WO2003070663A1 - Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida - Google Patents

Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida Download PDF

Info

Publication number
WO2003070663A1
WO2003070663A1 PCT/ES2002/000079 ES0200079W WO03070663A1 WO 2003070663 A1 WO2003070663 A1 WO 2003070663A1 ES 0200079 W ES0200079 W ES 0200079W WO 03070663 A1 WO03070663 A1 WO 03070663A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metallic
tiles
coating
ceramic
Prior art date
Application number
PCT/ES2002/000079
Other languages
English (en)
French (fr)
Inventor
Alberto ALBERDI AGUIRREBEÑA
Javier Laucirica Aramburu
Ramón María BUENO ZULOAGA
Manuel Franch Personal
Adriana BELDA PEÑA
Fernando LUCAS MARTÍN
Original Assignee
Fundación Tekniker
Fritta, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Tekniker, Fritta, S.L. filed Critical Fundación Tekniker
Priority to EP02702416A priority Critical patent/EP1498402B8/en
Priority to DE60207117T priority patent/DE60207117D1/de
Priority to PCT/ES2002/000079 priority patent/WO2003070663A1/es
Priority to AU2002235950A priority patent/AU2002235950A1/en
Publication of WO2003070663A1 publication Critical patent/WO2003070663A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5133Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/82Coloured materials

Definitions

  • the present invention relates to a process that allows a coating consisting of a layer of metal, such as chromium, zirconium, tantalum or titanium or an electrically conductive compound, such as nitride or carbonitride, to be deposited on cooked and even enameled ceramic tiles. of said metals, providing a metallic appearance to the tile, as well as a protective layer that improves its properties.
  • a coating consisting of a layer of metal, such as chromium, zirconium, tantalum or titanium or an electrically conductive compound, such as nitride or carbonitride
  • the deposition of the metallic layer is carried out directly on the outer layer of the ceramic tile, using an electric arc evaporator that allows to obtain a good adhesion between the metallic coating and the ceramic, without using intermediate layers that act as binder , or subject the tile to subsequent thermal cooking treatments.
  • the object of the invention is the manufacture of coated ceramic tiles by means of the aforementioned process which, in addition to a metallic aspect, have improved characteristics of brightness, electrical conductivity, scratch resistance, resistance to attack of acidic, alkaline and other corrosive agents. , being especially suitable for cladding facades.
  • Ceramic tiles in their different varieties of pavements or porous coatings, are usually manufactured by firing a ceramic support that is covered with a consolidated layer of frits and crystalline materials that vitrify after the cooking process.
  • the ceramic support may be raw, as in the case where the monocooking technique is used, or cooked, when the bicoction technique is used.
  • ceramic glazes must have technical and aesthetic characteristics that make them suitable for the intended use, such as:
  • the crystallization process is very difficult to control, the range of variability in the chemical composition is very narrow and the technical properties of the coatings are not very good (they do not resist the chemical attack of concentrated acid) and the hardness is low, between 130 and 200 gf / mm 2 .
  • PCT application WO 01/72651 is also known in which a formulation is proposed comprising a mixture of metal oxides that is applied to the ceramic tile, after cooking and before vitrification, then cooking thereof. according to traditional techniques.
  • This formulation allows to obtain metallic effects on the tiles but, it presents the same problems mentioned above, relative to the low gloss of the coating.
  • the exterior vitrification of the tile presents the usual problems regarding its lack of resistance to wear and attack by chemical agents.
  • PVD technology deposition techniques of a material evaporated by physical methods (called PVD technology), in its different variants of thermal evaporation, electron beam evaporation, sputtering ("sputtering”) have been known and used for a long time. "), cathode arc evaporation or laser ablation, allows a wide range of pure and composite materials to be applied as a coating.
  • PVD techniques are pure metals such as aluminum, titanium, zirconium, tantalum or chromium, and compounds consisting of nitrides, carbonitrides or oxides of these metals. PVD techniques are mainly used in the optical and microelectronics industry.
  • PVD techniques are also used successfully in the industry for the application of wear protective coatings on cutting tools, medical instruments, deformation forming tools, aluminum or plastic injection molds, and a wide range of mechanical elements. .
  • this technology is used to apply decorative and corrosion resistant coatings on an increasingly large number of everyday products, such as cutlery, jewelry and costume jewelery, bathroom accessories, locksmith items, furniture fittings and other decorative elements.
  • metal substrates mainly steels in the case of tools, mechanical elements and molds, and bronze or zamak previously electrolytically coated with nickel or chrome, in the case of decorative applications since, when trying to apply on ceramic or glass materials , there is an important problem of adhesion that in the end makes its use in the coating of these materials inadvisable.
  • intermediate layers are used, which allow the external metal substrate to agglomerate and adhere to the ceramic, but this implies a complication and an increase in the coating process.
  • the process object of the invention allows to obtain tiles with a metallic appearance, by applying a metallic coating directly on the ceramic tile already cooked and even enameled, coating that is composed of chromium, zirconium, tantalum, titanium or a nitride or carbonitride of these elements, obtaining improved characteristics of gloss, scratch and abrasion resistance by chemical agents.
  • a cathode arc evaporator is used to vaporize the material of contribution in the coating, the procedure being carried out in a vacuum chamber equipped with resistors or other heating elements that allow the temperature of the parts to be raised within the range of 150- 500 ° C, using as a cathode a metal plate that is intended to deposit as for example, zirconium, chromium, tantalum or titanium, either as a pure element, either constituting a nitride or carbonitride type compound.
  • the method of coating by cathode arc evaporation consists essentially of three stages:
  • the vacuum heating of the tiles to be covered must be carried out before the evaporators are switched on, to allow the evacuation of the moisture or other polluting gases that are absorbed by ceramics.
  • the second phase of the process activation of the surfaces to be coated, is carried out with the evaporators on and in the presence of an inert gas, normally argon.
  • the surface activation phase is carried out by applying a negative potential difference with respect to the vacuum chamber body on the pieces to be coated, so that the Ions of the evaporated material accelerate, reaching the surface of the pieces with high kinetic energy, favoring the nucleation of the layer.
  • the process object of the invention for the surface activation of the pieces to be coated, the kinetic energy itself with which the particles of the evaporated material leave the cathode surface is used.
  • the working pressure In order for surface activation to be effective and to ensure correct adhesion of the coating on the part, the working pressure must be limited depending on the distance of the pieces from the evaporator.
  • the third phase growth of the protective layer, does not differ substantially from the processes, already known, which are applied on metal parts.
  • an atmosphere is generated in the vacuum chamber of argon, to obtain pure metal layers, a mixture of argon with nitrogen, to deposit nitrides of the evaporated metal, or mixtures of argon, nitrogen and a hydrocarbon, for example acetylene or methane, when the compound to be deposited is a carbonitride of the metal evaporated
  • the tile obtained by this procedure has a protective and decorative coating composed of a metal selected from the group consisting of chromium, zirconium, tantalum or titanium or a nitride or carbonitride of these elements, presenting a brightness greater than 300 ° r or , a GHA resistance to attack with acids, bases and cleaning agents, and a surface hardness greater than 1500 kgf / mm 2 , presenting different metallic colors, depending on the material that makes up the coating layer.
  • a metal selected from the group consisting of chromium, zirconium, tantalum or titanium or a nitride or carbonitride of these elements, presenting a brightness greater than 300 ° r or , a GHA resistance to attack with acids, bases and cleaning agents, and a surface hardness greater than 1500 kgf / mm 2 , presenting different metallic colors, depending on the material that makes up the coating layer.
  • Figure 1 shows a schematic sectional representation of a typical rectangular arc evaporator.
  • Figure 2. It shows a schematic representation of the different layers that constitute the protective coating of the ceramic tiles object of the present invention.
  • one or more cathode arc evaporators must be arranged in the vacuum chamber as shown in Figure 1, consisting of an anode (1) and a cathode or blank of the material to be pretend to evaporate
  • the tiles must be introduced into the chamber perfectly clean, without traces of dust, grease or other contaminating products.
  • the ceramic tiles are preheated in vacuum, until they reach a temperature in the range 150-500 ° C. and a pressure of 1x10-1 Pa, or less. It is beneficial for the correct adhesion of the coating to preheat the pieces to higher temperatures, but Such practice is detrimental to the productivity of the process. In order to shorten the duration of this first phase of the process as much as possible, it is advisable to preheat the parts before they are introduced into the process chamber.
  • the second step of the process consists in the superficial activation of the pieces to be coated.
  • an argon atmosphere is established, at a pressure lower than 1 Pa, and the evaporator is put into operation, so that a direct current electric arc is established between the anode (1) and the blank of the material to evaporate (2) that acts as a cathode.
  • the anode (1) is dispensed with, the vacuum chamber body playing this role.
  • the activation phase must be carried out at a pressure lower than the maximum pressure Pmax defined by the expression:
  • Pmax is expressed in Pa f m is a factor that depends exclusively on the material that is evaporating, and whose value is, for example, 2.5 Nm "2 for titanium, 2.7 Nm “ 2 for chromium, 3, 6 Nm “2 for the tantalum and 3.0 Nm “ 2 for the zirconium.
  • f e is a characteristic factor of each evaporator, depending on its geometric characteristics and the type of magnetic guidance with which the arc discharge is governed. Typically it usually varies in the range 6-10 Nm "3 d is the distance between the surface of the pieces to be coated (7) and the surface of the cathode (2), expressed in meters.
  • the working pressure in the layer growth phase can vary in a relatively wide range, between 0.1 and 10 Pa and the duration of this phase is adjusted according to the desired thickness of the coating.
  • FIG. 2 shows a schematic representation of the product obtained with the process object of the invention.
  • a thin layer of the evaporated metal is formed, up to 200 nm thick (10).
  • the protective layer itself, which can be constituted by a pure metal, such as chromium, zirconium, tantalum or titanium, a metal alloy, or a nitride or carbonitride of these metals (11).
  • the thickness of this layer can vary between 100 and 10,000 nm.
  • the applied coating is a pure metal (titanium, zirconium or chromium) if the pieces are allowed to cool inside the vacuum chamber until the room temperature is reached, a metallic gray surface appearance is achieved. If, on the contrary, a nitrogen mixture with up to 5% oxygen is allowed into the chamber when the pieces are still at a temperature in the range 200-500 ° C, oxidation of a thin surface film occurs of the coating (12). Due to the aforementioned optical interference phenomena, the surface appearance of the tiles acquires red tones, blue or other colors impossible to obtain by other techniques. The range of shades that can be obtained by this method is very wide, since it depends on the reflection index of the oxide that has been formed and the depth of the oxidation film.
  • GHA for hydrochloric, lactic and citric acids (according to ISO 10545, Part 13)
  • Resistance to attack with alkaline substances GHA for potassium hydroxide, ammonium chloride and sodium hypochlorite (according to ISO 10545, Part 13) Brightness (60): 736 V.
  • GHA for hydrochloric, lactic and citric acids (according to ISO 10545, Part
  • GHA for potassium hydroxide, ammonium chloride and sodium hypochlorite
  • Thickness 0.3 microns
  • GHA for potassium hydroxide, ammonium chloride and sodium hypochlorite (according to ISO 10545, Part 13)
  • Titanium Nitride Coating Thickness 0.3 microns Color: deep gold Gloss (60): 534 faith
  • Thickness 0.3 microns
  • GHA for ammonium chloride and sodium hypochlorite (according to ISO 10545,
  • Thickness 0.3 microns
  • GHA for ammonium chloride and sodium hypochlorite (according to ISO 10545,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Este procedimiento permite obtener baldosas con un recubrimiento exterior metálico, aplicado directamente sobre el esmaltado de la cerámica, utilizando un evaporador de arco eléctrico que permite obtener una buena adhesión del sustrato formado, sin utilizar capas o aglomerantes intermedios. Con este procedimiento se pueden obtener baldosas que presentan una capa externa metálica, compuesta por uno de los siguientes elementos: Cromo, circonio, tántalo, titanio o nitruro o carbonitruro de los citados metales, consiguiendo un brillo superior a 300‰, una resistencia al ataque químico GHA (según ISO 10545, Parte 13) a la abrasión química y una dureza superficial superior a 1500 kgf/mm2. Dependiendo del material utilizado en el revestimiento, la baldosa presenta coloraciones como dorados, grises metálicos o violáceos metálicos.

Description

PROCEDIMIENTO PARA LA OBTENCIÓN DE BALDOSAS CERÁMICAS CON ACABADO METÁLICO Y BALDOSA ASI OBTENIDA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un procedimiento que permite depositar, sobre baldosas cerámicas cocidas e incluso esmaltadas, un recubrimiento constituido por una capa de metal, tal como cromo, circonio, tántalo o titanio o por un compuesto eléctricamente conductor, como el nitruro o carbonitruro de los citados metales, proporcionando un aspecto metálico a la baldosa, así como una capa protectora que mejora sus propiedades.
La deposición de la capa metálica se realiza directamente sobre la capa externa de la baldosa cerámica, utilizando para ello un evaporador de arco eléctrico que permite obtener una buena adherencia entre el revestimiento metálico y la cerámica, sin necesidad de utilizar capas intermedias que actúan como aglomerante, ni someter a la baldosa a tratamientos térmicos de cocción posteriores.
Asimismo, la invención tiene por objeto la fabricación de baldosas cerámicas revestidas mediante el citado proceso que, además de un aspecto metálico, presentan características mejoradas de brillo, conductividad eléctrica, resistencia al rayado, resistencia al ataque de sustancias acidas, alcalinas y otros agentes corrosivos, siendo especialmente adecuado para el revestimiento de fachadas. Por otro lado, es posible aplicar sobre el revestimiento metálico una fina película de material hidrófobo, aplicado bien por técnicas convencionales
(inmersión o centrifugado) , bien por técnicas de deposición en vacío del material evaporado térmicamente o por pulverización catódica ("sputtering") .
ANTECEDENTES DE LA INVENCIÓN
Las baldosas cerámicas, en sus diferentes variedades de pavimentos o revestimientos porosos, se fabrican habitualmente por cocción de un soporte cerámico que está recubierto de una capa consolidada de fritas y materiales cristalinos que vitrifican tras el proceso de cocción. El soporte cerámico puede estar crudo, como en el caso en que se utilice la técnica de monococción, o bien cocido, cuando se utiliza la técnica de bicocción.
Obviamente, los vidriados cerámicos deben poseer unas características técnicas y estéticas que los hagan aptos para el uso al que van destinados, como por ej emplo :
- Insolubilidad en agua y en aquellos ácidos y bases con los que pueden entrar en contacto con el uso corriente .
- Resistencia al rayado, dureza.
- Impermeabilidad.
- Resistencia al cuarteo, desconchado, impacto, etc.
- Resistencia al desgaste.
- Versatilidad para producir efectos decorativos.
- Fusibilidad entre límites de temperatura previamente determinados . En concreto, estas características difieren en función del producto cerámico de que se trate: baldosas de pavimento, de revestimiento, objetos de decoración, etc. Además, dependiendo del proceso de acabado utilizado, pueden presentar diferentes aspectos superficiales: brillo o mate, opaco o transparente, liso o granulado, pulido o no pulido.
Las técnicas actuales de metalización de cerámicas, consisten generalmente en incorporar una determinada cantidad de metales, sobre la cerámica cocida pero, antes de su vitrificado o esmaltado final por lo que, sus acabados presentan muy baja resistencia a la abrasión y al rayado, imposibles de usar en suelos o fachadas, y poco resistentes frente al ataque químico. Por otro lado, el brillo de los acabados actuales no supera las 200 -„ (valor medido con un brillómetro con ángulo de incidencia de 60°) .
Entre los procedimiento utilizados en la actualidad para el recubrimiento metálico de baldosas cerámicas, podemos citar los siguientes:
Técnicas de fuego añadido, que utilizan sales de metales preciosos, aplicadas mediante técnicas serigráficas sobre baldosas cerámicas cocidas y cociendo posteriormente la baldosa a temperaturas inferiores a la de fusión del metal. Con esta técnica se consiguen acabados metálicos con muy poca resistencia química y de baja dureza, presentando además las piezas un coste muy elevado, debido principalmente al precio de los metales preciosos y al coste de la cocción adicional de las baldosas cerámicas. Utilización de esmaltes aventurina de hierro. Este tipo de esmaltes presentan en su composición un elevado contenido en óxidos metálicos (de hierro y/o cobre) y de fosfatos (principalmente de aluminio) , y tras su cocción se producen cristalizaciones de hematites, las cuales presentan un brillo metálico. El proceso de cristalización es muy difícil de controlar, el intervalo de variabilidad en la composición química es muy estrecho y las propiedades técnicas de los recubrimientos no son muy buenas (no resisten el ataque químico de ácido concentrado) y la dureza es baja, entre 130 y 200 gf/mm2.
También se conoce la solicitud PCT WO 01/72651 en la cual se propone una formulación que comprende una mezcla de óxidos metálicos que se aplica sobre la baldosa cerámica, después de su cocción y antes de su vitrificado, realizándose a continuación la cocción de la misma según las técnicas tradicionales. Esta formulación permite obtener efectos metálicos sobre las baldosas pero, presenta los mismos problemas mencionados anteriormente, relativos al poco brillo del revestimiento. Además, el vitrificado exterior de la baldosa presenta los habituales problemas en cuanto a su falta de resistencia al desgaste y al ataque por agentes químicos .
Otro aspecto limitativo de las baldosas cerámicas actuales es su carácter de aislantes eléctricos, que puede crear problemas de electricidad estática, inadmisibles en algunas aplicaciones, como por ejemplo, en el revestimiento de quirófanos. Por otro lado, desde hace tiempo son conocidas y utilizadas técnicas de deposición, en vacío, de un material evaporado por métodos físicos (denominada tecnología PVD) , en sus diferentes variantes de evaporación térmica, evaporación por haz de electrones, pulverización catódica ("sputtering") , evaporación por arco catódico o ablación láser, permite aplicar en forma de recubrimiento una amplia gama de materiales puros y compuestos. Aunque las posibilidades son casi infinitas, los materiales más comúnmente aplicados por técnicas de PVD como revestimientos protectores y decorativos son metales puros como aluminio, titanio, circonio, tántalo o cromo, y compuestos constituidos por nitruros, carbonitruros u óxidos de estos metales. Las técnicas de PVD se emplean fundamentalmente en la industria óptica y microelectrónica .
Estas técnicas de PVD también se utilizan con éxito en la industria para la aplicación de recubrimientos protectores contra el desgaste en herramientas de corte, instrumental médico, útiles de conformado por deformación, moldes para inyección de aluminio o plástico, y una amplia gama de elementos mecánicos. Además, aprovechando el atractivo color dorado o plateado de algunos de estos materiales, se emplea esta tecnología para aplicar revestimientos decorativos y resistentes a la corrosión en un número cada vez más extenso de productos de uso diario, como piezas de cubertería, piezas de joyería y bisutería, accesorios de baño, elementos de cerrajería, herrajes para mobiliario y otros elementos decorativos.
Salvo algunas excepciones, los recubrimientos decorativos, protectores contra la corrosión o el desgaste, que se han citado en el párrafo anterior, se aplican sobre substratos metálicos: principalmente aceros en el caso de las herramientas, elementos mecánicos y moldes, y bronce o zamak previamente recubiertos electrolíticamente con níquel o cromo, en el caso de las aplicaciones decorativas ya que, cuando se intentan aplicar sobre materiales cerámicos o vidrio, existe un problema importante de adherencia que al final hace desaconsejable su uso para el revestimiento de estos materiales .
Por ello, generalmente, se utilizan capas intermedias, que permiten aglomerar y adherir el sustrato metálico externo sobre la cerámica pero, esto implica una complicación y encarecimiento del procedimiento de revestimiento.
En este sentido, se pueden citar la patente europea n° 0 459 865, la patente alemana n° 19900182, la patente estadounidense n° 5422188 o la patente japonesa n° 3005387.
En cuanto a las características estéticas de las baldosas cerámicas, en la actualidad existe una creciente demanda del mercado hacia los acabados metálicos, por ejemplo dorados o plateados.
DESCRIPCIÓN DE LA INVENCIÓN
El procedimiento objeto de la invención permite obtener baldosas con un aspecto metálico, mediante la aplicación de un recubrimiento metálico directamente sobre la baldosa cerámica ya cocida e incluso esmaltada, recubrimiento que está compuesto por cromo, circonio, tántalo, titanio o un nitruro o carbonitruro de estos elementos, obteniendo unas características mejoradas de brillo, resistencia al rayado y a la abrasión por agentes químicos .
Para ello, se ha utilizado un procedimiento de PVD, especialmente adaptado, que permite obtener una buena adherencia del revestimiento sobre el sustrato cerámico, sin necesidad de aplicar capas intermedias, por lo que las baldosas obtenidas resultan de especial aplicación en edificios industriales o recubrimientos de fachadas.
En concreto, se utiliza un evaporador de arco catódico para la vaporización del material de aporte en el revestimiento, realizándose el procedimiento en una cámara de vacío dotada de resistencias u otros elementos calefactores que permitan elevar la temperatura de las piezas dentro del rango de 150-500°C, utilizándose como cátodo una placa del metal que se pretende depositar como por ejemplo, circonio, cromo, tántalo o titanio, bien como elemento puro, bien constituyendo un compuesto de tipo nitruro o carbonitruro .
El procedimiento de recubrimien¡to mediante evaporación por arco catódico consta esencialmente de tres etapas:
calentamiento en vacío de las piezas a recubrir activación superficial de las piezas a recubrir crecimiento de la capa protectora
El calentamiento en vacío de las baldosas a recubrir debe realizarse con antelación al encendido de los evaporadores, para permitir la evacuación de la humedad u otros gases contaminantes que se encuentren absorbidos por la cerámica.
La segunda fase del proceso, activación de las superficies a recubrir, se realiza con los evaporadores encendidos y en presencia de un gas inerte, normalmente argón .
En los procesos de recubrimiento por arco catódico de piezas metálicas, utilizados en la actualidad, la fase de activación superficial se lleva a cabo aplicando sobre las piezas a recubrir una diferencia de potencial negativa respecto al cuerpo de la cámara de vacío, de modo que los iones del material evaporado se aceleran, llegando con alta energía cinética a la superficie de las piezas, favoreciendo la nucleación de la capa.
En el caso de las baldosas cerámicas, debido a su carácter de aislantes eléctricos, no es posible emplear este recurso. Por ello, según el procedimiento objeto de la invención, para la activación superficial de las piezas a recubrir, se aprovecha la propia energía cinética con que las partículas del material evaporado abandonan la superficie del cátodo. Para que la activación superficial sea eficaz y garantice una correcta adherencia del recubrimiento sobre la pieza, la presión de trabajo debe limitarse en función de la distancia de las piezas al evaporador.
La tercera fase, crecimiento de la capa protectora, no difiere substancialmente de los procesos, ya conocidos, que se aplican sobre piezas metálicas. En función de la naturaleza del compuesto que se desee depositar, se genera en la cámara de vacío una atmósfera de argón, para obtener capas de metales puros, una mezcla de argón con nitrógeno, para depositar nitruros del metal evaporado, o mezclas de argón, nitrógeno y un hidrocarburo, por ejemplo acetileno o metano, cuando el compuesto a depositar es un carbonitruro del metal evaporado .
A la finalización del proceso, es posible inducir la oxidación de una fina película superficial del recubrimiento. Estas películas son transparentes y producen efectos de interferencia óptica entre los rayos de luz incidente que reflejan en la superficie del film oxidado y aquellos que lo atraviesan y reflejan en la superficie del revestimiento metálico no afectado por la oxidación superficial. De este modo, se logra en las baldosas cerámicas una amplia gama de colores, con características estéticas imposibles de lograr por otras técnicas .
La baldosa obtenida por este procedimiento presenta un recubrimiento protector y decorativo compuesto por un metal seleccionado entre el grupo compuesto por cromo, circonio, tántalo o titanio o bien por un nitruro o carbonitruro de estos elementos, presentando un brillo superior al 300°ro, una resistencia GHA al ataque con ácidos, bases y agentes de limpieza, y una dureza superficial superior a 1500 kgf/mm2, presentando distintos colores metálicos, dependiendo del material que compone la capa de recubrimiento.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con el objeto de ayudar a una mejor comprensión de las características del invento, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente
La figura 1.- Muestra una representación esquemática en sección de un típico evaporador de arco rectangular.
La figura 2. - Muestra una representación esquemática de las diferentes capas que constituyen el revestimiento protector de las baldosas cerámicas objeto de la presente invención.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Para la realización práctica del proceso descrito en la presente invención se deben disponer en la cámara de vacío uno o más evaporadores de arco catódico como el que muestra la figura 1, constituido por un ánodo (1) y un cátodo o blanco del material que se pretende evaporar
(2) , placa base (6) y protecciones de material eléctricamente aislante (4 y 5) , o cualquier otro diseño equivalente que permita evaporar un material mediante la descarga controlada de un arco eléctrico.
Las baldosas deben introducirse en la cámara perfectamente limpias, sin restos de polvo, grasa u otros productos contaminantes.
En la primera fase del proceso se procede al precalentamiento en vacío de las baldosas cerámicas, hasta alcanzar una temperatura en el rango 150-500 °C. y una presión de 1x10-1 Pa, o inferior. Es beneficioso para la correcta adhesión del revestimiento el precalentar las piezas a temperaturas superiores, pero tal práctica va en detrimento de la productividad del proceso. Con el objeto de acortar en lo posible la duración de esta primera fase del proceso, es recomendable precalentar las piezas con antelación a su introducción en la cámara de proceso .
El segundo paso del proceso consiste en la activación superficial de las piezas a recubrir. Para ello, se establece una atmósfera de argón, a una presión inferior a 1 Pa, y se pone en funcionamiento el evaporador, de manera que se establece un arco eléctrico de corriente continua entre el ánodo (1) y el blanco del material a evaporar (2) que actúa como cátodo. En otras variantes de fuentes de evaporación por arco se prescinde del ánodo (1) , desempeñando este papel el cuerpo de la cámara de vacío. Tales variaciones no afectan al propósito de la presente invención. La fase de activación debe llevarse a cabo a una presión inferior a la presión máxima Pmax definida por la expresión:
Pmax = fra - fe d donde,
Pmax está expresada en Pa fm es un factor que depende exclusivamente del material que se está evaporando, y cuyo valor es, por ejemplo, 2,5 Nm"2 para el titanio, 2,7 Nm"2 para el cromo, 3,6 Nm"2 para el tántalo y 3,0 Nm"2 para el circonio. fe es un factor característico de cada evaporador, dependiente de sus características geométricas y del tipo de guiado magnético con el que se gobierna la descarga de arco. Típicamente suele variar en el rango 6-10 Nm"3 d es la distancia entre la superficie de las piezas a recubrir (7) y la superficie del cátodo (2) , expresada en metros. La presión de trabajo en la fase de crecimiento de la capa puede variar en un rango relativamente amplio, entre 0,1 y 10 Pa y la duración de esta fase se ajusta en función del espesor deseado del recubrimiento.
La figura 2 muestra una representación esquemática del producto que se obtiene con el proceso objeto de la invención. El soporte cerámico (8) revestido por un esmalte (9) mediante el procedimiento tradicional de cocción simultánea de un soporte cerámico recubierto de una capa consolidada de fritas y materiales cristalinos, constituye el substrato sobre el que se aplica el recubrimiento en vacío. Como consecuencia de la fase de activación superficial, se forma una fina capa del metal evaporado, de hasta 200 nm de espesor (10) . A continuación, va la capa protectora propiamente dicha, que puede estar constituida por un metal puro, tal que cromo, circonio, tántalo o titanio, una aleación metálica, o un nitruro o carbonitruro de éstos metales (11) . Según los requisitos de la aplicación y la naturaleza del material depositado, el espesor de esta capa puede variar entre 100 y 10.000 nm.
Cuando el recubrimiento aplicado es un metal puro (titanio, circonio o cromo) si se dejan enfriar las piezas dentro de la cámara de vacío hasta que se alcance la temperatura ambiente, se logra un aspecto superficial gris metálico. Si por el contrario, se permite la entrada en la cámara de una mezcla de nitrógeno con hasta un 5% de oxígeno cuando las piezas están todavía a una temperatura en el rango 200-500°C, se produce la oxidación de una fina película superficial del recubrimiento (12) . Debido a los fenómenos de interferencia óptica anteriormente citados, el aspecto superficial de las baldosas adquiere tonalidades rojas, azules u otros colores imposibles de obtener por otras técnicas. La gama de tonalidades que se puede obtener por este método es muy amplia, ya que depende del índice de reflexión del óxido que se ha formado y de la profundidad de la película de oxidación.
Mediante el proceso descrito es posible aplicar una amplia gama de revestimientos protectores. Para ilustrar la mejora que estos revestimientos infieren sobre las propiedades técnicas y estéticas de las baldosas cerámicas, con carácter ilustrativo y no limitativo, se incluyen en la presente descripción una serie de ejemplos
Por otro lado, es posible complementar este revestimiento con una fina película de material hidrófobo (13), aplicado bien por técnicas convencionales (inmersión o centrifugado) , bien por técnicas de deposición en vacío del material . evaporado térmicamente o por pulverización catódica ("sputtering") .
A continuación se listan una serie de ejemplos de diferentes revestimientos aplicados mediante el proceso que se describe en la invención, así como sus más destacables propiedades técnicas.
EJEMPLO 1
Recubrimiento de nitruro de circonio Espesor: 0,3 mieras
Color: dorado
Resistencia al ataque con ácidos: GHA par ácidos clorhídrico, láctico y cítrico (según ISO 10545, Parte 13) Resistencia al ataque con substancias alcalinas: GHA para hidróxido potásico, cloruro amónico e hipoclorito sódico (según ISO 10545, Parte 13) Brillo (60) : 736 V.
Resistencia eléctrica media: 0.64 (Ω/cm, para una diferencia de potencial =<6V (según ASTM C483-66) .
EJEMPLO 2
Recubrimiento de nitruro de cromo Espesor: 0,3 mieras
Color: gris metálico
Resistencia al ataque con ácidos: GHA par ácidos clorhídrico, láctico y cítrico (según ISO 10545, Parte
13) Resistencia al ataque con substancias alcalinas: GHA para hidróxido potásico, cloruro amónico e hipoclorito sódico (según ISO 10545, Parte 13)
Brillo (60) : 300 %-.
EJEMPLO 3
Recubrimiento de circonio metal
Espesor: 0,3 mieras
Color: gris metálico claro Resistencia al ataque con ácidos: GHA par ácidos clorhídrico, láctico y cítrico (según ISO 10545, Parte
13)
Resistencia al ataque con substancias alcalinas: GHA para hidróxido potásico, cloruro amónico e hipoclorito sódico (según ISO 10545, Parte 13)
Brillo (60) : 422 V. N
EJEMPLO 4
Recubrimiento de nitruro de titanio Espesor: 0,3 mieras Color: dorado intenso Brillo (60) : 534 fe
EJEMPLO 5
Recubrimiento de titanio
Espesor: 0,3 mieras
Color: gris metálico Resistencia al ataque con ácidos: GHA par ácido clorhídrico (según ISO 10545, Parte 13)
Resistencia al ataque con substancias alcalinas: GHA para cloruro amónico e hipoclorito sódico (según ISO 10545,
Parte 13) Brillo (60) : 300 fe
Resistencia eléctrica media: 0.56 (Ω/cm, para una diferencia de potencial =<6V (según ASTM C483-66) .
EJEMPLO 6
Recubrimiento de carbonitruro de titanio
Espesor: 0,3 mieras
Color: violáceo metálico
Resistencia al ataque con substancias alcalinas: GHA para cloruro amónico e hipoclorito sódico (según ISO 10545,
Parte 13)
Brillo (60) : 319 fe
Resistencia eléctrica media: 0.33 (Ω/cm, para una diferencia de potencial =<6V (según ASTM C483-66) .

Claims

R E I V I N D I C A C I O N E S
Ia.- Procedimiento para la obtención de baldosas cerámicas con acabado metálico, caracterizado porque se basa en aplicar, directamente sobre la superficie exterior (9) de la baldosa cerámica (8) , que puede estar esmaltada, una capa metálica (11) compuesta por un elemento seleccionado entre el grupo de Cr, Zr, Ta o Ti, o nitruros o carbonitruros de estos elementos, realizándose la deposición mediante técnicas de deposición en vacío (PVD) , obteniendo una buena adherencia de la capa metálica sobre el esmalte de la cerámica, sin necesidad de utilizar capas intermedias de aglomerantes o adhesivos.
2a.- Procedimiento para la obtención de baldosas cerámicas con acabado metálico, según reivindicación Ia, caracterizado porque el proceso se lleva a cabo en la cámara de vacío dotada de resistencias u otros elementos calefactores y uno o mas evaporadores de arco catódico, utilizándose como cátodo (2) una placa de Cr, Zr, Ta o Ti o una de sus aleaciones, comprendiendo las siguientes fases operativas :
- Precalentamiento en vacío de las baldosas cerámicas ya esmaltadas, hasta alcanzar una temperatura entre 150 y 500° y una presión inferior a lxlO"1 Pa. - Activación superficial de las baldosas, por la propia energía cinética con que las partículas del material evaporado abandonan la superficie del cátodo, sin aplicar diferencia de potencial sobre las baldosas, realizándose esta activación a una presión máxima definida por la siguiente fórmula: Pmax = fra - fe d, donde fra es un factor que depende del material a evaporar, fe es un factor característico del evaporador y d es la distancia entre la superficie de la pieza cerámica a recubrir y la superficie del cátodo.
Crecimiento de la capa protectora a una presión de la cámara entre 0,1 y 10 Pa, utilizando una atmósfera de Argón para obtener capas con los metales puros, una mezcla de Argón con Nitrógeno para los nitruros de metales y mezclas de Argón, Nitrógeno y un hidrocarburo para la deposición de carbonitruros de los metales .
3a.- Procedimiento para la obtención de baldosas cerámicas con acabado metálico, según reivindicaciones Ia y 2a, caracterizado porque tras la fase de crecimiento de capa, y una vez apagados los evaporadores de arco, se dejan enfriar las piezas en vacío, obteniendo los siguientes colores para los revestimientos:
- Gris metálico con diversas tonalidades para los metales puros (Ti, Ta, Zr y Cr) y para el nitruro de crom® .
Dorado para los nitruros de circonio y
Tántalo . - Dorado intenso para el nitruro de titanio.
Violáceo metálico para el carbonitruro de
Titanio.
4a.- Procedimiento para la obtención de baldosas cerámicas con acabado metálico, según reivindicaciones Ia y 2a, caracterizado porque tras la finalización de la fase de crecimiento de capa, y una vez apagados los evaporadores, se permite la entrada en la cámara de una mezcla de Nitrógeno con un contenido máximo de Oxígeno del 5%, cuando las piezas están todavía a una temperatura entre' 200 y 500° C, produciéndose la oxidación de una fina película superficial (12) que proporciona a las baldosas tonalidades rojas, azules u otros colores producidos por interferencia óptica.
5a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque presenta un revestimiento externo constituido por una capa de metal, de un espesor entre 100 y 10.000 nm, siendo este metal cromo, circonio, tántalo o titanio o un nitruro o carbonitruro de uno de estos metales, presentando un brillo superior a 300fe, una buena resistencia al ataque con sustancias químicas (según ISO
10545, Parte 13) y una dureza superficial superior a 1500 kgf/mm2.
6a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de nitruro de titanio con un brillo superior a 500fe, una dureza entre 1500 y 2500 kgf/mm2, para un espesor de capa entre 2000 y 3000 nm y una resistencia eléctrica media de 0,56 Ω/cm (a diferencia de potencial =< 6V, según ASTM C443-66) para una capa de 300 nm. 7a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de nitruro de circonio con un brillo superior a 700fe, una dureza de 2900 kgf/mm2, para un espesor de capa entre 3000 y 4000 nm y una resistencia eléctrica media de 0,64 Ω/cm (a diferencia de potencial =< 6 V, según ASTM C443- 66) , para una capa de 300 nm, así como una resistencia GHA al ataque químico, (según ISO 10545, Parte 13) .
8a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de nitruro de cromo con un brillo superior a 300fe, una dureza de 1500 a 2500 kgf/mm2, para un espesor de capa entre 2000 y 3000 nm, así como una resistencia GHA al ataque químico (según ISO 10545, Parte 13) .
9a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de carbonitruro de titanio con un brillo superior a 300fe, una dureza de 3000 a 3500 kgf/mm2, para un espesor de capa entre 3000 y 4000 nm, una resistencia eléctrica media de 0,33 Ω/cm (a diferencia de potencial =< 6V, según ASTM C443 -66) . 10a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de titanio con un brillo superior a 300fe, una resistencia eléctrica media de 0,56 Ω/cm (a diferencia de potencial =< 6V, según ASTM C443-66) .
, 11a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque sobre la capa de esmalte o vitrificado obtenida en la cocción tradicional, presenta un revestimiento externo de circonio con un brillo superior a 400fe, así como una resistencia GHA al ataque químico (según ISO 10545, Parte 13) .
12a.- Baldosa cerámica con acabado metálico, de soporte de gres porcelánico, obtenida en la cocción habitual de este tipo de productos y cuya superficie puede estar esmaltada o vitrificada, caracterizada porque presenta un revestimiento exterior constituido por una fina película de material hidrófobo, aplicado sobre la capa metálica, mediante técnicas de inmersión, centrifugado o de deposición en el vacío por acción térmica o pulverización catódica ("sputtering") .
PCT/ES2002/000079 2002-02-22 2002-02-22 Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida WO2003070663A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02702416A EP1498402B8 (en) 2002-02-22 2002-02-22 Method of producing ceramic tiles having a metallic finish and the tile thus produced
DE60207117T DE60207117D1 (de) 2002-02-22 2002-02-22 Verfahren zur herstellung von keramikfliesen mit metallischem finish und so hergestellte fliese
PCT/ES2002/000079 WO2003070663A1 (es) 2002-02-22 2002-02-22 Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida
AU2002235950A AU2002235950A1 (en) 2002-02-22 2002-02-22 Method of producing ceramic tiles having a metallic finish and the tile thus produced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2002/000079 WO2003070663A1 (es) 2002-02-22 2002-02-22 Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida

Publications (1)

Publication Number Publication Date
WO2003070663A1 true WO2003070663A1 (es) 2003-08-28

Family

ID=27741297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000079 WO2003070663A1 (es) 2002-02-22 2002-02-22 Procedimiento para la obtención de baldosas cerámicas con acabado metálico y baldosa así obtenida

Country Status (4)

Country Link
EP (1) EP1498402B8 (es)
AU (1) AU2002235950A1 (es)
DE (1) DE60207117D1 (es)
WO (1) WO2003070663A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2396399A1 (es) * 2011-08-22 2013-02-21 Sociedad Anónima Minera Catalano - Aragonesa Procedimiento de obtención de aspecto metálico sobre bases cerámicas por inyección

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRE20080089A1 (it) * 2008-09-29 2010-03-30 Granitifiandre Societa Per Azioni '' metodo per la fabbricazione di prodotti ceramici ''
ES2360781B1 (es) 2009-11-13 2012-05-25 Vidres S.A. Composición y procedimiento para la obtención de materiales para el recubrimiento de cuerpos cerámicos y los artículos así obtenidos.
ES2342708B2 (es) * 2010-02-09 2011-01-27 Asociacion De La Industria Navarra Ain Procedimiento para la fabricacion de recubrimientos ceramicos para baldosas y baldosa asi obtenida.
EP2679566A1 (en) 2012-06-28 2014-01-01 Colorobbia España, S.A. Method for obtaining optical interference effects by means of digital ink-jet technique
KR102592028B1 (ko) * 2022-09-15 2023-10-20 김종영 합성 잡재가 함유된 유약 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2426032A1 (fr) * 1978-05-19 1979-12-14 Lapelerie Pierre Produits mineraux metallises et procedes de metallisation de produits mineraux
ES2153708T3 (es) * 1999-04-09 2001-03-01 Heraeus Gmbh W C Preparado brillante de metal noble.
ES2162566A1 (es) * 1999-07-09 2001-12-16 E Instr Galvanotecnico S L Pro Procedimiento para metalizar productos ceramicos.
ES2162021T3 (es) * 1995-01-20 2001-12-16 Lamberti Spa Procedimiento de produccion de articulos ceramicos esmaltados.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2426032A1 (fr) * 1978-05-19 1979-12-14 Lapelerie Pierre Produits mineraux metallises et procedes de metallisation de produits mineraux
ES2162021T3 (es) * 1995-01-20 2001-12-16 Lamberti Spa Procedimiento de produccion de articulos ceramicos esmaltados.
ES2153708T3 (es) * 1999-04-09 2001-03-01 Heraeus Gmbh W C Preparado brillante de metal noble.
ES2162566A1 (es) * 1999-07-09 2001-12-16 E Instr Galvanotecnico S L Pro Procedimiento para metalizar productos ceramicos.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2396399A1 (es) * 2011-08-22 2013-02-21 Sociedad Anónima Minera Catalano - Aragonesa Procedimiento de obtención de aspecto metálico sobre bases cerámicas por inyección

Also Published As

Publication number Publication date
AU2002235950A1 (en) 2003-09-09
EP1498402B8 (en) 2006-05-03
EP1498402A1 (en) 2005-01-19
EP1498402B1 (en) 2005-11-02
DE60207117D1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
US7541102B2 (en) Protective layer for a body, and process and arrangement for producing protective layers
US7018727B2 (en) Transparent protective layer for a body
US8460804B2 (en) Glass or glass-ceramic article coated with hard material and method for production thereof
CN108239747B (zh) 涂覆有黄色层的珍珠母基质
US20120295081A1 (en) Composite material and method for producing same
KR101485885B1 (ko) 유리-세라믹 플레이트 및 그 제조과정
US7153595B2 (en) Transparent substrate having a stack of thin metallic reflection layers
WO1999012857A1 (en) Reflective porcelain enamel coating composition
EP1498402B8 (en) Method of producing ceramic tiles having a metallic finish and the tile thus produced
KR102221746B1 (ko) 코팅된 유리 세라믹판
CN111670170B (zh) 玻璃陶瓷制品
ES2205730T5 (es) Acristalamiento provisto de un apilamiento de capas metálicas reflectantes
EP2177486A1 (en) Glass-ceramic material and tiles coated with it
CN114620943B (zh) 半透明或透明的防磨损层、具有该层的基底及其制造方法
JPH03207853A (ja) 装飾皮膜を有する被加工物
TW201250018A (en) Coated articles and mathod for making the same
JPH0499870A (ja) セラミックス被覆材料の製造方法
ES2238190B1 (es) Procedimiento para la fabricacion de piezas ceramicas, de vidrio o porcelanicas con metalizacion parcial por deposicion en fase vapor y producto asi obtenido.
US20220144695A1 (en) Glass-ceramic article
TW201304947A (zh) 鍍膜件及其製造方法
KR20220085022A (ko) 중성색 마모 보호 코팅, 이러한 중성색 마모 보호 코팅을 가진 기판, 및 이의 제조 방법
US20220162119A1 (en) Glass-ceramic article
SU1760987A3 (ru) Способ получени защитно-декоративных покрытий в вакууме из нитрида титана на издели х из металла, стекла, керамики
ES2408592T3 (es) Recubrimiento de artículos cerámicos vitrificados por el procedimiento pvd
JPH0137353B2 (es)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002702416

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002702416

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002702416

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP