WO2003069021A1 - Induction heating coil - Google Patents

Induction heating coil Download PDF

Info

Publication number
WO2003069021A1
WO2003069021A1 PCT/JP2002/001130 JP0201130W WO03069021A1 WO 2003069021 A1 WO2003069021 A1 WO 2003069021A1 JP 0201130 W JP0201130 W JP 0201130W WO 03069021 A1 WO03069021 A1 WO 03069021A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
coil
induction heating
substrate
heating coil
Prior art date
Application number
PCT/JP2002/001130
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Maruyama
Keizo Fujimori
Haruo Sasaki
Osamu Okaniwa
Original Assignee
Hitachi Zosen Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corporation filed Critical Hitachi Zosen Corporation
Priority to JP2003568126A priority Critical patent/JPWO2003069021A1/en
Priority to PCT/JP2002/001130 priority patent/WO2003069021A1/en
Publication of WO2003069021A1 publication Critical patent/WO2003069021A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • C23C16/466Cooling of the substrate using thermal contact gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/362Coil arrangements with flat coil conductors

Definitions

  • the present invention relates to, for example, an induction heating coil used as a heating means of a substrate processing (CVD: Chemical Vapor Deposition) apparatus for producing a crystal film or other thin films using a gas phase reaction.
  • the present invention relates to an induction heating coil having a built-in gas flow path.
  • Japanese Patent Application Laid-Open No. H8-239295 discloses a method in which a gas flow path is provided inside the coil. Also disclosed are those in which a plurality of gas outlets are provided on the side facing the object to be heated (substrate), so that the source gas can be supplied directly to the substrate surface from the plurality of holes. Have been. It is disclosed that the gas blowing direction is set to be substantially perpendicular to the radial direction of the substrate, or to be blown at an inclined angle in the outer peripheral direction of the substrate. When trying to form a uniform crystal film or other thin film on the substrate surface, the source gas can be supplied uniformly onto the substrate, and the reacted source gas can be quickly discharged from the substrate. Desirably, the substrate processing apparatus is excellent in its uniformity.
  • the gas outlet is simply opened, so that the gas to be supplied is spread without control.
  • the gas outlet is always open, if the size of the substrate is changed from a large one to a small one in the same substrate processing equipment, the source that has been directly supplied to the substrate surface until then is The source gas is supplied directly to the susceptor on which the substrate is mounted, and a crystal film or other thin film grows on the susceptor, which is an unnecessary place, in the same manner as on the substrate surface.
  • the problem is that the raw material gas is wasted, or if the grown crystals and the like are peeled off by some effect and adhere to the surface of the substrate where the reaction process is performed by multiplying the gas flow, the quality of the substrate deteriorates. Occurs.
  • An object of the present invention is to solve the above-mentioned problems and to provide a coil for induction heating which can cope with the specification of a substrate to be processed without changing the specification of a main part of the coil even if the size of the substrate changes. It is to provide Disclosure of the invention
  • An induction heating coil according to the present invention is an induction heating coil in which a gas inlet and a plurality of gas outlets communicating with the outside are provided at predetermined positions of a gas flow path formed inside, respectively. It is characterized in that at least one gas outlet has a thread groove on the inner peripheral surface.
  • the thread grooves need not be provided at all gas outlets, for example, only at the outer peripheral edge of the coil, at the outer peripheral edge and at the inner peripheral edge. It may be provided only for some items.
  • the gas outlet may be perpendicular to the coil surface constituting the planar induction electric field, or may be inclined in a predetermined direction.
  • the male thread member may be screwed into the thread groove, and may not be screwed.
  • the screw member inserted into the thread groove may completely close the gas outlet, and has a through hole in the screw member screwing direction, and the through hole serves as a gas outlet. May be used.
  • a cylindrical hole whose axis coincides with the axial direction of the external thread member a cylindrical hole whose axis is inclined with the axial direction of the external thread member, Various materials such as a spiral shape having the same axis direction as the screw member or an inclined axis can be used.
  • the air outlet at the outer periphery of the coil is closed by a male screw member.
  • the male screw member may be provided with a through-hole for gas blowing in the screwing direction. This allows the hole direction, thickness, and shape to be changed due to changes in the substrate and raw gas. It can be easily handled and fine-tuned.
  • the gas outlet may be open on the opposite side of the coil surface that constitutes the planar induction electric field, facing the substrate to be heated, and on the opposite side.
  • the raw material gas or Cooling gas is supplied to the substrate, and in the latter case, a filling gas filling the space above the coil is supplied from the gas outlet.
  • the coil is formed in a flat drop-wound shape, and in the center of the spiral, it is preferable that the gas outlet is provided on the side surface of the central part and has an inclination.
  • the inclination includes not only the inclination toward the substrate facing surface but also the inclination with respect to the tangent direction of the central cylindrical surface in the horizontal plane. In this way, the supply of the raw material gas in the center, where the gas supply is likely to be insufficient or uneven, is improved, and the uniformity is improved.
  • a predetermined screw member may be screwed into the screw groove, and the screw member may be provided with a through hole for gas blowing that passes through the screw member in the screwing direction. is there.
  • FIG. 1 is a vertical sectional view showing an outline of a main part of a substrate processing apparatus as an example in which an induction heating coil according to the present invention is used.
  • FIG. 2 (a) is a plan view showing the top surface of the induction heating coil
  • FIG. 2 (b) is a cross-sectional view taken along the line bb of (a).
  • FIG. 3 is a bottom view showing the lower surface of the induction heating coil.
  • FIG. 4 is an enlarged cross-sectional view of a gas outlet provided in the induction heating coil.
  • (A) is a vertical cross-sectional view of a conductor element facing the central space
  • (b) is a central space.
  • FIG. 4 is a vertical cross-sectional view (radial direction) of a conductor element facing other than a portion
  • (c) is a cross-sectional view (circumferential direction) along the CC line of (b).
  • FIG. 5 shows one embodiment of a cooling mechanism of a substrate processing apparatus. It is sectional drawing.
  • FIG. 6 is a block diagram showing a control unit of the substrate processing apparatus shown in FIG.
  • FIG. 7 is an enlarged cross-sectional view showing a screw groove provided in a gas outlet, which is a main part of the induction heating coil according to the present invention.
  • FIG. 8 is an enlarged sectional view showing an example of a male screw member screwed into the screw groove shown in FIG.
  • FIG. 9 is an enlarged sectional view showing another example of the male screw member screwed into the screw groove shown in FIG.
  • FIG. 10 is an enlarged sectional view showing still another example of the male screw member screwed into the screw groove shown in FIG.
  • FIG. 11 (a) is an enlarged cross-sectional view (a vertical cross-sectional view of the conductor element facing the central space) showing another example of the gas outlet provided in the induction heating coil. (b) is an enlarged cross-sectional view (horizontal cross-sectional view of the conductor element facing the central space) showing still another example of the gas outlet provided in the induction heating coil.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 shows a main part of a substrate processing apparatus as an example in which the induction heating coil according to the present invention is used.
  • the substrate processing apparatus is housed in a water-cooled container (not shown), and has a reactor (1) having a cylindrical outer heat insulating wall (2), a cylindrical inner heat insulating wall (3), and a substrate loading / unloading door (4). ), And the first module installed on the top of the outer insulation wall (2).
  • the apparatus is provided with a gas supply means (11) blowing out from the substrate, and a substrate lifting means (12) for lifting the substrate (S) from the substrate support means.
  • This substrate processing apparatus generates a crystal film or other thin film using a gas phase reaction, and a portion that causes a gas phase reaction is called a reaction section (la). At the lower part, which is another place, a loading / unloading section (lb) for transferring the substrate (S) outside the reactor (1) is provided.
  • Cooling water passages (2a) and (3a) are provided in the outer heat insulating wall (2) and the inner heat insulating wall (3), respectively.
  • the first heating means (5) has an induction heating coil (also referred to as a high-frequency coil) (21) according to the present invention.
  • the induction heating coil (21) is made of a conductor having a flat spiral shape, and has a gas flow path (23) opened upward, and a cooling passage.
  • the coil body (22) in which the water flow path (24) is formed in a spiral shape, and the lid (25) that covers the coil body (22) from above and closes the openings of the flow paths (23) and (24) Become.
  • the lid (25) is omitted, and only the coil body (22) is shown.
  • (26) is an insulating gap, and this gap (26) is a special portion such as an end portion where the radial width of each conductor portion forming a spiral shape is an end portion. It is set to be constant except for.
  • a plurality of gas outlets (29) (30) ) Is provided on the side of the coil body (22) facing the substrate (S) on the coil surface (opposed surface), as shown in Fig. 3, a plurality of gas outlets (29) (30) ) Is provided.
  • the gas outlets (29) provided at the periphery of the center space of the coil body (22) are inclined not toward the center but toward the center. It is formed as follows. The inclination angles (Kl) and (k2) of these gas outlets (29) are changed according to the positions where they are provided.
  • the gas outlet (30) provided on the opposing surface other than the periphery of the central space of the coil body (22) is not located directly below.
  • the gas blowing direction on the surface facing the induction heating coil (21) is directed toward the center on the inner periphery of the coil (21) as shown by the arrow in FIG. It is designed to be blown out in the swirl direction.
  • the gas flow path (23) and the gas outlets (29) (30) of the induction heating coil (21) are used for blowing out the raw material gas during the gas phase reaction treatment, and It is also used for blowing out cooling gas after gas phase reaction processing. That is, the gas flow path (23) and the gas outlets (29) (30), the external pipe connected to the gas flow path, the plurality of gas pipes connected to the pipe, and the gas pipes.
  • the combination of the gas supply source for each of the source gas and the cooling gas, the gas supply pressure regulators, and the gas switching means enables a part to be built into the induction heating coil (21).
  • the supplied gas supply means (7) uses the raw material on the substrate (S) surface. It is configured to also serve as a source gas supply unit for supplying a gas and an upper gas supply unit for blowing a cooling gas from above the substrate support means.
  • the substrate support means (6) is a circular plate-shaped susceptor (31) having a circular recess on the upper surface on which the substrate (S) is placed, and substantially horizontally at equal intervals from the upper end of the column (33). And a susceptor support arm (32) extending in three directions.
  • One projection (32a) for supporting the susceptor (31) at three points is provided at the tip of the upper surface of each support arm (32).
  • the second heating means (8) is a heat reflecting plate (35) having a metal surface made of gold, silver, aluminum or the like and having a mirror surface.
  • the heat reflection plate (35) is formed in a disk shape having a through hole in the center.
  • a cooling gas passage (36) for blowing a cooling gas vertically upward is provided above the heat reflecting plate (35).
  • a cooling water flow path (37) for cooling the heat reflecting plate (35) is provided below the heat reflecting plate (35).
  • the same induction heating coil as the first heating means arranged so as not to interfere with the pin receiver (43) may be used.
  • the driving means (9) includes a support (33) which is inserted into a central through hole of the heat reflecting plate (35) and whose upper end is integrated with the center of the susceptor support arm (32); Drives a motor (38) consisting of a stepping motor or servomotor that rotates 33) around a vertical axis, a lifting device (39) that moves the column (33) up and down, and a lifting device (39) And a control unit for performing the operation.
  • the transfer robot (10) is a single-wafer type, and moves the board (S) between the horizontal direction to enter and exit the inner heat insulation wall (3) and the susceptor (31). It is necessary to move up and down to change.
  • the substrate lifting means (12) is provided with stepped through holes (41) provided at a total of three places on the substrate mounting surface equidistant from the center of the susceptor (31) and spaced 120 ° in the circumferential direction. ), A pin with a head (42) housed in the through hole (41) so as to be able to move up and down so that the top does not exceed the substrate mounting surface, and a susceptor provided below the susceptor (31). A pin receiver (43) provided at a 120 ° interval and concentric with the arrangement of the pins (42) of the receptacle (31) is provided.
  • the susceptor (31) is rotated by the motor (38) during the gas phase reaction process, but at the end of the process, as shown in FIG. It is stopped so that the pin receiver (43) is located just below, as in 42).
  • FIG. 5 and FIG. 6 show one embodiment of a cooling mechanism used in the substrate processing apparatus.
  • the three pin receivers (43) can be moved up and down by an elevating device (not shown), and the susceptor (31) has a plurality of ventilation holes (46). Are provided in a penetrating manner. Then, when the processing is completed and the rotation of the susceptor (31) is stopped so that the pin receiver (43) is located immediately below the pin (42), the three pins are kept in this state. The catch (43) is moved upward. As shown in FIG. 5, the pin receiver (43) passes through the through hole provided in the heat reflection plate (35), reaches the reaction section (la), and contacts the lower end of the pin (42). And this pin (42) becomes the pin receiver (43). Thus, the substrate (S) is lifted from the susceptor (31) by being moved upward.
  • the cooling gas is blown from the upper and lower gas supply means (7, 11) to cool the substrate (S) and the susceptor (31). Since the ventilation hole (46) is provided in the susceptor (31), the substrate (S) is also cooled by the cooling gas passing through the ventilation hole (46) of the susceptor (31). Susceptor (for example, made of carbon) (31) has a large heat capacity and is not easily cooled, but the substrate (S) is not in contact with the susceptor (31), so the effect of the susceptor (31) Cools without receiving.
  • the ventilation holes (46) of the susceptor (31) may be provided randomly, for example, as shown in FIG. 5 (b), or may be provided radially as shown in FIG. 5 (c). Good.
  • all the pin receivers (43) are raised.
  • the number of pin receivers (43) to be raised may be one, and in this case, only one pin (42) is provided.
  • the lifted substrate (S) comes into contact with the susceptor (31) at one point on the outer peripheral surface. In this way, the substrate (S) and the susceptor (31) are not in point contact, that is, substantially not in contact with each other, and the substrate (S) is not affected by the susceptor (31). Cools without receiving.
  • the control unit (40) of the substrate processing apparatus of this embodiment is provided with a gas supply pressure adjustment unit (44) and a vertical movement amount adjustment unit (45).
  • the gas supply pressure adjusting section (44) separately adjusts the gas supply pressure of the upper gas supply means (7) and the gas supply pressure of the lower gas supply means (11).
  • the valve is provided through a valve provided in a pipe connected to the gas passage (36) of the heat reflecting plate (35), and the like.
  • the upward pressure of the cooling gas blown from the gas outlet of the hot plate (35) is adjusted.
  • the vertical movement amount adjusting section (44) separately adjusts the vertical movement amounts of the susceptor (31), the pin receiver (43), and the heat reflecting plate (35) via the elevating device (39).
  • the pin receiver (43) is moved upward, and the cooling operation is started in the state of FIG. Then, the susceptor (31) is moved downward while continuing the cooling work. At this time, the susceptor (31), the pin receiver (43) and the heat reflecting plate (35) maintain the positional relationship shown in FIG. 5, that is, the susceptor (31), the pin receiver (43) and the heat reflecting plate. (35) is simultaneously lowered at the same speed and moved to the loading / unloading section (lb).
  • the susceptor (31) from the reaction section (la) to the carry-in / out section (lb) supply the upper gas according to the descending amount of the susceptor (31) and the descending amount of the heat reflecting plate (35).
  • Control is performed to increase the supply pressure of the means (7) above the supply pressure of the lower gas supply means (11). Therefore, the susceptor (31) As the heat reflection plate (35) descends, the distance from the induction heating coil (21) to the substrate (S) becomes longer, and the cooling gas near the substrate (S) is reduced. The balance between the upward pressure and the downward pressure is maintained by the control unit (40). Accordingly, it is possible to prevent contamination of the substrate (S) caused by the exhaust gas that has been blown down to the substrate (S) and moved downward and hits the substrate (S) again.
  • screw grooves (51) and (52) are formed on the opening side of the gas outlets (29) and (30) shown in FIG. Have been.
  • the hole provided with the thread groove (51) shown in (a) of Fig. 7 is inclined toward the center axis direction of the coil, and the thread groove (52) shown in (b) of Fig. 7 is provided.
  • the holes provided with are inclined in the direction perpendicular to the radial direction of the coil surface.
  • Male thread members (54) (55) (56) are removably screwed into these thread grooves (51) (52) as necessary.
  • the male screw members (54), (55) and (56) are those that completely block the gas outlet (54) and have through holes (55a) and (56a) in the screwing direction. (55a) The one in which (56a) is used as a gas blowing hole is appropriately used.
  • FIGS. 8 (a) and 8 (b) show that the screw grooves (51) and (52) shown in FIG. 7 are completely closed by the screw member (54).
  • the male screw member (54) a commercially available one can be used. For example, when the size of the substrate (S) is changed from a large one to a small one, the outer peripheral part of the coil (21) can be used. Used to close the gas outlet thread grooves (51) (52) at As a result, the supply of the source gas to the unnecessary portion is stopped, and it is possible to prevent waste of the source gas and deterioration of the quality of the substrate (S) due to grown crystals.
  • FIGS. 9A and 9B show a male screw member (55) having a through hole (55a) in the screwing direction.
  • the through hole (55a) is used as a gas blowing hole.
  • the center of the through hole (55a) is aligned with the center of the male screw member (55). Therefore, gas can be blown out toward the center of the screw grooves (51) and (52).
  • FIGS. 10 (a) and 10 (b) show another example of a male screw member (56) having a through hole (56a) in the screwing direction.
  • the center of the through hole (56a) does not coincide with the center of the male screw member (56), and is inclined in a predetermined direction.
  • the direction of the through hole (56a) is different from the direction of the screw groove (51) (52). Gas can be blown out in a direction different from the direction of the thread grooves (51) and (52) opened in 21). Therefore, when it is desired to change the direction of the penetration, it can be changed by replacing the external thread member (56) with a different through hole (56a).
  • the holes having the thread grooves (51) and (52) need not necessarily be formed obliquely, and may be perpendicular to the coil surface. Then, as shown in Fig. 10 (b), the screw groove (52) formed in the hole perpendicular to the coil surface and the male screw member (56) having the inclined through hole (56a) are formed. By being combined, a gas outlet in an inclined direction can be obtained.
  • the male screw members (54), (55), (56) can be prepared in various specifications, and the direction and thickness of the through holes (55a), (56a), By changing the shape according to the substrate (S) and source gas, the induction heating coil (21) can be used as it is, and only the male screw members (54) (55) (56) need to be changed. This can respond to changes in the specifications of substrate processing.
  • the male screw member is made of the same material as the high-frequency coil so as not to adversely affect the induction heating coil (21).
  • copper or brass is used in correspondence with the copper induction heating coil (21). Is done.
  • the through hole provided in the male screw member may be spiral, and the gas blown out from the spiral through hole is turned into a swirling flow, and the raw material gas on the substrate (S) is removed. This can contribute to obtaining a uniform turbulence state.
  • Coil body (2 2) of the inner peripheral portion Callout gas are provided in the mouth (29) is intended to show in FIG. 4 (a), but is provided on the opposite surface of the coil (21), the coil body
  • the gas outlet provided in the inner peripheral portion of (22) is more preferably provided in the inner peripheral surface as shown in FIG.
  • the gas outlet (57) shown in Fig. 11 (a) is provided on the inner peripheral surface of the central space of the coil body (22), and is substantially even around the central axis of the coil (21).
  • the gas outlet (57) is arranged at an angle, and the direction of the gas outlet (57) is directed toward the outside of the facing surface and toward the center axis of the coil (21).
  • the directions of these gas outlets (57) are such that they are connected at one point on the central axis of the coil (21) and on the substrate (S).
  • the gas outlet (58) shown in Fig. 11 (b) is provided on the inner peripheral surface of the central space of the coil body (22), and is centered on the central axis of the coil (21). Gas is blown
  • the direction of the outlet (58) is inclined in the horizontal plane with respect to the direction of the central axis of the coil (21).
  • the gas outlet (57) (58) By providing (58) as described above, even under the center of the coil (21), the source gas is sufficiently supplied to improve the uniformity during the gas phase reaction treatment. Can be.
  • the gas outlets provided in the center space of the coil body (22) are the ones shown in Fig. 4 (a) (29) and those shown in Figs. 11 (a) and (b) (57 ) (58) and may be provided, and only one of the chairs may be provided.
  • the induction heating coil (21) shown in FIGS. 2 and 3 has a power connection terminal connected to the inner peripheral end and the outer peripheral end thereof, and is driven by a high frequency power supply.
  • high-frequency power supply for example, an IGBT (gate-insulated bipolar transistor), which is a power semiconductor switching element, is used.
  • the induction heating coil according to the present invention includes a heating means of a substrate processing (CVD: Chemical Vapor Deposition) apparatus for producing a crystalline film or other thin films using a gas phase reaction. Suitable for use.
  • CVD Chemical Vapor Deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An induction heating coil (21) provided with a gas injection opening communicating with the outside and a plurality of gas supply openings at specified positions of a gas channel (23) formed internally, wherein at least one gas supply opening is provided, in the inner circumferential surface thereof, with screw grooves (51, 52). The gas supply openings are opened in the side of a coil face constituting a planar induction electric field. A specific threaded member (55) is screwed into the screw grooves (51, 52).

Description

明細書 誘導加熱用コイル 技術分野  Description Induction heating coil Technical field
この発明は、 例えば、 気相反応を用いて結晶膜あるいはそ の他の薄膜の生成を行う基板処理(CVD:Chemical Vapor Deposition) 装置の加熱手段と して使用される誘導加熱用コイルに関し、 詳し く はガス流路を内蔵した誘導加熱用コイルに関する。 背景技術  The present invention relates to, for example, an induction heating coil used as a heating means of a substrate processing (CVD: Chemical Vapor Deposition) apparatus for producing a crystal film or other thin films using a gas phase reaction. The present invention relates to an induction heating coil having a built-in gas flow path. Background art
基.板処理装置の加熱手段と して使用される誘導加熱用コィ ルと しては、 例えば、 特開平 8 — 2 3 9 2 9 5 号に、 コイ ル 内部にガス流路が設けられ、 かつ、 その被加熱対象 (基板) に対向する対向面側に複数のガス吹き出し 口が設けられてお り 、 複数の孔か ら基板面に直接原料ガスを供給する こ とがで きる ものが開示されている。 ガス吹き出し方向については、 基板の半径方向に対してほぼ直角に設定した り 、 基板の外周 方向に傾斜角度をもって吹き出すこ とが開示されている。 均 一な結晶膜あるいはその他の薄膜を基板面に生成しよ う とす る場合、 原料ガスを基板上に均一に供給する と ともに、 反応 後の原料ガスを素早く基板上から排出する こ とが望ま し く 、 上記基板処理装置は、 その均一性の点で優れている。  As an induction heating coil used as a heating means of a base plate processing apparatus, for example, Japanese Patent Application Laid-Open No. H8-239295 discloses a method in which a gas flow path is provided inside the coil. Also disclosed are those in which a plurality of gas outlets are provided on the side facing the object to be heated (substrate), so that the source gas can be supplied directly to the substrate surface from the plurality of holes. Have been. It is disclosed that the gas blowing direction is set to be substantially perpendicular to the radial direction of the substrate, or to be blown at an inclined angle in the outer peripheral direction of the substrate. When trying to form a uniform crystal film or other thin film on the substrate surface, the source gas can be supplied uniformly onto the substrate, and the reacted source gas can be quickly discharged from the substrate. Desirably, the substrate processing apparatus is excellent in its uniformity.
と ころで、 上記従来の基板処理装置による と、 ガスの吹き 出 し 口はただ口 を開けたものであるため、 供給するガスが統 制なく 広がっていく よう になっている。 また、 ガスの吹き出し 口は、 常に口 を開けているため、 同 じ基板処理装置において基板のサイ ズを大きいものか ら小さ い ものに変えた場合、 それまで基板面に直接供給していた原 料ガスが基板を載置するサセプ夕に直接供給される こ とにな り 、 不要な場所であるサセプタ上で結晶膜あるいはその他の 薄膜が基板面上と同様に成長する こ とにな り 、 原料ガスが無 駄になるばか り か、 その成長した結晶等が何らかの影響で剥 がれてガスの流れに乗じて反応処理を行う基板面に付着する と、 その基板の品質を低下する という 問題が生じる。 However, according to the conventional substrate processing apparatus described above, the gas outlet is simply opened, so that the gas to be supplied is spread without control. In addition, since the gas outlet is always open, if the size of the substrate is changed from a large one to a small one in the same substrate processing equipment, the source that has been directly supplied to the substrate surface until then is The source gas is supplied directly to the susceptor on which the substrate is mounted, and a crystal film or other thin film grows on the susceptor, which is an unnecessary place, in the same manner as on the substrate surface. The problem is that the raw material gas is wasted, or if the grown crystals and the like are peeled off by some effect and adhere to the surface of the substrate where the reaction process is performed by multiplying the gas flow, the quality of the substrate deteriorates. Occurs.
また、 基板の材質や原料ガスの種類が変わった場合等、 ガ ス吹き出し 口 の向きや大きさ等を変更したい場合があるが、 それぞれに応じた誘導加熱用コイルを予め用意してお く こ と は経済的でない。  In some cases, such as when the material of the substrate or the type of source gas has changed, it may be necessary to change the direction or size of the gas outlet, but an induction heating coil must be prepared in advance for each case. And are not economical.
この発明の目的は、 前記問題の解消を図る とともに、 処理 される基板の仕様特にその大きさが変おつた場合でも、 コィ ルめ主要部分の仕様を変更する こ となく 対応できる誘導加熱 用コイルを提供する こ とにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a coil for induction heating which can cope with the specification of a substrate to be processed without changing the specification of a main part of the coil even if the size of the substrate changes. It is to provide Disclosure of the invention
この発明による誘導加熱用コイルは、 内部に形成されたガ ス流路の所定位置に、 外部に通じるガス注入口および複数の ガス吹き出 し口がそれぞれ設けられている誘導加熱用 コイル であって、 少なく と も 1 つのガス吹き出し 口の内周面に、 ね じ溝が設けられている こ とを特徵とするものである。  An induction heating coil according to the present invention is an induction heating coil in which a gas inlet and a plurality of gas outlets communicating with the outside are provided at predetermined positions of a gas flow path formed inside, respectively. It is characterized in that at least one gas outlet has a thread groove on the inner peripheral surface.
ね じ溝はすべてのガス吹き出 し 口 に設け られる必要はな く 、 例えば、 コイル外周縁部だけ、 外周縁部および内周緣部 だけなど、 一部のものに設けるよ う に してもよい。 ガス吹き 出 し口は、 平面状誘導電界を構成するコイ ル面に対して直交 していてもよ く 、 また、 所定の方向に傾斜していてもよい。 ねじ溝には、 おねじ部材がねじ込まれている こ とがあ り 、 ね じ込まれていない こ と もある。 ねじ溝に じ込まれるねじ部 材は、 ガス吹き出し口を完全に塞ぐものとされる ことがあ り、 ねじ部材のねじ込み方向に貫通孔を有し、 この貫通孔がガス 吹き出 し 口 と して使用される こ と もある。 貫通孔と しては、 その軸線がおねじ部材の軸方向 と一致している 円筒状の も の、 その軸線がおねじ部材の軸方向と傾斜している円筒状の もの、 その軸線がおねじ部材の軸方向と一致も しく は軸線が 傾斜している螺旋状の ものなど種々 の も のが使用可能であ る。 The thread grooves need not be provided at all gas outlets, for example, only at the outer peripheral edge of the coil, at the outer peripheral edge and at the inner peripheral edge. It may be provided only for some items. The gas outlet may be perpendicular to the coil surface constituting the planar induction electric field, or may be inclined in a predetermined direction. The male thread member may be screwed into the thread groove, and may not be screwed. The screw member inserted into the thread groove may completely close the gas outlet, and has a through hole in the screw member screwing direction, and the through hole serves as a gas outlet. May be used. As the through-hole, a cylindrical hole whose axis coincides with the axial direction of the external thread member, a cylindrical hole whose axis is inclined with the axial direction of the external thread member, Various materials such as a spiral shape having the same axis direction as the screw member or an inclined axis can be used.
この発明の誘導加熱用コイルによる と、 基板のサイ ズを大 きいものか ら小さ いものに変えた場合に、 コイルの外周緣部 にある ス吹き出し 口をおねじ部材で塞ぐこ とによ り 、 不要 な部分への原料ガスの供給を停止して、 原料ガスの無駄およ び不要な場所で成長した結晶による基板の品質低下を防止す る こ とができる。 おねじ部材には、 ねじ込み方向にガス吹き 出 し用の貫通孔があけられてもよ く 、 これによ り 、 基板や原 料ガスの変更に伴う孔の方向や太さ、 形状の変更に容易に対 応でき、 また、 微調整も行う ことができる。  According to the induction heating coil of the present invention, when the size of the substrate is changed from a large one to a small one, the air outlet at the outer periphery of the coil is closed by a male screw member. By stopping the supply of the source gas to unnecessary portions, waste of the source gas and deterioration of the quality of the substrate due to crystals grown in unnecessary locations can be prevented. The male screw member may be provided with a through-hole for gas blowing in the screwing direction. This allows the hole direction, thickness, and shape to be changed due to changes in the substrate and raw gas. It can be easily handled and fine-tuned.
1 ガス吹き出し 口は、 平面状誘導電界を構成するコイル面の う ち被加熱対象である基板に対向する対向面側に開口 してい る こ とがあ り 、 また、 これと反対側に開口 している こ ともあ る。 前者の場合には、 ガス吹き出し口か らは原料ガスまたは 冷却ガスが基板に供給され、 後者の場合には、 ガス吹き出し 口か らはコィル上方の空間を満たす充満ガスが供給される。 1 The gas outlet may be open on the opposite side of the coil surface that constitutes the planar induction electric field, facing the substrate to be heated, and on the opposite side. Sometimes. In the former case, the raw material gas or Cooling gas is supplied to the substrate, and in the latter case, a filling gas filling the space above the coil is supplied from the gas outlet.
また、 コイルは平面の滴巻き状とされてお り 、 渦巻きの中 心部においては、 ガス吹き出し 口が中心部側面に設けられか つ傾斜を有している こ と こ とが好ま しい。 傾斜には、 基板対 向面に向けて傾斜している もののほかに、 水平面内で中心部 の円筒面の接線方向に対して傾斜している場合も含まれる。 このよ う にする と、 ガス供給が不足あるいは不均一にな りや すい中心部の原料ガスの供給が改善され、均一性が向上する。  Further, the coil is formed in a flat drop-wound shape, and in the center of the spiral, it is preferable that the gas outlet is provided on the side surface of the central part and has an inclination. The inclination includes not only the inclination toward the substrate facing surface but also the inclination with respect to the tangent direction of the central cylindrical surface in the horizontal plane. In this way, the supply of the raw material gas in the center, where the gas supply is likely to be insufficient or uneven, is improved, and the uniformity is improved.
また、 上記のよう に、 所定のねじ部材がねじ溝にねじ込ま れている こ とがあ り 、 ねじ部材に、 これをねじ込み方向に貫 通す.るガス吹き出し用貫通孔が設けられている ことがある。 図面の簡単な説明  In addition, as described above, a predetermined screw member may be screwed into the screw groove, and the screw member may be provided with a through hole for gas blowing that passes through the screw member in the screwing direction. is there. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 この発明による誘導加熱用コイルが使用される一 例である基板処理装置の主要部の概要を示す垂直断面図であ る。  FIG. 1 is a vertical sectional view showing an outline of a main part of a substrate processing apparatus as an example in which an induction heating coil according to the present invention is used.
図 2 ( a ) は、 誘導加熱用コイルの上面を示す平面図であ り 、 図 2 ( b ) は ( a ) の b — b線に沿う断面図である。 図 3 は、 誘導加熱用コイルの下面を示す底面図である。 図 4 は、 誘導加熱用コイルに設けられたガス吹き出し 口の 拡大断面図であ り 、 ( a ) は中心空間部に面する導電体要素 の垂直断面図であ り 、 ( b ) は中心空間部以外に面する導電 体要素の垂直断面図 (径方向) であ り 、 ( c ) は ( b ) の C-C 線に沿う断面図 (周方向) である。  FIG. 2 (a) is a plan view showing the top surface of the induction heating coil, and FIG. 2 (b) is a cross-sectional view taken along the line bb of (a). FIG. 3 is a bottom view showing the lower surface of the induction heating coil. FIG. 4 is an enlarged cross-sectional view of a gas outlet provided in the induction heating coil. (A) is a vertical cross-sectional view of a conductor element facing the central space, and (b) is a central space. FIG. 4 is a vertical cross-sectional view (radial direction) of a conductor element facing other than a portion, and (c) is a cross-sectional view (circumferential direction) along the CC line of (b).
図 5 は / 基板処理装置の冷却機構の一実施形態を示す垂直 断面図である。 FIG. 5 shows one embodiment of a cooling mechanism of a substrate processing apparatus. It is sectional drawing.
図 6 は、 図 5 に示す基板処理装置の制御部を示すブロ ッ ク 図である。  FIG. 6 is a block diagram showing a control unit of the substrate processing apparatus shown in FIG.
図 7 は、 この発明による誘導加熱用コイルの主要部である、 ガス吹き出 し 口 に設け られたねじ溝を示す拡大断面図であ る。  FIG. 7 is an enlarged cross-sectional view showing a screw groove provided in a gas outlet, which is a main part of the induction heating coil according to the present invention.
図 8 .は、 図 7 に示すねじ溝にねじ込まれるおねじ部材のー 例を示す拡大断面図である。  FIG. 8 is an enlarged sectional view showing an example of a male screw member screwed into the screw groove shown in FIG.
図 9 は、 図 7 に示すねじ溝にねじ込まれるおねじ部材の他 の例を示す拡大断面図である。  FIG. 9 is an enlarged sectional view showing another example of the male screw member screwed into the screw groove shown in FIG.
図 1 0 は、 図 7 に示すねじ溝にねじ込まれるおねじ部材の さ ら.に他の例を示す拡大断面図である。  FIG. 10 is an enlarged sectional view showing still another example of the male screw member screwed into the screw groove shown in FIG.
図 1 1 ( a ) は、 誘導加熱用コイルに設けられるガス吹き 出し 口の他の例を示す拡大断面図 (中心空間部に面する導電 体要素の垂直断面図) であ り 、 図 1 1 ( b ) は、 誘導加熱用 コイルに設けられるガス吹き出し 口のさ ら に他の例を示す拡 大断面図 (中心空間部に面する導電体要素の水平断面図) で ある。 発明を実施するための最良の形態 こ の発明の実施の形態を、 以下図面を参照して説明する。 図 1 は、 この発明による誘導加熱用コイルが使用される一 例である基板処理装置の主要部を示して る。 基板処理装置 は、 図示しない水冷の容器に納め られてお り 、 円筒状外断熱 壁(2)、 円筒状内断熱壁(3)および基板搬入出用開閉扉 (4)を 有する反応炉(1)と、 外断熱壁(2)の頂部に設け られた第 1 加 熱手段(5)と、 内断熱壁 (3)の頂部に位置する基板支持手段(6) と、 基板 (S)表面に原料ガスおよび冷却ガス を供給するガス 供給手段 (7)と、 内断熱壁(3)内の基板支持手段(6)下方に設 けられた第 2 加熱手段(8)と、 基板支持手段(6)を支持してこ れを所要の方向に移動させる駆動手段 (9)と、 基板(S)を反 応炉 (1)内に搬入 しかつ処理後の基板 (S.)を搬出する搬送口 ボ ッ ト (10)と、 冷却ガス を基板支持手段 (6)の下方か ら吹き 出すガス供給手段(11)と、 基板(S)を基板支持手段か ら持ち 上げる基板持ち上げ手段(12)とを備えている。 Fig. 11 (a) is an enlarged cross-sectional view (a vertical cross-sectional view of the conductor element facing the central space) showing another example of the gas outlet provided in the induction heating coil. (b) is an enlarged cross-sectional view (horizontal cross-sectional view of the conductor element facing the central space) showing still another example of the gas outlet provided in the induction heating coil. BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a main part of a substrate processing apparatus as an example in which the induction heating coil according to the present invention is used. The substrate processing apparatus is housed in a water-cooled container (not shown), and has a reactor (1) having a cylindrical outer heat insulating wall (2), a cylindrical inner heat insulating wall (3), and a substrate loading / unloading door (4). ), And the first module installed on the top of the outer insulation wall (2). Heating means (5), substrate support means (6) located on top of the inner heat insulating wall (3), gas supply means (7) for supplying raw material gas and cooling gas to the substrate (S) surface, and inner heat insulating Second heating means (8) provided below the substrate support means (6) in the wall (3), and drive means (9) for supporting the substrate support means (6) and moving it in a required direction And a transfer port bot (10) for loading the substrate (S) into the reactor (1) and unloading the processed substrate (S.), and a cooling gas below the substrate support means (6). The apparatus is provided with a gas supply means (11) blowing out from the substrate, and a substrate lifting means (12) for lifting the substrate (S) from the substrate support means.
この基板処理装置は、 気相反応を用いて結晶膜あるいはそ の他の薄膜の生成を行う もので、 気相反応を生じさせる部分 を反応部(la)と呼び、 反応部(la)とは別な場所である下方に、 基板(S)を反応炉(1)外と受け渡しする搬入出部(lb)を備えて いる。  This substrate processing apparatus generates a crystal film or other thin film using a gas phase reaction, and a portion that causes a gas phase reaction is called a reaction section (la). At the lower part, which is another place, a loading / unloading section (lb) for transferring the substrate (S) outside the reactor (1) is provided.
外断熱壁 (2)および内断熱壁 (3)内には、 冷却水流路 (2a) (3a)がそれぞれ設けられている。  Cooling water passages (2a) and (3a) are provided in the outer heat insulating wall (2) and the inner heat insulating wall (3), respectively.
第 1 加熱手段(5)は、 この発明による誘導加熱用コイル (高 周波—コイ ルと もいう) (21)を有している。 誘導加熱用 コイ ル (21)は、 図 2 および図 3 に詳し く 示すよ う に、 導電体が平面 状の渦巻き形状になされたもので、 それぞれ上方に開口 した ガス流路 (23)および冷却水流路(24)が渦巻き状に形成された コイ ル本体(22)と、 コイル本体(22)に上から被せられて各流 路(23) (24)の開口を塞ぐ蓋(25)とからなる。 図 2 ( a ) では、 蓋(25)を省略して、 コイル本体(22)だけを示している。 図中、 (26)は絶縁用の間隙であ り 、 この間隙(26)は、 渦巻き形状を 形成している各導電体部分の径方向の幅が端部等特殊な部分 を除いて一定になるよう に設けられている。 The first heating means (5) has an induction heating coil (also referred to as a high-frequency coil) (21) according to the present invention. As shown in detail in FIGS. 2 and 3, the induction heating coil (21) is made of a conductor having a flat spiral shape, and has a gas flow path (23) opened upward, and a cooling passage. The coil body (22) in which the water flow path (24) is formed in a spiral shape, and the lid (25) that covers the coil body (22) from above and closes the openings of the flow paths (23) and (24) Become. In FIG. 2A, the lid (25) is omitted, and only the coil body (22) is shown. In the figure, (26) is an insulating gap, and this gap (26) is a special portion such as an end portion where the radial width of each conductor portion forming a spiral shape is an end portion. It is set to be constant except for.
コイ ル本体(22)のコイ ル面の基板(S)に対向する側 (対向 面) には、 図 3 に示すよ う に、 ガス流路に通じる複数のガス 吹き出 し 口 (29) ( 30 )が設けられている。 図 4 ( a ) に詳し く 示すよう に、 コイル本体(22)の中心空間部周縁に設け られて いる複数のガス吹き出し 口 (29)は、 真下ではな く 、 中心に向 かっ て傾斜するよ う に形成されている。 これら のガス吹き出 し 口 (29 )の傾斜角 (Kl ) ( k2 )は、 設けられる位置に応じて変更 されている。 また、 図 4 ( b ) ( C ) に詳し く 示すよ う に、 コイ ル本体(22)の中心空間部周緣以外の対向面に設け られて いるガス吹き出 し 口 (30)は、 真下ではなく 、 周方向に向かつ て 斜するよう に形成されている。 この結果、 誘導加熱用コ ィル(21 )対向面におけるガス吹き出 し方向は、 図 3 に矢印で 示すよ う に、 コイル(21 )の内周部では、 中心に向かい、 その 他の部分では、 渦巻きの旋回方向に向かって吹き出されるよ う になされている。  As shown in Fig. 3, on the side of the coil body (22) facing the substrate (S) on the coil surface (opposed surface), as shown in Fig. 3, a plurality of gas outlets (29) (30) ) Is provided. As shown in detail in FIG. 4 (a), the gas outlets (29) provided at the periphery of the center space of the coil body (22) are inclined not toward the center but toward the center. It is formed as follows. The inclination angles (Kl) and (k2) of these gas outlets (29) are changed according to the positions where they are provided. As shown in detail in Figs. 4 (b) and 4 (C), the gas outlet (30) provided on the opposing surface other than the periphery of the central space of the coil body (22) is not located directly below. It is formed so as to be inclined toward the circumferential direction. As a result, the gas blowing direction on the surface facing the induction heating coil (21) is directed toward the center on the inner periphery of the coil (21) as shown by the arrow in FIG. It is designed to be blown out in the swirl direction.
誘導加熱用コイル (21 )のガス流路(23 )およびガス吹き出 し 口 (29) ( 30)は、 気相反応処理時の原料ガスの吹き出 し用 と し て使用されると と もに、 気相反応処理後の冷却ガスの吹き出 し用 と しても使用されている。 すなわち、 このガス流路(23 ) およびガス吹き出し 口 (29 ) ( 30)と、 ガス流路に接続される外 部の配管、 その配管に接続された複数のガス配管およびそれ らガス配管に接続された原料ガス と冷却ガスそれぞれのガス 供給源と、 それぞれのガス供給圧力調整部と、 ガス切 り替え 手段とが組み合わされる こ とによ り 、 誘導加熱用コイ ル(21 ) に一部内蔵されたガス供給手段 (7)は、 基板(S )表面に原料 ガスを供給する原料ガス供給手段と、 冷却ガス を基板支持手 段の上方から吹き出す上側ガス供給手段とを兼ねる構成とさ れている。 The gas flow path (23) and the gas outlets (29) (30) of the induction heating coil (21) are used for blowing out the raw material gas during the gas phase reaction treatment, and It is also used for blowing out cooling gas after gas phase reaction processing. That is, the gas flow path (23) and the gas outlets (29) (30), the external pipe connected to the gas flow path, the plurality of gas pipes connected to the pipe, and the gas pipes The combination of the gas supply source for each of the source gas and the cooling gas, the gas supply pressure regulators, and the gas switching means enables a part to be built into the induction heating coil (21). The supplied gas supply means (7) uses the raw material on the substrate (S) surface. It is configured to also serve as a source gas supply unit for supplying a gas and an upper gas supply unit for blowing a cooling gas from above the substrate support means.
基板支持手段(6)は、 基板(S)を載せる 円形の凹所を上面 に有している円形板状のサセプ夕 (31)と、 支柱(33)の上端部 からそれぞれ等間隔で略水平方向の 3 方にのびるサセプタ支 持腕(32)と を備えている。 各支持腕(32)の上面の先端部に、 サセプタ (31)を 3 点支持する突起 (32a)がそれぞれ 1 つ設け られている。  The substrate support means (6) is a circular plate-shaped susceptor (31) having a circular recess on the upper surface on which the substrate (S) is placed, and substantially horizontally at equal intervals from the upper end of the column (33). And a susceptor support arm (32) extending in three directions. One projection (32a) for supporting the susceptor (31) at three points is provided at the tip of the upper surface of each support arm (32).
第 2 加熱手段(8)は、 表面が金、 銀、 アルミ ニウムなどの 金属製メ ツキが施されかつ鏡面である熱反射板(35)とされて いる。 熱反射板(35)は、 中央に貫通孔を有する 円盤状に形成 されている。 図 1 に示すよ う に、 熱反射板(35)の上部には、 冷却ガスを垂直上方に向けて吹き出す冷却ガス流路(36)が設 けられてお り 、 この冷却ガス流路(36)が下側のガス供給手段 (11)と されている。 また、 熱反射板(35)の下部には、 熱反射 板(35)を冷却するための冷却水流路(37)が設け られている。  The second heating means (8) is a heat reflecting plate (35) having a metal surface made of gold, silver, aluminum or the like and having a mirror surface. The heat reflection plate (35) is formed in a disk shape having a through hole in the center. As shown in FIG. 1, a cooling gas passage (36) for blowing a cooling gas vertically upward is provided above the heat reflecting plate (35). ) Is the lower gas supply means (11). Further, a cooling water flow path (37) for cooling the heat reflecting plate (35) is provided below the heat reflecting plate (35).
なお、 図示省略したが、 第 2 加熱手段と して、 ピン受け(43) と干渉しないよ う に配置された第 1 加熱手段と同様の誘導加 熱用コイ ルを用いてもよい。  Although not shown, as the second heating means, the same induction heating coil as the first heating means arranged so as not to interfere with the pin receiver (43) may be used.
駆動手段(9)は、 熱反射板(35)の中央の貫通孔に挿通され てその上端部がサセプ夕支持腕(32)の中央部に一体化されて いる支柱 (33)と、 支柱(33)を垂直軸回り に回転させるステツ ビングモータある いはサーボモー夕か らなるモータ (38)と、 支柱(33)を上下方向に移動させる昇降装置 (39)と、 昇降装置 (39)を駆動するための制御部とを備えている。 .搬送ロボッ ト (10)ば、 枚葉式のものであ り 、 内断熱壁 (3) 内に出入りするための水平方向移動と、 サセプ夕 (31)との間 で基板 (S)を移 し替えるための上下方向移動を行う こ とがで さる。 The driving means (9) includes a support (33) which is inserted into a central through hole of the heat reflecting plate (35) and whose upper end is integrated with the center of the susceptor support arm (32); Drives a motor (38) consisting of a stepping motor or servomotor that rotates 33) around a vertical axis, a lifting device (39) that moves the column (33) up and down, and a lifting device (39) And a control unit for performing the operation. The transfer robot (10) is a single-wafer type, and moves the board (S) between the horizontal direction to enter and exit the inner heat insulation wall (3) and the susceptor (31). It is necessary to move up and down to change.
基板持ち上げ手段(12)は、 サセプタ (31)の中心か ら等距離 で周方向に 1 2 0 ° 間隔をおいた基板載置面の計 3個所に設 けられた段付きの貫通孔(41)と、 この貫通孔(41)に上下移動 可能にかつ頂部が基板載置面を越えないよう に収め られた頭 付きの ピン (42)と、 サセプ夕 (31)の下方に設け られかつサセ プタ (31)の ピン (42)の配置と同心でかつ同径の 1 2 0 ° 間隔 で設けられたピン受け(43)とを備えている。  The substrate lifting means (12) is provided with stepped through holes (41) provided at a total of three places on the substrate mounting surface equidistant from the center of the susceptor (31) and spaced 120 ° in the circumferential direction. ), A pin with a head (42) housed in the through hole (41) so as to be able to move up and down so that the top does not exceed the substrate mounting surface, and a susceptor provided below the susceptor (31). A pin receiver (43) provided at a 120 ° interval and concentric with the arrangement of the pins (42) of the receptacle (31) is provided.
サセプ夕 (31)は、 上述のよ う に、 気相反応処理を行ってい る間、 モー夕 (38)によっ て回転させられるが、 処理終了時に は、 図 1 に示すよう に、 ピン (42)のち よ う ど真下にピン受け (43)が位置するよう に停止させられる。  As described above, the susceptor (31) is rotated by the motor (38) during the gas phase reaction process, but at the end of the process, as shown in FIG. It is stopped so that the pin receiver (43) is located just below, as in 42).
図 5 および図 6 は、 この基板処理装置で使用 されている冷 却機構の一実施形態を示している。  FIG. 5 and FIG. 6 show one embodiment of a cooling mechanism used in the substrate processing apparatus.
同図に示す冷却機構においては、 3 つのピン受け(43)は、 昇降装置 (図示略) によって、 上下移動可能と されてお り 、 サセプ夕 (31)には、 複数の通気孔(46)が貫通状に設け られて いる。 そして、 処理が終了 して、 ピン(42)のち よ う ど真下に ピン受け(43)が位置するよ う にサセプタ (31)の回転が停止さ ' せられると、 こ の状態で 3 つのピン受け(43)が上方に移動さ せられる。 図 5 に示すよ う に、 ピン受け(43)は熱反射板(35) に設け られた貫通孔を通過して反応部(la)に至り 、 ピン (42) の下端に当接する。 そ して、 このピン (42)がピン受け(43)に よ っ て上方に移動させられる こ と によっ て、 基板(S)がサセ プ夕 (31)か ら持ち上げられる。 この段階で、 上側および下側 のガス供給手段 (7) ( 11)か ら冷却ガスが吹き付けられ、 基板 (S)およびサセプ夕 (31)が冷却される。 サセプ夕 (31)には、 通気孔(46)が設け られいるので、 基板(S)は、 サセプ夕 (31) の通気孔(46)を通過した冷却ガスによっても冷却される。 サ セプ夕 (例えばカーボン製) (31)は熱容量が大きいため、 冷 却されに く いが、 基板(S)は、 サセプタ (31)とは接触してい ないため、 サセプ夕 (31)の影響を受ける こ となく冷却される。 In the cooling mechanism shown in the figure, the three pin receivers (43) can be moved up and down by an elevating device (not shown), and the susceptor (31) has a plurality of ventilation holes (46). Are provided in a penetrating manner. Then, when the processing is completed and the rotation of the susceptor (31) is stopped so that the pin receiver (43) is located immediately below the pin (42), the three pins are kept in this state. The catch (43) is moved upward. As shown in FIG. 5, the pin receiver (43) passes through the through hole provided in the heat reflection plate (35), reaches the reaction section (la), and contacts the lower end of the pin (42). And this pin (42) becomes the pin receiver (43). Thus, the substrate (S) is lifted from the susceptor (31) by being moved upward. At this stage, the cooling gas is blown from the upper and lower gas supply means (7, 11) to cool the substrate (S) and the susceptor (31). Since the ventilation hole (46) is provided in the susceptor (31), the substrate (S) is also cooled by the cooling gas passing through the ventilation hole (46) of the susceptor (31). Susceptor (for example, made of carbon) (31) has a large heat capacity and is not easily cooled, but the substrate (S) is not in contact with the susceptor (31), so the effect of the susceptor (31) Cools without receiving.
サセプタ (31)の通気孔(46)は、 例えば、 図 5 ( b ) に示す よ う にラ ンダムに設けてもよ く 、 また、 同図 ( c ) に示すよ う に放射状に設けてもよい。  The ventilation holes (46) of the susceptor (31) may be provided randomly, for example, as shown in FIG. 5 (b), or may be provided radially as shown in FIG. 5 (c). Good.
なお、 この実施形態では、 全ての ピン受け(43)を上昇させ ているが、 上昇させる ピン受け(43)は、 1 つでもよ く 、 こ の 場合には、 1 つの ピン (42)だけによつて持ち上げられた基板 (S)は、 外周面の 1 点でサセプ夕 (31)に接触する ことになる。 こ う して、 基板(S)とサセプ夕 (31)とは、 点接触すなわち実 質的には接触していないよ う にな り 、 基板( S)は、 サセプ夕 (31)の影響を受ける こ となく 冷却される。  In this embodiment, all the pin receivers (43) are raised. However, the number of pin receivers (43) to be raised may be one, and in this case, only one pin (42) is provided. The lifted substrate (S) comes into contact with the susceptor (31) at one point on the outer peripheral surface. In this way, the substrate (S) and the susceptor (31) are not in point contact, that is, substantially not in contact with each other, and the substrate (S) is not affected by the susceptor (31). Cools without receiving.
また、 ピン受け(43)のみを上方移動させるのではなく 、 サ セプタ (31)も下降させる相対移動を行ってもよい。  Further, instead of moving only the pin receiver (43) upward, a relative movement may be performed in which the susceptor (31) is also lowered.
サセプ夕 (31)と ピン受け(43)とは、 図 5 の位置関係を保つ たまま下方の搬入出部(lb)に垂直に移動させられる。 この間 にも冷却ガスの吹き付けは継続される。 そして、 冷却された 基板(S)は、 搬入出部(lb)か ら搬送ロボッ ト (10)によ って搬 出される。 この実施形態の基板'処理装置の制御部(40)には、 図 6 に示 すよう に、 ガス供給圧力調整部(44)と、 上下移動量調整部(45) とが設けられている。 ガス供給圧力調整部(44)は、 上側のガ ス供給手段 (7)のガス供給圧力および下側のガス供給手段 (11)のガス供給圧力をそれぞれ別個に調整する もので、 誘導 加熱用 コイル(21)のガス流路(23)に接続された配管に設け ら れているバルブなど介して、 誘導加熱用コイル(21)に設けら れたガス吹き出 し口 (29) (30)か ら吹き出される冷却ガスの下 向きの圧力 を調整する と と も に、 熱反射板(35)のガス流路 ( 36)に接続さ れた配管に設け られているバルブな どを介 し て、 熱 射板(35)のガス吹き出し 口から吹き出される冷却ガ スの.上向きの圧力を調整している。 上下移動量調整部(44)は、 サセプタ (31)、 ピン受け(43)および熱反射板(35)の上下移動 量を昇降装置(39)を介してそれぞれ別個に調整する も のであ る。 The susceptor (31) and the pin receiver (43) are moved vertically to the lower loading / unloading section (lb) while maintaining the positional relationship shown in Fig. 5. During this time, the spraying of the cooling gas is continued. Then, the cooled substrate (S) is carried out from the carry-in / out part (lb) by the carrying robot (10). As shown in FIG. 6, the control unit (40) of the substrate processing apparatus of this embodiment is provided with a gas supply pressure adjustment unit (44) and a vertical movement amount adjustment unit (45). The gas supply pressure adjusting section (44) separately adjusts the gas supply pressure of the upper gas supply means (7) and the gas supply pressure of the lower gas supply means (11). The gas outlet (29) (30) provided in the induction heating coil (21) through a valve provided in the pipe connected to the gas flow path (23) in (21). In addition to adjusting the downward pressure of the cooling gas to be blown out, the valve is provided through a valve provided in a pipe connected to the gas passage (36) of the heat reflecting plate (35), and the like. The upward pressure of the cooling gas blown from the gas outlet of the hot plate (35) is adjusted. The vertical movement amount adjusting section (44) separately adjusts the vertical movement amounts of the susceptor (31), the pin receiver (43), and the heat reflecting plate (35) via the elevating device (39).
この制御部(40)による と、 反応処理後、 まず、 ピン受け(43) が上方に移動させられ、 図 5 の状態で、 冷却作業が開始され る。 そ して、 冷却作業を継続しながら、 サセプ夕 (31)が下方 に移動させられる。 この際、 サセプタ (31)、 ピン受け (43)お よび熱反射板(35)は、 図 5 の位置関係を保ったまま、 つま り 、 サセプタ (31)と ピン受け(43)と熱反射板(35)とが同時に同.じ 速さで下降させられ、 搬入出部(lb)に移動させられる。 サセ プ夕 (31)を反応部(la)から搬入出部(lb)へ移動させる際には、 サセプ夕 (31)の下降量および熱反射板(35)の下降量に応じて 上側ガス供給手段(7)の供給圧を下側ガス供給手段 (11)の供 給圧よ り 高める制御が行なわれる。 したがって、サセプタ (31 ) および熱反射板(35)が'下降する こ とによ り 、 誘導加熱用コィ ル(21)か ら基板(S)までの距離が長く な り 、 基板(S)付近にお ける冷却ガスの上向き圧力 と下向き圧力 とのバランスが、 制 御部(40)によって保たれる。 これによ り 、 基板(S)に吹き付 け られて下方に移動した排ガスが再び基板(S)に当たる こ と によって生じる基板(S)の汚染を防止する こ とができる。 According to the control unit (40), after the reaction treatment, first, the pin receiver (43) is moved upward, and the cooling operation is started in the state of FIG. Then, the susceptor (31) is moved downward while continuing the cooling work. At this time, the susceptor (31), the pin receiver (43) and the heat reflecting plate (35) maintain the positional relationship shown in FIG. 5, that is, the susceptor (31), the pin receiver (43) and the heat reflecting plate. (35) is simultaneously lowered at the same speed and moved to the loading / unloading section (lb). When moving the susceptor (31) from the reaction section (la) to the carry-in / out section (lb), supply the upper gas according to the descending amount of the susceptor (31) and the descending amount of the heat reflecting plate (35). Control is performed to increase the supply pressure of the means (7) above the supply pressure of the lower gas supply means (11). Therefore, the susceptor (31) As the heat reflection plate (35) descends, the distance from the induction heating coil (21) to the substrate (S) becomes longer, and the cooling gas near the substrate (S) is reduced. The balance between the upward pressure and the downward pressure is maintained by the control unit (40). Accordingly, it is possible to prevent contamination of the substrate (S) caused by the exhaust gas that has been blown down to the substrate (S) and moved downward and hits the substrate (S) again.
この発明の誘導加熱用コイルによ と、 図 4 に示したガス 吹き出し口 (29) (30)の開口側の部分には、 図 7 に示すよう に、 ねじ溝(51) (52)が施されている。 図 7 の ( a ) に示すねじ溝 (51)が施された孔は、 コイルの中心軸方向に向かつて'傾斜さ せられてお り 、 図 7 の ( b ) に示すねじ溝(52)が施された孔 は、 コイル面の半径方向に直角の方向に傾斜させられている。 これらのねじ溝(51) (52)には、 必要に応じて、 おねじ部材(54) (55) (56)が着脱自在にねじ込まれる。 おねじ部材(54) (55) (56) と してば、 ガス吹き出し 口 を完全に塞ぐもの (54)と、 ねじ込 み方向に貫通孔(55a) (56a)を有し こ の貫通孔(55a) (56a)がガス 吹き出し孔と して使用されるものとが適宜使用される。  According to the induction heating coil of the present invention, as shown in FIG. 7, screw grooves (51) and (52) are formed on the opening side of the gas outlets (29) and (30) shown in FIG. Have been. The hole provided with the thread groove (51) shown in (a) of Fig. 7 is inclined toward the center axis direction of the coil, and the thread groove (52) shown in (b) of Fig. 7 is provided. The holes provided with are inclined in the direction perpendicular to the radial direction of the coil surface. Male thread members (54) (55) (56) are removably screwed into these thread grooves (51) (52) as necessary. The male screw members (54), (55) and (56) are those that completely block the gas outlet (54) and have through holes (55a) and (56a) in the screwing direction. (55a) The one in which (56a) is used as a gas blowing hole is appropriately used.
図 8 ( a ) ( b ) は、 図 7 で示されたねじ溝(51) (52)がお ね じ部材 (54)によ っ て完全に塞がれてい る ものを示してい る。 このおねじ部材(54)は、 市販のものが使用可能であ り 、 例えば、 基板(S)のサイズを大きい ものか ら小さ いものに変 えた場合に、 コイ ル(21)の外周緣部にあるガス吹き出し用ね じ溝(51) (52)を塞ぐために使用 される。 これによ り 、 不要な 部分への原料ガスの供給は停止し、 原料ガスの無駄および成 長した結晶による基板(S)の品質低下を防止する こ とができ る。 図 9 ( a ) ( b ) は、 ねじ込み方向に貫通孔(55a)を有する おねじ部材(55)を示している。 このおねじ部材(55)による と、 その貫通孔 (55a)がガス吹き出 し孔と して使用 される。 貫通 孔 (55a)の中心とおねじ部材(55)の中心とは一致させ られて いる。 したがって、 ねじ溝(51) (52)の中心方向にガスを吹き 出すこ とができる。 FIGS. 8 (a) and 8 (b) show that the screw grooves (51) and (52) shown in FIG. 7 are completely closed by the screw member (54). As the male screw member (54), a commercially available one can be used. For example, when the size of the substrate (S) is changed from a large one to a small one, the outer peripheral part of the coil (21) can be used. Used to close the gas outlet thread grooves (51) (52) at As a result, the supply of the source gas to the unnecessary portion is stopped, and it is possible to prevent waste of the source gas and deterioration of the quality of the substrate (S) due to grown crystals. FIGS. 9A and 9B show a male screw member (55) having a through hole (55a) in the screwing direction. According to the male screw member (55), the through hole (55a) is used as a gas blowing hole. The center of the through hole (55a) is aligned with the center of the male screw member (55). Therefore, gas can be blown out toward the center of the screw grooves (51) and (52).
図 1 0 ( a ) ( b ) は、 ねじ込み方向に貫通孔(56a)を有す る おねじ部材 (56)の他の例を示してい る。 こ のおね じ部材 (56)では、 貫通孔(56a)の中心は、 おねじ部材(56)の中心には 一致しておらず、 所定方向に傾斜させられている。 このおね じ部材(56)による と、 その貫通孔 (56a)の方向がね じ溝 (51) (52).の方向とは異なってお り 、 これによ り 、 誘導加熱用コィ ル(21)にあけ られたねじ溝(51) (52)の方向とは異なっ た方向 にガスを吹き出させる こ とができる。 したがっ て、 貫通の方 向を変えたい ときには異なる貫通孔(56a)のおねじ部材 (56) に代える こ と によ っ て変更する こ とができる。 ね じ溝 (51) (52)を有する孔は、 必ずし も斜めに形成されている必要はな く 、 コイル面に対して直角であってもよい。 そ して、 図' 1 0 ( b ) に示すよう に、 コイル面に対して直角の孔に施された ねじ溝(52)と傾斜貫通孔(56a)を有するおねじ部材(56)とが組 み合わされる こ とによ り 、 傾斜方向のガス吹き出し口を得る こ とができる。  FIGS. 10 (a) and 10 (b) show another example of a male screw member (56) having a through hole (56a) in the screwing direction. In the thread member (56), the center of the through hole (56a) does not coincide with the center of the male screw member (56), and is inclined in a predetermined direction. According to the screw member (56), the direction of the through hole (56a) is different from the direction of the screw groove (51) (52). Gas can be blown out in a direction different from the direction of the thread grooves (51) and (52) opened in 21). Therefore, when it is desired to change the direction of the penetration, it can be changed by replacing the external thread member (56) with a different through hole (56a). The holes having the thread grooves (51) and (52) need not necessarily be formed obliquely, and may be perpendicular to the coil surface. Then, as shown in Fig. 10 (b), the screw groove (52) formed in the hole perpendicular to the coil surface and the male screw member (56) having the inclined through hole (56a) are formed. By being combined, a gas outlet in an inclined direction can be obtained.
なお、 おねじ部材(54) (55) (56)の頭頂部はコイル面よ り外 に出ないよう にする こ とが望ま しい。  It is desirable that the tops of the external thread members (54), (55), and (56) do not come out of the coil surface.
上記おねじ部材(54) (55) (56)は、 種々 の仕様のものを用意 する ことが可能であ り 、 その貫通孔(55a) (56a)の方向や太さ、 形状の変更を基板(S)や原料ガス に応じて変更する こ とによ り 、 誘導加熱用コイル(21)はそのまま使用 し、 おねじ部材(54) (55) (56)を変更するだけで基板処理の仕様の変更に対応する ことができる。 The male screw members (54), (55), (56) can be prepared in various specifications, and the direction and thickness of the through holes (55a), (56a), By changing the shape according to the substrate (S) and source gas, the induction heating coil (21) can be used as it is, and only the male screw members (54) (55) (56) need to be changed. This can respond to changes in the specifications of substrate processing.
おねじ部材は、 誘導加熱用コイ ル(21)に悪影響を与えない よう 、 高周波コイルと同じ材質が用い られ、 例えば、 銅製の 誘導加熱用コイル(21)に対応して銅製または黄銅製などとさ れる。  The male screw member is made of the same material as the high-frequency coil so as not to adversely affect the induction heating coil (21). For example, copper or brass is used in correspondence with the copper induction heating coil (21). Is done.
なお、 図示省略したが、 おねじ部材に設ける貫通孔は、 ら せん状でもよ く 、 これによ り 、 らせん状貫通孔から吹き出す ガス を旋回流と し、 基板(S)上の原料ガスが均一な乱流状態 を得.る こ とに寄与させる こ とができる。  Although not shown, the through hole provided in the male screw member may be spiral, and the gas blown out from the spiral through hole is turned into a swirling flow, and the raw material gas on the substrate (S) is removed. This can contribute to obtaining a uniform turbulence state.
コイル本体(22)の内周部に設けられているガス吹き出 し 口 (29)は、 図 4 ( a ) に示すものでは、 コイル (21)の対向面に 設け られているが、 コイル本体(22)の内周部に設けられるガ ス吹き出 し 口は、 図 1 1 に示すよ う に、 内周面に設けられる ことがよ り好ま しい。 図 1 1 ( a ) に示すガス吹き出し口 (57) は、 コイ ル本体(22)の中心空間部内周面に設け られてお り 、 コイ ル(21)の中心軸を中心と してほぼ均等角度に配され、 ガ ス吹き出 し 口 (57)の方向は、 対向面外側に向かいかつコイル (21)の中心軸方向に向かう方向と されている。 そして、 これ らのガス吹き出 し 口 (57)の方向は、 それらがコイル(21)の中 心軸上の 1 点でかつ基板(S)の上で結ばれるよ う になされて いる。 また、 図 1 1 ( b ) に示すガス吹き出 し 口 (58)は、 コ ィル本体(22)の中心空間部内周面に設けられてお り 、 コイル (21)の中心軸を中心と してほぼ均等角度に配され、 ガス吹き 出 し 口 (58)の方向は、 水平面内でかつコイル(21 )の中心軸方 向に対して傾斜する方向とされている。 Coil body (2 2) of the inner peripheral portion Callout gas are provided in the mouth (29) is intended to show in FIG. 4 (a), but is provided on the opposite surface of the coil (21), the coil body The gas outlet provided in the inner peripheral portion of (22) is more preferably provided in the inner peripheral surface as shown in FIG. The gas outlet (57) shown in Fig. 11 (a) is provided on the inner peripheral surface of the central space of the coil body (22), and is substantially even around the central axis of the coil (21). The gas outlet (57) is arranged at an angle, and the direction of the gas outlet (57) is directed toward the outside of the facing surface and toward the center axis of the coil (21). The directions of these gas outlets (57) are such that they are connected at one point on the central axis of the coil (21) and on the substrate (S). The gas outlet (58) shown in Fig. 11 (b) is provided on the inner peripheral surface of the central space of the coil body (22), and is centered on the central axis of the coil (21). Gas is blown The direction of the outlet (58) is inclined in the horizontal plane with respect to the direction of the central axis of the coil (21).
上記の誘導加熱用コイル(21 )の中心部にはコイルをなす導 電体が存在しないため、 この部分に均一に原料ガスを供給す る こ とは難しいものであるが、 ガス吹き出し 口 (57) (58)を上 記のよ う に設ける こ とによ り コイル(21 )中心部の下であつ - ても原料ガスを十分に供給し気相反応処理時の均一性を向上 させる こ とができる。  Since there is no conductor forming the coil in the center of the induction heating coil (21), it is difficult to uniformly supply the source gas to this part. However, the gas outlet (57) (58) By providing (58) as described above, even under the center of the coil (21), the source gas is sufficiently supplied to improve the uniformity during the gas phase reaction treatment. Can be.
なお、 コイル本体(22)の中心空間部に設けられるガス吹き 出 し 口 については、 図 4 ( a ) に示した もの (29) と 図 1 1 ( a ) ( b ) に示した もの (57) ( 58)と を両方設けてもよ く 、 いす:れか一方だけを設けてもよい。  The gas outlets provided in the center space of the coil body (22) are the ones shown in Fig. 4 (a) (29) and those shown in Figs. 11 (a) and (b) (57 ) (58) and may be provided, and only one of the chairs may be provided.
図 2 および図 3 に示した誘導加熱用コイル(21 )は、 その内 周端と外周端とに電源接続端子が接続され、 高周波電源によ つ て駆動される。  The induction heating coil (21) shown in FIGS. 2 and 3 has a power connection terminal connected to the inner peripheral end and the outer peripheral end thereof, and is driven by a high frequency power supply.
高周波電源 (高周波発振機) には、 例えば、 電力用半導体 スイ ッチング素子である I G B T (ゲー ト絶縁型バイ ポーラ ト ランジスタ) が使用される。 産業上の利用可能性  For the high-frequency power supply (high-frequency oscillator), for example, an IGBT (gate-insulated bipolar transistor), which is a power semiconductor switching element, is used. Industrial applicability
この発明による誘導加熱用コイルは、 気相反応を用いて結 晶 膜 あ る い は そ の 他 の 薄 膜 の 生 成 を 行 う 基 板 処 理 ( CVD:Chemical Vapor Deposition)装置の加熱手段と して使用するの に適している。  The induction heating coil according to the present invention includes a heating means of a substrate processing (CVD: Chemical Vapor Deposition) apparatus for producing a crystalline film or other thin films using a gas phase reaction. Suitable for use.

Claims

請求の範囲 The scope of the claims
1 . 内部に形成されたガス流路の所定位置に、 外部に通じる ガス注入口およ,び複数のガス吹き出し 口がそれぞれ設けられ ている誘導加熱用コイルであって、  1. An induction heating coil in which a gas inlet and a plurality of gas outlets that communicate with the outside are provided at predetermined positions of a gas flow path formed inside, respectively.
少なく と も 1 つのガス吹き出 し 口の内周面に、 ねじ溝が設 けられている こ とを特徴とする誘導加熱用コイル。  An induction heating coil, characterized in that at least one gas outlet is provided with a thread groove on the inner peripheral surface.
2 . ガス吹き出 し口は、 平面状誘導電界を構成する コイル面 側に開口 している こ とを特徴とする請求項 1 記載の誘導加熱 用コイル。 2. The coil for induction heating according to claim 1, wherein the gas outlet is open on the side of the coil that forms the planar induction electric field.
3 . コイルは平面の渦巻き状とされてお り 、 渦巻きの中心部 においては、 ガス吹き出し口が中心部側面に設けられかつ傾 斜を有している こ とを特徴とする請求項 1 記載の誘導加熱用 コイル。 3. The coil according to claim 1, wherein the coil has a flat spiral shape, and a gas outlet is provided on a side surface of the central portion and has a slope at a center of the spiral. Induction heating coil.
4 . 所定のねじ部材がねじ溝にねじ込まれている請求項 2 ま たは 3記載の誘導加熱用コイル。  4. The induction heating coil according to claim 2, wherein a predetermined screw member is screwed into the screw groove.
5 . ねじ部材に、 これをねじ込み方向に貫通するガス吹き出 し用貫通孔が設けられている こ とを特徴とする請求項 4記載 の誘導加熱用コイル。  5. The induction heating coil according to claim 4, wherein the screw member has a gas blowing through hole penetrating the screw member in the screwing direction.
PCT/JP2002/001130 2002-02-12 2002-02-12 Induction heating coil WO2003069021A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003568126A JPWO2003069021A1 (en) 2002-02-12 2002-02-12 Induction heating coil
PCT/JP2002/001130 WO2003069021A1 (en) 2002-02-12 2002-02-12 Induction heating coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001130 WO2003069021A1 (en) 2002-02-12 2002-02-12 Induction heating coil

Publications (1)

Publication Number Publication Date
WO2003069021A1 true WO2003069021A1 (en) 2003-08-21

Family

ID=27677662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001130 WO2003069021A1 (en) 2002-02-12 2002-02-12 Induction heating coil

Country Status (2)

Country Link
JP (1) JPWO2003069021A1 (en)
WO (1) WO2003069021A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297672A (en) * 1998-04-09 1999-10-29 Tadahiro Omi Shower plate, shower plate peripheral structure, and processor
US6001175A (en) * 1995-03-03 1999-12-14 Maruyama; Mitsuhiro Crystal producing method and apparatus therefor
US6228234B1 (en) * 1998-01-05 2001-05-08 Sony Corporation Apparatus for sputtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001175A (en) * 1995-03-03 1999-12-14 Maruyama; Mitsuhiro Crystal producing method and apparatus therefor
US6228234B1 (en) * 1998-01-05 2001-05-08 Sony Corporation Apparatus for sputtering
JPH11297672A (en) * 1998-04-09 1999-10-29 Tadahiro Omi Shower plate, shower plate peripheral structure, and processor

Also Published As

Publication number Publication date
JPWO2003069021A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4147608B2 (en) Heat treatment equipment
KR100446485B1 (en) Processing chamber for atomic layer deposition processes
US6274495B1 (en) Method for fabricating a device on a substrate
EP0717126B1 (en) Apparatus for low pressure chemical vapor deposition
US5710407A (en) Rapid thermal processing apparatus for processing semiconductor wafers
KR100313309B1 (en) Method of implementing temperature controlled process and processing device for semiconductor wafer
KR20090017622A (en) Film forming apparatus and film forming method
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
KR20050035300A (en) Thermal process station with heated lid
EP1676295A2 (en) Apparatus to improve wafer temperature uniformity for face-up wet processing
US7541299B2 (en) Method and apparatus for thermally processing microelectronic workpieces
WO2001033617A1 (en) Semiconductor-manufacturing apparatus
TW201349377A (en) Method and apparatus for independent wafer handling
CN100471990C (en) Film forming method and film forming device using plasma CVD
JP2013207277A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
US20050072526A1 (en) Heating apparatus to heat wafers using water and plate with turbolators
US20050000450A1 (en) Treatment subject elevating mechanism, and treating device using the same
JP2021012944A (en) Substrate processing apparatus and substrate delivery method
JP6067035B2 (en) Substrate processing module and substrate processing apparatus including the same
US20210388495A1 (en) Asymmetric exhaust pumping plate design for a semiconductor processing chamber
JP2016516291A (en) Substrate processing equipment
JP2002155366A (en) Method and device of leaf type heat treatment
WO2003069021A1 (en) Induction heating coil
JP2016516292A (en) Substrate processing equipment
JP3099101B2 (en) Heat treatment equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003568126

Country of ref document: JP

122 Ep: pct application non-entry in european phase