WO2003074881A1 - Fluid feed device, and tire vulcanizing equipment using the fluid feed device - Google Patents

Fluid feed device, and tire vulcanizing equipment using the fluid feed device Download PDF

Info

Publication number
WO2003074881A1
WO2003074881A1 PCT/JP2003/002682 JP0302682W WO03074881A1 WO 2003074881 A1 WO2003074881 A1 WO 2003074881A1 JP 0302682 W JP0302682 W JP 0302682W WO 03074881 A1 WO03074881 A1 WO 03074881A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
permanent magnet
drive
magnetic material
side permanent
Prior art date
Application number
PCT/JP2003/002682
Other languages
French (fr)
Japanese (ja)
Inventor
Naofumi Yoshimi
Original Assignee
Ichimaru Giken Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ichimaru Giken Co., Ltd. filed Critical Ichimaru Giken Co., Ltd.
Priority to AU2003221327A priority Critical patent/AU2003221327A1/en
Publication of WO2003074881A1 publication Critical patent/WO2003074881A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0666Heating by using fluids
    • B29D2030/0667Circulating the fluids, e.g. introducing and removing them into and from the moulds; devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0662Accessories, details or auxiliary operations
    • B29D2030/0666Heating by using fluids
    • B29D2030/0667Circulating the fluids, e.g. introducing and removing them into and from the moulds; devices therefor
    • B29D2030/0671Circulating the fluids, e.g. introducing and removing them into and from the moulds; devices therefor the vulcanizing fluids being liquids

Definitions

  • the present invention relates to a fluid feeder for transferring and circulating a fluid (steam, gas, liquid) through a pipeline, and a tire vulcanizing device using the fluid feeder.
  • the tire vulcanizer has upper and lower dies, and a bladder that expands and contracts by supplying and discharging steam (heating fluid).
  • the steam is supplied to the inner surface of the raw tire set inside the dies to expand the tire.
  • a technique has been proposed in which the steam supplied to expand the bladder is circulated in a closed circuit to eliminate the temperature difference in the bladder.
  • a steam supply pipe and a steam discharge pipe connected to the inside of the bladder and a communication that connects the steam supply pipe and the steam pipe are connected.
  • An external circulation circuit is formed with the pipe, and a pump is disposed in the communication pipe, a suction valve is provided on a suction side of the pump, and a discharge valve is provided on a discharge side.
  • the valve is provided with a valve.
  • the steam circulation device is provided at the center of the bladder. It is installed in the mechanism.
  • the present invention has been made to solve the above-described conventional problems.
  • the fluid has a high temperature.
  • the first task is to provide a fluid feeder that can eliminate the trouble of the drive motor due to heat and pressure. .
  • the heating fluid supplied to inflate the bladder can be circulated without pressure pulsation, and can be easily retrofitted to the existing piping system.
  • the central mechanism in the bladder A third object is to provide a tire vulcanizing apparatus that can circulate the heating fluid with a simple structure without any modification and eliminate the temperature difference in the bladder. Disclosure of the invention
  • a fluid feeder according to the present invention (claim 1) is a fluid feeder configured to discharge fluid sucked from a suction port from a discharge port by rotation of an impeller.
  • a driven permanent magnet is attached to a rotating shaft of the impeller, and a driving permanent magnet is attached to a driving shaft for rotating the rotating shaft.
  • the driving permanent magnet and the driven permanent magnet are attached to each other.
  • the configuration is such that they are arranged to face each other in a non-contact state via a non-magnetic or weak magnetic substance.
  • a fluid feeder according to the present invention is a fluid feeder configured to discharge a fluid sucked from a suction port from a discharge port by rotation of an impeller.
  • a driven-side permanent magnet is attached to the rotating shaft of the impeller, and a plurality of coils are disposed on the driven-side permanent magnet so as to face the non-contact state via a non-magnetic material or a weak magnetic material;
  • the plurality of coils are used as a staying coil of a drive motor for rotating the rotating shaft, and the rotating shaft is also used as a drive motor rotating shaft.
  • a tire vulcanizing apparatus in which a bladder expanded by supplying a heating fluid is pressed against an inner surface of a raw tire set therein, a fluid supply pipe and a fluid discharge pipe connected to the inside of the bladder; An external circulation circuit is formed by a communication pipe that connects the supply pipe and the fluid discharge pipe, and the fluid feeder is disposed in the middle of the external circulation circuit.
  • the tire vulcanizing device there is a mode (Claim 6) in which the fluid feeder and the heating device are arranged in the middle of the external circulation circuit.
  • FIG. 1 is a sectional view showing a fluid feeder according to a first embodiment of the present invention.
  • FIG. 2 is a front view showing an impeller of the fluid feeder.
  • FIG. 3 is a sectional view showing a fluid feeder according to a second embodiment of the present invention.
  • FIG. 4 is a sectional view showing a fluid feeder according to a third embodiment of the present invention.
  • FIG. 5 is a sectional view showing a fluid feeder according to a fourth embodiment of the present invention.
  • FIG. 6 is a sectional view showing a fluid feeder according to a fifth embodiment of the present invention.
  • FIG. 7 is a sectional view showing a fluid feeder according to a sixth embodiment of the present invention.
  • FIG. 8 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
  • FIG. 9 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
  • FIG. 10 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
  • FIG. 11 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
  • FIG. 1 is a sectional view of a fluid feeder according to a first embodiment of the present invention
  • FIG. 2 is a front view showing an impeller of the fluid feeder.
  • reference numeral 1 denotes a casing, in which a fluid feed chamber 11 and a drive unit accommodation chamber 12 are formed.
  • a suction port 13 is formed in a central portion, and a discharge port 14 is formed in an outer periphery.
  • the suction port 13 and the discharge port 14 are communicated with the fluid feed chamber 11 .
  • a non-magnetic material titanium, stainless steel, plastic, aluminum, ceramic, etc. or a composite material containing them
  • a weak magnetic material titanium, stainless steel, aluminum, etc., or a composite material containing them
  • the partition member 15 is formed in a cup shape that partitions the drive unit housing space 12 into the rotating shaft side 21 of the impeller 2 and the motor shaft 31 (drive shaft) of the drive motor 3.
  • An impeller 2 using a plate fan is disposed in the fluid feed space 11, and a rotating shaft 21 of the impeller 2 is rotatably supported on an inner surface of the partition member 15. '
  • a drive motor 3 is attached to the rear end of the casing 1, and a cylindrical rotating body 32 is attached to a motor shaft 31 (drive shaft) of the drive motor 3.
  • the cylindrical rotating body 32 is supported by the outer surface of the partition member 15.
  • a drive-side permanent magnet 5 is attached to the inner periphery of the cylindrical rotating body 32, and the drive-side permanent magnet 5 and the driven-side permanent magnet 4 are partitioned by a non-magnetic material or a weak magnetic material. They are arranged so as to face each other in the radial direction in a non-contact state via 5.
  • a blade 33 protrudes from the outer periphery of the cylindrical rotating body 32, and the air in the casing 1 is exhausted by the rotation of the blade 33 accompanying the rotation of the cylindrical rotating body 32. From the exhaust.
  • the driven-side permanent magnet 4 Since the drive-side permanent magnet 5 and the driven-side permanent magnet 4 attached to the rotating shaft 21 are opposed in the radial direction, the driven-side permanent magnet 4 is driven by the attraction of the two permanent magnets 4 and 5.
  • the permanent magnet 5 rotates.
  • the rotating shaft 21 rotates with the impeller 2, and the rotation of the impeller 2 sucks fluid from the suction port 13 into the fluid feed space 11 and discharges the sucked fluid into the discharge port 14. Can be discharged from
  • the suction and discharge of the fluid are performed by the impeller 2, the suction and discharge of the fluid can be performed continuously without pulsation.
  • the drive-side permanent magnet 5 and the driven-side permanent magnet 4 are radially opposed to each other in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material, the rotating shaft 2 No heat is transmitted from 1 to the motor shaft 31.
  • the rotating shaft 21 and the motor shaft 31 are completely separated by the partition member 15, the rotating shaft 21 is in a sealed state, and the pressure resistance can be improved.
  • FIG. 3 is a sectional view of a fluid feeder according to a second embodiment of the present invention.
  • a driven permanent magnet 4 is attached to the inner periphery of a cylindrical body 22 attached to a rotating shaft 21 of an impeller 2, while a motor shaft 3 1 ( A drive-side permanent magnet 5 is attached to the outer periphery of the drive shaft).
  • the drive-side permanent magnet 5 and the driven-side permanent magnet 4 are arranged so as to face each other in a radial direction in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material.
  • the driven permanent magnets 4 are linked to the driven permanent magnets 5 and rotated by the inquiries of the two permanent magnets 4 and 5.
  • FIG. 4 is a sectional view showing a fluid feeder according to a third embodiment of the present invention.
  • This fluid feeder C is provided with left and right fluid feeders 10, 10 sharing the rotary shaft 21 by attaching impellers 2, 2 on the left and right of the rotary shaft 21.
  • the driven-side permanent magnet 4 is attached to the outer periphery of 21.
  • a partition member 15 as a non-magnetic or weak magnetic material is attached so as to surround the outer periphery of the rotary shaft 21.
  • a belt pulley 31 a (drive shaft) is mounted on the outer periphery of the partition member 15.
  • a drive-side permanent magnet 5 is attached to the inner periphery of the belt pulley 31a, and is rotatably supported. The drive-side permanent magnet 5 and the driven-side permanent magnet 4 form the partition member 15 In the radial direction in a non-contacting state.
  • the belt pulley 31a is driven to rotate by a belt 31c wound around the belt pulley 31 of the driving motor 3.
  • the fluid feeder C rotates the belt pulley 31 a as a drive shaft with the drive-side permanent magnet 5 due to the transmission of rotational power by the belt 31 c. .
  • the driven permanent magnet 4 is linked to the drive permanent magnet 5 and rotates.
  • the rotating shaft 21 rotates with the left and right impellers 2, 2, and the rotation of the impellers 2, 2 causes the left and right fluid feed portions 10, 10 to send the fluid from the suction port 13, respectively.
  • the fluid can be sucked into the space 11 and the sucked fluid can be discharged from the outlet 14.
  • FIG. 5 is a sectional view showing a fluid feeder according to a fourth embodiment of the present invention.
  • the driven permanent magnet 4 attached to the rotating shaft 21 of the impeller 2 and the drive permanent magnet 5 attached to the motor shaft 31 (drive shaft) of the drive motor 3 are: They face each other in the thrust direction in a non-contact state via a partition member 15 as a nonmagnetic material or a weak magnetic material.
  • FIG. 6 is a sectional view showing a fluid feeder according to a fifth embodiment of the present invention.
  • a plurality of coils 6 are provided in a non-contact manner around a driven permanent magnet 4 attached to the rotating shaft 21 of the impeller 2 via a partition member 15 as a non-magnetic or weak magnetic material. They are arranged to face each other in the state.
  • the plurality of coils 6 are used as a staying coil of the drive motor 3a, and the rotating shaft 21 is also used as a mouth of the drive motor 3a.
  • the drive motor 3a is formed as a DC motor whose magnetic poles are switched by a commutator (not shown).
  • FIG. 7 is a schematic view showing a fluid feeder according to a sixth embodiment of the present invention.
  • a driven permanent magnet 4 is mounted on the inner circumference of a cylindrical rotating body 22 mounted on the rotating shaft 21 of the impeller 2, and a plurality of coils are mounted on the inner circumference of the driven permanent magnet 4. 6 are disposed so as to face each other in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material.
  • the plurality of coils 6 are used as a staying coil of the drive motor 3a, and the rotary shaft 21 has a direct drive (direct drive) structure also used as a rotor of the drive motor 3a. I have.
  • an axial fan, a sirocco fan, an evening fan, or the like can be used as the impeller in addition to the plate fan.
  • the fluid to be sent may be steam, gas, or liquid
  • the installation target may be installed in the middle of a pipeline to transfer fluid, or may be installed in a circulation pipeline. And can be used for fluid circulation.
  • the rotating shaft may lose synchronism due to slippage. It can be detected by value.
  • the step-out of the rotating shaft can be detected by using a normal proximity sensor or a magnetic sensor.
  • FIG. 8 is a schematic sectional view showing an embodiment of a tire vulcanizing apparatus using the fluid feeder A (shown in FIG. 1) of the first embodiment.
  • the tire vulcanizing apparatus G includes upper and lower dies 7, 7 and a bladder 70 that expands and contracts by supplying and discharging the heating fluid.
  • the inner surface of a raw tire T set inside the dies 7, 7
  • the bladder 70 expanded by the supply of the heating fluid high-temperature and high-pressure steam
  • a fluid supply pipe 8a provided with an on-off valve 80 and a fluid discharge pipe 8b provided with an on-off valve 81 are connected. Also at the position closer to the bladder 70, the fluid supply pipe 8a and the fluid discharge pipe 8b are connected by a communication pipe 8c, and external circulation is performed by the communication pipe 8c, the fluid supply pipe 8a, and the fluid discharge pipe 8b. Circuit 8 is formed. Therefore, a closed circulation circuit is formed between the external circulation circuit 8 and the inside of the bladder 70.
  • the on-off valve 82 is also provided on the communication pipe 8c.
  • the fluid feeder A is provided in the middle of the external circulation circuit 8.
  • the fluid feeder A is provided in the middle of the fluid supply pipe 8a. 13 is connected to the on-off valve 80 side, and the discharge port 14 is connected to the bladder 70 side.
  • a heating device 9 is provided in the fluid discharge pipe 8b.
  • a steam jacket or an electric heating heater is used for the heating device 9.
  • the heating device 9 heats a heating fluid in a closed circulation circuit formed by the external circulation circuit 8 and the inside of the bladder 70. To prevent the temperature and pressure of the heated fluid from dropping.
  • the mounting position of the heating device 9 may be anywhere in the external circulation circuit 8.
  • the open / close valves 80, 81 are opened with the raw tire T set in the molds 7, 7, and the heating fluid is supplied from the fluid supply pipe 8a, the bladder 70 The heating fluid flows into the inside, and the on-off valves 80 and 81 are closed in a state where the inside of the bladder 70 is filled with the heating fluid.
  • the on-off valve 82 of the communication pipe 8c is opened, the external circulation circuit 8 is opened, and the bladder 70 is circulated with the inside. A closed circuit is formed.
  • the fluid feeder A is operated to circulate the heating fluid in the closed circulation circuit by the rotation of the impeller 2, and the circulation of the heating fluid eliminates the temperature difference in the bladder 70. be able to.
  • the fluid feeder A performs the suction and discharge of the heating fluid by the impeller 2 as described above, the suction and discharge of the fluid can be performed continuously without pulsation, The pressure change in the bladder 70 can be prevented.
  • the basic condition of tire vulcanization of pressing the bladder 70 against the inner surface of the green tire T with a constant pressure can be secured.
  • the green tire T is vulcanized while circulating the heating fluid.
  • the on-off valve 81 is opened, and the on-off valves 80 and 82 are closed to operate the fluid feeder A, whereby the bladder 70 is opened.
  • the heating fluid filled inside can be discharged from the fluid discharge pipe 8b.
  • FIG. 9 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
  • the tire vulcanizing apparatus H is an example in which a fluid feeder A (shown in FIG. 1) is disposed in a fluid discharge pipe 8b, and an inlet 13 of the fluid feeder A is connected to a bladder 70 side.
  • the discharge port 14 is connected to the on-off valve 81 side. This makes it possible to discharge the heating fluid from inside the bladder 170 smoothly and quickly.
  • FIG. 10 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
  • the tire vulcanizing apparatus J is an example using the fluid feeder C (shown in FIG. 4), in which one fluid feeder 10 is disposed in a fluid supply pipe 8a, and the other fluid feeder 10 is provided. Is disposed in the fluid discharge pipe 8b.
  • FIG. 11 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
  • This tire vulcanizing apparatus K is an example in which a fluid feeder A (shown in FIG. 1) is disposed in a communication pipe 8c, and an inlet 13 of the fluid feeder A is connected to a fluid discharge pipe 8b side.
  • the discharge port 14 is connected to the fluid supply pipe 8a.
  • a second discharge pipe 8d is branched and piped between the on-off valve 80 and the communication pipe connection portion 83 in the fluid supply pipe 8a, and an on-off valve 84 is provided in the second discharge pipe 8d. Have been.
  • the on-off valve 82 is opened, and the on-off valves 80, 81, 84 are closed, and the fluid feeder A is operated.
  • the on-off valves 80, 81 are opened, and the on-off valves 82, 84 are closed, and the fluid feeder A is not operated.
  • the on-off valves 81, 82, 84 are opened, the on-off valve 80 is closed, and the fluid feeder A is operated. 3 Thereby, the fluid can be discharged from both the fluid discharge pipe 8b and the second discharge pipe 8d, and the discharge from the bladder 170 can be performed more smoothly and quickly.
  • the mounting direction of the fluid feeder A is, as shown in the illustrated example, a direction in which the heating fluid is circulated in the order of the fluid supply pipe 8a—the bladder 70 ⁇ the fluid discharge pipe 8b ⁇ the communication pipe 8c.
  • the fluid discharge pipe 8b ⁇ the bladder 70 ⁇ the fluid supply pipe 8a ⁇ the communication pipe 8c can be mounted in the direction of circulation.
  • the fluid feeder (Claim 1 or 2) of the present invention since the rotating shaft of the impeller is not in contact with the motor shaft of the driving motor, the fluid is heated at a high temperature. Even if there is, the heat is not transmitted from the rotating shaft side to the drive motor side, and the trouble of the drive motor due to the heat can be solved.
  • the impeller can be rotated by a direct drive by a driving motor while the rotating shaft of the impeller is kept out of contact, so that the fluid is Even if the temperature is high, the heat is not transmitted from the rotating shaft side to the drive motor side, and the structure can be simplified.
  • the rotary shaft side since the non-magnetic material is formed on the partition member that partitions the rotary shaft side and the motor shaft side, the rotary shaft side has a sealed structure. And the pressure resistance performance can be improved.
  • the heating element supplied for inflating the bladder is circulated without pressure pulsation, so that the temperature difference within the bladder 1 Pressure fluctuation can be eliminated.
  • the heating device can heat the heating fluid in the closed circulation circuit, so that the temperature and pressure of the heating fluid decrease. Can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

A fluid feed device (A) capable of eliminating a trouble with a drive motor due to heat and pressure by preventing heat and pressure from being transmitted from a rotating shaft side to a drive motor side even if fluid is hot, wherein fluid sucked from a suction port (13) is discharged from a discharge port (14) by the rotation of an impeller (2), driven side permanent magnets (4) are fitted to the rotating shaft (21) of the impeller, drive side permanent magnets (5) are fitted to a drive shaft (motor shaft (31) of the motor (3)) for rotating the rotating shaft, and the drive side permanent magnets and the driven side permanent magnets are opposed to each other, in the state of non-contact with each other, through non-magnetic substance.

Description

明細書 流体送り装置及びこの流体送り装置を使用したタイャ加硫装置 技術分野  TECHNICAL FIELD A fluid feeder and a tire vulcanizer using the fluid feeder
本発明は、 流体 (蒸気、 気体、 液体) を管路によって移送、 循環させるた めの流体送り装置及びこの流体送り装置を使用したタイヤ加硫装置に関する 背景技術  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid feeder for transferring and circulating a fluid (steam, gas, liquid) through a pipeline, and a tire vulcanizing device using the fluid feeder.
従来、 流体送り装置として、 駆動モータにより羽根車を回転させて、 吸入 口から吸入した流体を吐出口から吐出させるようにしたポンプやブロア一等、 諸々のものがある。  2. Description of the Related Art Conventionally, there are various types of fluid feeders, such as a pump and a blower, in which an impeller is rotated by a drive motor to discharge fluid sucked from a suction port through a discharge port.
しかしながら、 このような従来の流体送り装置は、 羽根車の回転軸が駆動 モータのモータ軸に連結されているため、 特に、 流体が高温 ·高圧である場 合 (例えば、高温 ·高圧蒸気) 、 その熱や圧力が回転軸側から駆動モー夕側に 伝達され、 駆動モータのトラブルの原因になるという問題があった。  However, in such a conventional fluid feeder, since the rotating shaft of the impeller is connected to the motor shaft of the drive motor, especially when the fluid has a high temperature and a high pressure (for example, a high temperature and a high pressure steam), The heat and pressure are transmitted from the rotating shaft to the drive motor side, causing a problem with the drive motor.
また、 タイヤ加硫装置は、 上下の金型と、 蒸気 (加熱流体) の供給 ·排出 によって拡縮するブラダーを備え、 前記金型の内部にセッ卜した生タイヤの 内面に、 蒸気の供給によって膨張したブラダーを押し付けるように構成され るが、 この場合、 ブラダ一を膨張させるために供給する蒸気を閉回路で循環 させて、 ブラダ一内の温度差を解消させる技術が提案されている。  In addition, the tire vulcanizer has upper and lower dies, and a bladder that expands and contracts by supplying and discharging steam (heating fluid). The steam is supplied to the inner surface of the raw tire set inside the dies to expand the tire. In this case, a technique has been proposed in which the steam supplied to expand the bladder is circulated in a closed circuit to eliminate the temperature difference in the bladder.
例えば、 特開昭 6 2— 3 3 6 1 1号公報に記載された技術では、 ブラダ一 の内部に接続する蒸気供給管及び蒸気排出管と、 この蒸気供給管及び蒸気気 管を連通させる連通管とで外部循環回路が形成され、 そして、 前記連通管に ポンプを配設すると共に、 このポンプの吸い込み側に吸入弁を、 吐出側に吐 出弁を設けた構成になっている。 For example, in the technology described in Japanese Patent Application Laid-Open No. Sho 62-33631, a steam supply pipe and a steam discharge pipe connected to the inside of the bladder and a communication that connects the steam supply pipe and the steam pipe are connected. An external circulation circuit is formed with the pipe, and a pump is disposed in the communication pipe, a suction valve is provided on a suction side of the pump, and a discharge valve is provided on a discharge side. The valve is provided with a valve.
しかしながら、 このようにポンプによって送られる蒸気を吸入弁と吐出弁 の切り換えによって循環させる方式では、 蒸気の圧力に脈動が生じ、 ブラダ 一内で圧力変化が生じてしまい、 ブラダーを一定圧力で生タイヤの内面に押 し付けるという夕ィャ加硫の基本条件から外れてしまう。  However, in such a method in which the steam sent by the pump is circulated by switching between the suction valve and the discharge valve, the steam pressure pulsates, causing a pressure change in the bladder, and the bladder is pressed at a constant pressure on the raw tire. It deviates from the basic condition of evening vulcanization of pressing against the inner surface of the steel.
また、 実開平 5 - 1 3 7 1 3号公報の技術のようにポンプに噴流ポンプを 用いたものもあるが、 これもブラダー内の圧力を低下させる必要があるため、 ブラダー内で圧力変化が生じてしまう。  Also, there is a technique using a jet pump as a pump as in the technique disclosed in Japanese Utility Model Application Laid-Open No. 5-13713.However, since the pressure inside the bladder must be reduced, the pressure change Will happen.
また、 特開昭 5 7— 1 3 8 9 3 0号公報、 特開昭 5 9— 1 1 5 8 2 7号公 報等に記載された技術では、 蒸気の循環装置をブラダ一内の中心機構に設置 したものとなっている。  Further, in the technology described in Japanese Patent Application Laid-Open Nos. 57-138390 and 59-159587, the steam circulation device is provided at the center of the bladder. It is installed in the mechanism.
このように、 蒸気の循環装置をブラダー内の中心機構に設置させると、 構 造が非常に複雑になり、 高コストになるし、 メンテナンス (分解,組立) も 容易でなくなる。  If the steam circulation device is installed in the central mechanism in the bladder, the structure becomes very complicated, the cost increases, and maintenance (disassembly and assembly) becomes difficult.
本発明は、 上記のような従来の問題を解決するためになされたもので、 羽 根車の回転軸と駆動モ一夕のモー夕軸とを非接触にすることで、 流体が高温 であったとしても、 その熱や圧力が回転軸側から駆動モータ側に伝達される ことがなく、 熱や圧力による駆動モータのトラブルを解消できる流体送り装 置を提供することを第 1の課題としている。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described conventional problems. By making the rotating shaft of the impeller non-contact with the motor shaft of the driving motor, the fluid has a high temperature. Even if the heat and pressure are not transmitted from the rotating shaft side to the drive motor side, the first task is to provide a fluid feeder that can eliminate the trouble of the drive motor due to heat and pressure. .
また、 羽根車の回転軸を非接触にしながら、 駆動モー夕によるダイレクト ドライブで羽根車を回転させることができる流体送り装置を提供することを 第 2の課題としている。  It is a second object of the present invention to provide a fluid feeder that can rotate the impeller by direct drive using a drive motor while keeping the rotation shaft of the impeller out of contact.
また、 タイヤ加硫装置において、 ブラダーを膨張させるために供給する加 熱流体を圧力の脈動がない状態で循環させることができ、 また、 既存の配管 系に後付けで簡単に取り付けることができ、 また、 ブラダー内の中心機構に 何らの手を加えることがない簡単構造で加熱流体を循環させて、 ブラダ一内 の温度差を解消させることができるタイヤ加硫装置を提供することを第 3の 課題としている。 発明の開示 Also, in the tire vulcanizer, the heating fluid supplied to inflate the bladder can be circulated without pressure pulsation, and can be easily retrofitted to the existing piping system. The central mechanism in the bladder A third object is to provide a tire vulcanizing apparatus that can circulate the heating fluid with a simple structure without any modification and eliminate the temperature difference in the bladder. Disclosure of the invention
上記第 1の課題を解決するために、 本発明 (請求項 1 ) の流体送り装置は、 吸入口から吸入した流体を羽根車の回転により吐出口から吐出させるよう にした流体送り装置であって、 前記羽根車の回転軸に従動側永久磁石が取り 付けられ、 前記回転軸を回転させるための駆動軸に駆動側永久磁石が取り付 けられ、 この駆動側永久磁石と前記従動側永久磁石が非磁性体又は弱磁性体 を介して非接触状態で対向するように配設されている構成とした。  In order to solve the first problem, a fluid feeder according to the present invention (claim 1) is a fluid feeder configured to discharge fluid sucked from a suction port from a discharge port by rotation of an impeller. A driven permanent magnet is attached to a rotating shaft of the impeller, and a driving permanent magnet is attached to a driving shaft for rotating the rotating shaft. The driving permanent magnet and the driven permanent magnet are attached to each other. The configuration is such that they are arranged to face each other in a non-contact state via a non-magnetic or weak magnetic substance.
前記流体送り装置 (請求項 1 ) において、 前記駆動側永久磁石と前記従動 側永久磁石が非磁性体又は弱磁性体を介して非接触状態でラジアル方向又は スラスト方向に対向するように配設されている態様 (請求項 2 ) がある。 上記第 2の課題を解決するために、 本発明 (請求項 3 ) の流体送り装置は、 吸入口から吸入した流体を羽根車の回転により吐出口から吐出させるよう にした流体送り装置であって、 前記羽根車の回転軸に従動側永久磁石が取り 付けられ、 この従動側永久磁石に複数のコイルが非磁性体又は弱磁性体を介 して非接触状態で対向するように配設され、 この複数のコイルが前記回転軸 を回転させるための駆動モータのステ一夕用コイルとして用いられ、 前記回 転軸が駆動モータのロー夕として兼用されている構成とした。  In the fluid feeder (Claim 1), the driving-side permanent magnet and the driven-side permanent magnet are disposed so as to face each other in a radial direction or a thrust direction in a non-contact state via a non-magnetic material or a weak magnetic material. (Claim 2). In order to solve the second problem, a fluid feeder according to the present invention (claim 3) is a fluid feeder configured to discharge a fluid sucked from a suction port from a discharge port by rotation of an impeller. A driven-side permanent magnet is attached to the rotating shaft of the impeller, and a plurality of coils are disposed on the driven-side permanent magnet so as to face the non-contact state via a non-magnetic material or a weak magnetic material; The plurality of coils are used as a staying coil of a drive motor for rotating the rotating shaft, and the rotating shaft is also used as a drive motor rotating shaft.
前記流体送り装置 (請求項 1〜 3 ) において、 前記非磁性体又は弱磁性体 が回転軸側と駆動軸側を区画する仕切部材に形成されている態様 (請求項 4 ) がある。  In the fluid feeder (Claims 1 to 3), there is a mode (Claim 4) in which the non-magnetic material or the weak magnetic material is formed on a partition member that partitions a rotation shaft side and a drive shaft side.
上記第 3の課題を解決するために、 本発明 (請求項 5 ) のタイヤ加硫装置 は、 In order to solve the third problem, a tire vulcanizing apparatus according to the present invention (claim 5) is provided. Is
前記請求項 1〜4のいずれかに記載の流体送り装置を使用したタイヤ加硫 装置であって、 上下の金型と、 加熱流体の供給 '排出によって拡縮するブラ ダーを備え、 前記金型の内部にセットした生タイヤの内面に、 加熱流体の供 給によって膨張したブラダ一を押し付けるようにしたタイヤ加硫装置におい て、 前記ブラダーの内部に接続する流体供給管及び流体排出管と、 この流体 供給管及び流体排出管を連通させる連通管とで外部循環回路が形成され、 こ の外部循環回路の途中に前記流体送り装置が配設されている構成とした。 前記タイヤ加硫装置 (請求項 5 ) において、 前記外部循環回路の途中に前 記流体送り装置と加熱装置が配設されている態様 (請求項 6 ) がある。 図面の簡単な説明  A tire vulcanizer using the fluid feeder according to any one of claims 1 to 4, comprising: upper and lower dies; and a bladder that expands and contracts by supplying and discharging a heating fluid. In a tire vulcanizing apparatus in which a bladder expanded by supplying a heating fluid is pressed against an inner surface of a raw tire set therein, a fluid supply pipe and a fluid discharge pipe connected to the inside of the bladder; An external circulation circuit is formed by a communication pipe that connects the supply pipe and the fluid discharge pipe, and the fluid feeder is disposed in the middle of the external circulation circuit. In the tire vulcanizing device (Claim 5), there is a mode (Claim 6) in which the fluid feeder and the heating device are arranged in the middle of the external circulation circuit. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1実施例である流体送り装置を示す断面図である。  FIG. 1 is a sectional view showing a fluid feeder according to a first embodiment of the present invention.
図 2は流体送り装置の羽根車を示す正面図である。  FIG. 2 is a front view showing an impeller of the fluid feeder.
図 3は本発明の第 2実施例である流体送り装置を示す断面図である。  FIG. 3 is a sectional view showing a fluid feeder according to a second embodiment of the present invention.
図 4は本発明の第 3実施例である流体送り装置を示す断面図である。  FIG. 4 is a sectional view showing a fluid feeder according to a third embodiment of the present invention.
図 5は本発明の第 4実施例である流体送り装置を示す断面図である。  FIG. 5 is a sectional view showing a fluid feeder according to a fourth embodiment of the present invention.
図 6は本発明の第 5実施例である流体送り装置を示す断面図である。  FIG. 6 is a sectional view showing a fluid feeder according to a fifth embodiment of the present invention.
図 7は本発明の第 6実施例である流体送り装置を示す断面図である。  FIG. 7 is a sectional view showing a fluid feeder according to a sixth embodiment of the present invention.
図 8は本発明のタイヤ加硫装置の実施例を示す概略断面図である。  FIG. 8 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
図 9は本発明のタイヤ加硫装置の実施例を示す概略断面図である。  FIG. 9 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
図 1 0は本発明のタイヤ加硫装置の実施例を示す概略断面図である。  FIG. 10 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention.
図 1 1は本発明のタイヤ加硫装置の実施例を示す概略断面図である。 発明を実施するための最良の形態 以下、 本発明の実施の形態を図面に示す実施例により説明する。 尚、 本発 明の具体的な構成は、 以下の実施例に限定されるものではない。 FIG. 11 is a schematic sectional view showing an embodiment of the tire vulcanizing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings. The specific configuration of the present invention is not limited to the following embodiments.
図 1は本発明の第 1実施例である流体送り装置の断面図、 図 2は流体送り 装置の羽根車を示す正面図である。  FIG. 1 is a sectional view of a fluid feeder according to a first embodiment of the present invention, and FIG. 2 is a front view showing an impeller of the fluid feeder.
図において、 1はケーシングで、 内部に流体送り室 1 1及び駆動部収容室 1 2が形成されている。  In the figure, reference numeral 1 denotes a casing, in which a fluid feed chamber 11 and a drive unit accommodation chamber 12 are formed.
前記ケーシング 1には、 中央部分に吸入口 1 3が形成され、 外周に吐出口 1 4が形成され、 この吸入口 1 3及び吐出口 1 4は前記流体送り室 1 1内に 連通されている。  In the casing 1, a suction port 13 is formed in a central portion, and a discharge port 14 is formed in an outer periphery. The suction port 13 and the discharge port 14 are communicated with the fluid feed chamber 11 .
前記ケ一シング 1の内部には、 非磁性体 (チタン、 ステンレス、 ブラスチ ック、 アルミ、 セラミック等又はそれらを含む複合材) 又は弱磁性体 (チタ ン、 ステンレス、 アルミ等又はそれらを含む複合材) により形成された仕切 部材 1 5が取り付けられている。  Inside the casing 1, a non-magnetic material (titanium, stainless steel, plastic, aluminum, ceramic, etc. or a composite material containing them) or a weak magnetic material (titanium, stainless steel, aluminum, etc., or a composite material containing them) The partition member 15 formed of the material is attached.
この仕切部材 1 5は、 前記駆動部収容空間 1 2を羽根車 2の回転軸側 2 1 と駆動モータ 3のモータ軸 3 1 (駆動軸) 側に区画するカップ状に形成され ている。  The partition member 15 is formed in a cup shape that partitions the drive unit housing space 12 into the rotating shaft side 21 of the impeller 2 and the motor shaft 31 (drive shaft) of the drive motor 3.
前記流体送り空間 1 1には、 プレートファンによる羽根車 2が配置され、 この羽根車 2の回転軸 2 1が前記仕切部材 1 5の内面に回転自在に軸支され ている。 '  An impeller 2 using a plate fan is disposed in the fluid feed space 11, and a rotating shaft 21 of the impeller 2 is rotatably supported on an inner surface of the partition member 15. '
したがって、 前記羽根車 2及び回転軸 2 1は、 仕切部材 1 5によって流体 送り空間 1 1側に密封された状態になっている。  Therefore, the impeller 2 and the rotary shaft 21 are sealed by the partition member 15 on the fluid feed space 11 side.
前記ケーシング 1の後端には、 駆動モー夕 3が取り付けられ、 この駆動モ 一夕 3のモ一夕軸 3 1 (駆動軸) に筒状回転体 3 2が取り付けられている。 前記筒状回転体 3 2は、 前記仕切部材 1 5の外面に軸支されている。  A drive motor 3 is attached to the rear end of the casing 1, and a cylindrical rotating body 32 is attached to a motor shaft 31 (drive shaft) of the drive motor 3. The cylindrical rotating body 32 is supported by the outer surface of the partition member 15.
そして、 前記回転軸 2 1の外周に従動側永久磁石 4が取り付けられると共 に、 前記筒状回転体 3 2の内周に駆動側永久磁石 5が取り付けられ、 この駆 動側永久磁石 5と前記従動側永久磁石 4が非磁性体又は弱磁性体としての仕 切部材 1 5を介して非接触状態でラジアル方向に対向するように配設されて いる。 When the driven permanent magnet 4 is attached to the outer periphery of the rotating shaft 21, In addition, a drive-side permanent magnet 5 is attached to the inner periphery of the cylindrical rotating body 32, and the drive-side permanent magnet 5 and the driven-side permanent magnet 4 are partitioned by a non-magnetic material or a weak magnetic material. They are arranged so as to face each other in the radial direction in a non-contact state via 5.
なお、 前記筒状回転体 3 2の外周には羽根 3 3が突設され、 筒状回転体 3 2の回転に伴なう羽根 3 3の回転より、 ケーシング 1内の空気を排気穴 1 6 から排気させるようになつている。  A blade 33 protrudes from the outer periphery of the cylindrical rotating body 32, and the air in the casing 1 is exhausted by the rotation of the blade 33 accompanying the rotation of the cylindrical rotating body 32. From the exhaust.
このように構成された流体送り装置 Aでは、 駆動モー夕 3を駆動させると、 モー夕軸 3 1に取り付けた筒状回転体 3 2が駆動側永久磁石 5を伴なつて回 転する。  In the fluid feeder A configured as described above, when the drive motor 3 is driven, the cylindrical rotating body 32 attached to the motor shaft 31 rotates with the drive-side permanent magnet 5.
この駆動側永久磁石 5と、 回転軸 2 1に取り付けた従動側永久磁石 4とは、 ラジアル方向に対向しているため、 両永久磁石 4 , 5の引き合いによって従 動側永久磁石 4は駆動側永久磁石 5に連られて回転する。 これにより回転軸 2 1が羽根車 2を伴なつて回転し、 この羽根車 2の回転により吸入口 1 3か ら流体送り空間 1 1に流体を吸入すると共に、 吸入した流体を吐出口 1 4か ら排出させることができる。  Since the drive-side permanent magnet 5 and the driven-side permanent magnet 4 attached to the rotating shaft 21 are opposed in the radial direction, the driven-side permanent magnet 4 is driven by the attraction of the two permanent magnets 4 and 5. The permanent magnet 5 rotates. As a result, the rotating shaft 21 rotates with the impeller 2, and the rotation of the impeller 2 sucks fluid from the suction port 13 into the fluid feed space 11 and discharges the sucked fluid into the discharge port 14. Can be discharged from
この場合、 流体の吸入 ·排出を羽根車 2によって行うため、 流体の吸入 · 排出を脈動がない状態で連続的に行うことができる。  In this case, since the suction and discharge of the fluid are performed by the impeller 2, the suction and discharge of the fluid can be performed continuously without pulsation.
また、 前記駆動側永久磁石 5と従動側永久磁石 4とは、 非磁性体又は弱磁 性体としての仕切部材 1 5を介して非接触状態でラジアル方向に対向してい るため、 回転軸 2 1からモータ軸 3 1に熱が伝わることがない。  Further, since the drive-side permanent magnet 5 and the driven-side permanent magnet 4 are radially opposed to each other in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material, the rotating shaft 2 No heat is transmitted from 1 to the motor shaft 31.
また、 回転軸 2 1側とモ一夕軸 3 1側とが仕切部材 1 5によって完全に区 画されているため、 回転軸 2 1側が密封状態になり、 耐圧性能を向上させる ことができる。  In addition, since the rotating shaft 21 and the motor shaft 31 are completely separated by the partition member 15, the rotating shaft 21 is in a sealed state, and the pressure resistance can be improved.
次に、 図 3は本発明の第 2実施例である流体送り装置の断面図である。 この流体送り装置 Bは、 羽根車 2の回転軸 2 1に取り付けた筒状体 2 2の 内周に従動側永久磁石 4が取り付けられ、 他方、 駆動モー夕 3のモ一夕軸 3 1 (駆動軸) の外周に駆動側永久磁石 5が取り付けられている。 Next, FIG. 3 is a sectional view of a fluid feeder according to a second embodiment of the present invention. In the fluid feeder B, a driven permanent magnet 4 is attached to the inner periphery of a cylindrical body 22 attached to a rotating shaft 21 of an impeller 2, while a motor shaft 3 1 ( A drive-side permanent magnet 5 is attached to the outer periphery of the drive shaft).
前記駆動側永久磁石 5と前記従動側永久磁石 4が非磁性体又は弱磁性体と しての仕切部材 1 5を介して非接触状態でラジアル方向に対向するように配 設され、 駆動モ一夕 3の駆動に伴ない、 両永久磁石 4, 5の引き合いによつ て従動側永久磁石 4は駆動側永久磁石 5に連られて回転する。  The drive-side permanent magnet 5 and the driven-side permanent magnet 4 are arranged so as to face each other in a radial direction in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material. Following the drive in evening 3, the driven permanent magnets 4 are linked to the driven permanent magnets 5 and rotated by the inquiries of the two permanent magnets 4 and 5.
なお、 その他の構成及び作用は、 前記第 1実施例と同様であるため、 図面 の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the first embodiment, the same reference numerals in the drawings denote the same parts, and a description thereof will be omitted.
図 4は本発明の第 3実施例である流体送り装置を示す断面図である。  FIG. 4 is a sectional view showing a fluid feeder according to a third embodiment of the present invention.
この流体送り装置 Cは、 回転軸 2 1の左右に羽根車 2, 2を取り付けるこ とで、 回転軸 2 1を共通にした左右の流体送り部 1 0 , 1 0を備え、 前記回 転軸 2 1の外周に従動側永久磁石 4が取り付けられている。  This fluid feeder C is provided with left and right fluid feeders 10, 10 sharing the rotary shaft 21 by attaching impellers 2, 2 on the left and right of the rotary shaft 21. The driven-side permanent magnet 4 is attached to the outer periphery of 21.
又、 前記回転軸 2 1の外周を囲むように非磁性体又は弱磁性体としての仕 切部材 1 5が取り付けられ、 この仕切部材 1 5の外周にベルト用プーリ 3 1 a (駆動軸) が回転自在に軸支され、 このベルト用プーリ 3 1 aの内周に駆 動側永久磁石 5が取り付けられ、 この駆動側永久磁石 5と前記従動側永久磁 石 4とが前記仕切部材 1 5を介して非接触状態でラジアル方向に対向してい る。  A partition member 15 as a non-magnetic or weak magnetic material is attached so as to surround the outer periphery of the rotary shaft 21. A belt pulley 31 a (drive shaft) is mounted on the outer periphery of the partition member 15. A drive-side permanent magnet 5 is attached to the inner periphery of the belt pulley 31a, and is rotatably supported. The drive-side permanent magnet 5 and the driven-side permanent magnet 4 form the partition member 15 In the radial direction in a non-contacting state.
なお、 前記ベルト用プーリ 3 1 aは、 駆動モー夕 3のベルト用プーリ 3 1 との間に掛け回したベルト 3 1 cによって回転駆動する。  The belt pulley 31a is driven to rotate by a belt 31c wound around the belt pulley 31 of the driving motor 3.
従って、 この流体送り装置 Cは、 駆動モー夕 3を駆動させると、 ベルト 3 1 cによる回転動力の伝達で駆動軸としてのベルト用プーリ 3 1 aが駆動側 永久磁石 5を伴なつて回転する。  Therefore, when the drive motor 3 is driven, the fluid feeder C rotates the belt pulley 31 a as a drive shaft with the drive-side permanent magnet 5 due to the transmission of rotational power by the belt 31 c. .
そして、 従動側永久磁石 4が駆動側永久磁石 5に連られて回転する。 これ により回転軸 2 1が左右の羽根車 2 , 2を伴なつて回転し、 この羽根車 2 , 2の回転により、 左右の流体送り部 1 0 , 1 0において、 それぞれ吸入口 1 3から流体送り空間 1 1に流体を吸入すると共に、 吸入した流体を吐出口 1 4から排出させることができる。 Then, the driven permanent magnet 4 is linked to the drive permanent magnet 5 and rotates. this As a result, the rotating shaft 21 rotates with the left and right impellers 2, 2, and the rotation of the impellers 2, 2 causes the left and right fluid feed portions 10, 10 to send the fluid from the suction port 13, respectively. The fluid can be sucked into the space 11 and the sucked fluid can be discharged from the outlet 14.
なお、 その他の構成及び作用は、 前記第 1実施例と同様であるため、 図面 の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the first embodiment, the same reference numerals in the drawings denote the same parts, and a description thereof will be omitted.
次に、 図 5は本発明の第 4実施例である流体送り装置を示す断面図である。 この流体送り装置 Dは、 羽根車 2の回転軸 2 1に取り付けた従動側永久磁 石 4と、 駆動モータ 3のモータ軸 3 1 (駆動軸) に取り付けた駆動側永久磁 石 5とが、 非磁性体又は弱磁性体としての仕切部材 1 5を介して非接触状態 でスラスト方向に対向している。  Next, FIG. 5 is a sectional view showing a fluid feeder according to a fourth embodiment of the present invention. In the fluid feeder D, the driven permanent magnet 4 attached to the rotating shaft 21 of the impeller 2 and the drive permanent magnet 5 attached to the motor shaft 31 (drive shaft) of the drive motor 3 are: They face each other in the thrust direction in a non-contact state via a partition member 15 as a nonmagnetic material or a weak magnetic material.
なお、 その他の構成及び作用は、 前記第 1実施例と同様であるため、 図面 の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the first embodiment, the same reference numerals in the drawings denote the same parts, and a description thereof will be omitted.
次に、 図 6は本発明の第 5実施例である流体送り装置を示す断面図である。 この流体送り装置 Eは、 羽根車 2の回転軸 2 1に取り付けた従動側永久磁 石 4の外周に複数のコイル 6が非磁性体又は弱磁性体としての仕切部材 1 5 を介して非接触状態で対向するように配設されている。  Next, FIG. 6 is a sectional view showing a fluid feeder according to a fifth embodiment of the present invention. In the fluid feeder E, a plurality of coils 6 are provided in a non-contact manner around a driven permanent magnet 4 attached to the rotating shaft 21 of the impeller 2 via a partition member 15 as a non-magnetic or weak magnetic material. They are arranged to face each other in the state.
そして、 この複数のコイル 6が駆動モータ 3 aのステ一夕用コイルとして 用いられ、 前記回転軸 2 1が駆動モー夕 3 aの口一夕として兼用されている。 なお、 この駆動モータ 3 aは、 図示省略した整流子によって磁極を切り換え るようにした直流モー夕に形成されている。  The plurality of coils 6 are used as a staying coil of the drive motor 3a, and the rotating shaft 21 is also used as a mouth of the drive motor 3a. The drive motor 3a is formed as a DC motor whose magnetic poles are switched by a commutator (not shown).
したがって、 コイル 6に電流を流すと、 整流子を介してコイル 6による磁 極と従動側永久磁石 4の磁極とが吸引 反発を繰返し、 ロー夕として兼用さ れた回転軸 2 1がダイレクトドライブ (直接駆動) で回転して、 羽根車 2を 回転させることができる。 これにより、 駆動系を簡略構造にすることができ る。 Therefore, when a current is applied to the coil 6, the magnetic pole of the coil 6 and the magnetic pole of the driven-side permanent magnet 4 repeatedly attract and repel through the commutator, and the rotating shaft 21 that is also used as the rotor is directly driven ( (Direct drive) to rotate the impeller 2. As a result, the drive system can be simplified. You.
なお、 その他の構成及び作用は、 前記第 1実施例と同様であるため、 図面 の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the first embodiment, the same reference numerals in the drawings denote the same parts, and a description thereof will be omitted.
次に、 図 7は本発明の第 6実施例である流体送り装置を示す模式図である。 この流体送り装置 Fは、 羽根車 2の回転軸 2 1に取り付けた筒状回転体 2 2の内周に従動側永久磁石 4が取り付けられ、 この従動側永久磁石 4の内周 に複数のコイル 6が非磁性体又は弱磁性体としての仕切部材 1 5を介して非 接触状態で対向するように配設されている。  Next, FIG. 7 is a schematic view showing a fluid feeder according to a sixth embodiment of the present invention. In the fluid feeder F, a driven permanent magnet 4 is mounted on the inner circumference of a cylindrical rotating body 22 mounted on the rotating shaft 21 of the impeller 2, and a plurality of coils are mounted on the inner circumference of the driven permanent magnet 4. 6 are disposed so as to face each other in a non-contact state via a partition member 15 as a non-magnetic material or a weak magnetic material.
そして、 この複数のコイル 6が駆動モータ 3 aのステ一夕用コイルとして 用いられ、 前記回転軸 2 1が駆動モー夕 3 aのロータとして兼用されたダイ レクトドライブ (直接駆動) 構造になっている。  The plurality of coils 6 are used as a staying coil of the drive motor 3a, and the rotary shaft 21 has a direct drive (direct drive) structure also used as a rotor of the drive motor 3a. I have.
なお、 その他の構成及び作用は、 前記第 1実施例と同様であるため、 図面 の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the first embodiment, the same reference numerals in the drawings denote the same parts, and a description thereof will be omitted.
なお、 本発明の流体送り装置において、 羽根車としては、 プレートファン 以外に、 軸流ファン、 シロッコファン、 夕一ボファン等を用いることができ る。  In the fluid feeder of the present invention, an axial fan, a sirocco fan, an evening fan, or the like can be used as the impeller in addition to the plate fan.
また、 送り対象となる流体としては、 蒸気、 気体、 液体を問わないし、 ま た、 設置対象は、 管路の途中に配設して流体の移送に用いたり、'また、 循環 管路に配設して流体の循環に用いることができる。  The fluid to be sent may be steam, gas, or liquid, and the installation target may be installed in the middle of a pipeline to transfer fluid, or may be installed in a circulation pipeline. And can be used for fluid circulation.
また、 回転軸が非接触で回転するため、 この回転軸にすべりによる脱調が 生じる場合があるが、 この回転軸の脱調は、 モー夕負荷の急な低下に伴なう 電流値や電圧値で検出することができる。 勿論、 通常の近接センサや磁気セ ンサを用いて回転軸の脱調を検出することができる。  In addition, because the rotating shaft rotates in a non-contact manner, the rotating shaft may lose synchronism due to slippage. It can be detected by value. Of course, the step-out of the rotating shaft can be detected by using a normal proximity sensor or a magnetic sensor.
次に、 図 8は前記第 1実施例の流体送り装置 A (図 1に示す) を使用した タイヤ加硫装置の実施例を示す概略断面図である。 このタイヤ加硫装置 Gは、 上下の金型 7 , 7と、 加熱流体の供給 · 排出に よって拡縮するブラダー 7 0を備え、 前記金型 7, 7の内部にセッ トした生 タイヤ Tの内面に、 加熱流体 (高温高圧蒸気) の供給によって膨張したブラ ダー 7 0を押し付けることで、 生タイヤ Tを保持させながら加硫成形するよ うになつている。 Next, FIG. 8 is a schematic sectional view showing an embodiment of a tire vulcanizing apparatus using the fluid feeder A (shown in FIG. 1) of the first embodiment. The tire vulcanizing apparatus G includes upper and lower dies 7, 7 and a bladder 70 that expands and contracts by supplying and discharging the heating fluid. The inner surface of a raw tire T set inside the dies 7, 7 Then, the bladder 70 expanded by the supply of the heating fluid (high-temperature and high-pressure steam) is pressed to perform vulcanization molding while holding the green tire T.
前記ブラダ一 7 0の内部には、 開閉弁 8 0を設けた流体供給管 8 aと、 開 閉弁 8 1を設けた流体排出管 8 bが接続され、 前記開閉弁 8 0, 8 1よりも ブラダー 7 0側寄り位置において流体供給管 8 aと流体排出管 8 bが連通管 8 cで接続され、 この連通管 8 c と前記流体供給管 8 aと流体排出管 8 bと で外部循環回路 8が形成されている。 したがって、 この外部循環回路 8と前 記ブラダー 7 0の内部とで循環閉回路が形成されることになる。 なお、 連通 管 8 cにも開閉弁 8 2が設けられている。  Inside the bladder 70, a fluid supply pipe 8a provided with an on-off valve 80 and a fluid discharge pipe 8b provided with an on-off valve 81 are connected. Also at the position closer to the bladder 70, the fluid supply pipe 8a and the fluid discharge pipe 8b are connected by a communication pipe 8c, and external circulation is performed by the communication pipe 8c, the fluid supply pipe 8a, and the fluid discharge pipe 8b. Circuit 8 is formed. Therefore, a closed circulation circuit is formed between the external circulation circuit 8 and the inside of the bladder 70. The on-off valve 82 is also provided on the communication pipe 8c.
そして、 前記外部循環回路 8の途中に前記流体送り装置 Aが配設されるも ので、 この実施例では、 流体供給管 8 aの途中に配設され、 この場合、 流体 送り装置 Aの吸入口 1 3が開閉弁 8 0側に接続され、 吐出口 1 4がブラダー 7 0側に接続されている。  The fluid feeder A is provided in the middle of the external circulation circuit 8. In this embodiment, the fluid feeder A is provided in the middle of the fluid supply pipe 8a. 13 is connected to the on-off valve 80 side, and the discharge port 14 is connected to the bladder 70 side.
また、 外部循環回路 8内において、 流体排出管 8 bには加熱装置 9が設け られている。  Further, in the external circulation circuit 8, a heating device 9 is provided in the fluid discharge pipe 8b.
この加熱装置 9には、 スチームジャケッ トや電熱ヒー夕が用いられ、 この 加熱装置 9によって、 外部循環回路 8とブラダー 7 0の内部とで形成される 循環閉回路内の加熱流体を加熱することで、 加熱流体の温度低下及び圧力低 下を防止する。 なお、 この加熱装置 9の取付位置は外部循環回路 8内であれ ば、 どこでもよい。  A steam jacket or an electric heating heater is used for the heating device 9. The heating device 9 heats a heating fluid in a closed circulation circuit formed by the external circulation circuit 8 and the inside of the bladder 70. To prevent the temperature and pressure of the heated fluid from dropping. The mounting position of the heating device 9 may be anywhere in the external circulation circuit 8.
従って、 金型 7 , 7の内部に生タイヤ Tをセッ トした状態で開閉弁 8 0 , 8 1を開放し、 流体供給管 8 aから加熱流体を供給すると、 ブラダー 7 0の 内部に加熱流体が流入していき、 この加熱流体でブラダー 7 0の内部が充満 した状態で前記開閉弁 8 0, 8 1を閉鎖させる。 Therefore, when the open / close valves 80, 81 are opened with the raw tire T set in the molds 7, 7, and the heating fluid is supplied from the fluid supply pipe 8a, the bladder 70 The heating fluid flows into the inside, and the on-off valves 80 and 81 are closed in a state where the inside of the bladder 70 is filled with the heating fluid.
このとき、 流体送り装置 Aが流体供給管 8 aに配設されているため、 この 流体送り装置 Aの作動により、 加熱流体をブラダ一 7 0の内部にスムーズに 早く流入させることができる。  At this time, since the fluid feeder A is disposed in the fluid supply pipe 8a, the operation of the fluid feeder A allows the heated fluid to flow into the bladder 170 smoothly and quickly.
上記のようにしてブラダー 7 0の内部に加熱流体を充満させたのち、 連通 管 8 cの開閉弁 8 2を開放させて、 外部循環回路 8を開通させ、 ブラダ一 7 0の内部とで循環閉回路を形成させる。  After filling the inside of the bladder 70 with the heating fluid as described above, the on-off valve 82 of the communication pipe 8c is opened, the external circulation circuit 8 is opened, and the bladder 70 is circulated with the inside. A closed circuit is formed.
この状態で流体送り装置 Aを作動させて、 羽根車 2の回転により加熱流体 を循環閉回路内で循環させるもので、 この加熱流体が循環することによりブ ラダー 7 0内の温度差を解消させることができる。  In this state, the fluid feeder A is operated to circulate the heating fluid in the closed circulation circuit by the rotation of the impeller 2, and the circulation of the heating fluid eliminates the temperature difference in the bladder 70. be able to.
特に、 前記流体送り装置 Aが、 前述したように加熱流体の吸入 ·排出を羽 根車 2によって行うものであるため、 流体の吸入 ·排出を脈動がない状態で 連続的に行うことができ、 ブラダー 7 0内の圧力変化を防止できる。 これに より、 ブラダー 7 0を一定圧力で生タイヤ Tの内面に押し付けるというタイ ャ加硫の基本条件を確保することができる。  In particular, since the fluid feeder A performs the suction and discharge of the heating fluid by the impeller 2 as described above, the suction and discharge of the fluid can be performed continuously without pulsation, The pressure change in the bladder 70 can be prevented. Thus, the basic condition of tire vulcanization of pressing the bladder 70 against the inner surface of the green tire T with a constant pressure can be secured.
上記のようにして、 加熱流体を循環させながら生タイヤ Tを加硫成形して いく。 この加硫成形が終了したのちは、 前記開閉弁 8 1を開放すると共に、 開閉弁 8 0 , 8 2を閉鎖して流体送り装置 Aを作動させるもので、 これによ り、 ブラダー 7 0の内部に充満した加熱流体を流体排出管 8 bから排出する ことができる。  As described above, the green tire T is vulcanized while circulating the heating fluid. After the vulcanization molding is completed, the on-off valve 81 is opened, and the on-off valves 80 and 82 are closed to operate the fluid feeder A, whereby the bladder 70 is opened. The heating fluid filled inside can be discharged from the fluid discharge pipe 8b.
次に、 図 9はタイヤ加硫装置の実施例の要部を示す配管図である。  Next, FIG. 9 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
このタイヤ加硫装置 Hは、 流体送り装置 A (図 1に示す) を流体排出管 8 bに配設した例で、 流体送り装置 Aの吸入口 1 3がブラダー 7 0側に接続さ れ、 吐出口 1 4が開閉弁 8 1側に接続されている。 これにより、 ブラダ一 7 0内部からの加熱流体の排出をスムーズに早く行 うことができる。 The tire vulcanizing apparatus H is an example in which a fluid feeder A (shown in FIG. 1) is disposed in a fluid discharge pipe 8b, and an inlet 13 of the fluid feeder A is connected to a bladder 70 side. The discharge port 14 is connected to the on-off valve 81 side. This makes it possible to discharge the heating fluid from inside the bladder 170 smoothly and quickly.
なお、 その他の構成及び作用は、 前記図 8の実施例と同様であるため、 図 面の符号を同一にして説明を省略する。  Since other configurations and operations are the same as those of the embodiment of FIG. 8, the same reference numerals are used for the drawings, and description thereof will be omitted.
次に、 図 1 0はタイヤ加硫装置の実施例の要部を示す配管図である。  Next, FIG. 10 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
このタイヤ加硫装置 Jは、 前記流体送り装置 C (図 4で示す) を用いた例 で、 一方の流体送り部 1 0を流体供給管 8 aに配設し、 他方の流体送り部 1 0を流体排出管 8 bに配設している。  The tire vulcanizing apparatus J is an example using the fluid feeder C (shown in FIG. 4), in which one fluid feeder 10 is disposed in a fluid supply pipe 8a, and the other fluid feeder 10 is provided. Is disposed in the fluid discharge pipe 8b.
これにより、 加熱流体の循環閉回路内での循環、 それにブラダー 7 0への 供給及びブラダー 7 0からの排出をよりスムーズに早く行うことができる。 なお、 その他の構成及び作用は、 前記図 8の実施例と同様であるため、 図 面の符号を同一にして説明を省略する。  Thereby, the circulation of the heating fluid in the closed circulation circuit, and the supply to the bladder 70 and the discharge from the bladder 70 can be performed more smoothly and quickly. Since other configurations and operations are the same as those of the embodiment of FIG. 8, the same reference numerals are used for the drawings, and description thereof will be omitted.
次に、 図 1 1はタイヤ加硫装置の実施例の要部を示す配管図である。  Next, FIG. 11 is a piping diagram showing a main part of an embodiment of the tire vulcanizing apparatus.
このタイヤ加硫装置 Kは、 流体送り装置 A (図 1で示す) を連通管 8 cに 配設した例で、 流体送り装置 Aの吸入口 1 3が流体排出管 8 b側に接続され、 吐出口 1 4が流体供給管 8 a側に接続されている。  This tire vulcanizing apparatus K is an example in which a fluid feeder A (shown in FIG. 1) is disposed in a communication pipe 8c, and an inlet 13 of the fluid feeder A is connected to a fluid discharge pipe 8b side. The discharge port 14 is connected to the fluid supply pipe 8a.
また、 流体供給管 8 aにおける開閉弁 8 0と連通管接続部 8 3との間に第 2排出管 8 dが分岐して配管され、 この第 2排出管 8 dに開閉弁 8 4が設け られている。  Further, a second discharge pipe 8d is branched and piped between the on-off valve 80 and the communication pipe connection portion 83 in the fluid supply pipe 8a, and an on-off valve 84 is provided in the second discharge pipe 8d. Have been.
したがって、 加熱流体の循環閉回路内での循環に際しては、 開閉弁 8 2を 開放し、 開閉弁 8 0, 8 1, 8 4を閉鎖して、 流体送り装置 Aを作動させる。 また、 ブラダ一 7 0への加熱流体の供給に際しては、 開閉弁 8 0, 8 1を 開放し、 開閉弁 8 2, 8 4を閉鎖して、 流体送り装置 Aは作動させない。 また、 ブラダー 7 0からの加熱流体の排出に際しては、 開閉弁 8 1 , 8 2 , 8 4を開放し、開閉弁 8 0を閉鎖して、流体送り装置 Aを作動させるもので、 3 これにより、 流体排出管 8 b及び第 2排出管 8 dの両方から排出することが でき、 ブラダ一 7 0からの排出をよりスムーズに早く行うことができる。 前記流体送り装置 Aの取り付け方向は、 図示例のように、 加熱流体を、 流 体供給管 8 a—ブラダー 7 0→流体排出管 8 b→連通管 8 cの順に循環させ る方向、 逆に、 流体排出管 8 b→ブラダ一 7 0→流体供給管 8 a→連通管 8 cの順に循環させる方向に取り付けることもできる。 Therefore, when the heating fluid is circulated in the closed circuit, the on-off valve 82 is opened, and the on-off valves 80, 81, 84 are closed, and the fluid feeder A is operated. When supplying the heating fluid to the bladder 70, the on-off valves 80, 81 are opened, and the on-off valves 82, 84 are closed, and the fluid feeder A is not operated. When the heating fluid is discharged from the bladder 70, the on-off valves 81, 82, 84 are opened, the on-off valve 80 is closed, and the fluid feeder A is operated. 3 Thereby, the fluid can be discharged from both the fluid discharge pipe 8b and the second discharge pipe 8d, and the discharge from the bladder 170 can be performed more smoothly and quickly. The mounting direction of the fluid feeder A is, as shown in the illustrated example, a direction in which the heating fluid is circulated in the order of the fluid supply pipe 8a—the bladder 70 → the fluid discharge pipe 8b → the communication pipe 8c. The fluid discharge pipe 8b → the bladder 70 → the fluid supply pipe 8a → the communication pipe 8c can be mounted in the direction of circulation.
なお、 その他の構成及び作用は、 前記図 8の実施例と同様であるため、 図 面の符号を同一にして説明を省略する。 産業上の利用可能性  Since other configurations and operations are the same as those of the embodiment of FIG. 8, the same reference numerals are used for the drawings, and description thereof will be omitted. Industrial applicability
以上説明してきたように、 本発明の流体送り装置 (請求項 1又は 2 ) にあ つては、 羽根車の回転軸と駆動モ一夕のモー夕軸が非接触であるため、 流体 が高温であったとしても、 その熱が回転軸側から駆動モータ側に伝達される ことがなく、 熱による駆動モー夕のトラブルを解消できる。  As described above, in the fluid feeder (Claim 1 or 2) of the present invention, since the rotating shaft of the impeller is not in contact with the motor shaft of the driving motor, the fluid is heated at a high temperature. Even if there is, the heat is not transmitted from the rotating shaft side to the drive motor side, and the trouble of the drive motor due to the heat can be solved.
また、 本発明の流体送り装置 (請求項 3 ) にあっては、 羽根車の回転軸を 非接触にしながら、 駆動モー夕によるダイレク トドライブで羽根車を回転さ せることができるため、 流体が高温であったとしても、 その熱が回転軸側か ら駆動モー夕側に伝達されることがないし、 簡単な構造にできる。  Further, in the fluid feeder of the present invention (claim 3), the impeller can be rotated by a direct drive by a driving motor while the rotating shaft of the impeller is kept out of contact, so that the fluid is Even if the temperature is high, the heat is not transmitted from the rotating shaft side to the drive motor side, and the structure can be simplified.
また、 本発明の流体送り装置 (請求項 4 ) にあっては、 非磁性体が回転軸 側とモータ軸側を区画する仕切部材に形成されているため、 回転軸側を密封 構造にすることができ、 耐圧性能を向上させることができる。  Further, in the fluid feeder of the present invention (claim 4), since the non-magnetic material is formed on the partition member that partitions the rotary shaft side and the motor shaft side, the rotary shaft side has a sealed structure. And the pressure resistance performance can be improved.
また、 本発明のタイヤ加硫装置 (請求項 5 ) にあっては、 ブラダ一を膨張 させるために供給する加熱 体を圧力の脈動がない状態で循環させて、 ブラ ダ一内の温度差および圧力変動を解消させることができる。  Further, in the tire vulcanizing apparatus of the present invention (claim 5), the heating element supplied for inflating the bladder is circulated without pressure pulsation, so that the temperature difference within the bladder 1 Pressure fluctuation can be eliminated.
また、 外部循環路を構成しているため、 既存の配管系に後付けで簡単に取 4 り付けることができるし、 ブラダー内の中心機構に何らの手を加えることが ない簡単構造にすることができる。 In addition, since it has an external circulation path, it can be easily retrofitted to existing piping systems. 4 It can be attached easily and can be a simple structure without any modification to the central mechanism in the bladder.
また、 本発明のタイヤ加硫装匱 (請求項 6 ) にあっては、 加熱装置によつ て、 循環閉回路内の加熱流体を加熱することができ、 加熱流体の温度低下及 び圧力低下を防止することができる。  Further, in the tire vulcanizing machine of the present invention (claim 6), the heating device can heat the heating fluid in the closed circulation circuit, so that the temperature and pressure of the heating fluid decrease. Can be prevented.

Claims

5 請求の範囲 5 Claims
1 . 吸入口から吸入した流体を羽根車の回転により吐出口から吐出させる ようにした流体送り装置であって、 前記羽根車の回転軸に従動側永久磁石が 取り付けられ、 前記回転軸を回転させるための駆動軸に駆動側永久磁石が取 り付けられ、 この駆動側永久磁石と前記従動側永久磁石が非磁性体又は弱磁 性体を介して非接触状態で対向するように配設されていることを特徴とする 流体送り装置。 1. A fluid feeder in which a fluid sucked from a suction port is discharged from a discharge port by rotation of an impeller, wherein a driven-side permanent magnet is attached to a rotation shaft of the impeller to rotate the rotation shaft. A drive-side permanent magnet is attached to a drive shaft for the drive, and the drive-side permanent magnet and the driven-side permanent magnet are arranged so as to face each other in a non-contact state via a non-magnetic material or a weak magnetic material. A fluid feeder.
2 . 請求項 1記載の流体送り装置において、 前記駆動側永久磁石と前記従 動側永久磁石が非磁性体又は弱磁性体を介して非接触状態でラジアル方向又 はスラスト方向に対向するように配設されている流体送り装置。  2. The fluid feeder according to claim 1, wherein the drive-side permanent magnet and the driven-side permanent magnet face each other in a radial direction or a thrust direction in a non-contact state via a non-magnetic material or a weak magnetic material. Fluid feeder provided.
3 . 吸入口から吸入した流体を羽根車の回転により吐出口から吐出させる ようにした流体送り装置であって、 前記羽根車の回転軸に従動側永久磁石が 取り付けられ、 この従動側永久磁石に複数のコイルが非磁性体又は弱磁性体 を介して非接触状態で対向するように配設され、 この複数のコイルが前記回 転軸を回転させるための駆動モータのステ一夕用コイルとして用いられ、 前 記回転軸が駆動モー夕の口一夕として兼用されていることを特徴とする流体 送り装置。  3. A fluid feeder in which a fluid sucked from a suction port is discharged from a discharge port by rotation of an impeller, wherein a driven-side permanent magnet is attached to a rotating shaft of the impeller, and the driven-side permanent magnet is A plurality of coils are disposed so as to face each other in a non-contact state via a non-magnetic material or a weak magnetic material, and the plurality of coils are used as a staying coil of a drive motor for rotating the rotation shaft. A fluid feeder, wherein the rotary shaft is also used as a drive motor outlet.
4 . 請求項 1〜 3のいずれかに記載の流体送り装置において、 前記非磁性 体又は弱磁性体が回転軸側と駆動軸側を区画する仕切部材に形成されている 流体送り装置。  4. The fluid feeder according to any one of claims 1 to 3, wherein the non-magnetic material or the weak magnetic material is formed on a partition member that partitions a rotation shaft side and a drive shaft side.
5 . 請求項 1〜4のいずれかに記載の流体送り装置を使用したタイヤ加硫 装置であって、 上下の金型と、 加熱流体の供給 ·排出によって拡縮するブラ ダーを備え、 前記金型の内部にセッ トした生タイヤの内面に、 加熱流体の供 給によって膨張したブラダーを押し付けるようにしたタイヤ加硫装置にお いて、 前記ブラダーの内部に接続する流体供給管及び流体排出管と、 この流 体供給管及び流体排出管を連通させる連通管とで外部循環回路が形成され、 この外部循環回路の途中に前記流体送り装置が配設されていることを特徴と するタイヤ加硫装置。 5. A tire vulcanizing apparatus using the fluid feeder according to any one of claims 1 to 4, comprising upper and lower dies, and a bladder that expands and contracts by supplying and discharging a heating fluid, wherein the dies are provided. The tire vulcanizer that presses the bladder expanded by the supply of the heating fluid against the inner surface of the raw tire set inside the tire An external circulation circuit is formed by a fluid supply pipe and a fluid discharge pipe connected to the inside of the bladder, and a communication pipe communicating the fluid supply pipe and the fluid discharge pipe. A tire vulcanizing device characterized in that a feeding device is provided.
6 . 請求項 5記載のタイヤ加硫装置において、 前記外部循環回路の途中に 前記流体送り装置と加熱装置が配設されているタイヤ加硫装置。  6. The tire vulcanizing apparatus according to claim 5, wherein the fluid feeding device and the heating device are arranged in the middle of the external circulation circuit.
PCT/JP2003/002682 2002-03-07 2003-03-06 Fluid feed device, and tire vulcanizing equipment using the fluid feed device WO2003074881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003221327A AU2003221327A1 (en) 2002-03-07 2003-03-06 Fluid feed device, and tire vulcanizing equipment using the fluid feed device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002062450A JP2006022644A (en) 2002-03-07 2002-03-07 Liquid feeding device and tire vulcanizing device using the same
JP2002-62450 2002-03-07

Publications (1)

Publication Number Publication Date
WO2003074881A1 true WO2003074881A1 (en) 2003-09-12

Family

ID=27784892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002682 WO2003074881A1 (en) 2002-03-07 2003-03-06 Fluid feed device, and tire vulcanizing equipment using the fluid feed device

Country Status (3)

Country Link
JP (1) JP2006022644A (en)
AU (1) AU2003221327A1 (en)
WO (1) WO2003074881A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912474A1 (en) * 2007-02-08 2008-08-15 Pierburg Sarl Water pump for cooling circuit of motor vehicle, has device arranged between race and shaft to connect or disconnect race and shaft, and units displacing magnetic elements to bring closer or move away from one another based on parameters
CN104088816A (en) * 2014-06-25 2014-10-08 安徽盛唐泵阀制造有限公司 Liquid sulfur delivering pump
CN104196763A (en) * 2014-07-01 2014-12-10 安徽盛唐泵阀制造有限公司 Magnetic pump for conveying easily crystallized medium
WO2020100690A1 (en) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 Electric pump
CN116604861A (en) * 2023-07-20 2023-08-18 山东豪迈数控机床有限公司 Integrated media agitation device and tire curing apparatus including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121523A (en) * 2006-11-10 2008-05-29 Ichimaru Giken:Kk Fluid feeder
JP5001665B2 (en) * 2007-01-29 2012-08-15 株式会社キャップ Fan for blowing high temperature fuel gas in solid oxide fuel cells
WO2010109603A1 (en) * 2009-03-25 2010-09-30 平田機工株式会社 Tire vulcanizer
JP5371939B2 (en) * 2010-12-07 2013-12-18 株式会社市丸技研 Fluid feeder and tire vulcanizer
DE102015220988A1 (en) * 2015-10-27 2017-04-27 Robert Bosch Gmbh Promotion unit, and fuel cell device with a promotion unit
CN114179409B (en) 2021-12-13 2023-09-29 山东豪迈机械科技股份有限公司 Tire vulcanizing equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283366A (en) * 1978-11-20 1981-08-11 Caterpillar Tractor Co. Tire curing method
JPH09170576A (en) * 1995-11-16 1997-06-30 Carrier Corp Rotary compressor
WO2001007789A1 (en) * 1999-07-22 2001-02-01 Robert Bosch Gmbh Liquid pump with a claw pole stator
JP2001123981A (en) * 1999-08-18 2001-05-08 Ebara Corp Non-seal sanitary pump
JP2001165085A (en) * 1999-12-06 2001-06-19 Tokyo Kousou Kk Magnet pump
EP1120569A1 (en) * 1999-08-10 2001-08-01 IWAKI Co., Ltd. Magnet pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283366A (en) * 1978-11-20 1981-08-11 Caterpillar Tractor Co. Tire curing method
JPH09170576A (en) * 1995-11-16 1997-06-30 Carrier Corp Rotary compressor
WO2001007789A1 (en) * 1999-07-22 2001-02-01 Robert Bosch Gmbh Liquid pump with a claw pole stator
EP1120569A1 (en) * 1999-08-10 2001-08-01 IWAKI Co., Ltd. Magnet pump
JP2001123981A (en) * 1999-08-18 2001-05-08 Ebara Corp Non-seal sanitary pump
JP2001165085A (en) * 1999-12-06 2001-06-19 Tokyo Kousou Kk Magnet pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912474A1 (en) * 2007-02-08 2008-08-15 Pierburg Sarl Water pump for cooling circuit of motor vehicle, has device arranged between race and shaft to connect or disconnect race and shaft, and units displacing magnetic elements to bring closer or move away from one another based on parameters
WO2008107239A1 (en) * 2007-02-08 2008-09-12 Pierburg Pump Technology France Sarl Water pump
CN104088816A (en) * 2014-06-25 2014-10-08 安徽盛唐泵阀制造有限公司 Liquid sulfur delivering pump
CN104196763A (en) * 2014-07-01 2014-12-10 安徽盛唐泵阀制造有限公司 Magnetic pump for conveying easily crystallized medium
WO2020100690A1 (en) * 2018-11-13 2020-05-22 パナソニックIpマネジメント株式会社 Electric pump
CN116604861A (en) * 2023-07-20 2023-08-18 山东豪迈数控机床有限公司 Integrated media agitation device and tire curing apparatus including the same

Also Published As

Publication number Publication date
AU2003221327A1 (en) 2003-09-16
JP2006022644A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
WO2003074881A1 (en) Fluid feed device, and tire vulcanizing equipment using the fluid feed device
KR101461431B1 (en) Fluid delivery device and tire vulcanizing device
EP1010873B1 (en) Cooling water circulating apparatus
JP2019518408A (en) Motor cooling system
JP2015180826A (en) Magnetic drive pump assembly using integrated motor
JP5001262B2 (en) Integrated electric motor driven compressor
CN104948475A (en) Vacuum pump
SE522108C2 (en) Liquid Heating and Pressure Feeder
EP2628915B1 (en) Water pump for a vehicle
JPH01290995A (en) Fluid force feeder
US10542847B2 (en) Pedicure chairs and pumps for use with pedicure chairs and related methods
CN104411976B (en) Rotor of motor, motor, pump, and refrigeration cycle device
CN103133355B (en) Pump for temperature circulation circuit in automobile
CN115023565A (en) Device for treating a fluid in an at least partially electrically driven vehicle
JP3744564B2 (en) Inside heating device for tire vulcanization
CN103765732A (en) Electric motor
GB2465392A (en) Pumping apparatus
JP2009019574A (en) Canned pump
WO2008059658A1 (en) Generator
US5692957A (en) Temperature-controlled torquetransmitting; magnet coupling system
JP3557683B2 (en) Vehicle cooling water temperature control system
CN220541356U (en) Instant heating type heating member
JP2008125271A (en) Driving structure using can type electric motor
GB2620694A (en) An apparatus for mixing hot and cold fluid flows
KR100924385B1 (en) Magnetic drive-type sealless pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase