WO2003067664A1 - Field-effect transistor and method for manufacturing it - Google Patents

Field-effect transistor and method for manufacturing it Download PDF

Info

Publication number
WO2003067664A1
WO2003067664A1 PCT/JP2002/000944 JP0200944W WO03067664A1 WO 2003067664 A1 WO2003067664 A1 WO 2003067664A1 JP 0200944 W JP0200944 W JP 0200944W WO 03067664 A1 WO03067664 A1 WO 03067664A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
layer
effect transistor
field
etching
Prior art date
Application number
PCT/JP2002/000944
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ohta
Hiroto Oda
Hiroyuki Uchiyama
Takashi Shiota
Original Assignee
Hitachi, Ltd.
Hitachi Ulsi Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Ulsi Systems Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2002/000944 priority Critical patent/WO2003067664A1/en
Priority to JP2003566904A priority patent/JPWO2003067664A1/en
Publication of WO2003067664A1 publication Critical patent/WO2003067664A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Definitions

  • the present invention relates to a field-effect transistor having a T-shaped gate electrode and a method for manufacturing the same.
  • HEMT high electron mobility field effect transistor
  • the T-shaped gate electrode 21 has a parasitic capacitance C l, C 2 between the eaves portion of the gate electrode and the ohmic contact layer 16 as shown in FIG. appear.
  • the source-side parasitic capacitance C2 causes a decrease in cutoff frequency and maximum oscillation frequency and an increase in noise
  • the drain-side parasitic capacitance C1 causes a decrease in power gain.
  • the insulating films (SiO film and SiON film) 18 and 19 having a high dielectric constant in contact with the eaves and the pillars of the T-shaped gate electrode 21, the parasitic capacitance becomes It becomes even higher, which causes a decrease in transistor performance.
  • reference numeral 11 denotes a semi-insulating GaAs substrate
  • reference numeral 12 denotes an AND
  • GaAs buffer layer 13 is undoped InGas channel layer
  • 14 is 11-type A 1 GaAs electron supply layer
  • 15 is undoped A 1 GaAs layer, 1 6! Type 1 0 & A s O over ohmic contact layer, 1 7 3 ⁇ 0 2 film, 1 8 S i ON film, 1 9 3 i O film, 2 0 WS i gate electrode, 2 1 A u
  • the plating layer, 22 is a drain electrode
  • 23 is a source electrode
  • 24 is a drain electrode side gap
  • 25 is a source electrode side gap.
  • the method of forming an insulating film often involves a high temperature of 200 ° C. or more, and when the insulating film is formed on a resist, problems such as burning of the resist and dimensional change due to reduction occur. To prevent this, it is necessary to use a low-temperature process. However, since a low-temperature film is formed, the film quality of the insulating film such as etching resistance, heat resistance, and dielectric strength is inferior to that of a normal insulating film. This decrease in film quality causes a decrease in transistor reliability and yield.
  • the drain-side eaves portion of the T-shaped gate electrode that protrudes from the gap 24 and the insulating film 17 still remain. , 18 and the ohmic contact layer 16, and the ohmic contact layer via the source-side eaves portion of the gate electrode projecting from the gap 25 and the insulating film 19. No consideration was given to the reduction of the parasitic capacity that occurs between the two. In particular, the structure and manufacturing method cannot reduce the parasitic capacitance formed between the insulating film immediately below the source-side electrode and the limiter contact layer to the same extent as the drain-side.
  • an object of the present invention is to reduce the source-side parasitic capacitance of a field-effect transistor further using a simple process as compared with the conventional example, and at the same time, to increase the drain-side parasitic capacitance without increasing the number of steps. It is an object of the present invention to provide a field effect transistor capable of reducing the power consumption and a method for manufacturing the same.
  • Another object is to provide a high-frequency module using the field-effect transistor of the present invention. Disclosure of the invention
  • An object of the present invention is to provide a semiconductor layer formed on a semiconductor substrate, a T-shaped gate electrode which is in contact with the semiconductor layer and has a pillar portion and an eaves portion, and a contact portion which is in contact with the pillar portion and the eaves portion of the gate electrode.
  • An insulating film provided between the insulating film and the semiconductor substrate, and a gap formed in a portion of the gate electrode recessed from the pillar portion, and making contact with a source drain.
  • a field-effect transistor having an limiter contact layer of
  • At least a source-side ohmic contact layer immediately below the bottom region of the insulating film in contact with the pillar portion of the gate electrode has a void formed from the pillar portion of the gate electrode to just below the end of the eaves portion.
  • This can be achieved by adopting a structure. In other words, by increasing the ratio of the gap portion on the insulating film between the eaves portion of the gate electrode and the semiconductor substrate, the gap portion on the source side as well as the drain electrode side as compared with the conventional structure, The parasitic capacitance formed between the eaves portion and the semiconductor substrate can be further reduced.
  • the width of the drain side is made larger than the source side, and the emitter contact layer is etched through the opening formed by the removal. This makes it possible to easily form the offset gate structure.
  • FIG. 1 is a sectional view of a strain-relaxed high-electron-mobility field-effect transistor (hereinafter, referred to as strain-relaxed HEMT) which is a first embodiment of the field-effect transistor according to the present invention.
  • FIG. 2 is a cross-sectional view of a manufacturing process of the strain-mitigating HEMT shown in FIG.
  • FIG. 3 is a cross-sectional view of the strain relief HEMT showing the next manufacturing process shown in FIG.
  • FIG. 4 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG.
  • FIG. 5 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG.
  • FIG. 6 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG.
  • FIG. 7 is a cross-sectional view of the strain relief HEMT showing the next manufacturing process shown in FIG.
  • FIG. 8 shows a strain relief HE according to a second embodiment of the field effect transistor according to the present invention.
  • FIG. 9 is a cross-sectional view of the manufacturing process of the strain-mitigating HEMT shown in FIG.
  • FIG. 10 is a cross-sectional view of the strain relief HEM showing the next manufacturing process shown in FIG.
  • FIG. 11 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG.
  • FIG. 12 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG.
  • FIG. 13 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing step shown in FIG.
  • FIG. 14 shows a strain relief H according to a third embodiment of the field effect transistor according to the present invention.
  • FIG. 15 is a cross-sectional view showing a conventional HEMT.
  • FIG. 16 is a cross-sectional view of a monolithic microwave integrated circuit using the strain relaxation HEMT according to the present invention.
  • FIG. 17 is a block diagram of a basic circuit of a high-frequency module equipped with the monolithic microwave integrated circuit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a sectional structure diagram of a strain relaxation HEMT which is a first embodiment of the field effect transistor according to the present invention.
  • the cap layer 41 has a structure having a source-side gap 51S and a drain-side gap 51D, which are removed by protruding from the end of the eaves portion of the gate electrode.
  • the parasitic capacitance formed between the portion and the semiconductor substrate 31 can be further reduced as compared with the conventional example.
  • a PSG film 42 is deposited on the entire surface by a thermal CVD (Chemical Vapor Deposition) method to a thickness of 50 nm, and a resist pattern 43 having a width of 0.55 is formed on the PSG film 42 using an optical exposure apparatus.
  • a thermal CVD Chemical Vapor Deposition
  • the PSG film 42 is anisotropically dry-etched to form a recess etching dummy pattern 42a.
  • a 60 nm thick Si 3 N 4 film 44 is formed on the entire surface by ECR (Electron Cyclotron Resonance) sputtering.
  • a resist opening pattern 45 having an opening size of 0.15 ⁇ m was formed using an EB (Electron Beam) lithography apparatus to form a source-side end S on the recess etching dummy pattern 42a. the position of 0. 2 mu m from the E, the end P E of the opening pattern 45 is formed so as to be located.
  • EB Electro Beam
  • the Si 3 N 4 film 44 is anisotropically dry-etched through the resist opening pattern 45 to form a 0.15 im Si 3 N 4 film opening pattern 46.
  • the recess etching dummy pattern 42 a may or may not be etched together with the Si 3 N 4 film 44. The figure shows a case where etching is performed.
  • a 400-nm thick PSG film 47 is deposited on the entire surface by thermal CVD, and then the source / drain electrode forming resist opening pattern is formed using an optical exposure system. Forming a over emissions, a PSG film 47 is etched through the resist pattern, exposing the n- I n 0. 5 G ao , 5 A s cap layer 41. Next, an electrode metal made of An and Mo (molybdenum) is deposited by EB deposition, and a source electrode 48 and a drain electrode 49 are formed by lift-off.
  • An and Mo molybdenum
  • a resist opening pattern 50 is formed on the Si 3 N 4 film opening pattern 46 using an optical exposure apparatus, and the PSG film is passed through the resist opening pattern 50 using a hydrofluoric acid aqueous solution. performs isotropic ⁇ Etsu preparative etching 47 to expose the n_ I n 0. 5 G a 0. 5 a s cap layer 41. At this time, the recess etching dummy pattern 42a is also etched at the same time to form the recess etching opening pattern 51.
  • the Si 3 N 4 film 44 has an extremely small etching rate with respect to the hydrofluoric acid aqueous solution as compared with the PSG film 42, and the isotropic nature of the PSG film 42 ⁇
  • the side etching width is 0.1 m
  • the recess etching width on the source side is 0.2 ⁇
  • the recess etching width on the drain side is 0.4 / zm in this embodiment, which is a so-called offset gate structure.
  • the recess etching on the source side and the drain side is performed.
  • the width can be set freely.
  • the drain side from the center of the recess etching dummy pattern 42a S i 3 N 4 placing the film aperture pattern 46 and, in order to divided only part insulating film on the source side, also possible to place the S i 3 N 4 film aperture pattern 46 on the drain side end in It is.
  • an electrode metal consisting of Au, Pt (platinum), and Ti (titanium) is deposited by EB evaporation, and a gate electrode 52 is formed by a lift-off method.
  • the source electrode side gap 51 S and the drain electrode side gap 51 D may be formed below the Si 3 N 4 film 44 in contact with the eaves so as to protrude beyond the end of the eaves of the gate electrode. I understand.
  • the strain relief HEMT with the structure shown in Fig. 1 is completed. In this way, the offset structure of the T-shaped gate electrode, the ratio of the eaves of the T-shaped gate electrode on the drain side and the source electrode side, and the ratio of the void portion to the insulating film between the semiconductor substrate and the conventional structure are compared.
  • the parasitic capacitance formed between the eaves portion of the gate electrode and the semiconductor substrate decreases. Therefore, at least 150 & 2 current gain cut-off frequency f T, the maximum oscillation frequency £ 111 can realize a field effect transistor having a high-frequency characteristics such as at least 200 GH z.
  • the InAlAsZlnGasAs strain relaxation HEMT on the GaAs substrate has been described, but the InA1AsZInGaAsHEMT on the InP substrate, It is also applicable to AI GaAs / InGaAs strained channel HEMTs on GaAs substrates and other field effect transistors such as MES FETs and JFETs.
  • MES FETs and JFETs field effect transistors
  • FIG. 8 shows a sectional structure view of a strain relaxation HEMT which is a second embodiment of the field effect transistor according to the present invention.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the feature of this embodiment is that the source-side gap 51S and the drain-side gap 51D formed in the bottom region of the insulating film in contact with the eaves portion and the pillar portion of the T-shaped gate electrode have the same width and thickness. It is. As in Fig. 1, the voids 51S and 51D are of course formed up to the region protruding from the eaves of the T-shaped gate electrode.
  • This structure can be realized by positioning the Si 3 N 4 film opening pattern 46 at the center on the recess etching dummy pattern 42a.
  • a digital circuit such as an SRAM (Static Random Access Memory)
  • the parasitic capacitance C 1, C on the drain side and the source side because the potentials on the source and drain sides are frequently inverted. 2 affects performance at an equal rate.
  • the parasitic capacitance formed between the eaves portion of the T-shaped gate electrode and the semiconductor substrate can be reduced equally at the drain side and the source side at the same time. Regardless, high performance is possible.
  • FIGS. 1 A third embodiment of a field-effect transistor according to the present invention, which is a strain relief HEMT and a method of manufacturing the same, will be described with reference to FIGS.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a PSG film 42 is deposited on the entire surface by a thermal CVD method to a thickness of 50 nm, and a Si 3 N 4 film 44 is formed on the entire surface by an ECR sputtering method to a thickness of 60 nm.
  • An m resist opening pattern 45 is formed.
  • the Si 3 N 4 film 44 is anisotropically dry-etched through the resist opening pattern 45 to form a 0.15 ⁇ wide Si 3 N 4 film opening pattern.
  • the 30 film 42 may or may not be etched with the Si 3 N 4 film 44. In the same figure, the case where etching is performed is shown.
  • a 400 nm PSG film 47 is deposited on the entire surface by thermal CVD.
  • a resist pattern for forming source / drain electrodes is formed using an optical exposure apparatus, and the PSG film 47 and the PSG film 47 are formed through the resist pattern.
  • the 5 i 3 N 4 film 44 is etched to leave exposed the n- I n 0. 5 G a 0. 5 A s cap layer 41.
  • an electrode metal made of Au and Mo is deposited by EB deposition, and a source electrode 48 and a drain electrode 49 are formed by lift-off.
  • a resist opening pattern 50 is formed on the Si 3 N 4 film opening pattern 46, and a hydrofluoric acid aqueous solution is passed through the resist opening pattern 50. rows that have isotropic ⁇ Etsu preparative etching the PSG film 47 Te, exposing the n- I n 0. 5 Ga 0 . 5 as cap layer 41.
  • the PSG film 42 is simultaneously etched. The etching time is set so that the side etching width of the PSG film 42 is 0.1 ⁇ .
  • n-In using an aqueous solution of citric acid and hydrogen peroxide. . 5 G a. . Isotropically wet etched 5 A s cap layer 41.
  • the recess etching width at this time is 0.2 ⁇ on both the source side and the drain side when the side etching amount is 0.1 m, for example.
  • an electrode metal consisting of Au, Pt, and Ti is deposited by EB deposition, and the gut electrode 52 is formed by lift-off, thereby completing the strain-mitigating HEMT.
  • the strain relief HEMT of the present embodiment also has a T-shaped gate electrode having an offset structure, and has a source electrode side gap below the Si 3 N 4 film 44 in contact with the eaves portion of the gate electrode.
  • a field effect transistor having the same high-frequency characteristics as the first embodiment because 51 S and a gap 51 D on the drain electrode side are formed from the pillar portion of the gate electrode to a position protruding from the eaves end portion, thereby reducing parasitic capacitance. Can be realized.
  • FIG. 14 shows a sectional structure view of a strain-mitigating HEMT which is a fourth embodiment of the field-effect transistor according to the present invention.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • This embodiment is characterized in that the recess etching width of the ohmic contact layer is That is, it is formed to have the same width as the etching dummy pattern 42a.
  • This structure in etching the S i 3 N 4 n- I n 0 through film aperture pattern 4 6. 5 G a 0. 5 A s capping layer 4 1, side direction Etsuchin grayed the depth direction Can be realized by performing etching using an anisotropic liquid etchant that is as small as a fraction.
  • an anisotropic liquid etchant for example, an aqueous solution of citric acid and hydrogen peroxide cooled to 10 ° C. or less may be used.
  • the etchant that has penetrated through the Si 3 N 4 film opening pattern 46 flows equally into the recess etching opening pattern 51 formed by etching and removing the recess etching dummy pattern 42 a, and the recess etching dummy pattern.
  • N—I n equal to the width of the pattern 4 2 a. . 5 G a. .
  • the voids 51S and 5ID are of course formed up to the region that extends beyond the eaves of the T-shaped gate electrode.
  • the width of the recess etching dummy pattern 42a must be larger than the final recess etching width because the recess etching width must be determined in consideration of the side etching width. Need to be smaller. Therefore, the effect of reducing the capacity is reduced.
  • the recess etching width and the width of the recess etching dummy pattern 42a can be made equal, the capacity reduction effect can be maximized.
  • the manufacturing method of the present embodiment is also applicable to the case where the recess etching opening pattern 51 is formed by using the side etching of the insulating film as described in the third embodiment.
  • FIG. 16 shows a microstrip-type monolithic microwave integrated circuit (MM IC: mounting a field-effect transistor according to the fifth embodiment of the present invention).
  • MM IC mounting a field-effect transistor according to the fifth embodiment of the present invention.
  • 1 shows a cross-sectional view of Monolithic Microwave Integrated Circuit 100.
  • the surface of the GaAs semiconductor substrate 101 has a strain relaxation H E MT
  • a via hole 108 and a ground conductor 109 are provided on the back surface of the GaAs semiconductor substrate 101, and a conductor 105 on the front surface of the substrate and a ground conductor 109 on the back surface have a resistor 104. Are connected via a suitable impedance.
  • strain relaxation HEMT having the T-shaped gate electrode structure shown in the first embodiment is used as the strain relaxation HEMT 102.
  • the high-performance strain relaxation HEMT is used as an active element, a high-performance MMIC can be realized.
  • FIG. 17 shows a configuration diagram of an on-vehicle radar according to a sixth embodiment of the present invention.
  • the automotive radar is a high-frequency module 2 consisting of a voltage variable oscillator 201, an amplifier 202, a receiver 203, a receiving antenna terminal 207, a transmitting antenna terminal 208, and a terminal 209. 0 0, the receiving antenna 210 connected to the receiving antenna terminal 207, the transmitting antenna 211 connected to the transmitting antenna terminal 208, and the signal processing system 2 connected to the terminal 209 It is composed of one and two.
  • the voltage variable oscillator 201, the amplifier 202, and the receiver 203 are configured by the MMIC described in the fifth embodiment.
  • the 76 GHz signal S 1 from the voltage variable oscillator 201 is amplified by the amplifier 202 and radiated from the transmission antenna 211 via the transmission antenna terminal 208.
  • the signal S 2 reflected back from the object is received by the receiving antenna 210 and amplified from the receiving antenna terminal 207 by the amplifier 205 in the receiver 203.
  • the amplified signal is combined with the reference signal S 1 of 76 GHz from the variable voltage oscillator 201 amplified by the amplifier 204 in the receiver 203 and the mixer in the receiver 203.
  • the signals are mixed in the sub-unit 206 to form an intermediate frequency (IF intermediate Frequency) signal.
  • the IF signal is taken out from the terminal 209 and input to the signal processing system 212, where the relative speed, distance, and angle of the object are calculated.
  • the high-frequency module of the present embodiment has high performance because it uses the MMIC of the fifth embodiment. Therefore, a high-performance in-vehicle radar can be realized. Industrial applicability
  • the hole just below the bottom region of the insulating film provided in contact with both the source side and the drain side of the pillar portion of the T-shaped gate electrode is provided in contact with both the source side and the drain side of the pillar portion of the T-shaped gate electrode.
  • a field-effect transistor with a reduced parasitic capacitance on both the source and drain sides by adopting a configuration in which the mic contact layer is partially removed to the position protruding from the eaves end of the T-shaped gate electrode Can be.
  • a field-effect transistor can be obtained in which parasitic capacitance, parasitic resistance, breakdown voltage, and the like are freely set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A field-effect transistor having a T-shaped gate electrode has an offset gate structure in which a parasitic capacitance created between the canopy of the T-shaped gate electrode and a semiconductor substrate is reduced. In this structure, the ohmic contact layer just below the bottom region of an insulating film formed in contact with both the source side and the drain side of the column portion of the T-shaped gate electrode is removed from the column portion to just below the canopy end portion of the T-shaped gate electrode. Moreover, the structure is an offset structure in which the drain side removed region is larger than the source side removed region. The removal of the ohmic contact layer is done by an anisotropic etching method. The structure of the field effect transistor having the T-shaped gate is applied to a strain-relaxed high-mobility field-effect transistor. This field effect transistor is used as an active element constituting an the MMIC.

Description

明 細 書 電界効果トランジスタ及びその製造方法 技術分野  Description Field effect transistor and method for manufacturing the same
本発明は、 T字型ゲート電極を備える電界効果トランジスタ及びその製造方法 に関する。 背景技術  The present invention relates to a field-effect transistor having a T-shaped gate electrode and a method for manufacturing the same. Background art
化合物半導体の電界効果トランジスタは、 その特性として高い電子移動度を持 つことから、 マイクロ波やミリ波帯での応用が進められている。 より高い周波数 帯での応用のためには、 ゲート長の短縮が有効であるが、 それにともない、 ゲー ト幅方向の断面積が小さくなり、 ゲート抵抗が増大する難点がある。 この対策の ため、 ゲート長を小さく保ったまま断面積を確保できる τ字型ゲートが広く適用 されている。  Since compound semiconductor field-effect transistors have high electron mobility as their characteristics, applications in the microwave and millimeter-wave bands are being promoted. For applications in higher frequency bands, shortening the gate length is effective, but this has the disadvantage that the cross-sectional area in the gate width direction becomes smaller and the gate resistance increases. As a countermeasure, τ-shaped gates, which can secure a cross-sectional area while keeping the gate length small, are widely used.
このような T字型グート電極構造を有する高電子移動度電界効果トランジスタ (High Electron Mobility Transistor : 以下、 H E MTと呼ぶ) のドレイン側の 寄生容量を低下させるために、 オフセットゲート構造をもつ電界効果トランジス タとその製造方法が、 特開平 1 1— 9 7 4 5 4号公報に開示されている。  In order to reduce the parasitic capacitance on the drain side of such a high electron mobility field effect transistor (hereinafter referred to as HEMT) having a T-shaped gut electrode structure, an electric field effect having an offset gate structure is used. A transistor and a method for manufacturing the transistor are disclosed in Japanese Patent Application Laid-Open No. 11-97454.
この従来の H EMTの断面構造を図 1 5に示す。 図 1 5において T字型のゲ一 ト電極 2 1は、 同図に示したように、 ゲート電極の庇部分とォ一ミックコンタク ト層 1 6との間に寄生容量 C l, C 2が発生する。 ソース側の寄生容量 C 2は遮 断周波数や最大発振周波数の低下、 および雑音の増大の原因となり、 ドレイン側 の寄生容量 C 1は電力利得の低下の原因となる。 また、 T字型ゲート電極 2 1の 庇部分おょぴ柱部分に接している誘電率の高い絶縁膜 (S i O膜、 S i O N膜) 1 8, 1 9のために、 寄生容量はさらに高くなり、 トランジスタの性能低下の原 因となっている。  The cross-sectional structure of this conventional HEMT is shown in FIG. In FIG. 15, the T-shaped gate electrode 21 has a parasitic capacitance C l, C 2 between the eaves portion of the gate electrode and the ohmic contact layer 16 as shown in FIG. appear. The source-side parasitic capacitance C2 causes a decrease in cutoff frequency and maximum oscillation frequency and an increase in noise, and the drain-side parasitic capacitance C1 causes a decrease in power gain. In addition, because of the insulating films (SiO film and SiON film) 18 and 19 having a high dielectric constant in contact with the eaves and the pillars of the T-shaped gate electrode 21, the parasitic capacitance becomes It becomes even higher, which causes a decrease in transistor performance.
なお、 図 1 5において、 参照符号 1 1は半絶縁性 G a A s基板、 1 2はアンド ープ G a A sバッファ層、 1 3はアンドープ I n G a A sチャネル層、 1 4は11 型 A 1 G a A s電子供給層、 1 5はアンドープ A 1 G a A s層、 1 6は!1型0 & A sォーミックコンタクト層、 1 7は3 丄 0 2膜、 1 8は S i O N膜、 1 9は3 i O膜、 2 0は W S iゲート電極、 2 1は A uメツキ層、 2 2はドレイン電極、 2 3はソース電極、 2 4はドレイン電極側空隙、 2 5はソース電極側空隙である。 この従来のオフセットゲート構造を持つ電界効果トランジスタの製造方法は、 レジスト上に絶縁膜を形成する工程を有する上に、 ドレイン側の寄生容量低減の ために工程数が増加する。 In FIG. 15, reference numeral 11 denotes a semi-insulating GaAs substrate, and reference numeral 12 denotes an AND. GaAs buffer layer, 13 is undoped InGas channel layer, 14 is 11-type A 1 GaAs electron supply layer, 15 is undoped A 1 GaAs layer, 1 6! Type 1 0 & A s O over ohmic contact layer, 1 7 3丄0 2 film, 1 8 S i ON film, 1 9 3 i O film, 2 0 WS i gate electrode, 2 1 A u The plating layer, 22 is a drain electrode, 23 is a source electrode, 24 is a drain electrode side gap, and 25 is a source electrode side gap. This conventional method of manufacturing a field-effect transistor having an offset gate structure has a step of forming an insulating film on a resist and increases the number of steps due to a reduction in parasitic capacitance on the drain side.
通常、 絶縁膜を形成する方法は 2 0 0 °C以上の高温となることが多く、 レジス ト上に絶縁膜を形成する場合、 レジストの焦げ付きや、 縮小による寸法変化等の 問題が発生する。これを防止するためには、低温プロセスを用いる必要があるが、 低温膜形成となるためエッチング耐性、 耐熱性、 絶縁耐圧等の絶縁膜の膜質が通 常の絶縁膜と比べ劣ることになる。 この膜質低下は、 トランジスタの信頼性や歩 留まり低下の原因となる。  Usually, the method of forming an insulating film often involves a high temperature of 200 ° C. or more, and when the insulating film is formed on a resist, problems such as burning of the resist and dimensional change due to reduction occur. To prevent this, it is necessary to use a low-temperature process. However, since a low-temperature film is formed, the film quality of the insulating film such as etching resistance, heat resistance, and dielectric strength is inferior to that of a normal insulating film. This decrease in film quality causes a decrease in transistor reliability and yield.
また、 このドレイン側寄生容量を低減するのに有効なオフセットゲート構造を 有する従来の製造方法では、 依然として T字型ゲート電極の上記空隙 2 4より張 り出したドレイン側庇部分と絶縁膜 1 7, 1 8を介してォーミッタコンタクト層 1 6との間に生じる寄生容量と、 ゲート電極の上記空隙 2 5より張り出したソー ス側庇部分と絶縁膜 1 9を介してォーミックコンタクト層 1 6との間に生じる寄 生容量との低減をすることには考慮が為されていなかった。 特に、 ソース側電極 直下の絶縁膜とォーミッタコンタクト層との間に形成された寄生容量をドレイン 側と同程度まで低減できる構造及ぴ製造方法ではなかった。  In addition, in the conventional manufacturing method having an offset gate structure effective for reducing the drain-side parasitic capacitance, the drain-side eaves portion of the T-shaped gate electrode that protrudes from the gap 24 and the insulating film 17 still remain. , 18 and the ohmic contact layer 16, and the ohmic contact layer via the source-side eaves portion of the gate electrode projecting from the gap 25 and the insulating film 19. No consideration was given to the reduction of the parasitic capacity that occurs between the two. In particular, the structure and manufacturing method cannot reduce the parasitic capacitance formed between the insulating film immediately below the source-side electrode and the limiter contact layer to the same extent as the drain-side.
そこで、 本発明の目的は、 簡易な工程を用いて、 電界効果トランジスタのソー ス側寄生容量の低減を従来例よりもさらに図ることができ、 同時に工程数を増加 することなく ドレイン側の寄生容量も低減可能な電界効果トランジスタ及びその 製造方法を提供することにある。  Therefore, an object of the present invention is to reduce the source-side parasitic capacitance of a field-effect transistor further using a simple process as compared with the conventional example, and at the same time, to increase the drain-side parasitic capacitance without increasing the number of steps. It is an object of the present invention to provide a field effect transistor capable of reducing the power consumption and a method for manufacturing the same.
さらに、 本発明の電界効果トランジスタを用いた高周波モジュールを提供する ことも目的の一つである。 発明の開示 Another object is to provide a high-frequency module using the field-effect transistor of the present invention. Disclosure of the invention
上記目的は、 半導体基板上に形成された半導体層と、 該半導体層に接し、 柱部 分と庇部分からなる T字型形状をもつゲート電極と、 該ゲート電極の柱部分と庇 部分に接して設けられた絶縁膜と、該絶縁膜と前記半導体基板との間に挿入され、 且つ前記ゲート電極の柱部分から後退した部分に形成された空隙と、 ソース ' ド レインとのコンタクトをとるためのォーミッタコンタクト層とを具備した電界効 果トランジスタにおいて、  An object of the present invention is to provide a semiconductor layer formed on a semiconductor substrate, a T-shaped gate electrode which is in contact with the semiconductor layer and has a pillar portion and an eaves portion, and a contact portion which is in contact with the pillar portion and the eaves portion of the gate electrode. An insulating film provided between the insulating film and the semiconductor substrate, and a gap formed in a portion of the gate electrode recessed from the pillar portion, and making contact with a source drain. A field-effect transistor having an limiter contact layer of
少なくとも前記ゲート電極の柱部分に接する前記絶縁膜の底部領域直下のソー ス側のォ一ミックコンタクト層が、 ゲート電極の前記柱部分から庇部分の端部直 下まで除去されて成る空隙を有する構造とすることにより達成できる。すなわち、 ゲート電極の庇部分と、 半導体基板との間の絶縁膜に対する空隙部分、 ドレイン 電極側だけでなく、 更にソース側の空隙部分の割合を従来構造に比べ増加するこ とにより、 ゲート電極の庇部分と半導体基板との間に形成される寄生容量を更に 減少することが可能となる。  At least a source-side ohmic contact layer immediately below the bottom region of the insulating film in contact with the pillar portion of the gate electrode has a void formed from the pillar portion of the gate electrode to just below the end of the eaves portion. This can be achieved by adopting a structure. In other words, by increasing the ratio of the gap portion on the insulating film between the eaves portion of the gate electrode and the semiconductor substrate, the gap portion on the source side as well as the drain electrode side as compared with the conventional structure, The parasitic capacitance formed between the eaves portion and the semiconductor substrate can be further reduced.
また、 ゲート電極の柱部分に接する絶縁膜の底部領域を一部除去する際、 ソー ス側より ドレイン側の幅を大きく し、 除去により形成される開口部分を通してォ ーミッタコンタクト層のエッチングを行なうことにより、 オフセットゲート構造 を容易に形成することが可能となる。 図面の簡単な説明  Also, when partially removing the bottom region of the insulating film in contact with the pillar portion of the gate electrode, the width of the drain side is made larger than the source side, and the emitter contact layer is etched through the opening formed by the removal. This makes it possible to easily form the offset gate structure. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る電界効果トランジスタの第 1の実施例である歪緩和高電 子移動度電界効果トランジスタ(以下、歪緩和 H E MTと称す)の断面図である。 図 2は、 図 1に示した歪緩和 H E MTの製造工程の断面図である。  FIG. 1 is a sectional view of a strain-relaxed high-electron-mobility field-effect transistor (hereinafter, referred to as strain-relaxed HEMT) which is a first embodiment of the field-effect transistor according to the present invention. FIG. 2 is a cross-sectional view of a manufacturing process of the strain-mitigating HEMT shown in FIG.
図 3は、 図 2に示した次の製造工程を示す歪緩和 H E M Tの断面図である。 図 4は、 図 3に示した次の製造工程を示す歪緩和 H E MTの断面図である。 図 5は、 図 4に示した次の製造工程を示す歪緩和 H E MTの断面図である。 図 6は、 図 5に示した次の製造工程を示す歪緩和 H E MTの断面図である。 図 7は、 図 6に示した次の製造工程を示す歪緩和 H E M Tの断面図である。 図 8は、 本発明に係る電界効果トランジスタの第 2の実施例である歪緩和 HEFIG. 3 is a cross-sectional view of the strain relief HEMT showing the next manufacturing process shown in FIG. FIG. 4 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG. FIG. 5 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG. FIG. 6 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG. FIG. 7 is a cross-sectional view of the strain relief HEMT showing the next manufacturing process shown in FIG. FIG. 8 shows a strain relief HE according to a second embodiment of the field effect transistor according to the present invention.
MTの断面図である。 It is sectional drawing of MT.
図 9は、 図 8に示した歪緩和 HE MTの製造工程の断面図である。  FIG. 9 is a cross-sectional view of the manufacturing process of the strain-mitigating HEMT shown in FIG.
図 10は、 図 9に示した次の製造工程を示す歪緩和 HEM丁の断面図である。 図 1 1は、図 10に示した次の製造工程を示す歪緩和 HEMTの断面図である。 図 12は、図 1 1に示した次の製造工程を示す歪緩和 HEMTの断面図である。 図 13は、図 12に示した次の製造工程を示す歪緩和 HEMTの断面図である。 図 14は、 本発明に係る電界効果トランジスタの第 3の実施例である歪緩和 H FIG. 10 is a cross-sectional view of the strain relief HEM showing the next manufacturing process shown in FIG. FIG. 11 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG. FIG. 12 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing process shown in FIG. FIG. 13 is a cross-sectional view of the strain-mitigating HEMT showing the next manufacturing step shown in FIG. FIG. 14 shows a strain relief H according to a third embodiment of the field effect transistor according to the present invention.
EM.Tの断面図である。 It is sectional drawing of EM.T.
図 15は、 従来の HEMTを示す断面図である。  FIG. 15 is a cross-sectional view showing a conventional HEMT.
図 16は、 本発明に係る歪緩和 HEMTを用いたモノリシックマイクロ波集積 回路の断面図である。  FIG. 16 is a cross-sectional view of a monolithic microwave integrated circuit using the strain relaxation HEMT according to the present invention.
図 1 7は、 図 16に示したモノリシックマイクロ波集積回路を搭載する高周波 モジユーノレの基本回路のプロック構成図である。 発明を実施するための最良の形態  FIG. 17 is a block diagram of a basic circuit of a high-frequency module equipped with the monolithic microwave integrated circuit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施例について、 添付図面を参照しながら詳細に説明す る。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<実施例 1 >  <Example 1>
図 1に、 本発明に係る電界効果トランジスタの第 1の実施例である歪緩和 H E MTの断面構造図を示す。 T字型ゲート電極 52の庇部分と柱部分に接している 高誘電率な絶縁膜 44の底部領域が、 ソース側 · ドレイン側両方とも、 ϊΐ一 I η 0. 5G a0. 5A sキャップ層 41の一部がゲート電極の庇部分の端部よりも張り 出して除去されたソース側空隙 5 1 Sおよびドレイン側空隙 51Dを有する構造 となっており、 T字型ゲート電極 52の庇部分と半導体基板 31との間に形成さ れる寄生容量が従来例よりも更に低減可能である。 FIG. 1 shows a sectional structure diagram of a strain relaxation HEMT which is a first embodiment of the field effect transistor according to the present invention. Bottom region of the high dielectric constant insulating film 44 in contact with the eaves part and the bar portion of the T-shaped gate electrode 52, both the source side and drain side, Ii one I η 0. 5 G a 0. 5 A s The cap layer 41 has a structure having a source-side gap 51S and a drain-side gap 51D, which are removed by protruding from the end of the eaves portion of the gate electrode. The parasitic capacitance formed between the portion and the semiconductor substrate 31 can be further reduced as compared with the conventional example.
次に、 図 2〜図 7を用いて本実施例の歪緩和 HEMTの製造方法を工程順に説 明する。 図 2に示すように、 G a A s基板 31上に、 厚さ 28 n mのアンドープ G a A sバッファ層 3 2、 厚さ 20 nmのアンドープ A 1 3バッファ層33、 厚さ 6 00 nmのアンドープ I n A 1 A sステップグレーデッド層 34 ( I n A sモル 比: 0. 1 5から0. 45まで変化) 、 厚さ 200 nmのアンドープ I n0. 5A 1 o.5A sパリア層 35、厚さ 20 nmのアンドープ I n0.5G a 0. 5A sチヤネ ル層 3 6、 厚さ 2 nmのアンドープ I n。. 5A 1。. 5A s層 3 7、 厚さ 1 2 nm の S i ドープ n— I n。.5A l。 5A sキヤリァ供給層 38 (5 X l 018 cm— 3)、 厚さ 1 0 nmのアンドープ; l n0. 5A 10. 5 3層3 9、 厚さ 7 nmのアンド一 プ I n P層 40、 厚さ 4011111の3 i ドープ n— I n 0. 5G a。, 5A sキャップ 層 41 (5 X 1019 cm-3) を順次ェピタキシャル成長法にて形成する。 次に、 全面に熱 CVD (Chemical Vapor Deposition) 法にて P S G膜 42を 50 n m堆 積後、 光学露光装置を用いて幅 0. 55 のレジストパターン 43を P SG膜 42上に形成する。 Next, a method of manufacturing the strain-mitigating HEMT of this embodiment will be described in the order of steps with reference to FIGS. As shown in FIG. 2, an undoped GaAs buffer layer 32 with a thickness of 28 nm, an undoped A1 3 buffer layer 33 with a thickness of 20 nm, a thickness of 600 nm undoped I n a 1 a s step graded layer 34.. (I n a s molar ratio varies from 0.1 5 to 0.45), undoped I n 0 thickness 200 nm 5 a 1 o 5 a s Paglia layer 35, an undoped I n 0 thickness 20 nm. 5 G a 0. 5 a s Chiyane Le layers 3 6, thickness 2 nm of undoped I n. 5 A1. . 5 A s layer 3 7, the thickness 1 2 nm S i doped n-I n. . 5 A l. 5 A s Kiyaria supply layer 38 (5 X l 0 18 cm- 3), undoped thickness 1 0 nm;.. Ln 0 5 A 1 0 5 3 layers 3 9, a thickness of 7 nm and one-flop I n P layer 40, the third thickness 4,011,111 i doped n- I n 0. 5 G a . , A 5 As cap layer 41 (5 × 10 19 cm −3 ) is formed sequentially by epitaxy. Next, a PSG film 42 is deposited on the entire surface by a thermal CVD (Chemical Vapor Deposition) method to a thickness of 50 nm, and a resist pattern 43 having a width of 0.55 is formed on the PSG film 42 using an optical exposure apparatus.
図 3に示すように、 このレジストパターンをマスクにして P SG膜 42を異方 性ドライエッチングし、 リセスエッチング用ダミーパターン 42 aを形成する。 次いで、 レジストパターン 43を除去した後、全面に EC R (Electron Cyclotron Resonance) スパッタリング法により S i 3N4膜 44を 60 nm形成する。 As shown in FIG. 3, using the resist pattern as a mask, the PSG film 42 is anisotropically dry-etched to form a recess etching dummy pattern 42a. Next, after removing the resist pattern 43, a 60 nm thick Si 3 N 4 film 44 is formed on the entire surface by ECR (Electron Cyclotron Resonance) sputtering.
次に、図 4に示すように、 EB (Electron Beam)描画装置を用いて開口寸法 0. 1 5 μ mのレジスト開口パターン 45を、 前記リセスエッチング用ダミーパター ン 42 a上のソース側端 SEより 0. 2 μ mの位置に、 開口パターン 45の端 P E が位置するように形成する。 Next, as shown in FIG. 4, a resist opening pattern 45 having an opening size of 0.15 μm was formed using an EB (Electron Beam) lithography apparatus to form a source-side end S on the recess etching dummy pattern 42a. the position of 0. 2 mu m from the E, the end P E of the opening pattern 45 is formed so as to be located.
次に、前記レジスト開口パターン 45を通して S i 3N4膜 44を異方性ドライ エッチングし、 0. 1 5 imの S i 3N4膜開口パターン 46を形成する。 このと き、 リセスエッチング用ダミーパターン 42 aは、 S i 3N4膜 44と共にエッチ ングされても、 されなくともどちらでも良い。 図では、 エッチングした場合を示 している。 Next, the Si 3 N 4 film 44 is anisotropically dry-etched through the resist opening pattern 45 to form a 0.15 im Si 3 N 4 film opening pattern 46. At this time, the recess etching dummy pattern 42 a may or may not be etched together with the Si 3 N 4 film 44. The figure shows a case where etching is performed.
次.に、 図 5に示すように、 全面に熱 CVD法により P SG膜 47を 400 nm 堆積後、 光学露光装置を用いて、 ソース ' ドレイン電極形成用レジス ト開ロパタ ーンを形成し、 レジストパターンを通して P S G膜 47をエッチングし、 n— I n0. 5G a o, 5A sキャップ層 41を露出する。 次に、 EB蒸着法を用いて An と Mo (モリプデン) からなる電極用金属を蒸着し、 リフトオフ法にてソース電 極 48と ドレイン電極 49を形成する。 Next, as shown in Fig. 5, a 400-nm thick PSG film 47 is deposited on the entire surface by thermal CVD, and then the source / drain electrode forming resist opening pattern is formed using an optical exposure system. Forming a over emissions, a PSG film 47 is etched through the resist pattern, exposing the n- I n 0. 5 G ao , 5 A s cap layer 41. Next, an electrode metal made of An and Mo (molybdenum) is deposited by EB deposition, and a source electrode 48 and a drain electrode 49 are formed by lift-off.
次に、 図 6に示すように光学露光装置を用いて、 S i 3N4膜開口パターン 46 上にレジスト開口パターン 50を形成し、 レジスト開口パターン 50を通して、 フッ酸水溶液を用いて P SG膜 47の等方性ゥエツトエッチングを行ない、 n_ I n0. 5G a 0. 5A sキャップ層 41を露出する。 このとき、 リセスエッチング 用ダミーパターン 42 aも同時にエッチングし、 リセスエッチング用開口パター ン 51を形成する。 S i 3N4膜 44は P SG膜 42と比べると、 フッ酸水溶液に 対するエッチングレートが極めて小さく、 P SG膜 42の等方性ゥエツトエッチ ング後も S i 3N4膜開口パターン 46の寸法は 0. 15 mをほぼ保ったままで ある。 Next, as shown in FIG. 6, a resist opening pattern 50 is formed on the Si 3 N 4 film opening pattern 46 using an optical exposure apparatus, and the PSG film is passed through the resist opening pattern 50 using a hydrofluoric acid aqueous solution. performs isotropic © Etsu preparative etching 47 to expose the n_ I n 0. 5 G a 0. 5 a s cap layer 41. At this time, the recess etching dummy pattern 42a is also etched at the same time to form the recess etching opening pattern 51. The Si 3 N 4 film 44 has an extremely small etching rate with respect to the hydrofluoric acid aqueous solution as compared with the PSG film 42, and the isotropic nature of the PSG film 42 ゥ The size of the Si 3 N 4 film opening pattern 46 even after the etching. Remains almost at 0.15 m.
次に、 図 7に示すように、 S i 3N4膜開口パターン 46を通して、 クェン酸と 過酸化水素の水溶液を用いて n— I n0. 5G a 0. 5A sキャップ層 41を等方性 ウエットエッチングする。 このとき、 エッチング液は、 S i 3N4膜開口パターン 46を通して浸入し、 リセスエッチング用開口パターン 51にも等しく流入し、 開口部 51 aを形成する。 このため、 エッチング後の n— I n0. 5G a 0. 5A s キヤップ層 41のリセスエッチング幅は、 リセスエッチング用ダミーパターン 4 2 aの幅とリセスエッチング用ダミーパターン 42 aの両端からの n— I n 0, 5 G a 0. 5 A sキャップ層 41のサイドエッチング幅との和となる。 Next, as shown in FIG. 7, through S i 3 N 4 film aperture pattern 46, the n- I n 0. 5 G a 0. 5 A s capping layer 41 using an aqueous solution of Kuen acid and hydrogen peroxide Isotropic wet etching. At this time, the etchant enters through the Si 3 N 4 film opening pattern 46 and flows equally into the recess etching opening pattern 51 to form the opening 51a. Thus, n-I n 0 after etching. 5 recess etching width G a 0. 5 A s cap layer 41, from both ends of the dummy pattern 42 a for the width and the recess etching of the dummy pattern 4 2 a for recess etching N−In 0 , 5 G a 0.5 As a sum with the side etching width of the As layer 41 of the cap layer.
例えば、 サイ ドエッチング幅を 0. 1 mとした場合、 本実施例ではソース側 のリセスエッチング幅は 0. 2 μηι、 ドレイン側のリセスエッチング幅は 0. 4 /zmとなり、 いわゆるオフセットゲート構造となる。  For example, if the side etching width is 0.1 m, the recess etching width on the source side is 0.2 μηι and the recess etching width on the drain side is 0.4 / zm in this embodiment, which is a so-called offset gate structure. Become.
ここで、 リセスエッチング用ダミーパターン 42 aの幅や、 リセスエッチング 用ダミーパターン 42 a上の S i 3N4膜開口パターン 46の形成位置を調整す ることにより、 ソース側、 ドレイン側のリセスエッチング幅は自由に設定可能で ある。 例えば、 リセスエッチング用ダミーパターン 42 aの中心より ドレイン側 に S i 3N4膜開口パターン 46を配置することや、 ソース側の絶縁膜のみ一部除 去するために、 ドレイン側端に S i 3N4膜開口パターン 46を配置することも可 能である。 Here, by adjusting the width of the recess etching dummy pattern 42a and the formation position of the Si 3 N 4 film opening pattern 46 on the recess etching dummy pattern 42a, the recess etching on the source side and the drain side is performed. The width can be set freely. For example, the drain side from the center of the recess etching dummy pattern 42a S i 3 N 4 placing the film aperture pattern 46 and, in order to divided only part insulating film on the source side, also possible to place the S i 3 N 4 film aperture pattern 46 on the drain side end in It is.
最後に、 EB蒸着法を用いて Auと P t (白金) と T i (チタン) からなる電 極用金属を蒸着し、 リフトオフ法にてゲート電極 52を形成することにより、 ゲ 一ト電極の庇部分に接する S i 3N4膜 44の下にソース電極側空隙 51 Sおよ びドレイン電極側空隙 51 Dが、 ゲート電極の庇部分の端部よりも張り出して形 成されていることが分かる。 図 1に示した構造の歪緩和 HEMTが完成する。 このようにオフセット構造の T字型ゲート電極を有し、 ドレイン側及びソース 電極側の T字型ゲート電極の庇部分と、 半導体基板との間の絶縁膜に対する空隙 部分の割合を従来構造に比べ増加することができる結果、 ゲート電極の庇部分と 半導体基板との間に形成される寄生容量が減少する。 このため、 電流利得遮断周 波数 f Tが少なくとも 150& 2、最大発信周波数£111 が少なくとも 200 G H zといった高周波特性を有する電界効果トランジスタを実現できる。 Finally, an electrode metal consisting of Au, Pt (platinum), and Ti (titanium) is deposited by EB evaporation, and a gate electrode 52 is formed by a lift-off method. The source electrode side gap 51 S and the drain electrode side gap 51 D may be formed below the Si 3 N 4 film 44 in contact with the eaves so as to protrude beyond the end of the eaves of the gate electrode. I understand. The strain relief HEMT with the structure shown in Fig. 1 is completed. In this way, the offset structure of the T-shaped gate electrode, the ratio of the eaves of the T-shaped gate electrode on the drain side and the source electrode side, and the ratio of the void portion to the insulating film between the semiconductor substrate and the conventional structure are compared. As a result, the parasitic capacitance formed between the eaves portion of the gate electrode and the semiconductor substrate decreases. Therefore, at least 150 & 2 current gain cut-off frequency f T, the maximum oscillation frequency £ 111 can realize a field effect transistor having a high-frequency characteristics such as at least 200 GH z.
なお、 本実施例では、 G a A s基板上の I nA l AsZl nG aAs歪緩和 H EMTについて述べたが、 I n P基板上の I n A 1 A sZ I nG a A s HEM Tや、 G a A s基板上の A I GaAs/I nGaA s歪チャネル HEMT、また、 ME S FETや J FET等の他の電界効果トランジスタにも適用可能である。 <実施例 2>  In the present embodiment, the InAlAsZlnGasAs strain relaxation HEMT on the GaAs substrate has been described, but the InA1AsZInGaAsHEMT on the InP substrate, It is also applicable to AI GaAs / InGaAs strained channel HEMTs on GaAs substrates and other field effect transistors such as MES FETs and JFETs. <Example 2>
図 8に、 本発明に係る電界効果トランジスタの第 2の実施例である歪緩和 HE MTの断面構造図を示す。 図 1と同様の構成部分には同一の参照符号を付し、 そ の詳細な説明は省略する。  FIG. 8 shows a sectional structure view of a strain relaxation HEMT which is a second embodiment of the field effect transistor according to the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
本実施例の特徴は、 T字型ゲート電極の庇部分と柱部分に接している絶縁膜の 底部領域に形成するソース側空隙 51 Sとドレイン側空隙 5 1Dを等しい幅及ぴ 厚さとすることである。 図 1と同様に空隙 51 S, 51 Dは T字型ゲート電極の 庇部分よりも張り出した領域まで形成されていることは勿論である。  The feature of this embodiment is that the source-side gap 51S and the drain-side gap 51D formed in the bottom region of the insulating film in contact with the eaves portion and the pillar portion of the T-shaped gate electrode have the same width and thickness. It is. As in Fig. 1, the voids 51S and 51D are of course formed up to the region protruding from the eaves of the T-shaped gate electrode.
この構造は、 S i 3 N4膜開口パターン 46をリセスエッチング用ダミーパター ン 42 a上の中心に位置させることで実現可能である。 例えば、 S RAM (Static Random Access Memory) のようなディジタル回路中 で、 スイッチング素子として用いる場合、 ソース側とドレイン側の電位が頻繁に 反転するため、 ドレイン側とソース側の寄生容量 C 1, C 2は、 等しい割合で性 能に影響をおよぼす。 しかし本実施例の歪緩和 HEMTでは、 丁字型ゲート電極 の庇部分と半導体基板との間に形成される寄生容量を、 ドレイン側とソース側で 同時に等しく低減できるため、 トランジスタ内を流れる電流の方向にかかわらず 高性能化が可能である。 This structure can be realized by positioning the Si 3 N 4 film opening pattern 46 at the center on the recess etching dummy pattern 42a. For example, when used as a switching element in a digital circuit such as an SRAM (Static Random Access Memory), the parasitic capacitance C 1, C on the drain side and the source side because the potentials on the source and drain sides are frequently inverted. 2 affects performance at an equal rate. However, in the strain relaxation HEMT of the present embodiment, the parasitic capacitance formed between the eaves portion of the T-shaped gate electrode and the semiconductor substrate can be reduced equally at the drain side and the source side at the same time. Regardless, high performance is possible.
<実施例 3 > <Example 3>
本発明に係る電界効果トランジスタの第 3の実施例である歪緩和 H E M Tとそ の製造方法を図 9〜図 13を用いて説明する。 なお、 図 1と同様の構成部分には 同一の参照符号を付し、 その詳細な説明は省略する。  Third Embodiment A third embodiment of a field-effect transistor according to the present invention, which is a strain relief HEMT and a method of manufacturing the same, will be described with reference to FIGS. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
図 9に示すように、 GaAs基板 31上に、 実施例 1と同様に厚さ 28 nmの アンドープ G a A sバッファ層 32から厚さ 40 11111の3 i ドープ n— I n。, 5 G a 0. 5A sキャップ層 41 (5 X 1019 c m_3) までの各層を順次ェピタキシ ャル成長法にて形成する。 さらに、 全面に熱 CVD法にて P S G膜 42を 50 n m堆積し、全面に EC Rスパッタリング法にて S i 3N4膜 44を 60 nm形成後、 EB描画装置を用いて開口寸法 0. 15 mのレジスト開口パターン 45を形成 する。 As shown in FIG. 9, 3 i-doped n-In with a thickness of 40 11111 from an undoped GaAs buffer layer 32 having a thickness of 28 nm on a GaAs substrate 31 similarly to the first embodiment. , Formed by 5 G a 0. 5 A s cap layer 41 (5 X 10 19 c m_ 3) the layers to sequentially Epitakishi catcher Le deposition. Further, a PSG film 42 is deposited on the entire surface by a thermal CVD method to a thickness of 50 nm, and a Si 3 N 4 film 44 is formed on the entire surface by an ECR sputtering method to a thickness of 60 nm. An m resist opening pattern 45 is formed.
次に、 図 10に示すように、 前記レジスト開口パターン 45を通して S i 3N4 膜 44を異方性ドライエッチングし、 0. 1 5 μηι幅の S i 3N4膜開口パターンNext, as shown in FIG. 10, the Si 3 N 4 film 44 is anisotropically dry-etched through the resist opening pattern 45 to form a 0.15 μηι wide Si 3 N 4 film opening pattern.
46を形成する。 このとき、 ?30膜42は、 S i 3N4膜 44と共にエッチング されても、 されなくともどちらでも良い。 同図では、 エッチングした場合を示し ている。 次に、 全面に熱 CVD法により P SG膜 47を 400 nm堆積する。 次に、 図 1 1に示すように、 光学露光装置を用いて、 ソース · ドレイン電極形 成用レジス トパターンを形成し、 レジス トパターンを通して P S G膜 47およびForm 46. At this time, ? The 30 film 42 may or may not be etched with the Si 3 N 4 film 44. In the same figure, the case where etching is performed is shown. Next, a 400 nm PSG film 47 is deposited on the entire surface by thermal CVD. Next, as shown in FIG. 11, a resist pattern for forming source / drain electrodes is formed using an optical exposure apparatus, and the PSG film 47 and the PSG film 47 are formed through the resist pattern.
5 i 3 N4膜 44をエッチングし、 n— I n0. 5G a 0.5A sキャップ層 41を露 出する。 次に、 EB蒸着法を用いて Auと Moからなる電極用金属を蒸着し、 リ フトオフ法にてソース電極 48と ドレイン電極 49を形成する。 次に、 図 12に示すように、 光学露光装置を用いて、 S i 3N4膜開口パターン 46上にレジスト開口パターン 50を形成し、 このレジスト開口パターン 50を 通して、 フッ酸水溶液を用いて P S G膜 47の等方性ゥエツトエッチングを行な い、 n— I n0. 5Ga0. 5Asキャップ層 41を露出する。 このとき、 P S G膜 42も同時にエッチングする。 エッチング時間は、 PSG膜 42のサイドエッチ ング幅が 0. 1 μπιとなるように設定する。 The 5 i 3 N 4 film 44 is etched to leave exposed the n- I n 0. 5 G a 0. 5 A s cap layer 41. Next, an electrode metal made of Au and Mo is deposited by EB deposition, and a source electrode 48 and a drain electrode 49 are formed by lift-off. Next, as shown in FIG. 12, using an optical exposure apparatus, a resist opening pattern 50 is formed on the Si 3 N 4 film opening pattern 46, and a hydrofluoric acid aqueous solution is passed through the resist opening pattern 50. rows that have isotropic © Etsu preparative etching the PSG film 47 Te, exposing the n- I n 0. 5 Ga 0 . 5 as cap layer 41. At this time, the PSG film 42 is simultaneously etched. The etching time is set so that the side etching width of the PSG film 42 is 0.1 μπι.
次に、 図 13に示すように、 S i 3N4膜開口パターン 46を通して、 クェン酸 と過酸化水素の水溶液を用いて n— I n。. 5G a。. 5A sキャップ層 41を等方 性ウエットエッチングする。 このときのリセスエッチング幅は、 例えばサイドエ ツチング量を 0. 1 mとした場合、 ソース側、 ドレイン側ともに 0. 2 μπιと なる。 Next, as shown in FIG. 13, through the Si 3 N 4 film opening pattern 46, n-In using an aqueous solution of citric acid and hydrogen peroxide. . 5 G a. . Isotropically wet etched 5 A s cap layer 41. The recess etching width at this time is 0.2 μπι on both the source side and the drain side when the side etching amount is 0.1 m, for example.
最後に、 EB蒸着法を用いて Auと P tと T iからなる電極用金属を蒸着し、 リフトオフ法にてグート電極 52を形成し歪緩和 HEMTが完成する。  Finally, an electrode metal consisting of Au, Pt, and Ti is deposited by EB deposition, and the gut electrode 52 is formed by lift-off, thereby completing the strain-mitigating HEMT.
本実施例の歪緩和 HEMTも、 実施例 1と同様に、 オフセット構造の T字形ゲ ート電極を有し、ゲート電極の庇部分に接する S i 3N4膜 44の下にソース電極 側空隙 51 Sおよびドレイン電極側空隙 51 Dがゲート電極の柱部分から庇端部 よりも張り出した位置にまで形成され、 寄生容量の低減が図れるため、 実施例 1 と同様の高周波特性を有する電界効果トランジスタを実現できる。 Similarly to the first embodiment, the strain relief HEMT of the present embodiment also has a T-shaped gate electrode having an offset structure, and has a source electrode side gap below the Si 3 N 4 film 44 in contact with the eaves portion of the gate electrode. A field effect transistor having the same high-frequency characteristics as the first embodiment because 51 S and a gap 51 D on the drain electrode side are formed from the pillar portion of the gate electrode to a position protruding from the eaves end portion, thereby reducing parasitic capacitance. Can be realized.
本実施例では、 P SG膜 42のサイドエッチング幅の制御が難しく、 実施例 1 と比べ、 最終的に n— I n 0. 5G a 0. 5A sキャップ層 41のリセスエッチング 幅の制御性、 再現性に劣るが、 リセスエッチング用ダミーパターン 42 a形成の ためのリソグラフイエ程や、 エッチング工程が省略できるため、 低コスト化でき るという利点がある。 In this embodiment, it is difficult to control the side etching width of the P SG film 42, compared with Example 1, finally n- I n 0. 5 G a 0. 5 control recess etching width A s cap layer 41 Although it is inferior in reproducibility and reproducibility, there is an advantage that the cost can be reduced because the lithography process for forming the dummy pattern 42a for recess etching and the etching process can be omitted.
<実施例 4〉 <Example 4>
図 14に、 本発明に係る電界効果トランジスタの第 4の実施例である歪緩和 H EMTの断面構造図を示す。 なお、 図 1と同様の構成部分には同一の参照符号を 付し、 その詳細な説明を省略する。  FIG. 14 shows a sectional structure view of a strain-mitigating HEMT which is a fourth embodiment of the field-effect transistor according to the present invention. The same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
本実施例の特徴は、 ォーミックコンタクト層のリセスエッチング幅を、 リセス エッチング用ダミーパターン 4 2 aの幅と等しく形成することである。 This embodiment is characterized in that the recess etching width of the ohmic contact layer is That is, it is formed to have the same width as the etching dummy pattern 42a.
この構造は、 S i 3 N 4膜開口パターン 4 6を通して n— I n 0. 5 G a 0. 5 A s キャップ層 4 1をエッチングする際に、 深さ方向に対してサイド方向のエツチン グが数分の 1と少ない異方性ゥエツトエッチング液を用いてエッチングすること により実現可能である。 異方性ウエットエッチング液としては、 例えば、 1 0 °C 以下に冷却した、 クェン酸と過酸化水素水溶液などを用いればよい。 This structure, in etching the S i 3 N 4 n- I n 0 through film aperture pattern 4 6. 5 G a 0. 5 A s capping layer 4 1, side direction Etsuchin grayed the depth direction Can be realized by performing etching using an anisotropic liquid etchant that is as small as a fraction. As the anisotropic wet etching solution, for example, an aqueous solution of citric acid and hydrogen peroxide cooled to 10 ° C. or less may be used.
S i 3 N 4膜開口パターン 4 6を通して浸入したエッチング液は、 リセスエッチ ング用ダミーパターン 4 2 aをエッチング除去してできたリセスエッチング用開 口パターン 5 1にも等しく流入し、 リセスエッチング用ダミーパターン 4 2 aの 幅に等しい n— I n。. 5 G a。. 5 A sキャップ層 4 1部分のみ異方性エッチング する。 図 1と同様に空隙 5 1 S, 5 I Dは T字型ゲート電極の庇部分よりも張り 出した領域まで形成されていることは勿論である。 The etchant that has penetrated through the Si 3 N 4 film opening pattern 46 flows equally into the recess etching opening pattern 51 formed by etching and removing the recess etching dummy pattern 42 a, and the recess etching dummy pattern. N—I n equal to the width of the pattern 4 2 a. . 5 G a. . Anisotropically etching only 5 A s capping layer 4 1 part. As in FIG. 1, the voids 51S and 5ID are of course formed up to the region that extends beyond the eaves of the T-shaped gate electrode.
等方性エッチングの際のサイドエッチング幅の制御は非常に困難であり、 サイ ドエッチング幅のばらつきは、 トランジスタの性能のばらつきとなる。 しかし、 本実施例では異方性エッチングでリセスエッチングを行なうため、 サイドエッチ ング幅のばらつきによる性能ばらつきを無視することが可能となる。  It is very difficult to control the side etching width during isotropic etching, and variations in the side etching width result in variations in transistor performance. However, in this embodiment, since recess etching is performed by anisotropic etching, it is possible to ignore performance variations due to variations in the side etching width.
また、 等方性ェッチングを行なつた場合、 リセスエッチング幅はサイドエッチ ング幅も考慮して決定する必要があるため、 リセスエッチング用ダミーパターン 4 2 aの幅は最終的なリセスエッチング幅よりも小さくする必要がある。 このた め、 容量の低減効果が減少する。 しかし、 本実施例では、 リセスエッチング幅と リセスエッチング用ダミーパターン 4 2 aの幅は等しくすることが可能なので、 容量の低減効果を最大限得ることができる。  Also, when isotropic etching is performed, the width of the recess etching dummy pattern 42a must be larger than the final recess etching width because the recess etching width must be determined in consideration of the side etching width. Need to be smaller. Therefore, the effect of reducing the capacity is reduced. However, in the present embodiment, since the recess etching width and the width of the recess etching dummy pattern 42a can be made equal, the capacity reduction effect can be maximized.
また、 実施例 3に記載したような絶縁膜のサイドエッチングを利用してリセス エッチング用開口パターン 5 1を形成するような場合にも、 本実施例の製造方法 を適用可能である。  The manufacturing method of the present embodiment is also applicable to the case where the recess etching opening pattern 51 is formed by using the side etching of the insulating film as described in the third embodiment.
ぐ実施例 5 > Example 5>
図 1 6に、 第 5の実施例である本発明に係る電界効果トランジスタを搭載する マイクロス ト リ ツプ型のモノ リ シックマイクロ波集積回路 (MM I C: Monolithic Microwave Integrated Circuit) 1 0 0の断面図を示す。 FIG. 16 shows a microstrip-type monolithic microwave integrated circuit (MM IC: mounting a field-effect transistor according to the fifth embodiment of the present invention). 1 shows a cross-sectional view of Monolithic Microwave Integrated Circuit 100.
図 1 6に示すように、 G a A s半導体基板 1 0 1の表面には、 歪緩和 H E MT As shown in FIG. 16, the surface of the GaAs semiconductor substrate 101 has a strain relaxation H E MT
1 0 2、 抵抗 1 0 4が形成され、 さらに層間絶縁膜 1 0 3を介してキャパシタン ス(電極としての伝送線路の導体 1 0 5を含む) 1 0 6、 インダクタンス 1 0 7、 伝送線路の導体 1 0 5等の各種マイクロ波回路素子が形成されている。 なお、 G a A s半導体基板 1 0 1の裏面にはパイァホール 1 0 8と接地導体 1 0 9が設け られ、 基板表面の導体 1 0 5と裏面の接地導体 1 0 9とが抵抗 1 0 4を介して適 当なィンピーダンスを持って接続されている。 102, resistance 104 are formed, and capacitance (including the conductor 105 of the transmission line as an electrode) 106 via the interlayer insulating film 103, inductance 107, transmission line Various microwave circuit elements such as the conductor 105 are formed. In addition, a via hole 108 and a ground conductor 109 are provided on the back surface of the GaAs semiconductor substrate 101, and a conductor 105 on the front surface of the substrate and a ground conductor 109 on the back surface have a resistor 104. Are connected via a suitable impedance.
ここで、 歪緩和 H EMT 1 0 2には実施例 1で示した T字ゲート電極構造を有 する歪緩和 H E MTを用いる。  Here, the strain relaxation HEMT having the T-shaped gate electrode structure shown in the first embodiment is used as the strain relaxation HEMT 102.
本実施例によれば、高性能な歪緩和 H E MTを能動素子として用いているので、 高性能な MM I Cを実現できる。  According to the present embodiment, since the high-performance strain relaxation HEMT is used as an active element, a high-performance MMIC can be realized.
<実施例 6 >  <Example 6>
図 1 7に、 本発明の第 6の実施例である車載用レーダーの構成図を示す。 車載 用レーダーは、 電圧可変発振器 2 0 1、 増幅器 2 0 2、 受信器 2 0 3、 受信アン テナ端子 2 0 7、 送信アンテナ端子 2 0 8、 端子 2 0 9から構成される高周波モ ジュール 2 0 0と、受信アンテナ端子 2 0 7に接続された受信アンテナ 2 1 0と、 送信アンテナ端子 2 0 8に接続された送信アンテナ 2 1 1と、 端子 2 0 9に接続 された信号処理系 2 1 2で構成されている。 ここで、 電圧可変発振器 2 0 1、 増 幅器 2 0 2およぴ受信器 2 0 3は実施例 5で説明した MM I Cで構成する。  FIG. 17 shows a configuration diagram of an on-vehicle radar according to a sixth embodiment of the present invention. The automotive radar is a high-frequency module 2 consisting of a voltage variable oscillator 201, an amplifier 202, a receiver 203, a receiving antenna terminal 207, a transmitting antenna terminal 208, and a terminal 209. 0 0, the receiving antenna 210 connected to the receiving antenna terminal 207, the transmitting antenna 211 connected to the transmitting antenna terminal 208, and the signal processing system 2 connected to the terminal 209 It is composed of one and two. Here, the voltage variable oscillator 201, the amplifier 202, and the receiver 203 are configured by the MMIC described in the fifth embodiment.
以下、 車载用レーダーの動作を説明する。 電圧可変発振器 2 0 1からの 7 6 G H zの信号 S 1は増幅器 2 0 2により増幅され、 送信アンテナ端子 2 0 8を通し て送信アンテナ 2 1 1から放射される。 対象物から反射して戻ってきた信号 S 2 は、 受信アンテナ 2 1 0で受信され、 受信アンテナ端子 2 0 7から受信器 2 0 3 内の増幅器 2 0 5で増幅される。  Hereinafter, the operation of the vehicle radar will be described. The 76 GHz signal S 1 from the voltage variable oscillator 201 is amplified by the amplifier 202 and radiated from the transmission antenna 211 via the transmission antenna terminal 208. The signal S 2 reflected back from the object is received by the receiving antenna 210 and amplified from the receiving antenna terminal 207 by the amplifier 205 in the receiver 203.
さらに、 この増幅された信号は、 受信器 2 0 3内の増幅器 2 0 4で増幅された 電圧可変発振器 2 0 1からの 7 6 G H zの参照信号 S 1と受信器 2 0 3内のミク サ 2 0 6で混合されて、中間周波数( I F intermediate Frequency)信号となる。 I F信号は、 端子 2 0 9から取り出されて信号処理系 2 1 2に入力され、 そこで 対象物の相対速度、 距離、 角度が計算される。 Further, the amplified signal is combined with the reference signal S 1 of 76 GHz from the variable voltage oscillator 201 amplified by the amplifier 204 in the receiver 203 and the mixer in the receiver 203. The signals are mixed in the sub-unit 206 to form an intermediate frequency (IF intermediate Frequency) signal. The IF signal is taken out from the terminal 209 and input to the signal processing system 212, where the relative speed, distance, and angle of the object are calculated.
本実施例の高周波モジュールは、 実施例 5の MM I Cを用いているので高性能 である。 したがって、 高性能な車載用レーダーを実現できる。 産業上の利用可能性  The high-frequency module of the present embodiment has high performance because it uses the MMIC of the fifth embodiment. Therefore, a high-performance in-vehicle radar can be realized. Industrial applicability
以上、 前述した実施例より明らかなように、 本発明によれば、 T字型ゲート電 極の柱部分のソース側、 ドレイン側両方ともに接して設けられた絶縁膜の底部領 域直下のォーミックコンタクト層を T字型ゲート電極の庇端部よりも張り出した 位置まで一部除去する構成としたことにより、 ソース側およびドレイン側共に従 来よりも寄生容量を低減した電界効果トランジスタを得ることができる。  As described above, as is apparent from the above-described embodiment, according to the present invention, the hole just below the bottom region of the insulating film provided in contact with both the source side and the drain side of the pillar portion of the T-shaped gate electrode. A field-effect transistor with a reduced parasitic capacitance on both the source and drain sides by adopting a configuration in which the mic contact layer is partially removed to the position protruding from the eaves end of the T-shaped gate electrode Can be.
また、 除去する底部領域のソース側、 ドレイン側比率や幅を調整することによ り、 寄生容量、 寄生抵抗、 耐圧等自由に設定した電界効果トランジスタを得られ る。  Further, by adjusting the ratio and width of the source and drain sides of the bottom region to be removed, a field-effect transistor can be obtained in which parasitic capacitance, parasitic resistance, breakdown voltage, and the like are freely set.
また、 ォーミツタコンタクト層のエッチングを異方性エッチングで行なうこと により、 サイドエッチング幅のばらつきによる性能ばらつきを防止できると同時 に、 容量の低減効果も最大限得ることができる電界効果トランジスタの製造方法 を提供できる。  In addition, by performing anisotropic etching of the ohmic contact layer, it is possible to prevent performance variations due to variations in side etching width, and at the same time, to manufacture a field effect transistor capable of maximizing the capacity reduction effect. A method can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1. 半導体基板上に形成された半導体層と、 該半導体層に接し、 柱部分と庇部分 ■ からなる T字型形状をもつゲート電極と、 該ゲート電極の柱部分と庇部分に接し て設けられた絶縁膜と、 該絶縁膜と前記半導体基板との間に挿入され、 且つ前記 ゲート電極の柱部分から後退した部分に形成された空隙と、 ソース . ドレインと のコンタク トをとるためのォーミッタコンタクト層とを具備した電界効果トラン ジスタにおいて、 1. A semiconductor layer formed on a semiconductor substrate, a T-shaped gate electrode in contact with the semiconductor layer and including a pillar portion and an eaves portion, and provided in contact with the pillar portion and the eaves portion of the gate electrode. An insulating film formed between the insulating film and the semiconductor substrate, and a gap formed in a portion of the gate electrode recessed from the pillar portion, and a contact between the source and the drain. A field effect transistor having a
少なくとも前記グート電極の柱部分に接する前記絶縁膜の底部領域直下のソー ス側のォ一ミツタコンタクト層が、 ゲート電極の前記柱部分から庇部分の端部直 下まで除去されて成る空隙を有することを特徴とする電界効果トランジスタ。 At least a source-side emitter contact layer immediately below the bottom region of the insulating film that is in contact with the pillar portion of the good electrode has a void that is removed from the pillar portion of the gate electrode to immediately below the end of the eaves portion. A field effect transistor characterized by the above-mentioned.
2. 請求の範囲第 1項記載の電界効果トランジスタにおいて、 前記ゲート電極の 柱部分に接する前記絶縁膜の底部領域直下のドレイン側のォーミツタコンタクト 層が、 ゲ一ト電極の前記柱部分から庇部分の端部直下まで除去されて成る空隙を 更に有することを特徴とする電界効果トランジスタ。 2. The field-effect transistor according to claim 1, wherein the drain-side ohmic contact layer immediately below a bottom region of the insulating film in contact with a pillar portion of the gate electrode is formed from the pillar portion of the gate electrode. A field-effect transistor further comprising a void that is removed to just below the end of the eaves portion.
3. 請求の範囲第 2項記載の電界効果トランジスタにおいて、 前記除去されてい るォーミツタコンタクト層の空隙の幅おょぴ厚さは、 ソース側とドレイン側で等 しいことを特徴とする電界効果トランジスタ。  3. The field effect transistor according to claim 2, wherein the width and thickness of the voids of the removed ohmic contact layer are equal on the source side and the drain side. Effect transistor.
4. 請求の範囲第 1項乃至第 3項のいずれかに記載の電界効果トランジスタにお いて、 前記半導体基板は化合物半導体基板であり、 前記半導体層は歪緩和層を含 む複数の化合物半導体層の積層膜であって、 歪緩和高電子移動度電界効果トラン ジスタを構成することを特徴とする電界効果トランジスタ。  4. The field-effect transistor according to any one of claims 1 to 3, wherein the semiconductor substrate is a compound semiconductor substrate, and the semiconductor layer includes a plurality of compound semiconductor layers including a strain relaxation layer. A field-effect transistor, comprising a strain-relaxed high-electron-mobility field-effect transistor.
5. 請求の範囲第 4項に記載の電界効果トランジスタにおいて、 前記半導体基板 は半絶縁性 G a A s基板であり、 前記積層膜は前記 G a A s基板側からアンド一 プ G a Asバッファ層、 アンドープ A 1 A sバッファ層、 アンドープ Ι ηΑ Ι Α sステップグレーデッド層、 アンドープ I n0. 5A 10. 5A sパリア層、 アンド ープ I n o. 5 °" a 0. ラャネノレ層ヽ 'ノトーフ I n 0 5 A 10 5 A s層、 1 ドープ n型 I n0.5A 1 o.5A sキャリア供給層、アンドープ I n0. 5A 10. 5A s層、 アンドープ I n P層、 S i ドープ n型 I n 0. 5 G a 0. 5 A sキヤップ層か らなる積層膜であることを特徴とする電界効果トランジスタ。 5. The field effect transistor according to claim 4, wherein the semiconductor substrate is a semi-insulating GaAs substrate, and the laminated film is an AND GaAs buffer from the GaAs substrate side. layer, an undoped A 1 A s buffer layer, an undoped Ι ηΑ Ι Α s step graded layer, an undoped I n 0. 5 A 10. 5 A s Paglia layer, and-loop I n o. 5 ° "a 0. Rayanenore layerヽ'Notofu I n 0 5 A 1 0 5 A s layer 1 doped n-type I n 0. 5 A 1 o . 5 A s carrier supply layer, an undoped I n 0. 5 A 1 0 . 5 A s layer, an undoped I n P layer, S i doped n-type I n 0. 5 G a 0 . 5 A s field effect transistor, which is a cap layer or Ranaru laminated film.
6 . 半導体基板上に少なくとも電界効果トランジスタ、 キャパシタンス、 インダ クタンス、 伝送線路を搭載するマイクロストリップ型のモノリシックマイクロ波 集積回路において、 前記電界効果トランジスタに請求の範囲第 1項乃至第 5項の いずれかに記載の電界効果トランジスタを用いることを特徴とするモノリシック マイクロ波集積回路。  6. A microstrip type monolithic microwave integrated circuit having at least a field effect transistor, a capacitance, an inductance, and a transmission line mounted on a semiconductor substrate, wherein the field effect transistor is any one of claims 1 to 5. A monolithic microwave integrated circuit, characterized by using the field-effect transistor described in (1).
7 . 電圧可変発振器と、 送信アンテナ端子と、 前記電圧可変発振器と前記送信ァ ンテナ端子の間に接続された増幅器と、 受信アンテナ端子と、 前記電圧可変発振 器と前記受信アンテナ端子の間に接続された受信器と、 該受信器のミクサの中間 周波数信号の端子を有する高周波モジュールにおいて、 前記電圧可変発振器と、 前記増幅器と、 前記受信器とが請求の範囲第 4項に記載のマイク口波集積回路で 構成されていることを特徴とする高周波モジュール。  7. A voltage variable oscillator, a transmission antenna terminal, an amplifier connected between the voltage variable oscillator and the transmission antenna terminal, a reception antenna terminal, and a connection between the voltage variable oscillator and the reception antenna terminal. 5. A high-frequency module having a receiver and a terminal for an intermediate frequency signal of a mixer of the receiver, wherein the voltage variable oscillator, the amplifier, and the receiver are connected to each other according to claim 4. A high-frequency module comprising an integrated circuit.
8 . 半導体基板上に半導体層を形成する工程と、  8. forming a semiconductor layer on the semiconductor substrate;
前記半導体層上に第 1の絶縁膜を形成する工程と、  Forming a first insulating film on the semiconductor layer;
前記第 1の絶縁膜上にレジストパターンを形成する工程と、  Forming a resist pattern on the first insulating film;
前記レジストパターンをマスクとして前記第 1の絶縁膜に対して異方性エッチ ングを行ない第 1絶縁膜パターンを形成する工程と、  Performing anisotropic etching on the first insulating film using the resist pattern as a mask to form a first insulating film pattern;
前記半導体基板上および前記第 1絶縁膜パタ一ン上に第 2絶縁膜を形成するェ 程と、  Forming a second insulating film on the semiconductor substrate and the first insulating film pattern;
前記第 1絶縁膜パターン上に形成された前記第 2絶縁膜部分に、 前記第 1絶縁 膜パターンのソース側端より所定量ドレイン側にずらして配置され、 前記第 1絶 縁膜の幅より寸法の小さい第 1 レジスト開口パターンを形成する工程と、 前記第 1レジスト開口パターンをマスクにして前記第 2絶縁膜を異方性ェツチ ングにより第 2絶縁膜開口パターンを形成する工程と、  The second insulating film portion formed on the first insulating film pattern is arranged to be shifted by a predetermined amount from the source side end of the first insulating film pattern to the drain side, and has a dimension larger than the width of the first insulating film. Forming a first resist opening pattern having a small size, and forming a second insulating film opening pattern by anisotropically etching the second insulating film using the first resist opening pattern as a mask.
前記第 2絶縁膜開口パターンを通して前記第 1絶縁膜パタ一ンを等方性ェッチ ングする工程と、  Isotropically etching the first insulating film pattern through the second insulating film opening pattern;
前記第 2絶縁膜開口パターンと前記第 1絶縁膜パターンをマスクにして前記半 導体層の一部をエッチングにより除去する工程と、 Using the second insulating film opening pattern and the first insulating film pattern as masks, Removing a part of the conductor layer by etching;
前記ェッチングにより除去された半導体層の開口部に露出した前記半導体基板 の表面上に T字型のゲート電極を形成する工程と、  Forming a T-shaped gate electrode on the surface of the semiconductor substrate exposed at the opening of the semiconductor layer removed by the etching;
を含むことを特徴とする電界効果トランジスタの製造方法。 A method for manufacturing a field-effect transistor, comprising:
9 . 半導体基板上に半導体層を形成する工程と、 9. forming a semiconductor layer on the semiconductor substrate;
前記半導体層上に第 1絶縁膜を形成する工程と、  Forming a first insulating film on the semiconductor layer;
前記第 1絶縁膜上に第 2絶縁膜を形成する工程と、  Forming a second insulating film on the first insulating film;
前記第 2絶縁膜上にレジスト開口パターンを形成する工程と、  Forming a resist opening pattern on the second insulating film;
前記レジスト開口パターンをマスクにして前記第 2絶縁膜を異方性ェツチング して第 2絶縁膜開ロパタ一ンを形成する工程と、  Forming a second insulating film opening pattern by anisotropically etching the second insulating film using the resist opening pattern as a mask;
前記第 2絶縁膜開口パターンを通して前記第 1絶縁膜の一部を等方性ェッチン グして第 1絶縁膜開口パターンを形成する工程と、  Forming a first insulating film opening pattern by isotropically etching a part of the first insulating film through the second insulating film opening pattern;
前記第 2絶縁膜開口パターンと前記第 1絶縁膜開口パターンを通して前記半導 体層の一部をエッチングにより除去する工程と、  Removing a portion of the semiconductor layer by etching through the second insulating film opening pattern and the first insulating film opening pattern;
前記ェツチングにより除去された半導体層の開口部に露出した前記半導体基板 の表面上に T字型のゲート電極を形成する工程と、  Forming a T-shaped gate electrode on the surface of the semiconductor substrate exposed at the opening of the semiconductor layer removed by the etching;
を含むことを特徴とする電界効果トランジスタの製造方法。 A method for manufacturing a field-effect transistor, comprising:
1 0 . 請求の範囲第 8項または第 9項に記載の半導体装置の製造方法において、 前記半導体層の一部をエッチングするエッチングには、 異方性エッチングを用い ることを特徴とする電界効果トランジスタの製造方法。  10. The method for manufacturing a semiconductor device according to claim 8, wherein an anisotropic etching is used for etching a part of the semiconductor layer. A method for manufacturing a transistor.
1 1 . 請求の範囲第 8項乃至第 1 0項のいずれかに記載の半導体装置の製造方法 において、 前記半導体基板は化合物半導体基板であり、 前記半導体層は歪緩和層 を含む複数の化合物半導体層の積層膜であることを特徴とする電界効果トランジ スタの製造方法。  11. The method for manufacturing a semiconductor device according to any one of claims 8 to 10, wherein the semiconductor substrate is a compound semiconductor substrate, and the semiconductor layer is a plurality of compound semiconductors including a strain relaxation layer. A method for manufacturing a field-effect transistor, which is a laminated film of layers.
1 2 . 請求の範囲第 1 1項に記載の電界効果トランジスタの製造方法において、 前記半導体基板は半絶縁性 G a A s基板であり、 前記積層膜は前記 G a A s基板 側からアンドープ G a A sバッファ層、 アンドープ A 1 A sバッファ層、 アンド ープ I n A 1 A sステップグレーデッド層、 アンドープ I n 0. S A 1。 5 A sパ リア層、アンドープ I n0.5G a o.5Asチャネル層、アンドープ I n0.5A 10. 5As層、 S i ドープ n型 I n0. 5A Γ0. 5A sキャリア供給層、 アンドープ I n 0. 5A 10. 5A s層、 アンドープ I nP層、 S i ドープ n型 I n0. 5G a 0. 5A s キャップ層からなる積層膜であることを特徴とする電界効果トランジスタの製造 方法。 12. The method for manufacturing a field-effect transistor according to claim 11, wherein the semiconductor substrate is a semi-insulating GaAs substrate, and the laminated film is undoped from the GaAs substrate side. a A s buffer layer, an undoped A 1 A s buffer layer, and-loop I n A 1 A s step graded layer, an undoped I n 0. S A 1. 5 As Rear layer, an undoped I n 0. 5 G a o . 5 As channel layer, an undoped I n 0. 5 A 1 0 . 5 As layers, S i doped n-type I n 0. 5 A Γ 0 . 5 A s carrier supply layer, an undoped I n 0. 5 a 1 0 . 5 a s layer, the undoped I nP layer, the S i doped n-type I n 0. a 5 G a 0. 5 a s a laminated film made of the cap layer A method for manufacturing a field-effect transistor.
PCT/JP2002/000944 2002-02-06 2002-02-06 Field-effect transistor and method for manufacturing it WO2003067664A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/000944 WO2003067664A1 (en) 2002-02-06 2002-02-06 Field-effect transistor and method for manufacturing it
JP2003566904A JPWO2003067664A1 (en) 2002-02-06 2002-02-06 Field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/000944 WO2003067664A1 (en) 2002-02-06 2002-02-06 Field-effect transistor and method for manufacturing it

Publications (1)

Publication Number Publication Date
WO2003067664A1 true WO2003067664A1 (en) 2003-08-14

Family

ID=27677634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000944 WO2003067664A1 (en) 2002-02-06 2002-02-06 Field-effect transistor and method for manufacturing it

Country Status (2)

Country Link
JP (1) JPWO2003067664A1 (en)
WO (1) WO2003067664A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1858064A3 (en) * 2006-05-15 2008-05-28 United Monolithic Semiconductors GmbH Method for manufacturing a semi-conductor element with a metal gate electrode assembled in a double trench structure
JP2009212103A (en) * 2008-02-29 2009-09-17 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2010027987A (en) * 2008-07-23 2010-02-04 Sony Corp Field-effect transistor and method of manufacturing field-effect transistor
KR20210009374A (en) * 2018-06-27 2021-01-26 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140942A (en) * 1988-11-22 1990-05-30 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH07240425A (en) * 1994-02-28 1995-09-12 Nec Corp Manufacture of semiconductor device
JPH10154806A (en) * 1996-11-22 1998-06-09 Hitachi Ltd Semiconductor device and its application member
JPH10209180A (en) * 1997-01-16 1998-08-07 Nec Corp Manufacture of semiconductor device
JP2001111037A (en) * 1999-10-08 2001-04-20 Hitachi Cable Ltd Semiconductor wafer and field effect transistor
JP2001267287A (en) * 2000-03-15 2001-09-28 Hitachi Ltd Manufacturing method of semiconductor device
JP2001358081A (en) * 2000-06-12 2001-12-26 Hitachi Cable Ltd Method of manufacturing compound semiconductor, semiconductor wafer manufactured through the same, and field effect transistor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140942A (en) * 1988-11-22 1990-05-30 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH07240425A (en) * 1994-02-28 1995-09-12 Nec Corp Manufacture of semiconductor device
JPH10154806A (en) * 1996-11-22 1998-06-09 Hitachi Ltd Semiconductor device and its application member
JPH10209180A (en) * 1997-01-16 1998-08-07 Nec Corp Manufacture of semiconductor device
JP2001111037A (en) * 1999-10-08 2001-04-20 Hitachi Cable Ltd Semiconductor wafer and field effect transistor
JP2001267287A (en) * 2000-03-15 2001-09-28 Hitachi Ltd Manufacturing method of semiconductor device
JP2001358081A (en) * 2000-06-12 2001-12-26 Hitachi Cable Ltd Method of manufacturing compound semiconductor, semiconductor wafer manufactured through the same, and field effect transistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1858064A3 (en) * 2006-05-15 2008-05-28 United Monolithic Semiconductors GmbH Method for manufacturing a semi-conductor element with a metal gate electrode assembled in a double trench structure
JP2009212103A (en) * 2008-02-29 2009-09-17 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2010027987A (en) * 2008-07-23 2010-02-04 Sony Corp Field-effect transistor and method of manufacturing field-effect transistor
KR20210009374A (en) * 2018-06-27 2021-01-26 미쓰비시덴키 가부시키가이샤 Semiconductor device manufacturing method
KR102385502B1 (en) 2018-06-27 2022-04-11 미쓰비시덴키 가부시키가이샤 Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
JPWO2003067664A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3180776B2 (en) Field-effect transistor
JP4913046B2 (en) Method of forming a III-V substrate structure having an enhancement mode transistor device and a depletion mode transistor device
US20060226415A1 (en) Semiconductor integrated circuit device and vehicle-mounted radar system using the same
JP2004511913A (en) Single integrated E / D mode HEMT and manufacturing method thereof
JPH10150185A (en) Semiconductor device and its manufacture
JP2005159157A (en) Semiconductor device
JP2006120898A (en) Schottky barrier diode
US6653668B2 (en) Radio frequency modules and modules for moving target detection
US8134182B2 (en) Field-effect transistor, semiconductor device including the field-effect transistor, and method of producing semiconductor device
KR100349953B1 (en) Field effect transistor which can operate stably in millimeter wave band and method of manufacturing the same
JP2001230263A (en) Field effect transistor
WO2003067664A1 (en) Field-effect transistor and method for manufacturing it
US6979871B2 (en) Semiconductor device having T-shaped gate electrode and method of manufacturing the same
JP2522159B2 (en) Method for manufacturing semiconductor integrated circuit
JP2004241471A (en) Compound semiconductor device, method of manufacturing the same, semiconductor device, and high frequency module
JP3249446B2 (en) Method for manufacturing field effect transistor
JPH11163316A (en) Field-effect transistor and manufacture thereof
US20020011604A1 (en) Semiconductor device for milliwave band oscillation, fabricating method therefor and oscillator therewith
JP3203192B2 (en) Semiconductor device and method of manufacturing the same
US6787817B2 (en) Compound semiconductor having a doped layer between the gate and an ohmic contact of an active region
JP2000021900A (en) Manufacturing field effect transistor
JPH0677255A (en) Manufacture of semiconductor device
JP2000307102A (en) Field-effect transistor and manufacture thereof
Lim et al. A Comparative Study of a Dielectric‐Defined Process on AlGaAs/InGaAs/GaAs PHEMTs
JP2002299606A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003566904

Country of ref document: JP

122 Ep: pct application non-entry in european phase