WO2003081265A1 - Electromagnetic wave generation source sensing device - Google Patents

Electromagnetic wave generation source sensing device Download PDF

Info

Publication number
WO2003081265A1
WO2003081265A1 PCT/JP2002/011665 JP0211665W WO03081265A1 WO 2003081265 A1 WO2003081265 A1 WO 2003081265A1 JP 0211665 W JP0211665 W JP 0211665W WO 03081265 A1 WO03081265 A1 WO 03081265A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
probe
distribution
electromagnetic wave
current distribution
Prior art date
Application number
PCT/JP2002/011665
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Uesaka
Takashi Suga
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2003081265A1 publication Critical patent/WO2003081265A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers

Definitions

  • the present invention relates to an electromagnetic interference (EMI) measurement technology for measuring noise (unnecessary radiation: unnecessary electromagnetic energy radiation) of an electronic device that causes electromagnetic interference (EMI), and particularly in the vicinity of a child device.
  • EMI electromagnetic interference
  • the present invention relates to technology for measuring the magnetic field of an electronic device and searching for the source of electromagnetic waves generated from the electronic device from the distribution of the magnetic field.
  • JP-A-2000-346886 as a technique for measuring EMI. This publication describes a technique in which a magnetic field probe is moved in the X, Y, Z, and ⁇ directions, and the source of electromagnetic waves generated by an electronic device is searched (estimated) based on the magnetic field strength.
  • a predetermined surface of a probe cannot be kept at a fixed angle with respect to a housing of an electronic device to be measured, so that the magnetic field strength can be accurately measured. Did not. Therefore, the source of the electromagnetic wave generated by the electronic device could not be accurately searched (estimated).
  • an object of the present invention is to improve the search accuracy of an electromagnetic wave generation source.
  • One aspect of the present invention that solves this problem is a magnetic field probe for measuring a magnetic field distribution near a three-dimensional housing, and means for moving the probe in x, y, z, 0, and ⁇ directions.
  • an electromagnetic wave source search device provided with a means for obtaining a current distribution from a magnetic field distribution and a means for obtaining an electric field strength at a desired distance from the current distribution.
  • the probe moves (rotates) also in the ⁇ direction, the magnetic field distribution can be obtained more accurately, and the search accuracy of the electromagnetic wave source can be improved.
  • FIG. 1 is a diagram showing a configuration of an electromagnetic wave source detection device.
  • FIG. 2 is a diagram showing a configuration of the electromagnetic wave source searching device.
  • Figure 3 shows a display example of the results of near-field measurement, current distribution and far-field calculation results.
  • Fig. 4 shows an example of the far field calculation result display.
  • Figure 5 shows the observation points of the multi-planar measurement system for measuring the magnetic field distribution near the three-dimensional housing.
  • FIG. 6 is a diagram showing mathematical formulas used in the specification of the present application.
  • Figure 1 shows the configuration of the electromagnetic wave source detection device.
  • the electromagnetic wave source searching apparatus of this embodiment includes a three-dimensional housing base ⁇ , 102 on which the three-dimensional housing 111 to be measured is placed, a three-dimensional magnetic field probe 109, and a three-dimensional housing. Move the three-dimensional magnetic field probe 109 to the coordinates along the surface of the three-dimensional housing 1 17 placed on the body pedestal 102, or to the nearby magnetic field observation point according to the orthogonal, cylindrical, and polar coordinate systems Mechanism (X direction probe movement rail 104, y direction probe movement rail 103, probe z axis position expansion / contraction axis 106, probe ⁇ direction rotation axis 107, probe 0 direction rotation axis 100) 8), PC for control of probe movement and rotation 1 16, antenna switching circuit 1 15, high frequency amplifier 1 12, extraction probe 1 10, frequency divider 1 1 3, divider multiplier 1 1 It has four.
  • the magnetic field probe 109 of the present embodiment can not only move in the directions of the axis, y axis, and z axis and rotate in the 0 direction, but also rotate in the ⁇ direction, it has a curved surface in the z direction. Even in such a three-dimensional case, the magnetic field distribution can be measured with high accuracy. Therefore, the search accuracy of the electromagnetic wave generation source can be improved.
  • the three-dimensional housing 1 17 to be searched is fixed to the three-dimensional housing pedestal 102.
  • the antenna switching circuit 1 15 is controlled by the PC 1 16 to select the direction of the measurement surface of the probe.
  • the voltage induced in the selected probe is measured by a vector voltmeter through a high-frequency amplifier 112 (optional).
  • the phase reference at the measurement frequency is Measure the clock of the original chassis 117 using the reference clock extraction probe 110, and pass this signal through the frequency divider 113 and the multiplication circuit 114 to obtain the desired frequency clock. Is generated and used as a phase reference of a desired frequency.
  • the search accuracy can be improved.
  • Probe 0 direction rotation axis 108 is controlled by the control PC 116 to determine the position of the probe and the direction of the measurement surface, and measure the magnetic field. This series of measurements is performed for all points near the magnetic field observation points along the coordinate system along the surface of the three-dimensional housing 1 17 or along the orthogonal, P-cylinder, and polar coordinate systems.
  • the means for rotating in the ⁇ direction is provided, so that even if the three-dimensional housing 117 has a curved surface or irregularities in the z direction, it is possible to conduct a highly accurate search for the electromagnetic wave source. ing. 'In the apparatus shown in FIG. 1, measurement along the three-dimensional housing 117 is possible, but measurement on the lower surface of the three-dimensional housing 117 is not possible. Therefore, in order to measure the lower surface, the structure shown in FIG. 2 is provided below the three-dimensional housing pedestal 102 in FIG.
  • the 3D housing pedestal 102 is floated for lower surface measurement, and the magnetic field near the lower surface of the 3D housing 1 17 for measuring the lower surface of the 3D housing 1 17 under the 3D housing pedestal 102 Prepare a magnetic field probe 202 for measurement.
  • This surface is sufficiently cold for movement on the xy plane, but may be movable in each of the ⁇ , ⁇ , and 0 directions.
  • the magnetic field probe 202 for measuring the magnetic field near the bottom of the three-dimensional housing Attach it to the mounting unit 205 and use the control PC to control the X-direction probe moving rail 204 and the y-direction probe moving rail 203 to measure the magnetic field near the lower surface of the three-dimensional housing.
  • the lower surface of the three-dimensional housing 1 17 is measured by moving the magnetic field probe 202.
  • Fig. 2 enables measurement of all six surfaces of the three-dimensional housing 1 17.
  • Figure 3 shows an example of this measurement result.
  • the current distribution 3 02 on the three-dimensional housing 1 17 is obtained by calculation.
  • the magnetic field strength 303 at a desired distance from the three-dimensional housing 117 can be calculated by using the current distribution 302.
  • Fig. 3 it is obtained by dividing into three planes: the Xy plane far electric field calculation result 304, the Xz plane far electric field calculation result 300, and the yz plane far electric field calculation result 300.
  • the position of the observation point when performing this far-field calculation can be determined arbitrarily. For example, as shown in Fig. 4, it can be obtained as the result of remote electrolysis calculation 401 along the ⁇ direction of the cylindrical coordinate system.
  • the magnetic field distribution measurement near the three-dimensional housing 117 was measured over two planes.
  • the positional resolution (exploration accuracy) can be improved.
  • the calculation for obtaining the current distribution from the magnetic field distribution is as follows.
  • the equation for calculating the three-dimensional magnetic field distribution H from the three-dimensional current distribution I can be expressed by Equation 1 in Fig. 6 using the Green's function from Maxwell's equation, so the method for calculating the current distribution from the magnetic field distribution is the inverse of the Green's function f. From the matrix, the simultaneous equations of Equation 2 in Fig. 6 can be obtained.
  • the order of the distance function r can be extended to 3 by operating the magnetic field distribution measuring probe in the third order, and the position of the current Can be calculated three-dimensionally.
  • the current distribution can be calculated using the magnetic field distribution measured on a plurality of planes at different distances from each housing plane. Can be improved.
  • the means for rotating the probe in the ⁇ direction is provided, so that the accuracy of searching for the electromagnetic wave source can be improved.
  • EMI electromagnetic interference
  • the present invention relates to an electromagnetic interference (EMI) measurement technique for measuring noise (unwanted radiation: unnecessary electromagnetic energy radiation) of an electronic device that causes electromagnetic interference (EMI), and particularly to a magnetic field near the electronic device.
  • the technology relates to a technology for measuring the electromagnetic field and detecting the source of electromagnetic waves emitted from the electronic device from the distribution of the magnetic field.

Abstract

An electromagnetic wave generation source sensing device, to improve the sensing accuracy of a electromagnetic wave generation source, comprising a magnetic field probe for measuring the distribution of the magnetic field in the vicinity of a three-dimensional casing, a means for moving the probe in the x-, y-, z-, θ-, and Φ- directions, a means for determining the current distribution from the magnetic field distribution, and a means for determining the electric field intensity at a desired distance from the current distribution.

Description

明 細 書  Specification
電磁波発生源探査装置 技術分野 本発明は、 電磁波妨害 (EM I : Electromagnetic Interference) を 起こす電子装置のノイズ ·(不要輻射:不要電磁エネルギー放射) を測定 する EM I測定技術に係わり、 特に 子装置近傍の磁界を測定し、 その 磁界の分布からその電子装置から発生する電磁波の発生源を探査する技 術に関する。 技術背景 従来、 EM I を測定する技術には特開 2000- '346886号 報がある。 この公報には、 X方向、 Y方向、 Z方向及び ø方向に磁界プローブを 移動させ、 その磁界強度から電子装置が発生する電磁波の発生源を探査 (推定) するものが記載されている。 TECHNICAL FIELD The present invention relates to an electromagnetic interference (EMI) measurement technology for measuring noise (unnecessary radiation: unnecessary electromagnetic energy radiation) of an electronic device that causes electromagnetic interference (EMI), and particularly in the vicinity of a child device. The present invention relates to technology for measuring the magnetic field of an electronic device and searching for the source of electromagnetic waves generated from the electronic device from the distribution of the magnetic field. 2. Technical Background Conventionally, there is JP-A-2000-346886 as a technique for measuring EMI. This publication describes a technique in which a magnetic field probe is moved in the X, Y, Z, and ø directions, and the source of electromagnetic waves generated by an electronic device is searched (estimated) based on the magnetic field strength.
発明の開示 上記従来の技術では、 測定対象となっている電子装置の筐体に対して プローブの所定の面を一定の角度に保つことができないため、 正確に磁 界強度を測定することができなかった。 従って、 電子装置が発生する電 磁波の発生源を正確に探査 (推定) することができなかった。 DISCLOSURE OF THE INVENTION According to the above-mentioned conventional technology, a predetermined surface of a probe cannot be kept at a fixed angle with respect to a housing of an electronic device to be measured, so that the magnetic field strength can be accurately measured. Did not. Therefore, the source of the electromagnetic wave generated by the electronic device could not be accurately searched (estimated).
つまり、 本発明の目的は、 電磁波発生源の探査精度を向上することに ある。  That is, an object of the present invention is to improve the search accuracy of an electromagnetic wave generation source.
この課題を'解決する本発明の態様の一つには、 3次元筐体近傍の磁界 分布を測定する磁界プローブと、 x、 y、 z 、 0および Φ方向にプロ一 ブを移動させる手段と、 磁界分布から電流分布を求める手段と、 電流分 布から所望の距離における電界強度を求める手段を備えた電磁波発生源 探査装置がある。  One aspect of the present invention that solves this problem is a magnetic field probe for measuring a magnetic field distribution near a three-dimensional housing, and means for moving the probe in x, y, z, 0, and Φ directions. There is an electromagnetic wave source search device provided with a means for obtaining a current distribution from a magnetic field distribution and a means for obtaining an electric field strength at a desired distance from the current distribution.
このように、 Φ方向にもプローブが移動 (回転) するので、 より正確 に磁界分布を求めることができ、 電磁波発生源の探査精度を向上させる ことができるようになる。 As described above, since the probe moves (rotates) also in the Φ direction, the magnetic field distribution can be obtained more accurately, and the search accuracy of the electromagnetic wave source can be improved.
図面の簡単な説明 図 1は電磁波発生源探査装置の構成を示す図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of an electromagnetic wave source detection device.
図 2は電磁波発生源探査装置の構成を示す図である。 FIG. 2 is a diagram showing a configuration of the electromagnetic wave source searching device.
図 3は近傍磁界測定結果、 電流分布 ·遠方電界計算結果表示例である。 図 4は遠方電界計算結果表示例である。 Figure 3 shows a display example of the results of near-field measurement, current distribution and far-field calculation results. Fig. 4 shows an example of the far field calculation result display.
図 5は 3次元筐体近傍磁界分布測定における多平面測定系の観測点であ る。 Figure 5 shows the observation points of the multi-planar measurement system for measuring the magnetic field distribution near the three-dimensional housing.
図 6は、 本願明細書中に用いた数式を示す図である。 FIG. 6 is a diagram showing mathematical formulas used in the specification of the present application.
発明を実施するための最良の形態 以下, 図面を用いて、 本発明の実施形態を説明する。 図 1に電磁波発 生源探査装置の構成を示す。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. Figure 1 shows the configuration of the electromagnetic wave source detection device.
本形態の電磁波発生源探査装置は、 被測定装置である 3次元筐体 1 1 7が置かれる 3次元筐体台库, 1 0 2、 3次元磁界プロ一プ 1 0 9、 この 3次元筐体台座 1 0 2上に置いた 3次元筐体 1 1 7の表面に沿った座標, または直交、 円筒、 極座標の各座標系に則った近傍磁界観測点に 3次元 磁界プローブ 1 0 9を移動するため機構 (X方向プローブ移動レール 1 0 4、 y方向プロ一ブ移動レール 1 0 3、 プローブ z軸位置伸縮軸 1 0 6、 プローブ φ方向回転軸 1 0 7、 プローブ 0方向回転軸 1 0 8 ) 、 ブ ローブの移動や回転を制御する制御用 P C 1 1 6、 アンテナ切替回路 1 1 5、 高周波増幅器 1 1 2、 抽出プローブ 1 1 0、 分周回路 1 1 3、 遞 倍回路 1 1 4を備えている。 このように、 本実施形態の磁界プローブ 1 0 9は 軸、 y軸、 z軸方向への移動及び 0方向への回転だけでなく、 Φ方向への回転も可能なので、 z方向に曲面を持つような 3次元筐体であ つても、 磁界分布を精度高く測定できる。 従って、 電磁波発生源の探査 精度を向上させることができる。  The electromagnetic wave source searching apparatus of this embodiment includes a three-dimensional housing base 库, 102 on which the three-dimensional housing 111 to be measured is placed, a three-dimensional magnetic field probe 109, and a three-dimensional housing. Move the three-dimensional magnetic field probe 109 to the coordinates along the surface of the three-dimensional housing 1 17 placed on the body pedestal 102, or to the nearby magnetic field observation point according to the orthogonal, cylindrical, and polar coordinate systems Mechanism (X direction probe movement rail 104, y direction probe movement rail 103, probe z axis position expansion / contraction axis 106, probe φ direction rotation axis 107, probe 0 direction rotation axis 100) 8), PC for control of probe movement and rotation 1 16, antenna switching circuit 1 15, high frequency amplifier 1 12, extraction probe 1 10, frequency divider 1 1 3, divider multiplier 1 1 It has four. As described above, since the magnetic field probe 109 of the present embodiment can not only move in the directions of the axis, y axis, and z axis and rotate in the 0 direction, but also rotate in the Φ direction, it has a curved surface in the z direction. Even in such a three-dimensional case, the magnetic field distribution can be measured with high accuracy. Therefore, the search accuracy of the electromagnetic wave generation source can be improved.
次にこの電磁波発生源探査装置を用いた電磁波発生源探査方法につい て説明する。  Next, a method of searching for an electromagnetic wave source using the electromagnetic wave source searching device will be described.
まず、 被探査物である 3次元筐体 1 1 7を 3次元筐体台座 1 0 2に固 定する。  First, the three-dimensional housing 1 17 to be searched is fixed to the three-dimensional housing pedestal 102.
次に、 アンテナ切替回路 1 1 5を P C 1 1 6で制御してプローブの測 定面の向きを選択する。 この選択されたプ ΰーブに誘起された電圧を高 周波増幅器 1 1 2 (無くても良い) を通してベク トル電圧計で電圧を測 定する。 この時、 測定周波数における位相基準は被測定装置である 3次 元筐体 1 1 7のクロックを基準クロック抽出プロ一ブ 1 1 0を用いて測 定し、 この信号を分周回路 1 1 3および通倍回路 1 1 4を通すことで所 望の周波数クロックを生成し、 所望周波数の位相基準とする。 なお、 特 開 2000- 346886号公報にあるように、この位相基準を用いて求めた電圧の 位相を電磁波発生源探査に用いると探査精度を向上させることができる ようになる。 このようにプローブの測定面の向きを選択し、 測定す こ とで、 観測点 1点での磁界測定が完了する。 Next, the antenna switching circuit 1 15 is controlled by the PC 1 16 to select the direction of the measurement surface of the probe. The voltage induced in the selected probe is measured by a vector voltmeter through a high-frequency amplifier 112 (optional). At this time, the phase reference at the measurement frequency is Measure the clock of the original chassis 117 using the reference clock extraction probe 110, and pass this signal through the frequency divider 113 and the multiplication circuit 114 to obtain the desired frequency clock. Is generated and used as a phase reference of a desired frequency. As described in Japanese Patent Application Publication No. 2000-346886, when the phase of the voltage obtained by using this phase reference is used for the electromagnetic wave source search, the search accuracy can be improved. By selecting the direction of the measurement surface of the probe and measuring in this way, the magnetic field measurement at one observation point is completed.
次に、 次の観測点へ 3次 磁界プローブ 1 0 9を X方向プローブ移動 レール 1 0 4、 y方向プローブ移動レール 1 0 3、 プローブ z軸位置伸 縮軸 1 0 6、 プローブ Φ方向回転軸 1 0 7、 プロ一ブ 0方向回転軸 1 0 8を制御用 P C 1 1 6により制御して、 プローブの位置、 測定面の向き を決定し、 磁界測定をする。 この一連の測定を 3次元筐体 1 1 7の表面 に沿つ こ座標、 または直交、 P¾筒、 極座標の各座標系に則った近傍磁界 観測点全点について行う。 このように、 Φ方向回転をさせる手段を備え ているので、 z方向に曲面や凹凸を有するような 3次元筐体 1 1 7であ つても、 電磁波発生源を精度高ぐ探査できるようになつている。 ' 図 1に示す装置では、 3次元筐体 1 1 7に沿った測定は可能であるが、 3次元筐体 1 1 7の下面についての測定は不可能である。 そこで、 下面 の測定を行うために、 図 1の 3次元筐体台座 1 0 2の下方に図 2に示す 構造を備えさせる。  Next, move the tertiary magnetic field probe 109 to the next observation point X-direction probe movement rail 104, y-direction probe movement rail 103, probe z-axis position expansion / contraction axis 106, probe Φ-direction rotation axis 107, Probe 0 direction rotation axis 108 is controlled by the control PC 116 to determine the position of the probe and the direction of the measurement surface, and measure the magnetic field. This series of measurements is performed for all points near the magnetic field observation points along the coordinate system along the surface of the three-dimensional housing 1 17 or along the orthogonal, P-cylinder, and polar coordinate systems. As described above, the means for rotating in the Φ direction is provided, so that even if the three-dimensional housing 117 has a curved surface or irregularities in the z direction, it is possible to conduct a highly accurate search for the electromagnetic wave source. ing. 'In the apparatus shown in FIG. 1, measurement along the three-dimensional housing 117 is possible, but measurement on the lower surface of the three-dimensional housing 117 is not possible. Therefore, in order to measure the lower surface, the structure shown in FIG. 2 is provided below the three-dimensional housing pedestal 102 in FIG.
ここでは 3次元筐体台座 1 0 2を下面測定用に浮かせて、 3次元筐体 台座 1 0 2の下に 3次元筐体 1 1 7の下面を測定するための 3次元筐体 下面近傍磁界測定用磁界プローブ 2 0 2を用意する。 この面は X y平面 上での移動でも十分に寒用的であるが、 ζ、 φ、 0各方向へも可動にし て良い。 Here, the 3D housing pedestal 102 is floated for lower surface measurement, and the magnetic field near the lower surface of the 3D housing 1 17 for measuring the lower surface of the 3D housing 1 17 under the 3D housing pedestal 102 Prepare a magnetic field probe 202 for measurement. This surface is sufficiently cold for movement on the xy plane, but may be movable in each of the ζ , φ, and 0 directions.
この 3次元筐体下面近傍磁界測定用磁界プローブ 2 0 2をプローブ取 り付けュニット 2 0 5に取り付け、 制御用 P Cにより X方向プロ一ブ移 動レール 2 0 4および y方向プロ一ブ移難レール 2 0 3を制御し、 3次 元筐体下面近傍磁界測定用磁界プローブ 2 0 2を移動させて 3次元筐体 1 1 7の下面を測定する。 , Take the magnetic field probe 202 for measuring the magnetic field near the bottom of the three-dimensional housing Attach it to the mounting unit 205 and use the control PC to control the X-direction probe moving rail 204 and the y-direction probe moving rail 203 to measure the magnetic field near the lower surface of the three-dimensional housing. The lower surface of the three-dimensional housing 1 17 is measured by moving the magnetic field probe 202. ,
図 2の構造により、 3次元筐体 1 1 7の全 6面の測定が可能になる。 つまり、筐体に沿った全ての平面での磁界を測定できるようになるので、 この結果から.電流分布を求めると、 互いに交差する測定平面の磁界も加 味した電磁波発生源が探査でき、 探査誤差を抑制することができる。 図 3にこの測定結果の例を示す。  The structure shown in Fig. 2 enables measurement of all six surfaces of the three-dimensional housing 1 17. In other words, it is possible to measure the magnetic field in all planes along the housing, and from this result, by calculating the current distribution, it is possible to search for electromagnetic wave sources that also take into account the magnetic field in the measurement planes that intersect each other. Errors can be suppressed. Figure 3 shows an example of this measurement result.
3次元筐体 1 1 7に沿った磁界分布を測定した結果の磁界分布 3 0 1 を用いて、 3次元筐体 1 1 7上の電流分布 3 0 2を計算により求める。 またこの電流分布 3 0 2が得られれば、 この電流分布 3 0 2を用いて 3 次元筐体 1 1 7から所望の距離における磁界強度 3 0 3を計算により求 めることができる。 ここ'で、 図 3では、 X y平面遠方電界計算結果 3 0 4、 X z平面遠方電界計算結果 3 0 5、 y z平面遠方電界計算結果 3 0 6の 3平面に分離して求めているが、 この遠方電界計算を行う際の観測 点の位置は任意に定めることができる。 例えば図 4示すように、 円筒座 標系の Φ方向に沿った遠方電解計算結果 4 0 1のように求めることがで ' きる。  Using the magnetic field distribution 301 obtained by measuring the magnetic field distribution along the three-dimensional housing 1 17, the current distribution 3 02 on the three-dimensional housing 1 17 is obtained by calculation. If the current distribution 302 is obtained, the magnetic field strength 303 at a desired distance from the three-dimensional housing 117 can be calculated by using the current distribution 302. Here, in Fig. 3, it is obtained by dividing into three planes: the Xy plane far electric field calculation result 304, the Xz plane far electric field calculation result 300, and the yz plane far electric field calculation result 300. However, the position of the observation point when performing this far-field calculation can be determined arbitrarily. For example, as shown in Fig. 4, it can be obtained as the result of remote electrolysis calculation 401 along the Φ direction of the cylindrical coordinate system.
また、 図 5のように、 3次元筐体 1 1 7の内部における電流の存在位 置の分解能を向上させるために、 3次元筐体 1 1 7近傍の磁界分布測定 を、 2平面にわたって測定し、 内側 5 0 1 と外側 5 0 2の距離差から 3 次元筐体 1 1 7内部における電流存在位置の分解能の向上を図ることも 可能である。  In addition, as shown in Fig. 5, in order to improve the resolution of the current location inside the three-dimensional housing 117, the magnetic field distribution measurement near the three-dimensional housing 117 was measured over two planes. However, it is also possible to improve the resolution of the current position inside the three-dimensional housing 1 17 from the distance difference between the inside 501 and the outside 502.
また、 筐体 1 1 7の厚み方向に配線重なって流れる電流については、 各筐体表面からの距離を変えた複数の平行平面内磁界分布測定を行うこ とで、 位置分解能 (探査精度) を向上させることができる。 As for the current flowing in the thickness direction of the housing 117, it is necessary to measure the magnetic field distribution in a plurality of parallel planes at different distances from the surface of each housing. Thus, the positional resolution (exploration accuracy) can be improved.
なお、 磁界分布から電流分布を求める計算は次のようにしている。 3次元電流分布 I から 3次元磁界分布 Hを求める式は、 マクスゥエル の方程式よりグリーン関数〖を用いて図 6の式 1で表せるので、磁界分布 から電流分布を算出する方法はグリーン関数 fの逆マトリクスより、図 6 の式 2の連立方程式となる。  The calculation for obtaining the current distribution from the magnetic field distribution is as follows. The equation for calculating the three-dimensional magnetic field distribution H from the three-dimensional current distribution I can be expressed by Equation 1 in Fig. 6 using the Green's function from Maxwell's equation, so the method for calculating the current distribution from the magnetic field distribution is the inverse of the Green's function f. From the matrix, the simultaneous equations of Equation 2 in Fig. 6 can be obtained.
ここで、 磁界分布の測定位置が 2次元平面であると、 距離関数 rも 2次 元に探査しない限り電流分布 Iに関する解がなく、従来はこれを 2次元に 仮定することで平面上に電流を算出し、 近似していたが、 本発明では、 磁界分布測定用プローブを 3次先的に動作させることで、距離関数 rの次 数を 3に拡張でき、, これに伴い、 電流の位置を 3次元的に計算すること が可能となっている。  Here, if the measurement position of the magnetic field distribution is a two-dimensional plane, there is no solution for the current distribution I unless the distance function r is also probed in two dimensions.Conventionally, assuming this to be two-dimensional, the current function According to the present invention, the order of the distance function r can be extended to 3 by operating the magnetic field distribution measuring probe in the third order, and the position of the current Can be calculated three-dimensionally.
つまり、 従来では 3次元的に分布する電流 I (nx,ny,nz)に対しても 2次 元測定した磁界分布 H (mx, my)を図 6の式 3で表していたので、 電流を探 査するのにも、 測定点(mx,my)に対する電流位蘆を(nx, ny)とした図 6の式 4で表していた。 That is, conventionally in the current I distributed three-dimensionally (n x, n y, n z) represents the magnetic field was also 2-dimensional measurement with respect to the distribution H (m x, m y) with equation 3 of FIG. 6 since, also for exploration of the current, it was expressed measuring point (m x, m y) the current position leg for (n x, n y) in equation 4 of FIG. 6 with.
しかし、 本発明では磁界分布 H (mx, my)を図 6の式 5で表し、 磁界分布 から電流分布を求めるのに図 6の式 6を用いているので、 精度高く電磁 波発生源を特定することができている。 However, it represents the magnetic field distribution H (m x, m y) in the present invention by the formula 5 in FIG. 6, because of the use of equation 6 of Fig. 6 to determine the current distribution from the magnetic field distribution, high precision electromagnetic wave generating source Can be identified.
ここでは、 xyz直交座標系を用いて説明したが、円筒座標系(Γ, θ , ζ)、 極座標系(r , θ , φ )など、 他の座標系も同様に計算できる。  Although the description has been made using the xyz rectangular coordinate system, other coordinate systems such as a cylindrical coordinate system (Γ, θ, ζ) and a polar coordinate system (r, θ, φ) can be similarly calculated.
また、 同様の計算により、 各筐体平面からの距離を変えた複数の平面 で測定した磁界分布を用いて電流分布を計算することもできるようにな るので、 3次元電流分布の位置分解能を向上することができる。  In addition, by the same calculation, the current distribution can be calculated using the magnetic field distribution measured on a plurality of planes at different distances from each housing plane. Can be improved.
なお、 上記連立方程式による計.算は電流算出の一形態であり、 他の計 算方法を用いても良い。 本発明によれば、 プローブを Φ方向に回転させる手段を有しているの で、 電磁波発生源の探査精度を向上させることができる。 産業上の利用可能性 本発明は、 電磁波妨害 (EM I : Electromagnetic Interference) を 起こす電子装置のノイズ (不要輻射:不要電磁エネルギー放射) を測定 する EM I測定技術に係わり、 特に電子装置近傍の磁界を測定し、 その 磁界の分布からその電子装置から発 する電磁波の発生源を探査する技 術に関する。 Note that the calculation using the above simultaneous equations is one form of current calculation, and other calculation methods may be used. According to the present invention, the means for rotating the probe in the Φ direction is provided, so that the accuracy of searching for the electromagnetic wave source can be improved. INDUSTRIAL APPLICABILITY The present invention relates to an electromagnetic interference (EMI) measurement technique for measuring noise (unwanted radiation: unnecessary electromagnetic energy radiation) of an electronic device that causes electromagnetic interference (EMI), and particularly to a magnetic field near the electronic device. The technology relates to a technology for measuring the electromagnetic field and detecting the source of electromagnetic waves emitted from the electronic device from the distribution of the magnetic field.

Claims

請 求 の 範 囲 The scope of the claims
1 . 3次元筐体近傍の磁界分布を測定する磁界プローブと、 x、 y、 z、 Θおよび φ方向にプローブを移動又は回転させる手段と、 磁界分布から 電流分布を求める手段と、 電流分布から所望の距離における電界強度を 求める手段と、 を有することを特徴とする電磁波発生源探査装置。 1. A magnetic field probe that measures the magnetic field distribution near the three-dimensional housing, a means for moving or rotating the probe in the x, y, z, Θ, and φ directions, a means for obtaining a current distribution from the magnetic field distribution, A means for obtaining an electric field intensity at a desired distance; and an electromagnetic wave source search device.
2 . 3次元筐体近傍の磁界分布を測定する磁界プローブと、 円筒座標系 ( r , φ , z ) または極座標系 ( r , θ , ) に則ってプローブを移動 させる手段と、 磁界分布から電流分布を求める手段と、 電流分布から所 望の距離における電界強度を求める手段を有することを特徴とする電磁 波発生源探査装置。  2. A magnetic field probe that measures the magnetic field distribution near the three-dimensional housing, a means for moving the probe in a cylindrical coordinate system (r, φ, z) or a polar coordinate system (r, θ,); An electromagnetic wave source search device comprising: means for obtaining a distribution; and means for obtaining an electric field strength at a desired distance from a current distribution.
3 . 請求項 2において、  3. In Claim 2,
r座標を少なくとも 2通り以上設定した面において'、 測定点での磁界 分布を円筒座標系 ( r, , z ) または極座槔系 ( r, θ , φ ) に則つ て各方向成分について磁界プローブを移動させる手段を有することを特 徵とする電磁波発生源探査装置。  In a plane with at least two r-coordinates set, the magnetic field distribution at the measurement point is calculated for each direction component according to the cylindrical coordinate system (r,, z) or polar 槔 system (r, θ, φ). An electromagnetic wave source search device characterized by having means for moving a probe.
4 . 請求項 3において、  4. In Claim 3,
計算により求める電流分布を円筒座標系 ( r , φ , z ) または極座標 系 ( r, θ ,■ ) に則った各方向成分に分離して求めることを特徴とす る電磁波発生源探査装置。  An electromagnetic wave source search system characterized in that the current distribution obtained by calculation is separated into each direction component in accordance with the cylindrical coordinate system (r, φ, z) or the polar coordinate system (r, θ, ■).
5 . 3次元筐体近傍の磁界分布を測定する磁界プローブと、 ある平面内 の円形, または平面, 円筒面, 球面上に沿ってプローブを移動させる手 段と、 磁界分布から電流分布を求める手段と、 電流分布から所望の距離 における電界強度を求める手段と、 その電界強度を用いて電磁波の発生 '源を探査する手段を有することを特徴とする電磁波発生源探査装置。  5. A magnetic field probe that measures the magnetic field distribution in the vicinity of the three-dimensional housing, a means for moving the probe along a circle, or a plane, a cylindrical surface, or a spherical surface in a plane, and a means for determining the current distribution from the magnetic field distribution And a means for obtaining an electric field intensity at a desired distance from a current distribution, and a means for searching for a source of an electromagnetic wave using the electric field intensity.
PCT/JP2002/011665 2002-03-26 2002-11-08 Electromagnetic wave generation source sensing device WO2003081265A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-084749 2002-03-26
JP2002084749A JP2003279611A (en) 2002-03-26 2002-03-26 Survey system for generation source of electromagnetic wave

Publications (1)

Publication Number Publication Date
WO2003081265A1 true WO2003081265A1 (en) 2003-10-02

Family

ID=28449221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011665 WO2003081265A1 (en) 2002-03-26 2002-11-08 Electromagnetic wave generation source sensing device

Country Status (2)

Country Link
JP (1) JP2003279611A (en)
WO (1) WO2003081265A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014419A1 (en) * 2004-03-19 2004-12-30 Siemens Ag Data availability method for a mobile telephone's subscriber identity module (SIM) card makes data available for a mobile radiotelephone module
US7315173B2 (en) 2004-09-29 2008-01-01 Hitachi, Ltd. Method of measuring electric field distribution and electric field distribution measuring instrument
CN103885007A (en) * 2014-03-31 2014-06-25 哈尔滨工业大学深圳研究生院 Paralleling array type alternating-current magnetic field sensing device
US9804199B2 (en) 2013-11-19 2017-10-31 The United States of America as Represented by NASA Ephemeral electric potential and electric field sensor
DE102016111200A1 (en) * 2016-06-20 2017-12-21 Noris Automation Gmbh Method and device for non-contact functional testing of electronic components in circuit arrangements with local fault localization
US10024900B2 (en) 2016-06-09 2018-07-17 United States Of America As Represented By The Administrator Of Nasa. Solid state ephemeral electric potential and electric field sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554463B2 (en) * 2004-07-05 2014-07-23 株式会社Nttドコモ Specific absorption rate measuring device
KR100653931B1 (en) 2005-01-17 2006-12-05 주식회사 이엠에프 세이프티 3-axes magnetic field measurement probe
JP5017827B2 (en) 2005-09-20 2012-09-05 株式会社日立製作所 Electromagnetic wave source search method and current probe used therefor
JP5151032B2 (en) 2006-01-13 2013-02-27 株式会社日立製作所 Magnetic field probe device and magnetic field probe element
US7511485B2 (en) 2006-01-31 2009-03-31 Hitachi, Ltd. Magnetic field measurement method and system
JP4801538B2 (en) 2006-09-01 2011-10-26 株式会社日立製作所 Unnecessary electromagnetic radiation suppression circuit, mounting structure, and electronic device mounting the same
JP5767886B2 (en) 2011-07-29 2015-08-26 株式会社日立製作所 Surface current probe
JP2015222189A (en) * 2014-05-22 2015-12-10 株式会社日本自動車部品総合研究所 Electromagnetic field measurement apparatus
JP6375956B2 (en) * 2015-01-15 2018-08-22 Tdk株式会社 Equivalent electric field strength estimation method and radiated disturbance measurement apparatus
CN107688159B (en) * 2017-08-08 2020-09-01 广东小天才科技有限公司 Magnetic flux detection device and magnetic flux detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300799A (en) * 1993-04-14 1994-10-28 Mitsubishi Electric Corp Electromagnetic field measuring apparatus
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH10221391A (en) * 1996-12-04 1998-08-21 Mitsubishi Electric Corp Cylindrical radiation field-measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300799A (en) * 1993-04-14 1994-10-28 Mitsubishi Electric Corp Electromagnetic field measuring apparatus
JPH1062467A (en) * 1996-06-12 1998-03-06 Mitsubishi Electric Corp Unnecessary electromagnetic wave measuring system
JPH10221391A (en) * 1996-12-04 1998-08-21 Mitsubishi Electric Corp Cylindrical radiation field-measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014419A1 (en) * 2004-03-19 2004-12-30 Siemens Ag Data availability method for a mobile telephone's subscriber identity module (SIM) card makes data available for a mobile radiotelephone module
US7315173B2 (en) 2004-09-29 2008-01-01 Hitachi, Ltd. Method of measuring electric field distribution and electric field distribution measuring instrument
US9804199B2 (en) 2013-11-19 2017-10-31 The United States of America as Represented by NASA Ephemeral electric potential and electric field sensor
CN103885007A (en) * 2014-03-31 2014-06-25 哈尔滨工业大学深圳研究生院 Paralleling array type alternating-current magnetic field sensing device
US10024900B2 (en) 2016-06-09 2018-07-17 United States Of America As Represented By The Administrator Of Nasa. Solid state ephemeral electric potential and electric field sensor
DE102016111200A1 (en) * 2016-06-20 2017-12-21 Noris Automation Gmbh Method and device for non-contact functional testing of electronic components in circuit arrangements with local fault localization

Also Published As

Publication number Publication date
JP2003279611A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
WO2003081265A1 (en) Electromagnetic wave generation source sensing device
US20210311134A1 (en) Magnetic field source detecting apparatus and magnetic field source detecting method
US6789043B1 (en) Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements
JP2000304790A (en) Device and method for investigating electromagnetic wave generating source and method for analyzing the source
CN109633491B (en) Calibration device and calibration method for installation error of full tensor magnetic gradient measurement system
US20200107798A1 (en) Method and system for determining the position of a portable image detector assembly with respect to an emission point of an x-ray source in a radiographic system
Zhang et al. An efficient probe calibration based near-field-to-near-field transformation for EMI diagnosis
Jaeger et al. Electromagnetic tracking using modular, tiled field generators
Spang et al. Application of probes with multiple outputs on probe-compensated EMC near-field measurements
JP5362599B2 (en) Electromagnetic source exploration method, electromagnetic source exploration program, electromagnetic source exploration device
JPH11304858A (en) Searching device for electromagnetic wave generating source and searching method thereof
US9335151B2 (en) Film measurement
Durand et al. Main achievements of the PACMAN project for the alignment at micrometric scale of accelerator components
Hashi et al. Wireless magnetic motion capture system using multiple LC resonant magnetic markers with high accuracy
De Angelis et al. Validation and comparison of circular coils’ inductive coupling models
Holmes Theoretical development of laboratory techniques for magnetic measurement of large objects
He et al. 2D imaging system with optical tracking for EMI source localization
JP3675317B2 (en) Electromagnetic wave source exploration equipment
Zhelamskij The active magnetic tracking with scalable coverage: indoor navigation for smartphones
Tagger et al. Metrological analysis of a contactless inductive position measurement system
Sun et al. High-accuracy and efficient method for calibrating spatial laser beam based on optimized PSD
US20200100843A1 (en) Smart extended working channel localization
Harke et al. A new method to calculate phase center locations for arbitrary antenna systems and scenarios
Zheng et al. A new large-scale posture measurement system based on a six-laser tracer multilateral method
WO2000017603A1 (en) Magnetic sensor system for fast-response, high resolution, high accuracy, three-dimensional position measurements

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase