WO2003073585A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2003073585A1
WO2003073585A1 PCT/JP2003/002316 JP0302316W WO03073585A1 WO 2003073585 A1 WO2003073585 A1 WO 2003073585A1 JP 0302316 W JP0302316 W JP 0302316W WO 03073585 A1 WO03073585 A1 WO 03073585A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
bearing
opening
axial direction
sealing cap
Prior art date
Application number
PCT/JP2003/002316
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Goto
Yoshimi Takasu
Original Assignee
Sankyo Seiki Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Mfg. Co., Ltd. filed Critical Sankyo Seiki Mfg. Co., Ltd.
Publication of WO2003073585A1 publication Critical patent/WO2003073585A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/167Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings
    • H02K5/1675Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using sliding-contact or spherical cap bearings radially supporting the rotary shaft at only one end of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/08Sliding-contact bearings for exclusively rotary movement for axial load only for supporting the end face of a shaft or other member, e.g. footstep bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/20Optical, e.g. movable lenses or mirrors; Spectacles
    • F16C2370/22Polygon mirror

Definitions

  • the present invention relates to a motor having a hollow cylindrical rotary shaft.
  • the rotating shaft of the motor is rotatably supported by an appropriate bearing member provided on the stay portion, and the entire rotor is integrally rotated with the rotating shaft.
  • proposals have been made in which the rotating shaft is formed of a hollow cylindrical member (see, for example, Japanese Patent Application Laid-Open No. 07-210130). If a rotating shaft made of hollow cylindrical member is adopted, it is possible to reduce the manufacturing cost drastically, reduce the weight of the rotating shaft and make the motor compatible with high-speed rotation, and improve heat dissipation. Advantages such as higher rotational accuracy and longer life of the motor can be obtained.
  • an object of the present invention is to provide a motor capable of favorably supporting a hollow cylindrical rotary shaft with a simple and inexpensive configuration. Disclosure of the invention
  • At least one end in the axial direction of the rotary shaft formed in a hollow cylindrical shape has an axial end position on a bearing surface provided on the radial bearing portion. It is arranged so as to be located more outward in the axial direction.
  • the axial end of the rotating shaft where deformation parts such as burrs and dents are likely to occur is located outside the bearing surface.
  • good rotation can be performed without the deformed portions damaging the bearing surface.
  • the hollow cylindrical rotating shaft can be favorably supported, and the reliability of the motor can be improved. Performance can be improved.
  • the rotating shaft according to claim 1 has a bottomed cylinder in which an opening is formed at one end in the axial direction and a bottom is formed at the other end in the axial direction. Since the end surface of one end in the axial direction of the rotating shaft having the opening is formed at a position protruding outward in the axial direction from the bearing surface of the radial bearing portion.
  • the hollow cylindrical rotating shaft is easily formed by drawing or the like, so that productivity can be improved in addition to the effects described above.
  • a sealing cap member for closing the opening is fitted into the opening of the rotating shaft according to claim 2, and the rotating shaft is closed by the sealing cap member. Since the thrust bearing portion configured to support in the axial direction is configured, the thrust bearing portion is configured at low cost by the sealing cap member, and the productivity can be further improved in addition to the above-described effects.
  • the sealing cap described in claim 3 is provided. Since the vent member has a through hole communicating with the inside and outside of the rotating shaft, even if air expansion occurs in the hollow cylindrical rotating shaft due to a rise in the operating environment temperature, the vent hole As a result, the deformation of the rotating shaft is prevented, and in addition to the effects described above, the thrust bearing can be configured at a low cost, and the reliability is further improved. Can be done.
  • the vent hole according to the fourth aspect is formed by using one end surface in the axial direction or the inner peripheral wall that defines the opening of the rotating shaft. Ventilation holes are easily formed, and in addition to the effects described above, productivity can be further increased.
  • FIG. 1 is an explanatory longitudinal sectional view showing an embodiment of a polygon mirror-driving module of an optical deflecting device according to the present invention.
  • FIG. 2 is an external perspective explanatory view showing a structure of a sealing cap member fitted to the rotating shaft of the motor shown in FIG.
  • FIG. 3 is an explanatory longitudinal sectional view showing another embodiment of the polygon mirror driving motor of the optical deflection device according to the present invention.
  • FIG. 4 is an explanatory longitudinal sectional view showing still another embodiment of a polygon mirror driving motor of the optical deflection device according to the present invention.
  • the circuit board 1 also serves as a printed circuit board.
  • a substantially hollow cylindrical bearing holder 12 is attached to the substantially central portion so as to stand upright, and a fixed bearing member using air dynamic pressure is provided on the inner peripheral wall surface of the bearing holder 2.
  • Bearing sleeve 3 is bonded by bonding, light press fitting or shrink fitting.
  • the bearing sleeve 3 is made of a hollow cylindrical member formed of a copper-based material such as phosphor bronze to facilitate small-diameter drilling and the like.
  • the rotating shaft 4 constituting the overnight part is rotatably inserted. The structure of the rotating shaft 4 will be described later.
  • the dynamic pressure surface formed on the inner peripheral wall portion of the bearing sleeve 3 is disposed so as to face a dynamic pressure surface formed on the outer peripheral wall surface of the rotary shaft 4 via a minute gap in a radial direction.
  • a radial dynamic pressure bearing portion RB is formed in the minute gap. That is, in the radial dynamic pressure bearing portion RB, the dynamic pressure surface on the bearing sleeve 3 side and the dynamic pressure surface on the rotating shaft 4 side are circumferentially opposed to each other with a small gap of several m. Air as lubricating fluid is interposed in the bearing space consisting of the minute gap.
  • At least one of the two dynamic pressure surfaces of the bearing sleeve 3 and the rotating shaft 4 is provided with a radial dynamic pressure generating groove having an appropriate groove shape so as to be annularly arranged in parallel.
  • the air as the lubricating fluid is pressurized by the bombing action of the radial dynamic pressure generating groove to generate a dynamic pressure, and the dynamic pressure of the air as the lubricating fluid causes the air and the rotating shaft 4 to rotate together.
  • a rotor case 5 described later is configured to be axially supported by the bearing sleeve 3 in a non-contact state in a radial direction.
  • a stator core 6 made of a laminated body of electromagnetic steel sheets is mounted on the outer peripheral side of the bearing holder 2. Surface and fitted radially outward at the stay core 6.
  • a coil winding 7 is wound around each of a plurality of salient pole portions provided so as to project radially.
  • a stepped cylindrical mouth boss 8 formed of an aluminum alloy is provided at an output portion where the rotary shaft 4 projects upward from the bearing sleeve 3 toward the upper side in the figure, with respect to the rotary shaft 4. It is fixed through a press-fit or shrink-fitting process.
  • the central portion of the roughly illustrated case 5 is fixed by caulking or the like.
  • a ring-shaped magnet 9 is mounted on the inner peripheral wall surface of the annular wall 5 a provided on the outer peripheral portion of the rotor case 5.
  • the inner peripheral wall surface of the mouth tag net 9 is arranged so as to be radially opposed to the outer end surface of each salient pole portion of the stay core 6 described above.
  • a mounting portion 8a formed in a step shape is formed on the outer peripheral portion of the above-described row boss 8, and deflection scanning of optical information is performed on the step portion of the mounting portion 8a. It is mounted so that a polygon mirror 1 1 is placed on it. The polygon mirror is fixed by being pressed in the axial direction by a plate-shaped holding member 12 attached to the upper end surface (bottom portion 4b) of the rotary shaft 4 in the figure by a fixing screw 11a. Have been.
  • the above-mentioned rotary shaft 4 is formed by forming a stainless steel material into a hollow cylindrical shape with a bottom, and has an opening 4a formed at one end on the lower end side in the axial direction as shown in FIG. A bottom 4b is formed at the other end of the upper end in the drawing.
  • the fixing screw 11a is screwed to the bottom 4b of the rotating shaft 4 at the upper end in the drawing so as to penetrate along the center of the shaft.
  • one end face of the rotating shaft 4 at the lower end in the drawing is the radial bearing part described above. It is located at a position slightly protruding axially outward (downward in the figure) from the bearing surface of the RB. More specifically, with respect to the dynamic pressure surface of the bearing sleeve 3 constituting the bearing surface of the above-described radial bearing portion RB, the lower end side edge of the dynamic pressure surface of the bearing sleeve 3 in FIG. , The axial position “B” of the illustrated lower end surface of the rotating shaft 4 is slightly outwardly below the illustrated lower end position “A” of the dynamic pressure surface of the bearing sleeve 3. It is arranged to be located. Thus, the lower end of the rotating shaft 4 in the figure is prevented from rotating in the bearing surface of the radial bearing portion RB.
  • a sealing cap member 13 made of resin or the like is fitted into the opening 4a on the lower end in the figure of the rotating shaft 4 so as to close the opening 4a.
  • the sealing cap member 13 is formed so as to have a substantially hemispherical surface shape from the opening 4 a of the rotating shaft 4 and protrude downward in the drawing, and has a substantially hemispherical surface shape.
  • the sealing cap member 13 has a ventilation hole 13 a communicating therewith between the inside and outside of the rotating shaft 4.
  • the ventilation hole 13a in the present embodiment is formed by cutting out a part of the sealing cap member 13. That is, utilizing the lower end portion of the rotary shaft 4 defining the opening 4a of the rotary shaft 4, a wall surface extending from the inner peripheral wall surface to the lower end surface of the rotary shaft 4 at the lower end portion of the rotary shaft 4 shown in FIG.
  • the passage of the ventilation hole 13 a is defined between the notch of the sealing cap member 13 and the notch.
  • the rotating shaft 4 in which deformed portions such as burrs and dents are likely to occur is produced. Since one end of the rotating shaft 4 (the opening 4a at the lower end in the figure) is located outside the bearing surface of the radial bearing RB, the deformed portion of the rotating shaft 4 is The bearing surface is not damaged, and good rotation is continued.
  • the rotating shaft 4 according to the present embodiment described above is formed in a bottomed cylindrical shape, it is easily formed by drawing or the like.
  • the sealing cap member 13 that closes the opening 4a is fitted into the opening 4a on the lower end side of the rotary shaft 4 in the figure.
  • the thrust bearing SB can be configured at low cost. Furthermore, since the ventilation hole 13a is formed through the sealing cap member 13, air expansion occurs in the hollow cylindrical rotary shaft 4 due to an increase in the operating environment temperature. Even so, air is vented through the ventilation holes 13a of the sealing cap member 13 to prevent the rotation shaft 4 from being deformed.
  • the sealing cap member 13 is provided with a longitudinal groove 13b as shown in FIG. 2 (a) or an annular groove 1b as shown in FIG. 2 (b).
  • the sealing cap member 13 can be fixed. It will be performed well.
  • vent hole 13 a in the above-described embodiment is an opening of the rotating shaft 4.
  • the thrust bearing portion SB provided on the lower end in the drawing of the rotating shaft 4 is connected to the rotating shaft 4 side.
  • the magnetic reluctance of the annular magnets M 1 and M 2 attached to the bearing holder 2 side in the radial direction It is configured using the power.
  • the thrust bearing portion is formed by such a magnet, the same operation and effect as those in the above-described embodiment can be obtained.
  • the rotating shaft 4 is made of a non-magnetic stainless steel or the like. Is formed.
  • the present invention is not limited to the above embodiment, and can be variously modified without departing from the gist thereof. Needless to say.
  • the present invention is applied to a polygon mirror driving module.
  • the present invention is applied to other types of hard disk driving module and optical disk driving module.
  • the present invention can be similarly applied.
  • the air dynamic pressure bearing is described as the radial bearing, but a sliding bearing such as an oil dynamic pressure bearing / a sintered oil-impregnated bearing may be used.
  • the motor according to the present invention is particularly useful in a motor corresponding to a high-speed rotation, but can be variously modified without departing from the gist thereof, and can be used in various types. It can be suitably used for morning and evening.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

A motor, comprising a rotating shaft (4) formed in a hollow cylindrical shape, wherein at least the axial one end part of the rotating shaft (4) where deformed parts such as burrs and dents are liable to occur in manufacturing is positioned on the outside of the bearing face of a radial bearing part (RB) provided on a bearing member (3) so that, even if the deformed parts such as burrs and dents occur on the rotating shaft (4), the rotating shaft can be rotated satisfactorily without providing a damage to the bearing face of the radial bearing part (RB), whereby the rotating shaft (4) formed in the hollow cylindrical shape can be pivotally supported satisfactorily by a simple and low cost structure.

Description

明 細 書 モータ 技術分野  Description Motor Technical field
本発明は、 中空円筒状の回転軸を備えたモータに関する。 背景技術  The present invention relates to a motor having a hollow cylindrical rotary shaft. Background art
一般に、 モ一夕の回転軸は、 ステ一夕部に設けられた適宜の軸受部材 によって回転自在に支承されており、 その回転軸とともにロータ部の全 体が一体的に回転するように構成されている。 このようなモータにおい て、 上記回転軸を中空円筒状の部材から形成するようにした提案が従来 からなされている (例えば、 特開平 0 7— 2 1 3 0 1 0号公報参照)。 中 空円筒状部材からなる回転軸を採用すれば、 製造コストを大幅に低減さ せつつ、 回転軸の軽量化から高速回転に対応したモータとすることがで きるとともに、 放熱性を向上させて回転精度を高めることができ、 モ一 夕の長寿化を図ることができるなどの利点が得られる。  Generally, the rotating shaft of the motor is rotatably supported by an appropriate bearing member provided on the stay portion, and the entire rotor is integrally rotated with the rotating shaft. ing. In such a motor, proposals have been made in which the rotating shaft is formed of a hollow cylindrical member (see, for example, Japanese Patent Application Laid-Open No. 07-210130). If a rotating shaft made of hollow cylindrical member is adopted, it is possible to reduce the manufacturing cost drastically, reduce the weight of the rotating shaft and make the motor compatible with high-speed rotation, and improve heat dissipation. Advantages such as higher rotational accuracy and longer life of the motor can be obtained.
しかしながら、 上述したような中空円筒状部材により回転軸を製造す るにあたっては、 軸方向の端部にバリゃ打痕などの変形部が成形時に発 生し易いという問題がある。 すなわち、 成形時において回転軸に形成さ れた各種の変形部が、 軸受面内で回転し続けると、 軸受部の寿命を著し く損なうとともに、 カジリゃ焼き付きなどの原因になってしまうことに もなりかねない。  However, when manufacturing a rotating shaft using the hollow cylindrical member as described above, there is a problem that a deformed portion such as a burr dent or the like is likely to occur at the axial end during molding. In other words, if various deformed parts formed on the rotating shaft during molding continue to rotate within the bearing surface, the life of the bearing part will be markedly impaired, and it will cause galling and seizure. It could be.
そこで本発明は、 簡易かつ低廉な構成によって、 中空円筒状の回転軸 を良好に支承させることができるようにしたモータを提供することを目 的とする。 発明の開示 Accordingly, an object of the present invention is to provide a motor capable of favorably supporting a hollow cylindrical rotary shaft with a simple and inexpensive configuration. Disclosure of the invention
上記目的を達成するために請求項 1記載の発明では、 中空円筒状に形 成された回転軸の軸方向における少なくとも一端部が、 ラジアル軸受部 に設けられた軸受面における軸方向の端部位置よりも軸方向の外方に位 置するように配置されている。  In order to achieve the above object, in the invention according to claim 1, at least one end in the axial direction of the rotary shaft formed in a hollow cylindrical shape has an axial end position on a bearing surface provided on the radial bearing portion. It is arranged so as to be located more outward in the axial direction.
このような構成を有する請求項 1にかかるモ一夕によれば、 バリや打 痕などの変形部が発生し易い回転軸の軸方向端部が軸受面の外方に位置 していることから、 それらの変形部が軸受面に対して損傷を与えること なく良好な回転が行われることとなり、 簡易かつ低廉な構成によって、 中空円筒状の回転軸を良好に支承させることができ、 モータの信頼性を 向上させることができる。  According to the motor according to claim 1 having such a configuration, the axial end of the rotating shaft where deformation parts such as burrs and dents are likely to occur is located outside the bearing surface. However, good rotation can be performed without the deformed portions damaging the bearing surface. With a simple and inexpensive configuration, the hollow cylindrical rotating shaft can be favorably supported, and the reliability of the motor can be improved. Performance can be improved.
また、 請求項 2記載のモータによれば、 請求項 1記載の回転軸が、 軸 方向の一端部に開口部が形成され、 かつ軸方向の他端部に底部が形成さ れた有底円筒形状を有するように構成され、 上記開口部が形成された回 転軸の軸方向一端部の端面が、 前記ラジアル軸受部の軸受面から軸方向 外方に突出した位置に配置されていることから、 中空円筒状の回転軸が, 絞り加工などによって容易に形成され、 上述した効果に加えて、 生産性 の向上を図ることができる。  Further, according to the motor described in claim 2, the rotating shaft according to claim 1 has a bottomed cylinder in which an opening is formed at one end in the axial direction and a bottom is formed at the other end in the axial direction. Since the end surface of one end in the axial direction of the rotating shaft having the opening is formed at a position protruding outward in the axial direction from the bearing surface of the radial bearing portion. In addition, the hollow cylindrical rotating shaft is easily formed by drawing or the like, so that productivity can be improved in addition to the effects described above.
さらに、 請求項 3記載のモータでは、 請求項 2記載の回転軸の開口部 に、 当該開口部を閉塞する封止キャップ部材が嵌合され、 その封止キヤ ップ部材によって、 前記回転軸を軸方向に支持するスラスト軸受部が構 成されていることから、 封止キャップ部材によってスラス ト軸受部が低 廉に構成され、 上述した効果に加えて、 生産性をさらに向上させること ができる。  Further, in the motor according to claim 3, a sealing cap member for closing the opening is fitted into the opening of the rotating shaft according to claim 2, and the rotating shaft is closed by the sealing cap member. Since the thrust bearing portion configured to support in the axial direction is configured, the thrust bearing portion is configured at low cost by the sealing cap member, and the productivity can be further improved in addition to the above-described effects.
さらにまた、 請求項 4記載のモー夕では、 請求項 3記載の封止キヤッ プ部材には、 回転軸の内外を連通する通気孔が貫通形成されていること から、 使用環境温度が上昇することなどによって中空円筒状の回転軸内 で空気膨張が発生しても、 通気孔を通して空気抜きが良好に行われるこ ととなつて、 回転軸の変形が防止され、 上述した効果に加えて、 スラス ト軸受部を低廉に構成することが可能となるとともに、 信頼性を更に向 上させることができる。 Furthermore, in the mode described in claim 4, the sealing cap described in claim 3 is provided. Since the vent member has a through hole communicating with the inside and outside of the rotating shaft, even if air expansion occurs in the hollow cylindrical rotating shaft due to a rise in the operating environment temperature, the vent hole As a result, the deformation of the rotating shaft is prevented, and in addition to the effects described above, the thrust bearing can be configured at a low cost, and the reliability is further improved. Can be done.
また、 請求項 5記載のモー夕では、 請求項 4記載の通気孔が、 回転軸 の開口部を画成している軸方向一端面又は内周壁部を利用して形成され ていることから、 通気孔の形成が容易に行われ、 上述した効果に加えて. より一層生産性を高めることができる。 図面の簡単な説明  Further, in the motor according to the fifth aspect, the vent hole according to the fourth aspect is formed by using one end surface in the axial direction or the inner peripheral wall that defines the opening of the rotating shaft. Ventilation holes are easily formed, and in addition to the effects described above, productivity can be further increased. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明にかかる光偏向装置のポリゴンミラ一駆動用モ一夕の 一実施形態を表した縦断面説明図である。  FIG. 1 is an explanatory longitudinal sectional view showing an embodiment of a polygon mirror-driving module of an optical deflecting device according to the present invention.
図 2は、 図 1に表されたモ一夕の回転軸に嵌着される封止キヤップ部 材の構造を表した外観斜視説明図である。  FIG. 2 is an external perspective explanatory view showing a structure of a sealing cap member fitted to the rotating shaft of the motor shown in FIG.
図 3は、 本発明にかかる光偏向装置のポリゴンミラ一駆動用モータの 他の実施形態を表した縦断面説明図である。  FIG. 3 is an explanatory longitudinal sectional view showing another embodiment of the polygon mirror driving motor of the optical deflection device according to the present invention.
図 4は、 本発明にかかる光偏向装置のポリゴンミラ一駆動用モータの 更に他の実施形態を表した縦断面説明図である。 本発明を実施するための最良の形睢  FIG. 4 is an explanatory longitudinal sectional view showing still another embodiment of a polygon mirror driving motor of the optical deflection device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面に基づいて詳細に説明するが、 それ に先立って、 本発明を適用した光偏向装置におけるポリゴンミラー駆動 用モ一夕の構造例を説明しておく。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to that, an example of the structure of a polygon mirror driving module in an optical deflector to which the present invention is applied will be described.
図 1に示されているように、 プリント基板を兼用するモ一夕基板 1の 略中央部分には、 略中空円筒状をなす軸受ホルダ一 2が立設するように して取り付けられており、 その軸受ホルダー 2の内周壁面側に、 空気動 圧を利用した固定軸受部材としての軸受スリーブ 3が、 接着、 軽圧入又 は焼嵌めなどによって接合されている。 この軸受スリーブ 3は、 小径の 孔加工等を容易化するためにリン青銅などの銅系材料から形成された中 空円筒状部材からなり、 当該軸受スリーブ 3に設けられた中心孔内に、 口一夕部を構成している回転軸 4が回転自在に挿入されている。 この回 転軸 4の構造については後述する。 As shown in Fig. 1, the circuit board 1 also serves as a printed circuit board. A substantially hollow cylindrical bearing holder 12 is attached to the substantially central portion so as to stand upright, and a fixed bearing member using air dynamic pressure is provided on the inner peripheral wall surface of the bearing holder 2. Bearing sleeve 3 is bonded by bonding, light press fitting or shrink fitting. The bearing sleeve 3 is made of a hollow cylindrical member formed of a copper-based material such as phosphor bronze to facilitate small-diameter drilling and the like. The rotating shaft 4 constituting the overnight part is rotatably inserted. The structure of the rotating shaft 4 will be described later.
上記軸受スリーブ 3の内周壁部に形成された動圧面は、 前記回転軸 4 の外周壁面に形成された動圧面に対して半径方向に微小隙間を介して対 向するように配置されており、 その微小隙間部分にラジアル動圧軸受部 R Bが構成されている。 すなわち、 上記ラジアル動圧軸受部 R Bにおけ る軸受スリーブ 3側の動圧面と、 回転軸 4側の動圧面とは、 数^ mの微 少隙間を介して周状に対向配置されており、 その微小隙間からなる軸受 空間内に潤滑流体としての空気が介在されている。  The dynamic pressure surface formed on the inner peripheral wall portion of the bearing sleeve 3 is disposed so as to face a dynamic pressure surface formed on the outer peripheral wall surface of the rotary shaft 4 via a minute gap in a radial direction. A radial dynamic pressure bearing portion RB is formed in the minute gap. That is, in the radial dynamic pressure bearing portion RB, the dynamic pressure surface on the bearing sleeve 3 side and the dynamic pressure surface on the rotating shaft 4 side are circumferentially opposed to each other with a small gap of several m. Air as lubricating fluid is interposed in the bearing space consisting of the minute gap.
そして、 上記軸受スリーブ 3及び回転軸 4の両動圧面のうちの少なく とも一方側には、 適宜の溝形状からなるラジアル動圧発生用溝が環状に 並列されるようにして凹設されており、 回転時に、 当該ラジアル動圧発 生用溝のボンビング作用により潤滑流体としての空気が加圧されて動圧 を生じ、 その潤滑流体としての空気の動圧によって、 上記回転軸 4とと もに後述するロータケース 5が、 上記軸受スリーブ 3に対してラジアル 方向に非接触状態で軸支持される構成になされている。  At least one of the two dynamic pressure surfaces of the bearing sleeve 3 and the rotating shaft 4 is provided with a radial dynamic pressure generating groove having an appropriate groove shape so as to be annularly arranged in parallel. During rotation, the air as the lubricating fluid is pressurized by the bombing action of the radial dynamic pressure generating groove to generate a dynamic pressure, and the dynamic pressure of the air as the lubricating fluid causes the air and the rotating shaft 4 to rotate together. A rotor case 5 described later is configured to be axially supported by the bearing sleeve 3 in a non-contact state in a radial direction.
一方、 上記軸受ホルダ一 2が前記モー夕基板 1から図示上方側に向か つて突出している部位には、 電磁鋼板の積層体からなるステ一タコア 6 が、 上記軸受ホルダー 2の外周側の取付面に対して軸方向に嵌着されて いるとともに、 そのステ一夕コア 6において半径方向外方側に向かって 放射状に突出するように設けられた複数個の各突極部にコイル巻線 7が それぞれ卷回されている。 On the other hand, at a portion where the bearing holder 12 protrudes upward from the motor board 1 toward the upper side in the figure, a stator core 6 made of a laminated body of electromagnetic steel sheets is mounted on the outer peripheral side of the bearing holder 2. Surface and fitted radially outward at the stay core 6. A coil winding 7 is wound around each of a plurality of salient pole portions provided so as to project radially.
さらに、 上記回転軸 4が前記軸受スリーブ 3から図示上方側に向かつ て突出した出力部分には、 アルミニウム合金から形成された段付き円筒 状の口一夕ボス 8が、 上記回転軸 4に対して圧入または焼き嵌めなどの 締り嵌め工程を通して固定されている。 このロー夕ボス 8の図示下面側 には、 略皿形状に形成されたロー夕ケース 5の中心部分が、 カシメ等に より固定されている。  Further, a stepped cylindrical mouth boss 8 formed of an aluminum alloy is provided at an output portion where the rotary shaft 4 projects upward from the bearing sleeve 3 toward the upper side in the figure, with respect to the rotary shaft 4. It is fixed through a press-fit or shrink-fitting process. On the lower surface side of the illustrated boss 8 in the figure, the central portion of the roughly illustrated case 5 is fixed by caulking or the like.
上記ロータケース 5の外周側部分に設けられた環状壁 5 aの内周壁面 には、 リング状のロー夕マグネッ ト 9が装着されている。 この口一タマ グネッ ト 9の内周壁面は、 上述したステ一夕コア 6の各突極部の外端面 に対して、 半径方向に近接対向するように配置されている。  A ring-shaped magnet 9 is mounted on the inner peripheral wall surface of the annular wall 5 a provided on the outer peripheral portion of the rotor case 5. The inner peripheral wall surface of the mouth tag net 9 is arranged so as to be radially opposed to the outer end surface of each salient pole portion of the stay core 6 described above.
一方、 前述したロー夕ボス 8の外周部分には、 階段状に形成された取 付部 8 aが形成されており、 その取付部 8 aの段部に対して、 光情報の 偏向走査を行うためのポリゴンミラ一 1 1が載置されるように装着され ている。 このポリゴンミラ一は、 前記回転軸 4の図示上端面 (底部 4 b ) に対して固定ビス 1 1 aにより取り付けられた皿状の押え部材 1 2 によって、 軸方向に押え込まれるようにして固定されている。  On the other hand, a mounting portion 8a formed in a step shape is formed on the outer peripheral portion of the above-described row boss 8, and deflection scanning of optical information is performed on the step portion of the mounting portion 8a. It is mounted so that a polygon mirror 1 1 is placed on it. The polygon mirror is fixed by being pressed in the axial direction by a plate-shaped holding member 12 attached to the upper end surface (bottom portion 4b) of the rotary shaft 4 in the figure by a fixing screw 11a. Have been.
ここで、 上述した回転軸 4は、 ステンレス材を中空の有底円筒形状に 形成したものであって、 軸方向における図示下端側の一端部に開口部 4 aが形成されているとともに、 軸方向における図示上端側の他端部に底 部 4 bが形成されている。 当該回転軸 4の図示上端側の底部 4 bには、 上述したように固定ビス 1 1 aが、 軸中心沿って貫通するように螺着さ れている。  Here, the above-mentioned rotary shaft 4 is formed by forming a stainless steel material into a hollow cylindrical shape with a bottom, and has an opening 4a formed at one end on the lower end side in the axial direction as shown in FIG. A bottom 4b is formed at the other end of the upper end in the drawing. As described above, the fixing screw 11a is screwed to the bottom 4b of the rotating shaft 4 at the upper end in the drawing so as to penetrate along the center of the shaft.
さらに、 上記回転軸 4の図示下端側の一端面、 すなわち上記開口部 4 aが形成された一端部における環状の端面は、 前述したラジアル軸受部 R Bの軸受面から、 軸方向外方 (図示下方向) にやや突出した位置に配 置されている。 より具体的には、 前述したラジアル軸受部 R Bの軸受面 を構成している軸受スリーブ 3の動圧面に関して、 当該軸受スリーブ 3 の動圧面における図示下端側の縁部を、 図 1において符号 「A」 で表し たとき、 上記回転軸 4における図示下端面の軸方向位置 「B」 は、 上記 軸受スリーブ 3の動圧面における図示下端縁の位置 「A」 よりも、 図示 下方側のやや外方に位置するように配置されている。 そして、 これによ つて上記回転軸 4の図示下端側の部分が、 前記ラジアル軸受部 R Bの軸 受面内で回転することがないように構成されている。 Further, one end face of the rotating shaft 4 at the lower end in the drawing, that is, the annular end face at the one end where the opening 4a is formed is the radial bearing part described above. It is located at a position slightly protruding axially outward (downward in the figure) from the bearing surface of the RB. More specifically, with respect to the dynamic pressure surface of the bearing sleeve 3 constituting the bearing surface of the above-described radial bearing portion RB, the lower end side edge of the dynamic pressure surface of the bearing sleeve 3 in FIG. , The axial position “B” of the illustrated lower end surface of the rotating shaft 4 is slightly outwardly below the illustrated lower end position “A” of the dynamic pressure surface of the bearing sleeve 3. It is arranged to be located. Thus, the lower end of the rotating shaft 4 in the figure is prevented from rotating in the bearing surface of the radial bearing portion RB.
さらにまた、 上記回転軸 4の図示下端側の開口部 4 aには、 当該開口 部 4 aを閉塞するようにして樹脂等からなる封止キャップ部材 1 3が嵌 合されている。 この封止キャップ部材 1 3は、 上記回転軸 4の開口部 4 aから略半球状の表面形状をなして図示下方側へ向かって突出するよう に形成されており、 その略半球状の表面形状の頂部が、 円盤状のスラス ト板 1 4に当接することによって、 ピボッ ト状のスラスト軸受部 S Bが 構成されている。 このとき上記スラスト板 1 4は、 前述した軸受ホルダ 一 2の図示下端側の開口部を閉塞するように取り付けられている。  Further, a sealing cap member 13 made of resin or the like is fitted into the opening 4a on the lower end in the figure of the rotating shaft 4 so as to close the opening 4a. The sealing cap member 13 is formed so as to have a substantially hemispherical surface shape from the opening 4 a of the rotating shaft 4 and protrude downward in the drawing, and has a substantially hemispherical surface shape. By contacting the top of the thrust plate 14 with a disc-shaped thrust plate 14, a pivot-shaped thrust bearing SB is formed. At this time, the thrust plate 14 is attached so as to close the opening at the lower end in the drawing of the bearing holder 12 described above.
上記封止キャップ部材 1 3には、 前記回転軸 4の内外を連通する通気 孔 1 3 aが貫通形成されている。 本実施形態における通気孔 1 3 aは、 当該封止キヤップ部材 1 3の一部を切り欠くことによって形成されてい る。 つまり、 前記回転軸 4の開口部 4 aを画成している図示下端側の部 分を利用して、 当該回転軸 4の図示下端側部分における内周壁面から下 端面にかけての壁面と、 上記封止キャップ部材 1 3の切欠部との間に、 通気孔 1 3 aの通路が画成されるように構成されている。  The sealing cap member 13 has a ventilation hole 13 a communicating therewith between the inside and outside of the rotating shaft 4. The ventilation hole 13a in the present embodiment is formed by cutting out a part of the sealing cap member 13. That is, utilizing the lower end portion of the rotary shaft 4 defining the opening 4a of the rotary shaft 4, a wall surface extending from the inner peripheral wall surface to the lower end surface of the rotary shaft 4 at the lower end portion of the rotary shaft 4 shown in FIG. The passage of the ventilation hole 13 a is defined between the notch of the sealing cap member 13 and the notch.
このような本実施形態にかかるモー夕によれば、 有底円筒状の回転軸 4を製造するにあたって、 バリゃ打痕などの変形部が発生し易い当該回 転軸 4の一端部分 (図示下端部分の開口部 4 a ) が、 ラジアル軸受部 R Bの軸受面の外方に位置していることから、 当該回転軸 4の変形部がラ ジアル軸受部 R Bの軸受面に対して損傷を与えることがなくなり、 良好 な回転が継続されるようになっている。 According to the motor according to the present embodiment, in manufacturing the bottomed cylindrical rotating shaft 4, the rotating shaft 4 in which deformed portions such as burrs and dents are likely to occur is produced. Since one end of the rotating shaft 4 (the opening 4a at the lower end in the figure) is located outside the bearing surface of the radial bearing RB, the deformed portion of the rotating shaft 4 is The bearing surface is not damaged, and good rotation is continued.
このとき、 上述した本実施形態にかかる回転軸 4は、 有底円筒状に構 成されていることから、 絞り加工などによって容易に成型される。  At this time, since the rotating shaft 4 according to the present embodiment described above is formed in a bottomed cylindrical shape, it is easily formed by drawing or the like.
さらに、 本実施形態にかかるモ一夕においては、 回転軸 4の図示下端 側の開口部 4 aに、 当該開口部 4 aを閉塞する封止キャップ部材 1 3が 嵌着されていることによって、 スラスト軸受部 S Bを低廉に構成するこ とができる。 さらにまた、 上記封止キャップ部材 1 3に対して通気孔 1 3 aが貫通形成されていることから、 使用環境温度が上昇することなど によって中空円筒状の回転軸 4内で空気膨張が発生しても、 上記封止キ ャップ部材 1 3の通気孔 1 3 aを通して空気抜きが行われることとなり , 回転軸 4の変形等の防止が行われるようになつている。  Further, in the module according to the present embodiment, the sealing cap member 13 that closes the opening 4a is fitted into the opening 4a on the lower end side of the rotary shaft 4 in the figure. The thrust bearing SB can be configured at low cost. Furthermore, since the ventilation hole 13a is formed through the sealing cap member 13, air expansion occurs in the hollow cylindrical rotary shaft 4 due to an increase in the operating environment temperature. Even so, air is vented through the ventilation holes 13a of the sealing cap member 13 to prevent the rotation shaft 4 from being deformed.
このとき、 上記封止キャップ部材 1 3に、 図 2 ( a ) に示されている ような縦溝部 1 3 b、 又は図 2 ( b ) に示されているような環状溝部 1 At this time, the sealing cap member 13 is provided with a longitudinal groove 13b as shown in FIG. 2 (a) or an annular groove 1b as shown in FIG. 2 (b).
3 cをそれぞれ設けておき、 それらの各溝部 1 3 b , 1 3 c内に、 固定 用の接着剤を注入するようにして用いることとすれば、 上記封止キヤッ プ部材 1 3の固定が良好に行われることとなる。 If 3c is provided, and the adhesive for fixing is injected into each of the grooves 13b, 13c, the sealing cap member 13 can be fixed. It will be performed well.
また、 上述した実施形態における通気孔 1 3 aは、 回転軸 4の開口部 In addition, the vent hole 13 a in the above-described embodiment is an opening of the rotating shaft 4.
4 aを画成している軸方向一端面及び内周壁部を利用して形成されてい ることから、 通気孔 1 3 aの形成が容易に行われるようになっている。 また、 上述した実施形態に対応する部材を同一の符号で表した図 3及 び図 4にかかるモータでは、 回転軸 4の図示下端側に設けられたスラス ト軸受部 S Bが、 回転軸 4側及び軸受ホルダー 2側にそれぞれ半径方向 に対向するように取り付けられた環状マグネッ ト M 1 , M 2の磁気的反 発力を利用して構成されている。 このようなマグネットによりスラス 卜 軸受部を構成した実施形態においても、 上述した実施形態と同様な作用 •効果を得ることが可能である。 Since it is formed using the one end surface in the axial direction and the inner peripheral wall defining 4a, the formation of the ventilation hole 13a is facilitated. Further, in the motor according to FIGS. 3 and 4 in which members corresponding to the above-described embodiment are represented by the same reference numerals, the thrust bearing portion SB provided on the lower end in the drawing of the rotating shaft 4 is connected to the rotating shaft 4 side. And the magnetic reluctance of the annular magnets M 1 and M 2 attached to the bearing holder 2 side in the radial direction It is configured using the power. In the embodiment in which the thrust bearing portion is formed by such a magnet, the same operation and effect as those in the above-described embodiment can be obtained.
なお、 図 4に示されている実施形態では、 回転軸 4に対して環状マグ ネッ ト M 1が直接的に取り付けられていることから、 回転軸 4は、 非磁 性を有するステンレス材などから形成されている。  In the embodiment shown in FIG. 4, since the annular magnet M1 is directly attached to the rotating shaft 4, the rotating shaft 4 is made of a non-magnetic stainless steel or the like. Is formed.
以上、 本発明者によってなされた発明を実施形態に基づいて具体的に 説明したが、 本発明は上記実施形態に限定されるものではなく、 その要 旨を逸脱しない範囲で種々変形可能であるというのは言うまでもない。 例えば、 上述した各実施形態は、 ポリゴンミラー駆動用モ一夕に対し て本発明を適用したものであるが、 その他のハードディスク駆動用モ一 夕、 光ディスク駆動用モー夕等の各種モ一夕に対しても、 本発明は同様 に適用することができる。  As described above, the invention made by the inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be variously modified without departing from the gist thereof. Needless to say. For example, in each of the above-described embodiments, the present invention is applied to a polygon mirror driving module. However, the present invention is applied to other types of hard disk driving module and optical disk driving module. However, the present invention can be similarly applied.
また、 上記各実施形態において、 ラジアル軸受として空気動圧軸受を 示したが、 オイル動圧軸受ゃ焼結含油軸受等の滑り軸受を用いるように しても良い。 産業上の利用可能性  Further, in each of the above embodiments, the air dynamic pressure bearing is described as the radial bearing, but a sliding bearing such as an oil dynamic pressure bearing / a sintered oil-impregnated bearing may be used. Industrial applicability
以上のように、 本発明にかかるモー夕は、 特に高速回転に対応したモ 一夕において特に有用なものであるが、 要旨を逸脱しない範囲で種々変 形可能であって、 多種多様な型式のモー夕に対しても好適に採用するこ とができるものである。  As described above, the motor according to the present invention is particularly useful in a motor corresponding to a high-speed rotation, but can be variously modified without departing from the gist thereof, and can be used in various types. It can be suitably used for morning and evening.

Claims

請 求 の 範 囲 The scope of the claims
1 . 中空円筒状に形成された回転軸を有するロータ部と、 上記回転軸を 回転可能に支持する軸受面を有するラジアル軸受部を備えたステ一夕部 とを備え、  1. A rotor portion having a rotating shaft formed in a hollow cylindrical shape, and a stay portion provided with a radial bearing portion having a bearing surface for rotatably supporting the rotating shaft,
上記回転軸の軸方向における少なくとも一端部が、 前記ラジアル軸受 部に設けられた軸受面における軸方向の端部位置よりも軸方向の外方に 位置するように配置されていることを特徴とするモー夕。  At least one end in the axial direction of the rotating shaft is disposed so as to be located axially outward of an axial end position on a bearing surface provided on the radial bearing portion. Morning evening.
2 . 前記回転軸は、 軸方向の一端部に開口部が形成され、 かつ軸方向の 他端部に底部が形成された有底円筒形状を有するように構成され、 上記開口部が形成された回転軸の軸方向一端部の端面が、 前記ラジア ル軸受部の軸受面から軸方向外方に突出した位置に配置されていること を特徴とする請求項 1記載のモータ。 2. The rotating shaft is configured to have a bottomed cylindrical shape in which an opening is formed at one axial end and a bottom is formed at the other axial end, and the opening is formed. 2. The motor according to claim 1, wherein an end surface of one end in the axial direction of the rotating shaft is disposed at a position protruding outward in the axial direction from a bearing surface of the radial bearing portion.
3 . 前記回転軸の開口部には、 当該開口部を閉塞する封止キャップ部材 が嵌合され、  3. A sealing cap member for closing the opening is fitted into the opening of the rotating shaft,
その封止キヤップ部材によって、 前記回転軸を軸方向に支持するスラ スト軸受部が構成されていることを特徴とする請求項 2記載のモー夕。 3. The motor according to claim 2, wherein the sealing cap member forms a thrust bearing portion that supports the rotating shaft in the axial direction.
4 . 前記封止キャップ部材には、 前記回転軸の内外を連通する通気孔が 貫通形成されていることを特徴とする請求項 3記載のモータ。 4. The motor according to claim 3, wherein a ventilation hole communicating between the inside and outside of the rotating shaft is formed through the sealing cap member.
5 . 前記通気孔は、 前記回転軸の開口部を画成している軸方向一端面又 は内周壁部を利用して形成されていることを特徴とする請求項 4記載の モー夕。  5. The motor according to claim 4, wherein the ventilation hole is formed by using one axial end surface or an inner peripheral wall defining an opening of the rotating shaft.
PCT/JP2003/002316 2002-02-28 2003-02-28 Motor WO2003073585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002053236A JP2003259599A (en) 2002-02-28 2002-02-28 Motor
JP2002-053236 2002-02-28

Publications (1)

Publication Number Publication Date
WO2003073585A1 true WO2003073585A1 (en) 2003-09-04

Family

ID=27764354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002316 WO2003073585A1 (en) 2002-02-28 2003-02-28 Motor

Country Status (2)

Country Link
JP (1) JP2003259599A (en)
WO (1) WO2003073585A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137853Y2 (en) * 1981-09-22 1986-11-01
JPH07213010A (en) * 1994-01-12 1995-08-11 Sankyo Seiki Mfg Co Ltd Shaft and its manufacture
JP2001317548A (en) * 2000-05-12 2001-11-16 Nsk Ltd Fluid bearing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137853Y2 (en) * 1981-09-22 1986-11-01
JPH07213010A (en) * 1994-01-12 1995-08-11 Sankyo Seiki Mfg Co Ltd Shaft and its manufacture
JP2001317548A (en) * 2000-05-12 2001-11-16 Nsk Ltd Fluid bearing device

Also Published As

Publication number Publication date
JP2003259599A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
US6215217B1 (en) Dynamic pressure bearing motor
US5751085A (en) Axial gap type electric motor with dynamic pressure air bearing
US8215842B2 (en) Dynamic fluid pressure bearing, spindle motor, disk drive apparatus and method for manufacturing the dynamic fluid pressure bearing
US8304946B2 (en) Spindle motor
JP2007073164A (en) Spindle motor and manufacturing method thereof
JP4446727B2 (en) Hydrodynamic bearing device
US8908320B2 (en) Spindle motor having lower thrust member with fitting protrusion and hard disk drive including the same
US20040135447A1 (en) Kinetic pressure bearing motor
US7511398B2 (en) Motor and recording disk driving device
JP2006046604A (en) Hydrodynamic bearing device, motor and disc driving device
JP2000291648A (en) Dynamic pressure-type bearing unit
JP2009086409A (en) Polygon mirror scanner motor
US20130127273A1 (en) Hydrodynamic bearing assembly and motor including the same
JP2014060909A (en) Spindle motor and hard disk drive including the same
JP2000197309A (en) Motor fitted with fluid pressure bearing and recording disc driver fitted with the motor
JP2006200742A (en) Spindle motor equipped with fluid dynamic-pressure bearing system
WO2003073585A1 (en) Motor
JP2003274602A (en) Spindle motor
US6693733B2 (en) Polygonal mirror fixing device
JP3978978B2 (en) Spindle motor
JP2005192385A (en) Spindle motor
US20150214808A1 (en) Spindle motor and hard disk drive including the same
US20030227226A1 (en) Rotary shaft motor
EP0905865B1 (en) Method of assembling magnetic disk driving motor
JP2010039337A (en) Polygon mirror scanner motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US