WO2003075483A1 - Submarine repeating equipment - Google Patents

Submarine repeating equipment Download PDF

Info

Publication number
WO2003075483A1
WO2003075483A1 PCT/JP2002/001961 JP0201961W WO03075483A1 WO 2003075483 A1 WO2003075483 A1 WO 2003075483A1 JP 0201961 W JP0201961 W JP 0201961W WO 03075483 A1 WO03075483 A1 WO 03075483A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
semiconductive layer
submarine
container
repeater
Prior art date
Application number
PCT/JP2002/001961
Other languages
French (fr)
Japanese (ja)
Inventor
Kosei Tsuji
Katsuhiko Horinouchi
Kentaro Kokura
Masaki Nakaoka
Kouji Takahashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2002/001961 priority Critical patent/WO2003075483A1/en
Publication of WO2003075483A1 publication Critical patent/WO2003075483A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits

Definitions

  • the present invention relates to a submarine repeater, and more particularly to a submarine repeater that can suppress an oscillating voltage and current generated in a repeater circuit of a submarine repeater due to a surge when a surge enters.
  • FIG. 7 is a sectional view schematically showing a conventional submarine repeater.
  • a container 2 1a having a hollow shape and an end plate 21b that seals both ends of the container 21a is provided.
  • An internal unit 24 composed of a relay circuit having a plurality of resistors and choke coils is accommodated on the axis of 1a via a buffer member 22 and an insulator 23.
  • a submarine cable 26 having an optical fiber for transmitting an optical signal and a power supply line for transmitting electric power is connected to both ends of the internal unit 24 via a field through 25 provided on the end face plate 21b.
  • the housing 21, the cushioning member 22, the insulator 23, the internal unit 24, and the field through 25 constitute a submarine relay device 27.
  • FIG. 8 is an equivalent circuit diagram schematically illustrating the internal unit 24 of the submarine repeater 27.
  • resistors Ra, Rb and choke coils La, Lb are connected in series to both ends of the repeater circuits 24a, 24b, 24c, 24d.
  • ARES AR is connected to both ends in parallel with these circuits.
  • the capacity C is formed by the insulator 23 interposed between the inner unit 24 and the housing 21.
  • the oscillating current flows into the line to which the capacity C of the equivalent circuit shown in FIG. 8 is connected, and into the repeater circuits 24a, 24b, 24c, and 24d.
  • the oscillating frequency of this oscillating current changes from hundreds of kHz to hundreds of MHz, and a rising edge of several seconds to several hundred ns ec enters the repeater circuit, and in some cases, the elements in the repeater circuit There was a problem of damage.
  • a diode having a zener-voltage lower than the zener-voltage of the diode is connected to a relay circuit at the middle point of the diode-configured circuit. Power supply is possible. Since current flows only in one direction inside the repeater circuit, surges in the reverse direction are suppressed by a repeater without such a protection circuit. However, such a circuit cannot prevent the oscillating voltage and current discharged from the capacitive insulator during the operation of the ares, and in the worst case, may damage the elements in the repeater circuit. there were.
  • the present invention has been made in order to solve the above-described problems, and has provided a submarine relay liquid device capable of suppressing an oscillating voltage and current generated in a repeater circuit due to a surge when a surge enters.
  • the purpose is to provide.
  • the present invention relates to a submarine repeater connected to a submarine cable, wherein an inner unit having a repeater circuit, a choke coil connected to the repeater circuit, and a surge protection element is provided inside a hollow container. It is provided along the axis and includes a capacitive insulator that insulates between the container and the internal unit, and a semiconductive layer that is in contact with the insulator and forms a low-resistance resistance layer.
  • the surge protection element when a surge voltage or current enters the submarine repeater, the surge protection element operates, generating an oscillating current between the choke coil and the capacitive insulator, and the reverse current is also applied to the repeater circuit. Polar oscillating current is generated.
  • the oscillating voltage and current can be attenuated by the resistance value of the semiconductive layer in contact with the capacitive insulator. It can be suppressed.
  • by further providing a cushioning member for protecting the internal unit from vibration it is possible to prevent vibration during transportation and installation from being directly transmitted to the elements of the repeater circuit.
  • the semiconductive layer has an effect as a surge suppression resistor, and a resistive layer is formed between the insulating layer and the container, and these are solid. Therefore, the surge protection device can be configured with a stable structure without losing the shape of the resistance layer.
  • the semiconductive layer between the container and the insulator the semiconductive layer has an effect as a surge suppression resistor, and a surge voltage is shared between the capacitive insulator and the semiconductive layer. The withstand voltage of the semiconductive member disposed on the container (ground) side can be reduced.
  • the buffer member made of the semiconductive material has an effect as a surge suppression resistance, and a new semiconductive layer is provided. Becomes unnecessary.
  • the semiconductive layer has an effect as a surge suppression resistor.
  • the semiconductive layer has an effect as a surge suppression resistor, and the insulator and the semiconductive layer An air layer (void) can be prevented from being generated between the gap and the air.
  • the insulator integrally shaped with the semiconductive layer has an effect as a surge suppression resistor, and also has an effect.
  • An air layer such as a crack can be prevented from being formed between the insulating layer and the semiconductive layer.
  • FIG. 1 is a sectional view schematically showing a submarine repeater according to Embodiment 1 of the present invention.
  • FIG. 2 is an equivalent circuit diagram schematically showing a main part of FIG. 1 simplified.
  • FIG. 3 is a sectional view schematically showing a submarine repeater according to Embodiment 2 of the present invention.
  • FIG. 4 is a sectional view schematically showing a submarine repeater according to Embodiment 3 of the present invention.
  • FIG. 5 is a sectional view schematically showing a submarine repeater according to Embodiment 4 of the present invention.
  • FIG. 6 is a sectional view schematically showing a submarine repeater according to Embodiment 5 of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a conventional submarine repeater.
  • FIG. 8 is an equivalent circuit diagram schematically illustrating the internal unit of the submarine repeater shown in FIG.
  • Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG.
  • FIG. 1 is a sectional view schematically showing a submarine repeater according to Embodiment 1 of the present invention.
  • a hollow container 1a and an end plate 1b that seals both ends of the container 1a constitute a housing 1 that can withstand seawater pressure.
  • an insulator 3 made of polyethylene or the like is provided inside the buffer member 2, and a semiconductive layer 4 made of a semiconductive material constituting a low-resistance resistance layer is provided inside the insulator 3.
  • a resistor (not shown) and a choke coil (not shown) are connected to both ends of a plurality of (in this example, four) repeater circuits inside the semiconductive layer 4, and are connected in parallel with both ends.
  • a submarine cable 8 having an optical fiber for transmitting an optical signal and a power supply line for transmitting electric power is connected to both ends of the internal unit 5 through a field through 6 provided on the end face plate 1b.
  • the shock-absorbing member 2 is provided so that vibration during transportation and laying is not directly transmitted to the repeater circuit element.
  • the submarine repeater 7 is composed of the housing cushioning member 2, the insulator 3, the semiconductive layer 4, the inner unit 5, and the field through 6.
  • Materials for forming the semiconductive layer 4 include polyolefin resin to which carbon black is added, polystyrene resin to which polypropylene is added to polyethylene, polyethylene to which rubber is added, and PET.
  • FIG. 2 is an equivalent circuit diagram schematically illustrating the internal unit 5 of the submarine repeater 7.
  • resistors Ra, Rb and choke coils La, Lb are connected in series to both ends of the repeater circuits 5a, 5b, 5c, 5d.
  • the capacitance C is formed by the capacitive insulator 3 interposed between the internal unit 5 and the housing 1, and the resistance R of the semiconductive layer 4 in contact with the capacitance C is grounded. And connected in series.
  • a back electromotive force is generated in the choke coil La until the ares AR is fired, so that the current does not suddenly flow through the repeater circuits 5a, 5b, 5c, and 5d.
  • the back electromotive force is generated in the choke coil Lb, and the current should not suddenly flow through the repeater circuits 5a, 5b, 5c, and 5d. Restrained.
  • the surge voltage exceeds the firing condition of ARES AR, the surge current will flow to the ARES AR side, so no surge current will flow through the repeater circuits 5a, 5b, 5c, 5d.
  • the charge that was charged in the capacity C by the power supply is discharged.
  • the current caused by this discharge resonates due to the inductance of the choke coils L a and L b and the capacity of the capacity C. Therefore, the oscillating current flows into the line to which the capacity C of the equivalent circuit shown in Fig. 2 is connected and into the repeater circuits 5a, 5b, 5c, and 5d.
  • the oscillating frequency of this oscillating current changes from several hundred kHz to several hundred MHz, and a rising surge of several ⁇ sec to several hundred nssec enters the repeater circuit as a result.
  • the resistance R of the semiconducting layer 4 connected in series with the capacitor C suppresses the surge by consuming the energy due to the surge current when the surge enters, thereby suppressing the oscillation voltage and current generated in the repeater circuit. Can be done.
  • the resistance R of the semiconductive layer 4 By making the resistance R of the semiconductive layer 4 larger than the impedance of the repeater circuit, for example, about 10 times the DC impedance (about 80 ⁇ ) of the repeater circuit, The resistance R of the semiconductive layer 4 has the capacitive characteristics of the submarine repeater 7. The resistance is set to about 1/100 with respect to the resistance value of the insulator 3 so that the current flows, and the effect is exhibited. In order to optimize the impedance for suppressing the surge, it is possible to obtain a desired resistance value by changing the thickness and the area of the semiconductive layer 4.
  • the semiconductive layer 4 By providing the semiconductive layer 4 between the inner unit 5 and the insulator 3 as described above, the semiconductive layer 4 has an effect as a surge suppression resistance, and the resistance between the insulating layer 3 and the container 1 is increased. Since the layers are formed and these are firmly configured, the surge protector can be configured with a stable structure without the shape of the resistance layer being collapsed.
  • a resistor R is formed in series with the capacitive insulator 3 between the power supply system and the housing 1 which is a ground potential, no current flows into these paths during DC power supply.
  • the oscillating voltage and current generated by the surge can be suppressed without causing a power loss as described in Japanese Patent Publication No. 302227.
  • the semiconductive layer 4 may be provided between the insulator 3 and the container 1a, and has the same effect as described above. In this case, since the semiconductive layer 4 is provided between the insulator 3 and the housing 1, the surge voltage is shared between the capacitive insulator 3 and the semiconductive layer 4, so that the container 1 a The withstand voltage of the semiconductive layer placed on the (ground) side can be reduced.
  • Embodiment 2
  • FIG. 3 is a sectional view schematically showing a submarine repeater according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted.
  • a semiconductive buffer member 9 is provided along the axis of the container 1a on the inner periphery of the container 1a of the housing 1.
  • the insulator 3 is provided inside the buffer member 9, and the inner unit 5 is accommodated inside the insulator 3.
  • the case buffer member 9, the insulator 3, the internal unit 5, and the field through 6 constitute a submarine repeater 10.
  • the cushioning member 9 is provided so that vibration during transportation and laying is not directly transmitted to the repeater circuit element.
  • the cushioning member 9 has the same effect as the surge suppression resistance as in the first embodiment, and it is not necessary to provide a new semiconductive layer. . Since the resistance value of the semiconductive buffer member 9 is set to the same value as in the first embodiment, the description is omitted.
  • FIG. 4 is a sectional view schematically showing a submarine repeater according to Embodiment 3 of the present invention. 4, the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted.
  • a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1.
  • a semiconductive layer 11 made of a semiconductive paint described later is applied to the inside of the buffer member 2.
  • An insulator 3 is provided inside the semiconductive layer 11, and an inner unit 5 is accommodated inside the insulator 3.
  • the case 1, the cushioning member 2, the semiconductive layer 11, the insulator 3, the inner unit 5, and the field through 6 constitute a submarine repeater 12.
  • water-based conductive carbon paint, water-based conductive silver paint, water-based conductive silver paint copper, solvent-based conductive silver paint, solvent-based conductive graphite paint, solvent-based conductive nickel paint, solvent-based paint Examples include conductive copper paint, solvent-based conductive silver paint copper paint, and thermosetting conductive silver paint. Since the resistance value of the semiconductive layer 11 is set to the same value as in the first embodiment, the description is omitted.
  • the semiconductive layer 11 made of semiconductive paint By applying the semiconductive layer 11 made of semiconductive paint to the inside of the buffer member 9 as described above, an effect can be obtained as a surge suppression resistor similar to the embodiment. Further, the semiconductive layer 11 may be provided outside the cushioning member 2, and has the same effect as above. Embodiment 4.
  • FIG. 5 is a sectional view schematically showing a submarine repeater according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted.
  • a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1.
  • An insulator 3 is provided inside the buffer member 2, and a semiconductive layer 13 made of a semiconductive paint described later is applied to the outside of the insulator 3 between the buffer member 2 and the insulator 3. .
  • the inner unit 5 is housed inside the insulator 3.
  • the submarine repeater 14 is composed of the housing buffer member 2, the semiconductive layer 13, the insulator 3, the internal unit 5, and the field through 6.
  • the semiconductive layer 13 includes an aqueous conductive carbon paint, an aqueous conductive silver paint, an aqueous conductive silver plating copper, a solvent-based conductive silver paint, a solvent-based conductive graphite paint, a solvent-based conductive nickel paint, and a solvent-based paint.
  • Embodiment 5 By applying the semiconductive layer 13 to the outside of the insulator 3 between the cushioning member 2 and the insulator 3 as described above, the effect as a surge suppression resistance similar to that of the embodiment can be obtained, and Since an air layer (void) can be prevented from being generated between 3 and the semiconductive layer 13, it is possible to provide a submarine repeater 14 with high insulation reliability.
  • Embodiment 5
  • FIG. 6 is a sectional view schematically showing a submarine repeater according to Embodiment 5 of the present invention.
  • a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1.
  • An insulator 15 is provided inside the buffer member 2, and a conductive filler 16 made of metal particles or the like is formed inside the insulator 15 so as to surround a part or the whole of the insulator 15.
  • a semiconductive layer is formed.
  • An inner unit 5 is housed inside an insulator 15 having a semiconductive layer.
  • the submarine repeater 17 is composed of the housing buffer member 2, the insulator 15 having a semiconductive layer composed of the conductive filler 16, the internal unit 5, and the field through 6.
  • the material of the semiconductive layer 16 made of a conductive filler made of metal particles is a resin such as polyethylene, polypropylene, polyethylene terephthalate, PTFE, or the like, and silver particles, copper particles, copper alloy particles, nickel particles, zinc oxide. Particle, tin oxide-based particles, indium oxide-based particles, and carbon particles mixed as a filler. Since the resistance value is set in the same manner as in the first embodiment, the description is omitted.
  • the effect as a surge suppression resistor similar to that of the first embodiment can be obtained, and the insulator 15 having the semiconductive layer can be integrally formed. Since no air layer such as a crack is formed between the semiconductor layer and the semiconductive layer, it is possible to provide a submarine repeater 1 ⁇ with high insulation reliability.
  • the submarine repeater according to the present invention by providing the semiconductive layer in the submarine repeater, consumes energy due to the surge current when the surge enters, suppresses the surge, and suppresses the vibration generated in the repeater circuit.
  • Suitable for suppressing voltage and current for example, suitable for submarine repeaters connected to long-distance submarine cables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Accessories (AREA)

Abstract

A submarine repeating equipment in which an oscillatory voltage/current being induced in a repeater circuit upon intrusion of a surge can be suppressed. Cushioning members are laid at the inner circumferential part of a container along the axis thereof and an insulator is provided on the inside of the cushioning member. A semiconductive layer of a semiconductive material composing a low resistance resistive layer is provided on the inside of the insulator and an internal unit comprising the repeater circuit and a choke coil and an arrester connected with the repeater circuit is disposed on the inside of the semiconductive layer. A submarine cable having a feeder is connected with the opposite ends of the internal unit while penetrating a field through.

Description

明 細 書  Specification
海底中継装置 Submarine repeater
技術分野 Technical field
この発明は、 海底中継装置に関し、 特に、 サージ進入時のサージによ つて海底中継装置の中継器回路に生じる振動電圧 ·電流を抑制すること ができる海底中継装置に関するものである。  The present invention relates to a submarine repeater, and more particularly to a submarine repeater that can suppress an oscillating voltage and current generated in a repeater circuit of a submarine repeater due to a surge when a surge enters.
背景技術 Background art
第 7図は従来の海底中継装置の概略を示す断面図である。第 7図において、 中空状の容器 2 1 aと、この容器 2 1 aの両端を密閉する端面板 2 1 bとで構 成され、海水の圧力に耐える筐体 2 1の内部に、容器 2 1 aの軸線状に緩衝部 材 2 2及び絶縁体 2 3を介して、複数個の抵抗及びチョークコイルを有する中 継器回路からなる内部ュニヅト 2 4が収容されている。内部ュニット 2 4の両 端には、端面板 2 1 bに設けられたフィールドスルー 2 5を介して、光信号を 伝送する光ファイバ及び電力を伝送する給電線を有する海底ケーブル 2 6が 接続されている。 なお、 筐体 2 1、 緩衝部材 2 2、 絶縁体 2 3、 内部ュニヅト 2 4及びフィールドスルー 2 5とで海底中継装置 2 7を構成している。  FIG. 7 is a sectional view schematically showing a conventional submarine repeater. In FIG. 7, a container 2 1a having a hollow shape and an end plate 21b that seals both ends of the container 21a is provided. An internal unit 24 composed of a relay circuit having a plurality of resistors and choke coils is accommodated on the axis of 1a via a buffer member 22 and an insulator 23. A submarine cable 26 having an optical fiber for transmitting an optical signal and a power supply line for transmitting electric power is connected to both ends of the internal unit 24 via a field through 25 provided on the end face plate 21b. ing. In addition, the housing 21, the cushioning member 22, the insulator 23, the internal unit 24, and the field through 25 constitute a submarine relay device 27.
第 8図は海底中継装置 2 7の内部ュニット 2 4を模式的に簡略化した等価 回路図である。第 8図に示すように、 中継器回路 2 4 a, 2 4 b , 2 4 c , 2 4 dの両端に抵抗 R a , R b及びチョークコイル L a, L bが直列に接続され、 その両端にはこれらの回路と並列にアレス夕 ARが接続されている。なお、 内 部ュニッ卜 2 4と筐体 2 1との間に介在する絶縁体 2 3により、キャパシ夕 C を形成している。  FIG. 8 is an equivalent circuit diagram schematically illustrating the internal unit 24 of the submarine repeater 27. As shown in Fig. 8, resistors Ra, Rb and choke coils La, Lb are connected in series to both ends of the repeater circuits 24a, 24b, 24c, 24d. ARES AR is connected to both ends in parallel with these circuits. In addition, the capacity C is formed by the insulator 23 interposed between the inner unit 24 and the housing 21.
次に動作について説明する。海底ケーブル' 2 6の絶縁被覆が破損、 あるいは 海底ケーブル 26に落雷による誘導電流が海底ケーブル 26へ進入すること により発生するサージ電流が、海底ケーブル 26を伝搬して海底中継装置 27 に進入したとする。この場合、サージ保護素子であるアレス夕 ARが点弧する までの間、 チョークコイル La, Lbに逆起電力が発生して、 中継器回路 24 a, 24b, 24 c, 24 dに急激に電流が流れないように抑制している。 ま た、サージ電圧がアレス夕 ARの点弧条件をこえる場合、サージ電流がアレス 夕 AR側に流れるため、 中継器回路 24 a, 24b, 24 c, 24 dにはサ一 ジ電流が流れない。 Next, the operation will be described. Insulation of submarine cable '26 is damaged or It is assumed that the surge current generated by the current induced by the lightning strike into the submarine cable 26 enters the submarine cable 26, and the surge current propagates through the submarine cable 26 and enters the submarine repeater 27. In this case, back electromotive force is generated in the choke coils La and Lb until the arc protection AR, which is the surge protection element, is ignited, and the current suddenly flows in the repeater circuits 24a, 24b, 24c, and 24d. Is suppressed so that it does not flow. In addition, when the surge voltage exceeds the firing condition of ARES AR, surge current does not flow in the repeater circuits 24a, 24b, 24c, and 24d because the surge current flows to the ARES AR side. .
しかし、 このとき、給電によってキャパシ夕 Cに充電されていた電荷が放電 する。 この放電による電流は、 チョークコイル La, Lbのィンダク夕ンスと キャパシ夕 Cの容量とによって共振をおこす。このため、振動電流が第 8図に 示す等価回路のキャパシ夕 Cが接続されているラインと、中継器回路 24 a, 24b, 24 c, 24 d側とに流入する。 この振動電流の振動周波数は数百 k Hzから数百 MHzになり、数 s e cから数百 ns e cの立ち上がりのサ一 ジが、 中継器回路に進入し、場合によっては中継器回路内の素子が損傷すると いう問題点があった。  However, at this time, the charge that was charged in the capacity C by the power supply is discharged. The current caused by this discharge resonates due to the inductance of the choke coils La and Lb and the capacitance of the capacitor C. Therefore, the oscillating current flows into the line to which the capacity C of the equivalent circuit shown in FIG. 8 is connected, and into the repeater circuits 24a, 24b, 24c, and 24d. The oscillating frequency of this oscillating current changes from hundreds of kHz to hundreds of MHz, and a rising edge of several seconds to several hundred ns ec enters the repeater circuit, and in some cases, the elements in the repeater circuit There was a problem of damage.
特開平 2— 30227号公報では、筐体と内部ュニット間に抵抗器を接続す ることにより、内部ユニットと筐体との間に介在する絶縁体により形成される キャパシ夕に充電された電圧を、急速に放電することを可能とする海底中継装 置が示されている。この海底中継装置はサージ保護を目的としたものではない が、 上記のような構成でも抵抗値を最適化すると L (リアクタンス) と R (抵 抗) C (キャパシタンス)並列回路を構成するため、 原理的にはサージによる 振動電圧 ·電流を抑制することは可能である。 しかし、海底中継装置は直流の 電流で駆動されているので、給電線と接地である筐体との間に抵抗器を接続す ると、 給電時にこの抵抗器に常時電流が流入する。 このため、 電力損失が生じ、 光海底通信システムのように長距離(数千 km)の間に複数の海底中継装置を 設ける場合には、 電力損失が増大する。 In Japanese Patent Application Laid-Open No. 2-30227, a voltage charged in a capacitor formed by an insulator interposed between an internal unit and a housing is connected by connecting a resistor between the housing and the internal unit. A submarine repeater capable of discharging rapidly is shown. Although this submarine repeater is not intended for surge protection, even with the above configuration, if the resistance value is optimized, a parallel circuit consisting of L (reactance) and R (resistance) C (capacitance) is formed. In general, it is possible to suppress oscillating voltage and current due to surge. However, since the submarine repeater is driven by DC current, if a resistor is connected between the power supply line and the grounding housing, current will always flow into this resistor during power feeding. As a result, power loss occurs, and multiple submarine repeaters must be installed over long distances (thousands of kilometers), as in optical submarine communication systems. If provided, power loss will increase.
また、特開平 5— 2 6 8 1 2 3号公報では、 ダイオードで構成するプリヅジ 回路の中点に、ダイォードのヅェナ一電圧より低いヅェナ一電圧を有するダイ オードを中継器回路に接続して双方向給電を可能としている。中継器回路の内 部では電流が一方向にしか流れないため、逆方向のサージ電圧に対してはこの ような保護回路を持たない中継装置に対してサージを抑制している。しかし、 このような回路では、アレス夕動作時において容量性の絶縁体から放電される 振動電圧 ·電流を防ぐことができず、 最悪の場合、 中継器回路内の素子を損傷 するという問題点があった。  Also, in Japanese Patent Application Laid-Open No. H5-262813, a diode having a zener-voltage lower than the zener-voltage of the diode is connected to a relay circuit at the middle point of the diode-configured circuit. Power supply is possible. Since current flows only in one direction inside the repeater circuit, surges in the reverse direction are suppressed by a repeater without such a protection circuit. However, such a circuit cannot prevent the oscillating voltage and current discharged from the capacitive insulator during the operation of the ares, and in the worst case, may damage the elements in the repeater circuit. there were.
この発明は、以上のような問題点を解決するためになされたものであり、サ ージ進入時のサージによって中継器回路に生じる振動電圧 ·電流を抑制するこ とができる海底中継液装置を提供することを目的とする。  The present invention has been made in order to solve the above-described problems, and has provided a submarine relay liquid device capable of suppressing an oscillating voltage and current generated in a repeater circuit due to a surge when a surge enters. The purpose is to provide.
発明の開示 Disclosure of the invention
この発明は、 海底ケーブルに接続される海底中継装置であって、 中継 器回路とこの中継器回路に接続されたチョークコイルとサージ保護素子 とを有する内部ュニットを中空状の容器の内部に容器の軸線状に沿って 設け、 容器と内部ユニットとの間を絶縁する容量性の絶縁体と、 この絶 縁体に接し、 低抵抗の抵抗層を構成する半導電層とを備えている。  The present invention relates to a submarine repeater connected to a submarine cable, wherein an inner unit having a repeater circuit, a choke coil connected to the repeater circuit, and a surge protection element is provided inside a hollow container. It is provided along the axis and includes a capacitive insulator that insulates between the container and the internal unit, and a semiconductive layer that is in contact with the insulator and forms a low-resistance resistance layer.
このような構成により、 海底中継装置にサージ電圧 ·電流が進入した 場合、 サージ保護素子が動作して、 チョークコイルと容量性の絶縁体の 間で振動電流が発生し、 中継器回路にも逆極性の振動電流が発生する。 しかし、 容量性の絶縁体と接している半導電層が有する抵抗値によって 振動電圧 ·電流を減衰させることができるため、 サージ保護素子動作後 の中継器回路にサージによって発生する振動電圧 ■電流を抑制すること が可能となる。 また、 内部ュニッ トを振動から保護する緩衝部材をさらに備えること により、 輸送時および敷設時の振動が中継器回路の素子に直接伝わるこ とを防止できる。 With this configuration, when a surge voltage or current enters the submarine repeater, the surge protection element operates, generating an oscillating current between the choke coil and the capacitive insulator, and the reverse current is also applied to the repeater circuit. Polar oscillating current is generated. However, the oscillating voltage and current can be attenuated by the resistance value of the semiconductive layer in contact with the capacitive insulator. It can be suppressed. In addition, by further providing a cushioning member for protecting the internal unit from vibration, it is possible to prevent vibration during transportation and installation from being directly transmitted to the elements of the repeater circuit.
また、 半導電層を内部ュニッ トと絶縁体との間に設けることにより、 半導電層がサージ抑制抵抗として効果を奏するとともに、 絶縁層と容器 との間に抵抗層を形成し、 これらが堅固に構成されているため、 抵抗層 の形状が崩れることなく安定した構造でサージ保護装置を構成できる。 また、 半導電層を容器と絶縁体との間に設けることにより、 半導電層 がサージ抑制抵抗として効果を奏するとともに、 容量性を持つ絶縁体と 半導電層の間でサージ電圧を分担するため、 容器 (接地) 側に配置した 半導電性部材の耐電圧を低くすることができる。  In addition, by providing a semiconductive layer between the inner unit and the insulator, the semiconductive layer has an effect as a surge suppression resistor, and a resistive layer is formed between the insulating layer and the container, and these are solid. Therefore, the surge protection device can be configured with a stable structure without losing the shape of the resistance layer. In addition, by providing the semiconductive layer between the container and the insulator, the semiconductive layer has an effect as a surge suppression resistor, and a surge voltage is shared between the capacitive insulator and the semiconductive layer. The withstand voltage of the semiconductive member disposed on the container (ground) side can be reduced.
また、 半導電性材からなる緩衝部材を容器と絶縁体との間に設けるこ とにより、 半導電性材からなる緩衝部材がサージ抑制抵抗として効果を 奏するとともに、 新たに半導電層を設けることが不要となる。  In addition, by providing a buffer member made of a semiconductive material between the container and the insulator, the buffer member made of the semiconductive material has an effect as a surge suppression resistance, and a new semiconductive layer is provided. Becomes unnecessary.
また、 容器と絶縁体との間に緩衝部材を設け、 半導電層を緩衝部材の 内側または外側に塗布することにより、 半導電層がサージ抑制抵抗とし て効果を奏する。  Further, by providing a buffer member between the container and the insulator and applying the semiconductive layer to the inside or outside of the buffer member, the semiconductive layer has an effect as a surge suppression resistor.
また、 容器と絶縁体との間に緩衝部材を設け、 半導電層を絶縁体の外 側に塗布することにより、 半導電層がサージ抑制抵抗として効果を奏す るとともに、 絶縁体と半導電層との間に空気層 (ボイ ド) の発生を防止 できる。  Also, by providing a buffer member between the container and the insulator and applying the semiconductive layer to the outside of the insulator, the semiconductive layer has an effect as a surge suppression resistor, and the insulator and the semiconductive layer An air layer (void) can be prevented from being generated between the gap and the air.
また、 容器と内部ユニットとの間に絶縁体を設け、 絶縁体を半導電層 と一体整形することにより、 半導電層と一体整形された絶縁体がサージ 抑制抵抗として効果を奏するとともに、 絶縁体の絶縁層と半導電層との 間にクラックなどの空気層が形成するのを防止できる。  In addition, by providing an insulator between the container and the internal unit and integrally shaping the insulator with the semiconductive layer, the insulator integrally shaped with the semiconductive layer has an effect as a surge suppression resistor, and also has an effect. An air layer such as a crack can be prevented from being formed between the insulating layer and the semiconductive layer.
さらに、半導電層の抵抗値をその面積と厚みとを調整することにより、 サージによって中継器回路に発生する電圧、 電流を抑制するための最適 な抵抗値を実現することができる。 図面の簡単な説明 Furthermore, by adjusting the resistance and the area and thickness of the semiconductive layer, it is optimal to suppress the voltage and current generated in the repeater circuit by surge. A high resistance value. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1を示す海底中継装置の概略を示す 断面図である。  FIG. 1 is a sectional view schematically showing a submarine repeater according to Embodiment 1 of the present invention.
第 2図は、 第 1図の要部を模式的に簡略化した等価回路図である。 第 3図は、 この発明の実施の形態 2を示す海底中継装置の概略を示す 断面図である。  FIG. 2 is an equivalent circuit diagram schematically showing a main part of FIG. 1 simplified. FIG. 3 is a sectional view schematically showing a submarine repeater according to Embodiment 2 of the present invention.
第 4図は、 この発明の実施の形態 3を示す海底中継装置の概略を示す 断面図である。  FIG. 4 is a sectional view schematically showing a submarine repeater according to Embodiment 3 of the present invention.
第 5図は、 この発明の実施の形態 4を示す海底中継装置の概略を示す 断面図である。 . 第 6図は、 この発明の実施の形態 5を示す海底中継装置の概略を示す 断面図である。  FIG. 5 is a sectional view schematically showing a submarine repeater according to Embodiment 4 of the present invention. FIG. 6 is a sectional view schematically showing a submarine repeater according to Embodiment 5 of the present invention.
第 7図は、 従来の海底中継装置の概略を示す断面図である。  FIG. 7 is a cross-sectional view schematically showing a conventional submarine repeater.
第 8図は、第 7図の海底中継装置の内部ュニットを模式的に簡略化した等価 回路図である。  FIG. 8 is an equivalent circuit diagram schematically illustrating the internal unit of the submarine repeater shown in FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
実施の形態 1 . Embodiment 1
この発明の実施の形態 1について第 1図、 第 2図に基づき説明する。  Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG.
第 1図は本発明の実施の形態 1を示す海底中継装置の概略を示す断面図で ある。第 1図において、中空状の容器 1 aとこの容器 1 aの両端を密閉する端 面板 1 bとで海水の圧力に耐える筐体 1が構成され、容器 1 aの内周部に弹性 を有する金属製の緩衝部材 2が容器 1 aの軸線状に沿って設けられている。ま た、緩衝部材 2の内側にポリエチレンなどからなる絶縁体 3が設けられ、 この 絶縁体 3の内側に低抵抗の抵抗層を構成する半導電性の材質からなる半導電 層 4を設けている。 そして、 半導電層 4の内側に、 複数個.(この例では 4個) の中継器回路の両端に抵抗(図示せず)及びチョークコイル(図示せず) を接 続し、 その両端と並列にサージ保護素子であるアレス夕 (図示せず)を接続し ている内部ュニヅト 5が収容されている。内部ュニット 5の両端には、端面板 1 bに設けられたフィールドスルー 6を貫通して、光信号を伝送する光フアイ バ及び電力を伝送する給電線を有する海底ケーブル 8が接続されている。緩衝 部材 2は中継器回路素子に輸送時および敷設時の振動が直接伝わらないよう に設けられている。 なお、 筐体 緩衝部材 2、 絶縁体 3、 半導電層 4、 内部 ュニット 5及びフィールドスルー 6とで海底中継装置 7を構成している。 半導電層 4を構成する材料としては、ポリオリフィン系樹脂に力一ボンブラ ックを添加したもの、ポリスチレン系樹脂にポリプロビレンに力一ボンを添加 したもの、 ポリエチレンに力一ボンを添加したもの、 P E T (テレフ夕ル酸ポ リエチレン) にカーボンを添加したもの、 P T F E (ポリ四フッ化工チレン) にカーボンを添加したもの、 導電性ポリプロピレン、 導電性ポリエチレン、導 電ゴムシート、'導電性ポリマー(ポリアセチレン系導電性ポリマ一、 ポリフエ 二レン系導電性ポリマー、ポリピロ一ル系導電性ポリマ一、ポリチォフェン系 導電性ポリマー、ポリァニリン系導電性ポリマ一、 イオン性官能基を有する導 電性ポリマー)、 導電性プラスチック、 A B S (ァクリロニトリゾレ ·ブ夕ジェ ン,スチレン) 樹脂にカーボンを添加したものなどが挙げられる。 FIG. 1 is a sectional view schematically showing a submarine repeater according to Embodiment 1 of the present invention. In FIG. 1, a hollow container 1a and an end plate 1b that seals both ends of the container 1a constitute a housing 1 that can withstand seawater pressure. Is provided along the axis of the container 1a. Further, an insulator 3 made of polyethylene or the like is provided inside the buffer member 2, and a semiconductive layer 4 made of a semiconductive material constituting a low-resistance resistance layer is provided inside the insulator 3. . A resistor (not shown) and a choke coil (not shown) are connected to both ends of a plurality of (in this example, four) repeater circuits inside the semiconductive layer 4, and are connected in parallel with both ends. An internal unit 5 for connecting a surge protection element, Ares (not shown), is housed therein. A submarine cable 8 having an optical fiber for transmitting an optical signal and a power supply line for transmitting electric power is connected to both ends of the internal unit 5 through a field through 6 provided on the end face plate 1b. The shock-absorbing member 2 is provided so that vibration during transportation and laying is not directly transmitted to the repeater circuit element. The submarine repeater 7 is composed of the housing cushioning member 2, the insulator 3, the semiconductive layer 4, the inner unit 5, and the field through 6. Materials for forming the semiconductive layer 4 include polyolefin resin to which carbon black is added, polystyrene resin to which polypropylene is added to polyethylene, polyethylene to which rubber is added, and PET. (Polyethylene terephthalate) with carbon, PTFE (polytetrafluoroethylene) with carbon, conductive polypropylene, conductive polyethylene, conductive rubber sheet, conductive polymer (polyacetylene-based Conductive polymer, polyphenylene-based conductive polymer, polypyrroline-based conductive polymer, polythiophene-based conductive polymer, polyaniline-based conductive polymer, conductive polymer with ionic functional group), conductive plastic In addition, carbon was added to ABS (acrylonitrile-sol-benzene, styrene) resin. And the like.
第 2図は海底中継装置 7の内部ュニット 5を模式的に簡略化した等価回路 図である。第 2図に示すように、 中継器回路 5 a , 5 b, 5 c , 5 dの両端に 抵抗 R a , R b及びチョークコイル L a , L bが直列に接続され、 その両端に はこれらの回路と並列にサージ保護素子であるアレス夕 A Rが接続されてい る。 また、 内部ュニット 5と筐体 1との間に介在する容量性の絶縁体 3にてキ ャパシ夕 Cを形成しており、このキャパシ夕 Cに接している半導電層 4による 抵抗 Rがアース部との間に直列に接続されている。 FIG. 2 is an equivalent circuit diagram schematically illustrating the internal unit 5 of the submarine repeater 7. As shown in Fig. 2, resistors Ra, Rb and choke coils La, Lb are connected in series to both ends of the repeater circuits 5a, 5b, 5c, 5d. Aresue AR, a surge protection element, is connected in parallel with the circuit You. In addition, the capacitance C is formed by the capacitive insulator 3 interposed between the internal unit 5 and the housing 1, and the resistance R of the semiconductive layer 4 in contact with the capacitance C is grounded. And connected in series.
次に動作について説明する。海底ケーブル 8が切断、 あるいは海底ケーブル 8に落雷による誘導電流が海底ケーブル 8へ進入することにより発生するサ ージ電流が、海底ケーブル 8を伝搬して海底中継装置 7に第 2図の左側から進 入したとする。 この場合、 アレス夕 ARが点弧するまでの間、 チョークコイル L aに逆起電力が発生して、 中継器回路 5 a, 5 b , 5 c , 5 dに急激に電流 が流れないように抑制している。サージが第 2図の右側から進入した場合も同 様にチヨ一クコイル Lbに逆起電力が発生して中継器回路 5 a , 5 b , 5 c , 5 dに急激に電流が流れないように抑制している。サージ電圧がアレス夕 A R の点弧条件をこえる場合、 サージ電流がアレス夕 AR側に流れるため、 中継器 回路 5 a, 5 b, 5 c , 5 dにはサージ電流が流れない。  Next, the operation will be described. The surge current generated when the submarine cable 8 is cut or an induced current due to lightning strikes the submarine cable 8 enters the submarine cable 8, and propagates through the submarine cable 8 to the submarine repeater 7 from the left side of FIG. Suppose you enter. In this case, a back electromotive force is generated in the choke coil La until the ares AR is fired, so that the current does not suddenly flow through the repeater circuits 5a, 5b, 5c, and 5d. Restrained. Similarly, when a surge enters from the right side of Fig. 2, the back electromotive force is generated in the choke coil Lb, and the current should not suddenly flow through the repeater circuits 5a, 5b, 5c, and 5d. Restrained. If the surge voltage exceeds the firing condition of ARES AR, the surge current will flow to the ARES AR side, so no surge current will flow through the repeater circuits 5a, 5b, 5c, 5d.
しかし、 このとき、給電によってキャパシ夕 Cに充電されていた電荷が放電 する。 この放電による電流は、 チヨ一クコイル L a , L bのインダク夕ンスと キャパシ夕 Cの容量とによって共振をおこす。 このため、振動電流が第 2図に 示す等価回路のキャパシ夕 Cが接続されているラインと、 中継器回路 5 a, 5 b , 5 c , 5 d側とに流入する。 この振動電流の振動周波数は数百 k H zから 数百 MH zになり、 数〃s e cから数百 n s e cの立ち上がりのサージが、結 果として中継器回路に進入する。 しかし、 キャパシ夕 Cに直列に接続された半 導電層 4が有する抵抗 Rにより、サージ進入時のサージ電流によるエネルギを 消費してサージ抑制し、 中継器回路に生ずる振動電圧 ·電流を抑制することが できる。  However, at this time, the charge that was charged in the capacity C by the power supply is discharged. The current caused by this discharge resonates due to the inductance of the choke coils L a and L b and the capacity of the capacity C. Therefore, the oscillating current flows into the line to which the capacity C of the equivalent circuit shown in Fig. 2 is connected and into the repeater circuits 5a, 5b, 5c, and 5d. The oscillating frequency of this oscillating current changes from several hundred kHz to several hundred MHz, and a rising surge of several 〃sec to several hundred nssec enters the repeater circuit as a result. However, the resistance R of the semiconducting layer 4 connected in series with the capacitor C suppresses the surge by consuming the energy due to the surge current when the surge enters, thereby suppressing the oscillation voltage and current generated in the repeater circuit. Can be done.
この半導電層 4の抵抗 Rは、 中継器回路のインピーダンスより大きい、例え ば中継器回路の D Cインビーダンス ( 8 0 Ω程度) に対して約 1 0倍程度にす ることにより、 ただし、 半導電層 4の抵抗 Rは、 海底中継装置 7の容量性を持 つ絶縁体 3が持つ抵抗値に対して、 1 0 0分の 1程度に設定して電流が流れる ようにして、 その効果を発揮する。サージ抑制のためにインピーダンスを最適 化するためには、半導電層 4の厚み、面積を変化させることによって所望の抵 抗値を得ることが可能となる。 By making the resistance R of the semiconductive layer 4 larger than the impedance of the repeater circuit, for example, about 10 times the DC impedance (about 80 Ω) of the repeater circuit, The resistance R of the semiconductive layer 4 has the capacitive characteristics of the submarine repeater 7. The resistance is set to about 1/100 with respect to the resistance value of the insulator 3 so that the current flows, and the effect is exhibited. In order to optimize the impedance for suppressing the surge, it is possible to obtain a desired resistance value by changing the thickness and the area of the semiconductive layer 4.
このように、半導電層 4を内部ュニヅト 5と絶縁体 3との間に設けることに より、半導電層 4がサージ抑制抵抗として効果を奏するとともに、絶縁層 3と 容器 1との間に抵抗層を形成し、 これらが堅固に構成されているため、抵抗層 の形状が崩れることなく安定した構造でサージ保護装置を構成できる。  By providing the semiconductive layer 4 between the inner unit 5 and the insulator 3 as described above, the semiconductive layer 4 has an effect as a surge suppression resistance, and the resistance between the insulating layer 3 and the container 1 is increased. Since the layers are formed and these are firmly configured, the surge protector can be configured with a stable structure without the shape of the resistance layer being collapsed.
また、給電系と接地電位である筐体 1の間に容量性の絶縁体 3と直列に抵抗 Rが構成されるため、直流給電時にはこれらの経路には電流が流入しないので、 特開平 2— 3 0 2 2 7号公報に記載のような電力損失を生じることなくサ一 ジによって生じる振動電圧 ·電流を抑制できる。  Further, since a resistor R is formed in series with the capacitive insulator 3 between the power supply system and the housing 1 which is a ground potential, no current flows into these paths during DC power supply. The oscillating voltage and current generated by the surge can be suppressed without causing a power loss as described in Japanese Patent Publication No. 302227.
なお、半導電層 4は絶縁体 3と容器 1 aとの間に設けてもよく、上記と同様 の効果を奏する。この場合には、絶縁体 3と筐体 1との間に半導電層 4を設け ているので、 容量性を持つ絶縁体 3と半導電層 4の間でサージ電圧を分担する ため、 容器 1 a (接地)側に配置した半導電性層の耐電圧を低くすることがで ぎる。 実施の形態 2 .  The semiconductive layer 4 may be provided between the insulator 3 and the container 1a, and has the same effect as described above. In this case, since the semiconductive layer 4 is provided between the insulator 3 and the housing 1, the surge voltage is shared between the capacitive insulator 3 and the semiconductive layer 4, so that the container 1 a The withstand voltage of the semiconductive layer placed on the (ground) side can be reduced. Embodiment 2
第 3図は本発明の実施の形態 2を示す海底中継装置の概略を示す断面図で ある。 第 3図において、 第 1図と同じ符号は、 同一または相当を示し、 その 説明を省略する。第 3図において、筐体 1の容器 1 aの内周部に半導電性を有 する緩衝部材 9が容器 1 aの軸線状に沿って設けられている。また、緩衝部材 9の内側に絶縁体 3が設けられ、この絶縁体 3の内側に内部ュニット 5が収容 されている。 なお、 筐体 緩衝部材 9、 絶縁体 3、 内部ユニット 5及びフィ —ルドスルー 6とで海底中継装置 1 0を構成している。 緩衝部材 9は中継器回路素子に輸送時および敷設時の振動が直接伝わらな いように設けられているが、緩衝部材 9に半導電性を有する材料、例えば導電 性プラスチック、 A B S (アクリロニトリル 'ブタジエン 'スチレン)樹脂に カーボンを添加したものなどで構成することにより、緩衝部材 9が実施の形態 1と同様なサージ抑制抵抗として効果を奏するとともに、新たに半導電層を設 けることが不要となる。半導電性を有する緩衝部材 9の抵抗値については、実 施の形態 1と同様な値に設定するため、 その説明を省略する。 実施の形態 3 . FIG. 3 is a sectional view schematically showing a submarine repeater according to Embodiment 2 of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted. In FIG. 3, a semiconductive buffer member 9 is provided along the axis of the container 1a on the inner periphery of the container 1a of the housing 1. Further, the insulator 3 is provided inside the buffer member 9, and the inner unit 5 is accommodated inside the insulator 3. The case buffer member 9, the insulator 3, the internal unit 5, and the field through 6 constitute a submarine repeater 10. The cushioning member 9 is provided so that vibration during transportation and laying is not directly transmitted to the repeater circuit element. By using a material such as 'styrene' resin to which carbon is added, the cushioning member 9 has the same effect as the surge suppression resistance as in the first embodiment, and it is not necessary to provide a new semiconductive layer. . Since the resistance value of the semiconductive buffer member 9 is set to the same value as in the first embodiment, the description is omitted. Embodiment 3.
第 4図は、本発明の実施の形態 3を示す海底中継装置の概略を示す断面図で ある。 第 4図において、 第 1図と同じ符号は、 同一または相当を示し、 その 説明を省略する。第 4図において、筐体 1の容器 1 aの内周部に弾性を有する 金属製の緩衝部材 2が容器 1 aの軸線状に沿って設けられている。緩衝部材 2 の内側に後述の半導電性ペイントからなる半導電層 1 1が塗布されている。半 導電性層 1 1の内側に絶縁体 3が設けられ、この絶縁体 3の内側に内部ュニッ ト 5が収容されている。 なお、 筐体 1、 緩衝部材 2、 半導電層 1 1、 絶縁体 3、 内部ュニット 5及びフィールドスルー 6とで海底中継装置 1 2を構成してい る。  FIG. 4 is a sectional view schematically showing a submarine repeater according to Embodiment 3 of the present invention. 4, the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted. In FIG. 4, a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1. A semiconductive layer 11 made of a semiconductive paint described later is applied to the inside of the buffer member 2. An insulator 3 is provided inside the semiconductive layer 11, and an inner unit 5 is accommodated inside the insulator 3. The case 1, the cushioning member 2, the semiconductive layer 11, the insulator 3, the inner unit 5, and the field through 6 constitute a submarine repeater 12.
半導電層 1 1としては、水性導電性カーボン塗料、水性導電性銀塗料、水性 導電性銀メツキ銅、 溶剤系導電性銀塗料、 溶剤系導電性黒鉛塗料、溶剤系導電 性ニッケル塗料、 溶剤系導電性銅塗料、 溶剤系導電性銀メツキ銅塗料、熱硬化 型導電性銀塗料等が挙げられる。半導電性層 1 1の抵抗値については、実施の 形態 1と同様な値に設定するため、 その説明を省略する。  As the semiconductive layer 11, water-based conductive carbon paint, water-based conductive silver paint, water-based conductive silver paint copper, solvent-based conductive silver paint, solvent-based conductive graphite paint, solvent-based conductive nickel paint, solvent-based paint Examples include conductive copper paint, solvent-based conductive silver paint copper paint, and thermosetting conductive silver paint. Since the resistance value of the semiconductive layer 11 is set to the same value as in the first embodiment, the description is omitted.
このように緩衝部材 9の内側に半導電性ペイントからなる半導電層 1 1を塗布することにより、 実施の形態と同様なサージ抑制抵抗として効 果を奏する。 また、半導電層 1 1は緩衝部材 2の外側に設けてもよく、上記と同様の効果 を奏する。 実施の形態 4 . By applying the semiconductive layer 11 made of semiconductive paint to the inside of the buffer member 9 as described above, an effect can be obtained as a surge suppression resistor similar to the embodiment. Further, the semiconductive layer 11 may be provided outside the cushioning member 2, and has the same effect as above. Embodiment 4.
第 5図は、本発明の実施の形態 4を示す海底中継装置の概略を示す断面図で ある。 第 5図において、 第 1図と同じ符号は、 同一または相当を示し、 その 説明を省略する。第 5図において、筐体 1の容器 1 aの内周部に弾性を有する 金属製の緩衝部材 2が容器 1 aの軸線状に沿って設けられている。緩衝部材 2 の内側に絶縁体 3が設けられ、緩衝部材 2と絶縁体 3との間で、絶縁体 3の外 側に後述の半導電性ペイントからなる半導電層 1 3が塗布されている。絶縁体 3の内側に内部ュニット 5が収容されている。 なお、 筐体 緩衝部材 2、 半 導電層 1 3、絶縁体 3、 内部ュニヅト 5及びフィールドスルー 6とで海底中継 装置 1 4を構成している。  FIG. 5 is a sectional view schematically showing a submarine repeater according to Embodiment 4 of the present invention. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding elements, and a description thereof will be omitted. In FIG. 5, a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1. An insulator 3 is provided inside the buffer member 2, and a semiconductive layer 13 made of a semiconductive paint described later is applied to the outside of the insulator 3 between the buffer member 2 and the insulator 3. . The inner unit 5 is housed inside the insulator 3. The submarine repeater 14 is composed of the housing buffer member 2, the semiconductive layer 13, the insulator 3, the internal unit 5, and the field through 6.
半導電層 1 3としては、 水性導電性カーボン塗料、水性導電性銀塗料、水性 導電性銀メツキ銅、 溶剤系導電性銀塗料、 溶剤系導電性黒鉛塗料、溶剤系導電 性ニッケル塗料、 溶剤系導電性銅塗料、 溶剤系導電性銀メツキ銅塗料、熱硬ィ匕 型導電性銀塗料等が挙げられる。半導電性層 1 3の抵抗値については、実施の 形態 1と同様な値に設定するため、 その説明を省略する。  The semiconductive layer 13 includes an aqueous conductive carbon paint, an aqueous conductive silver paint, an aqueous conductive silver plating copper, a solvent-based conductive silver paint, a solvent-based conductive graphite paint, a solvent-based conductive nickel paint, and a solvent-based paint. Conductive copper paint, solvent-based conductive silver paint copper paint, thermosetting conductive silver paint, and the like. Since the resistance value of the semiconductive layer 13 is set to the same value as in the first embodiment, the description is omitted.
このように緩衝部材 2と絶縁体 3との間で、絶縁体 3の外側に半導電層 1 3 を塗布することにより、実施の形態と同様なサージ抑制抵抗として効果を奏す るとともに、 絶縁体 3と半導電層 1 3との間に空気層(ボイド)の発生を防止 できるので、絶縁信頼性の高い海底中継装置 1 4を提供することが可能となる。 実施の形態 5 .  By applying the semiconductive layer 13 to the outside of the insulator 3 between the cushioning member 2 and the insulator 3 as described above, the effect as a surge suppression resistance similar to that of the embodiment can be obtained, and Since an air layer (void) can be prevented from being generated between 3 and the semiconductive layer 13, it is possible to provide a submarine repeater 14 with high insulation reliability. Embodiment 5
第 6図は、本発明の実施の形態 5を示す海底中継装置の概略を示す断面図で ある。 第 6図において、 第 1図と同じ符号は、 同一または相当を示し、 その 説明を省略する。第 6図において、筐体 1の容器 1 aの内周部に弾性を有する 金属製の緩衝部材 2が容器 1 aの軸線状に沿って設けられている。緩衝部材 2 の内側に絶縁体 1 5が設けられ、絶縁体 1 5内の一部若しくは全体を取り囲む ようにして絶縁体 1 5の内部に金属粒子等からなる導電性のフィラー 1 6か らなる半導電層を形成している。半導電層を有する絶縁体 1 5の内側に内部ュ ニット 5が収容されている。 なお、 筐体 緩衝部材 2、 導電性のフイラ一 1 6からなる半導電層を有する絶縁体 1 5、内部ュニット 5及びフィールドスル - 6とで海底中継装置 1 7を構成している。 FIG. 6 is a sectional view schematically showing a submarine repeater according to Embodiment 5 of the present invention. In FIG. 6, the same reference numerals as those in FIG. 1 indicate the same or corresponding elements. Description is omitted. In FIG. 6, a metal buffer member 2 having elasticity is provided along the axis of the container 1a on the inner peripheral portion of the container 1a of the housing 1. An insulator 15 is provided inside the buffer member 2, and a conductive filler 16 made of metal particles or the like is formed inside the insulator 15 so as to surround a part or the whole of the insulator 15. A semiconductive layer is formed. An inner unit 5 is housed inside an insulator 15 having a semiconductive layer. The submarine repeater 17 is composed of the housing buffer member 2, the insulator 15 having a semiconductive layer composed of the conductive filler 16, the internal unit 5, and the field through 6.
金属粒子等からなる導電性のフイラ一からなる半導電層 1 6の材質として はポリエチレン、 ポリプロピレン、 ポリエチレンテレフ夕レート、 P T F E 等の樹脂に銀粒子、 銅粒子、 銅合金粒子、 ニッケル粒子、 酸化亜鉛系粒子、 酸化すず系粒子、 酸化インジウム系粒子、 炭素粒子をフイラ一として混入し たものが挙げられる。抵抗値については実施の形態 1と同様に設定するため、 その説明を省略する。  The material of the semiconductive layer 16 made of a conductive filler made of metal particles is a resin such as polyethylene, polypropylene, polyethylene terephthalate, PTFE, or the like, and silver particles, copper particles, copper alloy particles, nickel particles, zinc oxide. Particle, tin oxide-based particles, indium oxide-based particles, and carbon particles mixed as a filler. Since the resistance value is set in the same manner as in the first embodiment, the description is omitted.
このような構成を用いることにより,実施の形態 1と同様なサージ抑制抵抗 として効果を奏するとともに、半導電層を有する絶縁体 1 5を一体で形成でき るため、絶縁体 1 5の絶縁層と半導電層との間にクラックなどの空気層が形成 されないので、絶縁信頼性の高い海底中継装置 1 Ίを提供することが可能とな る。 産業上の利用可能性  By using such a configuration, the effect as a surge suppression resistor similar to that of the first embodiment can be obtained, and the insulator 15 having the semiconductive layer can be integrally formed. Since no air layer such as a crack is formed between the semiconductor layer and the semiconductive layer, it is possible to provide a submarine repeater 1 Ί with high insulation reliability. Industrial applicability
以上のように、 この発明にかかる海底中継装置は、 海底中継装置内に 半導電層を設けることにより、 サージ進入時のサージ電流によるエネル ギを消費してサージ抑制し、 中継器回路に生ずる振動電圧 ·電流を抑制 するのに適しており、 例えば、 長距離の海底ケーブルに接続される海底 中継装置に適している。  As described above, the submarine repeater according to the present invention, by providing the semiconductive layer in the submarine repeater, consumes energy due to the surge current when the surge enters, suppresses the surge, and suppresses the vibration generated in the repeater circuit. Suitable for suppressing voltage and current, for example, suitable for submarine repeaters connected to long-distance submarine cables.

Claims

請 求 の 範 囲 The scope of the claims
1 . 海底ケーブルに接続される海底中継装置であって、 1. A submarine repeater connected to a submarine cable,
中空状の容器の内部に前記容器の軸線状に沿って設けられ、 中継器回 路とこの中継器回路に接続されたチョークコイルとサージ保護素子とを 有する内部ュニヅ トと、  An internal unit provided inside the hollow container along the axis of the container and having a repeater circuit, a choke coil connected to the repeater circuit, and a surge protection element;
前記容器と前記内部ュニッ 卜との間を絶縁する容量性の絶縁体と、 前記絶縁体に接し、 低抵抗の抵抗層を構成する半導電層と  A capacitive insulator that insulates between the container and the inner unit; and a semiconductive layer that is in contact with the insulator and forms a low-resistance resistance layer.
を備えていることを特長とする海底中継装置。 A submarine repeater characterized by comprising:
2 . 内部ュニットを振動から保護する緩衝部材をさらに備えたことを 特徴とする請求の範囲 1記載の海底中継装置。  2. The submarine repeater according to claim 1, further comprising a buffer member that protects the internal unit from vibration.
3 . 半導電層が内部ュニットと絶縁体との間に設けられていることを 特徴とする請求の範囲 1または 2記載の海底中継装置。  3. The submarine repeater according to claim 1, wherein the semiconductive layer is provided between the inner unit and the insulator.
4 . 半導電層が容器と絶縁体との間に設けられていることを特徴とす る請求の範囲 1または 2記載の海底中継装置。  4. The submarine repeater according to claim 1, wherein the semiconductive layer is provided between the container and the insulator.
5 . 緩衝部材が容器と絶縁体との間に設けられ、 前記緩衝部材が半導 電性材からなることを特徴とする請求の範囲 2記載の海底中継装置。 5. The submarine repeater according to claim 2, wherein a buffer member is provided between the container and the insulator, and the buffer member is made of a semiconductive material.
6 . 緩衝部材が容器と絶縁体との間に設けられ、 半導電層が前記緩衝 部材の内側または外側に塗布されていることを特徴とする請求の範囲 2 記載の海底中継装置。 6. The submarine repeater according to claim 2, wherein a buffer member is provided between the container and the insulator, and a semiconductive layer is applied inside or outside the buffer member.
7 . 緩衝部材が容器と絶縁体との間に設けられ、 半導電層が前記絶縁 体の外側に塗布されていることを特徴とする請求の範囲 2記載の海底中  7. The seabed according to claim 2, wherein a buffer member is provided between the container and the insulator, and a semiconductive layer is applied outside the insulator.
8 . 絶縁体が容器と内部ユニッ トとの間に設けられ、 前記絶縁体が半 導電層と一体整形されたことを特徴とする請求の範囲 1または 2記載の 海底中継装置。 8. The submarine repeater according to claim 1, wherein an insulator is provided between the container and the internal unit, and the insulator is integrally formed with the semiconductive layer.
9 . ' 半導電層の抵抗値をその面積と厚みにより調整することを特徴と する請求の範囲 1または 2記載の海底中継装置。 9. The submarine repeater according to claim 1, wherein the resistance value of the semiconductive layer is adjusted by its area and thickness.
PCT/JP2002/001961 2002-03-04 2002-03-04 Submarine repeating equipment WO2003075483A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001961 WO2003075483A1 (en) 2002-03-04 2002-03-04 Submarine repeating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001961 WO2003075483A1 (en) 2002-03-04 2002-03-04 Submarine repeating equipment

Publications (1)

Publication Number Publication Date
WO2003075483A1 true WO2003075483A1 (en) 2003-09-12

Family

ID=27773220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001961 WO2003075483A1 (en) 2002-03-04 2002-03-04 Submarine repeating equipment

Country Status (1)

Country Link
WO (1) WO2003075483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740842A (en) * 2018-09-21 2021-04-30 日本电气株式会社 Electrical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166725A (en) * 1980-05-28 1981-12-22 Fujitsu Ltd Surge protecting circuit for carrier repeater
JPS6295355U (en) * 1985-12-04 1987-06-18
JPH09218320A (en) * 1996-02-14 1997-08-19 Fujitsu Ltd Optical submarine repeater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166725A (en) * 1980-05-28 1981-12-22 Fujitsu Ltd Surge protecting circuit for carrier repeater
JPS6295355U (en) * 1985-12-04 1987-06-18
JPH09218320A (en) * 1996-02-14 1997-08-19 Fujitsu Ltd Optical submarine repeater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740842A (en) * 2018-09-21 2021-04-30 日本电气株式会社 Electrical device
JPWO2020059734A1 (en) * 2018-09-21 2021-09-30 日本電気株式会社 Electrical equipment
EP3855874A4 (en) * 2018-09-21 2021-11-03 NEC Corporation Electric device
JP7140199B2 (en) 2018-09-21 2022-09-21 日本電気株式会社 electrical equipment

Similar Documents

Publication Publication Date Title
CN101836341B (en) Surge protection circuit for passing DC and RF signals
US8553386B2 (en) Surge suppression device having one or more rings
US7817395B2 (en) Overvoltage protection element and ignition element for an overvoltage protection element
US20040145849A1 (en) Surge protection device and method
US8125752B2 (en) Coaxial broadband surge protector
US20100142106A1 (en) Surge preventing circuit, local area network connector, and network module
US8060019B2 (en) Asymmetric ESD protection for FM transmitter
US11322924B2 (en) Thunderbolt arrest-type lightning protection device
WO2003075483A1 (en) Submarine repeating equipment
US6606231B2 (en) Integrated telephony subscriber line protection and filter device
WO2012021219A1 (en) Capacitor with an internal dump resistance
KR100767835B1 (en) Shorting stub coaxial arrestor
US6180877B1 (en) Electrical conductor protected against electromagnetic interference exceeding a threshold
JP2010246350A (en) Lightning-protection coaxial cable
JPH03250575A (en) Molybdene lightning arrester
US7701404B2 (en) Method and apparatus for limiting VSWR spikes in a compact broadband meander line loaded antenna assembly
US6683772B2 (en) Lightning suppression apparatus for use with coaxial cable and heliaxial cable
JP2009289551A (en) Discharge noise absorption element and discharge gap type arrester utilizing the same, discharge rebound wave avoidance circuit, and noise avoidance box
JP5178482B2 (en) Wireless communication system
JP4519059B2 (en) Coherer type surge absorber
JP2000261957A (en) Surge absorber and indoor wiring method using the same
CN107689481B (en) Aircraft comprising a system for transmitting and/or receiving electromagnetic waves
JPS59167982A (en) Device for isolating ground wire
KR100660860B1 (en) Malfunction prohibition device by surge voltage in integrated circuit and method thereof
Shiibara et al. Comparison of Degradation Phenomena on Silicone Rubbers Eroded by DC and AC Discharges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP