JPH03250575A - Molybdene lightning arrester - Google Patents

Molybdene lightning arrester

Info

Publication number
JPH03250575A
JPH03250575A JP4907290A JP4907290A JPH03250575A JP H03250575 A JPH03250575 A JP H03250575A JP 4907290 A JP4907290 A JP 4907290A JP 4907290 A JP4907290 A JP 4907290A JP H03250575 A JPH03250575 A JP H03250575A
Authority
JP
Japan
Prior art keywords
electrodes
lightning
film
voltage
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4907290A
Other languages
Japanese (ja)
Other versions
JPH07118361B2 (en
Inventor
Seita Omori
大森 清太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2049072A priority Critical patent/JPH07118361B2/en
Publication of JPH03250575A publication Critical patent/JPH03250575A/en
Publication of JPH07118361B2 publication Critical patent/JPH07118361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To achieve a lightning arrester in simple structure and provide its manufacturability at a low cost by enabling repeated service through utilization of the fact that dielectric breakdown of a Mo metal film due to discharging is recovered at the same time as ending of the discharge. CONSTITUTION:The surfaces of two electrodes made of Mo are oxidized thermally or chemically to form an oxidation film. As the dielectric withstand voltage differs depending upon the thickness of the film, an adjustment is made so as to attain a thickness corresponding to the required withstand voltage. The electric wave signal is grounded 4 from an antenna 1 via a conductor 2 and a communication apparatus 3. An arrester concerned 12 is grounded 7 through Mo electrodes 5, 6 in connection to the middle point of the conductor 2 leading from the antenna 1 to communication apparatus 3. At normal times the part between these electrodes 5, 6 is kept insulated by the oxidation film, and the electrostatic capacity between the two is very small, so that little electric waves run off to the ground. When a lightning surge 11 proceeds in the direction of arrow, it is discharged to the ground 7 via the electrodes 5, 6 through Mo film having a very low operating voltage.

Description

【発明の詳細な説明】 この発明は電波信号のような高周波または、その他の微
弱電圧による電流は通り難いが直撃雷のような大きな衝
撃波電流は瞬時に通して絶縁を回復し、しかも壊れがた
いとゆう特長を有する避雷器に間する。
[Detailed Description of the Invention] This invention allows high frequency currents such as radio signals or other weak voltage currents to pass through easily, but large shock wave currents such as those caused by direct lightning strikes can pass through instantly to restore the insulation, and it is difficult to break. This is a lightning arrester with the following features.

従来の技術 アンテナ回路のような弱電回路を保護しようとすれば3
00V以下の低電圧で動作する避雷器が要求される。
Conventional technology If you try to protect a weak current circuit such as an antenna circuit, 3
Lightning arresters that operate at low voltages below 00V are required.

しかし、酸化亜鉛方式の避雷素子は低電圧で動作する素
子になるに従い静電容量が大きくなり従って高周波損失
が多くなる短所を有する。
However, the zinc oxide type lightning arrester has the disadvantage that as the device operates at a low voltage, the capacitance increases, resulting in increased high frequency loss.

このため従来は静電容量の少ない気中放電ギャップある
いは特殊ガス入り放電管などが使用されていた。
For this reason, conventionally, an air discharge gap with low capacitance or a special gas-filled discharge tube has been used.

これらの短所としては前者の放電ギャッ1は300Vと
いう極めて低い電圧で放電しなくてはいけないために両
軍4j閏のギャップ長が10分の1mm以下という極め
て短距離となり、従って大を流の直撃雷によって該電極
が溶融して溶着し短絡破壊を招く短所があった。 後者
のガス入り放電管では直撃雷でガス体が変化して壊れ易
いという短所があった。
The disadvantage of these is that the discharge gap 1 of the former must be discharged at an extremely low voltage of 300V, so the gap length between the 4J jumps of both sides is extremely short, less than 1/10 of a millimeter. There was a disadvantage that the electrodes were melted and welded by lightning, resulting in short circuit damage. The latter gas-filled discharge tube had the disadvantage that the gas substance changed and was easily broken by a direct lightning strike.

本発明が解決しようとする問題点と解決する手段。Problems to be solved by the present invention and means for solving them.

本発明はモリブデンからなる両電極の表面を熱的または
化学的に酸化させ酸化被膜を造る。
In the present invention, the surfaces of both electrodes made of molybdenum are thermally or chemically oxidized to form an oxide film.

このモリブデン酸化被膜は、その厚みによって絶縁破壊
電圧が異なり求められる破壊電圧に対応する厚みを熱的
には温度と時間と酸素量、化学的には電解液の種類と濃
度と温度と流す電流値によって自由に造ることができる
The dielectric breakdown voltage of this molybdenum oxide film varies depending on its thickness, and the thickness corresponding to the required breakdown voltage is determined thermally by temperature, time, and oxygen amount, and chemically by the type, concentration, temperature, and current value of the electrolyte. can be freely created by

このようにして得たところの両電極を互いに密着させる
ことにより前述の高周波電流は通し難<、1irt流は
通り易すく、かつ壊れ難いという性質の避雷器を得るこ
とができる。
By bringing the electrodes obtained in this way into close contact with each other, it is possible to obtain a lightning arrester that is difficult to pass the above-mentioned high frequency current, easy to pass the 1irt current, and difficult to break.

従って従来のギヤツブ式M雷器にみちれる放電時の両電
極の溶MW絡という問題は本発明によって解決する。
Therefore, the present invention solves the problem of melt MW circuit between both electrodes during discharge, which is common in conventional gear type M lightning devices.

本発明の作用と実施例および効果について図面により具
体的に説明する。
The operation, embodiments, and effects of the present invention will be specifically explained with reference to the drawings.

いま、電波信号はアンテナ1から導線2を通り通信11
3を通り大地4に通じて電波信号本来の目的を果たす。
Now, the radio signal passes from antenna 1 through conductor 2 to communication 11.
It passes through 3 and connects to the earth 4, fulfilling its original purpose as a radio signal.

本発明の避雷器12はアンテナ1と通信113を結ぶ導
線2の中間に接続しモリブデン電極5およびモリブデン
電極6を通して大地7に接続する。
The lightning arrester 12 of the present invention is connected to the middle of the conductor 2 connecting the antenna 1 and the communication 113, and is connected to the ground 7 through the molybdenum electrode 5 and the molybdenum electrode 6.

平常時にはモリブデン電極5とモリブデン電極6との間
には両者それぞれの酸化被膜によって絶縁が保たれてお
り、また両者閏の静電容量も極めて少なく電波を大地へ
逃がすことは僅少であり電波信号の目的を妨害すること
はない。
Under normal conditions, insulation is maintained between molybdenum electrode 5 and molybdenum electrode 6 by their respective oxide films, and the electrostatic capacitance of both is extremely small, meaning that only a small amount of radio waves are allowed to escape to the ground. It does not interfere with the purpose.

しかし、雷サージ11が矢印方向に進行してくると極め
て低い動作電圧に整定したモリブデン酸化被膜のため雷
サージ11は電極5から電極6へと導通して大地7へ放
電流出する。
However, when the lightning surge 11 advances in the direction of the arrow, the lightning surge 11 conducts from the electrode 5 to the electrode 6 and discharges out to the ground 7 because of the molybdenum oxide film that has settled to an extremely low operating voltage.

この際、通信機の破壊電圧は電波入力端子において一般
的に、1/40μsのサージ電圧波形ではIKV程度の
耐電圧を有するため、それよりも低い電圧で動作する本
避雷器が通信機3の破壊よりも、さきに動作して該通信
機を雷撃から保護することができる。
At this time, the breakdown voltage of the communication device at the radio wave input terminal generally has a withstand voltage of about IKV with a 1/40 μs surge voltage waveform, so this lightning arrester, which operates at a lower voltage, will destroy the communication device 3. It is possible to operate earlier than the above to protect the communication device from lightning strikes.

本避雷器の動作状況を実験により観察し考察する。The operational status of this lightning arrester will be observed and discussed through experiments.

第2図はモリブデン電極5およびモリブデン電極6を接
触させた状態の縦断面を示すもので、両電極の酸化被膜
はハツチングで示した部分である。
FIG. 2 shows a longitudinal section of the molybdenum electrode 5 and the molybdenum electrode 6 in contact with each other, and the oxide films on both electrodes are shown by hatching.

いま、アンテナで受信した高周波電圧が導線2を通りモ
リブデン電極5を課電する。
Now, the high frequency voltage received by the antenna passes through the conductor 2 and charges the molybdenum electrode 5.

高周波電流はモリブデン電極5からモリブデン電極6へ
流れようとするが、両電極5.6の接触部に存在するモ
リブデン酸化被膜8.9.10.などにより遮られ流れ
ることができないでいる。
The high frequency current tries to flow from the molybdenum electrode 5 to the molybdenum electrode 6, but the molybdenum oxide film 8.9.10. It is blocked by such things and cannot flow.

これは高周波電圧が箆絶縁性酸化被膜を破壊するに必要
な電圧に達しないからである。
This is because the high frequency voltage does not reach the voltage required to destroy the insulating oxide film.

被膜の絶縁破壊電圧は被膜の厚さを変えることにより自
由に整定可能であるが、例えば250■に整定したとし
て、いま、10KV程度の冨サージが該被膜に印加した
とする。
The dielectric breakdown voltage of the coating can be freely set by changing the thickness of the coating, but let us assume that it has been set to 250 .ANG., and now a surge of about 10 KV is applied to the coating.

この場合、雷サージ電圧10KVは該被膜の整定値電圧
250Vより、はるかに高電圧のため絶縁液118.9
.10.のうち、通り易い部分を集中して通過する。
In this case, the lightning surge voltage of 10 KV is much higher than the set voltage of the coating, 250 V, so the insulating liquid is 118.9 KV.
.. 10. Concentrate on the parts that are easy to pass through.

8.9.10.は電極5.6の接触面であり特に区分け
したわけではなく、それぞれ均等でバラツキのない接触
面で絶縁耐圧を有するを、理想とするが工作上バラツキ
を無くすることは容易でなく、いかにしても部分的に絶
縁耐圧に差を生ずる。
8.9.10. are the contact surfaces of the electrodes 5 and 6, and are not particularly divided.The ideal is to have equal and consistent contact surfaces with dielectric strength, but it is not easy to eliminate variations in construction, so there is no way to do so. However, there will be some differences in dielectric strength.

そこで、仮に該接触面を8.9.10.と区分けして説
明しようとするものである。
Therefore, if the contact surface is 8.9.10. This is what I try to explain by separating them.

本論に帰り雷サージは、このようにしてモリブデンを極
5.6を通過して大地7へ逃げ去る。
Returning to the main topic, the lightning surge passes through the molybdenum pole 5.6 and escapes to the earth 7.

雷サージ電流は両極間の接触部8を通過する際に数千ア
ンペアあるいは数千アンペア但し時間的には10万分の
1秒間程度流れたとする。
It is assumed that the lightning surge current flows several thousand amperes or several thousand amperes, but for a time of about 1/100,000 seconds, when passing through the contact portion 8 between the two poles.

この際、両極の接触部8が過熱して酸化被膜の厚さが増
加すると絶縁耐圧も上昇するので、次の襲雷時には接触
部8より絶縁耐圧の低い部分、例えば接触部9が雷サー
ジ電流のながれる道となる。
At this time, when the contact part 8 of both poles overheats and the thickness of the oxide film increases, the dielectric strength voltage also increases. Therefore, in the next lightning strike, parts with lower dielectric strength voltage than the contact part 8, for example, the contact part 9, will be affected by the lightning surge. It becomes a path that can be followed.

このようにして次の襲雷では接触部10が雷サージの通
過点となり、次1次と場所を変えなからMM効果を果た
す。
In this way, in the next lightning strike, the contact portion 10 becomes the passing point for the lightning surge, and the MM effect is achieved because the location does not change from the next primary.

実験によると、サージ電流波形8/20μS、4000
A1秒間隔2や< 1000回にて、 なお、故障することなく、実用に供することの確認が得
られた。
According to experiments, surge current waveform 8/20μS, 4000
At A1 second intervals of 2 and < 1000 times, no failure occurred and it was confirmed that it could be put to practical use.

モリブデン酸化被膜の生成 過熱法 直径2mm 長さ約30mm  の線状モリブデンを空
気中において680℃ 約3時間過熱。
Formation of molybdenum oxide film Heating method: Heat linear molybdenum with a diameter of 2 mm and a length of about 30 mm in air at 680°C for about 3 hours.

この際、電気炉内の空気が希薄となったものと思われる
がテスト用サンプルは完成した。
At this time, the air inside the electric furnace seems to have become diluted, but the test sample was completed.

電解法 直径2mm  長さ約30mm  の線状モリブデンを
直流電源のプラス端子へ接続する。
Electrolytic method Connect a molybdenum wire with a diameter of 2 mm and a length of about 30 mm to the positive terminal of a DC power source.

電解液は硝酸(濃度62%1occ>水90cc液温 
約14℃ 電流IA 通電時間 3分間マイナス電極と
してカーボンを使用した。
The electrolyte is nitric acid (concentration 62% 1occ > water 90cc liquid temperature
Approximately 14° C. Current IA Current application time 3 minutes Carbon was used as a negative electrode.

このように過熱法、電解法で得られたところの第2図に
示すような電極5.6へ直流2vを課電したが、両極前
の漏洩電流ゼロ。
When a direct current of 2 V was applied to the electrodes 5.6 as shown in FIG. 2 obtained by the heating method and electrolysis method, there was no leakage current in front of both electrodes.

しかし、250■絶縁抵抗計ではOオームに近い数値が
得られ前述の動作電圧に近くなれば電流が流れ易くなる
ことの確認ができた。
However, with the 250cm insulation resistance tester, a value close to 0 ohms was obtained, confirming that the current flows more easily when the voltage is close to the above-mentioned operating voltage.

発明の効果 海洋を航海中の船舶においてマストの高さに近い位置に
ある通信用アンテナは洋上に突出しており、直撃雷を受
ける機会が最も多く、これによって交信が不通となり重
大な事態となることは衆知の通りである。
Effects of the Invention Communication antennas located near the height of the mast of ships sailing on the ocean protrude above the ocean and are most likely to receive direct lightning strikes, which can lead to communication interruptions and serious situations. is common knowledge.

このような事態にならずに直撃雷を受けても、速やかに
海中へ放電することが可能となれば一何程か助かるであ
ろうと考えられる。
It is thought that if such a situation does not occur and it is possible to quickly discharge the discharge into the sea even if a ship receives a direct lightning strike, it will save some life.

本発明のモリブデン避雷器は他の金属製放電ギャプを使
用する避雷器にみられる溶着現象が発生しないので数句
れない放電をくり返しても、なお、使用可能であり十分
実用に供することができるが、今後、数万アンペアの放
電を重ねて実験と改良を行えば、将来さらに明るい実績
を得られるものと確信する。
The molybdenum lightning arrester of the present invention does not cause the welding phenomenon seen in other lightning arresters that use metal discharge gaps, so it can still be used even after countless discharges and can be put to practical use. We are confident that we will be able to achieve even better results in the future if we continue to conduct experiments and improvements with tens of thousands of amperes of discharge.

また、本発明のモリブデン避雷器は構造が簡単であり比
較的安価に製造可能である。
Furthermore, the molybdenum lightning arrester of the present invention has a simple structure and can be manufactured at relatively low cost.

応用範囲としては、保護しようとする回路電圧が高い場
合でもモリブデン酸化液!l電極を直列に積み重ねるこ
とにより、さらに高い動作開始電圧が得られるので、広
範囲に応用されること力(期待される。
As for the range of applications, molybdenum oxide liquid can be used even when the circuit voltage to be protected is high! By stacking the electrodes in series, an even higher activation voltage can be obtained, so it is expected that it will be widely applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理と実施の1例を示す結線図である
。 第2図は本発明の原理を示す縦断面図である。 第1図 第2図 において、 1  は アンテナ 2  は アンテナ1から通信113に結ばれた導線3
  は 通信機 4.7.は 接地 5  は 外周表面が酸化被膜化したモリブデン電極6
  は モリブデン電極5と同じ構造のモリブデン電極
8.9.10.はモリブデン電極5とモリブデン電極6
との接触構造を説明するために仮に設けた接触点である 11 は 雷サージ、矢印は雷サージの方向を示す12
 は 本発明の全体を示す
FIG. 1 is a wiring diagram showing an example of the principle and implementation of the present invention. FIG. 2 is a longitudinal sectional view showing the principle of the present invention. In Figure 1 and Figure 2, 1 is antenna 2, and wire 3 is connected from antenna 1 to communication 113.
Communication device 4.7. Grounding 5 Molybdenum electrode 6 with an oxide film on the outer surface
are molybdenum electrodes 8.9.10. having the same structure as molybdenum electrode 5. are molybdenum electrode 5 and molybdenum electrode 6
The contact point 11, which was temporarily set up to explain the contact structure with the lightning surge, is the lightning surge, and the arrow indicates the direction of the lightning surge 12
represents the entire invention

Claims (1)

【特許請求の範囲】[Claims] 放電によるモリブデン金属被膜の絶縁破壊が、放電終了
と同時に絶縁を回復する性質を利用したモリブデン避雷
器。
A molybdenum lightning arrester utilizes the property that the dielectric breakdown of the molybdenum metal coating due to discharge causes the insulation to recover as soon as the discharge ends.
JP2049072A 1990-02-27 1990-02-27 Molybdenum arrester Expired - Lifetime JPH07118361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2049072A JPH07118361B2 (en) 1990-02-27 1990-02-27 Molybdenum arrester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2049072A JPH07118361B2 (en) 1990-02-27 1990-02-27 Molybdenum arrester

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP26337590A Division JPH03250576A (en) 1990-10-01 1990-10-01 Accelerating method for insulation recovery of molybdene lightning arrester

Publications (2)

Publication Number Publication Date
JPH03250575A true JPH03250575A (en) 1991-11-08
JPH07118361B2 JPH07118361B2 (en) 1995-12-18

Family

ID=12820880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2049072A Expired - Lifetime JPH07118361B2 (en) 1990-02-27 1990-02-27 Molybdenum arrester

Country Status (1)

Country Link
JP (1) JPH07118361B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139528A1 (en) * 2000-03-30 2001-10-04 Kabushiki Kaisha Mechatro Giken Protector device
EP1168548A1 (en) * 2000-06-20 2002-01-02 Takashi Katoda Fabrication method of surge protector device and the device fabricated by the method
EP1187278A2 (en) * 2000-08-28 2002-03-13 Takashi Katoda A main element of a surge protector device
WO2002054559A1 (en) * 2000-12-28 2002-07-11 Takayasu Kanemura Surge-current avoiding device and its avoiding circuit
EP1564856A1 (en) * 2004-02-16 2005-08-17 Takashi Katoda A surge protector device and its fabrication method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835578A1 (en) 2004-12-06 2007-09-19 Array Prot Technology Inc. Lightning arrester
DE102016001734B4 (en) * 2015-11-19 2023-11-09 Dehn Se Method for influencing the lightning current distribution in electrical systems that are integrated into the rotor blades of wind turbines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095875A (en) * 1983-09-30 1985-05-29 シーメンス、アクチエンゲゼルシヤフト Gas-sealed arrester and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095875A (en) * 1983-09-30 1985-05-29 シーメンス、アクチエンゲゼルシヤフト Gas-sealed arrester and method of producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1139528A1 (en) * 2000-03-30 2001-10-04 Kabushiki Kaisha Mechatro Giken Protector device
EP1168548A1 (en) * 2000-06-20 2002-01-02 Takashi Katoda Fabrication method of surge protector device and the device fabricated by the method
EP1187278A2 (en) * 2000-08-28 2002-03-13 Takashi Katoda A main element of a surge protector device
EP1187278A3 (en) * 2000-08-28 2005-07-06 Takashi Katoda A main element of a surge protector device
WO2002054559A1 (en) * 2000-12-28 2002-07-11 Takayasu Kanemura Surge-current avoiding device and its avoiding circuit
EP1564856A1 (en) * 2004-02-16 2005-08-17 Takashi Katoda A surge protector device and its fabrication method
US7301740B2 (en) 2004-02-16 2007-11-27 Takashi Katoda Surge protector device and its fabrication method

Also Published As

Publication number Publication date
JPH07118361B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
CA1144596A (en) Lightning arrester device for power transmission line
CN103098322B (en) Trigger device for spark gap
US3631323A (en) Surge-modifying lightning arrester construction
JPH03250575A (en) Molybdene lightning arrester
US8456787B2 (en) Gas insulated switchgear
US2383973A (en) Electric vacuum switch
US3702420A (en) Electrical surge diverting connector
US2089555A (en) Electrical discharge device
US3538382A (en) Triggered vacuum gap overvoltage protective device
RU171093U1 (en) ROOF MULTI-CAMERA DISCHARGE
RU184108U1 (en) INSULATOR WITH MULTI-CAMERA DISCHARGE AND FIXED AIR GAP
US1238660A (en) Electric discharge apparatus.
US2414622A (en) Switch
US2886737A (en) Quick-responsive spark gap device
RU2227951C2 (en) Discharger
US1232467A (en) Spark-gap.
RU171056U1 (en) LOOP MULTI-ELECTRODE DISCHARGE
CA1140207A (en) Power spark gap high current conduction
US4340921A (en) HVDC Power transmission system with metallic return conductor
US3230411A (en) Low voltage protective gaps provided with arc running surfaces for circulating arcs
CN212137284U (en) Self-disengaging overvoltage protector
CN204216039U (en) A kind of electrostatic protector
KR101088686B1 (en) Arc inducing type driven rod apparatus having needles
US3360686A (en) Lightning protection assembly for overhead lines
CA1058694A (en) Discharge gap device