WO2003075430A1 - Uninterruptible power supply - Google Patents

Uninterruptible power supply Download PDF

Info

Publication number
WO2003075430A1
WO2003075430A1 PCT/JP2003/002273 JP0302273W WO03075430A1 WO 2003075430 A1 WO2003075430 A1 WO 2003075430A1 JP 0302273 W JP0302273 W JP 0302273W WO 03075430 A1 WO03075430 A1 WO 03075430A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
input
parallel converter
power
Prior art date
Application number
PCT/JP2003/002273
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Amano
Masanobu Fujikura
Original Assignee
Fuji Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co., Ltd. filed Critical Fuji Electric Co., Ltd.
Priority to AU2003211808A priority Critical patent/AU2003211808A1/en
Publication of WO2003075430A1 publication Critical patent/WO2003075430A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Definitions

  • the present invention provides an uninterruptible power supply that supplies input power from an AC power supply or the like to a load, and supplies power to the load using energy stored in power storage means when the AC power supply or the like fails.
  • an uninterruptible power supply for example, as shown in Fig. 8, a parallel converter connected in parallel to a power supply line for supplying input power supplied from a commercial power supply to a load
  • an uninterruptible power supply comprising: a series inverter having a power side connected in series to a power supply line;
  • a compensation circuit 10 is connected to a power supply line LN for supplying input power to a load.
  • the compensation circuit 10 includes a parallel converter 12 having a rectifying function, an active filter function, and an inverter function, a battery 14, a capacitor 16, and a series inverter 18 connected in parallel in this order. It is configured.
  • the AC power side of the parallel converter 12 is connected in parallel via a reactor L 1 between a capacitor C 1 connected in parallel to the power supply line LN and a power supply line LN, and the reactor L 1 and capacitor C1 make up the LC filter.
  • the AC output side of the series inverter 18 is connected to the It is connected in series via a series transformer # 9 between the connection point with the capacitor C1 and the output terminal P out. Further, between the series transformer 19 and the output terminal P out, a capacitor C2 constituting a leakage inductance of the series transformer 19 and an LC filter is connected in parallel to the power supply line LN.
  • the input voltage from the commercial power supply or the like input to the input terminal Pin of the power supply line LN is monitored, and when the input voltage is within the allowable range in which the preset input voltage can be regarded as normal, the input voltage is Judge as normal, and control the series inverter 18 so that the output voltage of the output terminal P out becomes the specified voltage, and keep the output voltage to the load at the specified voltage.
  • the parallel converter 12 is operated as an active filter to reduce harmonics flowing from the input terminal Pin to the side of commercial power supply, etc., and to perform rectification as needed, to charge the battery 14 I do.
  • the power supply switch SW is turned on. Shut off to disconnect the commercial power supply from the power supply line LN, and operate the parallel converter 12 as a backup.
  • the parallel converter 12 is operated in reverse to generate AC power of a predetermined voltage in place of a commercial power supply or the like, and supplies this to the load.
  • the series inverter 18 is continuously controlled in the same manner so that the output voltage to the load becomes the specified voltage.
  • a predetermined power supply can be continuously performed to the load even when an abnormality occurs in the commercial power supply or the like.
  • the power supply switch SW is shut off.However, the input voltage actually becomes an abnormal value. After the power supply switch SW is actually turned off and the commercial power supply is disconnected from the power supply line LN, it takes several A time delay occurs.
  • the parallel converter 12 is controlled to perform the backup operation by detecting the drop of the input voltage, and the parallel converter 12 is turned off. Even if it operates as an inverter, an excessive current flows through the short-circuited portion via the power supply switch SW until the power supply switch SW is actually turned off, so the parallel converter 12 Cannot be maintained.
  • the series inverter 18 performs correction so that the output voltage to the load becomes the specified voltage, the output voltage must be maintained at the specified voltage because the range that can be corrected is limited. However, the output voltage to the load decreases, resulting in a problem that the voltage temporarily drops and an instantaneous power failure occurs.
  • the parallel converter 12 when the parallel converter 12 is operated as an active filter, a complicated operation is required to calculate a harmonic component. Also, since the active filter needs to change its output current steeply, the parallel converter 12 and the control device for controlling the same require a command value for changing the output current of the parallel converter 12 steeply. There is a problem that high current control performance is required, which can follow the current. '
  • An object of the present invention is to provide an uninterruptible power supply capable of reducing the processing load of processing and removing harmonic components without requiring advanced processing performance
  • the invention of claim 1 is interposed in a power supply line and A power supply switch composed of two thyristors connected in antiparallel, a parallel converter connected in parallel between the power supply switch and the output end of the power supply line, and a power storage means connected to the parallel converter A series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal, and an AC output voltage of the output terminal connected to the series transformer and having a predetermined value.
  • a series inverter that adjusts the AC output voltage using the power storage unit as an energy source, a voltage abnormality detection unit that detects an input voltage abnormality of AC power input to an input terminal of the power supply line, Control means for controlling the power supply switch and the parallel converter in accordance with the detection result of the voltage abnormality detection means, wherein the control means comprises: When no abnormality is detected in step (a), the power supply switch is controlled so that a thyristor through which a current having the same polarity as the input voltage to the input terminal is ignited, and the parallel converter is controlled to control the power storage means.
  • the current flowing through the parallel converter is adjusted so that the energy becomes a specified value and the input power factor of the AC power input to the input terminal becomes 1, and when the voltage abnormality detecting means detects an abnormality,
  • the power supply switch is controlled to be cut off, and the parallel converter is controlled so as to output AC power of a predetermined voltage to the power supply line using the power storage means as an energy source.
  • the power supply switch inserted in the power supply line for supplying AC power to the load is constituted by a thyristor connected in anti-parallel, and the input voltage of the input terminal to the input terminal of the power supply line is reduced.
  • the two thyristors are alternately turned on and off in accordance with the polarity of the input voltage so that the thyristor that allows the current of the same polarity to be turned on is turned on. Controlled to be "1". Note that this power factor does not necessarily have to be “1”, and the thyristor that is turned on according to the polarity of the input voltage is turned on due to the large phase difference between the input current and voltage.
  • the parallel converter connected in parallel to the power supply line outputs AC power of a predetermined voltage.
  • the series inverter connected to the power supply line via a series transformer operates so that the AC output voltage to the load becomes a predetermined value.
  • the invention according to claim 2 includes a power supply switch inserted in a power supply line, a parallel converter connected in parallel between the power supply switch and an output end of the power supply line, A power storage means connected thereto, a series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal, and an AC output voltage connected to the series transformer and at the output terminal.
  • a series inverter that adjusts the AC output voltage using the power storage means as an energy source so as to have a predetermined value, and a connection point between the power supply line and the parallel converter and the power supply switch.
  • An input reactor voltage abnormality detection means for detecting an input voltage abnormality of AC power input to an input end of the power supply line, and the power supply according to a detection result of the voltage abnormality detection means.
  • Control means for controlling the switch and the parallel converter, wherein the control means controls conduction of the power supply switch when the voltage abnormality detection means does not detect an abnormality, and controls the parallel converter. Controlling the current flowing through the input reactor so that the energy of the power storage means becomes a specified value.
  • the power supply switch is cut off and the power storage means is controlled.
  • the parallel converter is controlled so as to output high-voltage AC power to the power supply line.
  • the parallel converter is controlled so that, for example, the current flowing through the input reactor becomes a sinusoidal current, and the AC power from a commercial power supply or the like is balanced with the power supplied to the load.
  • the current flowing through the input reactor is controlled such that the energy of the power storage means becomes a specified value.
  • the current flowing through the input reactor is controlled to be sinusoidal, so if the output current to the load contains harmonic components, the harmonic current will flow to the parallel converter, It does not leak to the commercial power supply.
  • the parallel converter operates as an inverter to generate AC power.
  • the input reactor is interposed between the parallel converter of the power supply line and the power supply switch, the AC current generated by the parallel converter is suppressed from flowing to the commercial power supply or the like.
  • the output voltage is corrected by the series inverter so that the output voltage becomes the command value, the output voltage to the load does not enter an instantaneous blackout state, and the output voltage is maintained at the command value.
  • the invention according to claim 3 is characterized in that a power supply switch composed of two thyristors inserted in a power supply line and connected in antiparallel is connected in parallel between the power supply switch and an output terminal of the power supply line.
  • the input relay inserted between the point and the feed switch A voltage abnormality detecting means for detecting an input voltage abnormality of AC power input to an input terminal of the power supply line; a power supply switch and the parallel compensator according to a detection result of the voltage abnormality detection means; And a control means for controlling the control means, when the voltage abnormality detection means does not detect an abnormality, the control means is configured to ignite a thyristor through which a current having the same polarity as an input voltage to the input terminal is ignited.
  • the power supply switch is cut off and controlled to a predetermined voltage by using the power storage means as an energy source. It is characterized by controlling the parallel converter evening to output flow power to the power supply line.
  • the parallel converter is controlled so that, for example, the current flowing through the input reactor is substantially a sine-wave current having a power factor of “1”, and AC power from a commercial power supply or the like is supplied to the load.
  • the current flowing through the input reactor is controlled so that the energy of the power storage means becomes a specified value.
  • the current flowing through the input reactor is controlled to be sinusoidal, so if the output current to the load contains a harmonic component, the harmonic current will flow to the parallel converter. It does not flow to the commercial power supply.
  • the feed switch inserted in the feed line for supplying AC power to the load is composed of a thyristor connected in anti-parallel, and has the same polarity as the polarity of the input voltage to the input end of the feed line.
  • the two thyristors are alternately turned on and off in accordance with the polarity of the input voltage so that the thyristor through which the current flows is turned on.At this time, the current flowing through the input reactor is controlled by the parallel comparator.
  • the rate is controlled to be "1". This power factor must always be "1".
  • the thyristor which is turned on according to the polarity of the input voltage, is automatically turned off despite the fact that it is turned on due to the large phase difference between the input current and the voltage. Any power factor may be used as long as the power factor can be avoided.
  • the parallel converter connected in parallel to the power supply line operates to output AC power of a predetermined voltage, and the power supply line
  • the series inverter connected via a series transformer operates so that the output voltage to the load becomes a predetermined value, and if the input voltage decreases, the When the reverse bias is applied to the thyristor, the thyristor automatically turns off, so even if the input voltage drops due to a power failure or the like, the output voltage to the load will be instantaneous. A stop condition is avoided, and the output voltage is maintained at a predetermined value.
  • FIG. 1 is a circuit diagram illustrating an example of the uninterruptible power supply according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of the AC switch control unit 22 of FIG.
  • FIG. 3 is a block diagram showing a functional configuration of the parallel converter overnight controller 24 of FIG.
  • FIG. 4 is a block diagram showing a functional configuration of the serial inverter controller 26 of FIG.
  • FIG. 5 is a circuit diagram illustrating an example of the uninterruptible power supply according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram showing a functional configuration of the parallel converter overnight controller 24a of FIG. is there. '
  • FIG. 7 is a circuit diagram illustrating an example of the uninterruptible power supply according to the third embodiment of the present invention. '
  • FIG. 8 is a circuit diagram showing an example of a conventional uninterruptible power supply. Explanation of reference numerals
  • FIG. 1 is a circuit diagram illustrating an example of the uninterruptible power supply according to the first embodiment.
  • an AC switch 5 is provided on the power supply line LN between the input terminal Pin connected to a commercial power supply or the like and the output terminal Pout connected to the load, and the AC switch 5 and the output terminal Pout Is connected to the compensation circuit 10.
  • the AC switch 5 includes a pair of thyristors 5a and 5b connected in anti-parallel.
  • the compensation circuit 10 includes a parallel converter 12, a battery 14, a capacitor 16, and a series inverter 18 in this order, in the same manner as the conventional uninterruptible power supply shown in FIG. It is configured to be connected to.
  • the parallel converter The evening 12 and the series inverter 18 are each formed of a known full-bridge circuit in which, for example, a switching element and a diode connected in anti-parallel to each other are connected in series two by two.
  • the AC power side of the parallel converter 12 is connected via a reactor L1 between a connection point between a capacitor C1 connected in parallel to the power supply line LN and a capacitor C1 of the power supply line LN.
  • the reactor L1 and the capacitor C1 constitute an LC filter.
  • the AC output side of the series inverter 18 is connected to an isolation transformer in which a secondary winding is inserted between a connection point of the power supply line LN and the capacitor C1 and an output terminal P out. Connected to the power supply line LN via a series transformer 19. Further, a capacitor C2 is connected in parallel to a power supply line LN between the series transformer 19 and the output terminal Pout, and an LC filter is formed by the capacitor C2 and the leakage inductance of the series transformer 19. Make up.
  • the AC switch 5, the parallel converter 12 and the serial inverter 18 are driven and controlled by a control circuit 20.
  • the control circuit 20 controls an AC switch control unit 22 that drives and controls the AC switch 5, a parallel converter control unit 24 that controls the parallel converter 12 and a serial converter 18 that controls the series inverter 18. And a serial receiver 26.
  • FIG. 2 is a block diagram showing a functional configuration of the AC switch control unit 22.
  • the AC switch control unit 22 detects a comparator 22a and a rising edge of an output signal of the comparator 22a.
  • a falling edge detector 22c for detecting a falling edge of the output signal of the comparator 22a.
  • the non-inverting input terminal of the comparator 22a has an input voltage detector 32 connected to a power supply line LN between the input terminal Pin and the AC switch 5 and detecting an input voltage from a commercial power supply or the like.
  • the detected input voltage Vin is applied, and the inverted input terminal A reference voltage for detecting the phase of the input voltage Vin is applied to the element.
  • the comparator 22a outputs a HIGH-level signal when the input voltage is higher than the reference voltage, and outputs a LOW-level signal when the input voltage is lower than the reference voltage.
  • the rising edge detector 22b detects the current flowing from the input terminal Pin to the output terminal Pout of the AC switch 5.
  • Control thyristor 5a which allows flow, to the on state.
  • the falling edge detector 22c detects the falling edge of the output signal of the comparator 22a
  • the falling edge detector 22c outputs a signal from the output terminal Pout to the input terminal Pin of the AC switch 5.
  • the thyristor 5b that allows current flow is controlled to the ON state. That is, the AC switch control section 22 turns on and off the thyristors 5a and 5b alternately in accordance with the polarity of the input voltage Vin.
  • FIG. 3 is a block diagram showing a functional configuration of the parallel converter control unit 24.
  • a voltage adjustment operation such as PI control is performed in the voltage adjuster 42, and the operation result is multiplied by the reference sine wave signal sincot by the arithmetic unit 43.
  • the reference sine wave signal s incot is a signal whose phase is synchronized with the input voltage Vin, and the amplitude thereof is set arbitrarily. Set to the corresponding value.
  • a difference value between the calculation result of the calculator 43 and the calculation result of the harmonic component extraction calculator 44 is calculated by the calculator 45.
  • the harmonic component extraction / calculation unit 44 uses a known procedure. Therefore harmonic Extract wave components.
  • the difference between the difference value calculated by the arithmetic unit 45 and the parallel converter current Ipara, which is the current flowing through the parallel converter 12 and detected by the parallel converter current detector 38, is calculated by the arithmetic unit 46. Is calculated.
  • the reference sine wave signal sinwt is a signal whose phase is synchronized with the input voltage Vin, and its amplitude is set according to, for example, the rated voltage to the load.
  • a pulse signal is generated in the PWM control section 50 based on the addition result.
  • the parallel converter 12 is operated to perform a rectifying operation and an active fill operation so that the DC voltage E dc matches the DC voltage command value E dc *, and the input power factor becomes substantially “1”.
  • a pulse signal is generated, and the switching elements of the parallel converter 12 are controlled based on the pulse signal.
  • the current value flowing through the parallel converter 12 necessary to match the DC voltage E dc with the DC voltage command value E dc * and the parallel converter 1 2 required to cancel the harmonic components of the output current
  • the feedback control is performed so that the sum of the current value and the parallel converter current I par a is calculated.
  • the input power factor is desirably “1”, but is not necessarily “1”.
  • the thyristors 5a and 5b of the AC switch 5 are controlled according to the polarity of the input voltage, if the input power factor is not "1", the current flowing through the thyristor that is turned on is controlled. When the value becomes zero, the thyristor is automatically turned off, and the current stops flowing thereafter. Therefore, it is sufficient that the power factor is such that this can be avoided. If the phase difference between the input voltage and the input current is about 30 °, that is, if the power factor is about 0.866 or more, If you have No.
  • the cutoff switch 48 is turned on when the input voltage Vin detected by the input voltage detector 32 is within a preset allowable range in which the input voltage can be regarded as normal.
  • the input voltage exceeds the permissible range, that is, when the input voltage exceeds or falls below the permissible range, it is controlled to be in a cutoff state as a voltage abnormality.
  • a pulse signal for operating the parallel converter 12 in an inverting mode is generated based on, for example, a reference sine wave signal sinot according to the rated voltage to the load. 2 controls each switching element. That is, feedforward control is performed according to the reference sine wave signal sinwt.
  • FIG. 4 is a block diagram showing a functional configuration of the serial inverter control unit 26.
  • the difference between the preset output voltage command value Vout * to the load and the output voltage Vou ⁇ to the load detected by the output current voltage detector 36 is calculated by the arithmetic unit 5 1 Based on this difference value, for example, voltage adjustment calculation such as PI control is performed by the voltage adjuster 52, and based on this, the PWM controller 53 causes the series inverter 18 to operate as an inverter. Is generated, and each switching element of the serial inverter 18 is controlled. That is, feedback control is performed so that the output voltage Vout becomes the output voltage command value Vout *.
  • the serial inverter control section 26 performs the inverter operation irrespective of whether or not the input voltage is abnormal.
  • the input voltage detector 32 detects it. Since the input voltage Vin falls within the allowable range, the control circuit 20 determines that the input voltage from the commercial power supply is normal. Therefore, the AC switch control unit 22 alternately controls the thyristors 5a and 5b to the conducting state according to the phase of the input voltage Vin.
  • the power supplied from the commercial power supply or the like is supplied to the load via the AC switch 5, and the series inverter controller 26 sets the output voltage Vout to the load to be the output voltage command value Vout *.
  • the DC power of the battery 14 and the capacitor 16 is changed to AC power, which is applied in series to the power supply line LN via the series transformer 19, The output voltage Vout to the load will be maintained at the output voltage command value Vout *.
  • the parallel converter control unit 24 extracts the harmonic components included in the output current l out to the load, and outputs the parallel converter current I para and the output current I out
  • the rectifying operation of the parallel converter 12 and the active filter operation are performed so that a current value corresponding to a harmonic component of the capacitor 16 and a voltage value that allows the voltage E dc across the capacitor 16 to be a DC voltage command value E dc * are obtained. Let me do it. As a result, the battery 14 is charged, and the harmonic component generated in the load is absorbed by the parallel converter 12, so that the harmonic current does not flow out to the commercial power supply.
  • the control circuit 20 determines that the input voltage is abnormal when the input voltage Vin exceeds the allowable range.
  • the series inverter control unit 26 continues to control the series inverter 18 in the same manner as before so that the output voltage Vout is changed to the output voltage command value V Performs an inverting motion to keep out *.
  • the cutoff switch 48 was controlled to be in the cutoff state, and the specified voltage corresponding to the normal input voltage was controlled based on the reference sine wave signal sinwt. To control the parallel compiler 1 and 2 to generate. As a result, the DC power of the battery 14 and the capacitor 16 is converted into AC power and supplied to the load via the power supply line LN.
  • the thyristor of which the conduction is controlled among the thyristors constituting the AC switch 5 is at the time when the reverse bias is applied as the input voltage decreases.
  • the parallel converter 12 is controlled to operate overnight.
  • the other thyristor is controlled to be cut off, when the reverse bias is applied to the thyristor whose conduction is controlled, the input terminal Pin side of the AC switch 5 is connected to the power supply line LN. Will be disconnected from
  • the parallel converter 12 when the parallel converter 12 is switched from the rectifying operation and the active filter operation to the backup operation, the input terminal Pin side is already disconnected from the power supply line LN, so that the input terminal Pin becomes excessive through the short circuit. No current flows, and the parallel converter 12 generates AC power of a predetermined voltage and supplies it to the load side. Therefore, it is possible to prevent the output voltage Vout to the load from being in an instantaneous blackout state.
  • the AC switch 5 is composed of a thyristor and is alternately turned on and off in synchronization with the polarity of the input voltage Vin.
  • the parallel converters 1 and 2 are operated as active filters and the input power factor is controlled to be "1"
  • the flow of harmonic current to the commercial power supply is suppressed.
  • FIG. 5 is a circuit diagram illustrating an example of an uninterruptible power supply according to the second embodiment.
  • the power supply line LN is provided with the relay switch 6, and the AC power input to the input terminal Pin is supplied to the load from the output terminal Pout via the relay switch 6. It has become.
  • An input reactor Lin is inserted between the relay switch 6 of the power supply line LN and the output terminal Pout, and a capacitor C1 is connected to the power supply line LN between the input reactor Lin and the relay switch 6.
  • the LC filter is composed of the input reactor Lin and capacitor C1 connected in parallel.
  • a compensation circuit 10 configured in the same manner as in the first embodiment is connected to the power supply line LN between the input reactor Lin and the output terminal Pout, and the AC power of the parallel converter 12 of the compensation circuit 10 is Is connected between the input reactor Lin and the output terminal Pout, and the AC power side of the series inverter 18 is connected to the power supply line LN via the series transformer 19 as in the first embodiment.
  • a capacitor C2 is connected in parallel to the power supply line LN between the series transformer 19 and the output terminal Pout, and an LC filter is configured by the leakage inductance of the series transformer 19 and the capacitor C2.
  • the control circuit 20 controls the driving of the relay switch 6, the parallel converter 12, and the serial inverter 18.
  • the control circuit 20 includes a relay switch control unit 23 that controls the drive of the relay switch 6, a parallel converter control unit 24a that controls the parallel converter 12, and a serial driver. Evening 18 is the first form of implementation A series inverter control unit 26 for controlling in the same manner as in the first embodiment is provided.
  • the relay switch control unit 23 includes: The relay switch 6 is controlled to be in a conductive state, and when the input voltage Vin exceeds the allowable range, it is considered that the input voltage is abnormal, and the relay switch 6 is controlled to be in a cut-off state.
  • FIG. 6 is a block diagram showing a functional configuration of the parallel converter overnight controller 24a.
  • the difference between the DC voltage command value E dc *, which is the target value of the DC voltage across capacitor 16, and the voltage across capacitor 16 detected by charging voltage detector 34 is Detected by arithmetic unit 61.
  • a voltage adjustment operation such as PI control is performed in the voltage adjuster 62, and the operation result is multiplied by the reference sine wave signal sincot by the arithmetic unit 63.
  • the reference sine wave signal sincot is a signal whose phase is synchronized with the input voltage Vin as in the first embodiment, and the amplitude of which is, for example, the input voltage supplied from a commercial power supply or the like. Is set to a value corresponding to the amplitude of the rated voltage of.
  • a difference value between the multiplication result in the calculator 63 and the input current Iin detected in the input current detector 33 is calculated in the calculator 64, and this difference value is set to zero.
  • the current adjustment calculation is performed by the current regulator 65, and the calculation result is input to the calculator 67 via the cutoff switch 66, and this and the reference sine wave signal sin ⁇ t are added.
  • the reference sine wave signal s in cot is a signal whose phase is synchronized with the input voltage Vin as in the first embodiment, and its amplitude is set according to, for example, the rated voltage to the load. .
  • a pulse signal for rectifying the parallel converter 12 is generated in the PWM control unit 68 based on the calculation result in the arithmetic unit 67, and each switching element of the parallel converter 12 is turned on. Controlled. That is, the input current I in Feedback control is performed so that the current value corresponds to the difference value between the flow voltage E dc and the DC voltage command value E dc * and the power factor of the input current I in becomes “1”.
  • the power factor of the input current Im does not necessarily need to be “1”. However, in order to prevent the harmonic component from flowing to the commercial power supply, “1” is used. Is desirable.
  • the cut-off switch 66 is controlled to be in a conductive state when the input voltage is within a preset allowable range in which the input voltage can be considered to be normal, and the input voltage is controlled to fall within the allowable range. When the voltage falls below the lower limit, it is controlled to shut off as an abnormal voltage.
  • the PWM control unit 6 In 8 a pulse signal for operating the parallel converter 12 is operated based on the reference sine wave signal sincot, and each switching element of the parallel converter 12 is controlled based on the pulse signal. . That is, feedforward control is performed based on the reference sine wave signal sinot. Note that, when the parallel converter 12 is operated in an inverting mode when the input voltage drops, the voltage difference between the input voltage and the output voltage of the parallel converter 12 is applied to the input reactor Lin, and flows to the input reactor Lin. Since the current increases with time, the inductance value of the input reactor L in is set so that this reactor current can be kept within the allowable range.
  • the input voltage Vin detected by the input voltage detector 32 falls within a predetermined allowable range. Is determined to be normal, and the relay switch control section 23 controls the relay switch 6 to a conductive state. Therefore, it was supplied from a commercial power source, etc.
  • the power is supplied to the load via the relay switch 6, and the series inverter controller 26 controls the series inverter 18 so that the output voltage Vout to the load becomes the output voltage command value Vout *.
  • the DC power of the battery 14 and the capacitor 16 Since the DC power of the battery 14 and the capacitor 16 is converted to AC power, the DC power of the battery 14 and the capacitor 16 is applied in series to the power supply line LN via the series transformer 19, and the output voltage Vout to the load becomes The output voltage command value will be maintained at V ou ⁇ *.
  • the input reactor L depends on the current value necessary to maintain the voltage across the capacitor 16 at the DC voltage command value E dc *. in, and the input current I in detected by the input current detector 3 3 matches this command value, and furthermore, the input current I in has a power factor of 1. Feedback control of parallel converters 1 and 2.
  • the energy of the battery 14 and the capacitor 16 is supplied to the load as a supply current to the load via the parallel converter 12, and when the DC voltage E dc decreases accordingly, the DC voltage command value E d And an actual DC voltage E dc, a current flows through the input reactor L in .At this time, the input current I in is controlled to have a power factor of 1, so the output current I o ′ If ut includes an ineffective component such as a harmonic component, the ineffective component flows to the parallel converter 12 and is absorbed there. That is, the parallel converter 2 eventually functions as an active filter.
  • the relay switch control section 23 controls the relay switch 6 to the cut-off state on the date when it is detected. .
  • the serial inverter control unit 26 continues to perform the inverter operation to keep the output voltage Vout constant as before, but the parallel converter 12 detects an abnormal input voltage. That Then, the cut-off switch 66 is operated to be in the cut-off state, and based on the reference sine wave signal s incot, the AC power of the specified voltage corresponding to the supply voltage of the commercial power supply 1 from the DC power of the battery 14 and the capacitor 16.
  • the parallel converters 12 are controlled so as to generate. As a result, the DC power of the battery 14 and the capacitor 16 is converted into AC power and supplied to the load via the power supply line LN.
  • the relay switch 6 is controlled to be in the cut-off state, and the parallel converter 1 and 2 operate instantly, but the relay switch 6 actually operates. Since it takes some time to be in the cutoff state, the inverse operation of the parallel converter 12 starts before the relay switch 6 becomes in the cutoff state.
  • the input reactor Lin is inserted between the connection point of the parallel converters 12 and the feed line LN and the relay switch 6, and the input reactor Lin acts as a current limiting reactor. Short-circuit current flowing to the commercial power side from night 12 is suppressed. Therefore, AC power of a predetermined voltage is supplied to the power supply line LN, and the output voltage Vout to the load is corrected by the series inverter 18 so that the output voltage Vout becomes the output voltage command value Vout *. Therefore, even if the operation of the parallel converter 12 is switched to the inverting operation due to a voltage abnormality in the input voltage due to a short circuit or the like, the voltage is continuously supplied to the load. The AC power whose value is the output voltage command value V out * is output.
  • the parallel converters 12 start the impeller operation, a voltage difference occurs between the commercial power supply side of the input reactor L in and the parallel converter side, and this voltage difference is applied to both ends of the input reactor L in.
  • the current flowing through the input reactor Lin increases with time, but there is no problem because the inductance value of the input reactor Lin is set in consideration of the reactor current. Therefore, in this case as well, it is possible to prevent instantaneous blackout as in the first embodiment, and in the second embodiment, the input current Iin is set to a predetermined current value.
  • the control is performed so that the power factor becomes 1, it is possible to prevent the harmonic current from flowing to the commercial power supply.
  • the present invention can be realized without requiring high processing performance.
  • the third embodiment is a combination of the first and second embodiments.
  • the uninterruptible power supply according to the third embodiment differs from the uninterruptible power supply according to the second embodiment shown in FIG.
  • the AC switch 5 according to the first embodiment is interposed, and the AC switch control unit 22 according to the first embodiment is provided instead of the re-switch control unit 23 of the compensation circuit 10.
  • the parallel converter overnight controller 24a controls the parallel converter 12 so that the power factor of the input current Iin becomes "1". In this case, the power factor is always "1". However, as in the first embodiment, the thyristor is automatically activated even though the input voltage has not dropped due to the input power factor not being “1”. It is sufficient that the power factor is such that it can be prevented from being turned off.
  • the thyristors 5a and 5b are turned on alternately according to the polarity of the input voltage Vin.
  • the series inverter 18 performs an inverter operation so that the output voltage Vout to the load becomes the specified voltage, and as a result, the output voltage Vout to the load Is maintained at a specified voltage.
  • the command value of the input current Iin is set according to the difference between the voltage E dc across the capacitor 16 and the DC voltage command value Ed, and the power factor of the current flowing through the reactor L in becomes 1 Then, the command value of the current of the input current Iin is determined, and the parallel converter 12 is controlled so that the command value matches the input current Iin.
  • the current is supplied to the load via the parallel converter 12 and when the DC voltage E dc decreases, the input current I in corresponding to the difference from the DC voltage command value Ed flows through the reactor L in.
  • the input current Iin is controlled so that the power factor becomes 1, so that the harmonic component included in the output current Iout flows through the parallel converter 12 and the harmonic current becomes It does not flow to the power supply.
  • the reactor value of in can be set to a smaller value.
  • the parallel converter 12 and the serial inverter 18 are configured by a full bridge circuit composed of a switching element and a diode connected in antiparallel to the switching element has been described.
  • the present invention can be applied to a half-bridge circuit.
  • the AC switch 5 or the relay switch 6 corresponds to the power supply switch
  • the parallel converter 12 corresponds to the parallel converter
  • the notch 14 and the capacitor 16 correspond to the power storage means.
  • the serial inverter 18 and the serial inverter controller 26 correspond to the serial inverter
  • the input voltage detector 32 corresponds to the voltage abnormality detecting means
  • the AC switch controller 22 or the relay switch corresponds to the AC switch controller 22 or the relay switch.
  • the controller 23 and the parallel converter controller 24 or 24a correspond to the control means.
  • the power supply switch inserted in the power supply line is configured by two thyristors connected in antiparallel, and the power supply line Since the power factor is controlled so that the input power factor of the AC power is 1 by turning on and off alternately according to the polarity of the input voltage to the input terminal of the input terminal, when the input voltage drops due to a power failure, etc.
  • the power supply switch can be automatically turned off when a reverse bias is applied to the thyristor before the parallel converter starts the inverting operation.
  • the series inverter operates using the power storage means as an energy source so that the AC output voltage becomes a command value. Therefore, the voltage value of the AC output can be maintained at the command value, and the output voltage can be prevented from being in a momentary power failure state.
  • the current flowing through the input reactor is controlled by the parallel converter so that the energy of the power storage means becomes a specified value. Since the high-frequency component of the current flows, the high-frequency component can be absorbed by the parallel converter with simple control, and can be realized without requiring a high-performance processing device.
  • the series inverter operates using the power storage means as an energy source so that the AC output voltage becomes the command value, so that the voltage value of the AC output is maintained at the command value.
  • the output voltage can be prevented from being in a momentary power failure state.
  • the power supply switch inserted into the power supply line is constituted by two thyristors connected in anti-parallel, and alternately according to the polarity of the input voltage. Since the power supply is turned on and off and the current flowing through the input reactor is controlled to have a power factor of 1, when the input voltage drops due to a power failure or the like, the thyristor current before the parallel converter starts inverting operation The power supply switch can be automatically turned off when a reverse bias is applied to the power supply. Also, at this time, since the AC output voltage is operated at a predetermined value by using the power storage means as an energy source, the AC output can be maintained at a predetermined voltage value, and the output voltage is temporarily stopped.
  • the state can be avoided.
  • the parallel converter since the parallel converter was operated so that the energy of the power storage means became the specified value and the input power factor of the AC power was 1, the parallel converter was eventually operated.
  • the high frequency component of the output current flows, and the high frequency component can be absorbed by the parallel converter with simple control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

An uninterruptible power supply for preventing an instantaneous stop when the operation is switched to an inverter operation by separating the voltage input side from the system if the input voltage lowers. The input voltage is supplied to the load through an AC switch (5) composed of thyristors connected in inverse-parallel to allow the thyristor through which a current of the same polarity as the input voltage to conduct. A parallel converter (12) connected to a feed line (LN) is allowed to carry out rectification operation to charge a battery (14). A series inverter (18) is allowed to carry out inverter operation using the battery (14) as an energy source. The output of the series inverter (18) is supplied in series to the feed line (LN) though a series transformer (19) to correct the output voltage applied to the load. If the input voltage lowers, the thyristor controlled to conduct is automatically cut off when a reverse bias is applied. When the operation of the parallel converter (12) is switched to an inverter operation, the switch (5) is in an off state. Therefore, any instantaneous stop of power supply to the load caused when a current flows through the AC switch (5) and a short-circuit part is prevented.

Description

技術分野 Technical field
この発明は、 交流電源等からの入力電力を負荷に供給すると共に、 前記交流 電源等の停電時には、 蓄電手段に蓄明えられたエネルギを用いて負荷に電力供給 を行うようにした無停電電源装置に関す田る。 背景技術  The present invention provides an uninterruptible power supply that supplies input power from an AC power supply or the like to a load, and supplies power to the load using energy stored in power storage means when the AC power supply or the like fails. The field concerning the device. Background art
この種の無停電電源装置として、 例えば、 図 8に示すように、 商用電源等か ら供給される入力電力を負荷に供給するための給電ラインに並列に接続された 並列コンバ一夕と、 交流電力側が給電ラインに直列に接続された直列ィンバー 夕と、 を備えた無停電電源装置が提案されている。  As this type of uninterruptible power supply, for example, as shown in Fig. 8, a parallel converter connected in parallel to a power supply line for supplying input power supplied from a commercial power supply to a load, There has been proposed an uninterruptible power supply comprising: a series inverter having a power side connected in series to a power supply line;
この無停電電源装置は、 図 8に示すように、 商用電源等から供給された入力 電力は、 給電スィッチ S Wを介して負荷に出力されるようになっている。 また 、 入力電力を負荷に供給するための給電ライン L Nには補償回路 1 0が接続さ れている。 この補償回路 1 0は、 整流機能、 アクティブフィル夕機能及びイン バ一夕機能を備えた並列コンバータ 1 2、 バッテリ 1 4、 コンデンサ 1 6及び 直列ィンバー夕 1 8とがこの順に並列に接続されて構成されている。  In this uninterruptible power supply, as shown in FIG. 8, input power supplied from a commercial power supply or the like is output to a load via a power supply switch SW. In addition, a compensation circuit 10 is connected to a power supply line LN for supplying input power to a load. The compensation circuit 10 includes a parallel converter 12 having a rectifying function, an active filter function, and an inverter function, a battery 14, a capacitor 16, and a series inverter 18 connected in parallel in this order. It is configured.
そして、 前記並列コンバータ 1 2の交流電力側は、 前記給電ライン L Nに並 列に接続されたコンデンサ C 1と、 給電ライン L Nとの間に、 リアクトル L 1 を介して並列に接続され、 リアクトル L 1とコンデンサ C 1とで L Cフィルタ を構成している。  The AC power side of the parallel converter 12 is connected in parallel via a reactor L 1 between a capacitor C 1 connected in parallel to the power supply line LN and a power supply line LN, and the reactor L 1 and capacitor C1 make up the LC filter.
また、 直列インバータ 1 8の交流出力側は、 前記給電ライン L Nの前記コン デンサ C 1との接続点と出力端子 P out との間に直列トランス Γ9を介して直 列に接続されている。 さらに、 前記直列トランス 1 9と出力端子 P out との間 には、 直列トランス 1 9の漏れインダクタンスと L Cフィル夕を構成するコン デンサ C 2が、 給電ライン L Nに並列に接続されている。 The AC output side of the series inverter 18 is connected to the It is connected in series via a series transformer # 9 between the connection point with the capacitor C1 and the output terminal P out. Further, between the series transformer 19 and the output terminal P out, a capacitor C2 constituting a leakage inductance of the series transformer 19 and an LC filter is connected in parallel to the power supply line LN.
そして、 給電ライン L Nの入力端子 P inに入力される商用電源等からの入力 電圧を監視し、 これが予め設定した入力電圧が正常であるとみなすことの可能 な許容範囲内にあるときには入力電圧は正常と判断し、 出力端子 P out の出力 電圧が規定電圧となるように直列インバ一夕 1 8を制御して、 負荷への出力電 圧を規定電圧に保つ。 また、 並列コンバータ 1 2をアクティブフィルタとして 作動させ、 入力端子 P inから商用電源等側へ流出する高調波を低減させると共 に、 必要に応じて整流動作を行わせ、 バッテリ 1 4への充電を行う。  Then, the input voltage from the commercial power supply or the like input to the input terminal Pin of the power supply line LN is monitored, and when the input voltage is within the allowable range in which the preset input voltage can be regarded as normal, the input voltage is Judge as normal, and control the series inverter 18 so that the output voltage of the output terminal P out becomes the specified voltage, and keep the output voltage to the load at the specified voltage. In addition, the parallel converter 12 is operated as an active filter to reduce harmonics flowing from the input terminal Pin to the side of commercial power supply, etc., and to perform rectification as needed, to charge the battery 14 I do.
一方、 商用電源等からの入力電圧がその許容範囲を越えるとき、 つまり、 入 力電圧が許容範囲を上回るとき、 或いは許容範囲を下回るときには、 入力電圧 が異常であると判断し、 給電スィッチ S Wを遮断させて商用電源側を給電ライ ン L Nから切り離すと共に、 並列コンバータ 1 2をバックアップ動作させる。 つまり、 並列コンバータ 1 2をインバー夕動作させて商用電源等に代わって所 定電圧の交流電力を生成し、 これを負荷に供給する。 また、 直列インバ一夕 1 8を引き続き同様に制御し、 負荷への出力電圧が規定電圧となるように制御を 行う。  On the other hand, when the input voltage from the commercial power supply exceeds the allowable range, that is, when the input voltage exceeds the allowable range or falls below the allowable range, it is determined that the input voltage is abnormal, and the power supply switch SW is turned on. Shut off to disconnect the commercial power supply from the power supply line LN, and operate the parallel converter 12 as a backup. In other words, the parallel converter 12 is operated in reverse to generate AC power of a predetermined voltage in place of a commercial power supply or the like, and supplies this to the load. In addition, the series inverter 18 is continuously controlled in the same manner so that the output voltage to the load becomes the specified voltage.
以上の処理を行うことによって、 商用電源等に異常が発生した場合であって も、 負荷に継続して所定の電力供給を行うことができるようになつている。 ここで、 上述のように、 入力電圧がその許容範囲を超えたときに入力電圧が 異常と判断し、 給電スィッチ S Wを遮断するようにしているが、 実際に入力電 圧が異常な値になってから、 給電スィッチ S Wが実際に遮断状態となり商用電 源側が給電ライン L Nから切り離されるまでには数 〔m s〕 〜十数 〔m s〕 の 時間遅れが生じる。 By performing the above processing, a predetermined power supply can be continuously performed to the load even when an abnormality occurs in the commercial power supply or the like. Here, as described above, when the input voltage exceeds the allowable range, it is determined that the input voltage is abnormal, and the power supply switch SW is shut off.However, the input voltage actually becomes an abnormal value. After the power supply switch SW is actually turned off and the commercial power supply is disconnected from the power supply line LN, it takes several A time delay occurs.
このため、 例えば短絡等によって入力電圧が低下した場合等には、 この入力 電圧の低下が検出されたことによって、 並列コンバータ 1 2がバックアップ動 作を行うように制御されて並列コンバー夕 1 2がィンバー夕として動作したと しても、 給電スィッチ S Wが実際に遮断状態となるまでの間は、 給電スィッチ S Wを介し短絡部を通って過大電流が流れてしまうため、 並列コンバータ 1 2 は所定電圧を維持することができなくなる。 このとき、 直列インバー夕 1 8 は、 負荷への出力電圧が規定電圧となるように補正を行っているものの、 その 補正可能な範囲には限度があるため、 出力電圧を規定電圧に維持することがで きず、 負荷への出力電圧が低下する.ことになつて、 電圧が一次的に低下する瞬 停状態となってしまうという問題がある。  Therefore, for example, when the input voltage drops due to a short circuit or the like, the parallel converter 12 is controlled to perform the backup operation by detecting the drop of the input voltage, and the parallel converter 12 is turned off. Even if it operates as an inverter, an excessive current flows through the short-circuited portion via the power supply switch SW until the power supply switch SW is actually turned off, so the parallel converter 12 Cannot be maintained. At this time, although the series inverter 18 performs correction so that the output voltage to the load becomes the specified voltage, the output voltage must be maintained at the specified voltage because the range that can be corrected is limited. However, the output voltage to the load decreases, resulting in a problem that the voltage temporarily drops and an instantaneous power failure occurs.
また、 並列コンバータ 1 2をアクティブフィルタとして動作させる場合、 高 調波成分を算出するためには複雑な演算が必要である。 また、 アクティブフィ ルタはその出力電流を急峻に変化させる必要があるため、 並列コンバータ 1 2 及びこれを制御するための制御装置は、 並列コンバータ 1 2の出力電流を急峻 に変化させるための指令値に追従し得る、 高い電流制御性能を必要とするとい う問題がある。'  In addition, when the parallel converter 12 is operated as an active filter, a complicated operation is required to calculate a harmonic component. Also, since the active filter needs to change its output current steeply, the parallel converter 12 and the control device for controlling the same require a command value for changing the output current of the parallel converter 12 steeply. There is a problem that high current control performance is required, which can follow the current. '
そこで、 この発明は、 上記従来の未解決の問題に着目してなされたものであ り、 入力電圧の低下に伴つて電圧入力側を切り離す際の出力電圧の瞬停を回避 し、 また、 制御処理の処理負荷を低減し且つ高度な処理性能を必要とすること なく高調波成分を除去することの可能な無停電電源装置を提供することを目的  In view of the above, the present invention has been made in view of the above-mentioned conventional unsolved problem, and it is possible to avoid an instantaneous stop of an output voltage when disconnecting a voltage input side due to a decrease in an input voltage. An object of the present invention is to provide an uninterruptible power supply capable of reducing the processing load of processing and removing harmonic components without requiring advanced processing performance
発明の開示 Disclosure of the invention
上記目的を達成するために、 請求項 1の発明は、 給電ラインに介挿され且つ 逆並列に接続された二つのサイリス夕で構成される給電スィッチと、 当該給電 スィツチ及び前記給電ラインの出力端間に並列に接続された並列コンバ一夕 と、 当該並列コンバータと接続される蓄電手段と、 前記給電ラインの前記並列 コンバ一夕との接続点及び前記出力端間に直列に接続された直列トランスと、 当該直列トランスと接続され且つ前記出力端の交流出力電圧が所定の値となる ように前記蓄電手段をエネルギ源として前記交流出力電圧を調整する直列ィン バ一夕と、 前記給電ラインの入力端に入力される交流電力の入力電圧異常を検 出する電圧異常検出手段と、 当該電圧異常検出手段の検出結果に応じて前記給 電スィッチ及び前記並列コンバータを制御する制御手段と、 を備え、 当該制御 手段は、 前記電圧異常検出手段で異常を検出しないときには、 前記入力端への 入力電圧と同極性の電流を流すサイリス夕が点弧するように前記給電スィッチ を制御すると共に、 前記並列コンバ一夕を制御して前記蓄電手段のエネルギが 規定値となり且つ前記入力端に入力される交流電力の入力力率が 1となるよう に前記並列コンバ一夕を流れる電流を調整し、 前記電圧異常検出手段で異常を 検出したときには、 前記給電スィッチを遮断制御すると共に、 前記蓄電手段を エネルギ源として所定電圧の交流電力を前記給電ラインに出力するように前記 並列コンバー夕を制御することを特徴としている。 To achieve the above object, the invention of claim 1 is interposed in a power supply line and A power supply switch composed of two thyristors connected in antiparallel, a parallel converter connected in parallel between the power supply switch and the output end of the power supply line, and a power storage means connected to the parallel converter A series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal, and an AC output voltage of the output terminal connected to the series transformer and having a predetermined value. A series inverter that adjusts the AC output voltage using the power storage unit as an energy source, a voltage abnormality detection unit that detects an input voltage abnormality of AC power input to an input terminal of the power supply line, Control means for controlling the power supply switch and the parallel converter in accordance with the detection result of the voltage abnormality detection means, wherein the control means comprises: When no abnormality is detected in step (a), the power supply switch is controlled so that a thyristor through which a current having the same polarity as the input voltage to the input terminal is ignited, and the parallel converter is controlled to control the power storage means. The current flowing through the parallel converter is adjusted so that the energy becomes a specified value and the input power factor of the AC power input to the input terminal becomes 1, and when the voltage abnormality detecting means detects an abnormality, The power supply switch is controlled to be cut off, and the parallel converter is controlled so as to output AC power of a predetermined voltage to the power supply line using the power storage means as an energy source.
この請求項 1の発明では、 交流電力を負荷に供給するための給電ラインに介 挿された給電スィッチは逆並列に接続されたサイリス夕で構成され、 且つ給電 ラインの入力端への入力電圧の極性と同じ極性の電流を流すサイリス夕がオン 状態となるように、 入力電圧の極性に応じて二つのサイリス夕が交互にオンォ フ制御され、 また、 入力電流は、 並列コンバータによってその力率が " 1 " と なるように制御される。 なお、 この力率は必ずしも " 1 " である必要はなく、 入力電圧の極性に応じてオン制御されるサイリス夕が、 入力電流と電圧との位 相差が大きいことに起因してオン制御されているのにも関わらず自動的にオフ 状態となることを回避することのできる程度の力率であればよい。 ' したがって、 給電ラインの入力端への入力電圧が許容範囲を超えたとき、 こ れが検出された時点で、 給電ラインに並列に接続された並列コンバ一夕は所定 電圧の交流電力を出力するように動作し、 また、 給電ラインに直列トランスを 介して接続された直列インバー夕は負荷への交流出力電圧が所定の値となるよ うに動作し、 さらに、 これ以前に入力電圧の低下に伴ってサイリス夕に逆バイ ァスが印加される状態となつた時点でサイリス夕が自動的にオフ状態となるか ら、 例えば、 停電等によって入力電圧の低下が生じた場合であっても、 負荷へ の出力電圧が瞬停状態となることが回避され、 出力電圧は所定の値に維持され ることになる。 According to the first aspect of the present invention, the power supply switch inserted in the power supply line for supplying AC power to the load is constituted by a thyristor connected in anti-parallel, and the input voltage of the input terminal to the input terminal of the power supply line is reduced. The two thyristors are alternately turned on and off in accordance with the polarity of the input voltage so that the thyristor that allows the current of the same polarity to be turned on is turned on. Controlled to be "1". Note that this power factor does not necessarily have to be “1”, and the thyristor that is turned on according to the polarity of the input voltage is turned on due to the large phase difference between the input current and voltage. Automatically turns off despite being Any power factor may be used as long as the power factor can be avoided. 'Therefore, when the input voltage to the input end of the power supply line exceeds the allowable range, when this is detected, the parallel converter connected in parallel to the power supply line outputs AC power of a predetermined voltage. In addition, the series inverter connected to the power supply line via a series transformer operates so that the AC output voltage to the load becomes a predetermined value. When the reverse bias is applied to the thyristor, the thyristor automatically turns off when the input voltage drops due to a power failure or the like. The output voltage to is prevented from being momentarily stopped, and the output voltage is maintained at the predetermined value.
また、 請求項 2の発明は、 給電ラインに介挿された給電スィッチと、 前記給 電スィツチ及び前記給電ラインの出力端間に並列に接続された並列コンバ一夕 と、 当該並列コンパ一夕と接続される蓄電手段と、 前記給電ラインの前記並列 コンバ一夕との接続点及び前記出力端間に直列に接続された直列トランスと、 当該直列トランスに接続され且つ前記出力端の交流出力電圧が所定の値となる ように前記蓄電手段をエネルギ源として前記交流出力電圧を調整する直列イン バー夕と、 前記給電ラインの前記並列コンバー夕との接続点及び前記給電スィ ツチ間に介挿された入力リアクトルと、 前記給電ラインの入力端に入力される 交流電力の入力電圧異常を検出する電圧異常検出手段と、 当該電圧異常検出手 段の検出結果に応じて前記給電スィツチ及び前記並列コンパ一タを制御する制 御手段と、 を備え、 前記制御手段は、 前記電圧異常検出手段で異常を検出しな いときには、 前記給電スィッチを導通制御すると共に、 前記並列コンバータを 制御して前記蓄電手段のエネルギが規定値となるように前記入力リアクトルを 流れる電流を調整し、 前記電圧異常検出手段で異常を検出したときには、 前記 給電スィッチを遮断制御すると共に、 前記蓄電手段をエネルギ源として所定電 圧の交流電力を前記給電ラインに出力するように前記並列コンバータを制御す ることを特徴としている。 Further, the invention according to claim 2 includes a power supply switch inserted in a power supply line, a parallel converter connected in parallel between the power supply switch and an output end of the power supply line, A power storage means connected thereto, a series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal, and an AC output voltage connected to the series transformer and at the output terminal. A series inverter that adjusts the AC output voltage using the power storage means as an energy source so as to have a predetermined value, and a connection point between the power supply line and the parallel converter and the power supply switch. An input reactor, voltage abnormality detection means for detecting an input voltage abnormality of AC power input to an input end of the power supply line, and the power supply according to a detection result of the voltage abnormality detection means. Control means for controlling the switch and the parallel converter, wherein the control means controls conduction of the power supply switch when the voltage abnormality detection means does not detect an abnormality, and controls the parallel converter. Controlling the current flowing through the input reactor so that the energy of the power storage means becomes a specified value. When the voltage abnormality detection means detects an abnormality, the power supply switch is cut off and the power storage means is controlled. As an energy source, The parallel converter is controlled so as to output high-voltage AC power to the power supply line.
この請求項 2の発明では、 並列コンバータを、 例えば入力リアクトルを流れ る電流が正弦波状の電流となるように制御すると共に、 商用電源等からの交流 電力が、 負荷に供給する電力と釣り合うように前記正弦波状の電流の振幅を調 整することによって、 蓄電手段のエネルギが規定値となるように入力リアク卜 ルを流れる電流が制御される。 このとき入力リアクトルを流れる電流は、 正弦 波状となるように制御されるため負荷への出力電流が高調波成分を含んでいる 場合には高調波電流は並列コンバ一夕へと流れることになり、 商用電源等側へ は流出しない。  According to the second aspect of the present invention, the parallel converter is controlled so that, for example, the current flowing through the input reactor becomes a sinusoidal current, and the AC power from a commercial power supply or the like is balanced with the power supplied to the load. By adjusting the amplitude of the sinusoidal current, the current flowing through the input reactor is controlled such that the energy of the power storage means becomes a specified value. At this time, the current flowing through the input reactor is controlled to be sinusoidal, so if the output current to the load contains harmonic components, the harmonic current will flow to the parallel converter, It does not leak to the commercial power supply.
また、 停電等によって、 給電ラインの入力端への入力電圧がその許容範囲を 超えた場合には、 並列コンパ一夕がインバー夕として動作して交流電力を生成 する。 このとき、 給電ラインの並列コンバータと給電スィッチとの間には入力 リアクトルが介挿されているから、 並列コンバータで生成した交流電流が商用 電源等側に流れることが抑制される。 また、 直列インバー夕によって出力電圧 が指令値となるように捕正されるから、 負荷への出力電圧が瞬停状態となるこ とはなく、 出力電圧は指令値に維持されることになる。  If the input voltage to the input end of the power supply line exceeds the allowable range due to a power failure or the like, the parallel converter operates as an inverter to generate AC power. At this time, since the input reactor is interposed between the parallel converter of the power supply line and the power supply switch, the AC current generated by the parallel converter is suppressed from flowing to the commercial power supply or the like. In addition, since the output voltage is corrected by the series inverter so that the output voltage becomes the command value, the output voltage to the load does not enter an instantaneous blackout state, and the output voltage is maintained at the command value.
さらに、 請求項 3の発明は、 給電ラインに介挿され且つ逆並列に接続された 二つのサイリス夕で構成される給電スィツチと、 前記給電スィッチ及び前記給 電ラインの出力端間に並列に接続された並列コンバータと、 当該並列コンバー 夕と接続される蓄電手段と、 前記給電ラインの前記並列コンバ一夕との接続点 及び前記出力端間に直列に接続された直列トランスと、 当該直列トランスに接 続され且つ前記出力端の交流出力電圧が所定の値となるように前記蓄電手段を エネルギ源として前記出力電圧を調整する直列ィンバ一夕と、 前記給電ライン の前記並列コンバ一夕との接続点及び前記給電スィツチ間に介挿された入力リ ァクトルと、 前記給電ラインの入力端に入力される交流電力の入力電圧異常を 検出する電圧異常検出手段と、 当該電圧異常検出手段での検出結果に応じて前 記給電スィッチ及び前記並列コンパ一夕を制御する制御手段と、 を備え、 前記 制御手段は、 前記電圧異常検出手段で異常を検出しないときには、 前記入力端 への入力電圧と同極性の電流を流すサイリス夕が点弧するように前記給電スィ ツチを制御すると共に、 前記並列コンバータを制御して前記蓄電手段のェネル ギが規定値となり且つ前記入力リアクトルを流れる電流が力率 1となるように 前記入力リアクトルを流れる電流を調整し、 前記電圧異常検出手段で異常を検 出したときには、 前記給電スィッチを遮断制御すると共に、 前記蓄電手段をェ ネルギ源として所定電圧の交流電力を前記給電ラインに出力するように前記並 列コンバー夕を制御することを特徴としている。 Further, the invention according to claim 3 is characterized in that a power supply switch composed of two thyristors inserted in a power supply line and connected in antiparallel is connected in parallel between the power supply switch and an output terminal of the power supply line. A parallel converter, a power storage means connected to the parallel converter, a connection point between the power supply line and the parallel converter, and a series transformer connected in series between the output terminals. A connection between a series inverter that is connected and adjusts the output voltage using the power storage means as an energy source so that the AC output voltage at the output terminal becomes a predetermined value, and a connection between the parallel converter and the power supply line. The input relay inserted between the point and the feed switch A voltage abnormality detecting means for detecting an input voltage abnormality of AC power input to an input terminal of the power supply line; a power supply switch and the parallel compensator according to a detection result of the voltage abnormality detection means; And a control means for controlling the control means, when the voltage abnormality detection means does not detect an abnormality, the control means is configured to ignite a thyristor through which a current having the same polarity as an input voltage to the input terminal is ignited. Controlling the power supply switch and controlling the parallel converter to adjust the current flowing through the input reactor so that the energy of the power storage means becomes a specified value and the current flowing through the input reactor has a power factor of 1; When an abnormality is detected by the voltage abnormality detecting means, the power supply switch is cut off and controlled to a predetermined voltage by using the power storage means as an energy source. It is characterized by controlling the parallel converter evening to output flow power to the power supply line.
この請求項 3の発明では、 並列コンバータを、 例えば入力リアクトルを流れ る電流がほぼ力率 " 1 " の正弦波状の電流となるように制御すると共に、 商用 電源等からの交流電力が、 負荷に供給する電力と釣り合うように前記正弦波状 の電流の振幅を調整することによって、 蓄電手段のエネルギが規定値となるよ うに入力リアクトルを流れる電流が制御される。 このとき入力リアクトルを流 れる電流は、 正弦波状となるように制御されるため負荷への出力電流が高調波 成分を含んでいる場合には高調波電流は並列コンバータへと流れることにな り、 商用電源等側へは流出しない。  According to the third aspect of the present invention, the parallel converter is controlled so that, for example, the current flowing through the input reactor is substantially a sine-wave current having a power factor of “1”, and AC power from a commercial power supply or the like is supplied to the load. By adjusting the amplitude of the sinusoidal current so as to balance the supplied power, the current flowing through the input reactor is controlled so that the energy of the power storage means becomes a specified value. At this time, the current flowing through the input reactor is controlled to be sinusoidal, so if the output current to the load contains a harmonic component, the harmonic current will flow to the parallel converter. It does not flow to the commercial power supply.
また、 交流電力を負荷に供給するための給電ラインに介挿された給電スイツ チは逆並列に接続されたサイリス夕で構成され、 且つ給電ラインの入力端への 入力電圧の極性と同じ極性の電流を流すサイリス夕がオン状態となるように、 前記入力電圧の極性に応じて、 二つのサイリス夕が交互にオンオフ制御され、 また、 このとき、 入力リアクトルを流れる電流は並列コンパ一夕によって力率 が " 1 " となるように制御される。 なお、 この力率は必ずしも " 1 " である必 273 The feed switch inserted in the feed line for supplying AC power to the load is composed of a thyristor connected in anti-parallel, and has the same polarity as the polarity of the input voltage to the input end of the feed line. The two thyristors are alternately turned on and off in accordance with the polarity of the input voltage so that the thyristor through which the current flows is turned on.At this time, the current flowing through the input reactor is controlled by the parallel comparator. The rate is controlled to be "1". This power factor must always be "1". 273
要はなく、 入力電圧の極性に応じてオン制御されるサイリス夕が入力電流と電 圧との位相差が大きいことに起因してオン制御されているのにも関わらず自動 的にオフ状態となることを回避することのできる程度の力率であればよい。 したがって、 給電ラインへの入力端への入力電圧が許容範囲を超えた時点で' 、 給電ラインに並列に接続された並列コンバータは所定電圧の交流電力を出力 するように動作し、 また、 給電ラインに直列トランスを介して接続された直列 インバ一夕は負荷への出力電圧が所定の値となるように動作し、 入力電圧が低 下した場合には、 これ以前に入力電圧の低下に伴ってサイリス夕に逆バイアス が印加される状態となつた時点でサイリス夕が自動的にオフ状態となるから、 停電等によって入力電圧の低下が生じた場合であっても、 負荷への出力電圧が 瞬停状態となることが回避され、 出力電圧は所定の値に維持されることになる It is not necessary, and the thyristor, which is turned on according to the polarity of the input voltage, is automatically turned off despite the fact that it is turned on due to the large phase difference between the input current and the voltage. Any power factor may be used as long as the power factor can be avoided. Therefore, when the input voltage to the input end to the power supply line exceeds the allowable range, the parallel converter connected in parallel to the power supply line operates to output AC power of a predetermined voltage, and the power supply line The series inverter connected via a series transformer operates so that the output voltage to the load becomes a predetermined value, and if the input voltage decreases, the When the reverse bias is applied to the thyristor, the thyristor automatically turns off, so even if the input voltage drops due to a power failure or the like, the output voltage to the load will be instantaneous. A stop condition is avoided, and the output voltage is maintained at a predetermined value.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態における無停電電源装置の一例を示す回 路図である。  FIG. 1 is a circuit diagram illustrating an example of the uninterruptible power supply according to the first embodiment of the present invention.
図 2は、 図 1の A Cスィッチ制御部 2 2の機能構成を示すブロック図であ ' る。  FIG. 2 is a block diagram showing a functional configuration of the AC switch control unit 22 of FIG.
図 3は、 図 1の並列コンバ一夕制御部 2 4の機能構成を示すプロック図であ る。  FIG. 3 is a block diagram showing a functional configuration of the parallel converter overnight controller 24 of FIG.
図 4は、 図 1の直列インバー夕制御部 2 6の機能構成を示すブロック図であ る。  FIG. 4 is a block diagram showing a functional configuration of the serial inverter controller 26 of FIG.
図 5は、 本発明の第 2の実施の形態における無停電電源装置の一例を示す回 路図である。  FIG. 5 is a circuit diagram illustrating an example of the uninterruptible power supply according to the second embodiment of the present invention.
図 6は、 図 2の並列コンバ一夕制御部 2 4 aの機能構成を示すブロック図で ある。 ' FIG. 6 is a block diagram showing a functional configuration of the parallel converter overnight controller 24a of FIG. is there. '
図 7は、 本発明の第 3の実施の形態における無停電電源装置の一例を示す回 路図である。 '  FIG. 7 is a circuit diagram illustrating an example of the uninterruptible power supply according to the third embodiment of the present invention. '
図 8は、 従来の無停電電源装置の一例を示す回路図である。 符号の説明  FIG. 8 is a circuit diagram showing an example of a conventional uninterruptible power supply. Explanation of reference numerals
5 ACスィッチ、 5 a , 5 b サイリスタ、 6 リレースィツチ、 10 補償回路、 12 並列コンパ一夕、 14 パッテリ、 16 コンデンサ、 18 直列インバータ、 19 直列トランス、 20 制御回路、 22 ACスィッチ 制御部、 23 リレースィッチ制御部、 24、 24 a 並列コンバータ制御 部、 26 直列インバー夕制御部 発明を実施するための最良の形態  5 AC switch, 5a, 5b thyristor, 6 relay switch, 10 compensation circuit, 12 parallel comparator, 14 battery, 16 capacitor, 18 series inverter, 19 series transformer, 20 control circuit, 22 AC switch control section, 23 BEST MODE FOR CARRYING OUT THE INVENTIONRelease switch control unit, 24, 24a parallel converter control unit, 26 series inverter control unit
以下に、 本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
まず、 第 1の実施の形態を説明する。  First, a first embodiment will be described.
図 1は、 第 1の実施の形態における無停電電源装置の一例を示す回路図であ る。  FIG. 1 is a circuit diagram illustrating an example of the uninterruptible power supply according to the first embodiment.
図 1に示すように、 商用電源等と接続される入力端子 Pinと、 負荷と接続さ れる出力端子 Pout との間の給電ライン LNに ACスィッチ' 5が設けられ、 A Cスィッチ 5と出力端子 Pout との間に補償回路 10が接続されている。 前記 ACスィッチ 5は、 逆並列に接続された一対のサイリス夕 5 a及び 5 bで構成 されている。 · 前記補償回路 10は、 前述の図 8に示す従来の無停電電源装置と同様に、 並 列コンバ一夕 12と、 バッテリ 14と、 コンデンサ 16と、 直列ィンバ一タ 1 8とがこの順に並列に接続されて構成されている。 そして、 前記並列コンバー 夕 1 2及び直列インバ一タ 1 8は、 例えば、 スイッチング素子とこれと逆並列 に接続されたダイオードとが、 二個ずつ直列に接続された公知のフルブリッジ 回路で構成されている。 As shown in Fig. 1, an AC switch 5 is provided on the power supply line LN between the input terminal Pin connected to a commercial power supply or the like and the output terminal Pout connected to the load, and the AC switch 5 and the output terminal Pout Is connected to the compensation circuit 10. The AC switch 5 includes a pair of thyristors 5a and 5b connected in anti-parallel. The compensation circuit 10 includes a parallel converter 12, a battery 14, a capacitor 16, and a series inverter 18 in this order, in the same manner as the conventional uninterruptible power supply shown in FIG. It is configured to be connected to. And the parallel converter The evening 12 and the series inverter 18 are each formed of a known full-bridge circuit in which, for example, a switching element and a diode connected in anti-parallel to each other are connected in series two by two.
そして、 前記並列コンバータ 1 2の交流電力側は、 給電ライン L Nに並列に 接続されたコンデンサ C 1及び給電ライン L Nのコンデンサ C 1との接続点間 に、 リアクトル L 1を介して接続され、 このリアクトル L 1と前記コンデンサ C 1とで L Cフィルタを構成している。  The AC power side of the parallel converter 12 is connected via a reactor L1 between a connection point between a capacitor C1 connected in parallel to the power supply line LN and a capacitor C1 of the power supply line LN. The reactor L1 and the capacitor C1 constitute an LC filter.
また、 前記直列インバ一夕 1 8の交流出力側は、 二次巻線が前記給電ライン L Nの前記コンデンサ C 1との接続点と出力端子 P out との間に介挿された絶 縁トランスからなる直列トランス 1 9を介して前記給電ライン L Nに接続され ている。 また、 前記直列トランス 1 9と出力端子 P out との間の給電ライン L Nにコンデンサ C 2が並列に接続され、 このコンデンサ C 2と前記直列卜ラン ス 1 9の漏れインダクタンスとで、 L Cフィルタを構成している。  The AC output side of the series inverter 18 is connected to an isolation transformer in which a secondary winding is inserted between a connection point of the power supply line LN and the capacitor C1 and an output terminal P out. Connected to the power supply line LN via a series transformer 19. Further, a capacitor C2 is connected in parallel to a power supply line LN between the series transformer 19 and the output terminal Pout, and an LC filter is formed by the capacitor C2 and the leakage inductance of the series transformer 19. Make up.
そして、 前記 A Cスィッチ 5、 並列コンバータ 1 2及び直列インバ一タ 1 8 は、 制御回路 2 0によって駆動制御されるようになっている。  The AC switch 5, the parallel converter 12 and the serial inverter 18 are driven and controlled by a control circuit 20.
この制御回路 2 0は、 前記 A Cスィッチ 5を駆動制御する A Cスィッチ制御 部 2 2、 前記並列コンバ一夕 1 2を制御する並列コンバ一夕制御部 2 4、 前記 直列ィンバー夕 1 8を制御する直列ィンバ一夕制御部 2 6とを備えている。 図 2は、 前記 A Cスィッチ制御部 2 2の機能構成を示すブロック図であつ て、 A Cスィッチ制御部 2 2は、 比較器 2 2 aと、 比較器 2 2 aの出力信号の 立ち上がりエッジを検出する立上りエッジ検出器 2 2 bと、 比較器 2 2 aの出 力信号の立ち下がりエッジを検出する立下りエッジ検出器 2 2 cとを備えてい る。 前記比較器 2 2 aの非反転入力端子には、 入力端子 P inと A Cスィッチ 5 との間の給電ライン L Nに接続され且つ商用電源等からの入力電圧を検出する 入力電圧検出器 3 2で検出された入力電圧 V inが印加され、 また、 反転入力端 子には前記入力電圧 V inの位相を検出するための基準電圧が印加される。 そし て、 比較器 2 2 aは、 入力電圧が前記基準電圧よりも高いとき H I G Hレベル の信号を出力し、 入力電圧が前記基準電圧よりも低いときに L OWレベルの信 号を出力する。 The control circuit 20 controls an AC switch control unit 22 that drives and controls the AC switch 5, a parallel converter control unit 24 that controls the parallel converter 12 and a serial converter 18 that controls the series inverter 18. And a serial receiver 26. FIG. 2 is a block diagram showing a functional configuration of the AC switch control unit 22. The AC switch control unit 22 detects a comparator 22a and a rising edge of an output signal of the comparator 22a. And a falling edge detector 22c for detecting a falling edge of the output signal of the comparator 22a. The non-inverting input terminal of the comparator 22a has an input voltage detector 32 connected to a power supply line LN between the input terminal Pin and the AC switch 5 and detecting an input voltage from a commercial power supply or the like. The detected input voltage Vin is applied, and the inverted input terminal A reference voltage for detecting the phase of the input voltage Vin is applied to the element. The comparator 22a outputs a HIGH-level signal when the input voltage is higher than the reference voltage, and outputs a LOW-level signal when the input voltage is lower than the reference voltage.
一方、 前記立ち上がりエッジ検出器 2 2 bは、 前記比較器 2 2 aの出力信号 の立ち上がりエッジを検出したとき、 前記 A Cスィッチ 5の、 入力端子 P inか ら出力端子 P out 側への電流の流れを許容するサイリス夕 5 aをオン状態に制 御する。 逆に、 立ち下がりエッジ検出器 2 2 cは、 前記比較器 2 2 aの出力信 号の立ち下がりエッジを検出したとき、 前記 A Cスィッチ 5の、 出力端子 P out から入力端子 P in側への電流の流れを許容するサイリスタ 5 bをオン状態 に制御する。 つまり、 A Cスィッチ制御部 2 2では、 各サイリス夕 5 a及び 5 bを入力電圧 V inの極性に応じて交互にオンオフさせるようになつている。 図 3は、 並列コンバータ制御部 2 4の機能構成を示すブロック図である。 図 3に示すように、 コンデンサ 1 6の両端電圧の目標値である直流電圧指令値 E dc* と充電電圧検出器 3 4で検出されたコンデンサ 1 6の両端の直流電圧 E dc との差分値が演算器 4 1で検出され、 電圧調節器 4 2において、 例えば P I制 御等の電圧調整演算が行われ、 その演算結果と基準正弦波信号 s inco tとが演 算器 4 3で乗算される。  On the other hand, when detecting the rising edge of the output signal of the comparator 22a, the rising edge detector 22b detects the current flowing from the input terminal Pin to the output terminal Pout of the AC switch 5. Control thyristor 5a, which allows flow, to the on state. Conversely, when the falling edge detector 22c detects the falling edge of the output signal of the comparator 22a, the falling edge detector 22c outputs a signal from the output terminal Pout to the input terminal Pin of the AC switch 5. The thyristor 5b that allows current flow is controlled to the ON state. That is, the AC switch control section 22 turns on and off the thyristors 5a and 5b alternately in accordance with the polarity of the input voltage Vin. FIG. 3 is a block diagram showing a functional configuration of the parallel converter control unit 24. As shown in FIG. 3, the difference between the DC voltage command value E dc *, which is the target value of the voltage across the capacitor 16, and the DC voltage E dc across the capacitor 16 detected by the charging voltage detector 34. Is detected by the arithmetic unit 41, a voltage adjustment operation such as PI control is performed in the voltage adjuster 42, and the operation result is multiplied by the reference sine wave signal sincot by the arithmetic unit 43. You.
なお、 この基準正弦波信号 s inco tは、 位相が入力電圧 V inと同期する信号 であり、 その振幅は任意に設定され、 例えば、 商用電源等から供給される入力 電圧の定格電圧の振幅に相当する値に設定される。  The reference sine wave signal s incot is a signal whose phase is synchronized with the input voltage Vin, and the amplitude thereof is set arbitrarily. Set to the corresponding value.
そして、 前記演算器 4 3での演算結果と高調波成分抽出演算部 4 4での演算 結果との差分値が演算器 4 5で算出される。 前記高調波成分抽出演算部 4 4で は、 前記直列トランス 1 9と出力端子 P out との間に接続された出力電流電圧 検出器 3 6で検出した出力電流 l out に基づき、 公知の手順にしたがって高調 波成分を抽出する。 そして、 前記演算器 4 5で算出された差分値と並列コンパ 一夕電流検出器 3 8で検出された並列コンバータ 1 2を流れる電流である並列 コンバータ電流 I paraとの差分値が演算器 4 6で算出される。 次いで、 この差 分値を零とするための電流調整演算が電流調節器 4 7で行われ、 その演算結果 が、 遮断スィッチ 4 8を介して演算器 4 9に入力され、 これと基準正弦波信号 δ ϊηω tとが加算される。 なお、 この基準正弦波信号 s inw tは、 位相が入力 電圧 V inと同期する信号であり、 その振幅は、 例えば、 負荷への定格電圧に応 じて設定される。 Then, a difference value between the calculation result of the calculator 43 and the calculation result of the harmonic component extraction calculator 44 is calculated by the calculator 45. Based on the output current l out detected by the output current / voltage detector 36 connected between the series transformer 19 and the output terminal P out, the harmonic component extraction / calculation unit 44 uses a known procedure. Therefore harmonic Extract wave components. The difference between the difference value calculated by the arithmetic unit 45 and the parallel converter current Ipara, which is the current flowing through the parallel converter 12 and detected by the parallel converter current detector 38, is calculated by the arithmetic unit 46. Is calculated. Next, a current adjustment operation for making the difference value zero is performed in the current adjuster 47, and the operation result is input to the arithmetic operation unit 49 via the cutoff switch 48, and this and the reference sine wave The signal δϊηωt is added. The reference sine wave signal sinwt is a signal whose phase is synchronized with the input voltage Vin, and its amplitude is set according to, for example, the rated voltage to the load.
そして、 この加算結果に基づき P WM制御部 5 0においてパルス信号が生成 される。 このとき、 前記並列コンバータ 1 2を整流動作及びアクティブフィル 夕動作させ、 直流電圧 E dcが直流電圧指令値 E dc* と一致するように、 また、 入力力率がほぼ " 1 " となるようにするためのパルス信号が生成され、 このパ ルス信号に基づいて前記並列コンバ一夕 1 2の各スィツチング素子が制御され る。  Then, a pulse signal is generated in the PWM control section 50 based on the addition result. At this time, the parallel converter 12 is operated to perform a rectifying operation and an active fill operation so that the DC voltage E dc matches the DC voltage command value E dc *, and the input power factor becomes substantially “1”. A pulse signal is generated, and the switching elements of the parallel converter 12 are controlled based on the pulse signal.
つまり、 直流電圧 E dcと直流電圧指令値 E dc* とを一致させるために必要な 並列コンパ一夕 1 2を流れる電流値と、 出力電流の高調波成分を打ち消すため に必要な並列コンバータ 1 2の電流値との和を算出し、 これと並列コンバータ 電流 I par aとがー致するように、 フィードバック制御を行う。  In other words, the current value flowing through the parallel converter 12 necessary to match the DC voltage E dc with the DC voltage command value E dc * and the parallel converter 1 2 required to cancel the harmonic components of the output current The feedback control is performed so that the sum of the current value and the parallel converter current I par a is calculated.
なお、 前記入力力率は " 1 " であることが望ましいが、 必ずしも " 1 " でな くともよい。 つまり、 A Cスィッチ 5の各サイリス夕 5 a及び 5 bは、 入力電 圧の極性に応じて制御しているため、 入力力率が " 1 " でない場合、 オン制御 されているサイリス夕を流れる電流が零となつた時点でサイリス夕は自動的に オフ状態となってしまい、 これ以後、 電流が流れなくなってしまう。 したがつ て、 これを回避することができる程度の力率であればよく、 入力電圧と入力電 流との位相差が 3 0 ° 程度、 つまり、 力率が 0 . 8 6 6程度以上であればよ い。 Note that the input power factor is desirably “1”, but is not necessarily “1”. In other words, since the thyristors 5a and 5b of the AC switch 5 are controlled according to the polarity of the input voltage, if the input power factor is not "1", the current flowing through the thyristor that is turned on is controlled. When the value becomes zero, the thyristor is automatically turned off, and the current stops flowing thereafter. Therefore, it is sufficient that the power factor is such that this can be avoided. If the phase difference between the input voltage and the input current is about 30 °, that is, if the power factor is about 0.866 or more, If you have No.
前記遮断スィッチ 4 8は、 入力電圧検出器 3 2で検出された入力電圧 V in が、 予め設定された、 前記入力電圧が正常であるとみなすことの可能な許容範 囲内にあるときには導通状態に制御され、 前記入力電圧が前記許容範囲を越え るとき、 つまり、 許容範囲を上回るとき又は下回るとき、 電圧異常として、 遮 断状態に制御される。  The cutoff switch 48 is turned on when the input voltage Vin detected by the input voltage detector 32 is within a preset allowable range in which the input voltage can be regarded as normal. When the input voltage exceeds the permissible range, that is, when the input voltage exceeds or falls below the permissible range, it is controlled to be in a cutoff state as a voltage abnormality.
そして、 入力電圧検出器 3 2で検出された入力電圧 V inに基づき、 入力電圧 が電圧異常と判定され、 前記遮断スィッチ 4 8が遮断状態に制御されたときに は、 前記 P WM制御部 5 0では、 例えば負荷への定格電圧に応じた基準正弦波 信号 s in o tに基づいて、 前記並列コンバータ 1 2をインバー夕動作させるた めのパルス信号を生成し、 これに基づいて前記並列コンバータ 1 2の各スィッ チング素子を制御する。 つまり、 基準正弦波信号 s inw tにしたがってフィー ドフォワード制御を行う。  When the input voltage is determined to be abnormal based on the input voltage Vin detected by the input voltage detector 32, and the cutoff switch 48 is controlled to be in the cutoff state, the PWM control unit 5 0, a pulse signal for operating the parallel converter 12 in an inverting mode is generated based on, for example, a reference sine wave signal sinot according to the rated voltage to the load. 2 controls each switching element. That is, feedforward control is performed according to the reference sine wave signal sinwt.
図 4は、 直列インバ一タ制御部 2 6の機能構成を示すブロック図である。 図 4に示すように、 予め設定された負荷への出力電圧の指令値 V out * と出力電 流電圧検出器 3 6で検出した負荷への出力電圧 Vou〖 との差分値が演算器 5 1 で算出され、 この差分値に基づき例えば、 P I制御等の電圧調整演算が電圧調 節器 5 2で行われ、 これに基づき P WM制御部 5 3において前記直列ィンバー 夕 1 8をインバータ動作させるためのパルス信号が生成されて、 前記直列イン バー夕 1 8の各スイッチング素子が制御される。 つまり、 出力電圧 Vout が出 力電圧指令値 V out * となるようにフィードバック制御を行う。  FIG. 4 is a block diagram showing a functional configuration of the serial inverter control unit 26. As shown in FIG. 4, the difference between the preset output voltage command value Vout * to the load and the output voltage Vou 〖to the load detected by the output current voltage detector 36 is calculated by the arithmetic unit 5 1 Based on this difference value, for example, voltage adjustment calculation such as PI control is performed by the voltage adjuster 52, and based on this, the PWM controller 53 causes the series inverter 18 to operate as an inverter. Is generated, and each switching element of the serial inverter 18 is controlled. That is, feedback control is performed so that the output voltage Vout becomes the output voltage command value Vout *.
なお、 直列インバー夕制御部 2 6では、 前記入力電圧の異常の有無に関わら ず、 前記インバータ動作を行う。  The serial inverter control section 26 performs the inverter operation irrespective of whether or not the input voltage is abnormal.
次に、 上記第 1の実施の形態の動作を説明する。  Next, the operation of the first embodiment will be described.
今、 商用電源等からの入力電圧が正常であれば、 入力電圧検出器 3 2で検出 される入力電圧 V inは許容範囲内に納まるから、 制御回路 2 0では、 商用電源 からの入力電圧は正常であると判断する。 したがって、 A Cスィッチ制御部 2 2では、 入力電圧 V inの位相に応じて前記サイリス夕 5 a及び 5 bを交互に導 通状態に制御する。 If the input voltage from the commercial power supply is normal, the input voltage detector 32 detects it. Since the input voltage Vin falls within the allowable range, the control circuit 20 determines that the input voltage from the commercial power supply is normal. Therefore, the AC switch control unit 22 alternately controls the thyristors 5a and 5b to the conducting state according to the phase of the input voltage Vin.
よって、 商用電源等からの供給電力は、 A Cスィッチ 5を介して負荷に供給 されると共に、 直列インバー夕制御部 2 6は、 負荷への出力電圧 Vout が出力 電圧指令値 V out * となるように直列インバ一夕 1 8をインバー夕動作させる から、 バッテリ.1 4及びコンデンサ 1 6の直流電力が交流電力に変化されてこ れが直列トランス 1 9を介して給電ライン L Nに直列に印加され、 負荷への出 力電圧 Vout は出力電圧指令値 V out * に維持されることになる。  Therefore, the power supplied from the commercial power supply or the like is supplied to the load via the AC switch 5, and the series inverter controller 26 sets the output voltage Vout to the load to be the output voltage command value Vout *. The DC power of the battery 14 and the capacitor 16 is changed to AC power, which is applied in series to the power supply line LN via the series transformer 19, The output voltage Vout to the load will be maintained at the output voltage command value Vout *.
また、 並列コンバータ制御部 2 4では、 入力電圧が正常であることから、 負 荷への出力電流 l out に含まれる高調波成分を抽出すると共に、 並列コンバー 夕電流 I paraが、 出力電流 I out の高調波成分に相当する電流であり、 且つコ ンデンサ 1 6の両端電圧 E dcを直流電圧指令値 E dc* にし得る電流値となるよ うに、 並列コンバータ 1 2を整流動作させると共にアクティブフィルタ動作さ せる。 これによつて、 バッテリ 1 4への充電が行われると共に、 負荷で発生し た高調波成分が並列コンバータ 1 2で吸収され、 商用電源側に高調波電流が流 出することが抑制される。  Also, since the input voltage is normal, the parallel converter control unit 24 extracts the harmonic components included in the output current l out to the load, and outputs the parallel converter current I para and the output current I out The rectifying operation of the parallel converter 12 and the active filter operation are performed so that a current value corresponding to a harmonic component of the capacitor 16 and a voltage value that allows the voltage E dc across the capacitor 16 to be a DC voltage command value E dc * are obtained. Let me do it. As a result, the battery 14 is charged, and the harmonic component generated in the load is absorbed by the parallel converter 12, so that the harmonic current does not flow out to the commercial power supply.
この状態から、 商用電源側で短絡等が発生し、 入力電圧 V inが低下すると、 導通制御されている方のサイリス夕 5 a又は 5 bに逆バイアスが印加される状 態となつた時点で、 導通制御されている方のサイリス夕は自動的に遮断状態と なる。  From this state, when a short circuit or the like occurs on the commercial power supply side and the input voltage Vin decreases, when the reverse bias is applied to the thyristor 5a or 5b that is controlled to conduct, The thyristor on which conduction is controlled is automatically shut off.
また、 制御回路 2 0では、 入力電圧 V inが許容範囲を超えた時点で、 入力電 圧の電圧異常と判断する。 前記直列インバ一タ制御部 2 6では引き続きこれま でと同様に直列インバータ 1 8を制御し、 出力電圧 Vout を出力電圧指令値 V out * に保っためのインバー夕動作を行わせる。 また、 並列コンパ一夕制御部The control circuit 20 determines that the input voltage is abnormal when the input voltage Vin exceeds the allowable range. The series inverter control unit 26 continues to control the series inverter 18 in the same manner as before so that the output voltage Vout is changed to the output voltage command value V Performs an inverting motion to keep out *. In addition, the parallel controller
2 4においては、 入力電圧の電圧異常が検出されたことから、 遮断スィッチ 4 8を遮断状態に制御し、 基準正弦波信号 s inw tに基づいて、 正常時の入力電 圧に相当する規定電圧を生成するように並列コンパ一夕 1 2を制御する。 これ によって、 バッテリ 1 4及びコンデンサ 1 6の直流電力が交流電力に変換され 給電ライン L Nを介して負荷に供給される。 In 24, since the voltage abnormality of the input voltage was detected, the cutoff switch 48 was controlled to be in the cutoff state, and the specified voltage corresponding to the normal input voltage was controlled based on the reference sine wave signal sinwt. To control the parallel compiler 1 and 2 to generate. As a result, the DC power of the battery 14 and the capacitor 16 is converted into AC power and supplied to the load via the power supply line LN.
ここで、 入力電圧が低下すると、 A Cスィッチ 5を構成するサイリス夕のう ち導通制御されている方のサイリス夕は、 入力電圧の低下に伴って逆バイアス が印加される状態となった時点で自動的に遮断状態となり、 その後、 入力電圧 が許容範囲を越えたときに電圧異常が検出されて並列コンバータ 1 2がインバ 一夕動作するよう制御されることになる。 このとき、 他方のサイリス夕は遮断 制御されているから、 導通制御されているサイリス夕に逆バイァスが印加され る状態となった時点で、 A Cスィッチ 5の入力端子 P in側は、 給電ライン L N から切り離されることになる。  Here, when the input voltage decreases, the thyristor of which the conduction is controlled among the thyristors constituting the AC switch 5 is at the time when the reverse bias is applied as the input voltage decreases. When the input voltage exceeds the allowable range, a voltage abnormality is automatically detected, and then the parallel converter 12 is controlled to operate overnight. At this time, since the other thyristor is controlled to be cut off, when the reverse bias is applied to the thyristor whose conduction is controlled, the input terminal Pin side of the AC switch 5 is connected to the power supply line LN. Will be disconnected from
したがって、 その後、 並列コンバータ 1 2が、 整流動作及びアクティブフィ ルタ動作から、 バックアップ動作するように切り換えられると、 入力端子 P in 側は、 既に給電ライン L Nから切り離されているから、 短絡部を通して過大な 電流が流れることはなく、 並列コンバータ 1 2で所定電圧の交流電力が生成さ れて負荷側に供給されることになる。 よって、 負荷への出力電圧 Vout が瞬停 状態となることを回避することができる。  Therefore, after that, when the parallel converter 12 is switched from the rectifying operation and the active filter operation to the backup operation, the input terminal Pin side is already disconnected from the power supply line LN, so that the input terminal Pin becomes excessive through the short circuit. No current flows, and the parallel converter 12 generates AC power of a predetermined voltage and supplies it to the load side. Therefore, it is possible to prevent the output voltage Vout to the load from being in an instantaneous blackout state.
また、 上記第 1の実施の形態においては、 A Cスィッチ 5をサイリス夕で構 成し、 これらを入力電圧 V inの極性と同期して交互にオンオフ制御しているた め、 進み電流や遅れ電流を流すことはできないが、 並列コンバータ 1 2をァク ティブフィル夕として動作させ、 入力力率を " 1 " となるように制御している ため、 商用電源側への高調波電流の流出を抑制することができると共に、 入力 力率が "1" でないことに起因して停電が発生していないにも関わらずサイリ ス夕がオフ状態となり ACスィッチ 5が遮断状態となってしまうことを回避す ることができる。 In the first embodiment, the AC switch 5 is composed of a thyristor and is alternately turned on and off in synchronization with the polarity of the input voltage Vin. However, since the parallel converters 1 and 2 are operated as active filters and the input power factor is controlled to be "1", the flow of harmonic current to the commercial power supply is suppressed. Can be input along with It is possible to prevent the thyristor from being turned off and the AC switch 5 from being cut off even though no power failure has occurred due to the power factor not being "1".
次に、 第 2の実施の形態を説明する。  Next, a second embodiment will be described.
図 5は、 第 2の実施の形態における無停電電源装置の一例を示す回路図であ る。 第 2の実施の形態では、 給電ライン LNには、 リレースィッチ 6が介揷さ れ、 入力端子 Pinへ入力された交流電力は、 リレースィッチ 6を介して出力端 子 Pout から負荷に供給されるようになっている。 また、 給電ライン LNのリ レ一スィッチ 6と出力端子 Pout との間に入力リアクトル Linが介挿され、 こ の入力リアクトル Linとリレ一スィツチ 6との間の給電ライン LNにコンデン サ C 1が並列に接続され、 入力リアクトル Linとコンデンサ C 1とで LCフィ ルタを構成している。  FIG. 5 is a circuit diagram illustrating an example of an uninterruptible power supply according to the second embodiment. In the second embodiment, the power supply line LN is provided with the relay switch 6, and the AC power input to the input terminal Pin is supplied to the load from the output terminal Pout via the relay switch 6. It has become. An input reactor Lin is inserted between the relay switch 6 of the power supply line LN and the output terminal Pout, and a capacitor C1 is connected to the power supply line LN between the input reactor Lin and the relay switch 6. The LC filter is composed of the input reactor Lin and capacitor C1 connected in parallel.
また、 前記入力リアクトル Linと出力端子 Pout との間の給電ライン LNに は、 上記第 1の実施の形態と同様に構成された補償回路 10が接続され、 補償 回路 10の並列コンバータ 12の交流電力側が前記入力リアクトル Linと出力 端子 Pout との間に接続され、 また、 直列インバータ 18の交流電力側は、 上 記第 1の実施の形態と同様に直列トランス 19を介して給電ライン LNに接続 されている。 また、 直列トランス 19と出力端子 Pout との間の、 給電ライン LNにコンデンサ C 2が並列に接続され、 直列トランス 19の漏れインダクタ ンスとコンデンサ C 2とで L Cフィルタを構成している。  Further, a compensation circuit 10 configured in the same manner as in the first embodiment is connected to the power supply line LN between the input reactor Lin and the output terminal Pout, and the AC power of the parallel converter 12 of the compensation circuit 10 is Is connected between the input reactor Lin and the output terminal Pout, and the AC power side of the series inverter 18 is connected to the power supply line LN via the series transformer 19 as in the first embodiment. ing. Further, a capacitor C2 is connected in parallel to the power supply line LN between the series transformer 19 and the output terminal Pout, and an LC filter is configured by the leakage inductance of the series transformer 19 and the capacitor C2.
そして、 前記リレースィッチ 6、 並列コンバータ 12及び直列インバー夕 1 8は制御回路 20によって駆動制御されるようになっている。  The control circuit 20 controls the driving of the relay switch 6, the parallel converter 12, and the serial inverter 18.
第 2の実施の形態における制御回路 20は、 前記リレースイッチ 6を駆動制 御するリレ一スィッチ制御部 23、 前記並列コンバータ 12を制御する並列コ ンバ一夕制御部 24 a、 及び前記直列ィンバ一夕 18を、 前記第 1の実施の形 態と同様に制御する直列ィンバータ制御部 2 6を備えている。 The control circuit 20 according to the second embodiment includes a relay switch control unit 23 that controls the drive of the relay switch 6, a parallel converter control unit 24a that controls the parallel converter 12, and a serial driver. Evening 18 is the first form of implementation A series inverter control unit 26 for controlling in the same manner as in the first embodiment is provided.
前記リレースイッチ制御部 2 3は、 商用電源等からの入力電圧を検出する入 力電圧検出器 3 2で検出された入力電圧 V inが、 予め設定した前記許容範囲内 にある場合には、 前記リレースィッチ 6を導通状態に制御し、 入力電圧 V in 力 前記許容範囲を越えるとき、 入力電圧の電圧異常とみなし、 前記リレース イッチ 6を遮断状態に制御する。  When the input voltage Vin detected by the input voltage detector 32 that detects an input voltage from a commercial power supply or the like is within the allowable range set in advance, the relay switch control unit 23 includes: The relay switch 6 is controlled to be in a conductive state, and when the input voltage Vin exceeds the allowable range, it is considered that the input voltage is abnormal, and the relay switch 6 is controlled to be in a cut-off state.
図 6は、 前記並列コンバ一夕制御部 2 4 aの機能構成を示すブロック図であ る。 図 6に示すように、 コンデンサ 1 6の両端の直流電圧の目標値である直流 電圧指令値 E dc* と充電電圧検出器 3 4で検出されたコンデンサ 1 6の両端電 圧との差分値が演算器 6 1で検出される。 そして、 この差分値に基づき、 電圧 調節器 6 2において例えば P I制御等の電圧調整演算が行われ、 その演算結果 と基準正弦波信号 s inco tとが演算器 6 3で乗算される。 なお、 この基準正弦 波信号 s inco tは、 上記第 1の実施の形態と同様に、 位相が入力電圧 V inと同 期する信号であり、 その振幅は例えば商用電源等から供給される入力電圧の定 格電圧の振幅に相当する値に設定される。  FIG. 6 is a block diagram showing a functional configuration of the parallel converter overnight controller 24a. As shown in FIG. 6, the difference between the DC voltage command value E dc *, which is the target value of the DC voltage across capacitor 16, and the voltage across capacitor 16 detected by charging voltage detector 34 is Detected by arithmetic unit 61. Then, based on this difference value, a voltage adjustment operation such as PI control is performed in the voltage adjuster 62, and the operation result is multiplied by the reference sine wave signal sincot by the arithmetic unit 63. Note that the reference sine wave signal sincot is a signal whose phase is synchronized with the input voltage Vin as in the first embodiment, and the amplitude of which is, for example, the input voltage supplied from a commercial power supply or the like. Is set to a value corresponding to the amplitude of the rated voltage of.
そして、 前記演算器 6 3での乗算結果と、 前記入力電流検出器 3 3で検出さ れた入力電流 I inとの差分値が演算器 6 4で算出され、 この差分値を零とする ための電流調整演算が電流調節器 6 5で行われ、 その演算結果が、 遮断スイツ チ 6 6を介して演算器 6 7に入力され、 これと基準正弦波信号 sin ω tとが加 算される。 この基準正弦波信号 s in co tは、 上記第 1の実施の形態と同様に位 相が入力電圧 V inと同期する信号であり、 その振幅は例えば負荷への定格電圧 に応じて設定される。  Then, a difference value between the multiplication result in the calculator 63 and the input current Iin detected in the input current detector 33 is calculated in the calculator 64, and this difference value is set to zero. The current adjustment calculation is performed by the current regulator 65, and the calculation result is input to the calculator 67 via the cutoff switch 66, and this and the reference sine wave signal sin ωt are added. . The reference sine wave signal s in cot is a signal whose phase is synchronized with the input voltage Vin as in the first embodiment, and its amplitude is set according to, for example, the rated voltage to the load. .
そして、 演算器 6 7での演算結果に基づき P WM制御部 6 8において前記並 列コンバータ 1 2を整流動作させるためのパルス信号が生成されて前記並列コ ンバ一夕 1 2の各スイッチング素子が制御される。 つまり、 入力電流 I inが直 流電圧 E dcと直流電圧指令値 E dc* との差分値に応じた電流値となるように且 つ入力電流 I inの力率が " 1 " となるようにフィードバック制御を行う。 なお、 第 2の実施の形態においては、 入力電流 I mの力率は必ずしも " 1 " である必要はないが、 高調波成分が商用電源側に流出するのを防止するために は、 " 1 " であることが望ましい。 Then, a pulse signal for rectifying the parallel converter 12 is generated in the PWM control unit 68 based on the calculation result in the arithmetic unit 67, and each switching element of the parallel converter 12 is turned on. Controlled. That is, the input current I in Feedback control is performed so that the current value corresponds to the difference value between the flow voltage E dc and the DC voltage command value E dc * and the power factor of the input current I in becomes “1”. In the second embodiment, the power factor of the input current Im does not necessarily need to be “1”. However, in order to prevent the harmonic component from flowing to the commercial power supply, “1” is used. Is desirable.
前記遮断スィッチ 6 6は、 入力電圧が、 予め設定された前記入力電圧が正常 であるとみなすことの可能な許容範囲内にあるときには、 導通状態に制御さ れ、 前記入力電圧が前記許容範囲の下限値を下回るとき、 電圧異常として、 遮 断状態に制御される。  The cut-off switch 66 is controlled to be in a conductive state when the input voltage is within a preset allowable range in which the input voltage can be considered to be normal, and the input voltage is controlled to fall within the allowable range. When the voltage falls below the lower limit, it is controlled to shut off as an abnormal voltage.
そして、 入力電圧検出器 3 2で検出された入力電圧 V inに基づき、 入力電圧 が電圧異常と判定され、 前記遮断スィッチ 6 6が遮断状態に制御されたときに は、 前記 P WM制御部 6 8では、 基準正弦波信号 s inco tに基づいて、 前記並 列コンバ一夕 1 2をィンバータ動作させるためのパルス信号を生成し、 これに 基づいて前記並列コンバータ 1 2の各スイッチング素子を制御する。 つまり、 前記基準正弦波信号 s in o tに基づいてフィードフォヮ一ド制御を行う。 なお、 入力電圧低下時に前記並列コンバータ 1 2をインバー夕動作させた場 合、 入力電圧と並列コンバータ 1 2の出力電圧との電圧差が前記入力リアクト ル L inにかかり、 入力リァクトルし inに流れる電流が時間と共に増加するた め、 このリアクトル電流を、 許容される範囲に抑えることができるように、 入 カリアクトル L inのインダクタンス値を設定する。  Then, based on the input voltage Vin detected by the input voltage detector 32, the input voltage is determined to be abnormal, and when the cut-off switch 66 is controlled to be in the cut-off state, the PWM control unit 6 In 8, a pulse signal for operating the parallel converter 12 is operated based on the reference sine wave signal sincot, and each switching element of the parallel converter 12 is controlled based on the pulse signal. . That is, feedforward control is performed based on the reference sine wave signal sinot. Note that, when the parallel converter 12 is operated in an inverting mode when the input voltage drops, the voltage difference between the input voltage and the output voltage of the parallel converter 12 is applied to the input reactor Lin, and flows to the input reactor Lin. Since the current increases with time, the inductance value of the input reactor L in is set so that this reactor current can be kept within the allowable range.
次に、 上記第 2の実施の形態の動作を説明する。  Next, the operation of the second embodiment will be described.
今、 商用電源等からの入力電圧が正常であれば、 入力電圧検出器 3 2で検出 される入力電圧 V inは、 予め設定された許容範囲内に収まるから、 制御回路 2 0では、 入力電圧は正常であると判断し、 リレースィッチ制御部 2 3は、 前記 リレースィッチ 6を導通状態に制御する。 よって、 商用電源等から供給された 電力は、 リレースィッチ 6を介して負荷に供給されると共に、 前記直列インバ —夕制御部 2 6は、 負荷への出力電圧 Vout が出力電圧指令値 V out * となる ように直列インバー夕 1 8をインバー夕動作させるから、 バッテリ 1 4及びコ ンデンサ 1 6の直流電力が交流電力に変換されてこれが、 直列トランス 1 9を 介して給電ライン L Nに直列に印加され、 負荷への出力電圧 Vout は出力電圧 指令値 V ou〖 * に維持されることになる。 Now, if the input voltage from the commercial power supply or the like is normal, the input voltage Vin detected by the input voltage detector 32 falls within a predetermined allowable range. Is determined to be normal, and the relay switch control section 23 controls the relay switch 6 to a conductive state. Therefore, it was supplied from a commercial power source, etc. The power is supplied to the load via the relay switch 6, and the series inverter controller 26 controls the series inverter 18 so that the output voltage Vout to the load becomes the output voltage command value Vout *. Since the DC power of the battery 14 and the capacitor 16 is converted to AC power, the DC power of the battery 14 and the capacitor 16 is applied in series to the power supply line LN via the series transformer 19, and the output voltage Vout to the load becomes The output voltage command value will be maintained at V ou 〖*.
また、 並列コンバータ制御部 2 4 aでは、 入力電圧が正常であることから、 コンデンサ 1 6の両端電圧を直流電圧指令値 E dc* に維持するために必要な電 流値に応じて入力リアクトル L inを流れる電流の指令値を決定し、 且つ、 入力 電流検出器 3 3で検出された入力電流 I inがこの指令値と一致しさらに、 この 入力電流 I inが力率 1となるように、 並列コンバータ 1 2をフィードバック制 御する。  Also, since the input voltage is normal in the parallel converter control section 24a, the input reactor L depends on the current value necessary to maintain the voltage across the capacitor 16 at the DC voltage command value E dc *. in, and the input current I in detected by the input current detector 3 3 matches this command value, and furthermore, the input current I in has a power factor of 1. Feedback control of parallel converters 1 and 2.
このため、 バッテリ 1 4及びコンデンサ 1 6のエネルギが負荷への供給電流 として並列コンバ一夕 1 2を経て負荷に供給され、 これに伴って直流電圧 E dc が低下すると、 直流電圧指令値 E d と実際の直流電圧 E dcとの差分に応じた 電流が入力リアクトル L inを流れることになり、 このとき、 入力電流 I inは力 率 1となるように制御されるから、 出力電流 I o'ut に高調波成分等無効分が含 まれる場合には、 この無効分は並列コンバ一タ 1 2に流れここで吸収されるこ とになる。 つまり、 並列コンバータ 2は、 結果的にアクティブフィルタとして 機能することになる。  For this reason, the energy of the battery 14 and the capacitor 16 is supplied to the load as a supply current to the load via the parallel converter 12, and when the DC voltage E dc decreases accordingly, the DC voltage command value E d And an actual DC voltage E dc, a current flows through the input reactor L in .At this time, the input current I in is controlled to have a power factor of 1, so the output current I o ′ If ut includes an ineffective component such as a harmonic component, the ineffective component flows to the parallel converter 12 and is absorbed there. That is, the parallel converter 2 eventually functions as an active filter.
この状態から、 商用電源側で短絡等が発生し、 入力電圧 V inが許容範囲を越 えると、 リレースィッチ制御部 2 3がこれを検出した日 点でリレースィッチ 6 が遮断状態に制御される。 また、 直列インバー夕制御部 2 6では引き続きこれ までと同様に、 出力電圧 Vout を一定に保っためのインバー夕動作を行わせる が、 並列コンバータ 1 2においては、 入力電圧の電圧異常が検出されたことか ら、 遮断スィッチ 6 6を作動させて遮断状態とし、 基準正弦波信号 s inco tに 基づいて、 バッテリ 1 4及びコンデンサ 1 6の直流電力から商用電源 1の供給 電圧に応じた規定電圧の交流電力を生成するように並列コンバータ 1 2を制御 する。 これによつて、 バッテリ 1 4及びコンデンサ 1 6の直流電力が交流電力 に変換され、 給電ライン L Nを介して負荷に供給される。 In this state, if a short circuit or the like occurs on the commercial power supply side and the input voltage Vin exceeds the allowable range, the relay switch control section 23 controls the relay switch 6 to the cut-off state on the date when it is detected. . In addition, the serial inverter control unit 26 continues to perform the inverter operation to keep the output voltage Vout constant as before, but the parallel converter 12 detects an abnormal input voltage. That Then, the cut-off switch 66 is operated to be in the cut-off state, and based on the reference sine wave signal s incot, the AC power of the specified voltage corresponding to the supply voltage of the commercial power supply 1 from the DC power of the battery 14 and the capacitor 16. The parallel converters 12 are controlled so as to generate. As a result, the DC power of the battery 14 and the capacitor 16 is converted into AC power and supplied to the load via the power supply line LN.
ここで、 入力電圧の電圧異常が検出されると、 リレースィッチ 6は遮断状態 に制御され、 また、 並列コンバ一夕 1 2がィンバ一夕動作することになるが、 リレ一スィツチ 6が実際に遮断状態となるまでにある程度時間がかかることか ら、 リレースィッチ 6が遮断状態となる前に並列コンバータ 1 2のインバー夕 動作が開始することになる。  Here, if a voltage abnormality of the input voltage is detected, the relay switch 6 is controlled to be in the cut-off state, and the parallel converter 1 and 2 operate instantly, but the relay switch 6 actually operates. Since it takes some time to be in the cutoff state, the inverse operation of the parallel converter 12 starts before the relay switch 6 becomes in the cutoff state.
このとき、 並列コンバータ 1 2及び給電ライン L Nの接続点とリレースイツ チ 6との間に入力リアクトル L inが介挿されこの入力リアクトル L inが限流リ ァクトルとして作用することになるから、 並列コンパ一夕 1 2から商用電力側 に流れる短絡電流が抑制される。 したがって、 所定電圧の交流電力が給電ライ ン L Nに供給され、 さらに、 直列インバー夕 1 8によって、 負荷への出力電圧 Vou t が出力電圧指令値 V out * となるように補正されて、 負荷への電力供給 が行われることになるから、 短絡等によって入力電圧に電圧異常が生じたため に、 並列コンバータ 1 2の動作をインバー夕動作に切り換える場合であって も、 負荷へは、 継続して電圧値が、 出力電圧指令値 V out * である交流電力が 出力されることになる。  At this time, the input reactor Lin is inserted between the connection point of the parallel converters 12 and the feed line LN and the relay switch 6, and the input reactor Lin acts as a current limiting reactor. Short-circuit current flowing to the commercial power side from night 12 is suppressed. Therefore, AC power of a predetermined voltage is supplied to the power supply line LN, and the output voltage Vout to the load is corrected by the series inverter 18 so that the output voltage Vout becomes the output voltage command value Vout *. Therefore, even if the operation of the parallel converter 12 is switched to the inverting operation due to a voltage abnormality in the input voltage due to a short circuit or the like, the voltage is continuously supplied to the load. The AC power whose value is the output voltage command value V out * is output.
このとき、 並列コンバータ 1 2がインパー夕動作を開始すると、 入力リアク 卜ル L inの商用電源側と並列コンバータ側とで電圧差が生じ、 この電圧差が入 カリアクトル L inの両端にかかるため、 入力リアクトル L inに流れる電流は時 間と共に増加することになるが、 このリアクトル電流を考慮して入力リアクト ル L inのインダクタンス値を設定しているから問題ない。 したがって、 この場合も、 上記第 1の実施の形態と同様に瞬停を防止するこ とができると共に、 この第 2の実施の形態においては、 入力電流 I inが所定の 電流値となるように且つ力率が 1となるように制御を行っているから、 高調波 電流が商用電源側に流出することを回避することができる。 At this time, when the parallel converters 12 start the impeller operation, a voltage difference occurs between the commercial power supply side of the input reactor L in and the parallel converter side, and this voltage difference is applied to both ends of the input reactor L in. However, the current flowing through the input reactor Lin increases with time, but there is no problem because the inductance value of the input reactor Lin is set in consideration of the reactor current. Therefore, in this case as well, it is possible to prevent instantaneous blackout as in the first embodiment, and in the second embodiment, the input current Iin is set to a predetermined current value. In addition, since the control is performed so that the power factor becomes 1, it is possible to prevent the harmonic current from flowing to the commercial power supply.
また、 上記第 1の実施め形態のように、 高調波成分を抽出する必要がないか ら、 高調波成分抽出のための複雑な演算を行う必要がなく、 簡易な演算で制御 することができ、 処理時間の短縮を行うことができると共に、 前記並列コンパ 一夕 1 2を流れる電流を急峻に変化させる必要がないから、 高度な処理性能を 必要とすることなく実現することができる。  Further, unlike the first embodiment, since there is no need to extract harmonic components, there is no need to perform complicated calculations for extracting harmonic components, and control can be performed with simple calculations. However, the processing time can be reduced, and the current flowing through the parallel compander 12 does not need to be sharply changed. Therefore, the present invention can be realized without requiring high processing performance.
次に、 本発明の第 3の実施の形態を説明する。  Next, a third embodiment of the present invention will be described.
この第 3の実施の形態は、 上記第 1及び第 2の実施の形態を組み合わせたも のである。  The third embodiment is a combination of the first and second embodiments.
すなわち、 図 7に示すように、 第 3の実施の形態における無停電電源装置 は、 図 5に示す上記第 2の実施の形態における無停電電源装置において、 リレ 一スィッチ 6に代えて、 上記第 1の実施の形態における A Cスィッチ 5が介揷 され、 また、 補償回路 1 0のリレースィッチ制御部 2 3に代えて、 上記第 1の 実施の形態における A Cスィッチ制御部 2 2が設けられている。 なお、 並列コ ンバ一夕制御部 2 4 aでは、 入力電流 I inの力率が " 1 " となるように並列コ ンバー夕 1 2を制御するが、 この場合の力率は必ずしも " 1 " である必要はな いが、 上記第 1の実施の形態と同様に、 入力力率が " 1 " でないことに起因し て入力電圧が低下していないにも関わらず、 サイリス夕が自動的にオフ状態と なることを回避することができる程度の力率であればよい。  That is, as shown in FIG. 7, the uninterruptible power supply according to the third embodiment differs from the uninterruptible power supply according to the second embodiment shown in FIG. The AC switch 5 according to the first embodiment is interposed, and the AC switch control unit 22 according to the first embodiment is provided instead of the re-switch control unit 23 of the compensation circuit 10. . The parallel converter overnight controller 24a controls the parallel converter 12 so that the power factor of the input current Iin becomes "1". In this case, the power factor is always "1". However, as in the first embodiment, the thyristor is automatically activated even though the input voltage has not dropped due to the input power factor not being “1”. It is sufficient that the power factor is such that it can be prevented from being turned off.
したがって、 この第 3の実施の形態では、 商用電源等からの入力電圧 V inが 正常であれば、 入力電圧 V inの極性に応じて前記サイリス夕 5 a及び 5 bが交 互に導通状態に制御され、 商用電源等から供給された入力電力は、 A Cスイツ 273 Therefore, in the third embodiment, when the input voltage Vin from the commercial power supply or the like is normal, the thyristors 5a and 5b are turned on alternately according to the polarity of the input voltage Vin. The input power supplied from a commercial power source 273
22 チ 5を介して負荷に供給されると共に、 負荷への出力電圧 Vout が規定電圧と なるように直列インバ一夕 1 8がインバ一タ動作し、 これによつて負荷への出 力電圧 Vout は規定電圧に維持される。 22 In addition to being supplied to the load via the switch 5, the series inverter 18 performs an inverter operation so that the output voltage Vout to the load becomes the specified voltage, and as a result, the output voltage Vout to the load Is maintained at a specified voltage.
また、 コンデンサ 1 6の両端電圧 E dcと直流電圧指令値 E d との差分値に 応じて入力電流 I inの指令値が設定され、 且つリアクトル L inを流れる電流の 力率が 1となるように、 入力電流 I inの電流の指令値が決定され、 この指令値 と、 入力電流 I inとが一致するように、 並列コンバータ 1 2が制御されること によって、 バッテリ 1 4及びコンデンサ 1 6から並列コンパ一夕 1 2を経て負 荷への電流供給が行われると共に、 これにより直流電圧 E dcが低下すると直流 電圧指令値 E d との差分に応じた入力電流 I inがリアクトル L inを流れ、 こ のとき、 入力電流 I inは力率が 1となるように制御されるから、 出力電流 I ou t に含まれる高調波成分が並列コンバータ 1 2に流れることになつて高調波 電流が商用電源側へ流出することはない。 ·  Also, the command value of the input current Iin is set according to the difference between the voltage E dc across the capacitor 16 and the DC voltage command value Ed, and the power factor of the current flowing through the reactor L in becomes 1 Then, the command value of the current of the input current Iin is determined, and the parallel converter 12 is controlled so that the command value matches the input current Iin. The current is supplied to the load via the parallel converter 12 and when the DC voltage E dc decreases, the input current I in corresponding to the difference from the DC voltage command value Ed flows through the reactor L in. At this time, the input current Iin is controlled so that the power factor becomes 1, so that the harmonic component included in the output current Iout flows through the parallel converter 12 and the harmonic current becomes It does not flow to the power supply. ·
この状態から、 商用電源 1側で短絡等が発生すると、 入力電圧 V inが低下す ることによって導通制御されている方のサイリス夕 5 a又は 5 bに逆バイアス が印加される状態となつた時点でこのサイリス夕は自動的に遮断状態となり、 このとき導通制御されていない方のサイリス夕は遮断状態であるから、 この時 点で商用電源側は給電ライン L Nから切り離されることになる。 そして、 入力 電圧 V inが低下し許容範囲を超えると、 並列コンバータ 1 2が基準正弦波信号 s inco tに基づいて、 バッテリ 1 4及びコンデンサ 1 6の直流電力から交流電 力を生成するバックアップ動作を行うが、 この時点では、 A Cスィッチ 5は遮 断状態でありまた入力リアクトル L inが揷入されているから、 並列コンバータ 1 2から商用電源側へ短絡電流が流れることが抑制される。 よって、 並列コン バー夕 1 2で所定電圧の交流電圧が生成されこれが直列インバ一夕 1 8で規定 電圧に補正されるから、 負荷へは継続して規定電圧の電圧が供給されることに なる。 In this state, when a short circuit or the like occurs on the commercial power supply 1 side, the input voltage Vin decreases and the reverse bias is applied to the thyristor 5a or 5b that is controlled to conduct. At this point, the thyristor is automatically cut off, and the thyristor whose conduction is not controlled at this time is in the cutoff state. At this point, the commercial power supply is disconnected from the power supply line LN. Then, when the input voltage Vin decreases and exceeds the allowable range, the parallel converter 12 performs a backup operation of generating AC power from the DC power of the battery 14 and the capacitor 16 based on the reference sine wave signal sincot. At this point, however, since the AC switch 5 is in the cutoff state and the input reactor Lin is inserted, the short-circuit current from the parallel converter 12 to the commercial power supply is suppressed. Therefore, a predetermined AC voltage is generated by the parallel converter 12 and is corrected to the specified voltage by the serial inverter 18, so that the specified voltage is continuously supplied to the load. Become.
したがつて、 上記第 1及び第 2の実施の形態と同等の作用効果を得ることが できると共に、 入力電圧の低下に伴って自動的に遮断する A Cスィッチ 5を用 いているから、 入力リアクトル L inのリアクトル値を、 より小さな値に設定す ることができる。  Therefore, the same operation and effect as those of the first and second embodiments can be obtained, and the AC switch 5 that automatically shuts off as the input voltage decreases is used. The reactor value of in can be set to a smaller value.
なお、 上記各実施の形態においては、 並列コンバータ 1 2及び直列インバー 夕 1 8を、 スィッチング素子及びこれと逆並列に接続したダイォードからなる フルブリッジ回路で構成した場合について説明したが、 これに限るものではな く、 例えば、 ハーフブリッジ回路であっても適用することができる。  In each of the above embodiments, the case where the parallel converter 12 and the serial inverter 18 are configured by a full bridge circuit composed of a switching element and a diode connected in antiparallel to the switching element has been described. For example, the present invention can be applied to a half-bridge circuit.
ここで、 上記各実施の形態において、 A Cスィッチ 5又はリレースィッチ 6 が給電スィッチに対応し、 並列コンパ一タ 1 2が並列コンバータに対応し、 ノ ッテリ 1 4及びコンデンサ 1 6が蓄電手段に対応し、 直列ィンバ一タ 1 8及び 直列インバー夕制御部 2 6が直列インバ一夕に対応し、 入力電圧検出器 3 2が 電圧異常検出手段に対応し、 A Cスィッチ制御部 2 2又はリレ一スィッチ制御 部 2 3及び並列コンバ一夕制御部 2 4又は 2 4 aが制御手段に対応している。 産業上の利用可能性 ,  Here, in each of the above-described embodiments, the AC switch 5 or the relay switch 6 corresponds to the power supply switch, the parallel converter 12 corresponds to the parallel converter, and the notch 14 and the capacitor 16 correspond to the power storage means. The serial inverter 18 and the serial inverter controller 26 correspond to the serial inverter, the input voltage detector 32 corresponds to the voltage abnormality detecting means, and the AC switch controller 22 or the relay switch. The controller 23 and the parallel converter controller 24 or 24a correspond to the control means. Industrial applicability,
以上説明したように、 本発明の請求項 1に係る無停電電源装置によれば、 給 電ラインに介挿される給電スィッチを、 逆並列に接続された二つのサイリス夕 で構成して、 給電ラインの入力端への入力電圧の極性に応じて交互にオンオフ し、 交流電力の入力力率が 1となるように力率を制御するようにしたから、 停 電等.により入力電圧が低下したときには、 並列コンバータがインバ一夕動作を 開始する前の、 サイリス夕に逆バイアスがかかる状態となった時点で給電スィ ツチを自動的にオフ状態にすることができる。 また、 このとき、 直列インバー 夕は、 蓄電手段をエネルギ源として交流出力電圧が指令値となるように動作す るから、 交流出力の電圧値を指令値に維持することができ、 出力電圧が瞬停状 態となることを回避することができる。 As described above, according to the uninterruptible power supply according to claim 1 of the present invention, the power supply switch inserted in the power supply line is configured by two thyristors connected in antiparallel, and the power supply line Since the power factor is controlled so that the input power factor of the AC power is 1 by turning on and off alternately according to the polarity of the input voltage to the input terminal of the input terminal, when the input voltage drops due to a power failure, etc. The power supply switch can be automatically turned off when a reverse bias is applied to the thyristor before the parallel converter starts the inverting operation. At this time, the series inverter operates using the power storage means as an energy source so that the AC output voltage becomes a command value. Therefore, the voltage value of the AC output can be maintained at the command value, and the output voltage can be prevented from being in a momentary power failure state.
また、 請求項 2に係る無停電電源装置によれば、 並列コンバータによって、 蓄電手段のエネルギが規定値となるように入力リアクトルを流れる電流を制御 するようにしたから、 結果的に並列コンバータに出力電流の高周波成分が流れ ることになり、 簡易な制御で高周波成分を並列コンバ一夕で吸収することがで き、 また、 高性能な処理装置を必要とすることなく実現することができる。 ま た、 給電ラインの並列コンバータと給電スィッチとの間に入力リアクトルを設 けたから、 停電等によって給電ラインの入力端への入力電圧が低下した場合で あっても、 並列コンバータで生成した交流電流が電力入力側に流れることを抑 制し、 また、 直列インバー夕は、 蓄電手段をエネルギ源として交流出力電圧が 指令値となるように動作するから、 交流出力の電圧値を指令値に維持すること ができ、 出力電圧が瞬停状態となることを回避することができる。  Further, according to the uninterruptible power supply according to the second aspect, the current flowing through the input reactor is controlled by the parallel converter so that the energy of the power storage means becomes a specified value. Since the high-frequency component of the current flows, the high-frequency component can be absorbed by the parallel converter with simple control, and can be realized without requiring a high-performance processing device. In addition, since an input reactor is installed between the parallel converter on the power supply line and the power supply switch, even if the input voltage to the input end of the power supply line decreases due to a power failure or the like, the AC current generated by the parallel converter Is suppressed from flowing to the power input side, and the series inverter operates using the power storage means as an energy source so that the AC output voltage becomes the command value, so that the voltage value of the AC output is maintained at the command value. The output voltage can be prevented from being in a momentary power failure state.
また、 請求項 3に係る無停電電源装置によれば、 給電ラインに介挿される給 電スィッチを、 逆並列に接続された二つのサイリス夕で構成して、 入力電圧の 極性に応じて交互にオンオフし、 且つ入力リアクトルを流れる電流を力率 1と なるように制御するようにしたから、 停電等により入力電圧が低下したときに は、 並列コンバータがインバー夕動作を開始する前の、 サイリス夕に逆バイァ スがかかる状態となった時点で給電スィッチを自動的にオフ状態にすることが できる。 また、 このとき直列インバー夕は、 蓄電手段をエネルギ源として交流 出力電圧が所定の値となるように動作するから、 交流出力を所定の電圧値に維 持することができ、 出力電圧が瞬停状態となることを回避することができる。 また、 蓄電手段のエネルギが規定値となり且つ交流電力の入力力率が 1となる ように並列コンバ一夕が動作するようにしたから、 結果的に並列コンバ一夕に 出力電流の高周波成分が流れることになり、 簡易な制御で.高周波成分を並列コ ンバ一夕で吸収することができる。 According to the uninterruptible power supply according to claim 3, the power supply switch inserted into the power supply line is constituted by two thyristors connected in anti-parallel, and alternately according to the polarity of the input voltage. Since the power supply is turned on and off and the current flowing through the input reactor is controlled to have a power factor of 1, when the input voltage drops due to a power failure or the like, the thyristor current before the parallel converter starts inverting operation The power supply switch can be automatically turned off when a reverse bias is applied to the power supply. Also, at this time, since the AC output voltage is operated at a predetermined value by using the power storage means as an energy source, the AC output can be maintained at a predetermined voltage value, and the output voltage is temporarily stopped. The state can be avoided. In addition, since the parallel converter was operated so that the energy of the power storage means became the specified value and the input power factor of the AC power was 1, the parallel converter was eventually operated. The high frequency component of the output current flows, and the high frequency component can be absorbed by the parallel converter with simple control.

Claims

' 請 求 の 範 囲 1 . 給電ラインに介挿され且つ逆並列に接続された二つのサイリスタで構 成される給電スィッチと、 'Scope of Claim 1. Power supply switch consisting of two thyristors inserted in the power supply line and connected in anti-parallel,
当該給電スィツチ及び前記給電ラインの出力端間に並列に接続された並列コ ンバ一夕と、  A parallel converter connected in parallel between the power supply switch and the output end of the power supply line;
当該並列コンバータと接続される蓄電手段と、  Power storage means connected to the parallel converter,
前記給電ラインの前記並列コンバ一夕との接続点及び前記出力端間に直列に 接続された直列卜ランスと、  A series transformer connected in series between a connection point of the power supply line with the parallel converter and the output end,
当該直列トランスと接続され且つ前記出力端の交流出力電圧が所定の値とな るように前記蓄電手段をエネルギ源として前記交流出力電圧を調整する直列ィ ンバ一夕と、  A series inverter connected to the series transformer and adjusting the AC output voltage using the power storage means as an energy source such that the AC output voltage at the output terminal has a predetermined value;
前記給電ラインの入力端に入力される交流電力の入力電圧異常を検出する電 圧異常検出手段と、  Voltage abnormality detection means for detecting an input voltage abnormality of AC power input to the input end of the power supply line;
当該電圧異常検出手段の検出結果に応じて前記給電スィツチ及び前記並列コ ンバ一夕を制御する制御手段と、 を備え、  Control means for controlling the power supply switch and the parallel converter according to the detection result of the voltage abnormality detection means,
当該制御手段は、 前記電圧異常検出手段で異常を検出しないときには、 前記 入力端への入力電圧と同極性の電流を流すサイリス夕が点弧するように前記給 電スィッチを制御すると共に、 前記並列コンバータを制御して前記蓄電手段の エネルギが規定値となり且つ前記入力端に入力される交流電力の入力力率が 1 となるように前記並列コンバータを流れる電流を調整し、  The control unit controls the power supply switch so that a thyristor that flows a current having the same polarity as the input voltage to the input terminal is ignited when the voltage abnormality detection unit does not detect an abnormality. Controlling the converter to adjust the current flowing through the parallel converter so that the energy of the power storage means becomes a specified value and the input power factor of the AC power input to the input terminal becomes 1;
前記電圧異常検出手段で異常を検出したときには、 前記給電スィツチを遮断 制御すると共に、 前記蓄電手段をエネルギ源として所定電圧の交流電力を前記 給電ラインに出力するように前記並列コンパ一夕を制御することを特徴とする 無停電電源装置。 When an abnormality is detected by the voltage abnormality detection means, the power supply switch is cut off and controlled, and the parallel comparator is controlled so as to output AC power of a predetermined voltage to the power supply line using the power storage means as an energy source. An uninterruptible power supply device.
2 . 給電ラインに介挿された給電スィッチと、 2. A power supply switch inserted in the power supply line,
前記給電スィツチ及び前記給電ラインの出力端間に並列に接続された並列コ ンバ一夕と、  A parallel converter connected in parallel between the power supply switch and the output end of the power supply line;
当該並列コンバ一夕と接続される蓄電手段と、  Power storage means connected to the parallel converter,
前記給電ラインの前記並列コンバ一夕との接続点及び前記出力端間に直列に 接続された直列トランスと、  A series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal;
当該直列卜ランスに接続され且つ前記出力端の交流出力電圧が所定の値とな るように前記蓄電手段をエネルギ源として前記交流出力電圧を調整する直列ィ ンバ一夕と、  A series member connected to the series transformer and adjusting the AC output voltage using the power storage means as an energy source such that the AC output voltage at the output terminal has a predetermined value;
前記給電ラィンの前記並列コンバ一夕との接続点及び前記給電スィッチ間に 介挿された入力リアクトルと、  A connection point of the power supply line with the parallel converter and an input reactor interposed between the power supply switches;
前記給電ラインの入力端に入力される交流電力の入力電圧異常を検出する電 圧異常検出手段と、  Voltage abnormality detection means for detecting an input voltage abnormality of AC power input to the input end of the power supply line;
当該電圧異常検出手段の検出結果に応じて前記給電スィッチ及び前記並列コ ンバ一夕を制御する制御手段と、 を備え、  Control means for controlling the power supply switch and the parallel converter in accordance with the detection result of the voltage abnormality detection means,
前記制御手段は、 前記電圧異常検出手段で異常を検出しないときには、 前記 給電スィッチを導通制御すると共に、 前記並列コンバータを制御して前記蓄電 手段のエネルギが規定値となるように前記入力リァクトルを流れる電流を調整 し、  When the voltage abnormality detecting means does not detect an abnormality, the control means controls conduction of the power supply switch and controls the parallel converter to flow through the input reactor so that the energy of the power storage means becomes a specified value. Adjust the current,
前記電圧異常検出手段で異常を検出したときには、 前記給電スィツチを遮断 制御すると共に、 前記蓄電手段をエネルギ源として所定電圧の交流電力を前記 給電ラインに出力するように前記並列コンバータを制御することを特徴とする When an abnormality is detected by the voltage abnormality detection means, the power supply switch is cut off and controlled, and the parallel converter is controlled so as to output AC power of a predetermined voltage to the power supply line using the power storage means as an energy source. Feature
3 . 給電ラインに介挿され且つ逆並列に接続された二つのサイリ ス夕で構成される給電スィッチと、 3. A feed switch composed of two thyristors inserted in the feed line and connected in anti-parallel;
前記給電スィツチ及び前記給電ラインの出力端間に並列に接続された並列コ ンバ一夕と、  A parallel converter connected in parallel between the power supply switch and the output end of the power supply line;
当該並列コンパ一夕と接続される蓄電手段と、  Power storage means connected to the parallel computer,
前記給電ラインの前記並列コンバ一夕との接続点及び前記出力端間に直列に 接続された直列トランスと、  A series transformer connected in series between a connection point of the power supply line with the parallel converter and the output terminal;
当該直列卜ランスに接続され且つ前記出力端の交流出力電圧が所定の値とな るように前記蓄電手段をエネルギ源として前記出力電圧を調整する直列ィンバ —夕と、  A series inverter connected to the series transformer and adjusting the output voltage using the power storage means as an energy source so that the AC output voltage at the output terminal becomes a predetermined value;
前記給電ラインの前記並列コンバー夕との接続点及び前記給電スィツチ間に 介揷された入力リアクトルと、 '  An input reactor interposed between a connection point of the power supply line with the parallel converter and the power supply switch;
前記給電ラインの入力端に入力される交流電力の入力電圧異常を検出する電 圧異常検出手段と、  Voltage abnormality detection means for detecting an input voltage abnormality of AC power input to the input end of the power supply line;
当該電圧異常検出手段での検出結果に応じて前記給電スィツチ及び前記並列 コンバータを制御する制御手段と、 を備え、  Control means for controlling the power supply switch and the parallel converter in accordance with a detection result of the voltage abnormality detection means,
前記制御手段は、 前記電圧異常検出手段で異常を検出しないときには、 前記 入力端への入力電圧と同極性の電流を流すサイリス夕が点弧するように前記給 電スィッチを制御すると共に、 前記並列コンバータを制御して前記蓄電手段の エネルギが規定値となり且つ前記入力リアクトルを流れる電流が力率 1となる ように前記入力リアクトルを流れる電流を調整し、  The control means controls the power supply switch so that a thyristor for supplying a current having the same polarity as the input voltage to the input terminal is ignited when the voltage abnormality detection means does not detect an abnormality. Controlling the converter to adjust the current flowing through the input reactor so that the energy of the power storage means becomes a specified value and the current flowing through the input reactor has a power factor of 1;
前記電圧異常検出手段で異常を検出したときには、 前記給電スィッチを遮断 制御すると共に、 前記蓄電手段をエネルギ源として所定電圧の交流電力を前記 給電ラインに出力するように前記並列コンバータを制御することを特徴とする 無停電電源装置。  When an abnormality is detected by the voltage abnormality detection means, the power supply switch is cut off and controlled, and the parallel converter is controlled so as to output AC power of a predetermined voltage to the power supply line using the power storage means as an energy source. Features uninterruptible power supply.
PCT/JP2003/002273 2002-03-06 2003-02-28 Uninterruptible power supply WO2003075430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003211808A AU2003211808A1 (en) 2002-03-06 2003-02-28 Uninterruptible power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002060975A JP2003259567A (en) 2002-03-06 2002-03-06 Uninterruptible power source
JP2002-60975 2002-03-06

Publications (1)

Publication Number Publication Date
WO2003075430A1 true WO2003075430A1 (en) 2003-09-12

Family

ID=27784835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002273 WO2003075430A1 (en) 2002-03-06 2003-02-28 Uninterruptible power supply

Country Status (3)

Country Link
JP (1) JP2003259567A (en)
AU (1) AU2003211808A1 (en)
WO (1) WO2003075430A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100414811C (en) * 2003-10-27 2008-08-27 三菱电机株式会社 Power supply apparatus
JP4893007B2 (en) * 2006-02-07 2012-03-07 サンケン電気株式会社 AC switch
JP5109574B2 (en) * 2007-10-19 2012-12-26 富士電機株式会社 Uninterruptible power system
JP5233450B2 (en) * 2008-07-02 2013-07-10 株式会社明電舎 Instantaneous voltage drop compensation device
JP5428744B2 (en) * 2009-10-21 2014-02-26 株式会社明電舎 Power converter control method
JP5609379B2 (en) * 2010-07-28 2014-10-22 パナソニック株式会社 Hybrid power supply
JP5609380B2 (en) * 2010-07-28 2014-10-22 パナソニック株式会社 Hybrid power supply
US8922062B2 (en) * 2011-03-14 2014-12-30 Sunpower Corporation Automatic voltage regulation for photovoltaic systems
US9935630B2 (en) * 2015-09-18 2018-04-03 Monolithic Power Systems, Inc. AC switch circuit and associated control method
MY181704A (en) 2016-02-05 2021-01-04 Guangdong Oppo Mobile Telecommunications Corp Ltd Charge method, adapter and mobile terminal
EP3291411B1 (en) * 2016-09-01 2019-05-08 Maschinenfabrik Reinhausen GmbH Method for controlling an uninterruptible power supply and installation for an uninterruptible power supply
JP6618210B2 (en) * 2018-02-05 2019-12-11 ニシム電子工業株式会社 Uninterruptible power system
JP7129258B2 (en) * 2018-07-24 2022-09-01 ニシム電子工業株式会社 Uninterruptible power system
CN109818355B (en) * 2019-02-15 2020-11-24 董振隆 Three-port type power grid purifier
CN113922672A (en) * 2020-07-10 2022-01-11 Oppo广东移动通信有限公司 Power adapter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583860A (en) * 1991-09-18 1993-04-02 Toshiba Corp Power converter
JPH05219662A (en) * 1992-02-03 1993-08-27 Fuji Electric Co Ltd Method and apparatus for changing-over aircraft power source
JPH11178216A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Uninterruptible power unit
JPH11299129A (en) * 1998-04-17 1999-10-29 Hitachi Ltd Uninterruptible power supply system connected in parallel with power supply
JP2000060026A (en) * 1998-08-17 2000-02-25 Sanken Electric Co Ltd Uninterruptive power supply
JP2000278882A (en) * 1999-03-24 2000-10-06 Sanyo Denki Co Ltd Uninterruptible power unit
JP2001128390A (en) * 1999-11-01 2001-05-11 Tokyo Gas Co Ltd Uninterruptible power supply system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583860A (en) * 1991-09-18 1993-04-02 Toshiba Corp Power converter
JPH05219662A (en) * 1992-02-03 1993-08-27 Fuji Electric Co Ltd Method and apparatus for changing-over aircraft power source
JPH11178216A (en) * 1997-12-11 1999-07-02 Hitachi Ltd Uninterruptible power unit
JPH11299129A (en) * 1998-04-17 1999-10-29 Hitachi Ltd Uninterruptible power supply system connected in parallel with power supply
JP2000060026A (en) * 1998-08-17 2000-02-25 Sanken Electric Co Ltd Uninterruptive power supply
JP2000278882A (en) * 1999-03-24 2000-10-06 Sanyo Denki Co Ltd Uninterruptible power unit
JP2001128390A (en) * 1999-11-01 2001-05-11 Tokyo Gas Co Ltd Uninterruptible power supply system

Also Published As

Publication number Publication date
JP2003259567A (en) 2003-09-12
AU2003211808A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
CN109417353B (en) Voltage regulating, transforming and rectifying assembly for DC power supply application
WO2013175644A1 (en) Power conversion device
WO2003075430A1 (en) Uninterruptible power supply
US10615636B2 (en) Uninterruptible power supply
US11005268B2 (en) Optimizer, control method and parallel arrangement for photovoltaic system
JPH0866039A (en) Module type electric power feeder
JP3894195B2 (en) Uninterruptible power system
US9647525B2 (en) Power supply device with current limit based on output current and input voltage
Kim et al. Transformerless three-phase on-line UPS with high performance
WO2003103126A1 (en) Power converter
US20050269882A1 (en) Uninterruptible power supply
JP6051274B1 (en) Uninterruptible power system
KR101870749B1 (en) Control apparatus for grid connected type single stage forward-flyback inverter
KR100732220B1 (en) Utility interactive inverter of indirect current control type and control method thereof
KR101318960B1 (en) Uninterruptible power supply and method controlling thereof
CN116529998A (en) Phase-shifting full-bridge converter
KR102112077B1 (en) Uninterruptible power supply with single winding of output winding and inverter winding
JP2004127907A (en) Lighting system
JP3816487B2 (en) AC voltage controller with uninterruptible power supply function
JPS63206165A (en) Uninterruptible power supply
KR930000432B1 (en) Power supply equipment backup system for interruption of service
JP3234908B2 (en) Inverter device
KR20170022169A (en) Power conditioning system and driving method thereof
Elek et al. Design of a 200 amp telecom rectifier family using 50 amp dc-dc converters
KR101522305B1 (en) Voltage sag protector having a reverse current preventing function

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase