WO2003060382A1 - Gas stove - Google Patents

Gas stove Download PDF

Info

Publication number
WO2003060382A1
WO2003060382A1 PCT/JP2003/000271 JP0300271W WO03060382A1 WO 2003060382 A1 WO2003060382 A1 WO 2003060382A1 JP 0300271 W JP0300271 W JP 0300271W WO 03060382 A1 WO03060382 A1 WO 03060382A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
air
gas
air supply
combustion chamber
Prior art date
Application number
PCT/JP2003/000271
Other languages
French (fr)
Japanese (ja)
Inventor
Tsutomu Sobue
Koji Yano
Yutaka Yamada
Original Assignee
Rinnai Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Kabushiki Kaisha filed Critical Rinnai Kabushiki Kaisha
Priority to DE60326818T priority Critical patent/DE60326818D1/en
Priority to EP03700572A priority patent/EP1467153B1/en
Publication of WO2003060382A1 publication Critical patent/WO2003060382A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves or ranges for gaseous fuels
    • F24C3/04Stoves or ranges for gaseous fuels with heat produced wholly or partly by a radiant body, e.g. by a perforated plate
    • F24C3/06Stoves or ranges for gaseous fuels with heat produced wholly or partly by a radiant body, e.g. by a perforated plate without any visible flame
    • F24C3/067Ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other

Definitions

  • the present invention relates to a gas stove in which an object to be heated is placed on an upper surface of a combustion chamber and a flame is not exposed during heating.
  • the upper surface of a combustion chamber provided with a panner 100 is made of a heat-resistant glass top plate 101, and cooking placed on the glass top plate 101
  • Gas stoves for heating objects are known.
  • the combustion air is supplied to the burner 100 by the supply / exhaust fan 102, and the combustion exhaust gas from the burner 100 is discharged from the exhaust port 103. .
  • FIG. 5 (b) is a cross-sectional view of the gas stove shown in FIG. 5 (a) as viewed from the side.
  • the controller 130 adjusts the combustion amount of the burner 100
  • the flow rate of the combustion gas supplied from the gas supply path 121 to the mixing pipe 123 via the nozzle 122 is compared with the target combustion amount of the panner 100 set by the adjustment switch 104.
  • the flow rate of the combustion air supplied to the mixing pipe 123 via the air supply passage 120 is controlled by the supply and exhaust fan 102.
  • a gas supply valve 125 is provided in the gas supply path 122.
  • An air-permeable porous body 105 is provided outside the burner 100, and the porous body 105 is an exhaust gas that guides the combustion exhaust gas of the parner 10 to the exhaust port 103. It is in communication with Road 1 26. In this way, the exhaust gas
  • the porous body 105 By providing the porous body 105 in the passage, in addition to the hot air 111 from the combustion surface of the burner 100 that generates the combustion flame 110, the porous body heated by the passage of the high-temperature combustion exhaust gas Radiant heat 1 12 is also generated from the substance 105. Therefore, the heat efficiency of the gas stove can be improved.
  • the inside of the combustion chamber 140 becomes extremely hot (approximately 100 ° C.) due to heat radiation from the burner 100 and the porous body 105. C), and heat is also dissipated inside the stove through the side surface of the combustion chamber 140. As a result, the temperature inside the gas stove also becomes high, and the electrical components (electric boards, fan motors, solenoid valves, etc.) provided inside the gas stove may be damaged by overheating. Disclosure of the invention
  • the present invention has been made to provide a gas stove that prevents internal electric components from being overheated by radiating heat from a side surface of a combustion chamber.
  • a surface-burning burner and a gas-permeable porous body provided in the combustion chamber in which the object to be heated is placed on the top plate, facing the top plate; and a fuel for supplying a fuel gas to the panner
  • an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and a space is formed by the side surface and the outer peripheral wall. Characterized by having an air supply branch pipe for communicating You.
  • the air supply / exhaust fan air is also supplied from the air supply passage to the space formed by the side surface of the combustion chamber and the outer peripheral wall through the air supply branch pipe. Therefore, the heat released from the side surface of the combustion chamber due to the air supplied into the space is suppressed from propagating into the gas stove, and the inside of the gas stove becomes high temperature to operate the supply / exhaust fan. It is possible to prevent electrical components such as motors and the like from being damaged due to overheating. According to the first aspect, it is not necessary to provide a fan for supplying air into the space separately from the supply / exhaust fan, so that the cost of the gas stove can be suppressed.
  • the space is sealed and formed except for an air supply port and a discharge port, and the air supply branch pipe is connected to the supply port.
  • An exhaust gas recirculation pipe is provided, which communicates with a fan and recirculates air exhausted from the exhaust port to the air supply / exhaust fan.
  • the air supplied from the air supply branch pipe into the space via the supply port is heated by heat released from the side surface of the combustion chamber. Then, the air thus heated is sucked into the air supply / exhaust fan from the exhaust outlet of the space through the exhaust gas recirculation pipe, and is supplied to the parner through the air supply passage.
  • the The temperature of the supplied combustion air is raised to increase the temperature of the combustion flame of the parner, and the burning speed of the parner is also increased, so that the surface temperature of the parner can be raised. Further, since the temperature of the combustion exhaust of the parner also increases, the radiation conversion efficiency of the porous body through which the combustion exhaust passes can be improved.
  • an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side wall and the outer peripheral wall are sealed except for an air supply port and an exhaust port.
  • an exhaust gas recirculation pipe that communicates the exhaust port with the air supply / exhaust fan to return the air exhausted from the exhaust port to the air supply / exhaust fan.
  • the indoor air supplied from the supply port of the space is heated by heat released from the side surface of the combustion chamber when passing through the space, and the exhaust gas recirculation pipe The air is sucked into the air supply / exhaust fan through the fan. Therefore, similarly to the first aspect, the temperature of the air supplied to the parner by the air supply / exhaust fan is increased by the air heated in the space, and the surface temperature of the parner during combustion is reduced. And the radiation conversion efficiency of the porous body can be improved.
  • an outer peripheral wall is provided around the side surface of the combustion chamber at a distance from the side surface, and the outer peripheral wall is sealed by the side surface and the outer peripheral wall except for an air supply port and an exhaust port.
  • a first supply passage connecting the air supply port of the supply / exhaust fan and the supply port, the space, the discharge port, and the burner.
  • a second air supply communication pipe that communicates with the second air supply pipe.
  • the heat supplied from the side surface of the combustion chamber is prevented from being transmitted to the inside of the gas stove by the air supplied from the first air supply passage to the space.
  • the combustion air that is heated and supplied to the parner via the second air supply communication pipe can improve the combustion temperature of the parner and the radiation conversion efficiency of the porous body.
  • an outer peripheral wall is provided around the side surface of the combustion chamber at a distance from the side surface, and the side wall and the outer peripheral wall are sealed except for an air supply port and an exhaust port.
  • a cooling air supply means for arranging the discharge port toward a portion of the top plate outside the combustion chamber, and supplying cooling air from the supply port into the space. It is characterized by.
  • the cooling air supplied into the space from the supply port by the cooling air supply means passes through the space and flows out of the discharge port from the outside of the combustion chamber of the top plate. It is discharged toward the place. Therefore, similarly to the above-described first aspect, the heat released from the side surface of the combustion chamber due to the air passing through the space is suppressed from propagating into the gas stove, and the discharge port is The portion of the top plate outside the combustion chamber is cooled by the air discharged from the top plate. Accordingly, it is possible to prevent the portion of the top plate outside the combustion chamber from being heated, thereby preventing the user from feeling the heat.
  • a fifth aspect of the present invention is characterized in that cooling air supply means for supplying cooling air into the combustion chamber is provided.
  • the atmosphere temperature in the combustion chamber can be reduced by the air supplied into the combustion chamber by the cooling air supply means. Therefore, the amount of heat that propagates from the side surface of the combustion chamber into the gas stove can be reduced, and in particular, it is possible to prevent the top plate from being overheated when the object to be heated is not placed on the top plate. Can be prevented.
  • the object to be heated placed on the top plate is mainly composed of the panner transmitted to the object to be heated via the top plate and red emitted from the porous body. Since the heating is performed by the outside wire, the influence of the decrease in the ambient temperature in the combustion chamber on the heating power for the heated object is insignificant.
  • an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and a space sealed by the side surface and the outer peripheral wall except for an air supply port and an exhaust port is provided. And forming the discharge port in communication with the combustion chamber toward the lower surface of the top plate, wherein the cooling air supply means is provided from the supply port into the combustion chamber via the space and the discharge port. It is characterized by supplying cooling air.
  • the heat released from the side surface of the combustion chamber due to the air passing through the space is suppressed from propagating into the gas stove, and is supplied from the discharge port into the combustion chamber. Since the air to be blown directly hits the lower surface of the top plate, the effect of cooling the top plate can be enhanced.
  • the cooling air supply means is constituted by an air supply branch pipe branched from the air supply passage.
  • the fan for supplying the cooling air is provided separately from the supply and exhaust fan. No need to provide. Therefore, it is possible to suppress an increase in the cost of the gas stove.
  • FIG. 1 is an external view and a configuration diagram of a gas stove according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a gas stove according to second and third embodiments of the present invention.
  • FIG. 4 is a configuration diagram of a gas stove according to a fourth embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a gas stove according to fifth and sixth embodiments of the present invention.
  • FIG. 1 is an external view and a configuration diagram of a gas stove according to a first embodiment of the present invention
  • FIG. 2 is a configuration diagram of a gas stove according to second and third embodiments of the present invention
  • FIG. FIG. 4 is a configuration diagram of a gas stove according to a fourth embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a gas stove according to fifth and sixth embodiments of the present invention.
  • gas stove 1 is located on the upper surface of a combustion chamber (see Fig. 1 (b)) in which a surface-burning type burner 2 and an annular porous body 3 are accommodated. It heats the cooking object (the object to be heated) placed on the heat-resistant glass top plate 4.
  • the gas stove 1 supplies combustion air to the burner 2 and sends out the combustion exhaust gas of the burner 2 from the exhaust passage (see FIG. 1 (b)) to the exhaust port 5 through the porous body 3. It has an air supply / exhaust fan 6 and a combustion amount adjustment switch 7 for adjusting the combustion amount of the burner 2. Further, an outer peripheral wall 9 is provided outside the combustion chamber.
  • FIG. 1 (b) is a cross-sectional view of the gas stove 1 shown in FIG. 1 (a) as viewed from the side, in which a burner 10 is provided with a parner 2 and a porous body 3. .
  • the combustion air supplied through the air supply passage 20 by the supply / exhaust fan 6 and the fuel gas supplied through the nozzle 22 provided at the end of the gas supply pipe 21 are mixed.
  • the mixture is supplied through a pipe 23 to a parner 2.
  • the gas supply pipe 21 is provided with a gas source valve 24 and a gas proportional valve 25 from the upstream side.
  • the gas supply pipe 21 and the nozzle 22 constitute the fuel gas supply means of the present invention. Further, the combustion exhaust gas from the burner 2 is exhausted from an exhaust port 5 (see FIG.
  • a heat insulating space 12 (corresponding to the space of the present invention) is formed by the side surface 11 of the combustion chamber 10 and the outer peripheral wall 9 provided at a distance from the side surface 11.
  • the heat insulating space 12 is sealed and formed except for the air supply port 13 and the air discharge port 14.
  • the supply port 13 is provided below the heat insulating space 12 and communicates with the supply passage 20 through a supply branch pipe 15 (corresponding to a cooling air supply means of the present invention).
  • the discharge port 14 is located along the side of the combustion chamber 10 above the insulated space 12 and outside the combustion chamber 10 of the glass top plate 4 (in the figure, the diameter from the area inside the diameter L 20 to the diameter (Except for the area inside L10).
  • the operation of the gas stove 1 is controlled by a controller 30 constituted by a microcomputer or the like.
  • the controller 30 is connected to a combustion amount adjustment switch 7.
  • the controller 30 controls the combustion operation of the wrench 2 in accordance with the operation of the combustion amount adjustment switch 7 by the user.
  • the controller 30 adjusts the opening of the gas proportional valve 25 with the gas source valve 24 opened to control the supply flow rate of the fuel gas to the burner 2.
  • the flow rate of the combustion air supplied to the parner 2 is controlled by adjusting the rotation speed of the supply / exhaust fan 6.
  • the hot air 51 from the combustion surface of the burner 2 where the burner flame 50 of the burner 2 is generated and the high-temperature combustion exhaust gas of the burner 2 are heated by passing through.
  • the food is heated via the glass top plate 4 by the radiant heat 52 from the substrate 3.
  • the side surface 11 of the combustion chamber 10 is formed of a sheet metal made of stainless steel or the like, and the inside (the porous body 3 side) of the side surface 11 is exposed to high temperature by the combustion exhaust gas of the parner 2 and oxidized. Emissivity increases.
  • part of the combustion air (corresponding to the cooling air of the present invention) supplied from the air supply / exhaust fan 6 is supplied from the air supply passage 20 through the air supply branch pipe 15.
  • the air supplied into the heat insulating space 12 and supplied from the supply port 13 of the heat insulating space 12 passes through the heat insulating space and is discharged from the discharge port 14.
  • the heat released from the side surface 11 of the combustion chamber 10 is prevented from propagating into the gas stove 1 by the air passing through the heat insulating space 12.
  • the heat inside the gas stove 1 becomes abnormally high due to the heat released from the side surface 11 of the combustion chamber 10, and the electrical board (not shown) of the controller 30 and the gas valve 24 It is possible to prevent electrical components such as the gas proportional valve 25 and the fan motor (not shown) of the supply / exhaust fan 6 from being damaged by overheating.
  • the heat insulating effect of the heat insulating space 12 and the air passing through the heat insulating space 12 prevents the outer peripheral wall 9 from being heated to a high temperature, the emissivity of the outer peripheral wall 9 may increase due to oxidation. Is prevented.
  • the discharge port 14 of the heat insulating space 12 is provided to face the glass top plate 4 outside the combustion chamber 10. The effect of the present invention can be obtained even in the case where it is provided at the position.
  • the heat insulation space 12 is sealed and formed except for the air supply port 13 and the air discharge port 14, but even if the heat insulation space 12 is not sealed, the air supply branch pipe 15 is The effect of the present invention can be obtained by supplying air into the heat insulating space 12 through the air.
  • the heat insulation space 12 is formed by being sealed except for the air supply port 13 and the air discharge port 40, and the heat insulation space is formed.
  • An air supply branch pipe 15 communicating the supply port 13 of 12 with the air supply passage 20 is provided.
  • an exhaust gas recirculation pipe 42 is provided for communicating the exhaust port 40 of the heat insulating space 12 and the air intake port 41 of the air supply / exhaust fan 6.
  • the air supplied through the air supply branch pipe 15 flows from the supply port 13 through the heat insulating space 12, and from the discharge port 40 through the exhaust return pipe 42. And is introduced into the air intake 41 of the supply / exhaust fan 6.
  • the heat insulation space 12 is provided except for the air supply ports 43 (43a, 43b) and the discharge ports 40.
  • An exhaust gas recirculation pipe 42 is provided which is formed in a sealed manner and communicates with the exhaust port 40 of the heat insulating space 12 and the air intake port 41 of the air supply / exhaust fan 6.
  • the air supply branch pipe 15 in the second embodiment is not provided, and the supply port 43 is provided to be open to the lower part of the heat insulating space 12. .
  • the air is supplied from the supply port 43 into the heat insulating space 12 by the operation of the air supply / exhaust fan 6, and the air is heated by the heat released from the side surface of the combustion chamber 10 when passing through the heat insulating space. Then, the air is introduced into the air intake 41 of the supply / exhaust fan 6 through the intake communication pipe 42.
  • the heat insulating space 12 is formed in a sealed manner except for the air supply port 45 and the discharge port 46, and is formed so as to extend around the bottom of the combustion chamber. ing.
  • An air supply passage 20 (corresponding to a first air supply communication pipe of the present invention) is connected to a supply port 45 of the heat insulation space 12, and a mixing pipe 23 (the second air supply communication pipe of the present invention). (Corresponding to a communication pipe) is connected to the discharge port 46 of the heat insulation space 12. Therefore, the air drawn into the air supply / exhaust fan 6 is supplied to the gas burner 2 through the air supply passage 20, the heat insulating space 12, and the mixing pipe 23.
  • the air passing through the heat insulating space 12 from the supply port 45 to the discharge port 46 can enhance the heat insulating effect of the heat insulating space 12 and be released from the side and bottom surfaces of the heat insulating space 12.
  • the air passing through the heat insulating space 12 can be heated by the heat.
  • the combustion temperature of the burner 2 can be increased as in the second and third embodiments.
  • the radiation conversion efficiency of the porous body 3 can be improved.
  • the outlet 60 of the heat insulating space 12 is provided in communication with the fuel chamber 10. Therefore, during the combustion of the Pana 2, the air supplied via the air supply branch 15 flows from the supply port 13 through the heat insulating space 12. As a result, it flows into the combustion chamber 10 from the outlet 60.
  • air is supplied into the combustion chamber 10 via the heat insulating space 12.
  • the combustion is performed from the air supply branch pipe 15 without the heat insulating space 12.
  • the effects of the present invention can also be obtained when air is directly supplied into the chamber 10.
  • the outlet 61 of the heat insulating space 12 is
  • the discharge port 61 is arranged toward the lower surface of the glass top plate 4.
  • the heat insulating effect by the heat insulating space 12 can be obtained as in the first embodiment. Further, the effect of cooling the glass top plate 4 by the air blown from the outlet 61 toward the glass top plate 4 is enhanced.
  • the ambient temperature in the combustion chamber 10 can be reduced as in the fifth embodiment.
  • the cooling air is supplied into the heat insulation chamber 12 by the air supply / exhaust fan 6, but the cooling air is supplied by the fan provided separately from the air supply / exhaust fan 6. Cooling air may be supplied into the heat insulating space 12.
  • the gas stove 1 in which the porous body 3 is disposed outside the burner 2 is shown. The present invention can be applied to a configuration in which the components are arranged. Industrial applicability
  • the gas stove according to the present invention includes a surface-burning burner provided in a combustion chamber in which an object to be heated is placed on a top plate on the upper surface and opposed to the top plate, and a porous member for radiating exhaust heat. It has a body and can be used for gas stoves with enhanced thermal efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Air Supply (AREA)

Abstract

A gas stove in which heat emitted from a side face of a combustion chamber of the stove is suppressed from being transmitted to the inside of the stove. A gas stove (1) comprises a burner (2), a porous body (3), an air-supply and -exhaust fan (6), an external periphery wall (9), an air exhaust passage (26) connecting the porous body (3) and an air exhaust opening (5), and an air supply passage (20). There is formed heat insulation space (12) sealed by the external peripheral wall (9) and a side face (11) of a combustion chamber (10) with the exception of a supply opening (13) and an exhaust opening (14) that are for air. The air supply passage (20) and the supply opening (13) are connected by an air supply branch tube (15). When the burner (2) burns, cooling air is supplied to the heat insulation space (12) through the air supply branch tube (15). The cooling air suppresses heat, emitted from the side surface (11) of the combustion chamber (10), from being transmitted to the inside of the gas stove (1), and air exhausted from the exhaust opening (14) cools exterior portions of the combustion chamber (10) of a glass top (4).

Description

明 細 書 ガスこんろ 技術分野  Description Gas stove Technical field
本発明は、 燃焼室の上面に被加熱物が載置され、 加熱時に火炎が露出 しない形態のガスこんろに関する。 背景技術  The present invention relates to a gas stove in which an object to be heated is placed on an upper surface of a combustion chamber and a flame is not exposed during heating. Background art
従来より、 図 5 ( a ) に示したように、 パーナ 1 0 0が設けられた燃 焼室の上面を耐熱性のガラス天板 1 0 1 とし、 ガラス天板 1 0 1に置か れた調理物を加熱するようにしたガスこんろが知られている。 かかるガ スこんろにおいては、 給排気フアン 1 0 2により、 バ一ナ 1 0 0に対し て燃焼用空気が供給されると共にパーナ 1 0 0の燃焼排ガスが排気口 1 0 3から排出される。  Conventionally, as shown in Fig. 5 (a), the upper surface of a combustion chamber provided with a panner 100 is made of a heat-resistant glass top plate 101, and cooking placed on the glass top plate 101 Gas stoves for heating objects are known. In such a gas stove, the combustion air is supplied to the burner 100 by the supply / exhaust fan 102, and the combustion exhaust gas from the burner 100 is discharged from the exhaust port 103. .
また、 図 5 ( b ) は図 5 ( a ) に示したガスこんろを側面から見た断 面図であり、 コントローラ 1 3 0は、 バ一ナ 1 0 0の燃焼量を調節する 燃焼量調節スィツチ 1 0 4により設定されるパーナ 1 0 0の目標燃焼量 に対して、 ガス供給路 1 2 1からノズル 1 2 2を介して混合管 1 2 3に 供給される燃焼ガスの流量をガス比例弁 1 2 4により制御すると共に、 給気通路 1 2 0を介して混合管 1 2 3に供給される燃焼用空気の流量を 給排気ファン 1 0 2により制御する。  FIG. 5 (b) is a cross-sectional view of the gas stove shown in FIG. 5 (a) as viewed from the side. The controller 130 adjusts the combustion amount of the burner 100 The flow rate of the combustion gas supplied from the gas supply path 121 to the mixing pipe 123 via the nozzle 122 is compared with the target combustion amount of the panner 100 set by the adjustment switch 104. In addition to being controlled by the proportional valve 124, the flow rate of the combustion air supplied to the mixing pipe 123 via the air supply passage 120 is controlled by the supply and exhaust fan 102.
さらに、 ガス供給路 1 2 1にはガス元弁 1 2 5が設けられている。 ま た、 バ一ナ 1 0 0の外側には通気性の多孔質体 1 0 5が設けられ、 該多 孔質体 1 0 5はパーナ 1 0の燃焼排ガスを排気口 1 0 3まで導く排気通 路 1 2 6と連通している。 このようにパーナ 1 0 0の燃焼排ガスの排気 経路に多孔質体 1 0 5を設けることにより、 燃焼炎 1 1 0が生じるバ一 ナ 1 0 0の燃焼面からの熱気 1 1 1に加えて、 高温の燃焼排ガスの通過 によって加熱される多孔質体 1 0 5からも輻射熱 1 1 2が生じる。 その ため、 ガスこんろの熱効率を高めることができる。 Further, a gas supply valve 125 is provided in the gas supply path 122. An air-permeable porous body 105 is provided outside the burner 100, and the porous body 105 is an exhaust gas that guides the combustion exhaust gas of the parner 10 to the exhaust port 103. It is in communication with Road 1 26. In this way, the exhaust gas By providing the porous body 105 in the passage, in addition to the hot air 111 from the combustion surface of the burner 100 that generates the combustion flame 110, the porous body heated by the passage of the high-temperature combustion exhaust gas Radiant heat 1 12 is also generated from the substance 105. Therefore, the heat efficiency of the gas stove can be improved.
そして、 このように構成されたガスこんろを使用した場合、 パーナ 1 0 0及び多孔質体 1 0 5からの放熱により、 燃焼室 1 4 0内は非常に高 温 (約 1 0 0 0 °C ) となり、 燃焼室 1 4 0の側面を介してこんろ内部に も放熱される。 その結果、 ガスこんろの内部も高温となり、 ガスこんろ の内部に設けられた電装部品 (電装基板、 ファンモータ、 電磁弁等) が 過熱により故障するおそれがある。 発明の開示  When the gas stove configured as described above is used, the inside of the combustion chamber 140 becomes extremely hot (approximately 100 ° C.) due to heat radiation from the burner 100 and the porous body 105. C), and heat is also dissipated inside the stove through the side surface of the combustion chamber 140. As a result, the temperature inside the gas stove also becomes high, and the electrical components (electric boards, fan motors, solenoid valves, etc.) provided inside the gas stove may be damaged by overheating. Disclosure of the invention
本発明は、 上記背景を鑑みて、 燃焼室側面からの放熱により、 内部の 電装品が過熱状態となることを防止したガスこんろを提供することを目 的としてなされたものであり、 上面の天板に被加熱物が載置される燃焼 室内に該天板と対向して設けられた表面燃焼式のバ一ナ及び通気性の多 孔質体と、 該パーナに燃料ガスを供給する燃料ガス供給手段と、 一端が 前記多孔質体を介して前記燃焼室と連通し他端が排気口と連通した排気 通路と、 前記パーナに給気通路を介して燃焼用空気を供給すると共に該 パーナの燃焼排ガスを前記多孔質体と前記排気通路とを介して前記排気 口まで送出する給排気ファンとを備え、 前記パーナからの放熱と前記バ ーナの燃焼排ガスにより加熱される前記多孔質体からの放熱とにより前 記天板を介して被加熱物を加熱するガスこんろの改良に関する。  In view of the above background, the present invention has been made to provide a gas stove that prevents internal electric components from being overheated by radiating heat from a side surface of a combustion chamber. A surface-burning burner and a gas-permeable porous body provided in the combustion chamber in which the object to be heated is placed on the top plate, facing the top plate; and a fuel for supplying a fuel gas to the panner A gas supply means, an exhaust passage having one end communicating with the combustion chamber via the porous body and the other end communicating with an exhaust port, and supplying combustion air to the parner via an air supply passage. A supply / exhaust fan for sending the combustion exhaust gas to the exhaust port via the porous body and the exhaust passage, wherein the porous body heated by the heat release from the burner and the combustion exhaust gas from the burner is provided. Heat through the top plate An improvement of the gas stove heating the heat thereof.
そして、 本発明の第 1の態様は、 前記燃焼室の側面の周囲に該側面と 間隔をもって外周壁を設けて該側面と該外周壁とにより空間を形成し、 該空間と前記給気通路とを連通する給気分岐管を備えたことを特徴とす る。 In a first aspect of the present invention, an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and a space is formed by the side surface and the outer peripheral wall. Characterized by having an air supply branch pipe for communicating You.
かかる本発明においては、 前記バ一ナを燃焼させるときには、 前記燃 料ガス供給手段により燃料ガスが供給される共に前記給排気ファンによ り燃焼用空気が供給される。 そして、 前記燃焼室内は前記パーナからの 放熱と前記パーナの高温の燃焼排ガスにより加熱される前記多孔質体か らの放熱により前記燃焼室内は高温となり、 前記燃焼室の側面からも熱 が放出される。  In the present invention, when burning the burner, fuel gas is supplied by the fuel gas supply means and combustion air is supplied by the supply / exhaust fan. Then, the heat inside the combustion chamber becomes high due to the heat radiation from the parner and the heat radiation from the porous body heated by the high-temperature combustion exhaust gas of the parner, and the heat is also released from the side surface of the combustion chamber. You.
しかし、 前記給排気ファンの作動中は、 前記給気通路から前記給気分 岐管を介して、 前記燃焼室の側面と前記外周壁により形成される前記空 間内にも空気が供給される。 そのため、 前記空間内に供給される空気に より前記燃焼室の側面から放出される熱がガスこんろ内に伝播すること が抑制され、 ガスこんろ内が高温となって前記給排気ファンを作動させ るモー夕等の電装品が過熱により故障することを防止することができる 。 そして、 本第 1の態様によれば、 前記空間内に空気を供給するファン を前記給排気ファンと別個に設ける必要がないため、 ガスこんろのコス トアップを抑えることができる。  However, during operation of the air supply / exhaust fan, air is also supplied from the air supply passage to the space formed by the side surface of the combustion chamber and the outer peripheral wall through the air supply branch pipe. Therefore, the heat released from the side surface of the combustion chamber due to the air supplied into the space is suppressed from propagating into the gas stove, and the inside of the gas stove becomes high temperature to operate the supply / exhaust fan. It is possible to prevent electrical components such as motors and the like from being damaged due to overheating. According to the first aspect, it is not necessary to provide a fan for supplying air into the space separately from the supply / exhaust fan, so that the cost of the gas stove can be suppressed.
また、 前記第 1の態様において、 前記空間は空気の供給口と排出口を 除いて密封して形成されて、 前記給気分岐管が該供給口に接続され、 前 記排出口と前記給排気ファンとを連通して、 前記排出口から排出される 空気を前記給排気ファンに還流する排気還流管を備えたことを特徴とす る。  In the first aspect, the space is sealed and formed except for an air supply port and a discharge port, and the air supply branch pipe is connected to the supply port. An exhaust gas recirculation pipe is provided, which communicates with a fan and recirculates air exhausted from the exhaust port to the air supply / exhaust fan.
かかる本発明によれば、 前記給気分岐管から前記供給口を介して前記 空間内に供給された空気は、 前記燃焼室の側面から放出される熱により 加熱される。 そして、 このようにして加熱された空気は、 前記空間の排 出口から前記排気還流管を介して前記給排気ファンに吸入され、 前記給 気通路を介して前記パーナに供給される。 これにより、 前記パーナに供 給される燃焼用空気が昇温されて前記パーナの燃焼炎の温度が高くなる と共に、 前記パーナの燃焼速度も増加するため前記パーナの表面温度を 高めることができる。 また、 前記パーナの燃焼排気の温度も上昇するた め、 該燃焼排気が通過する前記多孔質体における輻射変換効率を向上さ せることができる。 According to the present invention, the air supplied from the air supply branch pipe into the space via the supply port is heated by heat released from the side surface of the combustion chamber. Then, the air thus heated is sucked into the air supply / exhaust fan from the exhaust outlet of the space through the exhaust gas recirculation pipe, and is supplied to the parner through the air supply passage. As a result, the The temperature of the supplied combustion air is raised to increase the temperature of the combustion flame of the parner, and the burning speed of the parner is also increased, so that the surface temperature of the parner can be raised. Further, since the temperature of the combustion exhaust of the parner also increases, the radiation conversion efficiency of the porous body through which the combustion exhaust passes can be improved.
また、 本発明の第 2の態様は、 前記燃焼室の側面の周囲に該側面と間 隔をもって外周壁を設けて、 該側面と該外周壁とにより空気の供給口と 排出口を除いて密封した空間を形成すると共に、 該排出口と前記給排気 フアンとを連通して、 該排出口から排出される空気を前記給排気ファン に還流する排気還流管を設けたことを特徴とする。  In a second aspect of the present invention, an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side wall and the outer peripheral wall are sealed except for an air supply port and an exhaust port. And an exhaust gas recirculation pipe that communicates the exhaust port with the air supply / exhaust fan to return the air exhausted from the exhaust port to the air supply / exhaust fan.
かかる本発明によれば、 前記空間の供給口から供給された室内の空気 は、 前記空間内を通過する際に前記燃焼室の側面から放出される熱によ り加熱され、 前記排気還流管を介して前記給排気ファンに吸入される。 そのため、 上記第 1の態様と同様に、 前記空間内で加熱された空気によ り前記給排気ファンによって前記パーナに供給される空気の温度が昇温 され、 燃焼時の前記パーナの表面温度を高めることができると共に、 前 記多孔質体における輻射変換効率を向上させることができる。  According to the present invention, the indoor air supplied from the supply port of the space is heated by heat released from the side surface of the combustion chamber when passing through the space, and the exhaust gas recirculation pipe The air is sucked into the air supply / exhaust fan through the fan. Therefore, similarly to the first aspect, the temperature of the air supplied to the parner by the air supply / exhaust fan is increased by the air heated in the space, and the surface temperature of the parner during combustion is reduced. And the radiation conversion efficiency of the porous body can be improved.
また、 本発明の第 3の態様は、 前記燃焼室の側面の周囲に該側面と間 隔をもって外周壁を設けて、 該側面と該外周壁とにより空気の供給口と 排出口を除いて密封した空間を形成し、 前記給気通路を、 前記給排気フ アンの空気送出口と前記供給口を連通する第 1の給気連通管と、 前記空 間と、 前記排出口と前記バ一ナとを連通する第 2の給気連通管とにより 構成したことを特徴とする。  In a third aspect of the present invention, an outer peripheral wall is provided around the side surface of the combustion chamber at a distance from the side surface, and the outer peripheral wall is sealed by the side surface and the outer peripheral wall except for an air supply port and an exhaust port. A first supply passage connecting the air supply port of the supply / exhaust fan and the supply port, the space, the discharge port, and the burner. And a second air supply communication pipe that communicates with the second air supply pipe.
かかる本発明によれば、 前記第 1 の給気連通管から前記空間に供給さ れる空気により、 前記燃焼室の側面から放出される熱が前記ガスこんろ の内部に伝播することが抑制されると共に、 前記空間を通過する際に加 熱されて前記第 2の給気連通管を介して前記パーナに供給される燃焼用 空気により、 前記パーナの燃焼温度と前記多孔質体における輻射変換効 率を向上させることができる。 According to the present invention, the heat supplied from the side surface of the combustion chamber is prevented from being transmitted to the inside of the gas stove by the air supplied from the first air supply passage to the space. Along with passing through the space The combustion air that is heated and supplied to the parner via the second air supply communication pipe can improve the combustion temperature of the parner and the radiation conversion efficiency of the porous body.
また、 本発明の第 4の態様は、 前記燃焼室の側面の周囲に該側面と間 隔をもって外周壁を設けて、 該側面と該外周壁とにより空気の供給口と 排出口を除いて密封した空間を形成すると共に、 該排出口を前記天板の 前記燃焼室の外側の箇所に向けて配置し、 前記供給口から前記空間内に 冷却用空気を供給する冷却空気供給手段を備えたことを特徴とする。  Further, in a fourth aspect of the present invention, an outer peripheral wall is provided around the side surface of the combustion chamber at a distance from the side surface, and the side wall and the outer peripheral wall are sealed except for an air supply port and an exhaust port. And a cooling air supply means for arranging the discharge port toward a portion of the top plate outside the combustion chamber, and supplying cooling air from the supply port into the space. It is characterized by.
かかる本発明によれば、 前記冷却空気供給手段により前記供給口から 前記空間内に供給される冷却用空気は、 前記空間内を通過して前記排出 口から前記天板の前記燃焼室の外側の箇所に向かって排出される。 その ため、 上述した第 1の態様と同様に、 前記空間内を通過する空気により 前記燃焼室の側面から放出される熱がガスこんろ内に伝播することが抑 制されると共に、 前記排出口から排出される空気により前記天板の燃焼 室の外側の箇所が冷却される。 これにより、 前記天板における前記燃焼 室の外側の部分まで熱せられて、 使用者に熱さを感じさせることを防止 することができる。  According to the present invention, the cooling air supplied into the space from the supply port by the cooling air supply means passes through the space and flows out of the discharge port from the outside of the combustion chamber of the top plate. It is discharged toward the place. Therefore, similarly to the above-described first aspect, the heat released from the side surface of the combustion chamber due to the air passing through the space is suppressed from propagating into the gas stove, and the discharge port is The portion of the top plate outside the combustion chamber is cooled by the air discharged from the top plate. Accordingly, it is possible to prevent the portion of the top plate outside the combustion chamber from being heated, thereby preventing the user from feeling the heat.
また、 本発明の第 5の態様は、 前記燃焼室内に冷却用空気を供給する 冷却空気供給手段を備えたことを特徴とする。  Further, a fifth aspect of the present invention is characterized in that cooling air supply means for supplying cooling air into the combustion chamber is provided.
かかる本発明によれば、 前記冷却空気供給手段により前記燃焼室内に 供給される空気によって、 前記燃焼室内の雰囲気温度を下げることがで きる。 そのため、 前記燃焼室の側面からガスこんろ内に伝播する熱量を 減少させることができると共に、 特に前記天板に被加熱物が載置されて いないときに前記天板が過熱状態となることを防止することができる。 なお、 前記天板に載置される被加熱物は、 主として、 前記天板を介し て該被加熱物に伝達される前記パーナと前記多孔質体から放出される赤 外線によって加熱されるため、 前記燃焼室内の雰囲気温度の低下が被加 熱物に対する加熱力に与える影響は軽微である。 According to the present invention, the atmosphere temperature in the combustion chamber can be reduced by the air supplied into the combustion chamber by the cooling air supply means. Therefore, the amount of heat that propagates from the side surface of the combustion chamber into the gas stove can be reduced, and in particular, it is possible to prevent the top plate from being overheated when the object to be heated is not placed on the top plate. Can be prevented. The object to be heated placed on the top plate is mainly composed of the panner transmitted to the object to be heated via the top plate and red emitted from the porous body. Since the heating is performed by the outside wire, the influence of the decrease in the ambient temperature in the combustion chamber on the heating power for the heated object is insignificant.
また、 前記第 5の態様において、 前記燃焼室の側面の周囲に該側面と 間隔をもって外周壁を設けて、 該側面と該外周壁とにより空気の供給口 と排出口を除いて密封した空間を形成すると共に、 該排出口を前記天板 の下面に向けて前記燃焼室と連通して配置し、 前記冷却空気供給手段は 、 前記供給口から前記空間と前記排出口を介して前記燃焼室内に冷却用 空気を供給することを特徴とする。  In the fifth aspect, an outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and a space sealed by the side surface and the outer peripheral wall except for an air supply port and an exhaust port is provided. And forming the discharge port in communication with the combustion chamber toward the lower surface of the top plate, wherein the cooling air supply means is provided from the supply port into the combustion chamber via the space and the discharge port. It is characterized by supplying cooling air.
かかる本発明によれば、 前記空間内を通過する空気により前記燃焼室 の側面から放出される熱がガスこんろ内に伝播することが抑制されると 共に、 前記排出口から前記燃焼室内に供給される空気が前記天板の下面 に直接あたるため、 前記天板を冷却する効果を高めることができる。 また、 前記第 4の態様又は前記第 5の態様において、 前記冷却空気供 給手段を、 前記給気通路から分岐した給気分岐管により構成したことを 特徴とする。  According to the present invention, the heat released from the side surface of the combustion chamber due to the air passing through the space is suppressed from propagating into the gas stove, and is supplied from the discharge port into the combustion chamber. Since the air to be blown directly hits the lower surface of the top plate, the effect of cooling the top plate can be enhanced. Further, in the fourth aspect or the fifth aspect, the cooling air supply means is constituted by an air supply branch pipe branched from the air supply passage.
かかる本発明によれば、 前記給気分岐管により前記空間内又は前記燃 焼室内に冷却用空気が供給されるため、 冷却用空気を供給するためのフ アンを前記給排気ファンとは別個に設ける必要がない。 そのため、 ガス こんろのコストアップを抑えることができる。 図面の簡単な説明  According to the present invention, since the cooling air is supplied into the space or the combustion chamber by the air supply branch pipe, the fan for supplying the cooling air is provided separately from the supply and exhaust fan. No need to provide. Therefore, it is possible to suppress an increase in the cost of the gas stove. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施の形態におけるガスこんろの外観図及び構 成図、 図 2は本発明の第 2及び第 3の実施の形態におけるガスこんろの 構成図、 図 3は本発明の第 4の実施の形態におけるガスこんろの構成図 、 図 4は本発明の第 5及び第 6の実施の形態におけるガスこんろの構成 図である。 発明を実施するための最良の形態 FIG. 1 is an external view and a configuration diagram of a gas stove according to a first embodiment of the present invention. FIG. 2 is a configuration diagram of a gas stove according to second and third embodiments of the present invention. FIG. 4 is a configuration diagram of a gas stove according to a fourth embodiment of the present invention. FIG. 4 is a configuration diagram of a gas stove according to fifth and sixth embodiments of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1〜第 5の実施の形態について、 図 1〜図 4を参照して説 明する。 図 1は本発明の第 1の実施の形態におけるガスこんろの外観図 及び構成図、 図 2は本発明の第 2及び第 3の実施の形態におけるガスこ んろの構成図、 図 3は本発明の第 4の実施の形態におけるガスこんろの 構成図、 図 4は本発明の第 5及び第 6の実施の形態におけるガスこんろ の構成図である。  First to fifth embodiments of the present invention will be described with reference to FIGS. FIG. 1 is an external view and a configuration diagram of a gas stove according to a first embodiment of the present invention, FIG. 2 is a configuration diagram of a gas stove according to second and third embodiments of the present invention, and FIG. FIG. 4 is a configuration diagram of a gas stove according to a fourth embodiment of the present invention. FIG. 4 is a configuration diagram of a gas stove according to fifth and sixth embodiments of the present invention.
先ず、 図 1を参照して、 本発明の第 1の実施の形態について説明する 。 図 1 ( a ) を参照して、 ガスこんろ 1は、 表面燃焼式のパーナ 2 と環 形状の多孔質体 3とが収容された燃焼室 (図 1 ( b ) 参照) の上面に位 置する耐熱性のガラス天板 4上に載置された調理物 (被加熱物) を加熱 するものである。  First, a first embodiment of the present invention will be described with reference to FIG. Referring to Fig. 1 (a), gas stove 1 is located on the upper surface of a combustion chamber (see Fig. 1 (b)) in which a surface-burning type burner 2 and an annular porous body 3 are accommodated. It heats the cooking object (the object to be heated) placed on the heat-resistant glass top plate 4.
そして、 ガスこんろ 1は、 パーナ 2に燃焼用空気を供給すると共にバ ーナ 2の燃焼排ガスを多孔質体 3を介して排気通路 (図 1 ( b ) 参照) から排気口 5へと送出する給排気ファン 6 と、 バ一ナ 2の燃焼量を調節 するための燃焼量調節スィッチ 7とを備えている。 また、 燃焼室の外側 には外周壁 9が設けられている。  The gas stove 1 supplies combustion air to the burner 2 and sends out the combustion exhaust gas of the burner 2 from the exhaust passage (see FIG. 1 (b)) to the exhaust port 5 through the porous body 3. It has an air supply / exhaust fan 6 and a combustion amount adjustment switch 7 for adjusting the combustion amount of the burner 2. Further, an outer peripheral wall 9 is provided outside the combustion chamber.
次に、 図 1 ( b ) は、 図 1 ( a ) に示したガスこんろ 1を側面から見 た断面図であり、 燃焼室 1 0内にパーナ 2 と多孔質体 3が設けられてい る。 そして、 給排気ファン 6により給気通路 2 0を介して供給される燃 焼用空気と、 ガス供給管 2 1の先端に設けられたノズル 2 2を介して供 給される燃料ガスが、 混合管 2 3で混合されてパーナ 2に供給される。 また、 ガス供給管 2 1には上流側からガス元弁 2 4とガス比例弁 2 5が 設けられている。 なお、 ガス供給管 2 1 とノズル 2 2とにより本発明の 燃料ガス供給手段が構成される。 また、 バ一ナ 2の燃焼排ガスは、 給排気ファン 6により多孔質体 3と 排気通路 2 6を介して排気口 5 (図 1 ( a ) 参照) から排出される。 さ らに、 燃焼室 1 0の側面 1 1 と該側面 1 1 と間隔をもって設けられた外 周壁 9 とにより断熱空間 1 2 (本発明の空間に相当する) が形成されて いる。 Next, FIG. 1 (b) is a cross-sectional view of the gas stove 1 shown in FIG. 1 (a) as viewed from the side, in which a burner 10 is provided with a parner 2 and a porous body 3. . The combustion air supplied through the air supply passage 20 by the supply / exhaust fan 6 and the fuel gas supplied through the nozzle 22 provided at the end of the gas supply pipe 21 are mixed. The mixture is supplied through a pipe 23 to a parner 2. The gas supply pipe 21 is provided with a gas source valve 24 and a gas proportional valve 25 from the upstream side. The gas supply pipe 21 and the nozzle 22 constitute the fuel gas supply means of the present invention. Further, the combustion exhaust gas from the burner 2 is exhausted from an exhaust port 5 (see FIG. 1A) by a supply / exhaust fan 6 through a porous body 3 and an exhaust passage 26. Further, a heat insulating space 12 (corresponding to the space of the present invention) is formed by the side surface 11 of the combustion chamber 10 and the outer peripheral wall 9 provided at a distance from the side surface 11.
断熱空間 1 2は、 空気の供給口 1 3と排出口 1 4を除いて密封されて 形成されている。 そして、 供給口 1 3は断熱空間 1 2の下方に設けられ て給気分岐管 1 5 (本発明の冷却空気供給手段に相当する) を介して給 気通路 2 0と連通している。 また、 排出口 1 4は断熱空間 1 2の上方の 燃焼室 1 0の側面に沿って、 ガラス天板 4の燃焼室 1 0の外側の箇所 ( 図中、 径 L 20の内側の範囲から径 L 10の内側の範囲を除いた部分) に 向けて空気が排出されるように設けられている。  The heat insulating space 12 is sealed and formed except for the air supply port 13 and the air discharge port 14. The supply port 13 is provided below the heat insulating space 12 and communicates with the supply passage 20 through a supply branch pipe 15 (corresponding to a cooling air supply means of the present invention). In addition, the discharge port 14 is located along the side of the combustion chamber 10 above the insulated space 12 and outside the combustion chamber 10 of the glass top plate 4 (in the figure, the diameter from the area inside the diameter L 20 to the diameter (Except for the area inside L10).
そして、 マイクロコンピュー夕等により構成されたコントローラ 3 0 によりガスこんろ 1の作動が制御される。 コントローラ 3 0には燃焼量 調節スィッチ 7が接続され、 コントローラ 3 0は、 使用者による燃焼量 調節スィツチ 7の操作に応じてパーナ 2の燃焼動作を制御する。  The operation of the gas stove 1 is controlled by a controller 30 constituted by a microcomputer or the like. The controller 30 is connected to a combustion amount adjustment switch 7. The controller 30 controls the combustion operation of the wrench 2 in accordance with the operation of the combustion amount adjustment switch 7 by the user.
具体的には、 コントローラ 3 0は、 ガス元弁 2 4を開弁した状態でガ ス比例弁 2 5の開度を調節することによつてバ一ナ 2への燃料ガスの供 給流量を制御すると共に、 給排気ファン 6の回転数を調節することによ つてパーナ 2への燃焼用空気の供給流量を制御する。  Specifically, the controller 30 adjusts the opening of the gas proportional valve 25 with the gas source valve 24 opened to control the supply flow rate of the fuel gas to the burner 2. In addition to controlling, the flow rate of the combustion air supplied to the parner 2 is controlled by adjusting the rotation speed of the supply / exhaust fan 6.
そして、 パーナ 2の燃焼中は、 バ一ナ 2の燃焼炎 5 0が生じるバ一ナ 2の燃焼面からの熱気 5 1 と、 パーナ 2の高温の燃焼排ガスが通過する ことによって加熱される多孔質体 3からの輻射熱 5 2とにより、 ガラス 天板 4を介して調理物が加熱される。  During the combustion of the burner 2, the hot air 51 from the combustion surface of the burner 2 where the burner flame 50 of the burner 2 is generated and the high-temperature combustion exhaust gas of the burner 2 are heated by passing through. The food is heated via the glass top plate 4 by the radiant heat 52 from the substrate 3.
このとき、 燃焼室 1 0内は、 パーナ 2からの熱気 5 1 と多孔質体 3か らの輻射熱 5 2とにより非常に高温 (約 1 0 0 0 °C ) となり、 燃焼室 1 0の側面 1 1からも輻射熱が放出される。 そして、 燃焼室 1 0の側面 1 1はステンレス材質等の板金で形成されるが、 該側面 1 1の内側 (多孔 質体 3側) はパーナ 2の燃焼排ガスにより高温に晒されて酸化され、 輻 射率が高くなる。 At this time, the temperature inside the combustion chamber 10 becomes extremely high (about 100 ° C.) due to the hot air 51 from the parner 2 and the radiant heat 52 from the porous body 3. Radiant heat is also released from the side surface 1 of 0. The side surface 11 of the combustion chamber 10 is formed of a sheet metal made of stainless steel or the like, and the inside (the porous body 3 side) of the side surface 11 is exposed to high temperature by the combustion exhaust gas of the parner 2 and oxidized. Emissivity increases.
しかし、 パーナ 2の燃焼時には、 給排気ファン 6から供給される燃焼 用空気の一部 (本発明の冷却用空気に相当する) が給気通路 2 0から給 気分岐管 1 5を経由して断熱空間 1 2内に供給され、 断熱空間 1 2の供 給口 1 3から供給された空気は断熱空間を通過して排出口 1 4から排出 される。  However, when the burner 2 burns, part of the combustion air (corresponding to the cooling air of the present invention) supplied from the air supply / exhaust fan 6 is supplied from the air supply passage 20 through the air supply branch pipe 15. The air supplied into the heat insulating space 12 and supplied from the supply port 13 of the heat insulating space 12 passes through the heat insulating space and is discharged from the discharge port 14.
そのため、 燃焼室 1 0の側面 1 1から放出された熱がガスこんろ 1の 内部へと伝播することが断熱空間 1 2内を通過する空気により妨げられ る。 そして、 これにより、 燃焼室 1 0の側面 1 1から放出された熱によ りガスこんろ 1内が異常に高温となって、 コントローラ 3 0の電装基板 (図示しない)、 ガス元弁 2 4、 ガス比例弁 2 5、 給排気ファン 6のフ アンモータ (図示しない) 等の電装部品が過熱により故障することを防 止することができる。  Therefore, the heat released from the side surface 11 of the combustion chamber 10 is prevented from propagating into the gas stove 1 by the air passing through the heat insulating space 12. As a result, the heat inside the gas stove 1 becomes abnormally high due to the heat released from the side surface 11 of the combustion chamber 10, and the electrical board (not shown) of the controller 30 and the gas valve 24 It is possible to prevent electrical components such as the gas proportional valve 25 and the fan motor (not shown) of the supply / exhaust fan 6 from being damaged by overheating.
さらに、 断熱空間 1 2及び断熱空間 1 2内を通過する空気による断熱 効果によって、 外周壁 9が高温に加熱されることが妨げられるため、 酸 化により外周壁 9の輻射率が高くなることが防止される。  Furthermore, since the heat insulating effect of the heat insulating space 12 and the air passing through the heat insulating space 12 prevents the outer peripheral wall 9 from being heated to a high temperature, the emissivity of the outer peripheral wall 9 may increase due to oxidation. Is prevented.
また、 断熱空間 1 2内を通過した空気は排出口 1 4からガラス天板 4 に向かって排出されるため、 ガラス天板 4の空気があたる箇所 (図中、 径 L 20の内側の範囲から径 L 10の内側の範囲を除いた部分) が該空気 により冷却される。 そして、 これにより、 ガラス天板 4における燃焼室 1 0の上面 (図中、 径 L 10の内側の部分) の外側まで熱が伝播し、 使 用者に熱さを感じさせたり鍋等の調理器具の取っ手部分が熱くなつて持 ち辛くなることを抑制することができる。 なお、 本第 1の実施の形態では、 断熱空間 1 2の排出口 1 4を燃焼室 1 0の外側のガラス天板 4の箇所に向けて設けたが、 断熱空間 1 2の排 出口を他の位置に設ける場合であっても本発明の効果を得ることができ る。 In addition, since the air that has passed through the insulated space 12 is discharged from the outlet 14 toward the glass top 4, the portion of the glass top 4 where the air hits (from the area inside the diameter L 20 in the figure, The portion excluding the area inside the diameter L10) is cooled by the air. As a result, the heat propagates to the outside of the upper surface of the combustion chamber 10 in the glass top plate 4 (the portion inside the diameter L10 in the figure), thereby causing the user to feel the heat or cooking utensils such as pots. It is possible to prevent the handle portion from becoming hot and difficult to hold. In the first embodiment, the discharge port 14 of the heat insulating space 12 is provided to face the glass top plate 4 outside the combustion chamber 10. The effect of the present invention can be obtained even in the case where it is provided at the position.
また、 断熱空間 1 2を空気の供給口 1 3 と排出口 1 4を除いて密封し て形成したが、 断熱空間 1 2が密封されていない場合であっても、 給気 分岐管 1 5を介して断熱空間 1 2内に空気を供給することによって、 本 発明の効果を得ることができる。  In addition, the heat insulation space 12 is sealed and formed except for the air supply port 13 and the air discharge port 14, but even if the heat insulation space 12 is not sealed, the air supply branch pipe 15 is The effect of the present invention can be obtained by supplying air into the heat insulating space 12 through the air.
次に、 図 2 ( a ) を参照して、 本発明の第 2の実施の形態について説 明する。 なお、 図 1に示したガスこんろと同一の構成については、 同一 の符号を付して説明を省略する。  Next, a second embodiment of the present invention will be described with reference to FIG. Note that the same components as those of the gas stove shown in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.
本第 2の実施の形態においては、 前記第 1の実施の形態と同様に、 断 熱空間 1 2は空気の供給口 1 3と排出口 4 0を除いて密封されて形成さ れ、 断熱空間 1 2の供給口 1 3と給気通路 2 0を連通する給気分岐管 1 5が設けられている。 また、 断熱空間 1 2の排出口 4 0と給排気ファン 6の空気吸入口 4 1を連通する排気還流管 4 2が設けられている。  In the second embodiment, similarly to the first embodiment, the heat insulation space 12 is formed by being sealed except for the air supply port 13 and the air discharge port 40, and the heat insulation space is formed. An air supply branch pipe 15 communicating the supply port 13 of 12 with the air supply passage 20 is provided. Further, an exhaust gas recirculation pipe 42 is provided for communicating the exhaust port 40 of the heat insulating space 12 and the air intake port 41 of the air supply / exhaust fan 6.
そのため、 パーナ 2の燃焼中は、 給気分岐管 1 5を介して供給される 空気が、 供給口 1 3から断熱空間 1 2を経由し、 排出口 4 0から排気還 流管 4 2を介して給排気ファン 6の空気吸入口 4 1に導入される。  Therefore, during the combustion of the Pana 2, the air supplied through the air supply branch pipe 15 flows from the supply port 13 through the heat insulating space 12, and from the discharge port 40 through the exhaust return pipe 42. And is introduced into the air intake 41 of the supply / exhaust fan 6.
この場合、 排気還流管 4 2から給排気ファン 6の空気吸入口 4 1には 、 断熱空間を通過する際に燃焼室 1 0の側面から放出される熱により加 熱された空気が導入される。 そして、 該加熱された空気が空気吸入口 4 1に吸入された室内の空気と混合されて、 給気通路 2 0に供給される。 そのため、 前記第 1の実施の態様と同様に、 断熱空間 1 2内を流通す る空気により、 燃焼室 1 0の側面から放出される熱がガスこんろ内に伝 播することを抑制することができる。 また、 パーナ 2に供給される燃焼用空気の温度が高くなり、 その結果 、 パーナ 2の燃焼炎 5 0の温度が上昇し、 さらに、 パーナ 2の燃焼速度 も上昇するため、 燃焼時のパーナ 2の表面温度が上昇して多孔質体 3を 介して排出される燃焼排気の温度も高くなり、 多孔質体 3における輻射 変換効率を向上させることができる。 In this case, air heated by the heat released from the side of the combustion chamber 10 when passing through the adiabatic space is introduced from the exhaust gas recirculation pipe 42 to the air intake 41 of the supply / exhaust fan 6. . Then, the heated air is mixed with room air sucked into the air suction port 41 and supplied to the air supply passage 20. Therefore, similarly to the first embodiment, it is possible to suppress the heat released from the side surface of the combustion chamber 10 from being transmitted to the gas stove by the air flowing through the heat insulating space 12. Can be. In addition, the temperature of the combustion air supplied to the parner 2 increases, and as a result, the temperature of the combustion flame 50 of the parner 2 increases, and the combustion speed of the parner 2 also increases. The surface temperature of the gas increases and the temperature of the combustion exhaust gas discharged through the porous body 3 also increases, so that the radiation conversion efficiency of the porous body 3 can be improved.
次に、 図 2 ( b ) を参照して、 本発明の第 3の実施の形態について説 明する。 なお、 図 1、 図 2に示したガスこんろと同一の構成については 、 同一の符号を付して説明を省略する。  Next, a third embodiment of the present invention will be described with reference to FIG. Note that the same components as those of the gas stove shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted.
本第 3の実施の形態においては、 前記第 2の実施の形態と同様に、 断 熱空間 1 2は空気の供給口 4 3 ( 4 3 a , 4 3 b ) と排出口 4 0を除い て密封されて形成され、 断熱空間 1 2の排出口 4 0と給排気ファン 6の 空気吸入口 4 1を連通する排気還流管 4 2が設けられている。  In the third embodiment, similarly to the second embodiment, the heat insulation space 12 is provided except for the air supply ports 43 (43a, 43b) and the discharge ports 40. An exhaust gas recirculation pipe 42 is provided which is formed in a sealed manner and communicates with the exhaust port 40 of the heat insulating space 12 and the air intake port 41 of the air supply / exhaust fan 6.
しかし、 前記第 2の実施の形態における給気分岐管 1 5 (図 2 ( a ) 参照) は設けられておらず、 供給口 4 3は断熱空間 1 2の下部に開放し て設けられている。 この場合、 給排気ファン 6の作動により、 供給口 4 3から断熱空間 1 2内に空気が供給され、 該空気は断熱空間を通過する 際に燃焼室 1 0の側面から放出される熱により加熱されて、 吸気連通管 4 2を介して給排気フアン 6の空気吸入口 4 1へと導入される。  However, the air supply branch pipe 15 (see FIG. 2A) in the second embodiment is not provided, and the supply port 43 is provided to be open to the lower part of the heat insulating space 12. . In this case, the air is supplied from the supply port 43 into the heat insulating space 12 by the operation of the air supply / exhaust fan 6, and the air is heated by the heat released from the side surface of the combustion chamber 10 when passing through the heat insulating space. Then, the air is introduced into the air intake 41 of the supply / exhaust fan 6 through the intake communication pipe 42.
ここで、 前記第 2の実施の形態においては、 給気分岐管 1 5を介して 断熱空間 1 2に空気を供給しているため、 断熱空間 1 2を通過する際に 加熱された空気が再び断熱空間 1 2に供給されて断熱空間 1 2による断 熱効果が若干低下する。  Here, in the second embodiment, since air is supplied to the adiabatic space 12 via the air supply branch pipe 15, the air heated when passing through the adiabatic space 12 is again supplied. The heat is supplied to the heat insulation space 12 and the heat insulation effect of the heat insulation space 12 is slightly reduced.
それに対して、 本第 3の実施の形態では、 開放された給気口 1 3から 室内の空気が断熱空間 1 2内に供給される。 そのため、 断熱空間 1 2に おける断熱効果の低下を生じることなく、 パーナ 2に供給される燃焼用 空気を昇温して、 バ一ナ 2の燃焼温度を高めると共に多孔質体 3におけ る輻射変換効率を向上させることができる。 In contrast, in the third embodiment, room air is supplied into the heat insulating space 12 from the open air supply port 13. For this reason, the temperature of the combustion air supplied to the parner 2 is increased without lowering the heat insulating effect in the heat insulating space 1 2, thereby increasing the combustion temperature of the burner 2 and increasing the temperature of the porous body 3. Radiation conversion efficiency can be improved.
次に、 図 3を参照して、 本発明の第 4の実施の形態について説明する 。 なお、 図 1に示したガスこんろと同一の構成については、 同一の符号 を付して説明を省略する。  Next, a fourth embodiment of the present invention will be described with reference to FIG. Note that the same components as those of the gas stove shown in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.
本第 4の実施の形態においては、 断熱空間 1 2は空気の供給口 4 5と 排出口 4 6を除いて密封して形成されると共に、 燃焼室の底面の周囲ま で回り込んで形成されている。  In the fourth embodiment, the heat insulating space 12 is formed in a sealed manner except for the air supply port 45 and the discharge port 46, and is formed so as to extend around the bottom of the combustion chamber. ing.
そして、 給気通路 2 0 (本発明の第 1の給気連通管に相当する) が断 熱空間 1 2の供給口 4 5に接続され、 混合管 2 3 (本発明の第 2の給気 連通管に相当する) が断熱空間 1 2の排出口 4 6に接続されている。 そ のため、 給排気ファン 6に吸入された空気は、 給気通路 2 0と断熱空間 1 2と混合管 2 3とを介して、 ガスバ一ナ 2に供給される。  An air supply passage 20 (corresponding to a first air supply communication pipe of the present invention) is connected to a supply port 45 of the heat insulation space 12, and a mixing pipe 23 (the second air supply communication pipe of the present invention). (Corresponding to a communication pipe) is connected to the discharge port 46 of the heat insulation space 12. Therefore, the air drawn into the air supply / exhaust fan 6 is supplied to the gas burner 2 through the air supply passage 20, the heat insulating space 12, and the mixing pipe 23.
この場合、 供給口 4 5から排出口 4 6へと断熱空間 1 2内を通過する 空気により、 断熱空間 1 2による断熱効果を高めることができると共に 、 断熱空間 1 2の側面及び底面から放出される熱により断熱空間 1 2を 通過する空気を加熱することができる。  In this case, the air passing through the heat insulating space 12 from the supply port 45 to the discharge port 46 can enhance the heat insulating effect of the heat insulating space 12 and be released from the side and bottom surfaces of the heat insulating space 12. The air passing through the heat insulating space 12 can be heated by the heat.
そして、 加熱された空気が燃焼用空気として混合管 2 3を介してバー ナ 2に供給されるため、 前記第 2、 第 3の実施の形態と同様に、 パーナ 2の燃焼温度を高めることができると共に、 多孔質体 3における輻射変 換効率を向上させることができる。  Since the heated air is supplied to the burner 2 through the mixing pipe 23 as combustion air, the combustion temperature of the burner 2 can be increased as in the second and third embodiments. In addition to the above, the radiation conversion efficiency of the porous body 3 can be improved.
次に、 図 4 ( a ) を参照して、 本発明の第 5の実施の形態について説 明する。 なお、 図 1に示したガスこんろと同一の構成については、 同一 の符号を付して説明を省略する。  Next, a fifth embodiment of the present invention will be described with reference to FIG. Note that the same components as those of the gas stove shown in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.
本第 5の実施の形態においては、 断熱空間 1 2の排出口 6 0が燃^室 1 0と連通して設けられている。 そのため、 パーナ 2の燃焼中は給気分 岐管 1 5を介して供給される空気が、 供給口 1 3から断熱空間 1 2を経 由して排出口 6 0から燃焼室 1 0内に流入する。 In the fifth embodiment, the outlet 60 of the heat insulating space 12 is provided in communication with the fuel chamber 10. Therefore, during the combustion of the Pana 2, the air supplied via the air supply branch 15 flows from the supply port 13 through the heat insulating space 12. As a result, it flows into the combustion chamber 10 from the outlet 60.
そして、 排出口 6 0から燃焼室 1 0内に流入した空気により燃焼室 1 0内の雰囲気温度が低下するため、 燃焼室 1 0の側面から放出される熱 量が減少する。 そして、 これにより、 燃焼室 1 0の側面 1 1から放出さ れた熱によりガスこんろ 1内が異常に高温となることを防止することが できる。 また、 燃焼室 1 0内の雰囲気温度が低下するため、 ガラス天板 4の上面が過熱状態となることを防止することができる。  Then, since the temperature of the atmosphere in the combustion chamber 10 is reduced by the air flowing into the combustion chamber 10 from the discharge port 60, the amount of heat released from the side surface of the combustion chamber 10 is reduced. Thus, it is possible to prevent the inside of the gas stove 1 from becoming abnormally high in temperature due to the heat released from the side surface 11 of the combustion chamber 10. In addition, since the ambient temperature in the combustion chamber 10 decreases, the upper surface of the glass top plate 4 can be prevented from being overheated.
なお、 本第 5の実施の形態では、 断熱空間 1 2を介して燃焼室 1 0内 に空気を供給するようにしたが、 断熱空間 1 2を備えずに、 給気分岐管 1 5から燃焼室 1 0内に直接空気を供給する場合にも本発明の効果を得 ることができる。  In the fifth embodiment, air is supplied into the combustion chamber 10 via the heat insulating space 12. However, the combustion is performed from the air supply branch pipe 15 without the heat insulating space 12. The effects of the present invention can also be obtained when air is directly supplied into the chamber 10.
次に、 図 4 ( b ) を参照して、 本発明の第 6の実施の形態について説 明する。 なお、 図 1に示したガスこんろと同一の構成については、 同一 の符号を付して説明を省略する。  Next, a sixth embodiment of the present invention will be described with reference to FIG. Note that the same components as those of the gas stove shown in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.
本第 6の実施の形態においては、 断熱空間 1 2の排出口 6 1が前記第 In the sixth embodiment, the outlet 61 of the heat insulating space 12 is
2の実施の形態と同様に燃焼室 1 0 と連通すると共に、 該排出口 6 1が ガラス天板 4の下面に向けて配置されている。 As in the second embodiment, it communicates with the combustion chamber 10, and the discharge port 61 is arranged toward the lower surface of the glass top plate 4.
そのため、 前記第 1の実施の形態と同様に断熱空間 1 2による断熱効 果が得られる。 そして、 さらに、 排出口 6 1からガラス天板 4に向かつ て吹き付けられる空気によりガラス天板 4を冷却する効果を高めた上で Therefore, the heat insulating effect by the heat insulating space 12 can be obtained as in the first embodiment. Further, the effect of cooling the glass top plate 4 by the air blown from the outlet 61 toward the glass top plate 4 is enhanced.
、 前記第 5の実施の形態と同様に燃焼室 1 0内の雰囲気温度を下げるこ とができる。 However, the ambient temperature in the combustion chamber 10 can be reduced as in the fifth embodiment.
なお、 前記第 5及び第 6の実施の形態では、 給排気ファン 6により断 熱室 1 2内に冷却用空気を供給するようにしたが、 給排気ファン 6とは 別個に設けたファンにより、 断熱空間 1 2内に冷却用空気を供給するよ うにしてもよい。 また、 前記第 1〜第 6の実施の形態では、 バ一ナ 2の外側に多孔質体 3を配置したガスこんろ 1を示したが、 逆に多孔質体 3を内側とし外側 にパーナを配置する構成とする場合であっても、 本発明の適用が可能で ある。 産業上の利用可能性 In the fifth and sixth embodiments, the cooling air is supplied into the heat insulation chamber 12 by the air supply / exhaust fan 6, but the cooling air is supplied by the fan provided separately from the air supply / exhaust fan 6. Cooling air may be supplied into the heat insulating space 12. Further, in the first to sixth embodiments, the gas stove 1 in which the porous body 3 is disposed outside the burner 2 is shown. The present invention can be applied to a configuration in which the components are arranged. Industrial applicability
本発明のガスこんろは、 上面の天板に被加熱物が載置される燃焼室内 に該天板と対向して設けられた表面燃焼式のバ一ナ及び排気熱を放熱す る多孔質体を有して、 熱効率を高めたガスこんろに利用することができ る。  The gas stove according to the present invention includes a surface-burning burner provided in a combustion chamber in which an object to be heated is placed on a top plate on the upper surface and opposed to the top plate, and a porous member for radiating exhaust heat. It has a body and can be used for gas stoves with enhanced thermal efficiency.

Claims

請 求 の 範 囲 The scope of the claims
1 . 上面の天板に被加熱物が載置される燃焼室内に該天板と対向して設 けられた表面燃焼式のパーナ及び通気性の多孔質体と、 該パーナに燃料 ガスを供給する燃料ガス供給手段と、 一端が前記多孔質体を介して前記 燃焼室と連通し他端が排気口と連通した排気通路と、 前記バ一ナに給気 通路を介して燃焼用空気を供給すると共に該パーナの燃焼排ガスを前記 多孔質体と前記排気通路とを介して前記排気口まで送出する給排気ファ ンとを備え、 前記パーナからの放熱と前記パーナの燃焼排ガスにより加 熱される前記多孔質体からの放熱とにより前記天板を介して被加熱物を 加熱するガスこんろにおいて、  1. In a combustion chamber where an object to be heated is placed on a top plate on the top surface, a surface-burning type wrench and a gas-permeable porous body provided opposite to the top plate, and fuel gas is supplied to the wrench. Fuel gas supply means, an exhaust passage having one end communicating with the combustion chamber via the porous body and the other end communicating with an exhaust port, and supplying combustion air to the burner via an air supply passage. A supply / exhaust fan for sending out the combustion exhaust gas of the parner to the exhaust port through the porous body and the exhaust passage, wherein the heat emitted from the parner and heated by the exhaust gas of the parner are provided. In a gas stove that heats an object to be heated through the top plate by radiating heat from a porous body,
前記燃焼室の側面の周囲に該側面と間隔をもって外周壁を設けて該側 面と該外周壁とにより空間を形成し、 該空間と前記給気通路とを連通す る給気分岐管を備えたことを特徴とするガスこんろ。  An outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, a space is formed by the side surface and the outer peripheral wall, and an air supply branch pipe is provided for communicating the space with the air supply passage. A gas stove characterized by the fact that:
2 . 前記空間は空気の供給口と排出口を除いて密封して形成されて、 前 記給気分岐管が該供給口に接続され、  2. The space is sealed except for an air supply port and a discharge port, and the air supply branch pipe is connected to the supply port,
前記排出口と前記給排気ファンとを連通して、 前記排出口から排出さ れる空気を前記給排気ファンに還流する排気還流管を備えたことを特徴 とする請求項 1記載のガスこんろ。  The gas stove according to claim 1, further comprising an exhaust gas recirculation pipe that communicates the exhaust port with the air supply / exhaust fan and recirculates the air exhausted from the exhaust port to the air supply / exhaust fan.
3 . 上面の天板に被加熱物が載置される燃焼室内に該天板と対向して設 けられた表面燃焼式のパーナ及び通気性の多孔質体と、 該パーナに燃料 ガスを供給する燃料ガス供給手段と、 一端が前記多孔質体を介して前記 燃焼室と連通し他端が排気口と連通した排気通路と、 前記パーナに給気 通路を介して燃焼用空気を供給すると共に該パーナの燃焼排ガスを前記 多孔質体と前記排気通路とを介して前記排気口まで送出する給排気ファ ンとを備え、 前記バ一ナからの放熱と前記バ一ナの燃焼排ガスにより加 熱される前記多孔質体からの放熱とにより前記天板を介して被加熱物を 加熱するガスこんろにおいて、 3. A surface-burning type burner and a gas-permeable porous body provided opposite the top plate in a combustion chamber in which the object to be heated is placed on the top plate, and fuel gas is supplied to the parner. A fuel gas supply means, an exhaust passage having one end communicating with the combustion chamber via the porous body and the other end communicating with an exhaust port, and supplying combustion air to the parner via an air supply passage. A supply / exhaust fan for delivering combustion exhaust gas from the burner to the exhaust port through the porous body and the exhaust passage, wherein heat is released from the burner and heated by the burner exhaust gas. The object to be heated is radiated through the top plate by heat radiation from the porous body. In the gas stove to be heated,
前記燃焼室の側面の周囲に該側面と間隔をもって外周壁を設けて、 該 側面と該外周壁とにより空気の供給口と排出口を除いて密封した空間を 形成すると共に、 該排出口と前記給排気ファンとを連通して、 該排出口 から排出される空気を前記給排気ファンに還流する排気還流管を設けた ことを特徴とするガスこんろ。  An outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side surface and the outer peripheral wall form a sealed space except for an air supply port and an exhaust port. A gas stove provided with an exhaust gas recirculation pipe which communicates with a supply / exhaust fan and recirculates air discharged from the exhaust port to the supply / exhaust fan.
4 . 上面の天板に被加熱物が載置される燃焼室内に該天板と対向して設 けられた表面燃焼式のパーナ及び通気性の多孔質体と、 該パーナに燃料 ガスを供給する燃料ガス供給手段と、 一端が前記多孔質体を介して前記 燃焼室と連通し他端が排気口と連通した排気通路と、 前記パーナに給気 通路を介して燃焼用空気を供給すると共に該パーナの燃焼排ガスを前記 多孔質体と前記排気通路とを介して前記排気口まで送出する給排気ファ ンとを備え、 前記パーナからの放熱と前記パーナの燃焼排ガスにより加 熱される前記多孔質体からの放熱とにより前記天板を介して被加熱物を 加熱するガスこんろにおいて、  4. In the combustion chamber in which the object to be heated is placed on the top plate on the top surface, a surface-burning type wrench and a gas-permeable porous body provided opposite to the top plate, and fuel gas is supplied to the wrench. A fuel gas supply means, an exhaust passage having one end communicating with the combustion chamber via the porous body and the other end communicating with an exhaust port, and supplying combustion air to the parner via an air supply passage. A supply / exhaust fan for sending combustion exhaust gas from the parner to the exhaust port through the porous body and the exhaust passage, wherein the heat release from the parner and the porous exhaust gas heated by the combustion exhaust gas from the parner are provided. In a gas stove that heats an object to be heated through the top plate by radiating heat from a body,
前記燃焼室の側面の周囲に該側面と間隔をもって外周壁を設けて、 該 側面と該外周壁とにより空気の供給口と排出口を除いて密封した空間を 形成し、  An outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side surface and the outer peripheral wall form a sealed space excluding an air supply port and an exhaust port,
前記給気通路を、 前記給排気ファンの空気送出口と前記供給口を連通 する第 1 の給気連通管と、 前記空間と、 前記排出口と前記パーナとを連 通する第 2の給気連通管とにより構成したことを特徴とするガスこんろ  A first air supply communication pipe communicating the air supply outlet of the air supply / exhaust fan with the air supply port; a second air supply communicating the space with the air outlet; Gas stove characterized by comprising a communication pipe
5 . 上面の天板に被加熱物が載置される燃焼室内に該天板と対向して設 けられた表面燃焼式のパーナ及び通気性の多孔質体と、 該パーナに燃料 ガスを供給する燃料ガス供給手段と、 一端が前記多孔質体を介して前記 燃焼室と連通し他端が排気口と連通した排気通路と、 前記パーナに給気 通路を介して燃焼用空気を供給すると共に該パーナの燃焼排ガスを前記 多孔質体と前記排気通路とを介して前記排気口まで送出する給排気ファ ンとを備え、 前記パーナからの放熱と前記パーナの燃焼排ガスにより加 熱される前記多孔質体からの放熱とにより前記天板を介して被加熱物を 加熱するガスこんろにおいて、 5. A surface-burning type wrench and a gas-permeable porous body provided opposite to the top plate in a combustion chamber in which an object to be heated is placed on the top plate, and fuel gas is supplied to the wrench. An exhaust passage having one end communicating with the combustion chamber through the porous body and the other end communicating with an exhaust port, and supplying air to the parner. A supply / exhaust fan that supplies combustion air through a passage and sends out the combustion exhaust gas of the parner to the exhaust port through the porous body and the exhaust passage. In a gas stove for heating an object to be heated via the top plate by radiating heat from the porous body heated by the combustion exhaust gas of the wrench,
前記燃焼室の側面の周囲に該側面と間隔をもつて外周壁を設けて、 該 側面と該外周壁とにより空気の供給口と排出口を除いて密封した空間を 形成すると共に、 該排出口を前記天板の前記燃焼室の外側の箇所に向け て配置し、  An outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side surface and the outer peripheral wall form a sealed space excluding an air supply port and an exhaust port, and the exhaust port Is arranged toward a portion of the top plate outside the combustion chamber,
前記供給口から前記空間内に冷却用空気を供給する冷却空気供給手段 を備えたことを特徴とするガスこんろ。  A gas stove comprising cooling air supply means for supplying cooling air from the supply port into the space.
6 . 上面の天板に被加熱物が載置される燃焼室内に該天板と対向して設 けられた表面燃焼式のパーナ及び通気性の多孔質体と、 該パーナに燃料 ガスを供給する燃料ガス供給手段と、 一端が前記多孔質体を介して前記 燃焼室と連通し他端が排気口と連通した排気通路と、 前記パーナに給気 通路を介して燃焼用空気を供給すると共に該パーナの燃焼排ガスを前記 多孔質体と前記排気通路とを介して前記排気口まで送出する給排気ファ ンとを備え、 前記パーナからの放熱と前記パーナの燃焼排ガスにより加 熱される前記多孔質体からの放熱とにより前記天板を介して被加熱物を 加熱するガスこんろにおいて、  6. A surface-burning type burner and a gas-permeable porous body provided opposite to the top plate in a combustion chamber in which an object to be heated is placed on the top plate, and fuel gas is supplied to the panner. A fuel gas supply means, an exhaust passage having one end communicating with the combustion chamber via the porous body and the other end communicating with an exhaust port, and supplying combustion air to the parner via an air supply passage. A supply / exhaust fan for sending combustion exhaust gas from the parner to the exhaust port through the porous body and the exhaust passage, wherein the heat release from the parner and the porous exhaust gas heated by the combustion exhaust gas from the parner are provided. In a gas stove that heats an object to be heated through the top plate by radiating heat from a body,
前記燃焼室内に冷却用空気を供給する冷却空気供給手段を備えたこと を特徴とするガスこんろ。  A gas stove comprising cooling air supply means for supplying cooling air into the combustion chamber.
7 . 前記燃焼室の側面の周囲に該側面と間隔をもって外周壁を設けて、 該側面と該外周壁とにより空気の供給口と排出口を除いて密封した空間 を形成すると共に、 該排出口を前記天板の下面に向けて前記燃焼室と連 通して配置し、 前記冷却空気供給手段は、 前記供給口から前記空間と前記排出口を介 して前記燃焼室内に冷却用空気を供給することを特徴とする請求項 6記 載のガスこんろ。 7. An outer peripheral wall is provided around the side surface of the combustion chamber at an interval from the side surface, and the side surface and the outer peripheral wall form a sealed space excluding an air supply port and an exhaust port, and the exhaust port is provided. Is disposed in communication with the combustion chamber toward the lower surface of the top plate, The gas stove according to claim 6, wherein the cooling air supply means supplies cooling air from the supply port to the combustion chamber through the space and the discharge port.
8 . 前記冷却空気供給手段を、 前記給気通路から分岐した給気分岐管に より構成したことを特徴とする請求項 5から請求項 7のうちいずれか 1 項記載のガスこんろ。  8. The gas stove according to any one of claims 5 to 7, wherein the cooling air supply means is constituted by an air supply branch pipe branched from the air supply passage.
PCT/JP2003/000271 2002-01-16 2003-01-15 Gas stove WO2003060382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60326818T DE60326818D1 (en) 2002-01-16 2003-01-15 GAS OVEN
EP03700572A EP1467153B1 (en) 2002-01-16 2003-01-15 Gas stove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002007534A JP3652652B2 (en) 2002-01-16 2002-01-16 Gas stove
JP2002-7534 2002-01-16

Publications (1)

Publication Number Publication Date
WO2003060382A1 true WO2003060382A1 (en) 2003-07-24

Family

ID=19191334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000271 WO2003060382A1 (en) 2002-01-16 2003-01-15 Gas stove

Country Status (6)

Country Link
EP (1) EP1467153B1 (en)
JP (1) JP3652652B2 (en)
KR (1) KR100519525B1 (en)
CN (1) CN1261718C (en)
DE (1) DE60326818D1 (en)
WO (1) WO2003060382A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455891C (en) * 2004-09-06 2009-01-28 乐金电子(天津)电器有限公司 Gas-radiant cooker
CN102889622A (en) * 2012-11-05 2013-01-23 焦敬博 Infrared combustion furnace
CN104990081A (en) * 2015-07-16 2015-10-21 周通 Gas emptier for commercial cooking utensil burner
CN106500135A (en) * 2015-09-03 2017-03-15 Lg电子株式会社 Gas cooking equipment

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481210B2 (en) * 2004-10-12 2009-01-27 Lg Electronics Inc. Gas range
JP4415123B2 (en) * 2004-12-24 2010-02-17 パロマ工業株式会社 Gas stove
ITTO20121158A1 (en) * 2012-12-27 2014-06-28 Indesit Co Spa COOKING APPLIANCE WITH HIGH THERMAL POWER GAS BURNER AND METHOD FOR ITS OPERATION
CN103234229B (en) * 2013-04-08 2015-08-05 中山炫能燃气科技股份有限公司 A kind of infrared heat energy of antireflection and porous heat smoke directed conveying device along separate routes
CN103225827B (en) * 2013-04-08 2015-08-19 中山炫能燃气科技股份有限公司 A kind of infrared waves heat energy and heat smoke absorb converting system along separate routes
CN103322607B (en) * 2013-04-08 2015-12-02 中山炫能燃气科技股份有限公司 A kind of heat absorption, energy storage, heat exchanger
CN103307642A (en) * 2013-05-31 2013-09-18 天津大学 Heat-integrated gas furnace system and operation method
CN108731031A (en) * 2017-04-25 2018-11-02 深圳市元疆科技有限公司 A kind of closing burning jamb combustion front secondary air supply and table top bottom cool-down method and structure
CN109611841A (en) * 2018-12-06 2019-04-12 上海正宏厨房设备有限公司 A kind of multi-point injection gas burner
CN113137643A (en) * 2020-01-16 2021-07-20 佛山罗丹合众电器科技有限公司 Gas stove
JP7500485B2 (en) 2021-03-25 2024-06-17 大阪瓦斯株式会社 Combustion device and fuel cell system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533844Y2 (en) * 1986-06-10 1993-08-27

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434791A (en) * 1965-02-15 1969-03-25 Rinnai Kk Burner
JP2682361B2 (en) * 1992-12-09 1997-11-26 日本鋼管株式会社 Exhaust heat recovery type combustion device
US5524605A (en) * 1995-02-27 1996-06-11 Toyotomi Co., Ltd. Cooking burner
JP3688234B2 (en) * 2001-11-19 2005-08-24 リンナイ株式会社 Gas stove
JP3652641B2 (en) * 2001-11-29 2005-05-25 リンナイ株式会社 Gas stove

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533844Y2 (en) * 1986-06-10 1993-08-27

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1467153A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100455891C (en) * 2004-09-06 2009-01-28 乐金电子(天津)电器有限公司 Gas-radiant cooker
CN102889622A (en) * 2012-11-05 2013-01-23 焦敬博 Infrared combustion furnace
CN104990081A (en) * 2015-07-16 2015-10-21 周通 Gas emptier for commercial cooking utensil burner
CN106500135A (en) * 2015-09-03 2017-03-15 Lg电子株式会社 Gas cooking equipment
US10408461B2 (en) 2015-09-03 2019-09-10 Lg Electronics Inc. Gas cooker

Also Published As

Publication number Publication date
DE60326818D1 (en) 2009-05-07
EP1467153A1 (en) 2004-10-13
EP1467153B1 (en) 2009-03-25
CN1592830A (en) 2005-03-09
JP2003207135A (en) 2003-07-25
EP1467153A4 (en) 2006-02-08
CN1261718C (en) 2006-06-28
KR20030062220A (en) 2003-07-23
JP3652652B2 (en) 2005-05-25
KR100519525B1 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
WO2003060382A1 (en) Gas stove
CN210227853U (en) Kiln oven
JPH0375445A (en) Hot air furnace
CN109965719B (en) kiln oven
JP3652641B2 (en) Gas stove
JP3864853B2 (en) Cooking device
JP3684345B2 (en) Gas stove
JP2002267163A (en) Oven
JP3688234B2 (en) Gas stove
JP4618930B2 (en) Heating device having heat exchanger for hot water
JP2004069113A (en) Gas range
JP2924598B2 (en) Cooking combustor
JP2003074865A (en) Combined cooking appliance
JP2003086339A (en) Induction heating cooker
JP3888960B2 (en) Sealed stove
KR20020056338A (en) Glass cooling structure for gas radiation oven range
KR100565693B1 (en) Gas oven range of radiant heating type
JPH053173Y2 (en)
JPS5920806Y2 (en) gas rice cooker
JPH0512571Y2 (en)
TWI480494B (en) Gas furnace and its combustion control method
JP2002181341A (en) Cooking stove
JP2004219029A (en) Gas stove
JP2001304583A (en) Heating cooking device
JP2004183973A (en) Combustion apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003700572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038015838

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003700572

Country of ref document: EP