WO2003069334A1 - Utilisation d'une sonde capacitive pour déterminer la biomasse de bactéries de petite taille - Google Patents

Utilisation d'une sonde capacitive pour déterminer la biomasse de bactéries de petite taille Download PDF

Info

Publication number
WO2003069334A1
WO2003069334A1 PCT/FR2003/000428 FR0300428W WO03069334A1 WO 2003069334 A1 WO2003069334 A1 WO 2003069334A1 FR 0300428 W FR0300428 W FR 0300428W WO 03069334 A1 WO03069334 A1 WO 03069334A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
conductance
use according
probe
streptococcus
Prior art date
Application number
PCT/FR2003/000428
Other languages
English (en)
Inventor
Philippe Teissier
Jean-Yve Barbeau
Anne Solenn Arnoux
Frédéric OSSART
Charles Ghommidh
Original Assignee
Compagnie Gervais Danone
Fogale Nanotech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Gervais Danone, Fogale Nanotech filed Critical Compagnie Gervais Danone
Priority to AU2003222371A priority Critical patent/AU2003222371A1/en
Publication of WO2003069334A1 publication Critical patent/WO2003069334A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/29Assays involving biological materials from specific organisms or of a specific nature from bacteria from Richettsiales (o)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/295Assays involving biological materials from specific organisms or of a specific nature from bacteria from Chlamydiales (o)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/30Assays involving biological materials from specific organisms or of a specific nature from bacteria from Mycoplasmatales, e.g. Pleuropneumonia-like organisms [PPLO]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/315Assays involving biological materials from specific organisms or of a specific nature from bacteria from Streptococcus (G), e.g. Enterococci
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/335Assays involving biological materials from specific organisms or of a specific nature from bacteria from Lactobacillus (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/365Assays involving biological materials from specific organisms or of a specific nature from bacteria from Actinoplanes (G)

Definitions

  • the present invention relates to the use of a device comprising a capacitive probe for determining the biomass of small bacteria, such as lactic acid bacteria, during their culture or during a fermentation process.
  • the major concern of the food industries using ferments is the quality and performance of their fermentations.
  • One of the main variables in a fermentation process is the concentration of biomass in the reactor, i.e. the concentration of microbial cells, especially bacteria or yeast in the fermenter, since productivity is generally directly proportional to the biomass.
  • This process can be carried out in a conventional manner (also called “batch”), wherein the fermenter is filled with the entire culture medium, and then inoculated with the microorganisms. During the culture, the fermentation is controlled using as parameters of action the temperature, the regulation of the pH and sometimes the manual addition of ingredients in a punctual way.
  • the process can also be carried out in a fed reactor (or “Fed batch”): in this fermentation mode, the fermenter is partially filled with the basic culture medium (approximately 1/5 to 1/4 of the fermenter) and then inoculated.
  • the fermentation is controlled by continuous addition of culture medium and of various nutrients (hence the name of fed bacth) which makes it possible to continuously adjust the nutrient concentrations and to control the culture under optimal conditions growth of the microorganism.
  • the fermenter is filled and we have reached the volume of medium that we have at the initial moment in the mode batch culture.
  • Action parameters such as temperature, pH regulation or manual addition of ingredients on an ad hoc basis can also be used, but are less important; in this second mode, variations in salt content are more important.
  • the present invention proposes to provide a means of measuring the biomass of microbial cells of small size, that is to say those whose surface is less than 10 ⁇ m 2 , such as for example lactic bacteria, in particular streptococci and lactobacilli, because to date no precise, reliable, efficient and reproducible means has been developed for measuring the biomass content of lactic acid bacteria in a culture in real time.
  • the use of an on-line biomass sensor would make it possible to control, optimize and conduct the fermentations with a view to increasing the quantity and quality of the final product and satisfying the conditions of production, in particular in the food industry. .
  • the present invention relates to the use of a device, and its implementation when conducting culture methods, comprising a capacitive probe for determining the biomass of living cells whose cell surface is less than or equal to 10 ⁇ m 2 , said probe being intended to be applied, preferably immersed, in a medium containing said cells, and said probe comprising (i) a first pair of intensity electrodes for injecting an electric current into said medium, (ii ) a second pair of voltage electrodes for reading the voltage applied to said medium, and (iii) means for measuring the electric current injected.
  • said device further comprises a conditioner comprising (i) means for supplying a galvanically isolated alternating voltage to be applied between said intensity electrodes and, (ii) means for processing signals representative of the current injected into said medium and of the voltage measured across the voltage electrodes, so as to deliver signals respectively for measuring the capacity and the conductance of said medium.
  • the processing means comprise (i) a zero method measurement bridge arranged to process an image signal of the injected current and an image signal of the detected voltage applied respectively to a reference branch and to two opposition branches, and ( ii) means for automatically controlling this bridge from the conductance measurement signal.
  • the zero method measurement bridge is arranged downstream of circuits delivering image signals respectively of the injected current and of the voltage across the impedance to be measured. Such an arrangement makes it possible to solve problems of isolation and precision, because the arrangement allows mounting on a floating bridge and prior amplification of the measurement signals delivered by the probe.
  • the measurement bridge comprises:
  • first opposing branch including an adjustable opposing resistance
  • second opposing branch including an adjustable opposing capacitor on which the image signal of the detected voltage is applied
  • the conditioner further comprises in the first opposing branch a first modulator, the input of which is connected to the output of the means for delivering the voltage image signal, this first modulator being controlled by the conductance measurement signal so that the signal measurement of zero is substantially zero.
  • the probe comprises four wires respectively connecting the four current injection and voltage measurement electrodes to four terminals of connection means with the conditioner, and two additional wires respectively connecting the terminals of a resistor measuring current disposed inside the probe at two other terminals of said connection means.
  • the resistance of the measurement of current is for example inserted between one of the current injection electrodes and one of the additional wires connected via the means for connection to a floating mass of the conditioner, and is preferably placed near the electrodes of the probe.
  • This particular arrangement of the measurement probe has the advantage that this probe is entirely passive and does not include an amplifier, which makes it possible to design probes of very small diameter, for example with a diameter of 12mm.
  • the conditioner of the device according to the invention can be easily controlled by replacing the measurement probe with a passive standard consisting of a resistance and a capacity.
  • the automatic control means can also be arranged to control the bridge from the capacity measurement signal.
  • the conditioner then further comprises a second modulator inserted between the output of the means for delivering the voltage image signal and the opposition capacitor, said second modulator being controlled by the capacitance measurement signal so that the zero measurement signal is substantially zero.
  • the processing means further comprise, at the output of the measurement bridge, respectively a first and a second channel each comprising synchronous detection means and first integrators respectively delivering the signals for measuring capacity and conductance, these synchronous detection means being controlled by the output signal from the oscillator means.
  • the probe includes only passive components and is removably connected to the conditioner.
  • the conditioner further includes first and second amplifiers RCDs electrically connected to the probe and designed to deliver the current signal and the voltage signal respectively.
  • the capacitive probes according to the invention preferably comprise four electrodes.
  • the two external electrodes emit an alternating current with variable frequency which can be predetermined. This current creates an electric field around the electrodes which polarizes living cells.
  • the two inner electrodes measure the potential difference (voltage) of the medium in which the living cells are suspended.
  • This device has three parts: the MCU
  • the electric current injected into the medium by said probe has a frequency between 0.1 MHz and 10 MHz, preferably between 0.1 and 1 MHz.
  • the medium according to the invention containing the said cells is a liquid, more or less fluid aqueous medium.
  • the cell suspension medium in particular bacteria, which can be used in the The present invention is preferably an aqueous culture medium containing the nutrients necessary for the survival and / or growth of the cells in suspension.
  • nutrients are, sources of carbon, such as glucose, phosphorus, nitrogen and other sources of essential nutrients.
  • culture media are given in the examples below.
  • LB broth is an example of a well known synthetic bacterial culture medium.
  • the culture medium can also be a vegetable medium, in particular vegetable juices.
  • the cell suspension medium can also be a liquid food, for example milk, lactic ferments, a yogurt or a milk cream. According to a preferred embodiment, the conductance of said medium is between 2 and 400 mS, preferably between 20 and 200 mS.
  • the conductance of said medium varies in the range between 2 and 400 mS, in an interval of 250 mS.
  • the measurement is carried out in media with conductivity between 2 mS and 400 mS.
  • the conductance of the medium can be adjusted by adding salt to said medium, so that the conductance of the medium is within this range.
  • the salt used must be compatible with the cells in culture and is for example sodium chloride (NaCl) or potassium chloride (KC1).
  • the present invention also provides the correspondence between the pF capacity measured by the device according to the invention and the concentration of living cells in g / 1 of medium; this is given by the relation: 1 pF is equivalent to approximately 0.05 g / 1 to 0.4 g / 1 of living cells, in particular living bacteria, in the medium according to the type of cells, in particular bacteria, present in the medium.
  • the living cells are living lactic acid bacteria, such as lactobacilli, in this case the said relationship is for example 1 pF equivalent to approximately 0.2 g / l of lacobacilli living in the medium.
  • the present invention also relates to a method for determining the characteristics of a biomass of living cells whose cell surface is less than or equal to 10 ⁇ m 2 , said method comprising the following steps: a) injection of an alternating current at predetermined frequency in a medium containing said cells, via a first pair of electrodes immersed in said medium; b) measurement of the current injected into said medium, c) measurement of the voltage across a second pair of electrodes immersed in said medium and arranged near the current injection electrodes, and d) processing of image signals respectively of the current injected into said medium and of the voltage measured at the terminals of the voltage electrodes, so as to deliver signals respectively for measuring the capacity and the conductance of said medium.
  • the method of the invention is implemented using the device according to the invention, and in particular the capacitive probe.
  • This process is characterized in that the conductance measurement range is between 1 mS and 1000 mS.
  • the conductance measurement range extends from 2 to 400 mS, and even more preferably between 20 to 200 mS.
  • the method may further comprise a step of adjusting the conductance of the medium by adding salt, such as NaCl or KC1; thus for example 0.5 g / 1 of NaCl in solution in water corresponds to a conductance of 1 mS.
  • salt such as NaCl or KC1
  • the measurement of small variation in capacitance, of the order of about 0.1 to 0.5 pF, by implementing the method of the invention, is carried out in media with conductivity between 2 mS and 400 mS .
  • the frequencies to measure the biomass are preferably the frequencies for which the beta dispersion is essentially complete (see Figure 1) and for which the alpha dispersion is negligible.
  • the capacitive probe according to the invention is preferably used over the entire frequency range corresponding to the beta dispersion (0.1 to 10 MHz), but the optimal measurement frequencies for the small cells of the invention are preferably between 0.1 MHz and 1 MHz.
  • the method according to the invention may include a step of calibrating the capacitive probe as a function of the temperature of the medium and of the conductance of the medium.
  • the temperature of the culture medium is adapted to allow the survival and / or growth of the cells; it is preferably between 0 and 50 ° C, preferably it is at least 20 ° C, preferably the temperature is of the order of 37 ° C.
  • the method is characterized in that the processing of the current and voltage signals includes a zero method implementing a measurement bridge comprising on the one hand a reference branch on which the image signal of the current is applied, and on the other hand, two opposing branches on which the image signal of the voltage is applied, these opposing branches respectively comprising an adjustable resistive component and an adjustable capacitive component, and this measurement bridge being automated to deliver a measurement signal of capacity and a medium conductance measurement signal.
  • the measurement of the resistance and the capacity of the medium is determined by a method of zero, from the action which it is necessary to do to cancel the real part and the imaginary part of the current passing through the biomass.
  • the method of the invention as well as the device or the capacitive probe according to the invention can be used for a wide range of small cells which can be the cells of plants, animals or microbial cells and in a large number of fermentation processes.
  • the method of the invention is applicable to microbial cultures containing bacteria, yeasts or fungal cells.
  • the method according to the invention is essentially applicable to microbial cultures containing cells of small size, preferably prokaryotic cells, in particular bacteria. These bacteria of small sizes generally have a spherical or coccoid shape, or a shape of a spiral or helical rod, they are in a sporulated form or not.
  • small bacteria is understood to mean that their size is much smaller than that of large bacteria such as Escherichia coli or of the genus Bacillus.
  • large bacteria such as Escherichia coli or of the genus Bacillus.
  • bacteria capable of being used in a process of the present invention or used with the device or the capacitive probe of the present invention it should be mentioned in a non-exhaustive manner:
  • Lactic acid bacteria especially lactobacilli, lactococci, streptococci and leuconostoc,
  • Bifidobacteria Rickettsiae, Chlamidia, Mycoplasma.
  • lactobacilli mention should be made of Lactobacillus bulgaricus, Lactobacillus delbrueckii, actobacillus casei.
  • Streptococci mention should be made of Streptococcus thermophilus r Streptococcus aq ⁇ afilus, Streptococcus aquaticus, Streptococcus stearothermophilus.
  • cells of small sizes is meant to designate cells, in particular bacteria whose cell surface does not exceed 10 ⁇ m.
  • the small cells or bacteria according to the invention have an area less than or equal to 7 ⁇ m 2 .
  • the diameter of the cells or bacteria of the invention, in spherical or rod form is less than or equal to 0.7 ⁇ m.
  • the diameter is less than or equal to 0.5 ⁇ m.
  • the cells of the invention are generally cultivated in a bioreactor, or fermenter in which the determination of the biomass of said cells, preferably bacteria, is carried out online.
  • the fermentation process can be carried out in any type of fermenter, whether a large-volume industrial fermenter or a laboratory fermenter.
  • the capacitive probe is attached and / or immersed in the fermenter used in the method according to the invention to allow direct measurement online.
  • the process can in particular be applied to conventional fermentations in batch, or in a continuous medium
  • the measurement may be carried out in the presence of agitation of the medium.
  • the present invention therefore relates to the use of a method according to the invention for monitoring, controlling, adapting, monitoring the fermentation of living cells, preferably lactic acid bacteria, the cell surface of which is less than or equal to 10 ⁇ m 2 .
  • living cells preferably lactic acid bacteria, the cell surface of which is less than or equal to 10 ⁇ m 2 .
  • These bacteria or cells can be detected from concentrations of the order of 10 6 cfu / ml, all throughout the different process steps involving conductances from 0.01 to 400 mS, without modification of the probe.
  • the resolution of the capacitive probe according to the invention is of the order of 0.1 pF in media with conductivity greater than or equal to 0.001 mS.
  • the present invention relates to the use of a method according to the invention for measuring the concentration efficiency of cells while maintaining their viability. Also, the present invention relates to the use of a method according to the invention for measuring the level of salt, in particular sodium chloride, in a medium.
  • a method according to the invention for measuring the level of salt, in particular sodium chloride, in a medium.
  • Figure 1 Electrical dispersions.
  • Figure 2 Representation of the probe with its four platinum electrodes.
  • Figure 4 Propagation Lb casei on synthetic medium and tangential microfiltration - Delta C, conductance and DO as a function of time.
  • Figure 5 Lb spread. bulgaricus on synthetic medium - Delta C, conductance and DO as a function of time.
  • the principle of measuring the quantity of biomass is based on the passive dielectric properties of biological cells, in particular lactic acid bacteria. Indeed, the cytoplasmic membrane of cells, consisting of a double lipid layer, is very poorly conductive. It clearly delimits the interface between the internal medium and the external medium in which the cells are in suspension.
  • Capacitance measurement The accumulation of these charges can be quantified by measuring the suspension's capacitance (capacity)
  • the capacitance is a measure of the amplitude of polarization induced by an electric field and does not depend on the direction of this field. However, it is a function of frequency. An electric field changes direction slowly at low frequency, however, it quickly changes direction at high frequency.
  • the dispersion ⁇ centered in the audio frequency domain (kHz), is due to the tangential relaxation of the ions of the double electric layer of the charged surfaces of the cells (GRAM + essentially due to the particular structure of their envelope).
  • the dispersion ⁇ centered in the domain of very high frequencies (GHz), is essentially due to the rotation of the dipoles of the water molecules.
  • the ⁇ dispersion centered in the radio frequency domain (MHz), is the result of the polarization of the cell membrane. It is noticeable for frequencies ranging from 100 kHz to 10 MHz.
  • delta C ( ⁇ C) which can be correlated to the quantity of biomass present in the suspension.
  • the cells whose membrane is not integral, are not polarized and therefore do not contribute to the measured capacitance signal.
  • the measurement obtained by the probe is specific for viable cells.
  • the probe used in the present invention preferably also gives us the measurement of the conductance of the medium (denoted G and expressed in milli Siemens mS).
  • the conductance is the inverse of the resistance (R) of the solution and it depends on the surface (S) of the electrodes and their spacing.
  • K represents the specific conductivity (in mS .m).
  • the conductance gives information on the ionic composition of the medium, since the transport of the current in the solutions is ensured only by the ions.
  • conductance therefore represents the ability of a medium to transport an electric current, while capacitance represents the ability to store an electrical charge.
  • the measuring device used in the present invention is preferably manufactured by the company Fogale Nanotech (France); it consists of three parts:
  • the MCU 9400 Multisensor Control Unit from Fogale Nanotech
  • the preamp which contains all the electronic components
  • the probe consisting of a cylindrical stainless steel body (diameter 25 mm) and provided at its end with four platinum electrodes arranged in parallel.
  • the two external electrodes emit alternating current at variable frequency. This current creates an electric field around the electrodes, which helps polarize living cells.
  • the two interior electrodes measure the potential difference of the suspension ( Figure 2).
  • the probe is sterilizable and has an electrolytic cleaning system which eliminates any deposit on the surface of the electrodes.
  • the probe is held by a clamp connected to a metal support. It is dipped in ultra pure water in a one liter beaker, obliquely to avoid the accumulation of air bubbles on the electrodes. The beaker is placed on a magnetic stirrer in a water bath. A known mass of sodium chloride is gradually added to the water. Temperatures studied: 30 ° C, 37 ° C and 42 ° C. The conductance varies linearly depending on the salt concentration of the medium. It is also noted that for the same salt concentration, the conductance varies as a function of the temperature.
  • the ⁇ C varies on the one hand according to the conductance, and on the other hand with the temperature of the medium (figure 3). For each monitoring of capacitance, a corrective calculation is necessary in order to overcome the effects of conductance and temperature. It is therefore necessary to subtract from the capacitance measurements obtained during growth monitoring, the value of the calibration ⁇ C corresponding to the same temperature and to the same conductance.
  • the possible conductance measurement range extends from 20 mS to 400 mS, because above 400 mS the signal from the probe saturates, and below 20 mS the measurement becomes less and less precise.
  • the nature of the probe used in the present invention preferably depends on the conductivity of the medium in which the measurement is carried out. Thus, for weakly conductive media, it may be advantageous to have a probe having a conductance range from 10 to 100 mS. For measurements carried out in highly conductive media, it may be advantageous to have a probe having a conductance range of up to 400 S. 2.3. Composition of the media used
  • the synthetic medium used for the propagation of Lb. Casei is the MRS medium or the medium described by Sejong Oh, Sungsue Rheem, Jaehun Sim Sangkyo Kim Youngjin Baek (Appl. Approx. Microbiology 11, 1995, p3809-3814)
  • the batch propagation of Lb. casei is made in a B. Braun 15 L fermenter.
  • the probe is placed at the bottom of the tank.
  • the temperature is maintained at 37 ° C.
  • Stirring is set to at least 200 rpm.
  • the pH is regulated to 6.5 by adding sodium hydroxide. It is followed by a concentration step by filtration or centrifugation.
  • FIG. 4 presents the monitoring of the biomass carried out continuously during the propagation of Lb. casei on synthetic medium.
  • the probe makes it possible to follow the increase in living biomass between 2.10 7 cfu / ml and 5.1010 cfu / ml
  • Capacitance values are perfectly correlated with optical density measurements during the various filtration and washing stages.
  • the probe makes it possible, on the one hand, to measure and control the efficiency of washing and of the concentration via the measurement of conductance, and on the other hand, gives information on the physiological state of bacteria (viability).
  • EXAMPLE 2 ANALYSIS OF THE PROPAGATION OF LACTOBACILLUS DELBRUECKII SSP. BULGARICUS ON SYNTHETIC MEDIA
  • the batch propagation of Lb. bulgaricus on synthetic medium is carried out in a B. Braun 15L fermenter.
  • the probe is placed at the bottom of the tank.
  • the temperature is maintained at 42 ° C.
  • the pH is regulated at 6.2 by adding sodium hydroxide during the first four hours only (cf. materials and method paragraph 2.3.4).
  • the agitation is fixed at 200 rpm.
  • Figure 5 shows the results of Lb growth monitoring. Bulgaricus. The probe detects the presence as well as the growth of Lb. Bulgaricus between 10 8 and 5.10 9 cfu / ml, for conductances from 2 to 35mS.
  • Figure 6 shows the monitoring of the growth of Streptococcus thermophilus as a function of time.
  • the growth of Streptococcus thermophilus on synthetic medium is monitored on the population range 4.10 6 to 10 9 cfu / ml using the capacitance probe even if the capacitance signal is weak. In order to obtain a better resolution, we can filter the signal.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

La présente invention concerne l'utilisation d'un dispositif comprenant une sonde capacitive pour la détermination de la biomasse de bactéries de petite taille, telles les bactéries lactiques, au cours de leur culture ou lors d'un procédé correspondant de détermination de la biomasse.

Description

UTILISATION D'UNE SONDE CAPACITIVE POUR DETERMINER LA BIOMASSE DE BACTERIES DE PETITE TAILLE
DOMAINE TECHNIQUE
La présente invention se rapporte à l'utilisation d'un dispositif comprenant une sonde capacitive pour la détermination de la biomasse de bactéries de petite tailles, telles les bactéries lactiques, au cours de leur culture ou lors d'un procédé de fermentation.
L'ART ANTERIEUR
La préoccupation majeure des industries alimentaires utilisant des ferments est la qualité et la performance de leurs fermentations. L' une des variables principales dans un procédé de fermentation est la concentration de la biomasse dans le réacteur, c'est-à-dire la concentration des cellules microbiennes, notamment les bactéries ou les levures dans le fermenteur, étant donné que la productivité est généralement directement proportionnelle à la biomasse.
Il est également très important de mesurer en temps réel la concentration de la biomasse viable dans les fermenteurs pour minimiser les échantillonnages et les analyses de biomasse hors-ligne. Les méthodes conventionnelles indirectes d' estimation de la biomasse sont lentes et ne permettent bien souvent pas de différencier la biomasse biologiquement active, c'est-à- dire viable de la biomasse morte (nécromasse) . La plupart des 'méthodes plus récentes de mesure en ligne utilisent des sondes optiques qui mesurent la turbidité ou la transmission de lumière et/ou la dispersion de la lumière a travers des suspensions cellulaires dans un milieu liquide ; le signal généré par ces sondes est proportionnel à la concentration en particules dans le bioréacteur, mais il ne permet pas de distinguer entre les cellules vivantes, mortes, les cristaux de sel, ou d'autres particules.
Plus récemment des sondes capacitives ont été développées qui permettent de mesurer la capacitance de suspension de cellules soumises à des radiofréquences basses (0,1 MHz à 10 MHz) qui est une fonction du volume des cellules viables (Harris et al . , Enzyme Microb. Technol. Vol.9, Mars 1987) . Ce type de sondes peuvent être insérées dans un bioréacteur et permettre une mesure en ligne de la biomasse viable dans des fermenteurs aussi bien industriels ou à l'échelle pilote sur des milieux de faible plage de conductivité (30 mS) .
Jusqu'à présent, les sondes capacitives de l'art antérieur ont été utilisées pour déterminer la biomasse de cellules de grandes tailles telles les levures et les bactéries du genre Escherichia coli . Les mesures ne peuvent être effectuées que pour des cellules en grande quantité, et dans des milieux de concentration ionique définie. Ainsi EP281602 décrit ce type de sonde capacitive mais qui présente un certain nombre d' inconvénients car il ne permet pas d' obtenir directement un signal représentatif de la capacité indépendant de la fréquence d'excitation des électrodes. Il n'existe pas actuellement de moyen de suivre et de contrôler en ligne les étapes de préparation de la biomasse de bactéries telles que les bactéries lactiques, tout au long du procédé qui implique des modifications continues de la teneur en sel. Ce procédé peut être réalisé de manière classique (aussi appelée "batch"), dans lequel le fermenteur est rempli avec le milieu de culture dans son intégralité, et ensuite inoculé avec le microorganismes. Durant la culture, on pilote la fermentation en utilisant comme paramètres d'action la température, la régulation du pH et parfois l'ajout manuel d'ingrédients de manière ponctuelle. Le procédé peut aussi être effectué en réacteur alimenté (ou "Fed batch) : dans ce mode de fermentation, le fermenteur est partiellement rempli avec le milieu de culture de base (environ 1/5 à 1/4 du fermenteur) et ensuite inoculé. Durant la culture, on pilote la fermentation par ajout continu de milieu de culture et de différents nutriments (d'où le nom de fed bacth) ce qui permet d'ajuster en continu les concentrations en nutriments et de piloter la culture dans les conditions optimales de croissance du micro-organisme. A la fin de la fermentation, de par l'ajout progressif de milieu de culture, le fermenteur est rempli et on a atteint le volume de milieu que l'on a à l'instant initial dans le mode de culture batch. Les paramètres d'action comme la température, la régulation du pH ou l'ajout manuel d'ingrédients de manière ponctuels peuvent aussi être utilisés, mais sont moins importants; dans ce second mode, les variations de la teneur en sel sont plus importantes. Les sondes classiques sont adaptées pour des mesures de cellules de taille relativement élevée, dans des intervalles de conductivité restreints, qui ne sont pas compatibles avec les variations observées dans les procédés évoqués ci- dessus; les tentatives pour augmenter cette gamme de conductivité se traduisent par une perte importante de sensibilité de la sonde. La demande WO 01 79828 au nom de NANOTEC SOLUTION décrit une sonde remédiant à certains de ces inconvénients, qui est notamment utilisée pour mesurer le taux de sel dans du saumon ou du jambon pour déterminer l'état de fraîcheur de ces produits.
De manière inattendue, on a maintenant trouvé que la sonde décrite dans la demande WO 0179828, qui est incorporée ici par référence, pouvait être appliquée au contrôle de l'efficacité du procédé et du maintien de la qualité et de la viabilité de la biomasse de cellules de petite taille telles que les bactéries lactiques, au cours des différentes étapes. La présente invention se propose de fournir un moyen de mesure de la biomasse de cellules microbiennes de petite taille, c'est-à-dire dont la surface est inférieure à 10 um2, telles par exemple les bactéries lactiques, en particulier les streptocoques et les lactobacilles, car à ce jour aucun moyen précis fiable efficace et reproductible n'a été développé pour mesure le contenu en biomasse de bactéries lactiques dans une culture en temps réel. L' utilisation - d' un capteur en ligne de biomasse permettrait de maîtriser, d'optimiser et de conduire les fermentations en vue d' augmenter la quantité et la qualité du produit final et de satisfaire les conditions de production, notamment dans le domaine agroalimentaire.
DESCRIPTION DETAILLEE DE L'INVENTION
La présente invention concerne l'utilisation d'un dispositif, et sa mise en œuvre lors de la conduite de procédés de culture, comprenant une sonde capacitive pour la détermination de la biomasse de cellules vivantes dont la surface cellulaire est inférieure ou égale à 10 μm2, la dite sonde étant prévue pour être appliquée, de préférence immergée, dans un milieu contenant les dites cellules, et la dite sonde comprenant (i) une première paire d'électrodes d'intensité pour injecter un courant électrique dans le dit milieu, (ii) une seconde paire d'électrodes de tension pour relever la tension appliquée au dit milieu, et (iii) des moyens pour mesurer le courant électrique injecté. De préférence, le dit dispositif comprend en outre un conditionneur comprenant (i) des moyens pour fournir une tension alternative isolée galvaniquement à appliquer entre lesdites électrodes d'intensité et, (ii) des moyens pour traiter des signaux représentatifs du courant injecté dans le dit milieu et de la tension relevée aux bornes des électrodes de tension, de façon à délivrer des signaux respectivement de mesure de la capacité et de la conductance du dit milieu. Les moyens de traitement comprennent (i) un pont de mesure par méthode de zéro agencé pour traiter un signal image du courant injecté et un signal image de la tension relevée appliqués respectivement à une branche de référence et à deux branches d'opposition, et (ii) des moyens pour commander automatiquement ce pont à partir du signal de mesure de conductance. Selon la présente invention, le pont de mesure par méthode de zéro est disposé en aval de circuits délivrant des signaux images respectivement du courant injecté et de la tension aux bornes de l'impédance à mesurer. Un tel agencement permet de résoudre des problèmes d'isolement et de précision, car l'agencement permet un montage en pont flottant et une amplification préalable des signaux de mesure délivrés par la sonde. Dans un mode particulier de réalisation, le pont de mesure comporte :
- une branche de référence incluant une résistance de référence sur laquelle est appliqué le signal image du courant injecté,
- une première branche d' opposition incluant une résistance d'opposition réglable et une seconde branche d'opposition incluant un condensateur d'opposition réglable sur lesquelles est appliqué le signal image de la tension relevée, et,
- des moyens amplificateurs ayant leur entrée reliée aux dites branches de référence et d'opposition et délivrant un signal de mesure de zéro.
Dans un dispositif selon l'invention comprenant en outre des moyens pour délivrer un signal image de la tension aux bornes de la seconde paire d' électrodes et des moyens pour délivrer un signal image du courant injecté dans la première paire d'électrodes, le conditionneur comprend en outre dans la première branche d'opposition un premier modulateur dont l'entrée est reliée à la sortie des moyens pour délivrer le signal image de tension, ce premier modulateur étant commandé par le signal de mesure de conductance de sorte que le signal de mesure de zéro est sensiblement nul. Dans un mode préféré de réalisation, la sonde comprend quatre fils reliant respectivement les quatre électrodes d'injection de courant et de mesure de tension à quatre bornes de moyens de connexion avec le conditionneur, et deux fils supplémentaires reliant respectivement les bornes d'une résistance de mesure de courant disposée à l'intérieur de la sonde à deux autres bornes desdits moyens de connexion. La résistance de la mesure de courant est par exemple insérée entre l'une des électrodes d'injection de courant et l'un des fils supplémentaires relié via les moyens de connexion à une masse flottante du conditionneur, et est de préférence disposée à proximité des électrodes de la sonde. Cet agencement particulier de la sonde de mesure présente comme avantage le fait que cette sonde est entièrement passive et n'inclut pas d'amplificateur, ce qui permet de concevoir des sondes de très faible diamètre, par exemple d'un diamètre de 12mm. De plus, le conditionneur du dispositif selon l'invention peut être aisément contrôlé en remplaçant la sonde de mesure par un étalon passif constitué d'une résistance et d'une capacité. Les moyens de commande automatique peuvent en outre être agencés pour commander le pont à partir du signal de mesure de capacité. Le conditionneur comprend alors en outre un second modulateur inséré entre la sortie des moyens pour délivrer le signal image de tension et le condensateur d'opposition, ledit second modulateur étant commandé par le signal de mesure de capacité de sorte que le signal de mesure de zéro est sensiblement nul. Dans un mode pratique de réalisation du dispositif selon l'invention, les moyens de traitement comprennent en outre, en sortie du pont de mesure, respectivement un premier et un second canal comprenant chacun des moyens de détection synchrone et des premiers intégrateurs délivrant respectivement les signaux de mesure de capacité et de conductance, ces moyens de détection synchrone étant commandés par le signal de sortie des moyens oscillateurs. La sonde ne comprend que des composants passifs et est connectée de façon amovible au conditionneur. Le conditionneur comprend en outre un premier et un second amplificateurs différentiels reliés électriquement à la sonde et prévus pour délivrer respectivement le signal de courant et le signal de tension.
Les sondes capacitives selon l'invention comprennent de préférence quatre électrodes. Les deux électrodes extérieures émettent un courant alternatif à fréquence variable pouvant être prédéterminée. Ce courant créé un champ électrique aux environ des électrodes qui permet de polariser les cellules vivantes. Les deux électrodes intérieures mesurent la différence de potentiel (tension) du milieu dans lequel les cellules vivantes se trouvent en suspension.
Un exemple de dispositif ou de sonde capacitive selon l'invention est décrit dans la demande internationale de brevet WO0179828 au nom de la société NANOTEC SOLUTION
(France) . Ce dispositif comprend trois parties : le MCU
9400 (Multisensor Control Unit) destiné à acquérir, traiter, visualiser et mémoriser ou transmettre vers un ordinateur les informations provenant de la sonde capacitive, le pré-amplificateur qui contient l'ensemble des composants électroniques, et la sonde capacitive constituée d'un corps cylindrique en inox (diamètre 25 mm) munie à son extrémité de quatre électrodes en platine disposées en parallèle. Selon un mode préféré de réalisation, le courant électrique injecté dans le milieu par la dite sonde a une fréquence comprise entre 0,1 MHz et 10 MHz, de préférence entre 0,1 et 1 MHz. Le milieu selon l'invention contenant les dites cellules est un milieu aqueux liquide, plus ou moins fluide. Le milieu de suspension des cellules, notamment des bactéries, susceptible d'être mis en œuvre dans la présente invention, est de préférence un milieu aqueux de culture contenant les nutriments nécessaires à la survie et/ou à la croissance des cellules en suspension. Des exemples de nutriments sont, des sources de carbone, tel le glucose, du phosphore, de l'azote et d'autres sources de nutriments essentiels. Des exemples de milieux de cultures sont donnés dans les exemples ci-après. Le LB broth constitue un exemple de milieu de culture synthétique bactérien bien connu. Le milieu de culture peut également être un milieu végétal, notamment les jus végétaux. Le milieu de suspension des cellules peut aussi être un liquide alimentaire, par exemple le lait, les ferments lactiques, un yaourt ou une crème lactée. Selon un mode préféré de réalisation, la conductance du dit milieu est comprise entre 2 et 400 mS, de manière préféré entre 20 et 200 mS . De manière préférée, la conductance du dit milieu varie dans la plage comprise entre 2 et 400 mS, dans un intervalle de 250 mS . Lorsque le dispositif selon l'invention est mis en œuvre pour mesurer de faible variation de la capacitance, par exemple de l'ordre d'environ 0,1 à 0,5 pF, la mesure est réalisée dans les milieux à conductivité comprise entre 2 mS et 400 mS . La conductance du milieu peut être ajustée par adjonction de sel au dit milieu, pour que la conductance du milieu se situe dans cette gamme. Le sel utilisé doit être compatible avec les cellules en culture et est par exemple du chlorure de sodium (NaCl) ou du chlorure de potassium (KC1) . La présente invention fournit également la correspondance entre la capacité en pF mesurée par le dispositif selon l'invention et la concentration en cellules vivantes en g/1 de milieu ; celle-ci est donnée par la relation : 1 pF équivaut à environ 0,05 g/1 à 0,4 g/1 de cellules vivantes, notamment de bactéries vivantes, dans le milieu selon le type de cellules, notamment de bactéries, présentes dans le milieu. Selon un mode préféré de réalisation, les cellules vivantes sont des bactéries lactiques vivantes, telles des lactobacilles, dans ce cas la dite relation est par exemple 1 pF équivaut à environ 0,2 g/1 de lacobacilles vivants dans le milieu. La présente invention se rapporte également à un procédé pour déterminer les caractéristiques d'une biomasse de cellules vivantes dont la surface cellulaire est inférieure ou égale à 10 μm2, le dit procédé comprenant les étapes suivantes : a) injection d'un courant alternatif à fréquence prédéterminée dans un milieu contenant les dites cellules, via une première paire d'électrodes immergées dans le dit milieu; b) mesure du courant injecté dans le dit milieu, c) mesure de la tension aux bornes d'une seconde paire d'électrodes immergées dans ledit milieu et disposées à proximité des électrodes d'injection de courant, et d) traitement des signaux images respectivement du courant injecté dans le dit milieu et de la tension relevée aux bornes des électrodes de tension, de façon à délivrer des signaux respectivement de mesure de la capacité et de la conductance du dit milieu. De préférence, le procédé de l'invention est mise en œuvre en utilisant le dispositif selon l'invention, et notamment la sonde capacitive. Ce procédé se caractérise en ce que la plage de mesure de la conductance est comprise entre 1 mS et 1000 mS . De manière préférée, la plage de mesure de la conductance s'étend de 2 à 400 mS, et de manière encore plus préférée entre 20 à 200 mS . Le procédé peut comprendre en outre une étape d'ajustement de la conductance du milieu par adjonction de sel, tel NaCl ou KC1 ; ainsi par exemple 0,5 g/1 de NaCl en solution dans de l'eau correspond à une conductance de 1 mS. La correspondance entre la quantité de sel dans l'eau et la conductance est aisément déterminée par l'homme du métier.
La mesure de faible variation de la capacitance, de l'ordre d'environ 0,1 à 0,5 pF, en mettant en œuvre le procédé de l'invention, est réalisée dans les milieux à conductivité comprise entre 2 mS et 400 mS.
Les fréquences pour mesurer la biomasse sont de préférence les fréquences pour lesquelles la dispersion bêta est essentiellement complète (voir figure 1) et pour lesquelles la dispersion alpha est négligeable. La sonde capacitive selon l'invention est utilisée de préférence sur toute la gamme de fréquence correspondant à la dispersion beta (0,1 à 10 MHz), mais les fréquences de mesure optimales pour les cellules de petites tailles de l'invention sont de préférence comprise entre 0,1 MHz et 1 MHz.
En outre, le procédé selon l'invention peut comporter une étape d' étalonnage de la sonde capacitive en fonction de la température du milieu et de la conductance du milieu. La température du milieu de culture est adaptée pour permettre la survie et/ou la croissance des cellules ; elle est de préférence comprise entre 0 et 50°C, de préférence elle est d'au moins 20°C, de manière préférée la température est de l'ordre de 37 °C.
Le procédé est caractérisé en ce que le traitement des signaux de courant et de tension inclut une méthode de zéro mettant en œuvre un pont de mesure comprenant d'une part une branche de référence sur laquelle le signal image du courant est appliqué, et d'autre part, deux branches d'opposition sur lesquelles le signal image de la tension est appliqué, ces branches d'opposition comprenant respectivement une composante résistive réglable et une composante capacitive réglable, et ce pont de mesure étant automatisé pour délivrer un signal de mesure de capacité et un signal de mesure de conductance du milieu. Ainsi, dans la présente invention, la mesure de la résistance et de la capacité du milieu est déterminée par une méthode de zéro, à partir de l'action qu'il est nécessaire de faire pour annuler la partie réelle et la partie imaginaire du courant passant à travers la biomasse. Pour un exposé du principe général de mesure d' impédance par méthode de zéro avec mise en œuvre de quatre électrodes, on pourra se référer à l'article « Four-electrodes null techniques for impédance measurement with high resolution » de H. P. SCHWAN et CD. FERRIS dans la publication « The Review of Scientific Instruments (vol.39, N°4, Avril 1968).
Le procédé de l'invention ainsi que le dispositif ou la sonde capacitive selon l'invention peuvent être utilisés pour une large gamme de cellules de petite taille pouvant être les cellules de plantes, d'animaux ou des cellules microbiennes et dans un grand nombre de procédés de fermentation. De préférence, le procédé de l'invention est applicable aux cultures microbiennes contenant des bactéries, des levures ou des cellules fongiques. Le procédé selon l'invention est essentiellement applicable à des cultures microbiennes contenant des cellules de petites tailles, de préférence des cellules procaryotes, notamment des bactéries. Ces bactéries de petites tailles ont généralement une forme sphérique ou coccoïde, ou une forme de bâtonnet spiralée ou hélicoïdale, elle sont sous une forme sporulée ou non. Par bactéries de petites tailles, on entend que leur taille est nettement inférieure à celle de bactéries de grande taille telles Escherichia coli ou du genre Bacillus . Parmi les bactéries, susceptibles d'être mises en œuvre dans un procédé de la présente invention ou utilisées avec le dispositif ou la sonde capacitive de la présente invention, il convient de citer de manière non exhaustive :
Les bactéries lactiques, notamment les lactobacilles, les lactocoques, les streptocoques et leuconostoc,
Les bifidobactéries, Les rickettsies, Les chlamidies, Les mycoplasmes. Parmi les lactobacilles, il convient de citer Lactobacillus bulgaricus , Lactobacillus delbrueckii , actobacillus casei . Parmi les Streptocoques, il convient de citer Streptococcus thermophilus r Streptococcus aqυafilus, Streptococcus aquaticus , Streptococcus stearothermophilus .
Plus particulièrement par cellules de petites tailles, on entend désigner des cellules, notamment des bactéries dont la surface cellulaire n'excède pas 10 μm . De manière préférée, Les cellules ou bactéries de petite taille selon l'invention ont une surface inférieure ou égale à 7 μm2. Egalement, le diamètre des cellules ou des bactéries de l'invention, sous forme sphérique ou de bâtonnet, est inférieur ou égal à 0,7 μm. De préférence le diamètre est inférieur ou égal à 0,5 μm.
Pour la mise en œuvre du procédé selon la présente invention, les cellules de l'invention sont en général cultivées dans un bioréacteur, ou fermenteur dans lequel la détermination de la biomasse des dites cellules, de préférence des bactéries, est réalisée en ligne. Le procédé de fermentation peut être réalisé dans n'importe quel type de fermenteur, que se soit un fermenteur industriel à gros volume ou un fermenteur de laboratoire. De préférence, la sonde capacitive est attachée et/ou immergée dans le fermenteur utilisé dans le procédé selon l'invention pour permettre une mesure directe en ligne. Le procédé pourra notamment être appliqué à des fermentations classiques en batch, ou en milieu continu
(avec soutirage, en cours de culture, de milieu remplacé par du milieu neuf) ; il sera particulièrement avantageux pour le suivi de fermentations de type "fed batch". En particulier, la mesure pourra être effectuée en présence d'une agitation du milieu.
La présente invention se rapporte donc à l'utilisation d'un procédé selon l'invention pour suivre, contrôler, adapter, surveiller la fermentation de cellules vivantes, de préférence de bactéries lactiques, dont la surface cellulaire est inférieure ou égale à 10 μm2. Ces bactéries ou cellules pourront être détectées à partir de concentrations de l'ordre de 106 ufc/ml, tout au long des différentes étapes du procédé impliquant des conductances de 0,01 à 400 mS, sans modification de la sonde.
La résolution de la sonde telle que définie dans la présente invention est donnée par le tableau suivant:
Figure imgf000017_0001
La résolution de la sonde capacitive selon l'invention est de l'ordre de 0,1 pF dans les milieux à conductivité supérieure ou égale à 0,001 mS .
Enfin, la présente invention se rapporte à l'utilisation d'un procédé selon l'invention pour mesurer l'efficacité de concentration des cellules tout en maintenant leur viabilité. Egalement, la présente invention se rapporte à l'utilisation d'un procédé selon l'invention pour mesurer le taux de sel, notamment de chlorure de sodium, dans un milieu. D'autres caractéristiques et avantages de l'invention apparaissent dans la suite de la description avec les exemples représentés ci-après.
LEGENDE DES FIGURES
Figure 1 Dispersions électriques. Figure 2 Représentation de la sonde avec ses quatre électrodes en platine.
Figure 3 Etalonnage de la sonde - Capacitance en fonction de la conductance pour différentes températures.
Figure 4 Propagation Lb casei sur milieu synthétique et microfiltration tangentielle - Delta C, conductance et DO en fonction du temps .
Figure 5 : Propagation de Lb . bulgaricus sur milieu synthétique- Delta C, conductance et DO en fonction du temps .
Figure 6 : Préculture de St. thermophilus sur milieu synthétique entre 4.106 et 109 ufc/ml-
Delta C et DO en fonction du temps.
EXEMPLES
1 - PRINCIPE
Le principe de mesure de la quantité de biomasse s'appuie sur les propriétés diélectriques passives des cellules biologiques, notamment des bactéries lactiques. En effet, la membrane cytoplasmique des cellules, constituée d'une double couche lipidique, est très peu conductrice. Elle permet de délimiter clairement l'interface entre le milieu intérieur et le milieu extérieur dans lequel les cellules sont en suspension.
Ainsi sous l'influence d'un champ électrique, les membranes cellulaires se polarisent comme les surfaces d'un condensateur électrique. Les ions positifs vont vers l'électrode négative et les ions négatifs vont vers l'électrode positive.
1.1. Mesure de la capacitance L'accumulation de ces charges peut être quantifiée par la mesure de capacitance (capacité) de la suspension
(notée C et exprimée en pico-Farads, pF) . Plus la quantité de charges accumulées est grande, plus la quantité de biomasse présente est importante ; on peut donc relier directement la mesure de capacitance à la mesure de biomasse.
La capacitance est une mesure de l'amplitude de polarisation induite par un champ électrique et ne dépend pas de la direction de ce champ. Par contre, elle est fonction de la fréquence. Un champ électrique change de direction lentement à basse fréquence, par contre, il change rapidement de direction à haute fréquence.
L'effet de la fréquence du signal sur la polarisation des membranes cellulaires est décrit ci-après. Quand la fréquence est basse, le champ change de direction relativement lentement, donc la plupart des ions ont le temps de rejoindre la surface de la membrane et de la polariser avant que le champ ne change de direction et la polarise à l'inverse. La capacitance est alors élevée. Quand la fréquence est plus élevée, moins d'ions ont le temps de rejoindre la membrane avant que le champ électrique ne change de sens. Comme la polarisation est moindre, la capacitance est plus faible. Enfin, quand la fréquence est très élevée, les ions n'ont pas le temps de polariser la membrane ; ainsi la capacitance mesurée est due uniquement au milieu et plus particulièrement à la rotation des dipôles de l'eau.
On peut donc différencier trois paliers de fréquence, appelés les dispersions électriques, (cf. figure 1)
La dispersion α centrée dans le domaine des fréquences audio (kHz) , est due à la relaxation tangentielle des ions de la double couche électrique des surfaces chargées des cellules (GRAM+ essentiellement en raison de la structure particulière de leur enveloppe) .
La dispersion γ centrée dans le domaine des très hautes fréquences (GHz), est essentiellement due à la mise en rotation des dipôles des molécules d'eau.
La dispersion β centrée dans le domaine des fréquences radio (MHz) , est le résultat de la polarisation de la membrane des cellules. Elle est perceptible pour des fréquences allant de 100 kHz à 10 MHz .
Ainsi, si on soustrait la valeur de capacitance résiduelle du milieu Coo à la capacitance C radio, on obtient la différence de capacitance, notée delta C (ΔC) qui peut être corrélée à la quantité de biomasse présente dans la suspension.
ΔC = C radio - C∞
Les cellules dont la membrane n'est pas intègre, ne sont pas polarisées et donc ne contribuent pas au signal de capacitance mesuré. Ainsi, la mesure obtenue par la sonde est spécifique des cellules viables.
1.2. Mesure de la conductance La sonde utilisée dans la présente invention nous donne de préférence également la mesure de la conductance du milieu ( notée G et exprimée en milli Siemens mS ) . La conductance est l ' inverse de la résistance (R) de la solution et elle dépend de la surface ( S ) des électrodes et de leur écartement .
G ≈ 1 /R = κ . S/1
K représente la conductivité spécifique (en mS .m ) .
La conductance donne une information sur la composition ionique du milieu, car le transport du courant dans les solutions est assuré uniquement par les ions.
Ainsi, la conductance représente donc l'habilité qu'à un milieu à transporter un courant électrique, tandis que la capacitance représente l'habilité à stocker une charge électrique.
2 - MATERIELS ET METHODES
2.1. L' appareil de mesure
L'appareil de mesure utilisé dans la présente invention est de préférence fabriqué par la société Fogale Nanotech (France) ; il est constitué de trois parties :
- le MCU 9400 (Multisensor Control Unit de chez Fogale Nanotech) destiné à acquérir, traiter, visualiser et mémoriser ou transmettre vers un ordinateur les informations provenant du capteur, le pré ampli qui contient tous les composants électroniques, - la sonde, constituée d'un corps cylindrique en inox (diamètre 25 mm) et munie à son extrémité de quatre électrodes en platine disposées en parallèle.
Les deux électrodes extérieures émettent un courant alternatif à fréquence variable. Ce courant crée un champ électrique aux environs des électrodes, qui permet de polariser les cellules vivantes. Les deux électrodes intérieures mesurent la différence de potentiel de la suspension (figure 2) . La sonde est stérilisable et dispose d'un système de nettoyage électrolytique qui permet d'éliminer tout dépôt à la surface des électrodes.
2.2. Etalonnage de la sonde de mesure II est nécessaire de tracer les courbes d'étalonnage de la sonde afin de pouvoir ensuite effectuer les corrections nécessaires aux résultats obtenus. En effet, la valeur de la capacitance (ΔC) dans un milieu contenant uniquement de l'eau n'est pas nulle, et, de plus, elle varie en fonction de la conductance du milieu et de sa température .
C'est pourquoi, les inventeurs ont tracé les courbes d'étalonnage pour différentes températures, ΔC en fonction de la conductance. La sonde est maintenue par une pince reliée à un support métallique. Elle est plongée dans de l'eau ultra pure dans un bêcher d'un litre, de façon oblique afin d'éviter l'accumulation de bulles d'air sur les électrodes. Le bêcher est placé sur un agitateur magnétique dans un bain-marie. On ajoute progressivement une masse connue de chlorure de sodium à l'eau. Températures étudiées : 30°C, 37°C et 42°C. La conductance varie linéairement en fonction de la concentration en sel du milieu. On remarque également que pour une même concentration en sel, la conductance varie en fonction de la température. Le ΔC varie d'une part en fonction de la conductance, et d'autre part avec la température du milieu (figure 3). Pour chaque suivi de capacitance, un calcul correcteur est nécessaire afin de s'affranchir des effets de la conductance et de la température. Il est donc nécessaire de soustraire aux mesures de capacitance obtenues lors d'un suivi de croissance, la valeur du ΔC étalonnage correspondant à la même température et à la même conductance.
On lit sur l'appareil : ΔClu = 30 pF et G = 100 mS, à T = 30°C.
Sur la courbe d'étalonnage à 30 °C, on lit que pour G ≈ 100 mS, ΔCétalonnage = 20 pF. Donc la valeur corrigée est ΔC = 30 - 20 = 10 pF.
Ici, la plage de mesure possible de conductance s'étend de 20 mS à 400 mS, car au- delà de 400 mS le signal de la sonde sature, et en dessous de 20 mS la mesure devient de moins en moins précise.
La nature de la sonde utilisée dans la présente invention dépend de préférence de la conductivité du milieu dans lequel s'effectue la mesure. Ainsi, pour les milieux faiblement conducteurs, il peut être intéressant de disposer d'une sonde ayant une gamme de conductance allant de 10 à 100 mS . Pour des mesures effectuées dans des milieux fortement conducteurs, il peut être intéressant de disposer d'une sonde ayant une gamme de conductance allant jusqu'à 400 S . 2.3. Composition des milieux utilisés
2.3.1. Gélose M17 (AES laboratoire)
Tryptone 2.5 g Peptone pepsique de viande 2.5 g
Peptone papaïnique de soja 5.0 g
Beta-glycérophosphate de sodium 19.0 g
Lactose 5.0 g
Extrait de levure 2.5 g Extrait de viande 2.5 g
Sulfate de magnésium 0.25 g
Acide ascorbique 0.5 g
Agar 15 g
Eau distillée Qsp 1 L
2.3.2. Gélose PDA (AES laboratoire) Extrait de pomme de terre 5 g Glucose 20 g Agar 17 g Eau distillée qsp 1 L
2.3.3. Gélose MRS (AES laboratoire)
Polypeptone 10 g Extrait de levure 5 g
Extrait de viande 10 g
Glucose 20 g
Phosphate dipotassique 2 g
Acétate de sodium 5 g Citrate d'ammonium 2 g
Sulfate de manganèse 0.05 g
Tween 80 1.0 g Agar 15 g
Eau distillée Qsp 1 L
2.3.4. Composition du milieu synthétique pour la propagation de Lactobacillus bulgaricus
Il s'agit d'un milieu standard M 17, décrit au paragraphe 2.3.1, sans Agar
3. EXEMPLE 1 : ANALYSE DE LA PROPAGATION DE LACTOBACILLUS CASEI SUR MILIEU SYNTHETIQUE
Le milieu synthétique utilisé pour la propagation de Lb . Casei est le milieu MRS ou le milieu décrit par Sejong Oh, Sungsue Rheem, Jaehun Sim Sangkyo Kim Youngjin Baek (Appl . env. Microbiology 11, 1995, p3809-3814 )
La propagation en batch de Lb. casei est réalisée en fermenteur B. Braun 15 L. La sonde est placée en bas de cuve. La température est maintenue à 37 °C. L'agitation est fixée à au moins 200 rpm. Le pH est régulé à 6.5 par ajout de soude. Elle est suivie d'une étape de concentration par filtration ou centrifugation.
La densité optique (DO) est lue à λ = 580 nm et les dénombrements sur boîte sont réalisés sur milieu MRS neutre (Man Rogosa Sharpe) à l'aide d'un ensemenceur spiral.
Les résultats obtenus sont présentés à la figure 4 qui présente le suivi de la biomasse réalisé en continu lors de la propagation de Lb. casei sur milieu synthétique. La sonde permet de suivre l'accroissement de la biomasse vivante entre 2.10 7 ufc/ml et 5.1010 ufc/ml
(soit 50 g/1) en cours de culture, et jusqu'à 5.1011 ufc/ml après concentration. Les valeurs de capacitance sont parfaitement corrélées aux mesures de densité optique lors des différentes étapes de filtration et de lavage.
De plus, on remarque que la conductance du milieu nous permet de mesurer l'efficacité du lavage, car plus la quantité de sel diminue dans le milieu moins il est conducteur.
En plus de l'indication quantitative de biomasse vivante, la sonde permet d'une part, de mesurer et de contrôler l'efficacité du lavage et de la concentration via la mesure de conductance, et d'autre part, donne une information sur l'état physiologique des bactéries (viabilité) .
4. EXEMPLE 2 : ANALYSE DE LA PROPAGATION DE LACTOBACILLUS DELBRUECKII SSP . BULGARICUS SUR MILIEU SYNTHETIQUE
La propagation en batch de Lb. bulgaricus sur milieu synthétique est réalisée en fermenteur B. Braun 15L. La sonde est placée en bas de cuve. La température est maintenue à 42°C. Le pH est régulé à 6,2 par ajout de soude durant les quatre premières heures uniquement (cf. matériels et méthode paragraphe 2.3.4). L'agitation est fixée à 200 rpm. La densité optique est lue à λ = 580 nm.
La figure 5 présente les résultats du suivi de croissance de Lb. Bulgaricus . La sonde détecte la présence ainsi que la croissance de Lb . Bulgaricus entre 108 et 5.109 ufc/ml, pour des conductances de 2 à 35mS.
5. EXEMPLE 3 : ANALYSE DE LA PROPAGATION DE STREPTOCOCCUS THERMOPHILUS SUR MILIEU SYNTHETIQUE
Le suivi de croissance de Streptococcus thermophilus est réalisé en batch. La température est régulée à T=42°C et le milieu est agité à 200 rpm. La densité optique est lue à λ = 580 nm et les dénombrements sur boîte sont réalisés sur milieu M17 lactose.
La figure 6 présente le suivi de la croissance de Streptococcus thermophilus en fonction du temps. La densité optique, et la capacitance, évoluent de la même manière. Le suivi de la croissance de Streptococcus thermophilus sur milieu synthétique est réalisé sur la gamme de population 4.106 à 109 ufc/ml à l'aide de la sonde de capacitance même si le signal de capacitance est faible. Afin d'obtenir une meilleure résolution, on pourra filtrer le signal.
Le tracé de la capacitance en fonction de la densité optique fait apparaître une relation linéaire entre ces deux mesures.

Claims

REVENDICATIONS
1. Utilisation d'un dispositif comprenant une sonde capacitive pour la détermination de la biomasse de cellules vivantes dont la surface cellulaire est inférieure ou égale à 10 μm2, la dite sonde étant prévue pour être appliquée dans un milieu contenant les dites cellules, et la dite sonde comprenant (i) une première paire d'électrodes d'intensité pour injecter un courant électrique dans le dit milieu, (ii) une seconde paire d' électrodes de tension pour relever la tension appliquée au dit milieu, et (iii) des moyens pour mesurer le courant électrique injecté.
2. Utilisation selon la revendication 1 caractérisé en ce que le dit dispositif comprend en outre un conditionneur comprenant : i. des moyens de fournir une tension alternative isolée galvaniquement à appliquer entre lesdites électrodes d'intensité; ii. des moyens pour traiter des signaux représentatifs respectivement du courant injecté dans le dit milieu et la tension relevée aux bornes des électrodes de tension, de façon à délivrer des signaux respectivement de mesure de la capacité et de la conductance du dit milieu.
3. Utilisation selon les revendications 1 à 2 caractérisée en ce que le courant électrique injecté dans le milieu par la dite sonde a une fréquence comprise entre 0,1 MHz et 10 MHz.
4. Utilisation selon les revendications 1 à 3 caractérisée en ce que la résolution de la sonde est de l'ordre de 0,1 pF dans les milieux à conductivité supérieure ou égale à 0,001 mS .
5. Utilisation selon la revendication 1 à 4 caractérisée en ce que la conductance du dit milieu est comprise entre 2 et 400 mS.
6. Utilisation selon la revendication 1 à 5 caractérisée en ce que la conductance du dit milieu varie dans la plage comprise entre 2 et 400 mS, dans un intervalle de 250 mS.
7. Utilisation selon la revendication 1 à 6 caractérisé en ce que la mesure de faible variation de la capacitance, de l'ordre d'environ 0,1 à 0,5 pF, est réalisée dans les milieux à conductivité comprise entre 2 mS et 400 mS .
8. Utilisation selon la revendication 1 à 7 caractérisée en ce que la conductance du dit milieu est ajustée par adjonction de sel au dit milieu.
9. Utilisation selon les revendications 1 à 8 caractérisée en ce que le dit milieu est sélectionné parmi les milieux synthétiques, le lait, les milieux végétaux, les yaourts, les crèmes lactées.
10. Utilisation selon les revendications 1 à 9 caractérisée en ce que la dite cellule est une bactérie choisie dans le groupe composé des bactéries lactiques, des bifidobactéries, des Rickettsies, des Chlamydies, des Mycoplasmes .
11. Utilisation selon la revendication 10 caractérisée en ce que la dite bactérie lactique est sélectionnée dans le groupe composé des lactobacilles, des streptocoques, des leuconostoc, des lactocoques.
12. Utilisation selon la revendication 11 caractérisée en ce que la dite lactobacille est sélectionnée dans le groupe composé de Lactobacillus bulgaricus r Lactobacillus casei , Lactobacillus plantarum, Lactobacillus delbrueckii .
13. Utilisation selon la revendication 11 caractérisée en ce que le dit streptocoque est sélectionné dans le groupe composé de Streptococcus thermophilus , Streptococcus aqua ticus , Streptococcus aquafilus r Streptococcus stearo thermophilus .
14. Utilisation selon la revendication 1 à 13 caractérisée en ce que la correspondance entre la capacité en pF mesurée par le dit dispositif et la concentration en cellules vivantes en g/1 de milieu est donnée par la relation : 1 pF équivaut à environ 0,05 g/1 à 0,4 g/1 de cellules vivantes dans le milieu.
15. Utilisation selon la revendication 11 à 12 caractérisée en ce que la correspondance entre la capacité en pF mesurée par le dit dispositif et la concentration en lactobacilles vivants en g/1 de milieu est donnée par la relation : 1 pF équivaut à environ 0,2 g/1 de lactobacilles vivants dans le milieu.
16. Procédé pour déterminer les caractéristiques d'une biomasse de cellules vivantes dont la surface cellulaire est inférieure ou égale à 10 μm2, le dit procédé comprenant les étapes suivantes : a) Injection d'un courant alternatif à fréquence prédéterminée dans un milieu contenant les dites cellules, via une première paire d'électrodes immergées dans le milieu ; b) mesure du courant injecté dans le dit milieu, c) mesure de la tension aux bornes d'une seconde paire d' électrodes immergées dans ledit milieu et disposées à proximité des électrodes d'injection de courant, et d) traitement des signaux images respectivement du courant injecté dans le dit milieu et de la tension relevée aux bornes des électrodes de tension, de façon à délivrer des signaux respectivement de mesure de la capacité et de la conductance du dit milieu.
17. Procédé selon la revendication 16 caractérisé en ce que la plage de mesure de la conductance est comprise entre 1 mS et 1Q00 mS.
18. Procédé selon la revendication 17 caractérisé en ce que la plage de mesure de la conductance s'étend de préférence de 2 à 400 mS.
19. Procédé selon la revendication 18 caractérisé en ce que la plage de mesure de la conductance s'étend de préférence de 20 à 200 mS .
> 20. Procédé selon les revendications 16 à 19 caractérisé en ce que la mesure de faible variation de la capacitance, de l'ordre d'environ 0,1 à 0,5 pF, est réalisée dans les milieux à conductivité comprise entre 2 mS et 400 mS .
21. Procédé selon les revendications 16 à 20 comprenant en outre l'étape d'ajuster la conductance du dit milieu par adjonction de sel.
22. Procédé selon les revendications 16 à 21 caractérisé en ce qu'il comporte en outre une étape d'étalonnage de la sonde capacitive en fonction de la température du milieu et de la conductance du milieu.
23. Procédé selon les revendications 16 à 22 caractérisé en ce que la dite cellule est une bactérie sélectionnée dans le groupe composé des bactéries lactiques, des bifidobactéries, des rickettsies, des chlamydies, des mycoplasmes .
24. Procédé selon la revendication 23 caractérisé en ce que la dite bactérie lactique est sélectionnée dans le groupe composé des lactobacilles, des streptocoques, des leuconostoc, des lactocoques .
25. Procédé selon la revendication 24 caractérisé en ce que la dite lactobacille est sélectionnée dans le groupe composé de Lactobacillus bulgaricus , Lactobacillus casei , Lactobacillus plantarum, Lactobacillus delbrueckii .
26. Procédé selon la revendication 24 caractérisé en ce que le dit streptocoque est sélectionné dans le groupe composé de Streptococcus thermophilus, Streptococcus aquafilus , Streptococcus stéarothermophilus ,
Streptococcus aqua ticus .
27. Procédé selon les revendications 16 à 26 caractérisé en ce que la correspondance entre la capacité en pF mesurée et la concentration en cellules vivantes en g/1 de milieu est donnée par la relation : 1 pF équivaut à environ 0,05 g/1 à 0,4 g/1 de cellules vivantes dans le milieu.
28. Procédé selon les revendications 24 et 25 caractérisé en ce que la correspondance entre la capacité en pF mesurée et la concentration en lactobacilles vivants en g/1 de milieu est donnée par la relation : 1 pF équivaut à environ 0,2 g/1 de lactobacilles vivants dans le milieu.
29. Procédé selon les revendications 16 à 28 caractérisé en ce que les dites cellules sont cultivées en fermenteur selon un mode de conduite batch, fed batch ou continu.
30. Procédé selon la revendication 29 caractérisé en ce que la détermination de la biomasse vivante des dites bactéries est réalisée en ligne.
31. Procédé selon les revendications 16 à 30 caractérisé en ce que le dit milieu est sélectionné dans le groupe composé des milieux synthétiques, les jus végétaux, du lait, des ferments lactiques, des yaourts.
32. Utilisation d'un procédé selon les revendications 16 à 31 pour suivre la fermentation de cellules vivantes dont la surface cellulaire est au moins inférieure ou égale à 10 μm2, de préférence des bactéries lactiques.
PCT/FR2003/000428 2002-02-11 2003-02-11 Utilisation d'une sonde capacitive pour déterminer la biomasse de bactéries de petite taille WO2003069334A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003222371A AU2003222371A1 (en) 2002-02-11 2003-02-11 Use of a capacitive probe to determine the biomass of small bacteria

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/01629 2002-02-11
FR0201629A FR2835921B1 (fr) 2002-02-11 2002-02-11 Utilisation d'une sonde capacitive pour determiner la biomasse de bacteries lactiques

Publications (1)

Publication Number Publication Date
WO2003069334A1 true WO2003069334A1 (fr) 2003-08-21

Family

ID=27620070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000428 WO2003069334A1 (fr) 2002-02-11 2003-02-11 Utilisation d'une sonde capacitive pour déterminer la biomasse de bactéries de petite taille

Country Status (3)

Country Link
AU (1) AU2003222371A1 (fr)
FR (1) FR2835921B1 (fr)
WO (1) WO2003069334A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867278A1 (fr) * 2004-03-05 2005-09-09 Univ Montpellier Ii Procede et dispositif pour mesurer et caracteriser en ligne une biomasse dans un processus de fermentation de bacteries lactiques, et procede de pilotage associe
WO2008155279A1 (fr) * 2007-06-18 2008-12-24 Siemens Aktiengesellschaft Capteur stérilisable pour la surveillance de processus biochimiques dans des fermenteurs
GB2553895A (en) * 2016-09-16 2018-03-21 Aber Instruments Ltd Process
JP2018530999A (ja) * 2015-10-26 2018-10-25 シャンユー ヌウ バイオロジカル ケミカル カンパニー リミテッド オンラインでの酸素消耗速度と導電率の同時制御によるコエンザイムq10の発酵製造プロセス
JP2019124594A (ja) * 2018-01-17 2019-07-25 横河電機株式会社 細胞検査装置、細胞検査方法、プログラム、および記録媒体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2866898B1 (fr) 2004-02-27 2006-06-09 Gervais Danone Sa Concentrat liquide de bacteries adaptees et viables pour un usage alimentaire
FR2867279B1 (fr) * 2004-03-05 2006-05-19 Nanotec Solution Procede et dispositif pour mesurer et caracteriser une biomasse, application a une mesure en ligne de donnees de biomasse dans un processus de fermentation, et procede de pilotage associe
FR2874264B1 (fr) 2004-08-16 2006-11-24 Nanotec Solution Soc Civ Ile Procede et dispositif de determination de biomasse dans un milieu, notamment d'un milieu contenant des cellules biologiques, et appareil de mesure mettant en oeuvre ce procede

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277789A2 (fr) * 1987-02-04 1988-08-10 Kabushiki Kaisha Kobe Seiko Sho Procédé pour déterminer la biomasse
EP0281602A1 (fr) * 1986-09-22 1988-09-14 Douglas Bruce Kell Determination de la biomasse.
US4965206A (en) * 1986-09-22 1990-10-23 Kell Douglas B Determination of biomass
EP1085316A2 (fr) * 1999-09-15 2001-03-21 Aber Instruments Limited Détection de changements de l'état de cellules
EP1138758A1 (fr) * 2000-03-27 2001-10-04 Nte, S.A. Sonde, cellule et procédé de mesure de la concentration et de la composition d'une biomasse
WO2001079828A1 (fr) * 2000-04-14 2001-10-25 Nanotec Solution Dispositif et procede de determination de caracteristiques d'une biomasse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281602A1 (fr) * 1986-09-22 1988-09-14 Douglas Bruce Kell Determination de la biomasse.
US4965206A (en) * 1986-09-22 1990-10-23 Kell Douglas B Determination of biomass
EP0277789A2 (fr) * 1987-02-04 1988-08-10 Kabushiki Kaisha Kobe Seiko Sho Procédé pour déterminer la biomasse
EP1085316A2 (fr) * 1999-09-15 2001-03-21 Aber Instruments Limited Détection de changements de l'état de cellules
EP1138758A1 (fr) * 2000-03-27 2001-10-04 Nte, S.A. Sonde, cellule et procédé de mesure de la concentration et de la composition d'une biomasse
WO2001079828A1 (fr) * 2000-04-14 2001-10-25 Nanotec Solution Dispositif et procede de determination de caracteristiques d'une biomasse

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867278A1 (fr) * 2004-03-05 2005-09-09 Univ Montpellier Ii Procede et dispositif pour mesurer et caracteriser en ligne une biomasse dans un processus de fermentation de bacteries lactiques, et procede de pilotage associe
WO2005085818A2 (fr) * 2004-03-05 2005-09-15 Universite Montpellier Ii Procede et dispositif pour mesurer et caracteriser en ligne une biomasse
WO2005085818A3 (fr) * 2004-03-05 2006-02-02 Univ Montpellier Ii Procede et dispositif pour mesurer et caracteriser en ligne une biomasse
WO2008155279A1 (fr) * 2007-06-18 2008-12-24 Siemens Aktiengesellschaft Capteur stérilisable pour la surveillance de processus biochimiques dans des fermenteurs
JP2018530999A (ja) * 2015-10-26 2018-10-25 シャンユー ヌウ バイオロジカル ケミカル カンパニー リミテッド オンラインでの酸素消耗速度と導電率の同時制御によるコエンザイムq10の発酵製造プロセス
GB2553895A (en) * 2016-09-16 2018-03-21 Aber Instruments Ltd Process
GB2553895B (en) * 2016-09-16 2019-08-14 Aber Instruments Ltd Obtaining multiple biomass measurements from one or more biological media using a probe which can be sterilised and re-used
JP2019124594A (ja) * 2018-01-17 2019-07-25 横河電機株式会社 細胞検査装置、細胞検査方法、プログラム、および記録媒体
WO2019142590A1 (fr) * 2018-01-17 2019-07-25 横河電機株式会社 Dispositif d'essai de cellule, méthode d'essai de cellule, programme et support d'enregistrement
CN111615627A (zh) * 2018-01-17 2020-09-01 横河电机株式会社 细胞检查装置、细胞检查方法、程序和记录介质

Also Published As

Publication number Publication date
AU2003222371A1 (en) 2003-09-04
FR2835921B1 (fr) 2005-06-24
FR2835921A1 (fr) 2003-08-15

Similar Documents

Publication Publication Date Title
Olsson et al. On-line and in situ monitoring of biomass in submerged cultivations
US4810650A (en) Determination of biomass
EP1784480B1 (fr) Procédé et dispositif de détermination de biomasse dans un milieu, notamment d`un milieu contenant des cellules biologiques, et appareil de mesure mettant en oeuvre ce procédé
US9206461B2 (en) Microorganism detection sensor and method of manufacturing the same
EP1272832A1 (fr) Dispositif et procede de determination de caracteristiques d'une biomasse
US20110035157A1 (en) Biomass concentration measurement device and method and use of an electronic chip element for measuring said biomass concentration
WO2003069334A1 (fr) Utilisation d'une sonde capacitive pour déterminer la biomasse de bactéries de petite taille
Mishima et al. On-line monitoring of cell concentrations during yeast cultivation by dielectric measurements
Ramírez et al. Electrochemical impedance spectroscopy: An effective tool for a fast microbiological diagnosis
Munoz-Berbel et al. Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode–solution interface during the pre-attachment stage
Busscher et al. An interlaboratory comparison of physico-chemical methods for studying the surface properties of microorganisms—application to Streptococcus thermophilus and Leuconostoc mesenteroides
Richardson et al. A chemically mediated amperometric biosensor for monitoring eubacterial respiration
EP1730505B1 (fr) Procede et dispositif pour mesurer et caracteriser en ligne une biomasse dans une fermentation avec des bacteries lactiques
Bajrami et al. In situ monitoring of Lentilactobacillus parabuchneri biofilm formation via real-time infrared spectroscopy
Kregiel et al. Novel permittivity test for determination of yeast surface charge and flocculation abilities
Jablonski et al. Capacitive field‐effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths
Arnoux et al. Lactic acid bacteria biomass monitoring in highly conductive media by permittivity measurements
Galindo et al. Microbial sensor for penicillins using a recombinant strain of Escherichia coli
Zindulis A medium for the impedimetric detection of yeasts in foods
CN1260486A (zh) 酵母浓度(生物量浓度)的检测方法和仪器
Kiss et al. Application of a high cell density capacitance sensor to different microorganisms
Łaniewska-Trokenheim et al. Patterns of survival and volatile metabolites of selected Lactobacillus strains during long-term incubation in milk
Hristovski et al. Real-time monitoring of kefir-facilitated milk fermentation using microbial potentiometric sensors
Hujanen et al. Optimization of L (+)-lactic acid production employing statistical experimental design
Shakirova et al. Influence of growth conditions on hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis cells and characteristics by FT-IR spectra

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP