the holder 12. It is composed to include 5 5. Specific examples of such a handling mechanism 53 include a rail laid from the module trays 52 a, 52 b, 52 c to the holder 12, and a traveling vehicle movable on the rail. A multi-indirect robot as a map epilator 55 mounted on a vehicle, and a trolley. Various motors for driving each joint of the multi-indirect robot. The position of the hand 54 is controlled by a control signal output from the processing device 8. For this reason, in the processing device 8, the positions of the holders 12, the positions of the module trays 52a, 52b, 52c, and the module trays 52a, 52b, 52c are provided. The stored module detectors 11a, lib, and 11c are registered in advance. In addition, instead of a multi-indirect robot, a rectangular coordinate robot or other numerical control It is possible to employ a known means for moving 54 in the horizontal and vertical directions. A configuration may be adopted in which the module detectors 11 a to l 1 c are conveyed by rotating the manipulator 55 without providing a rail for moving the manipulator 55 and a traveling carriage.
モジュールトレー 52 a, 52 b, 52 cは、 保持具 1 2に装着可能なモジュ ール検出部 11 a, l i b, 1 1 cの最大数を収容し、 保管できる収容穴 56を 備えている。 つまり、 最大撮像面積が 40 X 40 c mでモジュール検出部 1 1 a , l i b, 11 cの一個の撮像面積が 4 X 4 cmとすれば一種類のモジュールト レー 52 a, 5 2 b, 52 cにそれぞれ百個の収容穴 56を備え、 百個のモジュ ール検出部 11 a, l i b, 1 1 cをそれぞれ保管することになる。 収容穴 56 の向きや配列は任意の形態を採用することができるが、 収容穴 56の深さは、 収 容されるモジュール検出部 1 1 a, l i b, 1 1 cの前面の少なくとも一部が露 出するような深さであることが望ましい。 これは、 ハンドリング機構 53による モジュール検出部 l l a, l i b, 1 1 cの搬送時に、 グリップ 54がハウジン グ 26の側面を把持するためである。  The module trays 52a, 52b, and 52c have storage holes 56 that can store and store the maximum number of the module detectors 11a, lib, and 11c that can be mounted on the holder 12. That is, if the maximum imaging area is 40 × 40 cm and one imaging area of the module detectors 11 a, lib, 11 c is 4 × 4 cm, one type of module tray 52 a, 52 b, 52 c Each of them has one hundred accommodation holes 56, and stores one hundred module detection units 11a, lib, and 11c, respectively. The orientation and arrangement of the receiving holes 56 can be of any form, but the depth of the receiving holes 56 is such that at least a part of the front of the module detectors 11 a, lib, and 11 c to be stored is It is desirable that the depth is such that it is exposed. This is because the grip 54 grips the side surface of the housing 26 when the handling mechanism 53 conveys the module detectors lla, lib, and 11c.
ここで、 この放射線撮像装置 51における処理について、 検出器 6の自動組立 を中心に説明する。  Here, the processing in the radiation imaging apparatus 51 will be described focusing on the automatic assembly of the detector 6.
まず、 放射線撮像装置 51は、 医師あるいは X線撮像技師がオペレータコンソ ール 10から入力した撮像パラメータを取得し (図 9のステップ S 1) 、 撮像パ ラメータに基づいて、 モジュール検出部 1 1 a, l i , 1 1 cの種類、 数、 お ょぴ、 配列などの撮像条件を自動的に決定し、 表示装置 9に表示させる (ステツ プ S 2) 。 必要に応じて撮像条件のマニュアル修正 (ステップ S 4) が行われる などした後に、 撮像条件が医師あるいは X線撮像技師に承認されたら (ステップ S 3で YES) 、 処理装置 8から制御信号が出力され撮影準備が開始される (ス テツプ S 5)  First, the radiation imaging apparatus 51 obtains imaging parameters input by the doctor or X-ray imaging technician from the operator console 10 (step S1 in FIG. 9), and based on the imaging parameters, detects the module detection unit 11 a , Li, and 11c, the imaging conditions such as type, number, sink, and array are automatically determined and displayed on the display device 9 (step S2). If the imaging conditions are approved by a doctor or an X-ray imaging technician (YES in step S3) after the imaging conditions are manually corrected as needed (step S4), a control signal is output from the processing unit 8. And preparation for shooting is started (Step S5)
撮像準備においては、 前記した検出器 6の移動や、 ランプの点灯に先駆けて、 ハンドリング機構 5 3による検出器 6の自動セットアップが行われる。 すなわち 、 処理装置 8はステップ S 3で承認された撮像条件から得られるモジュール検出 部 1 1の種類および保持具 1 2への配列と、 あらかじめ登録されているモジユー ル検出部 1 1 a, l i b, 1 1 cの位置とからハンドリング機構 5 3に制御信号 を出力する。 制御信号を受け取ったハンドリング機構 5 3は、 ハンド 54を該当 するモジュール検出部 1 1 a, l i b, 1 1 cを把持し、 モジュールトレー 5 2 a, 5 2 b, 5 2 cから保持具 1 2の所定位置まで搬送する。 例えば、 モジユー ル検出部 1 1 aを保持具 1 2に装着する場合は、 走行台車やマニュピレータ 5 5 をモジュールトレー 5 2 aに収容されているモジュール検出部 1 1 aの位置に移 動させる。 この状態で、 ハンド 54を開いた状態でマニュピレータ 5 5をモジュ ールトレー 5 2 aに向けて前進させる。 そして、 ハンド 54を閉じてモジュール 検出部 1 1 aのハウジング 2 6 (図 2参照) の側面を把持したら、 マユュピレー タ 5 5をモジュールトレー 5 2 aから後退させた後に、 保持具 1 2に向かってス ライド移動する。 その後、 マ-ュピレータ 5 5で高さ調整などを行った後に、 モ ジュール検出部 1 1 aを保持具 1 2の所定位置に装着する。 装着が終了したら、 ノヽンド 54を再ぴモジュールトレー 5 2 aまで戻し、 必要なモジュール検出部 1 1 aの全てを保持具 1 2に装着するまで、 前記の処理を繰り返す。 In preparation for imaging, prior to the movement of the detector 6 and the lighting of the lamp, The automatic setup of the detector 6 by the handling mechanism 53 is performed. That is, the processing device 8 includes the types of the module detection units 11 obtained from the imaging conditions approved in step S3 and the arrangement of the module detection units 12 and the module detection units 11a, lib, A control signal is output to the handling mechanism 53 from the position of 1 1 c. Upon receiving the control signal, the handling mechanism 53 grips the hand 54 with the corresponding module detector 11a, lib, 11c, and holds the holder 1 2 from the module tray 52a, 52b, 52c. To a predetermined position. For example, when attaching the module detecting section 11a to the holder 12, the traveling carriage or the manipulator 55 is moved to the position of the module detecting section 11a accommodated in the module tray 52a. In this state, the manipulator 55 is advanced toward the module tray 52a with the hand 54 opened. Then, when the hand 54 is closed and the side surface of the housing 26 (see FIG. 2) of the module detecting section 11a is grasped, the maupilator 55 is retracted from the module tray 52a, and then toward the holder 12. To slide. After that, the height of the module is adjusted by the manipulator 55, and the module detector 11a is mounted on the holder 12 at a predetermined position. When the mounting is completed, the node 54 is returned to the module tray 52a, and the above processing is repeated until all the necessary module detecting sections 11a are mounted on the holder 12.
検出器 6の自動セットアップ、 ならびに、 その他の撮像準備が終了したら、 撮 像を実施する (ステップ S 6) 。 モジュール検出部 1 1の検出素子 2 1が放射線 の入射に応じて発生させた電荷は、 処理装置 8において処理され、 撮像部位の像 として表示装置 9に表示される。 必要な像が得られたら撮像を終了する (ステツ プ S 7) 。 なお、 検出器 6の組立工程は、 撮像パラメータの入力を受けて、 検出 器モジュール 1 1 a, l i b, 1 1 cの種類、 数おょぴ配列を決定し、 ハンドリ ング機構 5 3により自動的に検出器モジュール 1 1 a, l i b, 1 1 cを保持具 1 2に配列することを含む工程である。  When the automatic setup of the detector 6 and other imaging preparations are completed, the imaging is performed (step S6). The charge generated by the detection element 21 of the module detection unit 11 in response to the incidence of radiation is processed in the processing device 8 and displayed on the display device 9 as an image of the imaging site. When the required image is obtained, the imaging is terminated (step S7). In the process of assembling the detector 6, the types of detector modules 11a, lib, and 11c and the arrangement of the detector modules are determined based on the input of the imaging parameters, and the handling mechanism 53 automatically determines the type. And arranging the detector modules 11a, lib, and 11c on the holder 12.
このような放射線撮像装置 5 1は、 モジュールトレー 5 2 a, 5 2 b, 5 2 c とハンドリング機構 5 3を設けることによって、 撮像条件に基づく最適な検出器 6を自動的に組み上げることができるようになる。 これにより、 患者の撮像部位 に最適な撮像装置を速やかに、 かつ、 容易にセットすることが可能になる。 さら に、 撮像を行う医師や撮像技師の負担を大幅に軽減し、 撮像の効率を大幅に向上 できることになる。 また、 この放射線撮像装置 5 1に図 1に示す X線発生装置な どを付加して放射線撮像システムを構築すると、 X線撮像を効率的に行うことが 可能になる。 Such a radiation imaging apparatus 51 includes module trays 52 a, 52 b, 52 c And the handling mechanism 53, it is possible to automatically assemble the optimal detector 6 based on the imaging conditions. This makes it possible to quickly and easily set the most appropriate imaging device for the imaging region of the patient. Furthermore, the burden on doctors and imaging technicians who perform imaging is greatly reduced, and imaging efficiency can be greatly improved. If a radiation imaging system is constructed by adding the X-ray generator shown in FIG. 1 to the radiation imaging apparatus 51, X-ray imaging can be performed efficiently.
(第三実施形態)  (Third embodiment)
本発明の第三実施形態について図面を参照して詳細に説明する。 なお、 前記第 一、 第二実施形態と同じ構成要素については同一の符号を付してその詳細な説明 を省略する。  A third embodiment of the present invention will be described in detail with reference to the drawings. The same components as those in the first and second embodiments are denoted by the same reference numerals, and detailed description thereof will be omitted.
本実施形態は、 二次元配列が容易なモジュール検出部に関するものである。 図 1 1に斜視図を、 図 1 2に配列状態をそれぞれ示すモジュール検出部 6 1は 、 図 3に示すような検出素子 2 1と、 読み出し回路 2 2と、 情報コントローラ 2 3とが、 ハウジング 6 6に収容された構成を有している。 このハウジング 6 6は 、 他のモジュール検出部 6 1と嵌め合い状態を形成するためのクランプ凸部 7 1 と、 その対向面に同形のクランプ凸部 7 1に係合可能なクランプ凹部 7 2を有し ている。 また、 クランプ凸部 7 1およびクランプ凹部 7 2に対して位相が 9 0度 異なる位置にも、 それぞれクランプ凸部 7 1およびクランプ凹部 7 2を有してい る。 クランプ凸部 7 1は、 軸部 7 3よりも大径のフランジ部 7 4を有している。 また、 クランプ凹部 7 2は、 ケーブル 2 4の取り出し側に貫通する溝から形成さ れている。 この溝はその内部において、 クランプ凸部 7 1のフランジ部 7 4の径 とほぼ等しい幅を有している。  The present embodiment relates to a module detection unit that can easily perform a two-dimensional array. FIG. 11 is a perspective view, and FIG. 12 shows the arrangement state, respectively. The module detector 61 includes a detection element 21, a readout circuit 22, and an information controller 23 as shown in FIG. It has a configuration housed in 66. The housing 66 includes a clamp convex portion 71 for forming a fitted state with another module detecting portion 61, and a clamp concave portion 72 that can be engaged with the clamp convex portion 71 of the same shape on the opposite surface. Yes. In addition, a clamp convex portion 71 and a clamp concave portion 72 are provided at positions different in phase by 90 degrees from the clamp convex portion 71 and the clamp concave portion 72, respectively. The clamp convex portion 71 has a flange portion 74 having a larger diameter than the shaft portion 73. Further, the clamp concave portion 72 is formed by a groove penetrating to the cable 24 take-out side. The inside of this groove has a width substantially equal to the diameter of the flange portion 74 of the clamp convex portion 71.
クランプ凸部 7 1およびクランプ凹部 7 2を備えるモジュール検出部 6 1の二 次元配列は、 例えば、 図 1 2の左列の中間に位置するモジュール検出部 6 1 aの クランプ凸部 7 1は、 隣り合う上側のモジュール検出部 6 1 bのクランプ凹部 7 2と嵌合し、 モジュール検出部 6 1 aのクランプ凹部 7 2は、 隣り合う横側のモ ジュール検出部 6 1 c;、 および下側のモジュール検出部 6 1 dのそれぞれのクラ ンプ凸部 7 1と嵌合している。 各々のモジュール検出部 6 1が嵌合により連結さ れることで、 モジュール検出部 6 1の配列が容易になり、 かつ、 モジュール検出 部 6 1の相対的な位置ずれを防止できる。 なお、 任意の形状に組み合わされたモ ジュール検出部 6 1の集合体であるモジュール検出部群 6 2をさらに強固に固定 するために、 モジュール検出部群 6 2の外周にバンド 6 3を卷いても良い。 この バンド 6 3は面ファスナなどを有し、 長さの調節や、 着脱が容易な構成を有する ことが望ましい。 The two-dimensional array of the module detectors 6 1 having the clamp convex portions 7 1 and the clamp concave portions 7 2 is, for example, a clamp convex portion 7 1 of the module detector 6 1 a located in the middle of the left column in FIG. Adjacent upper module detector 6 Clamp recess of 1 b 7 2 and the clamp concave portion 72 of the module detecting portion 61a is formed by the clamp convex portion of the adjacent module detecting portion 61c of the adjacent side and the convex portion of the lower module detecting portion 61d. 7 Mates with 1. Since the respective module detectors 61 are connected by fitting, the arrangement of the module detectors 61 is facilitated, and the relative displacement of the module detectors 61 can be prevented. Note that, in order to further firmly fix the module detection unit group 62, which is an aggregate of the module detection units 61 combined in an arbitrary shape, a band 63 is wound around the outer periphery of the module detection unit group 62. Is also good. It is desirable that the band 63 has a hook-and-loop fastener or the like, and has a configuration that allows easy adjustment of the length and easy attachment and detachment.
このようにして組み合わされたモジュール検出部 6 1は、 図 1に示すように処 理装置 8からの電圧供給を受けて、 放射線の入射位置ごとに電気信号を発生する 。 この電気信号を収集した処理装置 8が画像処理した結果は表示装置 9に出力さ れる。 また、 モジュール検出部 6 1の数おょぴ配列である組み合わせを、 ォペレ ーシヨンコンソール 1 0から入力される撮像パラメータにより決定したり、 モジ ユール検出部 6 1の組み合わせを図 1 0に示すハンドリング機構 5 3で自動的に 行うように構成したりしても良い。  The module detection unit 61 thus combined receives a voltage supply from the processing device 8 as shown in FIG. 1, and generates an electric signal for each radiation incident position. The result of image processing performed by the processing device 8 that has collected the electric signals is output to the display device 9. Further, the combination of the module detectors 61 in a number arrangement is determined by the imaging parameters input from the operation console 10, and the combination of the module detectors 61 is handled as shown in FIG. The mechanism 53 may be configured to perform the processing automatically.
なお、 本発明は、 前記の各実施形態に限定されずに広く応用することができる 例えば、 各実施形態では、 半導体素子 2 1 aを利用したモジュール検出部 1 1 , 6 1として説明しているが、 半導体素子 2 1 aの代わりに電離箱を用いるなど 、 他の検出方式であっても同様の目的と効果を同様に発揮できるものである。 また、 第一実施形態においても複数種類の検出素子厚のモジュール検出部 1 1 a , l i b , 1 1 cを備え、 複数のモジュールトレー 5 2 a, 5 2 b , 5 2。に 収容し、 保管しても良い。 放射線のエネルギに応じた最適な検出器 6を形成する ことができるので、 患者の被爆量を最小限に止め、 より鮮明や像を得ることが可 能になる。 また、 第三実施形態のモジュール検出部 6 1を第一、 第二実施形態に 用いることも可能である。 In addition, the present invention can be widely applied without being limited to the above embodiments. For example, in each embodiment, the module detection units 11 and 61 using the semiconductor element 21 a are described. However, even with other detection methods, such as using an ionization chamber instead of the semiconductor element 21a, the same purpose and effect can be similarly exhibited. Also in the first embodiment, a plurality of module trays 52a, 52b, 52 are provided with module detectors 11a, lib, 11c having a plurality of types of detection element thicknesses. May be stored and stored. Since the optimum detector 6 can be formed according to the energy of the radiation, the amount of exposure of the patient can be minimized, and a clearer image can be obtained. Also, the module detector 61 of the third embodiment is added to the first and second embodiments. It is also possible to use.
さらに、 モジュールトレー 5 2 a, 5 2 b , 5 2 cに一つずつ表示ランプなど の点灯手段を設け、 撮像条件が提示するモジュール検出部 1 1 a, l i b , 1 1 cを目視で確認できるようにすると、 手作業時に確実に検出器 6を組み立てるこ とが可能になる。 同様に、 撮像条件で決定されたモジュール検出部 1 1の配置を 目視で確認できる点灯手段を保持具 1 2におけるモジュール検出部 1 1の配列位 置ごとに設けると、 手作業時に確実に検出器 6を組み立てることが可能になる。 以上の説明のように、 本発明によれば撮像対象者 (患者、 被検者) の体形、 撮 像部位、 対象となる放射線源、 R I投与からの時刻に対応する最適な放射線撮像 が可能になり、 患者の被曝低減を図ったその自動撮像システムも容易に実現可能 となる。  In addition, a lighting means such as an indicator lamp is provided for each of the module trays 52a, 52b, 52c so that the module detectors 11a, lib, 11c indicated by the imaging conditions can be visually checked. By doing so, it becomes possible to assemble the detector 6 reliably during manual work. Similarly, if lighting means for visually confirming the arrangement of the module detectors 11 determined by the imaging conditions are provided for each array position of the module detectors 11 in the holder 12, the detectors can be surely provided during manual work. 6 can be assembled. As described above, according to the present invention, it is possible to perform optimal radiation imaging corresponding to the body shape of the imaging target (patient, subject), the imaging site, the target radiation source, and the time since RI administration. Therefore, the automatic imaging system that reduces the exposure of the patient can be easily realized.

Claims

請 求 の 範 囲 The scope of the claims
1 . 撮像対象を透過した放射線および κまたは前記撮像対象から放出された放射 線を検出する検出器と、 前記検出器から出力される電気信号に基づいて画像処理 を行う処理装置と、 画像処理により得られた像を出力する出力手段とを含む放射 線撮像装置であって、  1. A detector that detects radiation and κ transmitted through the imaging target or radiation emitted from the imaging target, a processing device that performs image processing based on an electrical signal output from the detector, and image processing. An output means for outputting an obtained image.
前記検出器は、 前記放射線の入射により電荷を発生させる検出素子を含む検出 モジュールを前記撮像対象に合わせて配列可能に形成されると共に、 前記検出モ ジュールの配列を保持するための保持具を備えることを特徴とする放射線撮像装 置。  The detector is formed so that a detection module including a detection element that generates a charge by incidence of the radiation can be arranged in accordance with the imaging target, and has a holder for holding the arrangement of the detection modules. A radiation imaging apparatus characterized in that:
2 . 前記放射線の線源の種類、 撮像対象の体形、 撮像部位を撮像パラメータとし て入力する入力装置を設け、 前記処理装置は、 前記撮像パラメータと前記検出モ ジュールの配列についてのデータベースを備え、 前記撮像パラメータに基づいて 前記検出モジュールの配列を選定するように構成した請求項 1に記載の放射線撮  2. An input device for inputting the type of the radiation source, the body shape of the imaging target, and the imaging site as imaging parameters is provided, and the processing device includes a database on the arrangement of the imaging parameters and the detection modules, The radiation imaging apparatus according to claim 1, wherein an arrangement of the detection modules is selected based on the imaging parameters.
3 . 前記検出素子が、 C d T e、 C Z T、 G a A sのうちのいずれかの化合物半 導体、 あるいは、 S i半導体を用いて構成されていることを特徴とする請求項 1 に記載の放射線撮像装置。 3. The detection element according to claim 1, wherein the detection element is configured using any one of a compound semiconductor of CdTe, CZT, and GaAs or a Si semiconductor. Radiation imaging device.
4 . 隣り合う前記検出モジュールの前記検出素子は、 その間隔が 2 mm以下とな るように配列されることを特徴とする請求項 1に記載の放射線撮像装置。  4. The radiation imaging apparatus according to claim 1, wherein the detection elements of the adjacent detection modules are arranged so that an interval between the detection elements is 2 mm or less.
5 . 複数の前記検出モジュールを収納するモジュールトレーと、 前記撮像パラメ ータに基づいて選定された配列に応じて前記検出モジュールを前記保持具まで搬 送するハンドリング機構を備えた請求項 2に記載の放射線撮像装置。  5. The module according to claim 2, further comprising: a module tray accommodating a plurality of the detection modules, and a handling mechanism for transporting the detection modules to the holder in accordance with an arrangement selected based on the imaging parameters. Radiation imaging device.
6 . 請求項 1に記載の放射線撮像装置と、 前記放射線の線源として X線発生装置 を備え、 前記 X線発生装置は、 前記処理装置からの出力信号によりにより制御さ れることを特徴とする放射線撮像システム。  6. The radiation imaging apparatus according to claim 1, further comprising: an X-ray generator as the radiation source, wherein the X-ray generator is controlled by an output signal from the processing device. Radiation imaging system.
7 . 撮像対象を透過した放射線および Zまたは前記撮像対象から放出された放射 線を検出器で検出して撮像対象を撮像するに当たり、 前記検出器を、 検出面を備 えたモジュールを複数組み合わせて形成する組立工程を有し、 7. Radiation transmitted through and Z or radiation emitted from said object In detecting an image of an imaging target by detecting a line with a detector, the detector includes an assembling step of forming a plurality of modules having a detection surface in combination.
前記組立工程は、 前記撮像対象の大きさに基づいて前記検出器を形成する前記 検出モジュールの数を決定する工程と、 前記撮像対象の形状に基づいて前記検出 器を構成する前記検出モジュールの二次元の配置を決定する工程を含むことを特 徴とする放射線を用 、た撮像方法。  The assembling step includes: determining a number of the detection modules forming the detector based on the size of the imaging target; and detecting the number of the detection modules configuring the detector based on the shape of the imaging target. An imaging method using radiation characterized by including a step of determining a dimensional arrangement.
8 . 前記組立工程は、 前記放射線のエネルギの大きさに応じて、 前記モジュール の検出面の厚さが異なるモジュールを選択する工程を含むことを特徴とする請求 項 7に記載の放射線を用いた撮像方法。 8. The assembly according to claim 7, wherein the assembling step includes a step of selecting a module having a different detection surface thickness of the module according to the energy of the radiation. Imaging method.
9 . 撮像対象の像を生成するために前記撮像対象を透過した放射線および/また は前記撮像対象から放出された放射線を検出する放射線撮像に用いられる検出器 であって、  9. A detector used for radiation imaging for detecting radiation transmitted through the imaging target and / or radiation emitted from the imaging target to generate an image of the imaging target,
前記検出器は前記放射線の入射により電荷を発生させる検出素子を含む検出モ ジュールを複数配列させて形成されており、 前記検出モジュールは隣り合う他の 前記検出モジュールと係合するための凸部と、 他の前記検出モジュールの凸部に 係合可能な凹部とを有することを特徴とする放射線検出器。  The detector is formed by arranging a plurality of detection modules each including a detection element that generates a charge by the incidence of the radiation, and the detection module has a protrusion for engaging another adjacent detection module. And a concave portion engageable with a convex portion of the other detection module.
1 0 . 撮像対象の像を生成するために前記撮像対象を透過した放射線および Zま たは前記撮像対象から放出された放射線を検出する放射線撮像に用いられる検出 器であって、  10. A detector used in radiation imaging for detecting radiation transmitted through the imaging target and Z or radiation emitted from the imaging target to generate an image of the imaging target,
前記放射線の入射により電荷を発生させる検出素子を含む検出モジュールと、 前記検出モジュールを複数配列させて保持する保持具を有し、 前記保持具は前記 検出モジュール {こ当接するプレートと、 前記検出モジュールを前記プレートに沿 つてスライドさせることで位置決めを行うための長穴とを備え、 前記長穴は、 前 記プレートに前記検出モジュールの配列方向に沿って形成されていることを特徴 とする放射線検出器。  A detection module including a detection element that generates an electric charge by the incidence of the radiation; and a holding tool that holds a plurality of the detection modules in an array, and wherein the holding tool includes the detection module (a plate that is in contact with the detection module, and the detection module. A slot for performing positioning by sliding the plate along the plate, wherein the slot is formed in the plate along the arrangement direction of the detection modules. vessel.
PCT/JP2002/002962 2002-03-27 2002-03-27 Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector WO2003081282A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003578962A JP4231414B2 (en) 2002-03-27 2002-03-27 Radiation imaging apparatus, radiation imaging system, imaging support method using radiation, and radiation detector
PCT/JP2002/002962 WO2003081282A1 (en) 2002-03-27 2002-03-27 Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/002962 WO2003081282A1 (en) 2002-03-27 2002-03-27 Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector

Publications (1)

Publication Number Publication Date
WO2003081282A1 true WO2003081282A1 (en) 2003-10-02

Family

ID=28080699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002962 WO2003081282A1 (en) 2002-03-27 2002-03-27 Radiation image pickup apparatus, radiation image pick up system, image pickup method using radiation, and radiation detector

Country Status (2)

Country Link
JP (1) JP4231414B2 (en)
WO (1) WO2003081282A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005201642A (en) * 2004-01-13 2005-07-28 Hitachi Ltd Radiation detecting apparatus and nuclear medicine diagnostic equipment
JP2006296865A (en) * 2005-04-22 2006-11-02 Hamamatsu Photonics Kk Photodetection unit, photodetector, and x-ray tomographic imaging apparatus
JP2007020813A (en) * 2005-07-14 2007-02-01 Hitachi Medical Corp X-ray radiographing apparatus
JP2007512075A (en) * 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation detector module
JP2007521850A (en) * 2003-11-26 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Workflow optimization for high-throughput imaging environments
JP2007532168A (en) * 2004-04-06 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Modular device for detection and / or transmission of radiation
JP2008531985A (en) * 2005-02-10 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Portable X-ray detection plate with shock absorption function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689997B2 (en) * 2014-09-04 2017-06-27 General Electric Company Systems and methods for modular imaging detectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135479A (en) * 1996-09-03 1998-05-22 Toshiba Corp Thin film transistor array and image display device using it
JPH10513550A (en) * 1994-12-23 1998-12-22 ディジラッド Semiconductor gamma camera and medical imaging system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10513550A (en) * 1994-12-23 1998-12-22 ディジラッド Semiconductor gamma camera and medical imaging system
JPH10135479A (en) * 1996-09-03 1998-05-22 Toshiba Corp Thin film transistor array and image display device using it

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521850A (en) * 2003-11-26 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Workflow optimization for high-throughput imaging environments
JP4739225B2 (en) * 2003-11-26 2011-08-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Workflow optimization for high-throughput imaging environments
JP2007512075A (en) * 2003-11-28 2007-05-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Radiation detector module
JP2005201642A (en) * 2004-01-13 2005-07-28 Hitachi Ltd Radiation detecting apparatus and nuclear medicine diagnostic equipment
JP4594624B2 (en) * 2004-01-13 2010-12-08 株式会社日立製作所 Radiation detection device and nuclear medicine diagnostic device
JP2007532168A (en) * 2004-04-06 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Modular device for detection and / or transmission of radiation
JP4777975B2 (en) * 2004-04-06 2011-09-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Modular device for the detection and / or delivery of radiation
JP2008531985A (en) * 2005-02-10 2008-08-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Portable X-ray detection plate with shock absorption function
JP2006296865A (en) * 2005-04-22 2006-11-02 Hamamatsu Photonics Kk Photodetection unit, photodetector, and x-ray tomographic imaging apparatus
US8000437B2 (en) 2005-04-22 2011-08-16 Hamamatsu Photonics K.K. Photodetection unit, photodetector, and x-ray computed tomography apparatus
JP2007020813A (en) * 2005-07-14 2007-02-01 Hitachi Medical Corp X-ray radiographing apparatus
JP4648783B2 (en) * 2005-07-14 2011-03-09 株式会社日立メディコ X-ray imaging device

Also Published As

Publication number Publication date
JPWO2003081282A1 (en) 2005-07-28
JP4231414B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US8586934B2 (en) Radiographic image capturing apparatus and radiographic image capturing system
US6944265B2 (en) Image pasting using geometry measurement and a flat-panel detector
CN103536300B (en) Radiographic imaging apparatus and system and radioactive ray detection sensitivity control method
JP3647440B2 (en) X-ray equipment
US7705316B2 (en) Dynamic SPECT camera
US8767919B2 (en) Radiographic image capturing system and radiographic image capturing method
US7968851B2 (en) Dynamic spect camera
US7683338B2 (en) Radiological imaging system
CN109381207B (en) Radiography system and method of operating the same
US8447011B2 (en) Radiographic image capturing system and radiographic image capturing method
JP2016028256A (en) Method and device for multi-camera x-ray flat panel detector
JP5595876B2 (en) Radiography apparatus and radiation imaging system
CN102379708A (en) Radiographic image capture system and method
US7550728B2 (en) Diagnosis device and diagnosis method for radiographic and nuclear medical examinations
JP2012200455A (en) Radiographic imaging system and program
JP2000217807A (en) Method and apparatus for taking radiograph and radiation detecting cassette
JP4231414B2 (en) Radiation imaging apparatus, radiation imaging system, imaging support method using radiation, and radiation detector
US20080048124A1 (en) Multi-modality imaging system
US20150038840A1 (en) Portable medical imager with gui interface comprising a motion sensor
US6495834B1 (en) Compact medical imager
JP2012514750A (en) Positron emission tomography and optical tissue imaging
JP2011224338A (en) Radiation imaging apparatus and radiation imaging system
JP5489951B2 (en) Imaging area specifying device, radiographic imaging system, and imaging area specifying method
JP5634894B2 (en) Radiation imaging apparatus and program
JP5289089B2 (en) Radiographic imaging system, power supply device, charging device, and radiographic imaging method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003578962

Country of ref document: JP

122 Ep: pct application non-entry in european phase