WO2003068342A1 - Self-running skateboard - Google Patents
Self-running skateboard Download PDFInfo
- Publication number
- WO2003068342A1 WO2003068342A1 PCT/JP2003/001049 JP0301049W WO03068342A1 WO 2003068342 A1 WO2003068342 A1 WO 2003068342A1 JP 0301049 W JP0301049 W JP 0301049W WO 03068342 A1 WO03068342 A1 WO 03068342A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- board
- skateboard
- gravity
- center
- self
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/12—Roller skates; Skate-boards with driving mechanisms
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63C—SKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
- A63C17/00—Roller skates; Skate-boards
- A63C17/01—Skateboards
Definitions
- the present invention relates to a standing-type moving device using an electric motor or a prime mover, and performs self-stop, forward, backward, direction change, speed adjustment, etc. by moving the center of gravity of a driver on a board body. It relates to a runnable board. Background art
- Figure 1 shows the structure of this skateboard.
- the weight of the rear footrest 13 integrally connected to the skateboard main body 11 is measured by the sensor 15, and the weight is measured on the front footrest 12 connected to the skateboard main body.
- the weight is measured by the sensor 14, the ratio of the front weight to the rear weight is calculated by the control device 17, and the wheel 18 is rotated by moving the power 16 according to the result.
- the method of turning is to change the direction of the wheels 19 by rotating the front footrests 12 parallel to the ground.
- FIG. 2 shows a simplified view of this steering mechanism.
- the tire 21 is supported by a wheel axle 23 via a ball bearing.
- the strut 25 is integral with the wheel axle and is connected to the board body so that it can rotate about the axis K.
- the wheel axle 23 has a hole centered on the axis J. These holes are integrally fixed to the board body, and are connected so as to be rotatable about a support axis 24, which is a force axis J, coated with a hard rubber.
- a support axis 24 which is a force axis J, coated with a hard rubber.
- the present invention has been made in view of the above problems, and has a method of measuring and calculating the position of the center of gravity of a driver using a simple mechanism, and a self-propelled skateboard for performing speed control and the like based on the result.
- the purpose is to provide. Disclosure of the invention
- a self-propelled skateboard of the present invention includes a plurality of strain sensors mounted on an integrated board, a signal amplifier circuit for amplifying an output from the sensor, and a signal amplifying circuit. It is configured to include a circuit for performing calculations, a motor control circuit, a power supply, a motor, a transmission device, a tire, a steering mechanism, and a shock absorbing mechanism.
- a method of measuring and calculating the strain amount of at least four boards to determine the driver's weight and the four unknowns of the position of the center of gravity and the positions of both feet Is used.
- the operation mechanism uses a signal from the strain gauge to perform an arithmetic operation for detecting the position of the center of gravity of the driver using an arithmetic circuit, sends a signal corresponding to the operation result to the motor control circuit, and outputs the signal to the motor control circuit.
- the skateboard By moving the skateboard, the skateboard is moved according to the ratio in the direction where the center of gravity is deviated. This allows the passenger to operate without falling off the skateboard.
- Steering is a mechanism that changes the direction of the wheels by tilting the skateboard with respect to the ground, making it easier to operate the skateboard.
- the forward, backward, stop, speed change, and direction change operations can all be controlled by the passenger's center of gravity, and the skateboard can be safely controlled even when the speed increases.
- the board on which the driver rides is integrated, and the steering mechanism and the strain sensor for measuring the center of gravity are respectively mounted at different locations on the board, so that the structure is simplified. It is also possible to attach a shock absorber between the board and the front and rear steering devices. This can reduce manufacturing costs and increase the rigidity of the device.
- the self-propelled skateboard of the present invention can be constructed by attaching a sensor and power to a so-called skateboard without power. Further, in the self-propelled skateboard of the present invention, the position for placing the passenger's foot does not need to be particularly fixed within a certain range, so that the operability is improved.
- the position of the center of gravity of the driver can be detected regardless of the inclination of the skate board, and even if the pressure distribution applied to the sole of the driver changes, the center of gravity of the driver can be accurately determined. Because it can be detected, it is possible to drive on a slope.
- FIG. 3 (a) is a side view showing a self-propelled skateboard according to one embodiment of the present invention
- FIG. 3 (b) is also a plan view.
- FIG. 3 is a block diagram illustrating an arithmetic circuit and a motor control circuit.
- FIG. 16 is a side view showing a self-propelled skate board according to another embodiment (3) of the present invention.
- FIG. 36 is a side view showing a self-propelled skateboard according to another embodiment (5) of the present invention.
- FIG. 36 is a plan view showing a self-propelled skateboard according to another embodiment (6) of the present invention.
- FIG. 33 is a plan view showing a self-propelled skateboard according to another embodiment (7) of the present invention.
- FIG. 33 is a plan view showing a self-propelled skateboard according to another embodiment (8) of the present invention.
- FIG. 3 is a diagram showing the configuration of the device of the present invention.
- FIG. 3-a is a diagram of the device viewed from the side
- FIG. 3-b is a diagram of the device viewed from below.
- the left and right sides of the drawing are the traveling directions of the device.
- the board 31 is a portion on which the occupant can put his / her foot, and is preferably a substance having sufficient strength and a large amount of strain when the occupant gets on the board. Force due to the balance between strength and elasticity
- the board 31 is preferably made of a material having a constant elastic coefficient between the wheel bases.
- it may be a plywood of integrally formed wood.
- the strain sensors 32 (a), 32 (b), 32 (c) and 32 (d) are for detecting the strain of the board 31 and are bonded to the board 31.
- the number of strain sensors is four in this example, but the required number varies depending on the configuration of the device. In addition, more than the minimum required number may be installed to reduce measurement and other errors.
- These sensors are connected to the electric circuit box 35 by signal lines. Further, the electric circuit box 35 is connected to the battery 34 and the moda 33 by a lead wire.
- the power of the electric motor 33 is transmitted to the tire 36 via the transmission 38.
- the transmission device may be, for example, one in which gears are attached to a motor and a tire, respectively.
- the electric motor 33 and the wheel shaft 39 are integrally connected.
- the wheel shaft 39 has a steering mechanism 30 and is connected to the board 31 via a shock absorber 37.
- a rubber-like elastic body may be used as the shock absorber.
- a shock absorbing mechanism can be attached to each wheel.
- FIG. 2 shows an example of the steering mechanism.
- the passenger can tilt the skateboard board 11 with respect to the ground to change the direction of the skateboard.
- Figure 4 is an example showing the configuration of one strain sensor.
- the strain gauges 41, 42, 43, and 44 are bonded to the plate 45.
- the board 45 is a plastic substance, a material having a smooth surface and a high thermal conductivity coefficient, such as a thin aluminum board, is preferred, but if the board 31 has a smooth surface, there is no board 45 May be.
- Two signal lines are connected to each strain gauge, and the resistance between the signal lines is, for example, 120 ⁇ .
- the strain resistance of the strain gauges increases when the adhered material is distorted. For example, if the plate 4 5 is distorted in the lengthwise direction of the gauge 4 1, the resistance change of the gauge 4 1
- the rate is several times the rate of change in resistance of the gauge 42.
- a Wheatstone bridge circuit may be formed using four strain gauges, and a signal may be amplified using an operation amplifier circuit.
- a noise filter such as a coil is attached to the amplifier circuit to reduce measurement errors due to physical vibration of the device. Arithmetic averaging of measured values can also reduce measurement errors. The measurement error due to the fluctuation of the zero point can be easily reduced by storing the zero point and performing an operation using a digital circuit.
- FIG. 5 is a block diagram showing the configuration of the electric circuit.
- the resistance change of the strain sensor 51 is converted into a voltage change by a signal amplification circuit 52 having a Wheatstone bridge circuit, a reference voltage generation circuit, and a voltage-operated amplification circuit, and input to the arithmetic circuit 53 as an analog signal.
- the arithmetic circuit 53 converts the signal from the signal amplifier circuit 52 into a digital signal using an A / D converter, and calculates the center of gravity of the occupant by arithmetically operating the value.
- An instruction to accelerate the motor is output to the motor control circuit 54 in the direction in which the position of the center of gravity is largely biased in accordance with the ratio, and the motor 56 is operated.
- the motor control can give instructions such as reducing the output of the motor when the speed exceeds a predetermined maximum speed, for example. It can be output to the circuit 54.
- a current of several tens of amps flows through the motor control circuit, it is preferable to connect the battery 55 directly to the battery 55 through a lead wire.
- the power charging circuit 57 may be an external device.
- a voltage conversion circuit can be incorporated in the charging circuit to enable charging from multiple power sources such as a commercial AC power source and a single battery power source for automobiles.
- FIG. 6 is a block diagram showing the motor control circuit and the arithmetic circuit in detail.
- a clock signal is input from the clock generation circuit 67 to the arithmetic circuit 68 and the motor control circuit 65.
- the power supply 64 consists of an arithmetic circuit 68, a motor control circuit 65, a power MOSFET group 63, a rotor position detection circuit 62, Connect to force bra 66. If the operating voltages are different, input the appropriate voltage.
- the voltage signal obtained by amplifying the strain value detected by the strain sensor from lines Al, Bl, Cl, and D1 is input to the arithmetic circuit 68 with a built-in A / D converter.
- the arithmetic circuit 68 calculates the position of the center of gravity and the like, and outputs a PWM signal, a brake signal, a motor ON signal, and a motor operation direction signal to the motor control circuit 65 from lines E, F, G, and HI, respectively.
- UH2, VH2 are used so that bidirectional current flows from two of the three coils from the motor control circuit.
- the current flows to the element of the power MOSFET group 63 to which the ON signal is input, and the current flows to the two-phase coil among Ul, VI, and W1.
- An IGBT or the like may be used as a switch element.
- the rotor position needs to be detected, and the rotor one position detection circuit 62 and the motor control IC 65 detect the rotor one position.
- U2, V2, and W2 are signals of Hall elements arranged at intervals of 120 degrees in electrical angle of the motor, and this signal is amplified by the rotor position detection circuit 62, and U3 Output to V3, W3.
- a signal from the rotor one position detection circuit is output to the arithmetic circuit 68 to monitor the rotation speed and direction of the motor.
- a method of detecting the center of gravity by using a plurality of strain sensors will be described below.
- the passenger places one foot between points A and C, and places his foot between points B and D.
- Equation 1 below is an equation representing the amount of strain Ra at point A.
- the distance from the origin 0 to both feet is X,
- Ra E-K a-Nl- (X-a) Ml g- (Y-) -M2-g + (2L-a) N2
- Equation 2 is an equation representing the amount of strain Rb at the point B, Rb.
- Equations 1 and 2 g is the gravity acceleration, E is the longitudinal elastic modulus, and K is the section modulus.
- Ra-E K (2L-a) Nl- (2L-a-X) Ml g- (2L-a-Y) M2 g + a N2
- Equation 3 is an equation representing the section modulus K, where W is the board width and H is the board thickness.
- Equation 4 is an equation representing Ml.
- Equation 5 is an equation representing M2.
- Equation 6 is an equation representing N1.
- Equation 7 is an equation representing N2.
- N2 — -M-g
- Equation 8 is obtained from Equations 1, 2, 4, 5, 6, and 7.
- Equation 9 also Equation 1 below, Equation 2, Equation 4, Equation 5, Equation 6, c [Equation 9] obtained from the formula 7
- Ra-R b 2a ⁇ L - Z) M ⁇
- the amount of strain Rc at the point C can be expressed by the following equation (10).
- Rc-E-K (L-b) Nl- (L-b-X) Ml-g- (Y-L + b) M2g + (L + b) -N2
- the amount of strain Rd at point D can be expressed by the following equation (11).
- Rd-EK (L + b) Nl-(L + bX) Ml-g-(YLb) M2 g + (Lb) N2
- the following formula 12 is the above formula 1, formula 2, formula 4, formula 5, formula 6, It is obtained from Equation 7.
- Equation 14 is an equation representing the deviation of the passenger's center of gravity c
- Equation 15 is c obtained from Equations 13 and 14.
- Equation 16 above is obtained from Equations 8 and 15 above.
- the expression 16 indicates that even if the fulcrums X and Y change, the position of the center of gravity can be detected accordingly.
- the resistance change rate of the strain gauge is as follows.For example, when board 300 in Fig. 3 is made of aluminum with a width of 300 mm and a thickness of 10 mm.
- the arithmetic operation of the above equation (16) is performed by an arithmetic circuit, a signal is sent to a motor control circuit, and the motor is moved. It has a mechanism to move the board. This allows the passenger to operate without falling off the skateboard.
- the steering is a mechanism that changes the direction of the wheels by tilting the skateboard with respect to the ground, making it easier to operate the skateboard.
- the skateboard can be safely controlled even if the speed increases, by controlling the passenger's center of gravity in all of the operations of moving forward, backward, stopping, changing speed, and changing direction.
- the instrument In order for a person to board the instrument safely, first use the values detected by the strain sensors to calculate Equation 8 above. Calculation to detect whether a person is on the device. In addition, the above formula 16 is calculated, and when the difference between Ml and M2 is smaller than a certain value, the setting is made so that the operation of the present apparatus is enabled. This will also detect if the passenger has one foot between A and C and the other foot between B and D.
- the passenger when boarding the device, the passenger places his / her feet in the specified range and brings the center of gravity near the center of both feet to start operation of the device.
- the above equation 16 is calculated, and the position of the center of gravity of the occupant is measured. This calculated value indicates a value up to one force, and the motor is output according to the value to accelerate the device. If the center of gravity is deviated in the direction opposite to the direction of travel, apply the brake.
- the undetermined coefficients are only M, X, Y, and ⁇ , and the number of sensors is four, so we only need to solve the four-way simultaneous equation. Since it is difficult to obtain an exact solution analytically, the actual calculation method is determined by numerical calculation, approximation formula, or empirical formula. In this sense, the above equation 16 can be said to be an approximate equation. However, the number of sensors may be increased to five or more to reduce measurement errors or to expand the range where the foot can be placed. Also, on a slope, it is preferable to determine whether the motor is uphill or downhill, and to provide more power to the motor if the vehicle is uphill, and to reduce the output of the motor when the vehicle is downhill.
- the slope angle of the slope can be calculated, for example, by calculating the ratio of the output to the motor and the rate of increase in the number of rotations of the motor.
- the measured center of gravity may be offset from front to back, and the direction may be changed by tilting the skateboard from the ground surface
- the weight of the occupant is constantly monitored, and It is preferable to stop the device when it gets off the device.
- FIG. 8 is a view of the configuration of the device as viewed from below.
- the left and right sides of the drawing are the traveling directions of the device.
- the strain sensors 82 (a), 82 (b), 82 (c) and 82 (d) are bonded to the board 81.
- Tire 87 is fixed in direction with respect to board body 81, and has no steering mechanism.
- This configuration includes a control device 85, a motor 83, a battery 84, a tire 86, and a steering mechanism 80.
- the position of the center of gravity of the driver can be expressed by Expression 16 above. From this calculation, the motor 83 and the wheel 87 are moved in such a direction that the center of gravity of the driver is deviated so that the skateboard is accelerated according to the ratio.
- FIG. 9 is a view of the configuration of the apparatus viewed from the side.
- the left and right sides of the drawing are the traveling directions of the device.
- the integral board 91 may be shaped so as to form a cavity when viewed from the side as shown in the figure, and the control device 95 and the battery 94 can be attached to the cavity.
- Strain sensors 92 (a), 92 (b), 92 (c) and 92 (d) are bonded to the board 91.
- This configuration includes a motor 93, a tire 96, a steering mechanism 90, and an impact absorbing mechanism 97. In this configuration, the direction in which the center of gravity of the driver is deviated is detected by the strain sensor, and the motor 93 is moved and operated so that the skateboard is accelerated in accordance with the ratio.
- FIG. 10 is a view of the configuration of the apparatus as viewed from the side.
- the left and right sides of the drawing are the traveling directions of the device.
- the strain sensors 102 (a), 102 (b), 102 (c), 102 (d) are adhered to the board 101.
- the driver rides right and left so that the strain sensors 102 (c) and 102 () are on the soles of the feet 100.
- This configuration includes a steering mechanism 104, a battery 106, and a control device 107.
- the position of the center of gravity of the driving operator can be expressed by the above-mentioned formula 16. From this calculation, the motor 103 and the wheels are set so that the skateboard is accelerated in a direction in which the center of gravity of the driving operator is deviated according to the ratio. 105 moves.
- FIG. 11 is a view of the configuration of the device as viewed from below.
- the left and right sides of the drawing are the traveling directions of the device. Attach strain sensors 1 1 9 (&) and 1 1 9 (b) to board 1 1 1 and motor 1 1 3 (a) to drive left and right wheels 1 16 (&) and 1 16 (b) respectively. And 1 1 3 (b). It is okay to have no steering device between axle 1 18 and board 1 1 1.
- a notch 114, a control device 115, and a power transmission device 117 (a), 117 (b) are provided.
- the strain values of sensors 1 (19) (a) and 119 (b) The movement of the center of gravity of the occupant in the left and right directions is measured.
- the traveling direction is changed in a direction in which the center of gravity is deviated by making a difference between the rotation speeds of the left and right motors.
- the direction can be changed with a small turning radius.
- the center of gravity of the driver detected by the strain sensors 112 (a), 112 (b), 112 (c), 112 (d) bonded to the board 111, the center of gravity of the driver is determined. Move and operate the motors 113 (a) and 113 (b) in the biased direction so that the skateboard is accelerated according to the ratio.
- FIG. 12 is a diagram of the configuration of the device as viewed from the side.
- the left and right sides of the drawing are the traveling directions of the device.
- the direction in which the center of gravity of the driver is deviated is detected from the strain value detected by each sensor, and the motor 123 is operated by moving the motor 123 so that the skateboard is accelerated in accordance with the ratio.
- a battery 124, a tire 126, and a steering mechanism 127 are provided.
- FIG. 13 is a side view of the configuration of the device.
- the left and right sides of the drawing are the traveling directions of the device.
- the driver places his feet on the X and Y positions of the board 131.
- the strain sensors 132 (a), 132 (b), 132 (c) are bonded to the board 131.
- the direction in which the driver's center of gravity is deviated is detected from the strain value detected by each sensor, and the motor 133 is moved and operated so as to accelerate the skateboard according to the direction.
- FIG. 14 is a side view of the configuration of the apparatus.
- the left and right sides of the drawing are the traveling directions of the device.
- the wheel 146 is mounted on the center of the board, and the strain sensors 142 (a), 142 (b), 142 (c), 142 (d) are bonded to the board 141.
- the driver puts his foot between the strain sensors 142 (a) and 142 (c) and between the strain sensors -142 (b) and 142 (d).
- the motor 143 In the direction where the center of gravity of the driver is biased, the motor 143 is operated by operating the motor 143 so that the skateboard is accelerated according to the proportion.
- Figure 15 is a view of the self-propelled skateboard seen from above.
- the left side of the drawing is the traveling direction of the device.
- a turn signal 153 is mounted on the rear part of the board 151 on which the wheel 155 is mounted, and when the driver steps on the switch 152 (a) or the switch 152 (b), the turn signal 153 is turned on.
- the brake lamp 154 lights up when the device slows down.
- It can be used as a convenient means of transportation and transportation, and as a so-called skateboard that plays sports. Further, it is possible to configure an apparatus for measuring a load distribution of a substance on an integrated plate by using a load detection method using a plurality of strain sensors.
Landscapes
- Motorcycle And Bicycle Frame (AREA)
Abstract
A self-running skateboard, comprising a moving means for performing various controls such as stoppage, forward movement, backward movement, speed setting, and change of direction by the movement of the weight and the control of the balance of an operator, wherein, to simplify a structure and allow running on a slope, running wheels (36) are connected to the front and rear of an integral board (31) through shock absorbing bodies (37) and steering mechanisms (30), the inclination of the operator riding on the board (31) is detected by strain sensors (32) fitted to the board (31), a motor (33) is controlled by a controller (35) to move the wheels (36) through a transmission device (38) to accelerate the board in the direction in which the weight of the operator is deviated according to the degree of the deviation, and the board (31) is tilted by the steering mechanisms (30) for changing the direction.
Description
明細書 Specification
自走式スケートボード 技術分野 Technical field of self-propelled skateboard
本発明は、電動モータあるいは原動機を用いた立ち乗り型の移動装置に関し、ボード本体上に乗つ ている運転操作者自身の重心移動によって停止、 前進、 後退、 方向転換、 速度調整等を行う自走式ス ケードボ一ドに関する。 背景技術 The present invention relates to a standing-type moving device using an electric motor or a prime mover, and performs self-stop, forward, backward, direction change, speed adjustment, etc. by moving the center of gravity of a driver on a board body. It relates to a runnable board. Background art
従来、 運転操作者の重心移動を速度等の制御手段とした自走式スケートボードとしては、 ョ本国 特許 2 7 8 7 7 6 6号がある。 図 1はこのスケートボードの構造を示したものである。図において、 スケードボード本体 1 1と一体状に連結された後部足乗せ台 1 3にかかる重量をセンサー 1 5によ つて測定し、スケ一ドボード本体に連結された前部足乗せ台 1 2にかかる重量をセンサー 1 4によつ て測定し、前部の重量と後部の重量の比を制御装置 1 7によって計算し、その結果によって動力 1 6 を動かすことにより車輪 1 8が回転する。 つまり、前後の車輪にかかる圧力をそれぞれ測定し、操縦 者の体重が偏っている方向にスケ一ドボードを動かすことによって、運転操縦者がスケードボ一ドか ら落ちることなく移動できる機構となっている。方向転換の方法としては前部足乗せ台 1 2を地面と 平行に回転させることによって車輪 1 9の方向を変えて行う。 Conventionally, as a self-propelled skateboard in which the movement of the center of gravity of a driver is controlled by speed or the like, there is Japanese Patent No. 28877766. Figure 1 shows the structure of this skateboard. In the figure, the weight of the rear footrest 13 integrally connected to the skateboard main body 11 is measured by the sensor 15, and the weight is measured on the front footrest 12 connected to the skateboard main body. The weight is measured by the sensor 14, the ratio of the front weight to the rear weight is calculated by the control device 17, and the wheel 18 is rotated by moving the power 16 according to the result. In other words, by measuring the pressure applied to the front and rear wheels, and moving the skateboard in a direction where the weight of the driver is uneven, the driver can move without falling off the skateboard. . The method of turning is to change the direction of the wheels 19 by rotating the front footrests 12 parallel to the ground.
また、体重移動を用いたスケ—トボードのステアリング機構は米国特許 2 5 1 0 7 2 2号に記載さ れている。 図 2は、 このステアリング機構を簡易に示したものである。 タイヤ 2 1はボールべアリン グを介して車輪軸 2 3により支えられている。支柱 2 5は車輪軸と一体のものであり、軸 Kを中心に 回転できるようボード本体に連結されている。また車輪軸 2 3は軸 Jを中心とする穴部を有している。 この穴には、 ボード本体に一体状に固定され、硬質ゴムで皮膜された支柱 2 4力 軸 Jを中心として 回転できるよう連結されている。この構造においてボード本体が地面に対して車輪 2 1側に傾くと、 車輪 2 1は内側に、 車輪 2 2は外側に動く。 逆に車輪 2 2側に傾くと、 車輪 2 1は外側に、 車輪 2 2 は内側に動く。ボードを傾ける力が小さくなると、支柱 2 4に皮膜された硬質ゴムの反発力によりボ
-ド本体は地面と水平になる。 この機構により、運転操作者はスケートポードボ一ド本体を地面に対 して傾け、 スケ一トボードの方向転換を行う。 A skateboard steering mechanism using weight shift is described in US Pat. No. 2,510,722. Figure 2 shows a simplified view of this steering mechanism. The tire 21 is supported by a wheel axle 23 via a ball bearing. The strut 25 is integral with the wheel axle and is connected to the board body so that it can rotate about the axis K. The wheel axle 23 has a hole centered on the axis J. These holes are integrally fixed to the board body, and are connected so as to be rotatable about a support axis 24, which is a force axis J, coated with a hard rubber. In this structure, when the board body leans toward the wheel 21 with respect to the ground, the wheel 21 moves inward and the wheel 22 moves outward. Conversely, if you lean to the side of wheel 22, wheel 21 moves outward and wheel 22 moves inward. When the force for tilting the board is reduced, the resilient force of the hard rubber coated -The body is level with the ground. With this mechanism, the driver inclines the skate board body with respect to the ground and turns the skate board.
上述した従来の技術では、次のような問題がある。 日本国特許 2 7 8 7 7 6 6号においては、運転 操作者の重心位置を検出するために両方の足をそれぞれ独立した足乗せ台に乗せ、それぞれの重量を 検出している。そのためスケートボードを最低 2つに分割し、片方の重量がもう一方にかからないよ うにするための特別な機構を設ける必要がある。このため構造が複雑になり製造コス卜が増大する。 また、ステアリング機構は運転操作者の体重移動によって行うものでは無く、操作性に問題がある。 この欠点を補うために、米国特許 2 5 1 0 7 2 2号によるステアリング機構を用いることが考えられ るが、前述の技術を用いて前部足乗せ台と後部足乗せ台を一体状に連結すると、片方の重量の一部が もう一方のセンサに検出されてしまい、足を乗せる位置によって重心位置を誤検出してしまう。また、 坂道でスケートボードが前後に傾いた場合に運転操作者の足の裏における圧力分布が変化するため、 平坦地での重心検出位置とはずれてしまうといつた問題が生じる。 また、ステアリング機構と足乗せ 台との間に重量センサ一を設けるため、走行中の車輪からの衝撃を吸収する機構は各車輪毎にとりつ ける必要がある。 このため、 構造が複雑になり、 製造コストが増大する。 The conventional technique described above has the following problem. In Japanese Patent No. 27877766, both feet are placed on independent footrests to detect the position of the center of gravity of the driver, and the weight of each foot is detected. Therefore, it is necessary to divide the skateboard into at least two parts, and to provide a special mechanism to prevent the weight of one part from resting on the other. This complicates the structure and increases the manufacturing cost. Further, the steering mechanism is not operated by shifting the weight of the driver, and has a problem in operability. To compensate for this drawback, it is conceivable to use a steering mechanism according to U.S. Pat. No. 2,510,722. However, using the above-described technology, the front footrest and the rear footrest are integrally connected. Then, a part of one weight is detected by the other sensor, and the position of the center of gravity is erroneously detected depending on the position where the foot is put. Also, when the skateboard is tilted back and forth on a slope, the pressure distribution at the sole of the driver's foot changes, and if the skateboard deviates from the center of gravity detection position on a flat ground, a problem arises. In addition, since a weight sensor is provided between the steering mechanism and the footrest, a mechanism for absorbing the impact from the running wheels must be provided for each wheel. This complicates the structure and increases manufacturing costs.
本発明は、上記問題点にかんがみてなされたもので、運転操作者の重心位置を単純な機構により測 定し算出する方法と、その結果により速度制御等を行う自走式スケ一ドボ一ドを提供することを目的 とする。 発明の開示 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a method of measuring and calculating the position of the center of gravity of a driver using a simple mechanism, and a self-propelled skateboard for performing speed control and the like based on the result. The purpose is to provide. Disclosure of the invention
上記目的を達成するため、本発明の自走式スケードボ一ドは、一体状のボードに取り付けられた複 数のひずみセンサと、センサからの出力を増幅するための信号増幅回路と、その信号の演算を行う回 路と、 モーター制御回路と、 電源、 モーター、 伝導装置、 タイヤ、 ステアリング機構、 衝撃吸収機構 とを備える構成としてある。 In order to achieve the above object, a self-propelled skateboard of the present invention includes a plurality of strain sensors mounted on an integrated board, a signal amplifier circuit for amplifying an output from the sensor, and a signal amplifying circuit. It is configured to include a circuit for performing calculations, a motor control circuit, a power supply, a motor, a transmission device, a tire, a steering mechanism, and a shock absorbing mechanism.
複数のひずみセンサ一により重心検出を行う方法として、運転操作者の体重及び重心位置と両足位 置の 4つの未知数を決定するために、 少なくとも 4個所のボードのひずみ量を測定し、 演算する手法 を用いる。
動作の機構は、ひずみ測定器の信号を用いて運転操作者の重心位置を検出するための算術演算を演 算回路により行い、その演算結果に応じた信号をモータ一制御回路に送り、モータ一を動かすことに よって、重心の偏っている方向にその割合に応じてスケートボードを動かすものとなっている。 この ことにより、搭乗者はスケートボードから落ちることなく操縦することが可能となる。 また、 ステア リングはスケートボードが地面に対して傾くことで車輪の方向がかわる機構とすることで、スケート ボードの操作が容易となる。 つまり、 前進、 後退、 停止、 速度変更、 方向転換の操作がすべて搭乗者 の重心移動で制御可能であり、速度が上昇してもスケートボ一ドを安全に制御できる構成となってい る。 As a method of detecting the center of gravity using a plurality of strain sensors, a method of measuring and calculating the strain amount of at least four boards to determine the driver's weight and the four unknowns of the position of the center of gravity and the positions of both feet Is used. The operation mechanism uses a signal from the strain gauge to perform an arithmetic operation for detecting the position of the center of gravity of the driver using an arithmetic circuit, sends a signal corresponding to the operation result to the motor control circuit, and outputs the signal to the motor control circuit. By moving the skateboard, the skateboard is moved according to the ratio in the direction where the center of gravity is deviated. This allows the passenger to operate without falling off the skateboard. Steering is a mechanism that changes the direction of the wheels by tilting the skateboard with respect to the ground, making it easier to operate the skateboard. In other words, the forward, backward, stop, speed change, and direction change operations can all be controlled by the passenger's center of gravity, and the skateboard can be safely controlled even when the speed increases.
本発明では、運転操作者の乗るボードが一体状であり、ステアリング機構と重心測定を行うひずみ センサはそれぞれボードの別の場所に取り付けるため、構造が簡単になる。衝撃吸収体をボ一ドと前 後のステアリング装置との間に取り付けることも可能になる。 このため製造コストの削減ができ、装 置の剛性が高まる。 例えば、動力の無い、 いわゆるスケートボードにセンサ一及び動力を取り付ける ことによって本発明の自走式スケートボ一ドを構成することができるといった利点もある。また、本 発明の自走式スケートボードでは、搭乗者の足を置く位置は、ある範囲であれば特に固定する必要が 無いため、操作性が向上する。 同時に、 スケ一トボードの傾きに関係無く運転操作者の重心位置を検 出することができ、 また、運転操作者の足の裏にかかる圧力分布が変化しても、操縦者の重心を正確 に検出できるため、 坂道での走行が可能である。 図面の簡単な説明 According to the present invention, the board on which the driver rides is integrated, and the steering mechanism and the strain sensor for measuring the center of gravity are respectively mounted at different locations on the board, so that the structure is simplified. It is also possible to attach a shock absorber between the board and the front and rear steering devices. This can reduce manufacturing costs and increase the rigidity of the device. For example, there is also an advantage that the self-propelled skateboard of the present invention can be constructed by attaching a sensor and power to a so-called skateboard without power. Further, in the self-propelled skateboard of the present invention, the position for placing the passenger's foot does not need to be particularly fixed within a certain range, so that the operability is improved. At the same time, the position of the center of gravity of the driver can be detected regardless of the inclination of the skate board, and even if the pressure distribution applied to the sole of the driver changes, the center of gravity of the driver can be accurately determined. Because it can be detected, it is possible to drive on a slope. BRIEF DESCRIPTION OF THE FIGURES
【図 1】 【Figure 1】
従来の自走式スケートボ一ドを示す側面図である。 It is a side view which shows the conventional self-propelled skateboard.
【図 2】 【Figure 2】
ステアリング機構を示す斜視図である。 It is a perspective view showing a steering mechanism.
【図 3】 [Figure 3]
図 3 (a)は本発明の一実施の形態に係る自走式スケートボードを示す側面図であり、 図 3 (b)は同じ く平面図である。
【図 4】 FIG. 3 (a) is a side view showing a self-propelled skateboard according to one embodiment of the present invention, and FIG. 3 (b) is also a plan view. [Fig. 4]
ひずみセンサ一を示す平面図である。 It is a top view which shows one strain sensor.
【図 5】 [Figure 5]
電気回路のブロック図である。 It is a block diagram of an electric circuit.
【図 6】 [Fig. 6]
演算回路及びモーター制御回路を示すプロック図である。 FIG. 3 is a block diagram illustrating an arithmetic circuit and a motor control circuit.
【図 7】 [Fig. 7]
運転操作者が搭乗した際にボードにかかる物理的な力を模式的に示した図である。係数及び未知数 1次元座標で示している。 It is the figure which showed typically the physical force which acts on a board when a driver | operator boarded. Coefficients and unknowns Shown in one-dimensional coordinates.
【図 8】 [Fig. 8]
本発明のその他の実施の形態( 1 )に係る自走式スケートボ一ドを示す平面図である。 It is a top view which shows the self-propelled skateboard which concerns on other embodiment (1) of this invention.
【図 9】 [Fig. 9]
本発明のその他の実施の形態(2 )に係る自走式スケートボ一ドを示す側面図である。 It is a side view which shows the self-propelled skateboard which concerns on other embodiment (2) of this invention.
【図 1 0】 [Fig. 10]
本発明のその他の実施の形態(3 )に係る自走式スケ一トボードを示す側面図である。 FIG. 16 is a side view showing a self-propelled skate board according to another embodiment (3) of the present invention.
【図 1 1】 [Fig. 11]
本発明のその他の実施の形態 ( 4 )に係る自走式スケ一トボードを示す側面図である。 It is a side view showing a self-propelled skateboard according to another embodiment (4) of the present invention.
【図 1 2】 [Fig. 1 2]
本発明のその他の実施の形態(5 )に係る自走式スケートボードを示す側面図である。 FIG. 36 is a side view showing a self-propelled skateboard according to another embodiment (5) of the present invention.
【図 1 3】 [Fig. 13]
本発明のその他の実施の形態(6 )に係る自走式スケートボードを示す平面図である。 FIG. 36 is a plan view showing a self-propelled skateboard according to another embodiment (6) of the present invention.
【図 1 4】 [Fig. 14]
本発明のその他の実施の形態(7 )に係る自走式スケートポードを示す平面図である。 FIG. 33 is a plan view showing a self-propelled skateboard according to another embodiment (7) of the present invention.
【図 1 5】 [Fig. 15]
本発明のその他の実施の形態(8 )に係る自走式スケ一トボ ドを示す平面図である。
発明を実施するための最良の形態 FIG. 33 is a plan view showing a self-propelled skateboard according to another embodiment (8) of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明における実施の形態の一例について図面を参照して詳細に説明する。 Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.
(構成の説明) (Description of configuration)
図 3は、 本発明の装置構成示す図であり、 図 3— aは装置を横から見た図、 図 3— bは装置を下か ら見た図である。 図面の左右が装置の進行方向である。 図 3において、 ボード 3 1は、搭乗者が足を 乗せる部分であり、 強度を十分に有し、搭乗者が乗ったときのひずみ量が大きい物質が好ましい。 強 度と弾性との兼ね合いによる力 例えば木材の合板であれば、 1 c mから 2 c m程度の厚さが好まし レ、。ボード 3 1はホイールベース間で弾性係数が一定な物質で構成されていることが好ましく、例え ば、 一体状に成形された木材の合板などで良い。 ひずみセンサ一 3 2 (a)、 3 2 (b), 3 2 (c), 3 2 (d) は、 ボード 3 1のひずみを検出するためのものであり、 ボード 3 1に接着する。 ひずみセンサーの数 は本例では 4箇所であるが、装置の構成によって必要な数が異なる。 また、測定等の誤差を低減する ために、最低限の必要数より多く取り付けることもある。 これらのセンサーは電気回路ボックス 3 5 と信号線でつながつている。また、電気回路ボックス 3 5はパッテリ一 3 4及びモーダ一 3 3とリー ド線でつながっている。電動モータ一 3 3の動力は伝導装置 3 8を介してタイヤ 3 6に伝えられる。 この伝導装置としては、例えばモ一ターとタイヤにそれぞれ歯車をとりつけただけのものでも良い。 電動モーター 3 3と車輪軸 3 9は一体状に連結される。車輪軸 3 9はステアリング機構 3 0を有して おり、衝撃吸収体 3 7を介してボード 3 1と連結されている。衝撃吸収体は、例えばゴム状の弾性体 を用いても良い。 また、 衝撃吸収機構は各車輪にとりつけることもできる。 FIG. 3 is a diagram showing the configuration of the device of the present invention. FIG. 3-a is a diagram of the device viewed from the side, and FIG. 3-b is a diagram of the device viewed from below. The left and right sides of the drawing are the traveling directions of the device. In FIG. 3, the board 31 is a portion on which the occupant can put his / her foot, and is preferably a substance having sufficient strength and a large amount of strain when the occupant gets on the board. Force due to the balance between strength and elasticity For example, for wood plywood, a thickness of about 1 cm to 2 cm is preferred. The board 31 is preferably made of a material having a constant elastic coefficient between the wheel bases. For example, it may be a plywood of integrally formed wood. The strain sensors 32 (a), 32 (b), 32 (c) and 32 (d) are for detecting the strain of the board 31 and are bonded to the board 31. The number of strain sensors is four in this example, but the required number varies depending on the configuration of the device. In addition, more than the minimum required number may be installed to reduce measurement and other errors. These sensors are connected to the electric circuit box 35 by signal lines. Further, the electric circuit box 35 is connected to the battery 34 and the moda 33 by a lead wire. The power of the electric motor 33 is transmitted to the tire 36 via the transmission 38. The transmission device may be, for example, one in which gears are attached to a motor and a tire, respectively. The electric motor 33 and the wheel shaft 39 are integrally connected. The wheel shaft 39 has a steering mechanism 30 and is connected to the board 31 via a shock absorber 37. For example, a rubber-like elastic body may be used as the shock absorber. In addition, a shock absorbing mechanism can be attached to each wheel.
図 2はステアリング機構の一例を示したものであり、搭乗者はスケ一トボ一ドボ一ド 1 1を地面に 対して傾け、 スケートボードの方向転換を行うことが可能である。 FIG. 2 shows an example of the steering mechanism. The passenger can tilt the skateboard board 11 with respect to the ground to change the direction of the skateboard.
図 4は 1箇所のひずみセンサーの構成を示す一例である。板 4 5にストレインゲージ 4 1、 4 2、 4 3、 4 4が接着されている。 板 4 5は可塑性の物質で、 表面が滑らかであり、熱伝導係数が高い物 質、例えば薄いアルミニウム板等が好ましレ、が、ボード 3 1の表面が滑らかであれば板 4 5は無くて も良い。 また、 それぞれのストレインゲージには 2本の信号線がつながつており、信号線間の抵抗は 例えば 1 2 0 Ωといった値である。ストレインゲージは接着してある物質がひずむと、信号線間のゲ ージ抵抗が上昇する。例えばゲージ 4 1の長編方向に板 4 5がひずんだ場合、ゲージ 4 1の抵抗変化
率はゲージ 4 2の抵抗変化率に対し数倍の値となる。 し力 し、 ストレインゲージや抵抗素子は、温度 変化が生じるとひずみによる変化と同程度抵抗が変化するため、測定誤差が生じる。温度等による誤 差を効果的に低減する方法としては、 4つのストレインゲージを用いてホイートストンプリッジ回路 を構成し、作動増幅回路を用いて信号増幅すれば良い。 ただし、 2箇所のひずみ値の差のみを測定す る場合、それぞれ垂直にストレインゲージを 2つずつ取り付け、合計 4つのストレインゲージを用い てホイ一トストンプリッジ回路を構成しても良レ、。 また、装置の物理的な振動等による測定誤差を低 減するために、増幅回路にはコイルなどのノイズフィルターを取り付ける。測定値を算術平均するこ とでも測定誤差の低減が可能である。 また、ゼロ点の変動による測定誤差は、ゼロ点を記憶してデジ タル回路による演算を行うことで容易に低減することができる。 Figure 4 is an example showing the configuration of one strain sensor. The strain gauges 41, 42, 43, and 44 are bonded to the plate 45. The board 45 is a plastic substance, a material having a smooth surface and a high thermal conductivity coefficient, such as a thin aluminum board, is preferred, but if the board 31 has a smooth surface, there is no board 45 May be. Two signal lines are connected to each strain gauge, and the resistance between the signal lines is, for example, 120 Ω. The strain resistance of the strain gauges increases when the adhered material is distorted. For example, if the plate 4 5 is distorted in the lengthwise direction of the gauge 4 1, the resistance change of the gauge 4 1 The rate is several times the rate of change in resistance of the gauge 42. However, when a temperature change occurs, the resistance of a strain gauge or a resistive element changes as much as the change due to strain, causing a measurement error. As a method of effectively reducing errors due to temperature or the like, a Wheatstone bridge circuit may be formed using four strain gauges, and a signal may be amplified using an operation amplifier circuit. However, when measuring only the difference between the two strain values, it is acceptable to attach two strain gauges vertically and configure a Wheatstone bridge circuit using a total of four strain gauges. In addition, a noise filter such as a coil is attached to the amplifier circuit to reduce measurement errors due to physical vibration of the device. Arithmetic averaging of measured values can also reduce measurement errors. The measurement error due to the fluctuation of the zero point can be easily reduced by storing the zero point and performing an operation using a digital circuit.
図 5は電気回路の構成を示すブロック図である。ひずみセンサ一 5 1の抵抗変化は、ホイ一トスト ンブリッジ回路、基準電圧発生回路、電圧作動増幅回路を有する信号増幅回路 5 2により電圧変化に 変換され、 アナログ信号として演算回路 5 3に入力される。 演算回路 5 3は、 A/Dコンバータにより 信号増幅回路 5 2からの信号をデジタル信号に変換し、その値を算術演算することにより搭乗者の重 心位置を算出する。重心位置の偏りの大きい方向に、その割合に応じてモータ一を加速する指示をモ ータ一制御回路 5 4に出力し、モ一ター 5 6を動作させる。演算回路 5 3にモ一ターからの回転数、 回転方向などの情報を入力することで、例えば、事前に決めた最高速度を越えた場合にモーターの出 力を低下させる等の指示をモーター制御回路 5 4に出力することができる。また、モーター制御回路 には数十ァンペアの電流が流れるため、電池 5 5と直接リード線を通じて接続することが好ましい。 電池 5 5に充電回路 5 7を接続することで、外部充電装置を用いることなく電池の充電が可能となる 力 充電回路 5 7は外部装置としても良い。 充電回路に電圧変換回路を組み込み、 商用 AC電源及び 自動車のバッテリ一電源等複数の電源から充電できるようにすることもできる。 FIG. 5 is a block diagram showing the configuration of the electric circuit. The resistance change of the strain sensor 51 is converted into a voltage change by a signal amplification circuit 52 having a Wheatstone bridge circuit, a reference voltage generation circuit, and a voltage-operated amplification circuit, and input to the arithmetic circuit 53 as an analog signal. You. The arithmetic circuit 53 converts the signal from the signal amplifier circuit 52 into a digital signal using an A / D converter, and calculates the center of gravity of the occupant by arithmetically operating the value. An instruction to accelerate the motor is output to the motor control circuit 54 in the direction in which the position of the center of gravity is largely biased in accordance with the ratio, and the motor 56 is operated. By inputting information such as the number of rotations and the direction of rotation from the motor to the arithmetic circuit 53, the motor control can give instructions such as reducing the output of the motor when the speed exceeds a predetermined maximum speed, for example. It can be output to the circuit 54. In addition, since a current of several tens of amps flows through the motor control circuit, it is preferable to connect the battery 55 directly to the battery 55 through a lead wire. By connecting the charging circuit 57 to the battery 55, the battery can be charged without using an external charging device. The power charging circuit 57 may be an external device. A voltage conversion circuit can be incorporated in the charging circuit to enable charging from multiple power sources such as a commercial AC power source and a single battery power source for automobiles.
(動作の説明) (Description of operation)
次に、 本発明の実施の形態の動作について説明する。 Next, the operation of the embodiment of the present invention will be described.
図 6はモータ一制御回路及び演算回路について詳しく示したブロック図である。演算回路 6 8、モ ータ一制御回路 6 5にはクロック発生回路 6 7からクロック信号を入力する。 また、 電源 6 4は、演 算回路 6 8、 モーター制御回路 6 5、 パワー MOSFET群 6 3、 ローター位置検出回路 6 2、 フォト
力ブラ 66に接続する。 動作電圧がそれぞれ異なる場合、 それぞれに適した電圧を入力する。 ライン Al、 Bl、 Cl、 D1からひずみセンサーの検出したひずみ値を増幅した電圧信号を A/Dコンバータ内蔵 の演算回路 68に入力する。 演算回路 68により重心位置等の算出を行い、 ライン E、 F、 G、 HIか らそれぞれ PWM信号、 ブレーキ信号、 モーター ON信号、 モーター動作方向信号をモーター制御回 路 65に出力する。 自走式スケートボードの動力として、スター結線した 3相のブラシレスモーター 6 1を用いた場合、モーター制御回路からは 3本のコイルのうち 2本に双方向の電流が流れるように、 UH2、 VH2、 WH2のうちの 1つと UL2、 VL2、 WL2のうち 1つの信号を ONにする。 この信号は電 気的絶縁を行うフォトカプラ 66を通じて、 UH1、 VH1、 WH1、 UL1、 VL1、 WL1にそれぞれ出力 される。 パワー MOSFET群 63のうち ON信号が入力された素子には電流が流れ、 Ul、 VI、 W1の うち 2相のコイルに電流が流れるようにする。 スィッチ素子としては IGBT等を用いても良い。 ブラ シレスモーターではローター位置の検出を行う必要があり、ロータ一位置検出回路 62及びモーター 制御 IC 65によりロータ一位置検出を行う。位置検出センサーとしてホール素子を用いた場合、 U2、 V2、 W2はモ一ターの電気角で 120度間隔に配置したホール素子の信号であり、 この信号をローター 位置検出回路 62により増幅し、 U3、 V3、 W3に出力する。 また、 ロータ一位置検出回路からの信 号を演算回路 68に出力し、 モーターの回転速度及び方向をモニターする。 複数のひずみセンサ一により重心検出を行う方法を以下に示す。 図 7において搭乗者は A点と C点 の間に片方の足を置き、 B点と D点の間に足を置くこととし、 A=a、 B=2L-a、 C=L-b、 D=L+bとする。 下記数式 1は A点でのひずみ量 Raを表す式である。 また、 原点 0から両足までの距離をそれぞれ X、 FIG. 6 is a block diagram showing the motor control circuit and the arithmetic circuit in detail. A clock signal is input from the clock generation circuit 67 to the arithmetic circuit 68 and the motor control circuit 65. The power supply 64 consists of an arithmetic circuit 68, a motor control circuit 65, a power MOSFET group 63, a rotor position detection circuit 62, Connect to force bra 66. If the operating voltages are different, input the appropriate voltage. The voltage signal obtained by amplifying the strain value detected by the strain sensor from lines Al, Bl, Cl, and D1 is input to the arithmetic circuit 68 with a built-in A / D converter. The arithmetic circuit 68 calculates the position of the center of gravity and the like, and outputs a PWM signal, a brake signal, a motor ON signal, and a motor operation direction signal to the motor control circuit 65 from lines E, F, G, and HI, respectively. When a star-connected three-phase brushless motor 61 is used as the power for the self-propelled skateboard, UH2, VH2 are used so that bidirectional current flows from two of the three coils from the motor control circuit. , One of WH2 and one of UL2, VL2, WL2. This signal is output to UH1, VH1, WH1, UL1, VL1, and WL1 through a photocoupler 66 that performs electrical insulation. The current flows to the element of the power MOSFET group 63 to which the ON signal is input, and the current flows to the two-phase coil among Ul, VI, and W1. An IGBT or the like may be used as a switch element. In the brushless motor, the rotor position needs to be detected, and the rotor one position detection circuit 62 and the motor control IC 65 detect the rotor one position. When a Hall element is used as a position detection sensor, U2, V2, and W2 are signals of Hall elements arranged at intervals of 120 degrees in electrical angle of the motor, and this signal is amplified by the rotor position detection circuit 62, and U3 Output to V3, W3. Also, a signal from the rotor one position detection circuit is output to the arithmetic circuit 68 to monitor the rotation speed and direction of the motor. A method of detecting the center of gravity by using a plurality of strain sensors will be described below. In Fig. 7, the passenger places one foot between points A and C, and places his foot between points B and D. A = a, B = 2L-a, C = Lb, D = L + b. Equation 1 below is an equation representing the amount of strain Ra at point A. Also, the distance from the origin 0 to both feet is X,
Yとする。 Let it be Y.
【数式 1】 [Equation 1]
Ra E-K = a-Nl-(X-a) Ml g-(Y- )-M2-g + (2L-a) N2 Ra E-K = a-Nl- (X-a) Ml g- (Y-) -M2-g + (2L-a) N2
下記数式 2は B点でのひずみ量 Rbは数式 2を表す式である。 上記数式 1及び数式 2において、 gは重 力加速度、 Eは縦弾性係数、 Kは断面係数である。 The following equation 2 is an equation representing the amount of strain Rb at the point B, Rb. In Equations 1 and 2, g is the gravity acceleration, E is the longitudinal elastic modulus, and K is the section modulus.
【数式 2】 [Equation 2]
Ra-E K = (2L-a) Nl-(2L-a-X) Ml g-(2L-a-Y) M2 g + a N2 Ra-E K = (2L-a) Nl- (2L-a-X) Ml g- (2L-a-Y) M2 g + a N2
下記数式 3は断面係数 Kを表す式であり、 この数式において Wはボードの幅、 Hはボードの厚さであ る。 Equation 3 below is an equation representing the section modulus K, where W is the board width and H is the board thickness.
【数式 3】
W H1 [Equation 3] WH 1
K = K =
6 6
下記数式 4は Mlを表す式である。 Equation 4 below is an equation representing Ml.
【数式 4】 [Equation 4]
Y-Z Y-Z
Ml = M Ml = M
Y— X Y—X
下記数式 5は M2を表す式である。 Equation 5 below is an equation representing M2.
【数式 5】 [Equation 5]
Υ-Χ Υ-Χ
下記数式 6は N1を表す式である。 Equation 6 below is an equation representing N1.
【数式 6】 [Equation 6]
„ 2L-Z „2L-Z
= M g = M g
2L 2L
下記数式 7は N2を表す式である。 Equation 7 below is an equation representing N2.
【数式 7】 [Equation 7]
N2 =— -M-g N2 = — -M-g
2L 2L
下記数式 8は下記数式 1、 数式 2、 数式 4、 数式 5、 数式 6、 数式 7から求められる。 Equation 8 below is obtained from Equations 1, 2, 4, 5, 6, and 7.
【数式 8】 [Equation 8]
_ „' Δα-Μ■ g _ „'Δα-Μ ■ g
Ra + Rb- - Ra + Rb--
E K E K
また、 下記数式 9も下記数式 1、 数式 2、 数式 4、 数式 5、 数式 6、 数式 7から求められる c 【数式 9】 Further, the following Equation 9 also Equation 1 below, Equation 2, Equation 4, Equation 5, Equation 6, c [Equation 9] obtained from the formula 7
Ra-Rb=2a ^L-Z) M ^ Ra-R b = 2a ^ L - Z) M ^
E K L E K L
C点でのひずみ量 Rcは下記数式 10で表せる。 The amount of strain Rc at the point C can be expressed by the following equation (10).
【数式 10】 [Equation 10]
Rc-E-K = (L-b) Nl-(L-b-X) Ml-g-(Y-L + b) M2 g + (L + b)-N2 D点でのひずみ量 Rdは下記数式 11で表せる。 Rc-E-K = (L-b) Nl- (L-b-X) Ml-g- (Y-L + b) M2g + (L + b) -N2 The amount of strain Rd at point D can be expressed by the following equation (11).
【数式 11】 [Equation 11]
Rd-E-K = (L + b) Nl-(L + b-X) Ml-g-(Y-L-b) M2 g + (L-b) N2 下記数式 12は上記数式 1、 数式 2、 数式 4、 数式 5、 数式 6、 数式 7から求められる。 Rd-EK = (L + b) Nl-(L + bX) Ml-g-(YLb) M2 g + (Lb) N2 The following formula 12 is the above formula 1, formula 2, formula 4, formula 5, formula 6, It is obtained from Equation 7.
下記数式 13は上記数式 9及び数式 12から求められる c
【数式 1 3】
C following equation 13 is obtained from the equations 9 and Equation 12 [Equation 13]
下記数式 1 4は搭乗者の重心の偏りを表す式である c Equation 14 below is an equation representing the deviation of the passenger's center of gravity c
【数式 1 4】 [Equation 14]
M\ - M2 X + Y - 2Z M \-M2 X + Y-2Z
M Y - X M Y-X
下記数式 1 5は数式 1 3、 数式 1 4から求められる c Equation 15 below is c obtained from Equations 13 and 14.
【数式 1 5】 [Equation 1 5]
最終的に上記数式 1 6が上記数式 8、 数式 1 5から求められる。 この数式 1 6は、 支点 X、 Yが変 化してもそれに応じて重心位置を検出できることを意味している。つまり、上記数式 1 6の計算を行 うことにより、坂道などで操縦者の足の裏にかかる圧力分布が変化しても、操縦者の重心を正確に検 出できる。 ひずみゲージの抵抗変化率は、 例えば、 図 3におけるボード 3 1として幅 300mm、 厚さ 10mmのアルミニウムを用レ、、 80kgの人が中央に搭乗した場合、 アルミニウムの縦弾性係数は約 7.3 X 1010(N/m2)であり、 上述の数式 3、 数式 8より、 aを 50mmとすると、 図 3の 3 2 (a)の位置にある ひずみゲージには約 100マイクロストレインのひずみが生じ、 ひずみゲージのゲージ率を 2とすると その抵抗上昇率は 0.02パーセント程度となる。 本発明の自走式スケートボードは、上記数式 1 6の算術演算を演算回路により行い、モーター制御 回路に信号を送り、モータ一を動かすことによって、重心の偏っている方向にその割合に応じてスケ 一トボ一ドを動かす機構となっている。 このことにより、搭乗者はスケートボードから落ちることな く操縦することが可能となる。また、ステアリングはスケートボードが地面に対して傾くことで車輪 の方向がかわる機構とすることで、 スケートボードの操作が容易となる。 つまり、 前進、 後退、停止、 速度変更、方向転換の操作をすベて搭乗者の重心移動で制御し、速度が上昇してもスケートボードを 安全に制御できる。 本装置上に安全に人が搭乗するために、まず、ひずみセンサーの検出値を用いて上述の数式 8の計
算を行い、 装置上に人が乗っているかどうかの検出を行う。 また、 上述の数式 1 6の計算を行い、 Mlと M2の差が一定以下になった場合、本装置の操作が可能になるよう設定する。 このことは、搭乗 者が片足を A、 Cの間、 もう片足を B、 Dの間に置いているかどうかの検出も行うことになる。 つまり、 搭乗者は本装置に搭乗する場合、指定の範囲に両足を置き、重心を両足の中心付近にもってくること で本装置の操作を開始する。また、本装置に搭乗者が片足を乗せてから操作が可能になるまでブレー キをかけておくことで、 より安全に本装置に搭乗することもできる。本装置の操作を開始したら、上 述の数式 1 6の計算を行い、搭乗者重心位置を測定する。 この計算値は 1力 一 1までの値を示し、 その値に応じてモータ一に出力を与え本装置を加速する。また、進行方向に対し逆方向に重心が偏つ た場合、 ブレーキをかける。 モータ一のブレーキの方法としては、 ローターの回転方向に対し逆方向 にコイルを励磁する方法とモーターの各コイルを短絡する方法がある。また、電磁ディスクブレーキ などを用いても良い。 また、 数式 1 6において係数 a、 bに誤差が生じる場合、 重心位置測定結果か ら係数 a、 bの値を補正する。 また、 スケートボードがひずむことにより、 Nl、 N2が完全には地面に 垂直とならないため、 重心検出位置には小さな誤差が生じる。 このため、 実際に搭乗して、最適な制 御性を得るように計算式を補正しても良い。この補正を行うために新たなセンサーを付け加える必要 は無い。 なぜなら、 未定係数は M、 X、 Y、 Ζのみであり、 センサ一の数も 4つであるため、 4元連立 方程式の解を求めるだけであるからである。 し力 sし、解析的に厳密解を求めることは困難であるため、 数値計算や近似式、 あるいは経験式により実際の計算方法を決定する。 この意味で、 上記の数式 1 6 は近似式であるといえる。 ただし、測定誤差を低減するために、 あるいは足が置ける範囲を拡大する ためには、 センサーの数を 5つ以上にする場合もある。 また、 坂道では、 登り坂か下り坂かを判別し、 登り坂であればより多くの出力をモータ一に与えるようにし、逆に下り坂ではモータ一^ "の出力を小 さくすることが好ましい。 坂道の傾斜角は、例えば、 モーターへの出力とモーターの回転数の上昇率 との比を計算することによって算出できる。坂道などでの制御性をより向上するため、上り坂や下り 坂では測定した重心位置に前後のオフセットをかけても良い。また、方向転換はスケートボードを地 面から傾けることによって行う。 また、本発明では搭乗者の体重を常にモニターしており、搭乗者が 本装置から降りた場合に装置を停止するようにすることが好ましい。
発明のその他の実施の形態 Finally, Equation 16 above is obtained from Equations 8 and 15 above. The expression 16 indicates that even if the fulcrums X and Y change, the position of the center of gravity can be detected accordingly. In other words, by performing the calculation of Equation 16 above, even if the pressure distribution applied to the sole of the operator's foot changes on a slope or the like, the center of gravity of the operator can be accurately detected. For example, the resistance change rate of the strain gauge is as follows.For example, when board 300 in Fig. 3 is made of aluminum with a width of 300 mm and a thickness of 10 mm. 10 (N / m 2 ), and from Equations 3 and 8 above, if a is 50 mm, a strain of about 100 microstrain occurs in the strain gauge at the position of 32 (a) in FIG. Assuming that the gauge factor of the strain gauge is 2, the resistance increase rate is about 0.02%. In the self-propelled skateboard of the present invention, the arithmetic operation of the above equation (16) is performed by an arithmetic circuit, a signal is sent to a motor control circuit, and the motor is moved. It has a mechanism to move the board. This allows the passenger to operate without falling off the skateboard. In addition, the steering is a mechanism that changes the direction of the wheels by tilting the skateboard with respect to the ground, making it easier to operate the skateboard. In other words, the skateboard can be safely controlled even if the speed increases, by controlling the passenger's center of gravity in all of the operations of moving forward, backward, stopping, changing speed, and changing direction. In order for a person to board the instrument safely, first use the values detected by the strain sensors to calculate Equation 8 above. Calculation to detect whether a person is on the device. In addition, the above formula 16 is calculated, and when the difference between Ml and M2 is smaller than a certain value, the setting is made so that the operation of the present apparatus is enabled. This will also detect if the passenger has one foot between A and C and the other foot between B and D. In other words, when boarding the device, the passenger places his / her feet in the specified range and brings the center of gravity near the center of both feet to start operation of the device. In addition, it is possible to get on the device more safely by putting a brake on the device until the rider can operate it after putting one foot on the device. When the operation of the present apparatus is started, the above equation 16 is calculated, and the position of the center of gravity of the occupant is measured. This calculated value indicates a value up to one force, and the motor is output according to the value to accelerate the device. If the center of gravity is deviated in the direction opposite to the direction of travel, apply the brake. There are two methods of braking the motor, one is to excite the coil in the direction opposite to the direction of rotation of the rotor, and the other is to short-circuit each coil of the motor. Further, an electromagnetic disc brake or the like may be used. If an error occurs in the coefficients a and b in Equation 16, the values of the coefficients a and b are corrected from the center-of-gravity position measurement result. In addition, since the skateboard is distorted, Nl and N2 are not completely perpendicular to the ground, and a small error occurs in the center of gravity detection position. Therefore, the calculation formula may be corrected so as to obtain the optimum controllability when actually boarding. There is no need to add a new sensor to make this correction. Because the undetermined coefficients are only M, X, Y, and 、, and the number of sensors is four, so we only need to solve the four-way simultaneous equation. Since it is difficult to obtain an exact solution analytically, the actual calculation method is determined by numerical calculation, approximation formula, or empirical formula. In this sense, the above equation 16 can be said to be an approximate equation. However, the number of sensors may be increased to five or more to reduce measurement errors or to expand the range where the foot can be placed. Also, on a slope, it is preferable to determine whether the motor is uphill or downhill, and to provide more power to the motor if the vehicle is uphill, and to reduce the output of the motor when the vehicle is downhill. The slope angle of the slope can be calculated, for example, by calculating the ratio of the output to the motor and the rate of increase in the number of rotations of the motor. The measured center of gravity may be offset from front to back, and the direction may be changed by tilting the skateboard from the ground surface In the present invention, the weight of the occupant is constantly monitored, and It is preferable to stop the device when it gets off the device. Other Embodiments of the Invention
以下、 発明のその他の異なる (1) から (8) までの形態について図面を用いて説明する。 Hereinafter, other different embodiments (1) to (8) of the invention will be described with reference to the drawings.
(1) 図 8は装置の構成を下から見た図である。 図面の左右が装置の進行方向である。 ボード 81に ひずみセンサ一 82(a)、 82(b), 82(c)、 82(d) が接着されている。 タイヤ 87はボード本体 8 1に対し方向が固定されており、 ステアリング機構が無い。本構成では制御装置 85、 モータ一 83、 ノくッテリ一 84、 タイヤ 86、 ステアリング機構 80を備えている。 この構成において運転操作者の 重心位置は、 上記数式 1 6で表せる。 この計算から、運転操作者の重心が偏っている方向に、 その割 合に応じてスケートボードが加速されるようモーター 83及び車輪 87が動く。 (1) FIG. 8 is a view of the configuration of the device as viewed from below. The left and right sides of the drawing are the traveling directions of the device. The strain sensors 82 (a), 82 (b), 82 (c) and 82 (d) are bonded to the board 81. Tire 87 is fixed in direction with respect to board body 81, and has no steering mechanism. This configuration includes a control device 85, a motor 83, a battery 84, a tire 86, and a steering mechanism 80. In this configuration, the position of the center of gravity of the driver can be expressed by Expression 16 above. From this calculation, the motor 83 and the wheel 87 are moved in such a direction that the center of gravity of the driver is deviated so that the skateboard is accelerated according to the ratio.
(2) 図 9は装置の構成を横から見た図である。 図面の左右が装置の進行方向である。一体状のボー ド 9 1は、 図に示すように横からみて空洞ができるような形でも良く、 その空洞に制御装置 95、パ ッテリ一 94を取り付けることができる。 このボード 91にひずみセンサー 92 (a)、 92(b), 92 (c)、 92(d)が接着されている。 本構成では、 モータ 93、 タイヤ 96、 ステアリング機構 90、 衝 撃吸収機構 97を備えている。 この構成において、運転操作者の重心の偏っている方向をひずみセン サ一により検出し、その割合に応じてスケートボードが加速されるようモーター 93を動かし、操作 する。 (2) FIG. 9 is a view of the configuration of the apparatus viewed from the side. The left and right sides of the drawing are the traveling directions of the device. The integral board 91 may be shaped so as to form a cavity when viewed from the side as shown in the figure, and the control device 95 and the battery 94 can be attached to the cavity. Strain sensors 92 (a), 92 (b), 92 (c) and 92 (d) are bonded to the board 91. This configuration includes a motor 93, a tire 96, a steering mechanism 90, and an impact absorbing mechanism 97. In this configuration, the direction in which the center of gravity of the driver is deviated is detected by the strain sensor, and the motor 93 is moved and operated so that the skateboard is accelerated in accordance with the ratio.
(3) 図 10は装置の構成を横から見た図である。 図面の左右が装置の進行方向である。 ひずみセン サー 102(a)、 102(b)、 102(c)、 102(d)はボード 101に接着されている。 運転操作者は、 ひずみセンサ一 102(c)、 102( が足100の裏にくるよう左右を向いて搭乗する。本構成では、 ステアリング機構 104、パッテリ 106、制御装置 107を備えている。 この構成において運転操 作者の重心位置は、上記数式 1 6で表せる。 この計算から、運転操作者の重心が偏っている方向に、 その割合に応じてスケートボードが加速されるようモータ一 103及び車輪 105が動く。 (3) FIG. 10 is a view of the configuration of the apparatus as viewed from the side. The left and right sides of the drawing are the traveling directions of the device. The strain sensors 102 (a), 102 (b), 102 (c), 102 (d) are adhered to the board 101. The driver rides right and left so that the strain sensors 102 (c) and 102 () are on the soles of the feet 100. This configuration includes a steering mechanism 104, a battery 106, and a control device 107. In the configuration, the position of the center of gravity of the driving operator can be expressed by the above-mentioned formula 16. From this calculation, the motor 103 and the wheels are set so that the skateboard is accelerated in a direction in which the center of gravity of the driving operator is deviated according to the ratio. 105 moves.
(4) 図 1 1は装置の構成を下から見た図である。 図面の左右が装置の進行方向である。 ボード 1 1 1にひずみセンサー 1 1 9(&)及び1 1 9(b)を取り付け、左右の車輪 1 16(&)及び1 16(b)をそれぞ れ駆動するモーター 1 1 3(a)及び 1 1 3(b)を取り付ける。 車軸 1 1 8とボード 1 1 1の間にステア リング装置は無くても良レ、。本構成では、ノ ッテリ 1 14、制御装置 1 1 5、動力伝動装置 1 1 7(a)、 1 1 7(b)を備えている。 センサ一 1 1 9(a)及び 1 19 (b)のひずみ値を比較することにより、 進行方
向に対して左右の、搭乗者の重心移動を測定する。 この結果により左右のモータ一の回転数に差をつ けて重心の偏った方向に進行方向を変化させる。 このステアリング機構により、回転半径が小さい方 向転換ができる。 また、 ボード 111に接着されたひずみセンサー 112(a)、 1 12(b), 112(c), 1 12(d) により検出する運転操作者の重心位置を用いて、運転操作者の重心が偏っている方向に、 その割合に応じてスケ一トボードが加速されるようモータ一 1 13(a)、 113(b)を動かし、 操作す る。 (4) FIG. 11 is a view of the configuration of the device as viewed from below. The left and right sides of the drawing are the traveling directions of the device. Attach strain sensors 1 1 9 (&) and 1 1 9 (b) to board 1 1 1 and motor 1 1 3 (a) to drive left and right wheels 1 16 (&) and 1 16 (b) respectively. And 1 1 3 (b). It is okay to have no steering device between axle 1 18 and board 1 1 1. In this configuration, a notch 114, a control device 115, and a power transmission device 117 (a), 117 (b) are provided. By comparing the strain values of sensors 1 (19) (a) and 119 (b), The movement of the center of gravity of the occupant in the left and right directions is measured. Based on this result, the traveling direction is changed in a direction in which the center of gravity is deviated by making a difference between the rotation speeds of the left and right motors. By this steering mechanism, the direction can be changed with a small turning radius. Also, using the center of gravity of the driver detected by the strain sensors 112 (a), 112 (b), 112 (c), 112 (d) bonded to the board 111, the center of gravity of the driver is determined. Move and operate the motors 113 (a) and 113 (b) in the biased direction so that the skateboard is accelerated according to the ratio.
(5) 図 12は装置の構成を横から見た図である。 図面の左右が装置の進行方向である。 ボード 12 1の前後に足乗せ台 129を取り付け、 その支柱 128をひずみセンサー 122(&)及ぴ122(b)の 内側に取り付ける。それぞれのセンサ一が検出するひずみ値から運転操作者の重心の偏っている方向 を検出し、その割合に応じてスケートボードが加速されるようモータ一 123を動かし、操作する。 また、 本構成ではバッテリー 124、 タイヤ 126、 ステアリング機構 127を備えている。 (5) FIG. 12 is a diagram of the configuration of the device as viewed from the side. The left and right sides of the drawing are the traveling directions of the device. Attach a footrest 129 to the front and back of the board 121, and attach its support 128 to the inside of the strain sensors 122 (&) and 122 (b). The direction in which the center of gravity of the driver is deviated is detected from the strain value detected by each sensor, and the motor 123 is operated by moving the motor 123 so that the skateboard is accelerated in accordance with the ratio. In this configuration, a battery 124, a tire 126, and a steering mechanism 127 are provided.
(6) 図 13は装置の構成を横から見た図である。 図面の左右が装置の進行方向である。運転操作者 はボード 131の X、 Yの位置に足を置く。 ひずみセンサー 132(a), 132(b), 132(c)はボード 131に接着されている。それぞれのセンサ一が検出するひずみ値から運転操作者の重心の偏ってい る方向を検出し、その割合に応じてスケートボードが加速されるようモーター 133を動かし、操作 する。 (6) FIG. 13 is a side view of the configuration of the device. The left and right sides of the drawing are the traveling directions of the device. The driver places his feet on the X and Y positions of the board 131. The strain sensors 132 (a), 132 (b), 132 (c) are bonded to the board 131. The direction in which the driver's center of gravity is deviated is detected from the strain value detected by each sensor, and the motor 133 is moved and operated so as to accelerate the skateboard according to the direction.
(7) 図 14は装置の構成を横から見た図である。 図面の左右が装置の進行方向である。 ボードの中 心に車輪 146をとりつけ、 ひずみセンサ一 142(a)、 142(b), 142(c), 142(d)はボード 1 41に接着されている。 運転操作者は、 ひずみセンサー 142(a), 142(c)の間と、 ひずみセンサ -142(b), 142(d)の間にそれぞれ足を乗せる。 (7) FIG. 14 is a side view of the configuration of the apparatus. The left and right sides of the drawing are the traveling directions of the device. The wheel 146 is mounted on the center of the board, and the strain sensors 142 (a), 142 (b), 142 (c), 142 (d) are bonded to the board 141. The driver puts his foot between the strain sensors 142 (a) and 142 (c) and between the strain sensors -142 (b) and 142 (d).
運転操作者の重心が偏っている方向に、 その割合に応じてスケートボードが加速されるようモータ —143を動かし、 操作する。 In the direction where the center of gravity of the driver is biased, the motor 143 is operated by operating the motor 143 so that the skateboard is accelerated according to the proportion.
(8)図 15はの自走式スケートボードを上から見た図である。図面の左が装置の進行方向である。 車輪 155が取り付けられたボード 151の後部に方向指示器 153を取り付け、 スィッチ 152 (a)又はスィツチ 152(b)を運転操作者が足で踏むことにより、 方向指示器 153が点灯する。 ブレ ーキランプ 154は装置が減速する場合に点灯する。
産業上の利用可能性 (8) Figure 15 is a view of the self-propelled skateboard seen from above. The left side of the drawing is the traveling direction of the device. A turn signal 153 is mounted on the rear part of the board 151 on which the wheel 155 is mounted, and when the driver steps on the switch 152 (a) or the switch 152 (b), the turn signal 153 is turned on. The brake lamp 154 lights up when the device slows down. Industrial applicability
手軽な移動手段、運搬手段等として、 また、スポーツ的に遊戯走行するいわゆるスケートボード等 として使用できる。 また、複数のひずみセンサーを用いた荷重検出手法を用いて、一体状の板に乗つ ている物質の荷重分布を測定する装置を構成することができる。
It can be used as a convenient means of transportation and transportation, and as a so-called skateboard that plays sports. Further, it is possible to configure an apparatus for measuring a load distribution of a substance on an integrated plate by using a load detection method using a plurality of strain sensors.
Claims
1. 一体状のボードと、 このボードの前後を含む 2力所以上に連結された走行用の車輪と、 車輪を駆 動する駆動装置と、 ボードに乗った運転操作者の重心移動によって駆動装置の正逆転駆動、停止、 前進、 後退更には速度調整を制御する手段とを備えたことを特徴とする自走式スケートボード。 1. An integrated board, running wheels connected to two or more places including the front and rear of the board, a drive unit that drives the wheels, and a drive unit that is moved by the center of gravity of the driver on the board A self-propelled skateboard comprising means for controlling forward / reverse drive, stop, forward, reverse, and speed adjustment of the skateboard.
2. 複数の支持点で支持されたボードに乗った搭乗者の傾きを、 ボードのひずみを複数箇所測定し演 算することによって検出することを特徴とする重心位置検出方法。 2. A center-of-gravity position detection method characterized by detecting the inclination of a passenger on a board supported by a plurality of support points by measuring and calculating the board distortion at a plurality of points.
3. 前記重心位置検出方法により運転操作者の重心移動を検出する装置を備え、 運転操作者が傾いた 方向に加速させることを特徴とする請求項 1記載の自走式スケートボ一ド。 3. The self-propelled skateboard according to claim 1, further comprising a device for detecting the movement of the center of gravity of the driver by the method of detecting the position of the center of gravity, wherein the driver accelerates the driver in an inclined direction.
4. ボードと車輪の間に衝撃吸収機構を備えたことを特徴とする請求項 1または 3 ΐ己載の自走式スケ ―卜ボード。 4. The self-propelled skate board according to claim 1, further comprising a shock absorbing mechanism between the board and the wheel.
5. 進行方向に対して左右のボードの傾きにより方向転換するステアリング装置を備えたことを特徴 とする請求項 1、 3または 4いずれか一項に記載の自走式スケートボ一ド。 5. The self-propelled skateboard according to any one of claims 1, 3, and 4, further comprising a steering device that changes direction with the inclination of the left and right boards with respect to the traveling direction.
6. 進行方向に対して左右の車輪をそれぞれ独立に駆動する駆動装置と、 進行方向に対して左右の運 転操作者の重心移動により左右の駆動速度に差をつけて方向転換する制御手段とを備えたことを 特徴とする請求項 1または 3〜 5いずれか一項に記載の自走式スケートボ一ド。 6. A drive device that drives the left and right wheels independently of each other in the traveling direction, and a control means that changes the left and right driving speeds by moving the center of gravity of the left and right driving operators in the traveling direction to change the direction. The self-propelled skateboard according to any one of claims 1 to 3, further comprising:
7. ボードに連結された方向指示器と、 方向指示器を操作する手段と、 ブレーキランプを備えること を特徴とする請求項 1または 3〜 6のいずれか一項に記載の自走式スケー卜ボード。
7. The self-propelled skate according to any one of claims 1 or 3 to 6, comprising a turn signal connected to the board, means for operating the turn signal, and a brake lamp. board.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002040330A JP3493521B2 (en) | 2002-02-18 | 2002-02-18 | Self-propelled skateboard |
JP2002-40330 | 2002-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003068342A1 true WO2003068342A1 (en) | 2003-08-21 |
Family
ID=27678302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/001049 WO2003068342A1 (en) | 2002-02-18 | 2003-02-03 | Self-running skateboard |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3493521B2 (en) |
WO (1) | WO2003068342A1 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102274625A (en) * | 2011-06-13 | 2011-12-14 | 路海燕 | Pressure-operated scooter |
US20150352430A1 (en) * | 2014-06-10 | 2015-12-10 | Acton, Inc. | Wearable personal transportation system |
CN105148497A (en) * | 2015-10-29 | 2015-12-16 | 上海米开罗那机电技术有限公司 | Electric flatbed scooter |
US9400502B2 (en) | 2004-09-13 | 2016-07-26 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
ES2589124A1 (en) * | 2016-04-18 | 2016-11-10 | Adria PLANAS ROLDAN | Generation system and data management linked with a personal displacement apparatus (Machine-translation by Google Translate, not legally binding) |
FR3037818A1 (en) * | 2015-06-25 | 2016-12-30 | Ret Emmanuel Le | DEVICE FOR MANAGING THE SPEED OF AN ELECTRIC PROPULSION SKATEBOARD |
US9545963B2 (en) | 2002-07-12 | 2017-01-17 | DEKA Products Limited Partnership LLP | Control of a transporter based on attitude |
WO2017059766A1 (en) * | 2015-10-10 | 2017-04-13 | Hangzhou Chic Intelligent Technology Co., Ltd | All-attitude human-machine interaction vehicle cross-reference to related applications |
USD803963S1 (en) | 2016-07-20 | 2017-11-28 | Razor Usa Llc | Two wheeled board |
USD807457S1 (en) | 2016-07-20 | 2018-01-09 | Razor Usa Llc | Two wheeled board |
US10144478B2 (en) | 2016-11-25 | 2018-12-04 | Hangzhou Chic Intelligent Technology Co., Ltd. | Pressure control steering |
USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
CN109126103A (en) * | 2017-06-27 | 2019-01-04 | 金宝电子工业股份有限公司 | Manned carrying tool control method |
USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
US11260905B2 (en) | 2015-10-10 | 2022-03-01 | Hangzhou Chic Intelligent Technology Co., Ltd. | Human-machine interaction vehicle |
IT202000029504A1 (en) * | 2020-12-02 | 2022-06-02 | Mohawknee S R L | SYSTEM FOR SKATING AND RELATED METHOD OF OPERATION |
US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4346952B2 (en) * | 2003-05-13 | 2009-10-21 | 富士重工業株式会社 | Drive control device with load distribution pattern |
US7198280B2 (en) | 2003-08-07 | 2007-04-03 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle |
US7138774B2 (en) | 2004-08-05 | 2006-11-21 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle control unit and vehicle |
US7458435B2 (en) | 2004-08-05 | 2008-12-02 | Yamaha Hatsudoki Kabushiki Kaisha | Vehicle control unit and vehicle |
JP4792255B2 (en) * | 2004-08-05 | 2011-10-12 | ヤマハ発動機株式会社 | Vehicle control apparatus and vehicle |
JP4792254B2 (en) * | 2004-08-05 | 2011-10-12 | ヤマハ発動機株式会社 | Vehicle control apparatus and vehicle |
JP2006110335A (en) * | 2004-09-15 | 2006-04-27 | Yamaha Motor Co Ltd | Vehicle control unit and vehicle |
CN100584415C (en) | 2004-09-15 | 2010-01-27 | 雅马哈发动机株式会社 | Vehicle control unit and vehicle |
KR100833338B1 (en) | 2007-05-28 | 2008-05-29 | 박봉형 | Transporter and the controlling method thereof |
JP5617619B2 (en) * | 2010-12-28 | 2014-11-05 | トヨタ自動車株式会社 | Inverted motorcycle |
CN102258861A (en) * | 2011-06-13 | 2011-11-30 | 路海燕 | Pressure operation scooter |
JP5731684B1 (en) * | 2014-03-24 | 2015-06-10 | 征也 真鍋 | The height measuring device and measuring system of "Oly", a skateboarding technique |
CN105169687B (en) * | 2015-09-18 | 2017-12-12 | 深圳车泰斗科技有限公司 | A kind of Segway Human Transporter and its driving method with pressure sensitive system |
CN105416486A (en) * | 2015-12-01 | 2016-03-23 | 杭州骑客智能科技有限公司 | Electric balance vehicle |
CN105584569A (en) * | 2015-12-10 | 2016-05-18 | 金源泰机电无锡有限公司 | Portable electric tool for riding instead of walking |
JP6471715B2 (en) * | 2016-03-24 | 2019-02-20 | トヨタ自動車株式会社 | Standing type mobile device |
JP6471716B2 (en) * | 2016-03-25 | 2019-02-20 | トヨタ自動車株式会社 | Standing type mobile device |
CN105709407A (en) * | 2016-04-15 | 2016-06-29 | 上官希坤 | Electric skateboard realizing gravity sensing |
CN108434709A (en) | 2018-06-05 | 2018-08-24 | 北京小米移动软件有限公司 | Skateboard control method and slide plate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6421333A (en) * | 1987-07-16 | 1989-01-24 | Bridgestone Corp | Center of gravity measuring apparatus |
JPH1023613A (en) * | 1996-07-04 | 1998-01-23 | Yamaha Motor Co Ltd | Motor-driven moving device |
JPH10211313A (en) * | 1997-01-28 | 1998-08-11 | New Technol Kenkyusho:Kk | Steering device for self-running type roller board |
-
2002
- 2002-02-18 JP JP2002040330A patent/JP3493521B2/en not_active Expired - Fee Related
-
2003
- 2003-02-03 WO PCT/JP2003/001049 patent/WO2003068342A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6421333A (en) * | 1987-07-16 | 1989-01-24 | Bridgestone Corp | Center of gravity measuring apparatus |
JPH1023613A (en) * | 1996-07-04 | 1998-01-23 | Yamaha Motor Co Ltd | Motor-driven moving device |
JPH10211313A (en) * | 1997-01-28 | 1998-08-11 | New Technol Kenkyusho:Kk | Steering device for self-running type roller board |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9411340B2 (en) | 1999-06-04 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US10118661B2 (en) | 1999-06-04 | 2018-11-06 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9442491B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9442492B2 (en) | 1999-06-04 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9411336B2 (en) | 1999-06-04 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US11648995B2 (en) | 2002-07-12 | 2023-05-16 | Deka Products Limited Partnership | Control of a transporter based on attitude |
US10227098B2 (en) | 2002-07-12 | 2019-03-12 | Deka Products Limited Partnership | Control of a transporter based on attitude |
US9545963B2 (en) | 2002-07-12 | 2017-01-17 | DEKA Products Limited Partnership LLP | Control of a transporter based on attitude |
US9442486B2 (en) | 2004-09-13 | 2016-09-13 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9983587B2 (en) | 2004-09-13 | 2018-05-29 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9400502B2 (en) | 2004-09-13 | 2016-07-26 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9459627B2 (en) | 2004-09-13 | 2016-10-04 | Deka Products Limited Partership | Control of a personal transporter based on user position |
US9529365B2 (en) | 2004-09-13 | 2016-12-27 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9429955B2 (en) | 2004-09-13 | 2016-08-30 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US9411339B2 (en) | 2004-09-13 | 2016-08-09 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
US10370052B2 (en) | 2004-09-13 | 2019-08-06 | Deka Products Limited Partnership | Control of a personal transporter based on user position |
CN102274625A (en) * | 2011-06-13 | 2011-12-14 | 路海燕 | Pressure-operated scooter |
US20150352430A1 (en) * | 2014-06-10 | 2015-12-10 | Acton, Inc. | Wearable personal transportation system |
US9808705B2 (en) * | 2014-06-10 | 2017-11-07 | Acton, Inc. | Wearable personal transportation system |
FR3037818A1 (en) * | 2015-06-25 | 2016-12-30 | Ret Emmanuel Le | DEVICE FOR MANAGING THE SPEED OF AN ELECTRIC PROPULSION SKATEBOARD |
US11260905B2 (en) | 2015-10-10 | 2022-03-01 | Hangzhou Chic Intelligent Technology Co., Ltd. | Human-machine interaction vehicle |
WO2017059766A1 (en) * | 2015-10-10 | 2017-04-13 | Hangzhou Chic Intelligent Technology Co., Ltd | All-attitude human-machine interaction vehicle cross-reference to related applications |
CN105148497B (en) * | 2015-10-29 | 2018-07-24 | 上海米开罗那机电技术有限公司 | A kind of driven plate skating car |
CN105148497A (en) * | 2015-10-29 | 2015-12-16 | 上海米开罗那机电技术有限公司 | Electric flatbed scooter |
US10220843B2 (en) | 2016-02-23 | 2019-03-05 | Deka Products Limited Partnership | Mobility device control system |
US10908045B2 (en) | 2016-02-23 | 2021-02-02 | Deka Products Limited Partnership | Mobility device |
US12023285B2 (en) | 2016-02-23 | 2024-07-02 | Deka Products Limited Partnership | Mobility device |
US11794722B2 (en) | 2016-02-23 | 2023-10-24 | Deka Products Limited Partnership | Mobility device |
US11679044B2 (en) | 2016-02-23 | 2023-06-20 | Deka Products Limited Partnership | Mobility device |
US11399995B2 (en) | 2016-02-23 | 2022-08-02 | Deka Products Limited Partnership | Mobility device |
US10926756B2 (en) | 2016-02-23 | 2021-02-23 | Deka Products Limited Partnership | Mobility device |
US10752243B2 (en) | 2016-02-23 | 2020-08-25 | Deka Products Limited Partnership | Mobility device control system |
US12117842B2 (en) | 2016-04-14 | 2024-10-15 | Deka Products Limited Partnership | User control device for a transporter |
US11720115B2 (en) | 2016-04-14 | 2023-08-08 | Deka Products Limited Partnership | User control device for a transporter |
US10802495B2 (en) | 2016-04-14 | 2020-10-13 | Deka Products Limited Partnership | User control device for a transporter |
ES2589124A1 (en) * | 2016-04-18 | 2016-11-10 | Adria PLANAS ROLDAN | Generation system and data management linked with a personal displacement apparatus (Machine-translation by Google Translate, not legally binding) |
USD837322S1 (en) | 2016-07-20 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
USD1013080S1 (en) | 2016-07-20 | 2024-01-30 | Razor Usa Llc | Two wheeled board |
USD899540S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
USD865890S1 (en) | 2016-07-20 | 2019-11-05 | Razor Usa Llc | Two wheeled board |
USD941948S1 (en) | 2016-07-20 | 2022-01-25 | Razor Usa Llc | Two wheeled board |
USD803963S1 (en) | 2016-07-20 | 2017-11-28 | Razor Usa Llc | Two wheeled board |
USD865095S1 (en) | 2016-07-20 | 2019-10-29 | Razor Usa Llc | Two wheeled board |
USD899541S1 (en) | 2016-07-20 | 2020-10-20 | Razor Usa Llc | Two wheeled board |
USD840872S1 (en) | 2016-07-20 | 2019-02-19 | Razor Usa Llc | Two wheeled board |
USD960043S1 (en) | 2016-07-20 | 2022-08-09 | Razor Usa Llc | Two wheeled board |
USD958278S1 (en) | 2016-07-20 | 2022-07-19 | Razor Usa Llc | Two wheeled board |
USD1002764S1 (en) | 2016-07-20 | 2023-10-24 | Razor Usa Llc | Two wheeled board |
USD807457S1 (en) | 2016-07-20 | 2018-01-09 | Razor Usa Llc | Two wheeled board |
US10144478B2 (en) | 2016-11-25 | 2018-12-04 | Hangzhou Chic Intelligent Technology Co., Ltd. | Pressure control steering |
CN109126103B (en) * | 2017-06-27 | 2020-10-30 | 金宝电子工业股份有限公司 | Manned vehicle control method |
CN109126103A (en) * | 2017-06-27 | 2019-01-04 | 金宝电子工业股份有限公司 | Manned carrying tool control method |
US11654995B2 (en) | 2017-12-22 | 2023-05-23 | Razor Usa Llc | Electric balance vehicles |
USD837323S1 (en) | 2018-01-03 | 2019-01-01 | Razor Usa Llc | Two wheeled board |
US11681293B2 (en) | 2018-06-07 | 2023-06-20 | Deka Products Limited Partnership | System and method for distributed utility service execution |
IT202000029504A1 (en) * | 2020-12-02 | 2022-06-02 | Mohawknee S R L | SYSTEM FOR SKATING AND RELATED METHOD OF OPERATION |
Also Published As
Publication number | Publication date |
---|---|
JP3493521B2 (en) | 2004-02-03 |
JP2003237670A (en) | 2003-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003068342A1 (en) | Self-running skateboard | |
US11484775B2 (en) | Electric skateboard with strain-based controls and methods | |
US10308306B2 (en) | Vehicle rider detection using strain gauges | |
US7467681B2 (en) | Vehicle, vehicle control device and variable control method | |
US10335669B2 (en) | Self-balancing board with primary wheel and distal auxiliary wheel | |
US10286972B2 (en) | Self-balancing electric vehicle with strain-based controls | |
JP4572594B2 (en) | Parallel motorcycle | |
KR101406469B1 (en) | Speed limiting in electric vehicles | |
EP2409905B1 (en) | Powered unicycle | |
US9216764B2 (en) | Vehicle steerable by movement of center of gravity | |
US10232871B2 (en) | Pushcart | |
US20100025139A1 (en) | Vehicle body structure and coaxial two-wheel vehicle | |
CN101104385A (en) | Safety contron system for electric vehicles | |
CN106553728A (en) | Self-balancing type haulage vehicle | |
JP2006217952A (en) | Self-traveling skateboard | |
KR20180001773A (en) | Electric skateboard and method for speed control of electric skateboard | |
JP2004024614A (en) | Electromotive vehicle and method for controlling electromotive vehicle | |
KR102371922B1 (en) | Control system of electric assist module and control method for wheelchair driving on stairs and stepped terrain | |
CN113164809A (en) | Electric scooter | |
JP5617619B2 (en) | Inverted motorcycle | |
CN113244570A (en) | Balance training system, control method thereof, and computer-readable storage medium storing control program | |
JP5203368B6 (en) | Speed limit for electric vehicles | |
KR20170094065A (en) | Power assistive drive system and method based on crank stiffness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN US |