WO2003062020A2 - Method and device for determining a detection region of a pre-crash sensor system - Google Patents

Method and device for determining a detection region of a pre-crash sensor system Download PDF

Info

Publication number
WO2003062020A2
WO2003062020A2 PCT/DE2002/003566 DE0203566W WO03062020A2 WO 2003062020 A2 WO2003062020 A2 WO 2003062020A2 DE 0203566 W DE0203566 W DE 0203566W WO 03062020 A2 WO03062020 A2 WO 03062020A2
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
determined
max
sensor
detection distance
Prior art date
Application number
PCT/DE2002/003566
Other languages
German (de)
French (fr)
Other versions
WO2003062020A3 (en
Inventor
Rainer Moritz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2003062020A2 publication Critical patent/WO2003062020A2/en
Publication of WO2003062020A3 publication Critical patent/WO2003062020A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01311Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring the braking system, e.g. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01313Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring the vehicle steering system or the dynamic control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9318Controlling the steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Definitions

  • the invention relates to a method and an arrangement for determining a detection area of a pre-crash sensor system.
  • Pre-crash sensing methods are known for determining possible motor vehicle accidents. These methods make use of non-tactile sensors that determine, for example, a relative speed, a time to an expected impact, an impact angle and an expected impact location of an object on a collision course in the vehicle environment.
  • impact probabilities can be determined and objects can be discriminated and object classes assigned using video sensors.
  • Pre-crash detection is a function of the passive safety of the vehicle and is divided into three levels. From a functional point of view, these levels build on each other because they each require a higher level of complexity and sensor capability. Furthermore, these stages follow one another in terms of time until the crash event.
  • the first stage is generally called PRESET ("PREcrash SETting of algorithm thresholds”) and relates to an adaptation of the triggering thresholds of the control algorithms of conventional pyrotechnically ignitable restraint devices.
  • the control of the pyrotechnically ignitable retention center! takes place here only after the start of the crash, since the algorithm also takes the conventional acceleration sensor into account in addition to the pre-crash information.
  • the second stage is generally called PREFIRE (“PREcrash Flring of Reversible Restraints”) and relates to the ignition of reversible restraint devices based on the precrash sensor information even before the start of the crash.
  • the third stage is called PREACT ("Precrash Engagement of ACTive safety"). When it detects an accident probability that exceeds a threshold value to be defined, active safety systems, in particular brakes, engine control, steering, are activated.
  • the detection and determination of the useful data required for the pre-crash sensing is carried out via suitable sensors in a detection area which is dependent on the respective sensor.
  • the respective safety device or the vehicle system of active safety is actuated in each case within a response time or tense time.
  • a detection range can be defined by a predetermined minimum detection distance and a predetermined maximum detection distance, whereby the amount of data is limited.
  • the method according to the invention and the arrangement according to the invention have the particular advantage that it is possible to determine a detection area for a particular driving situation, which ensures the detection of all objects relevant to accidents and yet a suitable limitation of the de - tection range and thus the determined sensor data.
  • the determination of the suitable detection range is advantageously possible with relatively little additional equipment or computing effort.
  • the sub-claims describe preferred further developments. In this case, in particular according to claim 10, a pre-crash detection method is created, in which the method according to the invention is used to determine the detection area.
  • a maximum detection distance is now determined from the tensioning time of a safety device or the tensioning times of several safety devices and driving state variables of the vehicle.
  • the maximum detection distance can preferably be the sum of the distance likely to be covered within the tensing time - which can be determined by integrating the dynamic properties, in particular the vehicle speed and the longitudinal vehicle acceleration - and a suitable measuring distance.
  • the measuring distance can be predefined or determined depending on sensor properties or driving state variables. Accordingly, a minimum detection distance can also be determined from the tense time and driving state variables, which, together with the maximum detection distance, defines the detection range.
  • an object detected by the sensor system can be classified and the determined object class - for example passenger cars, trucks, pedestrians, motorcyclists or cyclists - can be taken into account when setting the safety devices.
  • the safety devices to be set can, according to the invention, both in the PRESET stage mentioned at the outset, the triggering thresholds of the control logic for conventional pyrotechnically ignitable restraint devices, and also in of the PREFIRE stage described at the beginning are reversible restraining devices.
  • Such reversible restraint devices can protect both the protection of vehicle occupants, for example as reversible electromotive belt tensioners, electromotive or electromagnetically operated paddings, the knees or feet or neck and head in the event of a crash by actuating suitable adjusting devices, and also serve by passers-by.
  • systems of active safety in particular brakes, engine control, steering, can be activated in the PREACT stage mentioned at the outset in the pre-crash detection method according to the invention when an accident probability that exceeds a threshold value to be defined is detected.
  • a combined sensor concept is advantageously used, which has a long-range sensor device, preferably with a high-frequency or short-wave radar sensor device, a medium-range sensor device, preferably as a stereoscopic video sensor device with a suitable aperture angle, and a short-range sensor device, in particular with a system of several radar sensors at low frequencies or short-wave basis.
  • These sensor devices are combined to form a sensor system, which thus enables a detection range determined to be relevant to be set over a large length range.
  • data on the driving state of the vehicle from vehicle sensors or variables derived therefrom are used.
  • a detection range when cornering can also be determined from, for example, the set steering angle or a determined yaw rate of the vehicle.
  • the determination of the detection range can be made possible both during a stable driving state and during a skidding process, wherein data of a driving dynamics control or an anti-lock braking system can be used during a skidding process.
  • Figure 1 is a plan view of a vehicle with a sensor system according to the invention on a roadway.
  • FIG. 2 shows a side view of the illustration from FIG. 1 with objects on the road;
  • FIG. 3 shows a plan view of a vehicle on a straight and curved track
  • Fig. 4 is a block diagram of an arrangement according to the invention.
  • a vehicle 1 travels on a straight roadway 2 with a vehicle speed v e i ge n and a longitudinal acceleration a e i ge n.
  • a sensor system with three sensor devices is provided on the vehicle.
  • a short-range first sensor device 4 which uses a plurality of radar sensors based on 24 GHz, is provided for a first measuring range 5 over a first distance to 7 with a first opening angle of 140 °.
  • a medium-range second sensor device 6 has a video system, for example a stereoscopic video system, and will be used for a second measuring range with a second distance of approx. 40 m and a second opening angle of approx. 35 °.
  • a long-range third sensor device 8 uses a 77 GHz radar sensor and covers a third measuring range with a third distance of 9 to approximately 150 m and a third opening angle of 8 °.
  • the opening angle is chosen to be small, since this range is only required at higher speeds on routes with a small curve radius, especially motorways.
  • the short-range sensor device 4 detects a first vehicle 12 as an object on the roadway 2 at a distance d of 6 m and the medium-range sensor device 6, not shown in FIG. witness 13 at a distance of 20 m to the vehicle 1.
  • the two detected objects 12, 13 can be classified by the second sensor device 6 in a manner known per se and assigned to the object class "passenger car"
  • the first, second and third sensor devices 4, 6, 8 give first, second and third sensor signals S, s 2 , s 3 to an evaluation device 10 of the vehicle 1.
  • the first output signals si can also be used, for example, for a parking aid be used.
  • the evaluation device determines from the sensor signals Si, s 2 , s 3 and driving state signals p via various driving state variables, in particular the own speed Veigen, the vehicle longitudinal speed a e ⁇ gen , the vehicle yaw rate ⁇ g e ⁇ gen and possibly data about the skid - or slip behavior of the vehicle control signals a1 for a safety device 14 or several safety devices, in particular reversible restraint devices, such as, for example, reversible electromotive belt tensioners and electromotive or electromagnetically operated paddings for adjusting a knee, foot, Neck or head position, z. B. the pedals and the headrest of the vehicle seat can be adjusted.
  • Active vehicle systems 16, for example brakes, engine control and steering, are also controlled by control
  • the evaluation device 10 calculates a detection range with a maximum detection distance d max and a minimum detection distance d m , n. First, d ma ⁇ is calculated as
  • e ⁇ g en self- acceleration of the vehicle
  • t sp ann tensioning time of the safety device 14
  • v e ⁇ gen current vehicle speed
  • dmess measuring distance, which can be fixed at 5 m, for example, and can be adapted to the respective driving conditions.
  • This formula can be used directly for the straight-line movement of FIGS. 1, 2, which is correspondingly shown in FIG. 3 as a straight-line lane in front of the vehicle 1.
  • the first two summands of this formula calculate - in the case of a straight-line movement without skidding behavior - the distance covered due to the current driving state variables a e ⁇ ge n and v e ⁇ ge n.
  • the measuring distance is added as the third summand.
  • the tensioning time tspann of the safety device 14 is generally predetermined and is, for example, between 100 ms-500 ms. The above calculation can for several Anspann 1952 or the largest Anspannzeit t be spun performed.
  • r is the turning radius of the vehicle.
  • the evaluation device 10 determines the following data for the object:
  • the object has - no own speed relative to the vehicle, is classified as a pedestrian, is located directly in front of the vehicle.
  • a collision probability (value between 0 and 1) is continuously calculated and at a time exceeds a time before t ent d sche ⁇ the appli- ducible threshold of 0.8, so that a crash, requiring the restraint system, it is expected with sufficient probability.
  • d m ⁇ n is now calculated analogously to the calculation of d max .
  • Decision strategies determine when a final d m ⁇ n is determined.
  • a more complex determination of t en ts c h e ⁇ d is also possible.
  • a change in the response time or Anspannzeit spun t based on the detected data, in particular of the object class and the relative velocity, is still possible.
  • d max can in each case be kept as low as possible, so that the computing power is minimized and the function is nevertheless fully guaranteed.
  • d m m can also be kept as low as possible, to get as much information about the object as possible and thus maximize the quality and tolerance of the sensor information.
  • the different safety devices 14 can have different tasks and thus different tying times for different situations.
  • the build-up of force in a belt tensioner may depend on the probability of an impact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a method for determining a detection region of a pre-crash sensor system of a vehicle, whereby a maximum detection distance (dmax) is determined by at least a response time (tspann) of a safety device of the vehicle, and a determined driving condition variable (veigen, aeigen, φgeigen) relating to the vehicle. According to the invention, a detection region can thus be determined, which provides sufficient sensor signals for reliable pre-crash detection, while limiting the amount of data in an optimised manner. The invention also relates to a corresponding arrangement.

Description

Verfahren und Anordnung zur Bestimmung eines Detektionsbereiches eines Pre-Crash-SeπsorsystemsMethod and arrangement for determining a detection area of a pre-crash sensor system
Die Erfindung betrifft ein Verfahren und eine Anordnung zur Bestimmung eines Detektionsbereiches eines Pre-Crash-Sensorsystems.The invention relates to a method and an arrangement for determining a detection area of a pre-crash sensor system.
Zur Ermittlung möglicher Unfälle von Kraftfahrzeugen sind Pre-Crash- Sensierungsverfahren bekannt. Diese Verfahren bedienen sich non-taktiler Sensorik, die im Fahrzeugumfeld zum Beispiel eine Relativgeschwindigkeit, eine Zeit bis zu einem erwarteten Aufprall, einen Aufprallwinkel und einen erwarteten Aufprallort eines Objektes auf Kollisionskurs ermittein. Darüber hinaus können Aufprallwahrscheiniichkeiten ermittelt und mittels Videosensorik Objekte diskriminiert und Objektklassen zugeordnet werden.Pre-crash sensing methods are known for determining possible motor vehicle accidents. These methods make use of non-tactile sensors that determine, for example, a relative speed, a time to an expected impact, an impact angle and an expected impact location of an object on a collision course in the vehicle environment. In addition, impact probabilities can be determined and objects can be discriminated and object classes assigned using video sensors.
Die Pre-Crash-Sensierung ist eine Funktion der passiven Sicherheit des Fahrzeuges und unterteilt sich in drei Stufen. Diese Stufen bauen in funktioneller Hinsicht aufeinander auf, da sie jeweils ein höheres Maß an Komplexität und Sensorfähigkeit erfordern. Weiterhin folgen diese Stufen auch in zeitlicher Hinsicht bis zum Crashereignis aufeinander.Pre-crash detection is a function of the passive safety of the vehicle and is divided into three levels. From a functional point of view, these levels build on each other because they each require a higher level of complexity and sensor capability. Furthermore, these stages follow one another in terms of time until the crash event.
Die erste Stufe wird im allgemeinen PRESET ("PREcrash SETting of algorithm thresholds") genannt und betrifft eine Anpassung der Auslöseschwellen der Ansteueralgorithmen konventioneller pyrotechnisch zündbarer Rückhaltemittel. Die Ansteuerung der pyrotechnisch zündbaren Rückhaltemitte! erfolgt hierbei erst nach Crashbeginn, da der Algorithmus neben der Precrash-Information ebenfalls die konventionelle Beschleunigungsseπsorik berücksichtigt. Die zweite Stufe wird im allgemeinen PREFIRE ("PREcrash Flring of reversible Restraints") genannt und betrifft eine Zündung reversibler Rückhaltemittel auf- grund der Precrash-Sensorinformationen bereits vor Crashbeginn. Die dritte Stufe wird als PREACT ("Precrash Engagement of ACTive safety") bezeichnet. Bei ihr werden bei der Erkennung einer Unfallwahrscheinlichkeit, die über einen zu definierenden Schwellwert hinausgeht, Systeme der aktiven Sicherheit, insbesondere Bremsen, Motorsteuerung, Lenkung, aktiviert.The first stage is generally called PRESET ("PREcrash SETting of algorithm thresholds") and relates to an adaptation of the triggering thresholds of the control algorithms of conventional pyrotechnically ignitable restraint devices. The control of the pyrotechnically ignitable retention center! takes place here only after the start of the crash, since the algorithm also takes the conventional acceleration sensor into account in addition to the pre-crash information. The second stage is generally called PREFIRE ("PREcrash Flring of Reversible Restraints") and relates to the ignition of reversible restraint devices based on the precrash sensor information even before the start of the crash. The third stage is called PREACT ("Precrash Engagement of ACTive safety"). When it detects an accident probability that exceeds a threshold value to be defined, active safety systems, in particular brakes, engine control, steering, are activated.
Die Detektion und Ermittlung der für die Precrash-Sensierung erforderlichen Nutzdaten erfolgt über geeignete Sensoren in einem von dem jeweiligen Sensor abhängigen Detektionsbereich. Die Betätigung der jeweiligen Sicherheitseinrichtung oder des Fahrzeugssystems der aktiven Sicherheit erfolgt jeweils innerhalb einer Ansprechzeit bzw. Anspannzeit.The detection and determination of the useful data required for the pre-crash sensing is carried out via suitable sensors in a detection area which is dependent on the respective sensor. The respective safety device or the vehicle system of active safety is actuated in each case within a response time or tense time.
Bei herkömmlichen Precrash-Sensierungsverfahren werden in der Regel sämtliche von dem Sensorsystem erfaßten Daten über Gegenstände auf der Fahrbahn zur Berechnung einer Aufprallwahrscheinlichkeit herangezogen. In die- sem Fall führt der Umfang der ermittelten Datenmenge zu einem erheblichen Rechenaufwand und ggf. unnötigen Precrash-Maßnahmen. Weiterhin kann ein Detektionsbereich durch einen vorbestimmten minimalen Detektionsabstand und einen vorbestimmten maximalen Detektionsabstand festgelegt werden, wodurch die Datenmenge begrenzt wird. Eine derartige Festlegung des rele- vanten Detektionsbereiches ist jedoch nicht unproblematisch, da sie den jeweiligen Gegebenheiten der jeweils auftretenden Fahrsituationen nicht Rechnung trägt.In conventional pre-crash sensing methods, as a rule, all data recorded by the sensor system about objects on the road are used to calculate a probability of impact. In this case, the extent of the amount of data determined leads to considerable computational effort and possibly unnecessary precrash measures. Furthermore, a detection range can be defined by a predetermined minimum detection distance and a predetermined maximum detection distance, whereby the amount of data is limited. However, such a determination of the relevant detection range is not without problems, since it does not take into account the particular circumstances of the driving situations that occur.
Das erfindungsgemäße Verfahren nach Anspruch 1 und die erfindungsgemä- ße Anordnung nach Anspruch 11 weisen demgegenüber insbesondere den Vorteil auf, daß eine Bestimmung eines Detektionsbereiches für eine jeweilige Fahrsituation möglich ist, die die Erfassung sämtlicher für Unfälle relevanter Gegenstände gewährleistet und dennoch eine geeignete Begrenzung des De- tektionsbereiches und somit der ermittelten Sensordaten ermöglicht. Die Ermittlung des geeigneten Detektionsbereiches ist hierbei vorteilhafterweise mit relativ geringem zusätzlichen apparativen Aufwand oder Rechenaufwand möglich. Die Unteransprüche beschreiben bevorzugte Weiterbildungen. Hierbei wird insbesondere nach Anspruch 10 ein Precrash-Sensierungsverfahren geschaffen, bei dem das erfindungsgemäße Verfahren zur Bestimmung des Detektionsbereiches verwendet wird.In contrast, the method according to the invention and the arrangement according to the invention have the particular advantage that it is possible to determine a detection area for a particular driving situation, which ensures the detection of all objects relevant to accidents and yet a suitable limitation of the de - tection range and thus the determined sensor data. The determination of the suitable detection range is advantageously possible with relatively little additional equipment or computing effort. The sub-claims describe preferred further developments. In this case, in particular according to claim 10, a pre-crash detection method is created, in which the method according to the invention is used to determine the detection area.
Der Erfindung liegt die Erkenntnis'zugrunde, daß Precrash-Maßnahmen nur für Gegenstände relevant sind, deren wahrscheinlicher Aufprall voraussichtlich in einem zeitlichen Abstand erfolgt, der oberhalb der Anspannzeit der zu betätigenden Sicherheitseinrichtungen und Fahrzeugsysteme liegt. Erfindungsgemäß wird nunmehr aus der Anspannzeit einer Sicherheitseinrichtung bzw. den Anspannzeiten mehrerer Sicherheitseinrichtungen und Fahrzustandsgrößen des Fahrzeuges ein maximaler Detektionsabstand ermittelt. Der maximale Detektionsabstand kann vorzugsweise als Summe der innerhalb der Anspannzeit voraussichtlich zurückgelegten Wegstrecke - die durch zeitliche Integration der dynamischen Eigenschaften, insbesondere der Fahrzeugsgeschwindigkeit und der Fahrzeug-Längsbeschleunigung ermittelt werden kann - und einer geeigneten Meßdistanz erfolgen. Die Meßdistanz kann hierbei vorgegeben sein oder in Abhängigkeit von Sensoreigenschaften oder Fahrzustandsgrößen festgelegt werden. Entsprechend kann weiterhin ein minimaler Detektionsabstand aus der Anspannzeit und Fahrzustandsgrößen ermittelt werden, der zusammen mit dem maximalen Detektionsabstand den Detektionsbereich festlegt.The invention is based on the finding 'based on that pre-crash measures are only relevant for objects whose likely impact likely takes place at a time interval which is above the Anspannzeit which is to be actuated safety devices and vehicle systems. According to the invention, a maximum detection distance is now determined from the tensioning time of a safety device or the tensioning times of several safety devices and driving state variables of the vehicle. The maximum detection distance can preferably be the sum of the distance likely to be covered within the tensing time - which can be determined by integrating the dynamic properties, in particular the vehicle speed and the longitudinal vehicle acceleration - and a suitable measuring distance. The measuring distance can be predefined or determined depending on sensor properties or driving state variables. Accordingly, a minimum detection distance can also be determined from the tense time and driving state variables, which, together with the maximum detection distance, defines the detection range.
Erfindungsgemäß kann ein von dem Sensorsystem erfaßtes Objekt klassifiziert werden und die ermittelte Objektklasse - zum Beispiel Personenkraftwagen, Lastkraftwagen, Fußgänger, Motorrad- oder Fahrradfahrer - bei der Einstellung der Sicherheitseinrichtungen berücksichtigt werden. Die einzustellenden Sicherheitseinrichtungen können erfindungsgemäß sowohl in der eingangs erwähnten PRESET-Stufe die Auslöseschwellen der Ansteuerlo- githmen für konventionelle pyrotechnisch zündbare Rückhaltemittel als auch in der eingangs beschriebenen PREFIRE-Stufe reversible Rückhaltemittel sein. Derartige reversible Rückhaltemittel können sowohl dem Schutz von Fahrzeuginsassen, zum Beispiel als reversible elektro-motorische Gurtstraffer, e- lektro-motorische oder elektro-magnetisch betriebene Paddings, die Knie oder Füße oder auch Genick und Kopf im Crashfall durch Betätigung geeigneter Versteileinrichtungen schützen, als auch von Passanten dienen. Weiterhin können in der eingangs genannten PREACT-Stufe bei den erfindungsgemäßen Precrash-Sensierungsverfahren bei Erkennung einer Unfallwahrscheinlichkeit, die über einen zu definierenden Schwellwert hinausgeht, Systeme der aktiven Sicherheit, insbesondere Bremsen, Motorsteuerung, Lenkung, aktiviert werden.According to the invention, an object detected by the sensor system can be classified and the determined object class - for example passenger cars, trucks, pedestrians, motorcyclists or cyclists - can be taken into account when setting the safety devices. The safety devices to be set can, according to the invention, both in the PRESET stage mentioned at the outset, the triggering thresholds of the control logic for conventional pyrotechnically ignitable restraint devices, and also in of the PREFIRE stage described at the beginning are reversible restraining devices. Such reversible restraint devices can protect both the protection of vehicle occupants, for example as reversible electromotive belt tensioners, electromotive or electromagnetically operated paddings, the knees or feet or neck and head in the event of a crash by actuating suitable adjusting devices, and also serve by passers-by. Furthermore, systems of active safety, in particular brakes, engine control, steering, can be activated in the PREACT stage mentioned at the outset in the pre-crash detection method according to the invention when an accident probability that exceeds a threshold value to be defined is detected.
Erfindungsgemäß wird vorteilhafterweise ein kombiniertes Sensorkonzept verwendet, das eine langreichweitige Sensoreinrichtung, vorzugsweise mit einer hochfrequenten bzw. kurzwelligen Radarsensoreinrichtung, eine mittel- reichweitige Sensoreinrichtung, vorzugsweise als stereoskopische Videosensoreinrichtung mit geeignetem Öffnungswinkel, und eine kurzreichreichweitige Sensoreinrichtung, insbesondere mit einen System von mehreren Radarsensoren auf niederfrequenter bzw. kurzwelliger Basis umfaßt. Diese Sensorein- richtungen werden zu einem Sensorsystem zusammengefaßt, das somit eine Einstellung eines als relevant ermittelten Detektionsbereiches über einen großen Längenbereich ermöglicht. Zusätzlich zu den Sensorsignalen werden Daten über den Fahrzustand des Fahrzeuges aus fahrzeugeigenen Sensoren bzw. hieraus abgeleitete Größen verwendet. Neben einer geradlinigen Bewe- gung des Fahrzeuges kann hierbei aus zum Beispiel dem eingestellten Lenkwinkel oder einer ermittelten Gierrate des Fahrzeuges auch ein Detektionsbereich bei einer Kurvenfahrt ermittelt werden.According to the invention, a combined sensor concept is advantageously used, which has a long-range sensor device, preferably with a high-frequency or short-wave radar sensor device, a medium-range sensor device, preferably as a stereoscopic video sensor device with a suitable aperture angle, and a short-range sensor device, in particular with a system of several radar sensors at low frequencies or short-wave basis. These sensor devices are combined to form a sensor system, which thus enables a detection range determined to be relevant to be set over a large length range. In addition to the sensor signals, data on the driving state of the vehicle from vehicle sensors or variables derived therefrom are used. In addition to a straight-line movement of the vehicle, a detection range when cornering can also be determined from, for example, the set steering angle or a determined yaw rate of the vehicle.
Erfindungsgemäß kann die Ermittlung des Detektionsbereiches sowohl wäh- rend eines stabilen Fahrzustandes als auch während eines Schleudervorganges ermöglicht werden, wobei während eines Schleudervorganges zum Beispiel Daten einer Fahrdynamikregelung bzw. eines Antiblockiersystemes verwendet werden können. Die Erfindung wird im folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:According to the invention, the determination of the detection range can be made possible both during a stable driving state and during a skidding process, wherein data of a driving dynamics control or an anti-lock braking system can be used during a skidding process. The invention is explained below with reference to the accompanying drawings of some embodiments. Show it:
Fig. 1 eine Draufsicht auf ein Fahrzeug mit einem erfindungsgemäßen Sensorsystem auf einer Fahrbahn;Figure 1 is a plan view of a vehicle with a sensor system according to the invention on a roadway.
Fig. 2 eine Seitenansicht der Darstellung von Fig. 1 mit Objekten auf der Fahrbahn;FIG. 2 shows a side view of the illustration from FIG. 1 with objects on the road; FIG.
Fig. 3 eine Draufsicht auf ein Fahrzeug auf gerader und kurviger Bahn;3 shows a plan view of a vehicle on a straight and curved track;
Fig. 4 ein Blockdiagramm einer erfindungsgemäßen Anordnung.Fig. 4 is a block diagram of an arrangement according to the invention.
Gemäß Fig. 1 fährt ein Fahrzeug 1 auf einer geraden Fahrbahn 2 mit einer Fahrzeuggeschwindigkeit veigen und einer Längsbeschleunigung aeigen- An dem Fahrzeug ist ein Sensorsystem mit drei Sensoreinrichtungen vorgesehen. Eine kurzreichweitige erste Sensoreinrichtung 4, die mehrere Radarsensoren auf 24 GHz-Basis verwendet, ist für einen ersten Meßbereich 5 über einen ersten Ab- stand bis 7 mit einem ersten Öffnungswinkel von 140° vorgesehen. Eine mittel- reichweitige zweite Sensoreinrichtung 6 weist ein Videosystem, zum Beispiel ein stereoskopisches Videosystem, auf und wird für einen zweiten Meßbereich mit einem zweiten Abstand von ca. 40 m und einem zweiten Öffnungswinkel von ca. 35° verwendet werden. Eine langreichweitige dritte Sensoreinrichtung 8 verwendet einen 77 GHz-Radarsensor und deckt einen dritten Meßbereich mit einem dritten Abstand von 9 bis ca. 150 m und einem dritten Öffnungswinkel von 8° ab. Der Öffnungswinkel ist hierbei klein gewählt, da diese Reichweite nur bei höheren Geschwindigkeiten auf Strecken mit geringem Kurvenradius, insbesondere Autobahnen, benötigt wird.1, a vehicle 1 travels on a straight roadway 2 with a vehicle speed v e i ge n and a longitudinal acceleration a e i ge n. A sensor system with three sensor devices is provided on the vehicle. A short-range first sensor device 4, which uses a plurality of radar sensors based on 24 GHz, is provided for a first measuring range 5 over a first distance to 7 with a first opening angle of 140 °. A medium-range second sensor device 6 has a video system, for example a stereoscopic video system, and will be used for a second measuring range with a second distance of approx. 40 m and a second opening angle of approx. 35 °. A long-range third sensor device 8 uses a 77 GHz radar sensor and covers a third measuring range with a third distance of 9 to approximately 150 m and a third opening angle of 8 °. The opening angle is chosen to be small, since this range is only required at higher speeds on routes with a small curve radius, especially motorways.
Gemäß Fig. 2 erfaßt die kurzreichweitige Sensoreinrichtung 4 ein erstes Fahrzeug 12 als Objekt auf der Fahrbahn 2 bei einem Abstand d von 6 m und die in Fig. 2 nicht gezeigte mittelreichweitige Sensoreinrichtung 6 ein zweites Fahr- zeug 13 bei einem Abstand von 20 m zu dem Fahrzeug 1. Die beiden erfaßten Objekte 12, 13 können von der zweiten Sensoreinrichtung 6 in an sich bekannter Weise klassifiziert und der Objektklasse "Personenkraftwagen" zugeordnet werden2, the short-range sensor device 4 detects a first vehicle 12 as an object on the roadway 2 at a distance d of 6 m and the medium-range sensor device 6, not shown in FIG. witness 13 at a distance of 20 m to the vehicle 1. The two detected objects 12, 13 can be classified by the second sensor device 6 in a manner known per se and assigned to the object class "passenger car"
Gemäß Fig. 4 geben die ersten, zweiten und dritten Sensoreinrichtungen 4, 6, 8 erste, zweite und dritte Sensorsignale S , s2, s3 an eine Auswerteeinrichtung 10 des Fahrzeuges 1. Hierbei können die ersten Ausgangssignale s-i z.B. auch zusätzlich für eine Einparkhilfe verwendet werden. Die Auswerteeinrichtung ermittelt aus den Sensorsigπalen Si, s2, s3 und Fahrzustands-Signalen p über verschiedenen Fahrzustandsgrößen, insbesondere die Eigengeschwindigkeit Veigen, die Fahrzeug-Läπgsgeschwindigkeit aeιgen, die Fahrzeug-Gierrate ωgeιgen und ggf. Daten über das Schleuder- bzw. Schlupfverhalten des Fahrzeuges Ansteuersignale a1 für eine Sicherheitseiπrichtung 14 bzw. mehrere Sicher- heitseinrichtungen, insbesondere reversible Rückhaltemittel, wie zum Beispiel reversible elektro-motorische Gurtstraffer und elektro-motorische oder elektro- magnetsich betriebene Paddings zur Einstellung einer Knie-, Fuß-, Genickoder Kopfposition, wobei hierzu z. B. die Pedalerie und die Kopfstütze des Fahrzeugsitzes verstellt werden können. Weiterhin werden durch Ansteuersig- naie a2 aktive Fahrzeugsysteme 16, zum Beispiel Bremsen, eine Motorsteuerung und eine Lenkung, angesteuert.4, the first, second and third sensor devices 4, 6, 8 give first, second and third sensor signals S, s 2 , s 3 to an evaluation device 10 of the vehicle 1. Here, the first output signals si can also be used, for example, for a parking aid be used. The evaluation device determines from the sensor signals Si, s 2 , s 3 and driving state signals p via various driving state variables, in particular the own speed Veigen, the vehicle longitudinal speed a e ι gen , the vehicle yaw rate ωg e ιgen and possibly data about the skid - or slip behavior of the vehicle control signals a1 for a safety device 14 or several safety devices, in particular reversible restraint devices, such as, for example, reversible electromotive belt tensioners and electromotive or electromagnetically operated paddings for adjusting a knee, foot, Neck or head position, z. B. the pedals and the headrest of the vehicle seat can be adjusted. Active vehicle systems 16, for example brakes, engine control and steering, are also controlled by control signal a 2 .
Die Auswerteeinrichtung 10 berechnet hierbei einen Detektionsbereich mit einem maximalen Detektionsabstand dmax und einem minimalen Detektion- sabstand dm,n- Zunächst wird dmaχ berechnet alsThe evaluation device 10 calculates a detection range with a maximum detection distance d max and a minimum detection distance d m , n. First, d ma χ is calculated as
dmax 0, 0 aeιgeπ ' spann "*" Veigen ann "*" Umessdmax - 0, 0 a e ιgeπ ' spanning " * " Veigen ann " * " Umess
mit aeιgen = Eigenbeschleunigung des Fahrzeuges, tspann = Anspannzeit der Sicherheitseinrichtung 14, veιgen = aktuelle Fahrzeuggeschwindigkeit und dmess = Meßdistanz, die zum Beispiel auf 5 m festgelegt sein kann und den jeweiligen Fahrgegebenheiten angepaßt werden kann. Diese Formel kann direkt verwendet werden für die geradlinige Bewegung der Fig. 1 , 2, die entsprechend in Fig. 3 als geradlinige Fahrbahn vor dem Fahrzeug 1 gezeigt ist. Die ersten beiden Summanden dieser Formel berechnen - bei einer geradlinigen Bewegung ohne Schleuderverhalten - die aufgrund der aktuellen Fahrzustandsgrößen aeιgen und veιgen in der Anspannzeit zurückgelegte Wegstrecke. Als dritter Summand wird die Meßdistanz hinzugefügt. dmaχ kann hierbei laufend - durch neue Daten aeigen und veιgen - aktualisiert werden. Die Anspannzeit tspann der Sicherheitseinrichtung 14 ist im allgemeinen vorgegeben und liegt zum Beispiel zwischen 100 ms-500 ms. Die obige Berechnung kann für mehrere Anspannzeiten oder aber die größte Anspannzeit tspann durchgeführt werden.with a eιg en = self- acceleration of the vehicle, t sp ann = tensioning time of the safety device 14, v eιgen = current vehicle speed and dmess = measuring distance, which can be fixed at 5 m, for example, and can be adapted to the respective driving conditions. This formula can be used directly for the straight-line movement of FIGS. 1, 2, which is correspondingly shown in FIG. 3 as a straight-line lane in front of the vehicle 1. The first two summands of this formula calculate - in the case of a straight-line movement without skidding behavior - the distance covered due to the current driving state variables a e ι ge n and v e ι ge n. The measuring distance is added as the third summand. d χ ma can constantly this case - by a new data e i ge n and v eιge n - are updated. The tensioning time tspann of the safety device 14 is generally predetermined and is, for example, between 100 ms-500 ms. The above calculation can for several Anspannzeiten or the largest Anspannzeit t be spun performed.
Falls keine geradlinige Bewegung, sondern eine Fahrt auf kurviger Bahn vorliegt, wie sie in Fig. 3 ergänzend gezeigt ist, wird - falls kein Schleuderverhal- ten vorliegt - dmaχ gemäß der gepunkteten Linie auf einem Kreisabschnitt zurückgelegt, so daß der für das Sensorsystem relevante geradlinige, korrigierte maximale Detektionsabstand d'max sich als entsprechende Kantenlänge des gebildeten Segmentes errechnet gemäß:If there is no rectilinear movement, but a drive on a curved path, as is additionally shown in FIG. 3, if no spin behavior is present, d ma χ is covered on a segment of a circle in accordance with the dotted line, so that that for the sensor system relevant rectilinear, corrected maximum detection distance d'max is calculated as the corresponding edge length of the segment formed in accordance with:
d'max = 2r sin(dmaχ /(2r))d'max = 2r sin (d ma χ / (2r))
wobei r der Kurvenradius des Fahrzeugs ist.where r is the turning radius of the vehicle.
Als Beispiel sei für die Sicherheitseinrichtung 14 ein Mittel zum Fußgänger- schütz mit einer Ansprechzeit bzw. Anspannzeit von tspann = 500 ms gewählt, das bei Crashbeginn seine volle Wirkung entfaltet haben muß.As an example, a means for the pedestrian protection with a response time or tense time of t spa nn = 500 ms is selected for the safety device 14, which means that it must have its full effect at the beginning of the crash.
Das Fahrzeug hat: eine momentane Eigengeschwindigkeit von veιgen = 500 km/h = 13,9 m/s, es fährt geradeaus (Lenkwinkel αι = 0°, Gierrate ωg,eigen = 0 s), es hat keine Eigenbeschleunigung (aeιgen = 0 m/s2), es liegt kein Schleudervorgang vor. Als Meßdistanz dmess werden 5 m appliziert. Gemäß obiger Formel für eine Geradeausfahrt ergibt sich ein dmax von 11 ,95 m. Tritt nun ein Objekt in den Detektionsbereich < dmax ein, erfassen die Sensieralgorithmen der verschiedenen Sensorsysteme und der Auswerteeinrichtung 10 das Objekt und ermitteln eine Relativgeschwindigkeit, eine Zeit bis zu einem erwarteten Aufprall, einen Aufprallwinkel und einen erwarteten Aufprallort, ggf. eine Aufprallwahrscheinlichkeit und eine Klassifizierung des Objektes, dmm ist zunächst auf dmιn = dmax - dmess und eine Entscheidungszeit auf tentscheιd = dmess/( eιgen + Sicherheitszuschlag) gesetzt. Bei entsprechendem Fahrzeugverhalten, zum Beispiel einer Bremsenbetätigung und einem Lenkvorgang zum Ausweichen, ändern sich entsprechend die Parameter, so daß zum Beispiel die Eigengeschwindigkeit veιgen fällt, die Eigenbeschleunigung aeιgen steigt und der Lenkwinkel steigt, bevor dmm des detektierten Objektes überschritten wird. Die Auswerteeinrichtung 10 ermittelt für das Objekt folgende Daten:The vehicle has: a current own speed of v e ι ge n = 500 km / h = 13.9 m / s, it drives straight ahead (steering angle αι = 0 °, yaw rate ω g , own = 0 s), it has none Self-acceleration (a e ι ge n = 0 m / s 2 ), there is no spin cycle. 5 m are applied as the measuring distance d mess . According to the above formula for straight-ahead driving there is ad max of 11.95 m. If an object now enters the detection range <d max , the sensing algorithms of the various sensor systems and the evaluation device 10 detect the object and determine a relative speed, a time to an expected impact, an impact angle and an expected impact location, possibly an impact probability and one Classification of the object, d mm is initially set to d mιn = d max - dmess and a decision time to t en tscheιd = d me ss / (own + safety surcharge). With corresponding vehicle behavior, for example a brake application and a steering process to avoid, the parameters change accordingly, so that, for example, the vehicle's own speed drops, the vehicle's own acceleration a e ι ge n increases and the steering angle increases before d mm of the detected object is exceeded. The evaluation device 10 determines the following data for the object:
Das Objekt hat - keine Eigengeschwindigkeit relativ zum Fahrzeug, wird als Fußgänger klassifiziert, befindet sich direkt vor dem Fahrzeug.The object has - no own speed relative to the vehicle, is classified as a pedestrian, is located directly in front of the vehicle.
Eine Aufprallwahrscheinlichkeit (Wert zwischen 0 und 1) wird kontinuierlich berechnet und überschreitet zu einem Zeitpunkt zeitlich vor tentscheιd die appli- zierbare Schwelle von 0,8, so daß ein Crash, der das Rückhaltesystem benötigt, mit hinreichender Wahrscheinlichkeit erwartet wird. dmιn wird jetzt analog zur Berechnung von dmax berechnet. Entscheidungsstrategien legen fest, wann ein entgültiges dmιn ermittelt wird. Eine komplexere Ermittlung von tentscheιd ist ebenfalls möglich. Eine Änderung der Ansprechzeit bzw. Anspannzeit tspann aufgrund der ermittelten Daten, insbesondere der Objektklasse und der Relativgeschwindigkeit, ist weiterhin möglich.A collision probability (value between 0 and 1) is continuously calculated and at a time exceeds a time before t ent d scheι the appli- ducible threshold of 0.8, so that a crash, requiring the restraint system, it is expected with sufficient probability. d mιn is now calculated analogously to the calculation of d max . Decision strategies determine when a final d mιn is determined. A more complex determination of t en ts c h e ι d is also possible. A change in the response time or Anspannzeit spun t based on the detected data, in particular of the object class and the relative velocity, is still possible.
Erfindungsgemäß kann dmax jeweils auf einem möglichst niedrigen Wert gehalten werden, so daß die Rechenleistung minimiert ist und dennoch die Funktion voll gewährleistet ist. dmm kann ebenfalls möglichst niedrig gehalten werden, um möglichst viele Informationen über das Objekt zu erhalten und somit die Qualität und Toleranz der Sensorinformation zu maximieren.According to the invention, d max can in each case be kept as low as possible, so that the computing power is minimized and the function is nevertheless fully guaranteed. d m m can also be kept as low as possible, to get as much information about the object as possible and thus maximize the quality and tolerance of the sensor information.
Die verschiedenen Sicherheitseinrichtungen 14 können für verschiedene Situ- ationen verschiedene Aufgaben und damit unterschiedliche Anspannzeiten haben. Hierbei kann zum Beispiel der Kraftaufbau in einem Gurtstraffer abhängig von der Aufprallwahrscheinlichkeit sein. The different safety devices 14 can have different tasks and thus different tying times for different situations. For example, the build-up of force in a belt tensioner may depend on the probability of an impact.

Claims

Patentansprüche Patent claims
1. Verfahren zur Bestimmung eines Detektionsbereiches eines Pre-Crash- Sensorsystems (4, 6, 8) eines Fahrzeuges, bei dem ein maximaler Detektionsabstand (dmax) ermittelt wird in Abhängigkeit von mindestens: einer Anspannzeit (tspann) einer Sicherheitseinrichtung des Fahrzeuges, und einer Fahrzustandsgröße (veιgen, aeιgen, ωe,gen) des Fahrzeuges.1. Method for determining a detection range of a pre-crash sensor system (4, 6, 8) of a vehicle, in which a maximum detection distance (d max ) is determined depending on at least: a clamping time (t span nn) of a safety device of the vehicle , and a driving state variable (v eιg en, a e ι ge n, ω e, g en) of the vehicle.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die mindestens eine Fahrzustandsgröße des Fahrzeuges eine Fahrgeschwindigkeit Zeigen) und/oder eine Fahrzeug-Längsbeschleunigung (aeιgen) und/oder ein Lenkwinkel (αι) und/oder eine Gierrate (ωg.eigen) ist.2. The method according to claim 1, characterized in that the at least one driving state variable of the vehicle shows a driving speed) and / or a vehicle longitudinal acceleration (a e ι ge n) and / or a steering angle (αι) and / or a yaw rate (ωg .own ) .
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Ermittlung des maximalen Detektionsabstandes (dmax) weiterhin in Ab- hängigkeit von einer Meßdistanz (dmess) erfolgt.3. The method according to claim 1 or 2, characterized in that the determination of the maximum detection distance (d max ) continues to take place as a function of a measuring distance (dm e ss).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der maximale Detektionsabstand (dmax) ermittelt wird als eine fiktive Wegstrecke, die bei Einhaltung der mindestens einen Fahrzustandsgröße (aeιgen, ve,gen) in- nerhalb der Anspannzeit zurückzulegen ist, und der Meßdistanz (dmeSs)-4. The method according to claim 3, characterized in that the maximum detection distance (d max ) is determined as a fictitious distance which, if the at least one driving state variable (a e ι ge n, v e , g en) is maintained within the tension time has to be covered, and the measuring distance (d meS s)-
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der maximale Detektionsabstand (dmax) bei geradliniger Fahrt ermittelt wird als dmax = 0 ,0 aeigen ' t sPann + Veigen "t s ann + d ess,5. The method according to claim 4, characterized in that the maximum detection distance (d max ) is determined when driving in a straight line dmax = 0 ,0 a e i g en ' ts Pa nn + Veigen " ts ann + d ess,
mit dmax = maximaler Detektionsabstand, aein = Fahrzeug- Längsbeschleunigung, Veigen = Fahrzeuggeschwindigkeit, tspann = Anspannzeit des Sicherheitsmittels, dmeSs = Meßdistanz.where d max = maximum detection distance, a e i n = vehicle longitudinal acceleration, V e i gen = vehicle speed, t span n = tensioning time of the safety device, d meSs = measuring distance.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß ein maximaler Detektionsabstand d' max bei einer Kurvenfahrt ermittelt wird aus dem maximalen Detektionsabstand dmax bei geradliniger Fahrt gemäß d'max = 2r sin(dmax /(2r)), wobei r der Kurvenradius des Fahrzeugs ist.6. The method according to claim 5, characterized in that a maximum detection distance d ' max when cornering is determined from the maximum detection distance d max when traveling in a straight line according to d'max = 2r sin (d max / (2r)), where r the is the curve radius of the vehicle.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß ein minimaler Detektionsabstand (dmin) ermittelt wird in Abhängigkeit von mindestens: der Anspannzeit (tspann) der Sicherheitseinrichtung, und der Fahrzustandsgröße (vejgen, aeigen, ωg,eigen).7. Method according to one of the preceding claims, characterized in that a minimum detection distance (d min ) is determined depending on at least: the tensioning time (t span ) of the safety device, and the driving state variable (v e j ge n, aeigen, ω g , own ).
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß ein von der Sensoreinrichtung erfaßtes Objekt einer Objektklasse, zum Beispiel Personenkraftwagen, Lastkraftwagen, Fußgän- ger oder Motorrad, zugeordnet wird und die ermittelte Objektklasse zur8. Method according to one of the preceding claims, characterized in that an object detected by the sensor device is assigned to an object class, for example passenger cars, trucks, pedestrians or motorcycles, and the determined object class is used
Ermittlung des maximalen Detektionsabstandes (dmax) und/oder minimalen Detektionsabstandes (dmln) herangezogen wird.Determination of the maximum detection distance (d max ) and/or minimum detection distance (d mln ) is used.
9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Sensorsystem ein erstes Meßverfahren für kleine Me- ßabstände, vorzugsweise mittels eines kurzwelligen Radarmeßverfahrens, ein zweites Meßverfahren für mittlere Meßabstände, vorzugsweise mittels eines Stereo-Videomeßverfahrens, und ein drittes Meßverfahren für große Meßabstände, vorzugsweise mittels eines langwelligen Radarmeßverfahrens, verwendet. 9. The method according to one of the preceding claims, characterized in that the sensor system has a first measuring method for small measuring distances, preferably by means of a short-wave radar measuring method, a second measuring method for medium measuring distances, preferably by means of a stereo-video measuring method, and a third measuring method for large ones Measuring distances, preferably using a long-wave radar measuring method, are used.
0. Precrash-Sensierungsverfahren, bei dem0. Precrash sensing method in which
ein Detektionsbereich (dmax, dmin) mittels eines Verfahrens nach einem der vorherigen Ansprüche ermittelt wird,a detection range (d max , d min ) is determined using a method according to one of the preceding claims,
eine Aufprallwahrscheiniichkeit aus Fahrzustandsgrößen und Meßdaten ermittelt wird, undan impact probability is determined from driving condition variables and measurement data, and
in dem Fall, daß eine Aufprallwahrscheiniichkeit einen Schwellwert über- schreitet, vor einem Aufprall eine Auslöseschwelle eines Ansteueralgorithmus eines pyrotechnisch zündbaren Rückhaltemittels eingestellt wird und/oder mindestens ein reversibles Rückhaltemittel, vorzugsweise ein reversibler elektro-motorischer Gurtstraffer und/oder elektro-magnetische oder e- lektro-motorische VerStelleinrichtungen zur Einstellung einer Fuß-, Knieoder Kopf position, betätigt werden.in the event that an impact probability exceeds a threshold value, a triggering threshold of a control algorithm of a pyrotechnically ignitable restraint means is set before an impact and/or at least one reversible restraint means, preferably a reversible electromotive belt tensioner and/or electromagnetic or e- Electric-motor adjustment devices for adjusting a foot, knee or head position can be operated.
1. Anordnung zur Bestimmung eines Detektionsbereiches eines Pre-Crash- Sensorsystems eines Fahrzeuges, mit einem Sensorsystem (4, 6, 8) zum Erfassen von Objekten (12) auf einer Fahrbahn (2) und Ausgabe von Sensorsignalen (si, s2, s3), einer Auswerteeinrichtung (10) zur Aufnahme der Sensorsignale (si, s2, s3) und Ausgabe von Steuersignalen (a) an mindestens eine Sicherheitseinrichtung (14) des Fahrzeuges, wobei die Auswerteeinrichtung (10) einen maximalen Detektionsabstand (dmax) ermittelt in Abhängigkeit von mindestens: einer Anspannzeit (tspaπn) der Sicherheitseinrichtung (14) des Fahrzeuges, und einer ermittelten Fahrzustandsgröße (veιgen, aeιgen, ωgteigen) des Fahrzeuges. 1. Arrangement for determining a detection area of a pre-crash sensor system of a vehicle, with a sensor system (4, 6, 8) for detecting objects (12) on a roadway (2) and outputting sensor signals (si, s 2, s 3 ), an evaluation device (10) for recording the sensor signals (si, s 2 , s 3 ) and outputting control signals (a) to at least one safety device (14) of the vehicle, the evaluation device (10) having a maximum detection distance (dmax) determined depending on at least: a tensioning time (t spaπn ) of the safety device (14) of the vehicle, and a determined driving state variable (v e ι ge n, a e ι gen, ω gt ei ge n) of the vehicle.
12. Anordnung nach Anspruch 11 , dadurch gekennzeichnet, daß die mindestens eine Sicherheitseinrichtung (14) ein oder mehrere Rückhaltemittel, insbesondere ein oder mehrere reversible Rückhaltemittel, zum Beispiel reversible elektro-motorisch betätigte Gurtstraffer und/oder ein oder mehrere reversible elektro-magnetisch oder elektro-motorisch betätigte12. Arrangement according to claim 11, characterized in that the at least one safety device (14) has one or more restraint means, in particular one or more reversible restraint means, for example reversible electro-motor-operated belt tensioners and / or one or more reversible electro-magnetic or electric -motor-operated
VerStelleinrichtungen zur Einstellung einer Fuß-, Knie- oder Kopfposition aufweist, wobei die Rückhaltemittel von der Auswerteeinrichtung (10) in Abhängigkeit von einer ermittelten Aufprallwahrscheiniichkeit vor einem Aufprall betätigbar sind.Adjusting devices for adjusting a foot, knee or head position, wherein the restraint means can be actuated by the evaluation device (10) before an impact depending on a determined impact probability.
13. Anordnung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die Sicherheitseinrichtung (14) pyrotechnisch zündbare Rückhaltemittel aufweist, wobei die Auswerteeinrichtung (10) Auslöseschwellen des Ansteueralgorithmus zur Zündung der pyrotechnisch zündbaren Rückhaltemittel in Abhängigkeit von einer ermittelten Aufprallwahrscheiniichkeit einstellt.13. Arrangement according to claim 11 or 12, characterized in that the safety device (14) has pyrotechnically ignitable retaining means, the evaluation device (10) setting trigger thresholds of the control algorithm for igniting the pyrotechnically ignitable retaining means depending on a determined impact probability.
14. Anordnung nach einem der Ansprüche 11-13, dadurch gekennzeichnet, daß die Auswerteeinrichtung (10) Fahrzeugsysteme der aktiven Sicherheit, zum Beispiel Bremsen, eine Motorsteuerung und/oder Lenkung, in Abhängigkeit von einer aus den Sensorsignalen (s-ι, s2, s3) ermittelten Aufprallwahrscheiniichkeit einstellt.14. Arrangement according to one of claims 11-13, characterized in that the evaluation device (10) vehicle systems of active safety, for example brakes, engine control and / or steering, depending on one of the sensor signals (s-ι, s 2 , s 3 ) determines the impact probability.
15. Anordnung nach einem der Ansprüche 11-14, dadurch gekennzeichnet, daß das Sensorsystem (4, 6, 8) eine kurzreichweitige Sensoreinrichtung, vorzugsweise eine langwellige Radareinrichtung (4), aufweist, die erste Sensorsignale (s^ an die Auswerteeinrichtung (10) ausgibt.15. Arrangement according to one of claims 11-14, characterized in that the sensor system (4, 6, 8) has a short-range sensor device, preferably a long-wave radar device (4), which sends first sensor signals (s^ to the evaluation device (10) outputs.
16. Anordnung nach einem der Ansprüche 11-15, dadurch gekennzeichnet, daß das Sensorsystem eine mittelreichweitige Sensoreinrichtung, vorzugsweise eine Videoeinrichtung (6), zum Beispiel eine steroskopische Videoeinrichtung, aufweist, die zweite Sensorsignale (s2) an die Auswerteeinrichtung (10) ausgibt. 16. Arrangement according to one of claims 11-15, characterized in that the sensor system has a medium-range sensor device, preferably a video device (6), for example a steroscopic video device, which outputs second sensor signals (s 2 ) to the evaluation device (10). .
17. Anordnung nach einem der Ansprüche 11-16, dadurch gekennzeichnet, daß das Sensorsystem eine langreichweitige Sensoreinrichtung , vorzugsweise eine kurzwellige Radareinrichtung (8), aufweist, die dritte Sensorsignale (s3) an die Auswerteeinrichtung (10) ausgibt.17. Arrangement according to one of claims 11-16, characterized in that the sensor system has a long-range sensor device, preferably a short-wave radar device (8), which outputs third sensor signals (s 3 ) to the evaluation device (10).
18. Anordnung nach einem der Ansprüche 11-17, dadurch gekennzeichnet, daß von der Auswerteeinrichtung (10) aus den Sensorsignalen (s-i, s2, s3) ein auf der Fahrbahn erfasstes Objekt in einer Objektklasse klassifizierbar ist. 18. Arrangement according to one of claims 11-17, characterized in that an object detected on the road can be classified into an object class by the evaluation device (10) from the sensor signals (si, s 2, s 3 ).
PCT/DE2002/003566 2002-01-25 2002-09-23 Method and device for determining a detection region of a pre-crash sensor system WO2003062020A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10202908.3 2002-01-25
DE10202908A DE10202908B4 (en) 2002-01-25 2002-01-25 Method and arrangement for determining a detection range of a pre-crash sensor system

Publications (2)

Publication Number Publication Date
WO2003062020A2 true WO2003062020A2 (en) 2003-07-31
WO2003062020A3 WO2003062020A3 (en) 2003-11-06

Family

ID=7713068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003566 WO2003062020A2 (en) 2002-01-25 2002-09-23 Method and device for determining a detection region of a pre-crash sensor system

Country Status (2)

Country Link
DE (1) DE10202908B4 (en)
WO (1) WO2003062020A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2422499A (en) * 2005-01-25 2006-07-26 Visteon Global Tech Inc Object detection system for a vehicle having multiple sensor fields forming the sensor coverage area
DE102004046101A1 (en) * 2004-09-23 2006-09-21 Daimlerchrysler Ag Method for early detection of motor vehicle collision involves estimation of collision danger on the basis of determined time to collision and introducing collision reducing measures with exceeding of predetermined collision danger
WO2012110655A1 (en) * 2011-02-18 2012-08-23 Jaguar Cars Limited Apparatus and method for monitoring a target object

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337991A1 (en) * 2003-08-19 2005-03-17 Volkswagen Ag Driver assistance system for a motor vehicle
DE10351915A1 (en) * 2003-11-07 2005-06-09 Volkswagen Ag Monitoring device for a vehicle for detecting obstacles in front or behind it has a sensor device for which a monitoring surface of variable area can be defined dependent on the vehicle configuration
DE10355325B4 (en) * 2003-11-27 2014-02-27 Robert Bosch Gmbh Restraint system for vehicle occupants
GB2412471B (en) * 2004-03-25 2009-05-20 Ford Global Tech Llc Activation of a passive restraint system
DE102004037539B4 (en) * 2004-08-03 2015-07-16 Daimler Ag Motor vehicle with a preventive protection system
DE102004037704B4 (en) 2004-08-04 2014-07-10 Daimler Ag Motor vehicle with a preventive protection system
DE102004038167B4 (en) 2004-08-06 2013-03-07 Daimler Ag Motor vehicle with a preventive protection system
DE102005005959B4 (en) * 2005-02-10 2016-12-22 Conti Temic Microelectronic Gmbh Device and method for controlling a safety device of a vehicle
JP4598653B2 (en) 2005-05-13 2010-12-15 本田技研工業株式会社 Collision prediction device
DE102007038366B4 (en) * 2007-08-09 2019-08-14 Volkswagen Ag Method and device for controlling precrash means in a motor vehicle
DE102009012407B8 (en) * 2009-03-10 2011-02-24 Technische Universität Graz Restraint system control based on calculated acceleration data
DE102010015547B4 (en) * 2010-04-20 2020-07-30 Daimler Ag Method for controlling at least one reversible occupant protection device
DE102010053063B4 (en) * 2010-12-01 2014-01-23 Daimler Ag Method and device for protecting a vehicle occupant of a vehicle
DE102012021004B4 (en) 2012-10-26 2020-09-10 Volkswagen Aktiengesellschaft Method and device for reducing the consequences of medical accidents in the event of unavoidable accidents in cross traffic
DE102016224935A1 (en) 2016-12-14 2018-06-14 Robert Bosch Gmbh Method for operating a vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647660A1 (en) * 1996-11-19 1998-05-20 Daimler Benz Ag Trigger device for occupant restraint systems in a vehicle
DE19741631A1 (en) * 1997-09-20 1999-03-25 Volkswagen Ag Method and device for avoiding and / or minimizing conflict situations in road traffic
US6151539A (en) * 1997-11-03 2000-11-21 Volkswagen Ag Autonomous vehicle arrangement and method for controlling an autonomous vehicle
DE19934670A1 (en) * 1999-05-26 2000-12-21 Bosch Gmbh Robert Object detection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546715A1 (en) * 1995-12-14 1997-06-19 Daimler Benz Aerospace Ag Airbag releasing sensing system for motor vehicle
DE19707936A1 (en) * 1997-02-27 1998-09-03 Volkswagen Ag Obstacle distance detection arrangement for motor vehicle
DE19749838B4 (en) * 1997-11-11 2005-12-29 Siemens Restraint Systems Gmbh A passive restraint system associated with a vehicle seat in a motor vehicle with a fault-tolerant reaction to a signal of a precrash sensor
DE19845568A1 (en) * 1998-04-23 1999-10-28 Volkswagen Ag Object detection device for motor vehicles
DE19910667A1 (en) * 1999-03-11 2000-09-21 Volkswagen Ag Device with at least one laser sensor and method for operating a laser sensor
DE19960644A1 (en) * 1999-12-16 2001-06-28 Siemens Restraint System Gmbh Adjustable restraint system for motor vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647660A1 (en) * 1996-11-19 1998-05-20 Daimler Benz Ag Trigger device for occupant restraint systems in a vehicle
DE19741631A1 (en) * 1997-09-20 1999-03-25 Volkswagen Ag Method and device for avoiding and / or minimizing conflict situations in road traffic
US6151539A (en) * 1997-11-03 2000-11-21 Volkswagen Ag Autonomous vehicle arrangement and method for controlling an autonomous vehicle
DE19934670A1 (en) * 1999-05-26 2000-12-21 Bosch Gmbh Robert Object detection system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUNERT M: "Radarbasierte Nahfeldsensorik zur Precrash Sensierung" INNOVATIVER KFZ-INSASSEN- UND PARTNERSCHUTZ. TAGUNG BERLIN, SEPT. 30 - OKT. 1, 1999, VDI BERICHTE 1471, DUESSELDORF: VDI VERLAG GMBH, DE, Bd. 471, 30. September 1999 (1999-09-30), Seiten 169-185, XP002203526 ISBN: 3-18-091471-8 *
WELLER J: "Vorausschauende Sensorik fuer zukuenftige Sicherheitssysteme" INNOVATIVER KFZ-INSASSEN- UND PARTNERSCHUTZ. TAGUNG BERLIN, SEPT. 30 - OKT. 1, 1999, VDI BERICHTE 1471, DUESSELDORF: VDI VERLAG GMBH, DE, Bd. 471, 30. September 1999 (1999-09-30), Seiten 229-236, XP002203527 ISBN: 3-18-091471-8 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004046101A1 (en) * 2004-09-23 2006-09-21 Daimlerchrysler Ag Method for early detection of motor vehicle collision involves estimation of collision danger on the basis of determined time to collision and introducing collision reducing measures with exceeding of predetermined collision danger
DE102004046101B4 (en) * 2004-09-23 2007-01-18 Daimlerchrysler Ag Method, safety device and use of the safety device for the early detection of motor vehicle collisions
GB2422499A (en) * 2005-01-25 2006-07-26 Visteon Global Tech Inc Object detection system for a vehicle having multiple sensor fields forming the sensor coverage area
WO2012110655A1 (en) * 2011-02-18 2012-08-23 Jaguar Cars Limited Apparatus and method for monitoring a target object
US9947225B2 (en) 2011-02-18 2018-04-17 Jaguar Land Rover Limited Apparatus and method for monitoring a target object

Also Published As

Publication number Publication date
DE10202908B4 (en) 2009-10-01
DE10202908A1 (en) 2003-07-31
WO2003062020A3 (en) 2003-11-06

Similar Documents

Publication Publication Date Title
DE10132681C1 (en) Method for classifying an obstacle using pre-crash sensor signals
EP1355805B1 (en) Method for triggering means of restraint in a motor vehicle
DE102004046360B4 (en) Motor vehicle with a preventive protection system
DE102005008190B4 (en) Method and control device for triggering side impact restraint systems
DE10140119C1 (en) Impact detection device in a vehicle
DE102004057604B4 (en) Method for a safety system in a vehicle
DE102006041725B4 (en) Method and device for operating a pre-impact detection arrangement with contact sensor
EP0903714B1 (en) Method and device for avoiding and/or minimising conflictual situations in road traffic
DE19736840B4 (en) Method for situation-dependent triggering of a restraint system and restraint system
EP1296859B1 (en) Method and device for recognition of a collision with a pedestrian
WO2003062020A2 (en) Method and device for determining a detection region of a pre-crash sensor system
EP1656282A1 (en) Motor vehicle provided with a pre-safe system
WO2005102768A1 (en) Protective device for a motor vehicle
DE10250732B3 (en) Control device for driver and passenger protection in a motor vehicle, has a plausibility step to prevent unnecessary deployment decisions being carried out
DE102004037704B4 (en) Motor vehicle with a preventive protection system
DE19910596A1 (en) Method and arrangement for triggering restraint devices in a motor vehicle
DE102005037961A1 (en) Method for recognition of side impact location on vehicle, wherein after side impact, first and second information relating to front side region and second side region of vehicle respectively are determined
DE102008046488B4 (en) Probabilistic triggering strategy
EP1634099A2 (en) Device for the classification of at least one object by means of an environment sensor
DE102004029817A1 (en) Security system for vehicle occupants
EP1641655B1 (en) Method for controlling an occupant protection device in a vehicle
DE102009000742B4 (en) Method and control unit for adapting a triggering threshold for triggering a restraining means in a vehicle
DE102009029232B4 (en) Method and control device for influencing an acceleration-based side impact algorithm
DE102005019461B4 (en) Tripping method for activating occupant protection means in a vehicle
DE102011075728B4 (en) Method and control device for changing a triggering threshold of at least one personal protection device in a vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase