WO2003066647A2 - Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance - Google Patents

Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance Download PDF

Info

Publication number
WO2003066647A2
WO2003066647A2 PCT/FR2003/000345 FR0300345W WO03066647A2 WO 2003066647 A2 WO2003066647 A2 WO 2003066647A2 FR 0300345 W FR0300345 W FR 0300345W WO 03066647 A2 WO03066647 A2 WO 03066647A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
chosen
compound according
carbon atoms
Prior art date
Application number
PCT/FR2003/000345
Other languages
French (fr)
Other versions
WO2003066647A3 (en
Inventor
Yves Jean Marcel Chapleur
Patrick Didier Bogdanowicz
Françoise CHRETIEN
Jean-Pierre Antoine Pujol
Original Assignee
(Cnrs) Centre National De Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (Cnrs) Centre National De Recherche Scientifique filed Critical (Cnrs) Centre National De Recherche Scientifique
Priority to AU2003226862A priority Critical patent/AU2003226862A1/en
Publication of WO2003066647A2 publication Critical patent/WO2003066647A2/en
Publication of WO2003066647A3 publication Critical patent/WO2003066647A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H11/00Compounds containing saccharide radicals esterified by inorganic acids; Metal salts thereof
    • C07H11/04Phosphates; Phosphites; Polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • Synthesis of glycan inositolphosphate type molecules treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance.
  • the invention relates to compounds related to glycan inositolphosphates, their use as a medicament, in particular for the treatment of diseases associated with impaired glucose metabolism, and for the treatment of diseases associated with excessive cell proliferation.
  • the WHO classification distinguishes insulin-dependent diabetes (IDD), requiring daily administration of insulin and which corresponds overall to juvenile or type 1 diabetes, and non-insulin-dependent diabetes (DNID) which corresponds with late-onset or type 2 diabetes.
  • IDD insulin-dependent diabetes
  • DNID non-insulin-dependent diabetes
  • CODE 2 Cost of Diabetes in Europe, type 2
  • the 10 million type 2 diabetics in the eight European countries studied represent an expenditure corresponding on average to 5% of health expenditure. In the United States, this pathology represents the fourth cause of death and the expenses linked to this disease are considerable.
  • the estimated progression of diabetes is worrying, 120 million type 2 diabetics worldwide today, 150 million in 2005, 213 million in 2010. In France, the prevalence of type 2 diabetes in the general population is estimated at About 2%, or 1.2 million people affected.
  • IPGs originate from free or protein-anchoring glycosylphosphatidylinositols (GPIs). GPIs consist of inositol, non-N-acetylated glucosamine, carbohydrates and saturated fatty acids. Numerous studies have focused on the search for molecules of the IPG family with hypoglycemic properties.
  • Myo-WG also called IPG type A, consists of myo-inositol and glucosamine. This isoform has a negative effect on the activity of cAMP-dependent protein kinases by inhibiting adenylate cyclase and activating cAMP phosphodiesterase. In rat adipocytes, it increases lipogenesis via the activation of acetylCoA carboxylase.
  • Chiro-IGP or P form, consists of methylated c ⁇ / ro-inositol, also called pinitol, and galactosamine.
  • glycogen synthetase phosphatase By stimulating the activity of glycogen synthetase phosphatase, this isoform increases the level of synthesis of glycogen. It also activates pyruvate dehydrogenase phosphatase, but has no effect on lipid metabolism or on the activity of cAMP-dependent protein kinases (US Patent No 4,446,064; Larner et al (1988) Biochem.Biophys.Res.CommA5l, 1416-1426).
  • WO 99/06421 describes amino disaccharide compounds involving a slightly modified inositol.
  • Patent AU 5,116,496 describes IPG compounds purified from living organisms (Trypanosome and bovine liver), but this technique does not make it possible to know the exact composition and structure of IPGs; moreover, the risk of possible contamination by pathogenic agents is far from negligible.
  • TGF- ⁇ cytokines, hormones or growth factors
  • This growth factor intervenes in particular in the healing processes, in the formation of the extracellular matrix or the control of the cell cycle. It acts via two receptors with serine / threonine kinase activity, called type I and II (TBR-I and T ⁇ R-II).
  • Cells lacking these receptors or expressing a mutated form of these receptors become resistant to the effects of TGF- ⁇ , as is the case in non-polypotic colorectal cancers, certain cancers of the pancreas, prostate, kidney, certain metastatic cancers of the lung or chronic lymphoid leukemias ...
  • TGF- ⁇ The binding of TGF- ⁇ to its receptors allows the recruitment of cytoplasmic proteins of the Smad family which play a central role both in controlling cell proliferation and in the transcriptional activity of genes of matrix molecules.
  • TGF- ⁇ stimulates the production of IPG in an epithelial cell line (MV Î LU), in which it induces an inhibition of proliferation.
  • This IPG the precise structure of which is not known, contains inositol, phosphate and glucosamine.
  • This IPG now known to those skilled in the art, is capable of mimicking the effects of TGF- ⁇ on the inhibition of DNA synthesis. This antiproliferative effect is exerted independently of the presence of the type I receptor.
  • the IPG inhibits the proliferation of the R-1B subline which is a mutant of MV Î LU which does not express the functional TBR-I receptor .
  • the IPG therefore acts on one or more targets, downstream of the receptors.
  • the first works attempting to establish structure-activity relationships were carried out with IPG type molecules purified from GPI protein anchors (GPI from T. brucei) or more recently with a synthetic IPG (Frick et al. ( 1998) Bioche is ⁇ 31, 13421-13436). These molecules can induce the phosphorylation of the protein IRS-1, the activation of PI-3kinase and the translocation of GLUT-4 without affecting the state of phosphorylation of the ⁇ subunit of the insulin receptor. These results confirm that these molecules must necessarily contain a certain number of sugar residues to mimic the effects of insulin.
  • the invention aims to obtain chemically pure compounds, not isolated from mammals, in order to avoid numerous risks of toxicity, for example BSE.
  • Another object of the invention is to obtain compounds which do not have their own toxicity or immunogenicity.
  • the subject of the invention is, according to a first aspect, a compound of formula (A):
  • - X is chosen from O, NH, S, CH, and
  • R 5 is chosen from OH, an oligosaccharide, a polysaccharide and a group capable of modifying the bioavailability of compound A, and its pharmaceutically acceptable salts.
  • the invention very advantageously relates to a compound A as a medicament.
  • the inventors have in fact, surprisingly, succeeded in obtaining particularly active compounds compared to the prior art, by using a heterocycle instead of an inositol cycle, unlike the known compounds.
  • the invention also relates to the isomers of compound A.
  • R 4 is OH or NH 2 .
  • R 5 OH
  • Re H
  • X is an ⁇ bond, the compound A being:
  • X is a ⁇ bond, the compound of formula I below:
  • the invention relates to a compound of formula I below: in which:
  • - X is chosen from O, S, N
  • - R is OH or a hexose
  • R 8 is chosen from OH, NH as a medicament.
  • the invention relates to a compound of formula II below:
  • - X is chosen from O, S, N
  • - R is OH or a hexose
  • R 8 is chosen from OH, NH 2 as a medicament.
  • the invention relates, according to preferred embodiments, to the compounds of formula I or II, in which the non-cyclic phosphate ring is chosen from glucose, mannose, galactose, glucosamine, mannosamine, galactosamine.
  • the invention relates, according to preferred embodiments, to the compounds of formula I or II, in which the ring carrying the cyclic phosphate is chosen from a pentose (for example lyxose, ribose) in D or L configuration, a hexose (for example glucose, mannose, galactose).
  • a pentose for example lyxose, ribose
  • a hexose for example glucose, mannose, galactose
  • the invention relates to the compounds FC663, FC669, FC670, FC671 (see diagrams 1 and 2).
  • the invention relates to a compound of formula A, and having a biological activity of at least 10% of that of compound I, preferably at least 30, 50, 80, 100% of this activity.
  • the invention relates to a compound of formula A, and having a biological activity of at least 10% of that of compound II, preferably at least 30, 50, 80, 100% of this activity.
  • the invention thus also relates to the compounds derived from formula A, the biological activity of which is validated by appropriate in vitro and / or in vivo biological activity tests.
  • appropriate tests use will be made, according to one embodiment, of the activity test described in detail below in the description produced, developed for the compounds FC663, FC669, FC670, FC671, or related tests which are now carried out without undue difficulty by the skilled in the art on these derivative compounds in view of this document.
  • the groups capable of modifying hpophilia are known to those skilled in the art, in particular by determining the Log P value, according to appropriate methods.
  • radicals Ri, R, R 3 , R 4 , R 5 , R $ will influence the hpophilia of compound I and / or its bioavailability.
  • Various lipophilic groups intended to facilitate contact with the cell membrane, are known to those skilled in the art. Overall, if these groups are large, bioavailability will be reduced due to steric hindrance while hpophilia will be increased.
  • the choice of radicals K ⁇ to R ⁇ , and in particular of RI and R5 will typically be made according to the difficulty of synthesis of the IPG and the therapeutic efficacy obtained. If necessary, different compounds will be prepared by their synthesis scheme and their therapeutic efficacy as a function of the main objective sought.
  • the group or groups capable of modifying Hpophilia are chosen from: a) an alkyl group, linear or branched, comprising less than 20 carbon atoms; b) a cycloalkyl group comprising less than 10 carbon atoms; c) a linear or branched alkenyl group comprising less than 20 carbon atoms; d) a cyclo-alkenyl group comprising less than 10 carbon atoms; e) an aryl group comprising less than 20 carbon atoms; f) an aralkyl group comprising less than 20 carbon atoms; g) a heteroaryl group comprising 4 to 9 carbon atoms and at least one heteroatom chosen from oxygen, nitrogen, sulfur; h) a heterocyclic group, comprising 2 to 9 carbon atoms and at least one heteroatom chosen from oxygen, sulfur
  • the lipophilic group or groups may be more generally:
  • alkyl alkenyl, mono- or bi-cycloalkyl, aryl, heteroaryl, mono- or bicycloalkylalkyl, mono- or bicycloalkylalkenyl, arylalkyl, aralkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, darycycloalkylalkylalkylalkylalkylalkyl or diazabicycloalkyl, mono- or bicyclo heteroaromatic;
  • aryl lipophilic group (including bicyclic aryl groups) unsubstituted or substituted with one, two or three substituents independently chosen from lower alkyl, haloalkyl, alkoxy, thioalkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, mercapto, sulfhydryl radicals , nitro, cyano, carboxaldehyde, carboxy, alkoxycarbonyl, haloalkyl-C (O) -NH-, haloalkenyl-C (O) - NH and carboxamide (in addition, substituted aryl groups include tetrafluorophenyl and pentafluorophenyl);
  • steroid derivative a natural or synthetic lipid, a saccharide capped by an aliphatic or cycloaliphatic unit.
  • aryl refers to a carbocyclic system comprising at least one aromatic ring, and refers in particular to the phenyl, piridyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl and the like radicals.
  • arylalkyl refers to a lower alkyl radical to which an aryl group is added. Mention will in particular be made of benzyl and phenylethyl groups, hydroxybenzyl, fluorobenzyl and fluorophenylethyl.
  • cycloalkyl mono- or poly-cycloalkyl, preferably refers to an alicyclic group comprising from 3 to 10 carbon atoms, in particular the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl groups.
  • the cycloalkyl groups can be optionally substituted.
  • lower alkyl refers to alkyl groups of branched or straight chain, optionally substituted, containing one to ten carbon atoms, in particular methyl, ethyl, propyl, isopropyl, butyl, isopentyl groups.
  • bn means benzyl.
  • the invention relates, according to another aspect, to a compound A in ⁇ configuration, and preferably, a compound of formula (II) capable of mimicking the action of insulin for the treatment of diseases due to a deficient glucose metabolism .
  • Such compounds (II) are capable of mimicking the action of insulin on the uptake of glucose in adipocytes as well as on the synthesis of glycogen in hepatocytes.
  • Such compounds (II) induce phosphorylation of the insulin receptor ⁇ subunit and they are also capable of mimicking the effects of insulin on two cytoplasmic targets involved in signaling: phosphorylation, on one or more tyrosine residues, of IRS-1 (Insulin Receptor Substrat-1) and activation of Erkl / 2 MAPkinases (Extracellular Regulated Kinase 1/2 Mitogen Activated Protein kinase).
  • Insulin resistance can result from disorders such as obesity, hyperlipidemia, dyslipidemia, atherosclerosis, hypertension, cardiovascular pathologies, AIDS, cancers, cachexia, septicemia, trauma associated with burns, malnutrition, stress, age, lupus and other autoimmune pathologies, endocrine disorders, hyperuricemia, polycystic ovarian syndrome and complications due to sports activity or inactivity.
  • the invention also relates to the use of a compound A in the ⁇ configuration, and preferably of a compound II, for the preparation of a medicament against disorders due to a deficient glucose metabolism.
  • the invention also relates to a method for the treatment of disorders due to a deficient glucose metabolism comprising the use of a compound A in the ⁇ configuration, and preferably of an IL compound
  • the invention also relates to the use of a compound A in the ⁇ configuration, and preferably a compound of formula I, for the treatment of diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
  • compounds of formula (I), of the inositolphosphate glycan (IPG) type are capable of strongly inhibiting the proliferation of cells, and in particular of cells originating from a human adenocarcinoma line SW- 480, as will be described later.
  • These molecules can be used in the treatment of pathologies with excessive cell proliferation such as cancer, psoriasis and the rheumatoid synovial pannus.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically effective amount of a compound A as described above, preferably a compound I or a compound II, and a pharmaceutically acceptable vehicle.
  • the invention also relates to the use of a compound A in ⁇ configuration, and preferably of a compound of formula I, for the preparation of a medicament against diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
  • the invention also relates to a method of treating diseases associated with excessive cell proliferation, in particular cancer, psoriasis, rheumatoid pannus, comprising the use of a compound I.
  • step 2 deacetalization of the intermediates obtained in step 1,
  • step 3 cyclization and deprotection of the intermediates obtained in step 2.
  • the pharmaceutically effective amount of compound A, and preferably of compound I or II administered corresponds to a dose typically of the order of 10 ⁇ g / kg / day to 100 mg / kg / day of body weight.
  • the dose will be of the order of 0.1 to 1 mg / kg / day.
  • the dosage may for example be of the order of 50 ⁇ g / kg / hour to 1 mg / kg / hour, in several injections / day or by continuous subcutaneous infusion.
  • compositions comprising the inositolphosphate glycan type molecules of formula A described above can be formulated in different ways.
  • these pharmacologically acceptable formulations can also comprise an excipient, a transporter, a buffer, a stabilizer or any other suitable substance.
  • carrier or vehicle "pharmacologically acceptable" means a non-toxic solid, 'containing semi-solid or liquid, encapsulating material or auxiliary substance of any type whatsoever. Such substances should not interfere with the effectiveness of the active ingredient (s).
  • the precise nature of the carrier or material depends on the route of administration, for example oral, rectal, intravaginal, topical (such as powders, ointments, transdermal drops or patch), intravenous, cutaneous or subcutaneous, nasal, intramuscular, intrasternal, intraperitoneally, by intra-articular injection or infusion. It is possible, for example, to use water, a saline solution, a Ringer's solution, a dextrose solution, a non-aqueous solution containing oils or liposomes, petrolatum, vegetable, animal, mineral or synthetic oils, as a transporter. .
  • the suitable transporters may contain additives which increase the chemical stability of the composition in particular, for example: buffers (such as phosphates, citrates, succinates, organic acids), antioxidants, low molecular weight peptides, proteins (gelatin, serum albumin), hydrophilic polymers (polyvinyl pyrrolidones), amino acids, saccharides (glucose, dextrin), chelating agents (EDTA), nonionic surfactants (ethylene glycol, propylene glycol, polyethylene glycol).
  • buffers such as phosphates, citrates, succinates, organic acids
  • antioxidants such as antioxidants, low molecular weight peptides, proteins (gelatin, serum albumin), hydrophilic polymers (polyvinyl pyrrolidones), amino acids, saccharides (glucose, dextrin), chelating agents (EDTA), nonionic surfactants (ethylene glycol, propylene glycol, polyethylene glycol).
  • EDTA chelating
  • the invention also relates to the use of salts of the compounds according to the invention, the use of certain transporters or other excipients being able to involve the formation of such salts according to the substituents of the disaccharide according to the invention.
  • the compounds of the present invention are typically stored as unit doses in suitable containers, or as an aqueous solution or lyophilized formulation.
  • the formulations for oral administration can be presented in particular in the form of tablets, capsules, powder or liquid.
  • a tablet may include an excipient / carrier such as gelatin or an adjuvant.
  • synthetic IPGs of formula A are in the form of an acceptable aqueous solution in parenteral form, that is to say in the absence of pyrogen , at adequate pH, isotonicity and stability (e.g. NaCl, Ringer's solution, or Ringer-lactate solution).
  • the prescription of the compounds of this present invention is preferably done, for each individual, at prophylactic or therapeutic dosages sufficient to exert a beneficial action (antiproliferative effects, appropriate treatment of disorders of glucose metabolism such as glucose intolerance, hyperglycemia associated with DNID and any form of insulin resistance).
  • a beneficial action antiproliferative effects, appropriate treatment of disorders of glucose metabolism such as glucose intolerance, hyperglycemia associated with DNID and any form of insulin resistance.
  • the dosage and method of administration will depend on the nature and severity of the condition to be treated.
  • Treatment decisions, such as dosage, are the responsibility of the treating physicians. They must take into account the pathologies to be treated, the patient, the mode of administration in particular. These various examples mentioned above can be found in: "Remington's Pharmaceutical Sciences,
  • the compounds obtained present an easier synthesis than that of the known compounds, these compounds being moreover not recognized by enzymes usually in charge of the metabolism of sugars.
  • the IPG molecules obtained do not exhibit acute (short term) nor chronic (long term) toxicities.
  • FIG. 1 Figure 1.a: effect of compound FC663 on the proliferation of SW-480 cells.
  • the cells are seeded in 96-well plates and incubated in the presence or absence of the test compound FC663 at different concentrations for 24 hours.
  • the colorimetric reagent is added during the last 4 hours.
  • Cell proliferation is measured by densitometric reading at 490 nm (**: p ⁇ 0.01; *** p ⁇ 0.005).
  • the cells are seeded in 9.6 cm 2 plates and then incubated for 4 hours with the test compound FC670 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter " Materials and methods".
  • the synthesis of glycogen is measured by the incorporation of tritiated glucose and related to the amount of total protein (*: p ⁇ 0.05; *** p ⁇ 0.005).
  • FIG. 1 Figure 2.b: effect of compound FC671 on glycogen synthesis in HepG2 hepatocytes. The cells are seeded in 9.6 cm 2 plates and then incubated for 4 hours with the test compound FC671 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter " Materials and methods". The synthesis of glycogen is measured by the incorporation of tritiated glucose and related to the amount of total protein (*: p ⁇ 0.05; *** p ⁇ 0.005).
  • Figure 3.a effect of compound FC670 on the uptake of glucose at the level of 3T3-L1 adipocytes.
  • the cells are seeded in 9.6 cm 2 plates then incubated for 20 minutes with the compound FC670 or with insulin (positive control), then [ 3 H] deoxy-D-glucose is added to the environment as described in the chapter "materials and methods". Glucose uptake is measured by the incorporation of 2- [ 3 H] deoxy-D-glucose (*: p ⁇ 0.05; *** p ⁇ 0.005).
  • Figure 3.b Effect of compound FC671 on the uptake of glucose at the level of 3T3-L1 adipocytes.
  • the cells are seeded in 9.6 cm 2 plates and then incubated for 20 minutes with compound FC671 or with insulin (positive control), then [H] deoxy-D-glucose is added to the medium as described in the chapter "materials and methods”.
  • Glucose uptake is measured by the incorporation of 2- [H] deoxy-D-glucose (*: p ⁇ 0.05; *** p ⁇ 0.005).
  • Figure 4.a effect of insulin on the phosphorylation of IRS-1 and of the ⁇ subunit of its receptor at the level of HepG2 hepatocytes, measured according to method 2.C.
  • Figure 4.b Effect of compound FC670 on the phosphorylation of IRS-1 and of the ⁇ subunit of its receptor at the level of HepG2 hepatocytes, measured according to method 2.C.
  • Figure 5.c effect of compound FC671 on the activation of Erkl / 2 MAPkinase at the level of HepG2 hepatocytes, measured according to method 2.D.
  • the reaction mixture is stirred at room temperature for 15 minutes and then diluted with 70 ml of ethyl acetate.
  • the organic phase is washed twice with 2 ml of water, decanted, dried magnesium sulphate, then concentrated.
  • the residue contains cyclic phosphate (31p NMR ⁇ 14.2 ppm) which is used without purification for the deprotection step.
  • the cyclic phosphate is dissolved in 20 ml of a THF / EtOH / H2 ⁇ mixture (1: 1: 1) and then stirred for 20 hours under a hydrogen atmosphere in the presence of 20 mg of triethylammonium hydrogen carbonate and 160 mg of palladium. on 10% charcoal.
  • the catalyst is filtered through celite and rinsed with water.
  • the filtrate is concentrated under reduced pressure.
  • the residue is diluted with 1 ml of water and purified using a Cl 8 isolute SPE column to provide, after lyophilization, the compound FC663 or FC671 in the form of triethylammonium salt.
  • the cyclic phosphate is dissolved in 20 ml of a THF / EtOH / H2 ⁇ mixture (1: 1: 1) and then stirred for 20 hours under a hydrogen atmosphere in the presence of 20 mg of triethylammonium hydrogen carbonate and 160 mg of palladium. on 10% charcoal.
  • the catalyst is filtered through celite and rinsed with water. The filtrate is concentrated under reduced pressure.
  • the residue is diluted with 1 ml of water and purified using a Cl 8 isolute SPE column to provide, after lyophilization, the compound FC669 or FC670 in the form of triethylammonium salt.
  • the activity of the compounds was evaluated according to the following methods.
  • the molecules synthesized are tested on various parameters, to determine their anti-proliferative and insulin-mimetic properties.
  • the measurements made to assess insulin-mimetic activity systematically include a positive control (insulin).
  • the experiments described below evaluate the biological activities of the four previously described molecules, designated: FC663, FC669, FC670 and FC671.
  • Material The RPMI 1640, the DMEM, the fetal calf serum "SVF” and the donor calf serum “SVD” are supplied by Life Technologies.
  • D [2- 3 H] glucose (21.00 Ci / mmol) and [6- 3 H] 2-deoxy glucose (6.10 Ci / mmol) are obtained from NEN Life Science.
  • the Celltiter 96 ® reagent comes from Promega.
  • the anti-phosphotyrosine (4G10), anti-Erkl / 2MAPkinase and anti-phospho-Erkl / 2MAPkinase antibodies come from Upstate Biotechnology.
  • the chemiluminescence antibody revelation kit comes from Amersham. All chemicals as well as insulin, glycogen, dexamethasone and isobutylmethylxanthine (IBMX) come from SIGMA.
  • 3T3-L1 cell lines line of pre-adipocytes selected from the mouse fibroblast line 3T3 for their ability to differentiate into adipocytes under certain experimental conditions.
  • HepG2 human hepatocarcinoma line (ATCC number: HB-8065).
  • SW-480 human colorectal adenocarcinoma line (ATCC number: CCL-228).
  • the cells are kept in culture in DMEM + SVF 10% (SW480), in RPMI + SVF 10% + insulin 0.5% + BSA 5% (HepG2) and in DMEM + SVD 10% (3T3-L1) , in an atmosphere with 5% CO 2 and 95% air. These media are added with penicillin (lOOU / ml), streptomycin (lOO ⁇ g / ml) and fungizone (0.25 ⁇ g / ml). Differentiation of 3T3-L1 cells
  • the cells (3T3-L1) are cultured in 6-well plates (3.10 cells / well) in the presence of DMEM + 10% SVD. At confluence, the medium is replaced by DMEM + 10% FCS containing dexamethasone (25 ⁇ M), isobutylmethylxanthine (100 ⁇ M) and insulin (170 nM) in order to induce the differentiation of fibroblasts (3T3-L1) adipocytes. Two days later, the cells are incubated for 4 to 6 days in the DMEM differentiation medium + 10% FCS + insulin 170 nM. The cells are used for the measurement of glucose uptake when approximately 80 to 90% contain lipid vacuoles (phenotypic marker). Measurement of glucose uptake
  • the principle of this method is based on the capacity of living cells to convert the tetrazolium salts, contained in Celltiter96®, into formazan.
  • the cells (SW480) are seeded in 96-well plates (5.10 cells / well) in DMEM + 10% FCS. After 48 hours, the cells are incubated in the presence of the different concentrations of the molecules for 24 hours. After 20 h, 20 ⁇ l of reagent are added to each well and the absorbance is measured at 490 nm, after 4 hours, with a plate reader (SpectraCount TM; Packard).
  • the hepatocytes are seeded in 6-well plates (2.10 cells / well) in the presence of RPMI + 10% SVF + 0.5% insulin + 5% BSA. After 2 days, the cell mats are incubated for 3 h in RPMI + glucose 5 mM, then incubated with the different molecules. After 30 minutes, the 6 [ 3 H] -D glucose is added (2 ⁇ Ci / ml). After 4 h of metabolic labeling, the cell mats are rinsed with PBS 4 ° C, then lysed with 0.1 M sodium hydroxide. An aliquot of 50 ⁇ l is taken to measure the protein concentration by the Bradford method.
  • glycogen is precipitated, 2 h at -80 ° C, with 5 volumes of ethanol in the presence of a entrainer (5 mg of glycogen). After centrifugation (15 min. At 6000 g) the pellet is taken up in 500 ⁇ l of H O and then the radioactivity is measured. Western blot The concentration of cytoplasmic or nuclear extracts is determined by the Bradford method. The samples (15 to 30 ⁇ g) are taken up in buffer
  • TM PVDF membrane Polyvinylidene difluoride; NEN Life Science Products. This transfer is carried out in electrotransfer buffer (75 min at 100 V), then the non-specific sites are blocked in TBS-T buffer containing 10% skimmed milk or 5% bovine serum albumin (BSA). The membrane is then washed 3 times in TBS-T buffer and then incubated with the primary antibodies. The membrane then undergoes numerous successive baths in TBS-T buffer, then is incubated for one hour with a solution of secondary antibodies, coupled to an HRP. After washing, the revelation of the antibodies is carried out by chemiluminescence (Kit ECL +; Amersham). The membranes can be "washed” 30 min at 50 ° C in a denaturation solution and then reincubated with a different primary antibody. Statistical analyzes
  • results are the average of 4 wells (glycogen synthesis and glucose uptake tests) or 8 wells (proliferation). The significance of the results is determined using the Student test (*: p ⁇ 0.05; **: p ⁇ 0.01; ***: p ⁇ 0.005).
  • the compound FC663 exerts, on proliferation, an inhibitory effect directly proportional to the concentrations.
  • an inhibition of approximately 34% from 25 ⁇ M to reach 65% at 100 ⁇ M (Fig. La).
  • the compound FC669 also exerts a very marked inhibitory effect which is measurable from 25 ⁇ M (-35%).
  • the inhibitory effect depends on the concentration used since it reaches 70% at 100 ⁇ M (Fig. Lb).
  • the cells are seeded in 96-well plates and incubated in the presence or absence of the test compounds FC663 and FC669 at different concentrations for 24 hours. The colorimetric reagent is added during the last 4 hours.
  • the hepatocytes of the HepG2 line were incubated for 4 hours in the presence of different concentrations (100, 50, 25 and 10 ⁇ M) of the test compounds, or in the presence of insulin (5 and 1 ⁇ M) used as a positive control. .
  • Fig. 2 a, b The compound FC670 clearly stimulates the synthesis of glycogen by 50%) at 100 ⁇ M and by 35% at 50 ⁇ M. No significant effect was measured at the lower concentrations (Fig. 2a).
  • the compound FC671 also exerts a stimulating effect on the synthesis of glycogen. This effect can be measured from the concentration of 25 ⁇ M with an increase of 30%. This stimulation reaches 65% at 50 ⁇ M and 52% at 100 ⁇ M (Fig. 2b).
  • the cells are seeded in 9.6 cm plates and then incubated for 4 hours with the compounds FC670 and FC671 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter "materials and methods”.
  • Glycogen synthesis is measured by the incorporation of tritiated glucose and related to the amount of total protein. (*: p ⁇ 0.05; ***: p ⁇ 0.005).
  • the 3T3-L1 differentiated into adipocytes were incubated for 40 minutes in the presence of insulin (positive control) or of the compounds FC670 and FC671 (100, 50 and 25 ⁇ M).
  • the insulin stimulated the uptake of [6- 3 H] 2-deoxy glucose by the adipocytes by about 40% compared to the control (Fig. 3a, b).
  • FC670 50 or 100 ⁇ M
  • FC671 stimulated uptake by around 55%
  • an increase in uptake of approximately 60% was measured at 100 ⁇ M. The effect is even more pronounced at 50 ⁇ M since the increase amounts to + 95% (Fig. 3b).
  • the cells are seeded in 9.6 cm 2 plates and then incubated for 20 minutes with the compounds FC670 and FC671 or with insulin (positive control) then 2- [ 3 H] deoxy-D-glucose is added to the medium as described in the chapter "materials and methods".
  • the Glucose uptake is measured by the incorporation of 2- [ 3 H] deoxy-D-glucose. (*: p ⁇ 0.05; ***: p ⁇ 0.005).
  • the hepatocytes of the HepG2 line were incubated in the presence of insulin (1 ⁇ M), of the compound FC670 (50 ⁇ M) or of the compound FC671 (50 ⁇ M), for 5, 15, 30 and 60 minutes.
  • insulin (1 ⁇ M), of the compound FC670 (50 ⁇ M) or of the compound FC671 (50 ⁇ M)
  • FC670 50 ⁇ M
  • FC671 50 ⁇ M
  • a return to the basal state is measured after one hour of incubation (Fig. 5 a).
  • the compounds FC670 (Fig. 5 b) and FC671 (Fig. 5 c) activate Erkl / 2 incubation after 5 minutes. This activation is maximum after 15 minutes of incubation, then decreases slightly after one hour of incubation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Obesity (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The invention concerns a compound of formula A wherein: R1 is selected from the group consisting of OH, an oligosaccharide, a polysaccharide, and R2=R3=OH; or at least one of the groups R1, R2, R3 is a group capable of modifying the lipophilicity of the compound A, the other or the other two of the three groups being OH; and R4 is selected from the group consisting of OH, NH2 and a group capable of modifying the lipophilicity of the compound A; and R6 is H or CH2OH; and X is selected among O, NH, S, CH2; and R5 is selected among OH, an oligosaccharide, a polysaccharide and a group capable of modifying the bioavailability of the compound A, and its pharmaceutically acceptable salts.

Description

Synthèse de molécules de type inositolphosphate glycanne: traitement des troubles de la prolifération cellulaire et de désordres métaboliques caractérisés par une résistance à l'insuline.Synthesis of glycan inositolphosphate type molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance.
L'invention concerne des composés apparentés aux inositolphosphates glycannes, leur utilisation en tant que médicament, en particulier pour le traitement de maladies associées à un métabolisme du glucose déficient, et pour le traitement de maladies associées à une prolifération cellulaire excessive.The invention relates to compounds related to glycan inositolphosphates, their use as a medicament, in particular for the treatment of diseases associated with impaired glucose metabolism, and for the treatment of diseases associated with excessive cell proliferation.
Parmi les maladies associées à un métabolisme du glucose déficient, on cible en particulier le diabète. Selon le mécanisme en cause, la classification de l'OMS distingue le diabète insulinodépendant (DID), nécessitant l'administration quotidienne d'insuline et qui correspond globalement au diabète juvénile ou de type 1, et le diabète non insulinodépendant (DNID) qui correspond au diabète d'apparition tardive ou de type 2. D'après les résultats de l'étude CODE 2 (Costs of Diabètes in Europe, type 2) publiés en 1999, les 10 millions de diabétiques de type 2 des huit pays européens étudiés représentent une dépense correspondant en moyenne à 5 % des dépenses de santé. Aux Etats-Unis, cette pathologie représente la quatrième cause de mortalité et les dépenses liées à cette maladie sont considérables. La progression estimée du diabète est inquiétante, 120 millions de diabétiques de type 2 dans le monde actuellement, 150 millions en l'an 2005, 213 millions en 2010. En France, la prévalence du diabète de type 2 dans la population générale est estimée à 2 % environ, soit 1,2 million de personnes atteintes.Among the diseases associated with a deficient glucose metabolism, diabetes is particularly targeted. According to the mechanism in question, the WHO classification distinguishes insulin-dependent diabetes (IDD), requiring daily administration of insulin and which corresponds overall to juvenile or type 1 diabetes, and non-insulin-dependent diabetes (DNID) which corresponds with late-onset or type 2 diabetes. According to the results of the CODE 2 (Costs of Diabetes in Europe, type 2) study published in 1999, the 10 million type 2 diabetics in the eight European countries studied represent an expenditure corresponding on average to 5% of health expenditure. In the United States, this pathology represents the fourth cause of death and the expenses linked to this disease are considerable. The estimated progression of diabetes is worrying, 120 million type 2 diabetics worldwide today, 150 million in 2005, 213 million in 2010. In France, the prevalence of type 2 diabetes in the general population is estimated at About 2%, or 1.2 million people affected.
Il est donc important d'étudier les mécanismes d'action de l'insuline, de synthétiser de nouvelles molécules insulino-mimétiques pour augmenter le choix des prescripteurs et personnaliser au mieux le traitement en fonction du type de diabète. La régulation du métabolisme du glucose par l'insuline fait intervenir différentes hormones aux effets antagonistes, des récepteurs, des messagers, des transporteurs de glucose, des enzymes et leurs substrats. L'altération de l'un des maillons de la chaîne complexe de régulation est capable de perturber l'ensemble du système. II a été démontré que l'action d'un grand nombre d'hormones et de facteurs de croissance est médiée en partie par des seconds messagers appartenant à la famille des inositolphosphates glycannes (IPG). En particulier, chez des sujets atteints de diabète de type 2, une altération du métabolisme des inositolphosphates glycannes est fréquemment observée. Les IPG ont pour origine des glycosylphosphatidylinositols (GPI) libres ou ancrant des protéines. Les GPI sont constitués d'inositol, de glucosamine non-N-acétylée, de glucides et d'acides gras saturés. De nombreux travaux ont porté sur la recherche de molécules de la famille des IPG aux propriétés hypoglycémiantes.It is therefore important to study the mechanisms of action of insulin, to synthesize new insulin-mimetic molecules to increase the choice of prescribers and best customize the treatment according to the type of diabetes. The regulation of glucose metabolism by insulin involves various hormones with antagonistic effects, receptors, messengers, glucose transporters, enzymes and their substrates. The alteration of one of the links in the complex regulatory chain is capable of disrupting the entire system. It has been shown that the action of a large number of hormones and growth factors is partially mediated by second messengers belonging to the family of glycan inositolphosphates (IPG). In particular, in subjects with type 2 diabetes, an alteration in the metabolism of glycan inositolphosphates is frequently observed. IPGs originate from free or protein-anchoring glycosylphosphatidylinositols (GPIs). GPIs consist of inositol, non-N-acetylated glucosamine, carbohydrates and saturated fatty acids. Numerous studies have focused on the search for molecules of the IPG family with hypoglycemic properties.
Sur le plan du mécanisme d'action de tels médiateurs, il a été montré que, dans divers types cellulaires, l'insuline, le "nerve gro th factor" (NGF), l'interleukine-2 (IL-2), l'érythropoïétine (EPO) ou le "transforming growth factor-Bl " (TGF- Bl) contrôlaient la libération d'IPG après hydrolyse d'un GPI par une phospholipase spécifique (Varela-Nieto et al. (1996) Comp.Biochem.Physiol. l l5B, 223-241; Bogdanowicz et al. (2001) Med/Sci 17, 577-585).In terms of the mechanism of action of such mediators, it has been shown that, in various cell types, insulin, the "nerve gro th factor" (NGF), interleukin-2 (IL-2), l erythropoietin (EPO) or "transforming growth factor-Bl" (TGF- Bl) controlled the release of IPG after hydrolysis of a GPI by a specific phospholipase (Varela-Nieto et al. (1996) Comp.Biochem.Physiol 15B, 223-241; Bogdanowicz et al. (2001) Med / Sci 17, 577-585).
Toutefois, bien qu'il existe des données concernant la composition de ces médiateurs, leur structure précise demeure toujours mal connue, et des variations mineures dans leur composition semblent être à l'origine de la diversité de leur activité biologique observée dans de nombreux types cellulaires. En 1986, Saltiel et Cuatrecasas ont isolé deux substances à partir de membranes plasmiques de foie. Ces deux substances, de poids moléculaire d'environ 1000 à 2000 Da, étaient capables de mimer l'action de l'insuline (Saltiel et al. (1986) Proc. Nat. Acad. Sci 83, 5793-5797). Depuis, des travaux complémentaires ont montré que ces composés étaient constitués de glucides, de glucosamine non N-acétylée, d'inositol et d'un nombre variable de phosphates. Deux types d'IPG impliqués dans les mécanismes de transduction de l'insuline ont pu être isolés. Le myo-WG, également appelé IPG de type A, est constitué de myo-inositol et de glucosamine. Cette isoforme a un effet négatif sur l'activité des protéine-kinases dépendantes de l'AMPc en inhibant l'adénylate cyclase et en activant l'AMPc phosphodiestérase. Dans les adipocytes de rat, elle augmente la lipogénèse via l'activation de l'acétylCoA carboxylase. Le chiro-ÏPG, ou forme P, est constitué de cΛ/ro-inositol méthylé, également appelé pinitol, et de galactosamine. En stimulant l'activité de la glycogène-synthétase phosphatase, cette isoforme accroît le niveau de synthèse du glycogène. Elle active également la pyruvate- déshydrogénase phosphatase, mais n'a d'effet ni sur le métabolisme lipidique, ni sur l'activité des protéine-kinases dépendantes de l'AMPc (U.S. Patent No 4,446,064 ; Larner et al (1988) Biochem.Biophys.Res.CommA5l, 1416-1426).However, although there are data concerning the composition of these mediators, their precise structure is still poorly understood, and minor variations in their composition seem to be at the origin of the diversity of their biological activity observed in many cell types. . In 1986, Saltiel and Cuatrecasas isolated two substances from plasma membranes of the liver. These two substances, with a molecular weight of approximately 1000 to 2000 Da, were capable of mimicking the action of insulin (Saltiel et al. (1986) Proc. Nat. Acad. Sci 83, 5793-5797). Since then, additional work has shown that these compounds consist of carbohydrates, non-N-acetylated glucosamine, inositol and a variable number of phosphates. Two types of IPG involved in the insulin transduction mechanisms could be isolated. Myo-WG, also called IPG type A, consists of myo-inositol and glucosamine. This isoform has a negative effect on the activity of cAMP-dependent protein kinases by inhibiting adenylate cyclase and activating cAMP phosphodiesterase. In rat adipocytes, it increases lipogenesis via the activation of acetylCoA carboxylase. Chiro-IGP, or P form, consists of methylated cΛ / ro-inositol, also called pinitol, and galactosamine. By stimulating the activity of glycogen synthetase phosphatase, this isoform increases the level of synthesis of glycogen. It also activates pyruvate dehydrogenase phosphatase, but has no effect on lipid metabolism or on the activity of cAMP-dependent protein kinases (US Patent No 4,446,064; Larner et al (1988) Biochem.Biophys.Res.CommA5l, 1416-1426).
Les nombreuses recherches effectuées ont conduit à un grand nombre de composés destinés à avoir une action insulinomimétique, décrits notamment dans les documents suivants.The numerous researches carried out led to a large number of compounds intended to have an insulinomimetic action, described in particular in the following documents.
Le document WO 99/06421 décrit des composés amino disaccharides faisant intervenir un inositol légèrement modifié.WO 99/06421 describes amino disaccharide compounds involving a slightly modified inositol.
Le brevet AU 5 116 496 décrit des composés IPG purifiés à partir d'organismes vivants (Trypanosome et foie de bovins), mais cette technique ne permet pas de connaître la composition et la structure exacte des IPG ; de plus, le risque d'éventuelle contamination par des agents pathogènes est loin d'être négligeable.Patent AU 5,116,496 describes IPG compounds purified from living organisms (Trypanosome and bovine liver), but this technique does not make it possible to know the exact composition and structure of IPGs; moreover, the risk of possible contamination by pathogenic agents is far from negligible.
Le document Biochemistry, 1998, vol 37, 38, 13421-13436 décrit des IPG synthétiques comprenant un motif de base constitué par un squelette de trois résidus mannose, et précise qu'un groupement inositol incluant la chaîne latérale mannose en position de liaison glycosidique appropriée est nécessaire pour l'activité insulinomimétique. En outre ce document dissuade l'homme du métier d'utiliser des phosphodissacharides qu'il décrit comme nettement moins efficace.The document Biochemistry, 1998, vol 37, 38, 13421-13436 describes synthetic IPGs comprising a basic motif constituted by a skeleton of three mannose residues, and specifies that an inositol group including the mannose side chain in the appropriate glycosidic binding position. is necessary for insulin-like activity. In addition, this document dissuades a person skilled in the art from using phosphodissacharides which he describes as clearly less effective.
Le brevet US 6 004 938 décrit des composés de type IPG, notamment de type pentasaccharide, obtenus par synthèse chimique, efficaces, mais dont la synthèse est très complexe nécessitant jusqu'à cinquante étapes de synthèse. Ainsi, les composés connus ne satisfont pas à tous les critères souhaités d'efficacité, de facilité de synthèse, de sécurité.US Pat. No. 6,004,938 describes compounds of the IPG type, in particular of the pentasaccharide type, obtained by chemical synthesis, effective, but the synthesis of which is very complex requiring up to fifty stages of synthesis. Thus, the known compounds do not meet all the desired criteria of efficiency, ease of synthesis, safety.
Concernant les maladies associées à une prolifération cellulaire excessive, on sait que la voie de signalisation impliquant l'IPG intervient dans le mécanisme d'action de nombreuses cytokines, hormones ou facteurs de croissance, notamment le TGF-β. Ce facteur de croissance intervient en particulier dans les processus de cicatrisation, dans la formation de la matrice extracellulaire ou le contrôle du cycle cellulaire. Il agit par l'intermédiaire de deux récepteurs à activité sérine/thréonine kinases, dits de type I et II (TBR-I et TβR-II). Des cellules dépourvues de ces récepteurs ou exprimant une forme mutée de ceux-ci, deviennent résistantes aux effets du TGF-β, comme c'est le cas dans les cancers colorectaux non polyposiques, certains cancers du pancréas, de la prostate, du rein, certains cancers métastatiques du poumon ou des leucémies lymphoïdes chroniques...Regarding diseases associated with excessive cell proliferation, it is known that the signaling pathway involving IPG intervenes in the mechanism of action of many cytokines, hormones or growth factors, in particular TGF-β. This growth factor intervenes in particular in the healing processes, in the formation of the extracellular matrix or the control of the cell cycle. It acts via two receptors with serine / threonine kinase activity, called type I and II (TBR-I and TβR-II). Cells lacking these receptors or expressing a mutated form of these receptors become resistant to the effects of TGF-β, as is the case in non-polypotic colorectal cancers, certain cancers of the pancreas, prostate, kidney, certain metastatic cancers of the lung or chronic lymphoid leukemias ...
La liaison du TGF-β à ses récepteurs permet le recrutement de protéines cytoplasmiques de la famille Smad qui jouent un rôle central aussi bien au niveau du contrôle de la prolifération cellulaire que de l'activité transcriptionnelle des gènes de molécules matricielles.The binding of TGF-β to its receptors allows the recruitment of cytoplasmic proteins of the Smad family which play a central role both in controlling cell proliferation and in the transcriptional activity of genes of matrix molecules.
Parallèlement à ces mécanismes, les inventeurs ont démontré que le TGF-β stimulait la production d'IPG dans une lignée de cellules épithéliales (MVÎLU), chez laquelle il induit une inhibition de la prolifération. Cet IPG dont la structure précise n'est pas connue renferme de l'inositol, du phosphate et de la glucosamine. Cet IPG aujourd'hui connu de l'homme du métier est capable de mimer les effets du TGF-β sur l'inhibition de la synthèse d'ADN. Cet effet antiprolifératif s'exerce indépendamment de la présence du récepteur de type I. En effet, l'IPG inhibe la prolifération de la sous lignée R-1B qui est un mutant de MVÎLU n'exprimant pas le récepteur TBR-I fonctionnel. L'IPG agit donc sur une ou plusieurs cibles, en aval des récepteurs. Ces résultats indiquent que la libération d'IPG est une étape importante dans le contrôle de la prolifération cellulaire par le TGF-β. De plus, le fait que des cellules résistantes aux effets antiprolifératifs du TGF-β (lignée R-1B) restent sensibles à l'IPG exogène suggère que la résistance aux effets antiprolifératifs du TGF-β est liée à l'absence de génération d'IPG après traitement par le TGF-β. L'altération de ce mécanisme de signalisation pourrait être à l'origine de certaines tumeurs (Bogdanowicz et al. (1996) Ce/7. Signal. 8, 503-509; Bogdanowicz et al. (2000) Moll.Cell.Biochem.20S, 143-150).In addition to these mechanisms, the inventors have demonstrated that TGF-β stimulates the production of IPG in an epithelial cell line (MV Î LU), in which it induces an inhibition of proliferation. This IPG, the precise structure of which is not known, contains inositol, phosphate and glucosamine. This IPG, now known to those skilled in the art, is capable of mimicking the effects of TGF-β on the inhibition of DNA synthesis. This antiproliferative effect is exerted independently of the presence of the type I receptor. In fact, the IPG inhibits the proliferation of the R-1B subline which is a mutant of MV Î LU which does not express the functional TBR-I receptor . The IPG therefore acts on one or more targets, downstream of the receptors. These results indicate that the release of IPG is an important step in the control of cell proliferation by TGF-β. Furthermore, the fact that cells resistant to the antiproliferative effects of TGF-β (line R-1B) remain sensitive to exogenous IPG suggests that resistance to the antiproliferative effects of TGF-β is linked to the absence of generation of IPG after treatment with TGF-β. The alteration of this signaling mechanism could be the cause of certain tumors (Bogdanowicz et al. (1996) Ce / 7. Signal. 8, 503-509; Bogdanowicz et al. (2000) Moll.Cell.Biochem. 20S, 143-150).
Les premiers travaux tentant d'établir des relations structure-activité ont été réalisés avec des molécules de type IPG purifiées à partir de GPI ancrant des protéines (GPI de T. brucei) ou plus récemment avec un IPG de synthèse (Frick et al. (1998) Bioche is γ 31, 13421-13436). Ces molécules peuvent induire la phosphorylation de la protéine IRS-1, l'activation de la PI-3kinase et la translocation de GLUT-4 sans affecter l'état de phosphorylation de la sous-unité β du récepteur de l'insuline. Ces résultats confirment que ces molécules doivent nécessairement contenir un certain nombre de résidus osidiques pour mimer les effets de l'insuline. Toutefois, il est difficile de prévoir l'activité des molécules, à moins d'identifier une structure de base qui confère l'activité, ou l'essentiel de l'activité, biologique recherchée, démontrée par des tests biologiques, et sur laquelle différents radicaux peuvent être greffés sans altérer de manière non souhaitée cette activité. Les inventeurs ont réussi à identifier une telle structure de base disaccharidique décrite plus loin.The first works attempting to establish structure-activity relationships were carried out with IPG type molecules purified from GPI protein anchors (GPI from T. brucei) or more recently with a synthetic IPG (Frick et al. ( 1998) Bioche is γ 31, 13421-13436). These molecules can induce the phosphorylation of the protein IRS-1, the activation of PI-3kinase and the translocation of GLUT-4 without affecting the state of phosphorylation of the β subunit of the insulin receptor. These results confirm that these molecules must necessarily contain a certain number of sugar residues to mimic the effects of insulin. However, it is difficult to predict the activity of molecules, unless you identify a basic structure which confers the activity, or the essential of the activity, biological desired, demonstrated by biological tests, and on which different radicals can be grafted without undesirably altering this activity. The inventors have succeeded in identifying such a basic disaccharide structure described below.
Par ailleurs, les méthodes biochimiques actuellement disponibles ne permettent que très difficilement d'isoler, à partir de microorganismes, de l'IPG ayant un indice de pureté suffisant pour envisager des applications thérapeutiques. A ce jour, seule la synthèse chimique peut permettre d'obtenir des molécules d'IPG pur en quantité suffisante (WO 99/38516, WO 99/37309, WO 00/64454, WO 96/29063, US 00/6004938).Furthermore, the biochemical methods currently available make it very difficult to isolate, from microorganisms, IPG having a purity index sufficient to envisage therapeutic applications. To date, only chemical synthesis can make it possible to obtain pure IPG molecules in sufficient quantity (WO 99/38516, WO 99/37309, WO 00/64454, WO 96/29063, US 00/6004938).
Au vu de l'art antérieur rappelé, il existe toujours le besoin d'obtenir de nouveaux composés de type IPG efficaces thérapeutiquement, dont la synthèse est suffisamment simple pour une production industrielle, et permettant d'agir sur les mêmes cibles que l'IPG endogène. L'invention vise également à obtenir des composés chimiquement purs, non isolés de mammifères, afin d'éviter de nombreux risques de toxicité, ESB par exemple. En effet, un autre objet de l'invention est d'obtenir des composés ne possédant pas de toxicité propre, ni d'immunogénicité.In view of the prior art recalled, there is always the need to obtain new therapeutically effective IPG type compounds, the synthesis of which is simple enough for industrial production, and making it possible to act on the same targets as IPG endogenous. The invention also aims to obtain chemically pure compounds, not isolated from mammals, in order to avoid numerous risks of toxicity, for example BSE. Another object of the invention is to obtain compounds which do not have their own toxicity or immunogenicity.
A cet effet, l'invention a pour objet selon un premier aspect un composé de formule (A):To this end, the subject of the invention is, according to a first aspect, a compound of formula (A):
Figure imgf000006_0001
dans laquelle:
Figure imgf000006_0001
in which:
- R] est choisi dans le groupe constitué par OH, un oligosaccharide, un polysaccharide, et R2=R3=OH, ou au moins un des groupes Ri, R2, R3 est un groupe capable de modifier la hpophilie du composé A, l'autre ou les deux autres de ces trois groupes étant OH; et - R» est choisi dans le groupe constitué par OH, NH et un groupe capable de modifier la hpophilie du composé A, et- R] is chosen from the group consisting of OH, an oligosaccharide, a polysaccharide, and R 2 = R 3 = OH, or at least one of the groups Ri, R 2 , R 3 is a group capable of modifying the hpophilicity of the compound A, the other or both of these three groups being OH; and - R "is chosen from the group consisting of OH, NH and a group capable of modifying the hpophilia of compound A, and
- Re est H ou CH2OH, et- Re is H or CH 2 OH, and
- X est choisi parmi O, NH, S, CH , et- X is chosen from O, NH, S, CH, and
- R5 est choisi parmi OH, un oligosaccharide, un polysaccharide et un groupe capable de modifier la biodisponibilité du composé A, et ses sels pharmaceutiquement acceptables.- R 5 is chosen from OH, an oligosaccharide, a polysaccharide and a group capable of modifying the bioavailability of compound A, and its pharmaceutically acceptable salts.
L'invention concerne de manière très avantageuse un composé A en tant que médicament. Les inventeurs ont en effet, de manière surprenante, réussi à obtenir des composés particulièrement actifs comparés à l'art antérieur, en utilisant un hétérocycle au lieu d'un cycle inositol, contrairement aux composés connus.The invention very advantageously relates to a compound A as a medicament. The inventors have in fact, surprisingly, succeeded in obtaining particularly active compounds compared to the prior art, by using a heterocycle instead of an inositol cycle, unlike the known compounds.
L'invention concerne également les isomères du composé A.The invention also relates to the isomers of compound A.
Selon une réalisation préférée, Rι=R2=R3=OH, et R4 est OH ou NH2.According to a preferred embodiment, Rι = R 2 = R 3 = OH, and R 4 is OH or NH 2 .
Selon une réalisation, R5=OH, Re=H.According to one embodiment, R 5 = OH, Re = H.
Selon une réalisation, X est une liaison α, le composé A étant:According to one embodiment, X is an α bond, the compound A being:
Figure imgf000007_0001
Figure imgf000007_0001
Selon une réalisation X est une liaison β, le composé de formule I suivante:According to one embodiment X is a β bond, the compound of formula I below:
Figure imgf000007_0002
Figure imgf000007_0002
Selon une réalisation préférée, l'invention concerne un composé de formule I suivante:
Figure imgf000008_0001
dans laquelle:
According to a preferred embodiment, the invention relates to a compound of formula I below:
Figure imgf000008_0001
in which:
- X est choisi parmi O, S, N- X is chosen from O, S, N
- R est OH ou un hexose- R is OH or a hexose
- R8 est choisi parmi OH, NH en tant que médicament.- R 8 is chosen from OH, NH as a medicament.
Selon une réalisation préférée, l'invention concerne un composé de formule II suivante:According to a preferred embodiment, the invention relates to a compound of formula II below:
Figure imgf000008_0002
dans laquelle:
Figure imgf000008_0002
in which:
- X est choisi parmi O, S, N- X is chosen from O, S, N
- R est OH ou un hexose- R is OH or a hexose
- R8 est choisi parmi OH, NH2 en tant que médicament. L'invention concerne selon des réalisations préférées les composés de formule I ou II, dans lesquels le cycle non porteur du phosphate cyclique est choisi parmi le glucose, le mannose, le galactose, la glucosamine, la mannosamine, la galactosamine.- R 8 is chosen from OH, NH 2 as a medicament. The invention relates, according to preferred embodiments, to the compounds of formula I or II, in which the non-cyclic phosphate ring is chosen from glucose, mannose, galactose, glucosamine, mannosamine, galactosamine.
L'invention concerne selon des réalisations préférées les composés de formule I ou II, dans lesquels le cycle porteur du phosphate cyclique est choisi parmi un pentose (par exemple lyxose, ribose) en configuration D ou L, un hexose (par exemple glucose, mannose, galactose).The invention relates, according to preferred embodiments, to the compounds of formula I or II, in which the ring carrying the cyclic phosphate is chosen from a pentose (for example lyxose, ribose) in D or L configuration, a hexose (for example glucose, mannose, galactose).
L'invention concerne selon des réalisations particulièrement avantageuses les composés FC663, FC669, FC670, FC671 (voir schémas 1 et 2). Selon une réalisation, l'invention concerne un composé de formule A, et ayant une activité biologique d'au moins 10% de celle du composé I, de préférence au moins 30, 50, 80, 100% de cette activité.According to particularly advantageous embodiments, the invention relates to the compounds FC663, FC669, FC670, FC671 (see diagrams 1 and 2). According to one embodiment, the invention relates to a compound of formula A, and having a biological activity of at least 10% of that of compound I, preferably at least 30, 50, 80, 100% of this activity.
Selon une réalisation, l'invention concerne un composé de formule A, et ayant une activité biologique d'au moins 10% de celle du composé II, de préférence au moins 30, 50, 80, 100% de cette activité.According to one embodiment, the invention relates to a compound of formula A, and having a biological activity of at least 10% of that of compound II, preferably at least 30, 50, 80, 100% of this activity.
L'invention concerne ainsi également les composés dérivés de formule A, dont l'activité biologique est validée par des tests d'activité biologiques in vitro et/ou in vivo appropriés. Parmi les tests appropriés on utilisera selon une réalisation le test d'activité décrit de manière détaillée plus loin dans la description réalisé mis au point pour les composés FC663, FC669, FC670, FC671, ou des tests apparentés conduits désormais sans difficulté excessive par l'homme du métier sur ces composés dérivés au vu du présent document.The invention thus also relates to the compounds derived from formula A, the biological activity of which is validated by appropriate in vitro and / or in vivo biological activity tests. Among the appropriate tests, use will be made, according to one embodiment, of the activity test described in detail below in the description produced, developed for the compounds FC663, FC669, FC670, FC671, or related tests which are now carried out without undue difficulty by the skilled in the art on these derivative compounds in view of this document.
Les groupes capables de modifier la hpophilie sont connus de l'homme du métier, notamment par détermination de la valeur Log P, selon des méthodes appropriées.The groups capable of modifying hpophilia are known to those skilled in the art, in particular by determining the Log P value, according to appropriate methods.
La nature et la taille des radicaux Ri, R , R3, R4, R5, R$ influeront sur la hpophilie du composé I et/ou sa biodisponibilité. Divers groupes lipophiles, destinés à faciliter le contact avec la membrane cellulaire, sont connus de l'homme du métier. De manière globale, si ces groupes sont de grande taille, la biodisponibilité sera réduite du fait de l'encombrement stérique alors que la hpophilie sera accrue. Le choix des radicaux K\ à Rβ, et en particulier de RI et R5, sera typiquement fait en fonction de la difficulté de synthèse de l'IPG et de l'efficacité thérapeutique obtenue. On préparera le cas échéant des composés différents par leur schéma de synthèse et leur efficacité thérapeutique en fonction du but principalement recherché. Parmi les groupements lipophiles, on préférera en particulier selon une réalisation des chaînes aliphatiques linéaires ou ramifiées, saturées ou insaturées. Selon une réalisation préférée, le ou les groupes capables de modifier la Hpophilie sont choisis parmi: a) un groupe alkyle, linéaire ou ramifié, comprenant moins de 20 atomes de carbone; b) un groupe cyclo-alkyle comprenant moins de 10 atomes de carbone; c) un groupe alcényle, linéaire ou ramifié, comprenant moins de 20 atomes de carbone; d) un groupe cyclo-alcényle comprenant moins de 10 atomes de carbone; e) un groupe aryle comprenant moins de 20 atomes de carbone; f) un groupe aralkyle comprenant moins de 20 atomes de carbone; g) un groupe hétéroaryle comprenant 4 à 9 atomes de carbone et au moins un hétéroatome choisi parmi l'oxygène, l'azote, le soufre; h) un groupe hétérocyclique, comprenant 2 à 9 atomes de carbone et au moins un hétéroatome choisi parmi l'oxygène, le soufre et l'azote.The nature and size of the radicals Ri, R, R 3 , R 4 , R 5 , R $ will influence the hpophilia of compound I and / or its bioavailability. Various lipophilic groups, intended to facilitate contact with the cell membrane, are known to those skilled in the art. Overall, if these groups are large, bioavailability will be reduced due to steric hindrance while hpophilia will be increased. The choice of radicals K \ to Rβ, and in particular of RI and R5, will typically be made according to the difficulty of synthesis of the IPG and the therapeutic efficacy obtained. If necessary, different compounds will be prepared by their synthesis scheme and their therapeutic efficacy as a function of the main objective sought. Among the lipophilic groups, preference is given in particular to an embodiment of the linear or branched, saturated or unsaturated aliphatic chains. According to a preferred embodiment, the group or groups capable of modifying Hpophilia are chosen from: a) an alkyl group, linear or branched, comprising less than 20 carbon atoms; b) a cycloalkyl group comprising less than 10 carbon atoms; c) a linear or branched alkenyl group comprising less than 20 carbon atoms; d) a cyclo-alkenyl group comprising less than 10 carbon atoms; e) an aryl group comprising less than 20 carbon atoms; f) an aralkyl group comprising less than 20 carbon atoms; g) a heteroaryl group comprising 4 to 9 carbon atoms and at least one heteroatom chosen from oxygen, nitrogen, sulfur; h) a heterocyclic group, comprising 2 to 9 carbon atoms and at least one heteroatom chosen from oxygen, sulfur and nitrogen.
Toutefois cette réalisation n'est pas limitative, le ou les groupes lipophiles pouvant être de manière plus générale:However, this embodiment is not limiting, the lipophilic group or groups may be more generally:
- un groupe linéaire ou ramifié alkylène, alcényle ou alcénylène, ces groupes pouvant être substitués par un oxa, aza, thia ou une combinaison d'au moins deux groupes liés par une simple ou double liaison ou une liaison O, S, SO, CON;- a linear or branched alkylene, alkenyl or alkenylene group, these groups possibly being substituted by an oxa, aza, thia or a combination of at least two groups linked by a single or double bond or an O, S, SO, CON bond ;
- un groupe alkyle, alcényle, mono- ou bi-cycloalkyle, aryle, hétéroaryle, mono- ou bicycloalkylalkyle, mono- ou bicycloalkylalcényle, arylalkyle, aralkyle, hétéroaryl- alkyle, arylalcényle, hétéroarylalcényle, alkaryle, azacycloalkyle, diazacycloalkyle, bicycloalkyle, mono- ou diazabicycloalkyle, mono- ou bicyclo hétéroaromatique;- an alkyl, alkenyl, mono- or bi-cycloalkyl, aryl, heteroaryl, mono- or bicycloalkylalkyl, mono- or bicycloalkylalkenyl, arylalkyl, aralkyl, heteroarylalkyl, arylalkenyl, heteroarylalkenyl, darycycloalkylalkylalkylalkylalkylalkyl or diazabicycloalkyl, mono- or bicyclo heteroaromatic;
- un groupe choisi parmi:- a group chosen from:
CH3 (CH2)n CH(COOH)NHCO(CH2)2 CO-, CH3 (CH2)r CONHCH(COOH)(CH2)2CO-,CH 3 (CH 2 ) n CH (COOH) NHCO (CH 2 ) 2 CO-, CH 3 (CH 2 ) r CONHCH (COOH) (CH 2 ) 2 CO-,
-NHCH(COOH)(CH2)4NH-CO(CH2)mCH3,-NHCH (COOH) (CH 2 ) 4 NH-CO (CH 2 ) mCH 3 ,
-NHCH(COOH)(CH2)4NH-COCH((CH)2 COOH)NH-CO(CH2)pCH3, n, m, r, p étant un entier entre 5 et 15;-NHCH (COOH) (CH 2 ) 4 NH-COCH ((CH) 2 COOH) NH-CO (CH 2 ) pCH 3 , n, m, r, p being an integer between 5 and 15;
- un groupe lipophile arylique (groupes aryliques bicycliques y compris) non substitué ou substitué avec un, deux ou trois substituants indépendamment choisis parmi les radicaux alkyle inférieur, haloalkyle, alcoxy, thioalcoxy, aminé, alkylamino, dialkylamino, hydroxy, halo, mercapto, sulfhydryle, nitro, cyano, carboxaldehyde, carboxy, alkoxycarbonyle, haloalkyl-C(O)-NH-, haloalcenyle-C(O)- NH et carboxamide (en outre, les groupes aryliques substitués incluent le tétrafluorophényl et le pentafluorophényl);- an aryl lipophilic group (including bicyclic aryl groups) unsubstituted or substituted with one, two or three substituents independently chosen from lower alkyl, haloalkyl, alkoxy, thioalkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, mercapto, sulfhydryl radicals , nitro, cyano, carboxaldehyde, carboxy, alkoxycarbonyl, haloalkyl-C (O) -NH-, haloalkenyl-C (O) - NH and carboxamide (in addition, substituted aryl groups include tetrafluorophenyl and pentafluorophenyl);
- un dérivé stéroïde, un lipide naturel ou de synthèse, un saccharide coiffé par une unité aliphatique ou cycloaliphatique.- a steroid derivative, a natural or synthetic lipid, a saccharide capped by an aliphatic or cycloaliphatic unit.
Le terme "alcényle" se rapporte à un hydrocarbure à chaînes droit ou ramifiée contenant de 2 à 10 atomes de carbone et contenant également au moins une double liaison C=C. Les exemples d' alcényle incluent -CH≈CH^ -CH2CH=CH2, -C(CH3)=CH2, -CH2CH=CHCH3, et semblables. Le terme "aryle" se rapporte à un système carbocyclique comprenant au moins un cycle aromatique, et fait référence notamment aux radicaux phényle, piridyle, naphtyle, tetrahydronaphthyle, indanyle, indenyle et semblables.The term "alkenyl" refers to a straight or branched chain hydrocarbon containing from 2 to 10 carbon atoms and also containing at least one C = C double bond. Examples of alkenyl include -CH≈CH ^ -CH 2 CH = CH 2 , -C (CH 3 ) = CH 2 , -CH 2 CH = CHCH 3 , and the like. The term "aryl" refers to a carbocyclic system comprising at least one aromatic ring, and refers in particular to the phenyl, piridyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl and the like radicals.
Le terme "arylalkyle" se rapporte à un radical alkyl inférieur auquel est ajouté un groupe arylique. On citera notamment les groupes benzylique, phényléthylique, l'hydroxybenzyle, le fluorobenzyle, le fluorophényléthyle.The term "arylalkyl" refers to a lower alkyl radical to which an aryl group is added. Mention will in particular be made of benzyl and phenylethyl groups, hydroxybenzyl, fluorobenzyl and fluorophenylethyl.
Le terme "cycloalkyle", mono- ou poly-cycloalkyle, se rapporte de préférence à un groupe alicyclique comportant de 3 à 10 atomes de carbone, notamment les groupes cyclopropyle, cyclobutyle, cyclopentyle, cyclohexyle, norbornyle, adamantyle. Les groupes cycloalkyle peuvent être le cas échéant substitués. Le terme "alkyle inférieur" se rapporte aux groupes alkyles de chaîne ramifiée ou droite, le cas échéant substitués, comportant un à dix atomes de carbone, notamment les groupes méthyle, éthyle, propyle, isopropyle, butyle, isopentyle.The term "cycloalkyl", mono- or poly-cycloalkyl, preferably refers to an alicyclic group comprising from 3 to 10 carbon atoms, in particular the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, norbornyl, adamantyl groups. The cycloalkyl groups can be optionally substituted. The term "lower alkyl" refers to alkyl groups of branched or straight chain, optionally substituted, containing one to ten carbon atoms, in particular methyl, ethyl, propyl, isopropyl, butyl, isopentyl groups.
Le terme "oxo" signifie (= O). Le terme "Bn" signifie benzyle.The term "oxo" means (= O). The term "Bn" means benzyl.
L'invention concerne selon un autre aspect, un composé A en configuration β, et de manière préférée, un composé de formule (II) capable de mimer l'action de l'insuline pour le traitement de maladies dues à un métabolisme du glucose déficient.The invention relates, according to another aspect, to a compound A in β configuration, and preferably, a compound of formula (II) capable of mimicking the action of insulin for the treatment of diseases due to a deficient glucose metabolism .
Les inventeurs ont en effet démontré que de tels composés (II) sont capables de mimer l'action de l'insuline sur la captation du glucose chez les adipocytes ainsi que sur la synthèse de glycogène chez les hépatocytes. De tels composés (II) induisent la phosphorylation de la sous-unité β du récepteur de l'insuline et ils sont également capables de mimer les effets de l'insuline sur deux cibles cytoplasmiques impliquées dans la signalisation: la phosphorylation, sur un ou des résidus tyrosines, de IRS-1 (Insulin Receptor Substrat-1) et l'activation de Erkl/2 MAPkinases (Extracellular Regulated Kinase 1/2 Mitogen Activated Protein kinase). Ces molécules peuvent être utilisées dans le traitement des troubles du métabolisme du glucose tels que l'intolérance au glucose, l'hyperglycémie associée au diabète non insulinodépendant, la résistance à l'insuline et leur complication chronique. La résistance à l'insuline peut résulter de troubles comme l'obésité, l'hyperlipidémie, la dyslipidémie, l'athérosclérose, l'hypertension, les pathologies cardiovasculaires, le SIDA, les cancers, la cachexie, les septicémies, les traumas associés aux brûlures, la malnutrition, le stress, l'âge, le lupus et les autres pathologies auto-immunes, les troubles endocrines, l'hyperuricémie, le syndrome polykystique ovarien et les complications dues à l'activité sportive ou à l'inactivité.The inventors have in fact demonstrated that such compounds (II) are capable of mimicking the action of insulin on the uptake of glucose in adipocytes as well as on the synthesis of glycogen in hepatocytes. Such compounds (II) induce phosphorylation of the insulin receptor β subunit and they are also capable of mimicking the effects of insulin on two cytoplasmic targets involved in signaling: phosphorylation, on one or more tyrosine residues, of IRS-1 (Insulin Receptor Substrat-1) and activation of Erkl / 2 MAPkinases (Extracellular Regulated Kinase 1/2 Mitogen Activated Protein kinase). These molecules can be used in the treatment of disorders of glucose metabolism such as glucose intolerance, hyperglycemia associated with non-insulin dependent diabetes, insulin resistance and their chronic complication. Insulin resistance can result from disorders such as obesity, hyperlipidemia, dyslipidemia, atherosclerosis, hypertension, cardiovascular pathologies, AIDS, cancers, cachexia, septicemia, trauma associated with burns, malnutrition, stress, age, lupus and other autoimmune pathologies, endocrine disorders, hyperuricemia, polycystic ovarian syndrome and complications due to sports activity or inactivity.
L'invention concerne aussi l'utilisation d'un composé A en configuration β, et de manière préférée d'un composé II, pour la préparation d'un médicament contre des troubles dus à un métabolisme du glucose déficient. L'invention concerne aussi un procédé de traitement de troubles dus à un métabolisme du glucose déficient comprenant l'utilisation d'un composé A en configuration β, et de manière préférée d'un composé ILThe invention also relates to the use of a compound A in the β configuration, and preferably of a compound II, for the preparation of a medicament against disorders due to a deficient glucose metabolism. The invention also relates to a method for the treatment of disorders due to a deficient glucose metabolism comprising the use of a compound A in the β configuration, and preferably of an IL compound
L'invention concerne aussi selon un autre aspect l'utilisation d'un composé A en configuration α, et de manière préférée d'un composé de formule I, pour le traitement de maladies associées à une prolifération cellulaire excessive, notamment le cancer, le psoriasis et le pannus rhumatoïde.According to another aspect, the invention also relates to the use of a compound A in the α configuration, and preferably a compound of formula I, for the treatment of diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
Les inventeurs ont en effet démontré que des composés de formule (I), de type inositolphosphate glycanne (IPG), sont capables d'inhiber fortement la prolifération de cellules, et en particulier de cellules provenant d'une lignée d'adénocarcinome humain SW-480, comme cela sera décrit plus loin. Ces molécules peuvent être utilisées dans le traitement de pathologies présentant une prolifération cellulaire excessive comme le cancer, le psoriasis et le pannus synovial rhumatoïde.The inventors have in fact demonstrated that compounds of formula (I), of the inositolphosphate glycan (IPG) type, are capable of strongly inhibiting the proliferation of cells, and in particular of cells originating from a human adenocarcinoma line SW- 480, as will be described later. These molecules can be used in the treatment of pathologies with excessive cell proliferation such as cancer, psoriasis and the rheumatoid synovial pannus.
Selon un autre aspect, l'invention concerne une composition pharmaceutique comprenant une quantité pharmaceutiquement efficace d'un composé A tel que décrit précédemment, en de manière préférée un composé I ou un composé II, et un véhicule pharmaceutiquement acceptable. L'invention concerne également l'utilisation d'un composé A en configuration α, et de manière préférée d'un composé de formule I, pour la préparation d'un médicament contre des maladies associées à une prolifération cellulaire excessive, notamment le cancer, le psoriasis et le pannus rhumatoïde.According to another aspect, the invention relates to a pharmaceutical composition comprising a pharmaceutically effective amount of a compound A as described above, preferably a compound I or a compound II, and a pharmaceutically acceptable vehicle. The invention also relates to the use of a compound A in α configuration, and preferably of a compound of formula I, for the preparation of a medicament against diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
L'invention concerne aussi un procédé de traitement des maladies associées à une prolifération cellulaire excessive, notamment le cancer, le psoriasis, le pannus rhumatoïde, comprenant l'utilisation d'un composé I.The invention also relates to a method of treating diseases associated with excessive cell proliferation, in particular cancer, psoriasis, rheumatoid pannus, comprising the use of a compound I.
L'invention concerne selon un autre aspect un procédé d'obtention de composés de formule I ou II, dans laquelle X=O et R4=OH, comprenant les étapes suivantes: -étape 1: mélange des composés (1) et (2) de formulesAccording to another aspect, the invention relates to a process for obtaining compounds of formula I or II, in which X = O and R4 = OH, comprising the following steps: step 1: mixing of the compounds (1) and (2) formulas
Figure imgf000013_0001
Figure imgf000013_0001
(2)(2)
(1)(1)
-étape 2: désacétalisation des intermédiaires obtenus à l'étape 1,step 2: deacetalization of the intermediates obtained in step 1,
-étape 3: cyclisation et déprotection des intermédiaires obtenus à l'étape 2.-step 3: cyclization and deprotection of the intermediates obtained in step 2.
L'invention concerne selon un autre aspect un procédé d'obtention de formule I ou II, dans laquelle X=O et =NH2, comprenant les étapes:According to another aspect, the invention relates to a process for obtaining formula I or II, in which X = O and = NH 2 , comprising the steps:
-étape 1 : mélange des composés (9) et (2) de formules-step 1: mixture of the compounds (9) and (2) of formulas
Figure imgf000013_0002
Figure imgf000013_0002
(9) (2) -étape 2: désacétalisation des intermédiaires obtenus à l'étape 1, -étape 3: déprotection des intermédiaires obtenus à l'étape 2. Selon une réalisation, la quantité pharmaceutiquement efficace du composé A, et de préférence du composé I ou II administré, correspond à une dose typiquement de l'ordre de 10 μg/kg/jour à 100 mg/kg/jour de poids corporel. De préférence la dose sera de l'ordre de 0,1 à 1 mg/kg/jour. Pour une administration parentérale en continu, le dosage pourra être par exemple de l'ordre de 50 μg/kg/heure à 1 mg/kg/heure, en plusieurs injections/jour ou par perfusion sous- cutanée en continu.(9) (2) -step 2: deacetalization of the intermediates obtained in step 1, -step 3: deprotection of the intermediates obtained in step 2. According to one embodiment, the pharmaceutically effective amount of compound A, and preferably of compound I or II administered, corresponds to a dose typically of the order of 10 μg / kg / day to 100 mg / kg / day of body weight. Preferably the dose will be of the order of 0.1 to 1 mg / kg / day. For continuous parenteral administration, the dosage may for example be of the order of 50 μg / kg / hour to 1 mg / kg / hour, in several injections / day or by continuous subcutaneous infusion.
Les compositions pharmaceutiques comprenant les molécules de type inositolphosphate glycanne de formule A décrites précédemment peuvent être formulées de différentes manières. Outre un ou plusieurs IPG de synthèse de formule A, de préférence de formule I ou II, ces formulations pharmacologiquement acceptables peuvent également comprendre un excipient, un transporteur, un tampon, un stabilisant ou toute autre substance adaptée. Le terme transporteur ou véhicule "pharmacologiquement acceptable" signifie un solide non toxique, un 'contenant semi-solide ou liquide, une substance d'encapsulation ou une substance auxiliaire de quelque type que ce soit. De telles substances ne doivent pas interférer avec l'efficacité du ou des principe(s) actif(s). La nature précise du transporteur ou du matériel dépend de la voie d'administration, par exemple orale, rectale, intravaginale, topique (comme des poudres, onguents, gouttes ou patch transdermiques), intraveineuse, cutanée ou subcutanée, nasale, intramusculaire, intrasternale, intrapéritonéale, par injection ou perfusion intra-articulaire. On peut par exemple utiliser comme transporteur de l'eau, une solution saline, une solution de Ringer, une solution de dextrose, une solution non aqueuse contenant des huiles ou des liposomes, de la vaseline, des huiles végétales, animales, minérales ou synthétiques. Les transporteurs appropriés peuvent contenir des additifs augmentant notamment la stabilité chimique de la composition, par exemple : des tampons (tels que phosphates, citrates, succinates, acides organiques), des antioxydants, des peptides de faible poids moléculaire, des protéines (gélatine, sérum albumine), des polymères hydrophiles (polyvinyles pyrrolidones), des acides aminés, des saccharides (glucose, dextrine), des agents chélatants (EDTA), des surfactants non ioniques (ethylèneglycol, propylèneglycol, polyéthylèneglycol). Un composé selon l'invention est typiquement formulé à une concentration d'environ 0,1 mg/ml à 100 mg/ml, notamment de 0,1 à 10 mg/ml. L'invention concerne également l'utilisation de sels des composés selon l'invention, l'utilisation de certains transporteurs ou autres excipients pouvant entraîner la formation de tels sels selon les substituants du disaccharide selon l'invention. Les composés de la présente invention sont typiquement conservés sous forme de doses unitaires dans des contenants appropriés, ou sous forme de solution aqueuse ou de formulation lyophilisée.The pharmaceutical compositions comprising the inositolphosphate glycan type molecules of formula A described above can be formulated in different ways. In addition to one or more synthetic IPGs of formula A, preferably of formula I or II, these pharmacologically acceptable formulations can also comprise an excipient, a transporter, a buffer, a stabilizer or any other suitable substance. The term carrier or vehicle "pharmacologically acceptable" means a non-toxic solid, 'containing semi-solid or liquid, encapsulating material or auxiliary substance of any type whatsoever. Such substances should not interfere with the effectiveness of the active ingredient (s). The precise nature of the carrier or material depends on the route of administration, for example oral, rectal, intravaginal, topical (such as powders, ointments, transdermal drops or patch), intravenous, cutaneous or subcutaneous, nasal, intramuscular, intrasternal, intraperitoneally, by intra-articular injection or infusion. It is possible, for example, to use water, a saline solution, a Ringer's solution, a dextrose solution, a non-aqueous solution containing oils or liposomes, petrolatum, vegetable, animal, mineral or synthetic oils, as a transporter. . The suitable transporters may contain additives which increase the chemical stability of the composition in particular, for example: buffers (such as phosphates, citrates, succinates, organic acids), antioxidants, low molecular weight peptides, proteins (gelatin, serum albumin), hydrophilic polymers (polyvinyl pyrrolidones), amino acids, saccharides (glucose, dextrin), chelating agents (EDTA), nonionic surfactants (ethylene glycol, propylene glycol, polyethylene glycol). A compound according to the invention is typically formulated at a concentration of about 0.1 mg / ml to 100 mg / ml, in particular from 0.1 to 10 mg / ml. The invention also relates to the use of salts of the compounds according to the invention, the use of certain transporters or other excipients being able to involve the formation of such salts according to the substituents of the disaccharide according to the invention. The compounds of the present invention are typically stored as unit doses in suitable containers, or as an aqueous solution or lyophilized formulation.
Les formulations pour administration par voie orale peuvent se présenter notamment sous forme de tablettes, de capsules, de poudre ou de liquide. Une tablette peut inclure un excipient/transporteur tel que la gélatine ou un adjuvant.The formulations for oral administration can be presented in particular in the form of tablets, capsules, powder or liquid. A tablet may include an excipient / carrier such as gelatin or an adjuvant.
Pour les injections intraveineuses, cutanées ou sous-cutanées, les IPG de synthèse de formule A, et de préférence de formule I ou II, sont sous forme d'une solution aqueuse acceptable sous forme parentérale, c'est à dire en absence de pyrogène, aux pH, isotonicité et stabilité adéquates (ex: NaCl, solution de Ringer, ou solution de Ringer-lactate) .For intravenous, cutaneous or subcutaneous injections, synthetic IPGs of formula A, and preferably of formula I or II, are in the form of an acceptable aqueous solution in parenteral form, that is to say in the absence of pyrogen , at adequate pH, isotonicity and stability (e.g. NaCl, Ringer's solution, or Ringer-lactate solution).
La prescription des composés de cette présente invention se fait, de préférence, pour chaque individu, à des posologies prophylactiques ou thérapeutiques suffisantes pour exercer une action bénéfique (effets antiprolifératifs, traitement approprié des troubles du métabolisme du glucose tels que l'intolérance au glucose, l'hyperglycémie associée au DNID ainsi que toute forme de résistance à l'insuline). La posologie et le mode d'administration dépendront de la nature et de la sévérité de la pathologie à traiter.The prescription of the compounds of this present invention is preferably done, for each individual, at prophylactic or therapeutic dosages sufficient to exert a beneficial action (antiproliferative effects, appropriate treatment of disorders of glucose metabolism such as glucose intolerance, hyperglycemia associated with DNID and any form of insulin resistance). The dosage and method of administration will depend on the nature and severity of the condition to be treated.
Les décisions concernant le traitement, comme le dosage, sont sous la responsabilité des médecins traitants. Elles doivent tenir compte des pathologies à traiter, du patient, du mode d'administration notamment. Ces différents exemples susmentionnés peuvent être retrouvés dans: "Remington's Pharmaceutical Sciences,Treatment decisions, such as dosage, are the responsibility of the treating physicians. They must take into account the pathologies to be treated, the patient, the mode of administration in particular. These various examples mentioned above can be found in: "Remington's Pharmaceutical Sciences,
16th édition, Oslo, A. (ed), 1980".16 th edition, Oslo, A. (ed), 1980 ".
Grâce aux travaux réalisés par les inventeurs, les composés obtenus présentent une synthèse plus aisée que celle des composés connus, ces composés étant en outre non reconnus par des enzymes habituellement en charge du métabolisme des sucres. En outre, les molécules IPG obtenues ne présentent pas de toxicités aiguës (court terme), ni chronique (long terme). D'autres objets et avantages de la description apparaîtront à l'aide de la description détaillée qui suit, illustrée par les figures:Thanks to the work carried out by the inventors, the compounds obtained present an easier synthesis than that of the known compounds, these compounds being moreover not recognized by enzymes usually in charge of the metabolism of sugars. In addition, the IPG molecules obtained do not exhibit acute (short term) nor chronic (long term) toxicities. Other objects and advantages of the description will emerge from the following detailed description, illustrated by the figures:
- Figure 1.a: effet du composé FC663 sur la prolifération de cellules SW-480. Les cellules sont ensemencées dans des plaques de 96 puits et incubés en présence ou en absence du composé à tester FC663 à différentes concentrations pendant 24h. Le réactif colorimétrique est rajouté pendant les 4 dernières heures. La prolifération cellulaire est mesurée par lecture densitométrique à 490 nm (**: p<0,01; *** p<0,005).- Figure 1.a: effect of compound FC663 on the proliferation of SW-480 cells. The cells are seeded in 96-well plates and incubated in the presence or absence of the test compound FC663 at different concentrations for 24 hours. The colorimetric reagent is added during the last 4 hours. Cell proliferation is measured by densitometric reading at 490 nm (**: p <0.01; *** p <0.005).
- Figure l.b: effet du composé FC669 sur la prolifération de cellules SW-480. Les cellules sont ensemencées dans des plaques de 96 puits et incubés en présence ou en absence du composé à tester FC669 à différentes concentrations pendant 24h. Le réactif colorimétrique est rajouté pendant les 4 dernières heures. La prolifération cellulaire est mesurée par lecture densitométrique à 490 nm (**: p<0,01; *** p<0,005). - Figure 2. a: effet du composé FC670 sur la synthèse de glycogène au niveau d'hépatocytes HepG2. Les cellules sont ensemencées dans des plaques de 9,6 cm2 puis incubées pendant 4 heures avec le composé à tester FC670 ou avec l'insuline (contrôle positif) en présence du D[3H-2] glucose comme décrit dans le chapitre "matériels et méthodes". La synthèse de glycogène est mesurée par l'incorporation du glucose tritié et rapportée à la quantité de protéine totale (*: p<0,05; *** p<0,005).- Figure lb: effect of compound FC669 on the proliferation of SW-480 cells. The cells are seeded in 96-well plates and incubated in the presence or absence of the test compound FC669 at different concentrations for 24 hours. The colorimetric reagent is added during the last 4 hours. Cell proliferation is measured by densitometric reading at 490 nm (**: p <0.01; *** p <0.005). - Figure 2. a: effect of compound FC670 on the synthesis of glycogen at the level of HepG2 hepatocytes. The cells are seeded in 9.6 cm 2 plates and then incubated for 4 hours with the test compound FC670 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter " Materials and methods". The synthesis of glycogen is measured by the incorporation of tritiated glucose and related to the amount of total protein (*: p <0.05; *** p <0.005).
- Figure 2.b: effet du composé FC671 sur la synthèse de glycogène au niveau d'hépatocytes HepG2. Les cellules sont ensemencées dans des plaques de 9,6 cm2 puis incubées pendant 4 heures avec le composé à tester FC671 ou avec l'insuline (contrôle positif) en présence du D[3H-2]glucose comme décrit dans le chapitre "matériels et méthodes". La synthèse de glycogène est mesurée par l'incorporation du glucose tritié et rapportée à la quantité de protéine totale (*: p<0,05; *** p<0,005). Figure 3. a: effet du composé FC670 sur la captation du glucose au niveau d'adipocytes 3T3-L1. Les cellules sont ensemencées dans des plaques de 9,6 cm2 puis incubées pendant 20 minutes avec le composé FC670 ou avec l'insuline (contrôle positif), puis du [3H]déoxy-D-glucose est ajouté dans le milieu comme décrit dans le chapitre "matériels et méthodes". La captation du glucose est mesurée par l'incorporation du 2-[3H]déoxy-D-glucose (*:p<0,05; *** p<0,005).- Figure 2.b: effect of compound FC671 on glycogen synthesis in HepG2 hepatocytes. The cells are seeded in 9.6 cm 2 plates and then incubated for 4 hours with the test compound FC671 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter " Materials and methods". The synthesis of glycogen is measured by the incorporation of tritiated glucose and related to the amount of total protein (*: p <0.05; *** p <0.005). Figure 3.a: effect of compound FC670 on the uptake of glucose at the level of 3T3-L1 adipocytes. The cells are seeded in 9.6 cm 2 plates then incubated for 20 minutes with the compound FC670 or with insulin (positive control), then [ 3 H] deoxy-D-glucose is added to the environment as described in the chapter "materials and methods". Glucose uptake is measured by the incorporation of 2- [ 3 H] deoxy-D-glucose (*: p <0.05; *** p <0.005).
Figure 3.b: effet du composé FC671 sur la captation du glucose au niveau d'adipocytes 3T3-L1. Les cellules sont ensemencées dans des plaques de 9,6 cm2 puis incubées pendant 20 minutes avec le composé FC671 ou avec l'insuline (contrôle positif), puis du [ H]déoxy-D-glucose est ajouté dans le milieu comme décrit dans le chapitre "matériels et méthodes". La captation du glucose est mesurée par l'incorporation du 2-[ H]déoxy-D-glucose (*:p<0,05; *** p<0,005).Figure 3.b: Effect of compound FC671 on the uptake of glucose at the level of 3T3-L1 adipocytes. The cells are seeded in 9.6 cm 2 plates and then incubated for 20 minutes with compound FC671 or with insulin (positive control), then [H] deoxy-D-glucose is added to the medium as described in the chapter "materials and methods". Glucose uptake is measured by the incorporation of 2- [H] deoxy-D-glucose (*: p <0.05; *** p <0.005).
Figure 4. a: effet de l'insuline sur la phosphorylation d'IRS-1 et de la sous unité β de son récepteur au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.C. Figure 4.b: effet du composé FC670 sur la phosphorylation d'IRS-1 et de la sous unité β de son récepteur au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.C.Figure 4.a: effect of insulin on the phosphorylation of IRS-1 and of the β subunit of its receptor at the level of HepG2 hepatocytes, measured according to method 2.C. Figure 4.b: Effect of compound FC670 on the phosphorylation of IRS-1 and of the β subunit of its receptor at the level of HepG2 hepatocytes, measured according to method 2.C.
- Figure 4.c: effet du composé FC671 sur la phosphorylation d'IRS-1 et de la sous unité β de son récepteur au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.C. - Figure 5. a: effet de l'insuline sur l'activation de Erkl/2 MAPkinase au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.D.- Figure 4.c: effect of compound FC671 on the phosphorylation of IRS-1 and the β subunit of its receptor at the level of HepG2 hepatocytes, measured according to method 2.C. - Figure 5.a: effect of insulin on the activation of Erkl / 2 MAPkinase at the level of HepG2 hepatocytes, measured according to method 2.D.
- Figure 5.b: effet du composé FC670 sur l'activation de Erkl/2 MAPkinase au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.D.- Figure 5.b: effect of compound FC670 on the activation of Erkl / 2 MAPkinase at the level of HepG2 hepatocytes, measured according to the method 2.D.
Figure 5.c: effet du composé FC671 sur l'activation de Erkl/2 MAPkinase au niveau d'hépatocytes HepG2, mesurée selon la méthode 2.D.Figure 5.c: effect of compound FC671 on the activation of Erkl / 2 MAPkinase at the level of HepG2 hepatocytes, measured according to method 2.D.
Les schémas de synthèse et les résultats d'essais décrits de manière détaillée sont présentés à titre illustratif et non limitatif, à l'aide de quatre composés exemples, répondant aux formules I ou II, présentant des propriétés particulièrement avantageuses, et désignés FC663, FC669, FC670, FC671. La synthèse des composés FC663 et FC671 a été effectuée selon les schémas réactionnels suivants. Schéma 1The synthetic diagrams and the test results described in detail are presented by way of illustration and not limitation, using four example compounds, corresponding to formulas I or II, having particularly advantageous properties, and designated FC663, FC669 , FC670, FC671. The synthesis of compounds FC663 and FC671 was carried out according to the following reaction schemes. Diagram 1
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0003
Figure imgf000018_0004
Figure imgf000018_0004
FC663 FC671FC663 FC671
La synthèse et la structure des molécules sont détaillées ci-après.The synthesis and structure of the molecules are detailed below.
Synthèse des composés 3 et 4.Synthesis of compounds 3 and 4.
0,580 g (2,07 mmol) de composé 2 (G. E. Keck, T. T. Wager, J.Org.Chem. 61 (1996) 8366-8367) et 2,12 g (3,1 mmol) de composé 1 sont mis en solution dans 20 ml de chlorure de méthylène anhydre puis lg de tamis moléculaire (4 Â) sont ajoutés. La suspension est agitée à -30°C pendant 15 minutes puis on ajoute 1 ml d'une solution 0,2 molaire d'acide triméthylsilyltrifluorométhane sulfonique dans du chlorure de méthylène. Le mélange réactionnel est agité à -30°C pendant 1 heure puis il est laissé revenir à température ambiante. La suspension est filtrée sur de la célite et le filtrat est concentré sous pression réduite. Les composés 3 (0,750 g, 45% ) et 4 (0,450 g, 27%) sont obtenus purs par chromatographie sur gel de silice. Le composé 3 est une huile incolore. Ry= 0,39 (hexane/acétate d'éthyle 8:2); [α] > = +52 (c = 3,10.580 g (2.07 mmol) of compound 2 (GE Keck, TT Wager, J. Org. Chem. 61 (1996) 8366-8367) and 2.12 g (3.1 mmol) of compound 1 are dissolved in 20 ml of anhydrous methylene chloride then 1 g of molecular sieve (4 Å) are added. The suspension is stirred at -30 ° C for 15 minutes and then 1 ml of a 0.2 molar solution of trimethylsilyltrifluoromethane sulfonic acid in methylene chloride is added. The reaction mixture is stirred at -30 ° C for 1 hour then it is allowed to return to room temperature. The suspension is filtered through celite and the filtrate is concentrated under reduced pressure. Compounds 3 (0.750 g, 45%) and 4 (0.450 g, 27%) are obtained pure by chromatography on silica gel. Compound 3 is a colorless oil. Ry = 0.39 (hexane / ethyl acetate 8: 2); [α]> = +52 (c = 3.1
CHCI3); *H RMN (CDCI3) δ 5,32 J = 4 Hz, signal caractéristique d'un proton anomère de configuration α d'un résidu glucose; analyse calculée pour C4QH54OIO: %C = 73,3, %H = 6,8; trouvée: %C = 73,59, %H = 6,61.CHCl3); * H NMR (CDCI3) δ 5.32 J = 4 Hz, signal characteristic of an anomeric proton of configuration α of a glucose residue; analysis calculated for C4QH54OIO : % C = 73.3,% H = 6.8; found:% C = 73.59,% H = 6.61.
Le composé 4 est une huile incolore. Ry= 0,35 (hexane/acétate d'éthyle 8:2); [ \τ =Compound 4 is a colorless oil. Ry = 0.35 (hexane / ethyl acetate 8: 2); [\ τ =
+24 (c = 1,4 CHCI3); lH RMN (CDCI3) δ 4,55 J = 8 Hz, signal caractéristique d'un proton anomère de configuration β d'un résidu glucose; analyse calculée pour C49H54O10: %C = 73,3, %H = 6,8; trouvée: %C = 73,42, %H =6,75+24 (c = 1.4 CHCI3); 1 H NMR (CDCI3) δ 4.55 J = 8 Hz, signal characteristic of an anomeric proton of configuration β of a glucose residue; analysis calculated for C49H54O10:% C = 73.3,% H = 6.8; found:% C = 73.42,% H = 6.75
Synthèse du composé 5.Synthesis of compound 5.
0,750 g (0,93 mmol) de composé 3 sont dissous dans 3 ml de tetrahydrofurane (THF) puis on ajoute à cette solution 20 ml d'une solution aqueuse d'acide acétique à 70% . Le mélange réactionnel est chauffé à 60°C pendant 5 heures. Les solvants sont évaporés sous pression réduite et le résidu est coévaporé 2 fois avec du toluène. Le composé 5 (0,524 g, 74%) est obtenu pur sous la forme d'une huile incolore par purification sur colonne de gel de silice. R = 0,51 (hexane/acétate d'éthyle 5:5);0.750 g (0.93 mmol) of compound 3 are dissolved in 3 ml of tetrahydrofuran (THF) and then 20 ml of an aqueous solution of acetic acid at 70% are added to this solution. The reaction mixture is heated at 60 ° C for 5 hours. The solvents are evaporated under reduced pressure and the residue is coevaporated 2 times with toluene. Compound 5 (0.524 g, 74%) is obtained pure in the form of a colorless oil by purification on a column of silica gel. R = 0.51 (hexane / ethyl acetate 5: 5);
[α]D = +60 (c = 0,9 CHCI3); analyse calculée pour C46H50O10: %C = 72,4, %H =[α] D = +60 (c = 0.9 CHCI3); analysis calculated for C46H50O10:% C = 72.4,% H =
6,6; trouvée: %C = 72,71, %H =6,69.6,6; found:% C = 72.71,% H = 6.69.
Synthèse du composé 7.Synthesis of compound 7.
Le composé 7 (0,314 g, 70%) est obtenu sous forme de poudre blanche par traitement de 0,450 g (0,59 mmol) de composé 4 selon le protocole décrit pour la préparation du composé 5. Ry= 0,46 (hexane/acétate d'éthyle 5:5); F = 139°C, [a]D = +41 (c = 0,7 CHCI3); analyse calculée pour C46H50O10: %C = 72,4, %H = 6,6; trouvée: %C = 72,35, %H =6,45.Compound 7 (0.314 g, 70%) is obtained in the form of a white powder by treatment of 0.450 g (0.59 mmol) of compound 4 according to the protocol described for the preparation of compound 5. Ry = 0.46 (hexane / ethyl acetate 5: 5); F = 139 ° C, [a] D = +41 (c = 0.7 CHCI3); analysis calculated for C46H50O10:% C = 72.4,% H = 6.6; found:% C = 72.35,% H = 6.45.
Synthèse des composés FC663 et FC671. 3 g de triazole sont dissous dans 80 ml de THF, la solution résultante est refroidie à 10°C, puis on ajoute goutte à goutte successivement 1,35 ml d'oxychlorure de phosphore puis 6 ml de triéthylamine. Le mélange réactionnel est ensuite agité à température ambiante pendant 15 minutes. Le précipité formé lors de la réaction est filtré puis lavé avec un peu de THF anhydre. 0,2 g (0,26 mmol) de composé 5 ou 7 sont dissous dans 2 ml de THF anhydre puis on ajoute 30 ml du filtrat précédemment obtenu. Le volume réactionnel est ramené à 5 ml par concentration sous pression réduite. Le mélange réactionnel est agité à température ambiante pendant 15 minutes puis dilué avec 70 ml d'acétate d'éthyle. La phase organique est lavée 2 fois avec 2 ml d'eau, décantée, séchée sulfate de magnésium, puis concentrée. Le résidu contient le phosphate cyclique (31p RMN δ 14,2 ppm) qui est utilisé sans purification pour l'étape de déprotection. Le phosphate cyclique est mis en solution dans 20 ml d'un mélange THF/EtOH/H2θ (1 :1:1) puis agité 20 heures sous atmosphère d'hydrogène en présence de 20 mg d'hydrogénocarbonate de triéthylammonium et 160 mg de palladium sur charbon à 10%. Le catalyseur est filtré sur célite et rincé avec de l'eau. Le filtrat est concentré sous pression réduite. Le résidu est dilué avec 1 ml d'eau et purifié à l'aide d'une colonne Cl 8 isolute SPE pour fournir après lyophilisation le composé FC663 ou FC671 sous forme de sel de triéthylammonium.Synthesis of compounds FC663 and FC671. 3 g of triazole are dissolved in 80 ml of THF, the resulting solution is cooled to 10 ° C., then 1.35 ml of phosphorus oxychloride and then 6 ml of triethylamine are added successively dropwise. The reaction mixture is then stirred at room temperature for 15 minutes. The precipitate formed during the reaction is filtered and then washed with a little anhydrous THF. 0.2 g (0.26 mmol) of compound 5 or 7 are dissolved in 2 ml of anhydrous THF and then 30 ml of the previously obtained filtrate are added. The reaction volume is reduced to 5 ml by concentration under reduced pressure. The reaction mixture is stirred at room temperature for 15 minutes and then diluted with 70 ml of ethyl acetate. The organic phase is washed twice with 2 ml of water, decanted, dried magnesium sulphate, then concentrated. The residue contains cyclic phosphate (31p NMR δ 14.2 ppm) which is used without purification for the deprotection step. The cyclic phosphate is dissolved in 20 ml of a THF / EtOH / H2θ mixture (1: 1: 1) and then stirred for 20 hours under a hydrogen atmosphere in the presence of 20 mg of triethylammonium hydrogen carbonate and 160 mg of palladium. on 10% charcoal. The catalyst is filtered through celite and rinsed with water. The filtrate is concentrated under reduced pressure. The residue is diluted with 1 ml of water and purified using a Cl 8 isolute SPE column to provide, after lyophilization, the compound FC663 or FC671 in the form of triethylammonium salt.
La synthèse des composés FC669 et FC670 a été effectuée selon les schémas réactionnels suivants. Schéma 2The synthesis of the compounds FC669 and FC670 was carried out according to the following reaction schemes. Diagram 2
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0002
Figure imgf000021_0003
Figure imgf000021_0003
Figure imgf000021_0004
Figure imgf000021_0004
FC669 FC670FC669 FC670
Synthèse des composés 10 et 11.Synthesis of compounds 10 and 11.
0,500 g (1,78 mmol) de composé 2 (G. E. Keck, T. T. Wager, J.Org.Chem. 61 (1996) 8366-8367) et 1,65 g (2,67 mmol) de composé 9 (W. Kinzy, R. R. Schmidt, Liebigs Ann. Chem. (1985),1537-1545) sont mis en solution dans 20 ml de chlorure de méthylène anhydre puis lg de tamis moléculaire (4 Â) sont ajoutés. La suspension est agitée à-30°C pendant 15 minutes puis on ajoute 1 ml d'une solution 0,2 molaire d'acide triméthylsilyltrifluorométhane sulfonique dans du chlorure de méthylène. Le mélange réactionnel est agité à -30°C pendant 1 heure puis il est laissé revenir à température ambiante. La suspension est filtrée sur de la célite et le filtrat est concentré sous pression réduite. Les composés 10 (0,537 g, 41%) et 11 (0,557 g, 44%) sont obtenus purs par chromatographie sur gel de silice. Le composé 10 est une poudre blanche.
Figure imgf000022_0001
0,41 (hexane/acétate d'éthyle 8:2); F = 85°C; [α]D = +73 (c =
0.500 g (1.78 mmol) of compound 2 (GE Keck, TT Wager, J. Org. Chem. 61 (1996) 8366-8367) and 1.65 g (2.67 mmol) of compound 9 (W. Kinzy , RR Schmidt, Liebigs Ann. Chem. (1985), 1537-1545) are dissolved in 20 ml of chloride anhydrous methylene then 1 g of molecular sieve (4 Å) are added. The suspension is stirred at -30 ° C for 15 minutes and then 1 ml of a 0.2 molar solution of trimethylsilyltrifluoromethane sulfonic acid in methylene chloride is added. The reaction mixture is stirred at -30 ° C for 1 hour then it is allowed to return to room temperature. The suspension is filtered through celite and the filtrate is concentrated under reduced pressure. Compounds 10 (0.537 g, 41%) and 11 (0.557 g, 44%) are obtained pure by chromatography on silica gel. Compound 10 is a white powder.
Figure imgf000022_0001
0.41 (hexane / ethyl acetate 8: 2); Mp 85 ° C; [α] D = +73 (c =
0,54 CHCI3); !H RMN (CDCI3) δ 5,34 J = 4 Hz, signal caractéristique d'un proton anomère de configuration α d'un résidu glucose; analyse calculée pour C42H47N3O9: %C = 68,4, %H = 6,4, %N = 5,7; trouvée: %C = 68,71 , %H = 6,64,0.54 CHCI3); ! H NMR (CDCI3) δ 5.34 J = 4 Hz, signal characteristic of an anomeric proton of configuration α of a glucose residue; analysis calculated for C42H47N3O9:% C = 68.4,% H = 6.4,% N = 5.7; found:% C = 68.71,% H = 6.64,
%N = 5,46.% N = 5.46.
Le composé 11 est une poudre blanche. Ry= 0,38 (hexane/acétate d'éthyle 8:2); F =Compound 11 is a white powder. Ry = 0.38 (hexane / ethyl acetate 8: 2); F =
89°C [CC]D = +15,3 (c ≈ 1,2 CHCI3); H RMN (CDCI3) δ 4,42 J = 7,5 Hz, signal caractéristique d'un proton anomère de configuration β d'un résidu glucose; analyse calculée pour C42H47N3O9: %C = 68,4, %H = 6,4, %N = 5,7; trouvée: %C =68,52 , %H = 6,35, %N = 5,82.89 ° C [CC] D = +15.3 (c ≈ 1.2 CHCI3); H NMR (CDCI3) δ 4.42 J = 7.5 Hz, signal characteristic of an anomeric proton of configuration β of a glucose residue; analysis calculated for C42H47N3O9:% C = 68.4,% H = 6.4,% N = 5.7; found:% C = 68.52,% H = 6.35,% N = 5.82.
Synthèse du composé 12. 0,287 g (0,39 mmol) de composé 10 sont dissous dans 3 ml de tétrahydrofurane (THF) puis on ajoute à cette solution 20 ml d'une solution aqueuse d'acide acétique à 70% . Le mélange réactionnel est chauffé à 60°C pendant 5 heures. Les solvants sont évaporés sous pression réduite et le résidu est co-évaporé 2 fois avec du toluène. Le composé 12 (0,293 g, 75%) est obtenu pur sous la forme d'une gomme par purification sur colonne de gel de silice. R ≈ 0,56 (hexane/acétate d'éthyle 5:5);Synthesis of compound 12. 0.287 g (0.39 mmol) of compound 10 is dissolved in 3 ml of tetrahydrofuran (THF) and then 20 ml of an aqueous solution of acetic acid at 70% are added to this solution. The reaction mixture is heated at 60 ° C for 5 hours. The solvents are evaporated under reduced pressure and the residue is co-evaporated 2 times with toluene. Compound 12 (0.293 g, 75%) is obtained pure in the form of a gum by purification on a column of silica gel. R ≈ 0.56 (hexane / ethyl acetate 5: 5);
[α]D = +60,5 (c = 1,3 CHCI3); analyse calculée pour C39H49N3O9: %C = 67,1, %H = 6,2, %N = 6,0; trouvée: %C = 66,95 , %H = 5,89, %N = 5,78.[α] D = +60.5 (c = 1.3 CHCI3); analysis calculated for C39H49N3O9:% C = 67.1,% H = 6.2,% N = 6.0; found:% C = 66.95,% H = 5.89,% N = 5.78.
Synthèse du composé 14. Le composé 14 (0,334 g, 84%) est obtenu sous forme de mousse blanche par traitement de 0,400 g (0,54 mmol) de composé 11 selon le protocole décrit pour la préparation du composé 12. Ry= 0,39 (hexane/acétate d'éthyle 5:5); [α] = +41,4 (c = 1,2 CHCI3); analyse calculée pour C39H49N3O9: %C = 67,1, %H = 6,2, %N = 6,0; trouvée: %C = 66,99 , %H = 6,02, %N = 5,88.Synthesis of compound 14. Compound 14 (0.334 g, 84%) is obtained in the form of white foam by treatment of 0.400 g (0.54 mmol) of compound 11 according to the protocol described for the preparation of compound 12. Ry = 0.39 (hexane / ethyl acetate 5: 5); [α] = +41.4 (c = 1.2 CHCI3); analysis calculated for C39H49N3O9:% C = 67.1,% H = 6.2,% N = 6.0; found:% C = 66.99,% H = 6.02,% N = 5.88.
Synthèse des composés FC669 et FC670.Synthesis of compounds FC669 and FC670.
3 g de triazole sont dissous dans 80 ml de THF, la solution résultante est refroidie à 10°C, puis on ajoute goutte à goutte successivement 1,35 ml d'oxychlorure de phosphore puis 6 ml de triéthylamine. Le mélange réactionnel est ensuite agité à température ambiante pendant 15 minutes. Le précipité formé lors de la réaction est filtré puis lavé avec un peu de THF anhydre.3 g of triazole are dissolved in 80 ml of THF, the resulting solution is cooled to 10 ° C., then 1.35 ml of phosphorus oxychloride and then 6 ml of triethylamine are added successively dropwise. The reaction mixture is then stirred at room temperature for 15 minutes. The precipitate formed during the reaction is filtered and then washed with a little anhydrous THF.
0,209 g (0,3 mmol) de composé 12 ou 14 sont dissous dans 2 ml de THF anhydre puis on ajoute 30 ml du filtrat précédemment obtenu. Le volume réactionnel est ramené à 5 ml par concentration sous pression réduite. Le mélange réactionnel est agité à température ambiante pendant 15 minutes puis dilué avec 70 ml d'acétate d'éthyle. La phase organique est lavée 2 fois avec 2 ml d'eau, décantée, séchée sulfate de magnésium, puis concentrée. Le résidu contient le phosphate cyclique (31p RMN δ 14,2 ppm) qui est utilisé sans purification pour l'étape de déprotection. Le phosphate cyclique est mis en solution dans 20 ml d'un mélange THF/EtOH/H2θ (1:1:1) puis agité 20 heures sous atmosphère d'hydrogène en présence de 20 mg d'hydrogénocarbonate de triéthylammonium et 160 mg de palladium sur charbon à 10%. Le catalyseur est filtré sur célite et rincé avec de l'eau. Le filtrat est concentré sous pression réduite. Le résidu est dilué avec 1 ml d'eau et purifié à l'aide d'une colonne Cl 8 isolute SPE pour fournir après lyophilisation le composé FC669 ou FC670 sous forme de sel de triéthylammonium.0.209 g (0.3 mmol) of compound 12 or 14 are dissolved in 2 ml of anhydrous THF and then 30 ml of the previously obtained filtrate are added. The reaction volume is reduced to 5 ml by concentration under reduced pressure. The reaction mixture is stirred at room temperature for 15 minutes and then diluted with 70 ml of ethyl acetate. The organic phase is washed twice with 2 ml of water, decanted, dried magnesium sulphate, then concentrated. The residue contains cyclic phosphate (31p NMR δ 14.2 ppm) which is used without purification for the deprotection step. The cyclic phosphate is dissolved in 20 ml of a THF / EtOH / H2θ mixture (1: 1: 1) and then stirred for 20 hours under a hydrogen atmosphere in the presence of 20 mg of triethylammonium hydrogen carbonate and 160 mg of palladium. on 10% charcoal. The catalyst is filtered through celite and rinsed with water. The filtrate is concentrated under reduced pressure. The residue is diluted with 1 ml of water and purified using a Cl 8 isolute SPE column to provide, after lyophilization, the compound FC669 or FC670 in the form of triethylammonium salt.
L'activité des composés a été évaluée selon les méthodes suivantes. Les molécules synthétisées sont testées sur différents paramètres, pour déterminer leurs propriétés anti-prolifératives et insulino-mimétiques. Les mesures effectuées pour évaluer l'activité insulino-mimétique comprennent systématiquement un contrôle positif (insuline). Les expériences décrites ci-dessous évaluent les activités biologiques des quatre molécules précédemment décrites, désignées : FC663, FC669, FC670 et FC671. Matériel Le RPMI 1640, le DMEM, le sérum de veau fœtal " SVF " et le sérum de veau donneur " SVD " sont fournis par Life Technologies. Le D[2-3H]glucose (21,00 Ci/mmol) et le [6-3H]2-déoxy glucose (6,10 Ci/mmol) sont obtenus chez NEN Life Science. Le réactif Celltiter 96® provient de chez Promega. Les anticorps anti- phosphotyrosine (4G10), anti-Erkl/2MAPkinase et anti-phospho-Erkl/2MAPkinase proviennent de chez Upstate Biotechnology. Le kit de révélation des anticorps par chimioluminescence provient de chez Amersham. Tous les produits chimiques ainsi que l'insuline, le glycogène, la déxaméthasone et l'isobutylméthylxanthine (IBMX) proviennent de chez SIGMA. Lignées cellulaires 3T3-L1: lignée de pré-adipocytes sélectionnés à partir de la lignée de fibroblastes de souris 3T3 pour leur capacité à se différencier en adipocytes dans certaines conditions expérimentales.The activity of the compounds was evaluated according to the following methods. The molecules synthesized are tested on various parameters, to determine their anti-proliferative and insulin-mimetic properties. The measurements made to assess insulin-mimetic activity systematically include a positive control (insulin). The experiments described below evaluate the biological activities of the four previously described molecules, designated: FC663, FC669, FC670 and FC671. Material The RPMI 1640, the DMEM, the fetal calf serum "SVF" and the donor calf serum "SVD" are supplied by Life Technologies. D [2- 3 H] glucose (21.00 Ci / mmol) and [6- 3 H] 2-deoxy glucose (6.10 Ci / mmol) are obtained from NEN Life Science. The Celltiter 96 ® reagent comes from Promega. The anti-phosphotyrosine (4G10), anti-Erkl / 2MAPkinase and anti-phospho-Erkl / 2MAPkinase antibodies come from Upstate Biotechnology. The chemiluminescence antibody revelation kit comes from Amersham. All chemicals as well as insulin, glycogen, dexamethasone and isobutylmethylxanthine (IBMX) come from SIGMA. 3T3-L1 cell lines: line of pre-adipocytes selected from the mouse fibroblast line 3T3 for their ability to differentiate into adipocytes under certain experimental conditions.
HepG2: lignée d'hépatocarcinome humain (n° ATCC : HB-8065). SW-480: lignée d'adénocarcinomes colorectal humain (n° ATCC: CCL-228). Les cellules sont maintenues en culture dans du DMEM + SVF 10% (SW480), dans du RPMI + SVF 10% + insuline 0,5% + BSA 5% (HepG2) et dans du DMEM + SVD 10% (3T3-L1), dans une atmosphère à 5% de CO2 et 95% d'air. Ces milieux sont additionnés de pénicilline (lOOU/ml), de streptomycine (lOOμg/ml) et de fungizone (0,25μg/ml). Différenciation des cellules 3T3-L1HepG2: human hepatocarcinoma line (ATCC number: HB-8065). SW-480: human colorectal adenocarcinoma line (ATCC number: CCL-228). The cells are kept in culture in DMEM + SVF 10% (SW480), in RPMI + SVF 10% + insulin 0.5% + BSA 5% (HepG2) and in DMEM + SVD 10% (3T3-L1) , in an atmosphere with 5% CO 2 and 95% air. These media are added with penicillin (lOOU / ml), streptomycin (lOOμg / ml) and fungizone (0.25μg / ml). Differentiation of 3T3-L1 cells
Les cellules (3T3-L1) sont cultivées dans des plaques de 6 puits (3.10 cellules/puits) en présence de DMEM + 10% SVD. A confluence, le milieu est remplacé par du DMEM + 10% SVF contenant la déxaméthasone (25 μM), l'isobutylméthylxanthine (lOOμM) et de l'insuline (170nM) afin d'induire la différenciation des fibroblastes (3T3-L1) en adipocytes. Deux jours après, les cellules sont incubées pendant 4 à 6 jours dans le milieu de différenciation DMEM + 10% SVF + insuline 170 nM. Les cellules sont utilisées pour la mesure de captation du glucose lorsque environ 80 à 90% renferment des vacuoles lipidiques (marqueur phénotypique). Mesure de la captation du glucoseThe cells (3T3-L1) are cultured in 6-well plates (3.10 cells / well) in the presence of DMEM + 10% SVD. At confluence, the medium is replaced by DMEM + 10% FCS containing dexamethasone (25 μM), isobutylmethylxanthine (100 μM) and insulin (170 nM) in order to induce the differentiation of fibroblasts (3T3-L1) adipocytes. Two days later, the cells are incubated for 4 to 6 days in the DMEM differentiation medium + 10% FCS + insulin 170 nM. The cells are used for the measurement of glucose uptake when approximately 80 to 90% contain lipid vacuoles (phenotypic marker). Measurement of glucose uptake
Lorsque les cellules sont différenciées, on effectue 2 lavages avec du DMEM suivi par un autre lavage avec du tampon KRH + BSA 1% + Glc 5mM. Ensuite, les cellules sont incubées en présence des différentes molécules aux concentrations indiquées (100, 50 et 25μM) pendant 20 minutes. Puis, 10 μl du mélange [6- H]2- déoxyglucose + glucose à ImM sont ajoutés dans chaque puits. Vingt minutes après, on réalise 3 lavages avec du KRH + Glc 5mM (4°C), suivis de la lyse des cellules par 1ml de NaOH 0,1N renfermant du SDS 0,1%. Enfin, la mesure est effectuée dans un compteur à scintillation liquide. Mesure colorimétrique de la prolifération cellulaireWhen the cells are differentiated, 2 washes are carried out with DMEM followed by another washing with KRH buffer + 1% BSA + 5 mM Glc. Then, the cells are incubated in the presence of the different molecules at the indicated concentrations (100, 50 and 25 μM) for 20 minutes. Then, 10 μl of the mixture [6- H] 2- deoxyglucose + glucose with ImM are added to each well. Twenty minutes later, 3 washes are carried out with KRH + 5 mM Glc (4 ° C.), followed by lysis of the cells with 1 ml of 0.1N NaOH containing 0.1% SDS. Finally, the measurement is carried out in a liquid scintillation counter. Colorimetric measurement of cell proliferation
Le principe de cette méthode est basé sur la capacité des cellules vivantes à convertir les sels de tétrazolium, contenus dans le Celltiter96®, en formazan. Les cellules (SW480) sont ensemencées dans des plaques de 96 puits (5.10 cellules/puits) dans du DMEM + 10% SVF. Après 48 heures, les cellules sont incubées en présence des différentes concentrations des molécules pendant 24 heures. Après 20 h, 20 μl de réactif sont rajoutés dans chaque puits et l'absorbance est mesurée à 490 nm, après 4 heures, avec un lecteur de plaque (SpectraCount™; Packard).The principle of this method is based on the capacity of living cells to convert the tetrazolium salts, contained in Celltiter96®, into formazan. The cells (SW480) are seeded in 96-well plates (5.10 cells / well) in DMEM + 10% FCS. After 48 hours, the cells are incubated in the presence of the different concentrations of the molecules for 24 hours. After 20 h, 20 μl of reagent are added to each well and the absorbance is measured at 490 nm, after 4 hours, with a plate reader (SpectraCount ™; Packard).
Synthèse de glycogèneGlycogen synthesis
Les hépatocytes sont ensemencés dans des plaques de 6 puits (2.10 cellules/puits) en présence de RPMI + SVF 10% + insuline 0,5% + BSA 5%. Après 2 jours, les tapis cellulaires sont incubés pendant 3 h dans du RPMI + glucose 5mM, puis incubés avec les différentes molécules. Après 30 minutes, le 6[3H]-D glucose est additionné (2μCi/ml). Après 4 h de marquage métabolique, les tapis cellulaires sont rincés avec du PBS 4°C, puis lysés par de la soude 0.1 M. Une fraction aliquote de 50μl est prélevée pour mesurer la concentration protéique par la méthode de Bradford. Le glycogène est précipité, 2h à -80°C, par 5 volumes d'éthanol en présence d'un entraîneur (5 mg de glycogène). Après centrifugation (15 min. à 6000g) le culot est repris par 500μl d'H O puis la radioactivité est mesurée. Western-Blot La concentration des extraits cytoplasmiques ou nucléaires est déterminée par la méthode de Bradford. Les échantillons (15 à 30 μg) sont repris dans du tamponThe hepatocytes are seeded in 6-well plates (2.10 cells / well) in the presence of RPMI + 10% SVF + 0.5% insulin + 5% BSA. After 2 days, the cell mats are incubated for 3 h in RPMI + glucose 5 mM, then incubated with the different molecules. After 30 minutes, the 6 [ 3 H] -D glucose is added (2 μCi / ml). After 4 h of metabolic labeling, the cell mats are rinsed with PBS 4 ° C, then lysed with 0.1 M sodium hydroxide. An aliquot of 50 μl is taken to measure the protein concentration by the Bradford method. The glycogen is precipitated, 2 h at -80 ° C, with 5 volumes of ethanol in the presence of a entrainer (5 mg of glycogen). After centrifugation (15 min. At 6000 g) the pellet is taken up in 500 μl of H O and then the radioactivity is measured. Western blot The concentration of cytoplasmic or nuclear extracts is determined by the Bradford method. The samples (15 to 30 μg) are taken up in buffer
Laemmli 5X additionné de Na3VO4 1 mM (Laemmli et al (1970) Nature 227, 680-Laemmli 5X supplemented with Na 3 VO 4 1 mM (Laemmli et al (1970) Nature 227, 680-
685). La migration des échantillons s'effectue, en condition dénaturante (SDS- PAGE), dans du tampon d'électrophorèse, puis les protéines sont transférées sur une685). The migration of the samples is carried out, under denaturing condition (SDS-PAGE), in electrophoresis buffer, then the proteins are transferred to a
TM membrane PVDF (Polyvinylidene difluoride; NEN Life Science Products). Ce transfert est réalisé dans du tampon d'électrotransfert (75 min à 100 V), puis les sites non spécifiques sont bloqués dans du tampon TBS-T contenant 10% de lait écrémé ou 5% de sérum albumine bovine (BSA). La membrane est ensuite lavée 3 fois dans du tampon TBS-T puis incubée avec l'anticorps primaires. La membrane subit alors de nombreux bains successifs dans du tampon TBS-T, puis est incubée une heure avec une solution d'anticorps secondaires, couplés à une HRP. Après lavages, la révélation des anticorps est effectuée par chimioluminescence (Kit ECL+; Amersham). Les membranes peuvent être "lavées" 30 min à 50°C dans une solution de dénaturation puis réincubées avec un anticorps primaire différent. Analyses statistiquesTM PVDF membrane (Polyvinylidene difluoride; NEN Life Science Products). This transfer is carried out in electrotransfer buffer (75 min at 100 V), then the non-specific sites are blocked in TBS-T buffer containing 10% skimmed milk or 5% bovine serum albumin (BSA). The membrane is then washed 3 times in TBS-T buffer and then incubated with the primary antibodies. The membrane then undergoes numerous successive baths in TBS-T buffer, then is incubated for one hour with a solution of secondary antibodies, coupled to an HRP. After washing, the revelation of the antibodies is carried out by chemiluminescence (Kit ECL +; Amersham). The membranes can be "washed" 30 min at 50 ° C in a denaturation solution and then reincubated with a different primary antibody. Statistical analyzes
Les résultats sont la moyenne de 4 puits (tests de synthèse de glycogène et de captation du glucose) ou 8 puits (prolifération). La significativité des résultats est déterminée en utilisant le test de Student (*: p<0,05; **: p<0,01; ***: p<0,005).The results are the average of 4 wells (glycogen synthesis and glucose uptake tests) or 8 wells (proliferation). The significance of the results is determined using the Student test (*: p <0.05; **: p <0.01; ***: p <0.005).
1) Effets antiprolifératifs des molécules de type (I)1) Antiproliferative effects of type (I) molecules
Après 24 heures d'incubation, le composé FC663 exerce, sur la prolifération, un effet inhibiteur directement proportionnel aux concentrations. Ainsi, nous avons mesuré une inhibition d'environ 34 % dès 25 μM pour atteindre 65 % à 100 μM (Fig. la). Le composé FC669 exerce également un effet inhibiteur très marqué qui est mesurable à partir de 25 μM (-35 %). L'effet inhibiteur dépend de la concentration utilisée puisqu'il atteint 70 % à 100 μM (Fig. lb). Dans les figures la et lb, les cellules sont ensemencées dans des plaques de 96 puits et incubés en présence ou en absence des composés à tester FC663 et FC669 à différentes concentrations pendant 24heures. Le réactif colorimétrique est rajouté pendant les 4 dernières heures. La prolifération cellulaire est mesurée par lecture densitométrique à 490nm (** :p<0,01;*** :p<0,005). 2) Effets insulino-mimétique des molécules de type (II) A/ Effets sur la synthèse de glycogène chez les hépatocytesAfter 24 hours of incubation, the compound FC663 exerts, on proliferation, an inhibitory effect directly proportional to the concentrations. Thus, we measured an inhibition of approximately 34% from 25 μM to reach 65% at 100 μM (Fig. La). The compound FC669 also exerts a very marked inhibitory effect which is measurable from 25 μM (-35%). The inhibitory effect depends on the concentration used since it reaches 70% at 100 μM (Fig. Lb). In Figures 1a and 1b, the cells are seeded in 96-well plates and incubated in the presence or absence of the test compounds FC663 and FC669 at different concentrations for 24 hours. The colorimetric reagent is added during the last 4 hours. Cell proliferation is measured by densitometric reading at 490nm (**: p <0.01; ***: p <0.005). 2) Insulin-mimetic effects of type (II) A molecules / Effects on glycogen synthesis in hepatocytes
Les hépatocytes de la lignée HepG2 ont été incubés, pendant 4 heures, en présence de différentes concentrations (100, 50, 25 et 10 μM) des composés à tester, ou en présence d'insuline (5 et 1 μM) utilisée comme contrôle positif. Nous avons mesuré une augmentation de la néo-synthèse de glycogène en présence d'insuline. D'une expérience à l'autre, cette stimulation s'élève à environ 30 à 35%) pour la concentration de 5 μM pour atteindre 40 à 50% à 1 μM. (Fig. 2 a, b). Le composé FC670 stimule nettement la synthèse de glycogène de 50%) à 100 μM et de 35% à 50 μM. Aucun effet significatif n'a été mesuré aux concentrations inférieures (Fig.2a). Le composé FC671 exerce également un effet stimulant sur la synthèse de glycogène. Cet effet est mesurable dès la concentration de 25 μM avec une augmentation de 30%. Cette stimulation atteint 65% à 50 μM et 52% à 100 μM (Fig. 2b). Dans les figures 2a et 2b, les cellules sont ensemencées dans des plaques de 9,6 cm puis incubées pendant 4heures avec les composés FC670 et FC671 ou avec l'insuline (contrôle positif) en présence de D[3H-2] glucose comme décrit dans le chapitre « matériels et méthodes ». La synthèse de glycogène est mesurée par l'incorporation du glucose tritié et rapportée à la quantité de protéine totale. (* :p<0,05 ;*** :p<0,005). B/ Effets sur la captation du glucose chez les adipocytesThe hepatocytes of the HepG2 line were incubated for 4 hours in the presence of different concentrations (100, 50, 25 and 10 μM) of the test compounds, or in the presence of insulin (5 and 1 μM) used as a positive control. . We have measured an increase in glycogen neo-synthesis in the presence of insulin. From one experiment to another, this stimulation amounts to approximately 30 to 35%) for the concentration of 5 μM to reach 40 to 50% at 1 μM. (Fig. 2 a, b). The compound FC670 clearly stimulates the synthesis of glycogen by 50%) at 100 μM and by 35% at 50 μM. No significant effect was measured at the lower concentrations (Fig. 2a). The compound FC671 also exerts a stimulating effect on the synthesis of glycogen. This effect can be measured from the concentration of 25 μM with an increase of 30%. This stimulation reaches 65% at 50 μM and 52% at 100 μM (Fig. 2b). In FIGS. 2a and 2b, the cells are seeded in 9.6 cm plates and then incubated for 4 hours with the compounds FC670 and FC671 or with insulin (positive control) in the presence of D [ 3 H-2] glucose as described in the chapter "materials and methods". Glycogen synthesis is measured by the incorporation of tritiated glucose and related to the amount of total protein. (*: p <0.05; ***: p <0.005). B / Effects on glucose uptake in adipocytes
Les 3T3-L1 différenciées en adipocytes ont été incubées pendant 40 minutes en présence de l'insuline (contrôle positif) ou des composés FC670 et FC671 (100, 50 et 25 μM). Dans les deux expériences, l'insuline a stimulé la captation du [6-3H]2- déoxy glucose par les adipocytes d'environ 40% par rapport au contrôle (Fig. 3a, b). Le FC670 (50 ou 100 μM) a stimulé la captation d'environ 55% (Fig. 3a). En présence du composé FC671, une augmentation de la captation d'environ 60% a été mesurée à lOOμM. L'effet est encore plus prononcé à 50 μM puisque l'augmentation s'élève à +95% (Fig. 3b).Dans les figures 3a et 3b, les cellules sont ensemencées dans des plaques de 9,6 cm2 puis incubées pendant 20 minutes avec les composés FC670 et FC671 ou avec l'insuline (contrôle positif) puis du 2-[3H]déoxy-D-glucose est ajouté dans le milieu comme décrit dans le chapitre « matériels et méthodes ». La captation du glucose est mesurée par l'incorporation du 2-[3H]déoxy-D-glucose. (* :p<0,05 ;*** :p<0,005).The 3T3-L1 differentiated into adipocytes were incubated for 40 minutes in the presence of insulin (positive control) or of the compounds FC670 and FC671 (100, 50 and 25 μM). In both experiments, the insulin stimulated the uptake of [6- 3 H] 2-deoxy glucose by the adipocytes by about 40% compared to the control (Fig. 3a, b). FC670 (50 or 100 μM) stimulated uptake by around 55% (Fig. 3a). In the presence of compound FC671, an increase in uptake of approximately 60% was measured at 100 μM. The effect is even more pronounced at 50 μM since the increase amounts to + 95% (Fig. 3b). In Figures 3a and 3b, the cells are seeded in 9.6 cm 2 plates and then incubated for 20 minutes with the compounds FC670 and FC671 or with insulin (positive control) then 2- [ 3 H] deoxy-D-glucose is added to the medium as described in the chapter "materials and methods". The Glucose uptake is measured by the incorporation of 2- [ 3 H] deoxy-D-glucose. (*: p <0.05; ***: p <0.005).
C/ Effets sur la phosphorylation de la sous-unité β du récepteur de l'insuline et d'IRS-1 chez les hépatocytes Les hépatocytes de la lignée HepG2 ont été incubés en présence d'insulineC / Effects on the phosphorylation of the insulin receptor and IRS-1 β subunit in hepatocytes The hepatocytes of the HepG2 line were incubated in the presence of insulin
(lμM), du composée FC670 (50μM) ou du composé FC671 (50μM), pendant 5, 15, 30 et 60 minutes. En présence d'insuline, nous avons observé, dès 5 minutes d'incubation, une augmentation de la phosphorylation de la sous-unité β du récepteur de l'insuline (P-IR-B: 95kDa), avec un maximum après 15 minutes d'incubation. Un retour à l'état basai est mesuré après une heure d'incubation (Fig. 4 a). Par ailleurs, après 15 minutes d'incubation, l'insuline augmente également la phosphorylation d'IRS-1 (P-IRS-1: 165kDa) Comme l'insuline, les composés FC670 (Fig. 4 b) et FC671 (Fig. 4 c) stimulent à la fois la phosphorylation de la sous-unité β du récepteur de l'insuline (P-IR-β: 95kDa) et d'IRS-1. D/ Effets sur l'activation de Erkl/2MAPkinases chez les hépatocytes(1 μM), of compound FC670 (50 μM) or of compound FC671 (50 μM), for 5, 15, 30 and 60 minutes. In the presence of insulin, we observed, from 5 minutes of incubation, an increase in the phosphorylation of the β subunit of the insulin receptor (P-IR-B: 95kDa), with a maximum after 15 minutes incubation. A return to the basal state is measured after one hour of incubation (Fig. 4 a). In addition, after 15 minutes of incubation, insulin also increases the phosphorylation of IRS-1 (P-IRS-1: 165kDa) Like insulin, the compounds FC670 (Fig. 4 b) and FC671 (Fig. 4 c) stimulate both the phosphorylation of the insulin receptor β (P-IR-β: 95kDa) subunit and of IRS-1. D / Effects on the activation of Erkl / 2MAPkinases in hepatocytes
Les hépatocytes de la lignée HepG2 ont été incubés en présence d'insuline (lμM), du composée FC670 (50μM) ou du composé FC671 (50μM), pendant 5, 15, 30 et 60 minutes. En présence d'insuline, nous avons observé, à partir de 15 minutes d'incubation, l'activation de Erkl/2MAPkinases. Un retour à l'état basai est mesuré après une heure d'incubation (Fig. 5 a). Les composés FC670 (Fig. 5 b) et FC671 (Fig. 5 c) activent dès 5 minutes d'incubation Erkl/2. Cette activation est maximale après 15 minutes d'incubation, puis décroît légèrement après une heure d'incubation. The hepatocytes of the HepG2 line were incubated in the presence of insulin (1 μM), of the compound FC670 (50 μM) or of the compound FC671 (50 μM), for 5, 15, 30 and 60 minutes. In the presence of insulin, we observed, from 15 minutes of incubation, the activation of Erkl / 2MAPkinases. A return to the basal state is measured after one hour of incubation (Fig. 5 a). The compounds FC670 (Fig. 5 b) and FC671 (Fig. 5 c) activate Erkl / 2 incubation after 5 minutes. This activation is maximum after 15 minutes of incubation, then decreases slightly after one hour of incubation.
REFERENCES BIBLIOGRAPHIQUESBIBLIOGRAPHICAL REFERENCES
Bogdanowicz et al. (2001) Med/Sci 17, 577-585;Bogdanowicz et al. (2001) Med / Sci 17, 577-585;
Bogdanowicz ét al. (1996) Cell. Signal. 8, 503-509;Bogdanowicz et al. (1996) Cell. Signal. 8, 503-509;
Bogdanowicz ét al. (2000) Mol. Cell. Biochem. 208, 143-150 ;Bogdanowicz et al. (2000) Mol. Cell. Biochem. 208, 143-150;
Frick et α/. (1998) Biochemistry 37, 13421-13436Frick and α /. (1998) Biochemistry 37, 13421-13436
G. E. Keck, T. T. Wager, J. Org. Chem. 61 (1996) 8366-8367 ;G. E. Keck, T. T. Wager, J. Org. Chem. 61 (1996) 8366-8367;
Lamer et al (1988) Biochem. Biophys. Res. Comm. 151, 1416-1426 ;Lamer et al (1988) Biochem. Biophys. Res. Comm. 151, 1416-1426;
Laemmli et al (1970) Nature 227, 680-685 ,Laemmli et al (1970) Nature 227, 680-685,
Saltiel et al. (1986) Proc. Nat. Acad. Sci. 83, 5793-5797;Saltiel et al. (1986) Proc. Nat. Acad. Sci. 83, 5793-5797;
Varela-Nieto et al. (1996) Co/rcp. Biochem. Physiol. 115B, 223-241;Varela-Nieto et al. (1996) Co / rcp. Biochem. Physiol. 115B, 223-241;
W. Kinzy, R. R. Schmidt, Liebigs Ann. Chem. (1985),1537-154W. Kinzy, R. R. Schmidt, Liebigs Ann. Chem. (1985) 1537-154
Biochemistry, 1998, Structure- Activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action, vol 37, 38, 13421-13436Biochemistry, 1998, Structure- Activity relationship of synthetic phosphoinositolglycans mimicking metabolic insulin action, vol 37, 38, 13421-13436
Remington's Pharmaceutical Sciences, 1601 édition, Oslo, A. (ed), 1980; Remington's Pharmaceutical Sciences, 16 01 edition, Oslo, A. (ed), 1980;

Claims

REVENDICATIONS
1. Composé de formule A1. Compound of formula A
Figure imgf000030_0001
dans laquelle:
Figure imgf000030_0001
in which:
- Ri est choisi dans le groupe constitué par OH, un oligosaccharide, un polysaccharide, et R2=R3=OH; ou au moins un des groupes Ri, R2, R3 est un groupe capable de modifier la hpophilie du composé A, l'autre ou les deux autres de ces trois groupes étant OH, et; - R4 est choisi dans le groupe constitué par OH, NH2 et un groupe capable de modifier la hpophilie du composé A, et- Ri is chosen from the group consisting of OH, an oligosaccharide, a polysaccharide, and R 2 = R 3 = OH; or at least one of the groups Ri, R 2 , R 3 is a group capable of modifying the hpophilia of compound A, the other or the other two of these three groups being OH, and; - R 4 is chosen from the group consisting of OH, NH 2 and a group capable of modifying the hpophilia of compound A, and
- Re est H ou CH2OH, et- Re is H or CH 2 OH, and
- X est choisi parmi O, NH, S, CH2, et- X is chosen from O, NH, S, CH 2 , and
- R5 est choisi parmi OH, un oligosaccharide, un polysaccharide et un groupe capable de modifier la biodisponibilité du composé A, et ses sels pharmaceutiquement acceptables.- R 5 is chosen from OH, an oligosaccharide, a polysaccharide and a group capable of modifying the bioavailability of compound A, and its pharmaceutically acceptable salts.
2. Composé selon la revendication 1 caractérisé en ce que Rι=R2=R3=OH, et R4 est OH ouNH2.2. Compound according to claim 1 characterized in that Rι = R 2 = R 3 = OH, and R4 is OH or NH 2 .
3. Composé selon la revendication 1 ou 2 caractérisé en ce que R =OH, RÔ=H.3. Compound according to claim 1 or 2 characterized in that R = OH, R Ô = H.
4. Composé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que le ou les groupes capables de modifier la hpophilie sont choisis parmi a) un groupe alkyle, linéaire ou ramifié, comprenant moins de 20 atomes de carbone b) un groupe cyclo-alkyle comprenant moins de 10 atomes de carbone c) un groupe alcényle, linéaire ou ramifié, comprenant moins de 20 atomes de carbone d) un groupe cyclo-alcényle comprenant moins de 10 atomes de carbone e) un groupe aryle comprenant moins de 20 atomes de carbone ) un groupe aralkyle comprenant moins de 20 atomes de carbone g) un groupe hétéroaryle comprenant 4 à 9 atomes de carbone et au moins un hétéroatome choisi parmi l'oxygène, l'azote, le soufre h) un groupe hétérocyclique, comprenant 2 à 9 atomes de carbone et au moins un hétéroatome choisi parmi l'oxygène, le soufre et l'azote.4. Compound according to any one of claims 1 to 3 characterized in that the group or groups capable of modifying hpophilia are chosen from a) an alkyl group, linear or branched, comprising less than 20 carbon atoms b) a cycloalkyl group comprising less than 10 carbon atoms c) a linear or branched alkenyl group comprising less than 20 carbon atoms d) a cyclo-alkenyl group comprising less than 10 carbon atoms e) an aryl group comprising less than 20 carbon atoms) an aralkyl group comprising less than 20 carbon atoms g) a heteroaryl group comprising 4 to 9 carbon atoms and at least one heteroatom chosen from oxygen, nitrogen, sulfur h) a heterocyclic group, comprising 2 to 9 carbon atoms and at least one heteroatom chosen from oxygen, sulfur and nitrogen.
5. Composé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que X est en configuration α5. Compound according to any one of claims 1 to 4 characterized in that X is in the α configuration
Figure imgf000031_0001
Figure imgf000031_0001
6. Composé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que X est en configuration β6. Compound according to any one of claims 1 to 4 characterized in that X is in the β configuration
Figure imgf000031_0002
Figure imgf000031_0002
7. Composé de formule I,
Figure imgf000032_0001
dans laquelle:
7. Compound of formula I,
Figure imgf000032_0001
in which:
X est choisi parmi O, S, NX is chosen from O, S, N
R7 est un hexoseR 7 is a hexose
R8 est choisi parmi OH, NH2 R 8 is chosen from OH, NH 2
8. Composé de formule II,8. Compound of formula II,
Figure imgf000032_0002
dans laquelle: - X est choisi parmi O, S, N R est un hexose R8 est choisi parmi OH, NH2
Figure imgf000032_0002
in which: - X is chosen from O, S, NR is a hexose R 8 is chosen from OH, NH 2
9. Composé selon l'une quelconque des revendications 1 à 8, en tant que médicament.9. Compound according to any one of claims 1 to 8, as a medicament.
10. Composition pharmaceutique comprenant une quantité pharmaceutiquement efficace d'un composé selon l'une quelconque des revendications 1 à 8, et un véhicule pharmaceutiquement acceptable. 10. A pharmaceutical composition comprising a pharmaceutically effective amount of a compound according to any one of claims 1 to 8, and a pharmaceutically acceptable vehicle.
11. Composé selon l'une des revendications 6 ou 8 pour le traitement de maladies dues à un métabolisme du glucose déficient.11. Compound according to one of claims 6 or 8 for the treatment of diseases due to a deficient glucose metabolism.
12. Utilisation d'un composé selon l'une des revendications 6 ou 8 pour la préparation d'un médicament contre des troubles dus à un métabolisme du glucose déficient.12. Use of a compound according to one of claims 6 or 8 for the preparation of a medicament against disorders due to a deficient glucose metabolism.
13. Composé selon l'une des revendications 5 ou 7 pour le traitement de maladies associées à une prolifération cellulaire excessive, notamment le cancer, le psoriasis et le pannus rhumatoïde.13. Compound according to one of claims 5 or 7 for the treatment of diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
14. Utilisation d'un composé selon l'une des revendications 5 ou 7 pour la préparation d'un médicament contre des maladies associées à une prolifération cellulaire excessive, notamment le cancer, le psoriasis et le pannus rhumatoïde. 14. Use of a compound according to one of claims 5 or 7 for the preparation of a medicament against diseases associated with excessive cell proliferation, in particular cancer, psoriasis and rheumatoid pannus.
PCT/FR2003/000345 2002-02-05 2003-02-05 Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance WO2003066647A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003226862A AU2003226862A1 (en) 2002-02-05 2003-02-05 Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0201327A FR2835527B1 (en) 2002-02-05 2002-02-05 SYNTHESIS OF GLYCAN INOSITOLPHOSPHATE-LIKE MOLECULES: TREATMENT OF CELL PROLIFERATION AND METABOLIC DISORDERS CHARACTERIZED BY INSULIN RESISTANCE
FR02/01327 2002-02-05

Publications (2)

Publication Number Publication Date
WO2003066647A2 true WO2003066647A2 (en) 2003-08-14
WO2003066647A3 WO2003066647A3 (en) 2004-03-25

Family

ID=27619882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000345 WO2003066647A2 (en) 2002-02-05 2003-02-05 Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance

Country Status (3)

Country Link
AU (1) AU2003226862A1 (en)
FR (1) FR2835527B1 (en)
WO (1) WO2003066647A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080064A1 (en) * 2006-12-21 2008-07-03 Trustees Of Tufts College Synthetic lipophilic inositol glycans for treatment of cancer and glucose-metabolism disorders
US11548908B2 (en) 2017-12-29 2023-01-10 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3
US11873317B2 (en) 2018-12-27 2024-01-16 Glycomimetics, Inc. Galectin-3 inhibiting c-glycosides

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139962A1 (en) 2018-12-27 2020-07-02 Glycomimetics, Inc. Heterobifunctional inhibitors of e-selectin and galectin-3

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006421A1 (en) * 1997-07-29 1999-02-11 The University Of Virginia Patent Foundation Synthetic insulin mimetic substances
WO1999038516A1 (en) * 1998-01-29 1999-08-05 Rademacher Group Limited Neurotrophic properties of ipgs and ipg analogues

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999006421A1 (en) * 1997-07-29 1999-02-11 The University Of Virginia Patent Foundation Synthetic insulin mimetic substances
WO1999038516A1 (en) * 1998-01-29 1999-08-05 Rademacher Group Limited Neurotrophic properties of ipgs and ipg analogues

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZAPATA A ET AL: "Synthesis and investigation of the possible insulin-like activity of 1d-4-O- and 1d-6-O-(2-amino-2-deoxy-alpha-d-glucopyran osyl)-myo-inos itol 1-phosphate and 1d-6-O-(2-amino-2-deoxy-alpha-d-glucopyran osyl)- myo-inositol 1,2-(cyclic phosphate)" CARBOHYDRATE RESEARCH, ELSEVIER SCIENTIFIC PUBLISHING COMPANY. AMSTERDAM, NL, vol. 264, no. 1, 1 novembre 1994 (1994-11-01), pages 21-31, XP004065535 ISSN: 0008-6215 cité dans la demande *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080064A1 (en) * 2006-12-21 2008-07-03 Trustees Of Tufts College Synthetic lipophilic inositol glycans for treatment of cancer and glucose-metabolism disorders
EP2324837A1 (en) * 2006-12-21 2011-05-25 Trustees Of Tufts College Synthetic lipophilic inositol glycans for treatment of glucose-metabolism disorders
US11548908B2 (en) 2017-12-29 2023-01-10 Glycomimetics, Inc. Heterobifunctional inhibitors of E-selectin and galectin-3
US11873317B2 (en) 2018-12-27 2024-01-16 Glycomimetics, Inc. Galectin-3 inhibiting c-glycosides

Also Published As

Publication number Publication date
AU2003226862A1 (en) 2003-09-02
FR2835527B1 (en) 2004-03-12
AU2003226862A8 (en) 2003-09-02
WO2003066647A3 (en) 2004-03-25
FR2835527A1 (en) 2003-08-08

Similar Documents

Publication Publication Date Title
EP1299081B9 (en) Use of oligosaccharides to stimulate beta-endorphin production
EP0352301A1 (en) Esters of n-butyric acid and their use as drugs
EP1682158B1 (en) Cosmetic compositions comprising at least a rhamnose monomer for the cosmetic treatment of skins
FR2924430A1 (en) PROCESS FOR THE PREPARATION OF NANOPARTICLES BASED ON FUNCTIONAL AMPHIPHILIC MOLECULES OR MACROMOLECULES AND THEIR USE
WO2003066647A2 (en) Synthesis of inositolphosphate glycan molecules: treatment of cell proliferation disorders and metabolic disorders characterized by insulin resistance
JP6517833B2 (en) Withanolide useful for the treatment of neurodegenerative diseases
KR100879253B1 (en) treatment for hypertension and diabetic nephropathy using ADP-ribosyl cyclase inhibitors
CA2434052A1 (en) Use of rhein for preparing a medicine for treating a high level of il-1
CA2320556A1 (en) N,n-dichlorinated omega amino acids and uses thereof
FR3050455B1 (en) POLYCAFEOYLQUINIC ACID AMIDE DERIVATIVES, PROCESS FOR PREPARATION AND USES
EP2254567B1 (en) Zinc n-acetyltaurinate for use in the prevention and/or treatment of diseases associated with lipofuscin accumulation
EP0137514B1 (en) Compounds and compositions for use in preventing and treating obesity
EP0692535A1 (en) Oligonucleotides to inhibit the role of isoprenyl protein transferases
KR101668986B1 (en) Composition comprising monascus pigment derivative for preventing, alleviating or treating obesity
WO2004093877A1 (en) Vitamin comprising pyroloquinoline quinone and use thereof
CA3173458A1 (en) Novel pharmacological chaperone compounds of human acid alpha-glucosidase and the therapeutic use thereof
BE1030299B1 (en) APPLICATION OF 5&#39;-METHYLTHIOADENOSINE IN THE PREPARATION OF ANTI-OBESITY DRUGS OR HEALTH PRODUCTS
WO2023090313A1 (en) Composition for increasing amount of food ingested and/or improving anorexia, and composition for activating transient receptor potential ankyrin 1
WO2016046457A1 (en) Dermocosmetic or pharmaceutical use of a composition containing at least one inhibitor of certain chemoattractant cytokines
Rajendran et al. Mechanism of Alpha-Synuclein Translocation into Mitochondria
FR2635778A1 (en) NEW DERIVATIVES OF 3 (PREMIUM) AZIDO-3 (PRIME) DEOXYTHYMIDINE (AZT) ACTIVE AGAINST AIDS HIV VIRUS
FR2561242A1 (en) New 1,10-dithiodecane derivatives which are useful, in particular, as antidyslipaemic agents, process for manufacturing them and medicaments containing them
EA044505B1 (en) METHOD OF STRENGTHENING AND MAINTAINING CELL ENERGY
FR3124946A1 (en) New compounds derived from schweinfurthins G, E, F
EP2682095B1 (en) Family of polyamine arylethylamide compounds, and their cosmetic or dermocosmetic use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP