WO2003059399A1 - Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor - Google Patents

Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor Download PDF

Info

Publication number
WO2003059399A1
WO2003059399A1 PCT/JP2003/000247 JP0300247W WO03059399A1 WO 2003059399 A1 WO2003059399 A1 WO 2003059399A1 JP 0300247 W JP0300247 W JP 0300247W WO 03059399 A1 WO03059399 A1 WO 03059399A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
super
virus
heat
high temperature
Prior art date
Application number
PCT/JP2003/000247
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Nomura
Kazumasa Yokoyama
Motoaki Uemura
Hiroshi Iyota
Original Assignee
Tomohiro Nomura
Kazumasa Yokoyama
Motoaki Uemura
Hiroshi Iyota
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomohiro Nomura, Kazumasa Yokoyama, Motoaki Uemura, Hiroshi Iyota filed Critical Tomohiro Nomura
Priority to AU2003203228A priority Critical patent/AU2003203228A1/en
Priority to JP2003559559A priority patent/JPWO2003059399A1/en
Publication of WO2003059399A1 publication Critical patent/WO2003059399A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam

Definitions

  • the present invention relates to an apparatus for sterilization and virus inactivation using super steam. More specifically, the steam is heated to a very high temperature by high-frequency electromagnetic induction heating at about 25 KHz, under a regulated super-steam atmosphere, under system pressure adjustment conditions, and under air or oxygen content adjustment conditions.
  • the present invention relates to an ultra-high temperature condition of about 300 to 130 ° C., a sterilization / virus inactivation method under such conditions, and an apparatus for inactivating the virus. Background art
  • heat treatment is used for sterilization. Typical methods include liquid heating such as 10 hours at 60 ° C, heat treatment at 100 ° C to 130 ° C in a dry state, and the like.
  • Virus inactivation using steam ⁇ Sterilization uses steam as a carrier and has not yet been generalized. Conventionally, in order to generate steam exceeding 100 ° C, fuel such as oil, gas, and coal is burned, and steam pipes arranged in a multi-tube heat exchanger are heated and pressurized at the same time. (For example, from 20 to 60 atm) to obtain saturated steam or to obtain the steam by heating the steam pipe with combustion gas or an electric resistance heater.
  • the present invention provides a novel device for inactivating or sterilizing a virus or a genetic modification-related substance using steam.
  • the solution is to eliminate the need for special safety devices or special devices for increasing pressure, while at the same time efficiently increasing the temperature to about 300 ° C or more, Apparatus for inactivating or sterilizing potentially contaminating virus or genetically modified substances in a regulated super-steam atmosphere capable of achieving ultra-high temperature conditions of 130 ° C It is to provide
  • the present invention raises the temperature of steam to an extremely high temperature by means of high-frequency electromagnetic induction heating at about 25 KHz, and in a regulated super-steam atmosphere, under system pressure regulation conditions, and air Or, under the condition of adjusting the oxygen content, achieve the condition of extremely high temperature of about 300 to 130 ° C, and under the obtained condition, sterilization or contamination of virus or genetic modification related substances is possible.
  • the present invention has been completed by providing an apparatus for inactivating a sexual object. That is, the present invention
  • Super steam super-heated by high frequency electromagnetic field induction heating means of about 20 ⁇ 3 OKH z can be repeatedly used in the circulation system, under the adjusted super steam atmosphere, system pressure adjustment condition, and Under the condition of adjusting the air or oxygen content of the system, An apparatus for sterilization, or an apparatus for inactivating a virus or a genetic modification-related substance, wherein an ultra-high temperature condition of about 300 to 130 ° C. is achieved.
  • the super-high temperature is achieved by the radiant heat, convection heat, and conduction heat of the super-steam generator in which the steam generated by the steam generating means is heated to ultra-high temperature by the high-frequency electromagnetic induction heating means.
  • FIG. 1 It is a principle view of an apparatus according to the means of the present invention.
  • FIG. 2 This is an induction punching metal cylinder type heating device.
  • Sterilization or inactivation of viruses or contaminants containing genetic modification Is a super-steam atmosphere in which the steam is heated to an ultra-high temperature by high-frequency electromagnetic field induction heating means of about 20 to 30 and preferably about 25 KHz, and the obtained ultra-high-temperature steam (super steam) is adjusted.
  • high-frequency electromagnetic field induction heating means of about 20 to 30 and preferably about 25 KHz
  • steam refers to a substance such as water vapor or ammonia which can be easily turned into steam by heating.
  • a medium having good absorption efficiency of radiant heat in a vapor state is preferable.
  • steam was selected as the best mode, but the present invention is not limited to this.
  • the first generation of steam may occur in the same room as the subsequent generation of super steam, or may occur in a separate room. Preferably, a separate room is good.
  • the super-steam generation chamber (super steam generator) can reach a high temperature of about 300 ° C to 130 ° C. Use a structure and Z or material that can withstand such high temperature. It is necessary.
  • Initial vapor generation is by boiling or evaporation. Boiling or evaporation is performed by appropriately supplying a steam raw material such as water. For boiling, efficiently, an electromagnetic field is formed by a high-frequency AC power supply, and heating is performed by Joule heat due to eddy current.
  • the high frequency is usually 20 KHz or more, preferably 20 to 30 KHz.
  • the electromagnetic field is formed by covering a cylindrical tank made of, for example, copper (other than silver or aluminum), which has excellent thermal conductivity, with an insulating material, such as ceramics, and coating the outer surface of the insulating material with a conductive wire (eg, glass fiber). It is wound with a covered copper wire to form an induction coil, and a high-frequency AC power is supplied to generate Joule heat.
  • the first generation of steam is to supply steam raw material, for example, water into the tank, and to supply the heat source to make the water vapor and vaporize (steam generating means). With this process, boiling steam can be continuously generated in a few seconds.
  • the supply of the steam raw material is generally performed in 1 to 100 m1Z seconds. Alternatively, a means for retaining a certain amount of steam raw material in the tank may be introduced.
  • a preferred embodiment of the present invention is a circulation system in which the system has the functions of steam recovery, heat recovery, steam source replenishment, pressure regulation, suction means and oxygen or air regulation.
  • Steam recovery is a method of selectively recovering a part of the super steam circulated by closed connection with the means for generating super steam, recovering the heat retained by the steam, and utilizing it for desired applications. Means that the steam is reused as coagulated water.
  • steam source replenishment means new replenishment of water and the like.
  • the pressure adjustment means that the pressure rise due to the high temperature of steam or the supply of steam in the system is adjusted to a desired pressure by opening and closing a pressure adjusting valve or the like, and is preferably adjusted to 1 atm.
  • Oxygen or air conditioning means adjusting the oxygen concentration in the system to within the limits of the explosion, but maintaining it at a level necessary and sufficient to achieve the optimum temperature for the intended treatment. Further, the oxygen concentration can be adjusted so as to cause combustion of the object to be treated. The oxygen concentration in the system is adjusted, for example, to 0 to 10% V / V.
  • the suction device (means) adjusts pressure and / or removes and adjusts gases that may be generated in the system, and may be the same as or different from the pressure adjusting means.
  • the boiling steam is then subjected to heat treatment by electromagnetic field induction heating means (super steam generator) using a high frequency of 20 KHz or more, preferably 20 to 30 KHz, thereby achieving an ultra-high temperature. It becomes super steam.
  • Ultra-high temperature is achieved by using radiant heat, convective heat, and conduction heat. Adjusting to an oxygen concentration within the explosion limit under oxygen or air conditioning conditions at ultra-high temperatures is an efficient way to achieve ultra-high temperatures.
  • Super steam generators have higher heat, for example, at a temperature of 300 ° C to a few hundred. It is necessary to form structures, materials, and thicknesses that can withstand the high heat of C.
  • introduction of a metal-based ceramic material or the like containing an electromagnetic induction metal is preferable.
  • Boiling steam is sequentially sent to this super steam generator, and heat treatment is performed by means of electromagnetic field induction heating of an electromagnetic field using a high-frequency AC power supply and an induction coil.
  • the boiling steam sent to the super steam generator efficiently absorbs the generated heat and achieves a rapid temperature rise. It takes a few seconds to reach about 500 ° C. Temperature adjustment is performed by the amount of boiling steam sent and the amount of power supplied to the high frequency power supply. Thus, ultra-high-temperature steam (super-steam) of 300 to several hundreds of degrees Celsius can be prepared very easily.
  • the resulting super-steam is sent to a processing vessel (sterilized champer) or processed in a super-steam generator to treat the target bacteria, viruses or genetically modified substances that may be contaminated or contained.
  • contaminating bacteria or viruses die in about 1 to 3 seconds.
  • a treatment of about 1 to 60 seconds and about 1 to 10 minutes is required.
  • the treatment is performed directly or indirectly, and is appropriately selected depending on the type of the target object. If the target is to be disposed of after the fact, treatment at 100 ° C for several seconds directly is sufficient. If the target is a protein to be used after the fact, it is necessary to adjust the temperature and time in consideration of the relationship with the denaturation.
  • the object to be treated is treated in a conditioned atmosphere of super-steam.
  • the object to be treated is directly charged from a small amount into a super steam generator under a super steam atmosphere that has been sufficiently adjusted, or into a super steam generator under a super steam non-atmosphere (simply called a heating vessel) Is done.
  • the condition of ultra-high temperature required for treatment can be achieved by radiation, convection, and conduction heat from the device.
  • an input object moving means including a rotating body (rotary drum) having a helical structure is provided, and the input object is automatically moved by the rotation of the input means.
  • the object to be treated, which has been treated under ultra-high heat conditions for an appropriate time, is discharged from the apparatus by rotation of the means.
  • the super steam can be repeatedly used in the circulation system, and the atmosphere of the super steam is adjusted to a desired pressure, preferably about 1 atm.
  • the super-steam returns to the super-steam generator in the circulation system for reuse, and the reduced temperature re-rise is achieved by treatment and circulation.
  • the inside of the super steam generator is adjusted to a normal pressure of about 1 atm by opening and closing a pressure regulating valve.
  • suction and exhaust are performed by a vacuuming means (suction device) or the like.
  • Bacteria that are the subject of the present invention include Escherichia coli, botulinum, vibrio parahaemolyticus, Staphylococcus aureus, staphylococcus epidermidis, Pseudomonas aeruginosa, cholera bacteria, and other host bacteria, and host bacteria that can be used in genetic engineering.
  • the subject of the present invention also includes pathogens (prions) such as Kroitfeld's Jakob disease, scrapie disease and mad cow disease. It also covers these pathogens, bacteria, viruses, insects, plasmids, vectors, animal cells, genes, nucleic acids, including cell-free production systems, contaminating genetically modified products, and waste.
  • pathogens such as Kroitfeld's Jakob disease, scrapie disease and mad cow disease. It also covers these pathogens, bacteria, viruses, insects, plasmids, vectors, animal cells, genes, nucleic acids, including cell-free production systems, contaminating genetically modified products, and waste.
  • the genetically modified products include raw materials * products and wastes.
  • INDUSTRIAL APPLICABILITY The present invention can be applied to inactivation of general organisms including microorganisms.
  • Processing objects include food, tableware, cooking utensils, pharmaceuticals, reagents, medical equipment, medical aids, medical aids, medical containers, genetically modified test products, genetically modified test materials, blood products, Any waste.
  • the object to be treated may be in any of a dry state, a semi-dry state, and a liquid state, and in any case, a sterilizing / virus inactivating effect is achieved instantaneously. Even if the object to be processed has a thickness, super steam exceeding 100 ° C permeates a fibrous material with a width of 10 cm to 30 cm, so it is instantaneously sterilized and virus inactivated. The effect is achieved.
  • the used steam may be discarded as it is, but it is efficient to collect and reuse it by circulation.
  • the vaporized liquid may be collected and reused by introducing a circulation system known per se, or may be collected and reused in a vapor state by a suction method. The latter is more efficient.
  • Fig. 1 is a principle diagram of a sterilization or microbial inactivation device using super steam, and shows the relationship between the steam generator, the super steam generator, and its circulation system.
  • water is supplied from the water supply tank, which is the steam source, to the steam generator.
  • water is converted into water vapor at 100 ° C by the heat source using a hollow coil for induction heating (high-frequency alternating current of about 25 kHz) (first stage).
  • the generated steam opens the passage to the super steam generator and moves into the super steam generator.
  • steam that has already been converted into super-steam and is in the circulation system is also re-flowed into the super-steam generator by opening and closing the passage.
  • the super-steam generator is made of a high heat-resistant material, and a high-frequency alternating current of about 25 kHz is applied to the coil to form a magnetic field.
  • the temperature rises to an ultra-high temperature of about 300 ° C or more and becomes super steam.
  • For ultra-high temperature under an adjusted super-steam atmosphere, adjust the oxygen concentration thoroughly within the explosion limit using air or an oxygen adjustment device (oxygen concentration adjustment valve), about 300 to 130 °.
  • the ultra-high temperature condition of C is achieved. Vacuum is a device for removing generated gases.
  • the objects to be treated are directly and sequentially injected into the super steam generator (also referred to as a waste treatment chamber in the figure), and sterilization and microbial inactivation treatment using the super steam is performed. Sterilization or microbial inactivation is completed within seconds, and the super-steam is recovered from the super-steam outlet for steam recovery to the steam generator for reuse.
  • the device thus prepared provides a quiet, compact and extremely efficient sterilization and microbial inactivation device.
  • an object processing apparatus (referred to as a sterilization chamber: an ultra-high temperature condition of about 300 to 130 ° C. is achieved) is prepared, and an object to be processed and super steam are sequentially placed there. It is put in and subjected to sterilization or microbial inactivation treatment under ultra-high temperature conditions. Sterilization or microbial inactivation is completed within seconds, and the super-steam is recovered from the super-steam outlet for steam recovery to the steam generator for reuse.
  • a sterilization chamber an ultra-high temperature condition of about 300 to 130 ° C. is achieved
  • a non-sterile glass tube was inoculated with about 100,000 E. coli cells per ml in a commercially available complete medium. After treating the test tube at 500 ° C. for 3 minutes in the apparatus of the present invention, 10 mL of medium was aseptically added, and the growth of E. coli after culturing at 37 ° C. for 5 hours was monitored at a wavelength of 66 ° C. It was determined by measuring absorbance at 0 nm. Test tubes inoculated with the same number of bacteria were prepared and left at room temperature (25 ° C) for 3 minutes as a control. Table 1 shows the results. table 1
  • control sample showed significant growth of E. coli, but the sample treated at 500 ° C for 3 minutes was completely sterilized because no growth of E. coli was observed. I understood.
  • a commercially available piece of cotton wool (about 3 cm X 3 cm) was filled with 1 mL of the recombinant E. coli solution instead of the E. coli used in Example 1, placed in a petri dish, and treated in the same manner as in Example 1. After the treatment, absorbent cotton was placed on a commercially available blood agar medium for microbial testing, and after culturing at 37 ° C for 5 hours, colonies appearing on the surface of the agar medium were observed.
  • the inactivating effect of the virus was observed using Bovineviral diarrhoeavirus (BVD) as a model virus, and the results shown in Table 2 were obtained.
  • a BVD having an infectivity of 10 ⁇ ° was placed in a glass test tube, and the test tube was treated with the device of the present invention at 500 ° C. for 3 minutes, and the infectivity was measured. The results are shown in Table 2.
  • a non-sterile surgical scalpel, scissors, tweezers, and a glass syringe were placed in a stainless steel storage box, and sterilized at 300 ° C for 2 minutes in the apparatus of the present invention.
  • the same device was sterilized by autoclaving at 121 ° C for 20 minutes, and sterilized by dry heat at 150 ° C for 3 hours. After sterilization, each tool was thoroughly wiped with a sterilized gauze piece, and the gauze piece was immersed in sterile water. A part of the immersion water was transferred to a commercially available complete medium and cultured. Table 3 shows the results.
  • the polypropylene syringe, gauze, and absorbent cotton used for the treatment were collected and placed in a metal case, and sterilized at 300 ° C. for 2 minutes using the apparatus of the present invention. Thereafter, as in Example 1, the sterilization effect was confirmed by culturing in a commercially available complete medium. As a result of the sterilization treatment, the syringe was melted to the extent that it did not retain its shape, and no microorganisms were detected from the gauze or cotton wool by culture.
  • Figure 2 shows an induction punched metal tube type heating device.
  • the high-temperature steam generated by the super-steam generator is efficiently transmitted to the treated waste by radiant heat, convective heat, and conductive heat, achieving more efficient treatment.
  • the basic structure of the induction punching metal cylinder type heating device is a two-layer cylinder consisting of an outer cylinder and an inner cylinder, and an induction heating coil (about 25 kHz high frequency electromagnetic induction heating) on the outer cylinder outer periphery. Is installed.
  • the inner cylinder is made of a rotatable and heated magnetic material and has a number of punched holes, which are air holes. This hole is large enough that the waste put into the cylinder does not easily flow out of the hole, but allows steam to flow in and out.
  • a helically wound projection which is a magnetic material, is attached to the outer periphery of the inner cylinder, and the rotation of the inner cylinder moves super-steam in the gap between the inner cylinder and the outer cylinder.
  • the outer cylinder is covered so as to surround the inner cylinder, and the structure of the structure is a combination of a non-magnetic substance and a magnetic substance.
  • a non-magnetic substance on the left and right sides of the outer cylinder there are three phases: a non-magnetic substance on the left and right sides of the outer cylinder, and a magnetic substance on the center. This configuration can be changed in various ways, and the structure can be determined by weighing the effect of manufacturing difficulty and the effect of heating efficiency.
  • the magnetic part is an induction heating part (self-heating occurs by electromagnetic induction heating), and the non-magnetic part is a non-induction heating part (no heating occurs by electromagnetic induction heating).
  • the magnetic part is induction-heated to a high temperature by an induction heating coil (high-frequency electromagnetic induction heating coil of about 25 kHz: 10 kW), and the inner cylinder, a punching metal cylinder, is heated by radiant heat from the inner wall of the body outer cylinder. Is done.
  • the magnetic field passing through the non-magnetic portion directly affects the heating of the punching metal cylinder, which is the inner cylinder.
  • This two-layer cylinder is sometimes called the fuselage.
  • a high-frequency electromagnetic induction coil for heating the steam and super-vaporizing the steam is wound around the outside of the body, and an outer cover for safety is attached to the outside.
  • the steam is heated while passing through the gap between the inner cylinder and the outer cylinder, and partly flows into the waste treatment section inside the inner cylinder through the punch hole of the inner cylinder, and partly while maintaining the high temperature It is returned to the vicinity of the waste inlet by the circulation fan, flows into the body again with the waste, and is divided into the inner cylinder and the gap between the inner cylinder and the outer cylinder, which is used for heating.
  • Super steam is also produced by an IH heater (high-frequency electromagnetic induction heating heater) wound by a high-frequency electromagnetic induction heating coil and flows into the inner cylinder.
  • the super steam in the inner cylinder is turbulent, and moves by the inflow and outflow from the punch holes in the inner cylinder, and the outflow to the processing waste distribution outlet together with the processing waste.
  • IH heater high-frequency electromagnetic induction heating heater
  • the circle around the IH heater means an induction heating coil.
  • the steam flows into the heat exchanger from the crusher after the heat treatment of the waste, and the cooling water that passes through the heat exchanger sufficiently removes the heat from the treated material and water for generating steam in the IH heater section for reuse. Flowed in. Then, after reheating, the super steam flows into the inner cylinder again and is subjected to waste treatment.
  • Waste is injected from the waste inlet and moves with the superheated steam through the inner cylinder of the body under contact with the rotation by the motor (M) of the inner cylinder.
  • a feeding device consisting of a spirally wound projection in the inner cylinder.
  • the heat-treated material moves from left to right in Fig. 2, and a crusher is installed at the outlet, and the heat-treated material is subdivided.
  • the crushed processed material is sent to the processed material. After being transferred to the heat exchanger (equipment), the heat is absorbed by the steam and the temperature of the processed material is reduced.
  • the cooler functions for steam condensation and pressure regulation.
  • the gap space between the outer cylinder (heated in the magnetic body) heated by induction heating to a high temperature and the inner cylinder of the punched metal heated by induction heating through the non-magnetic body is forcibly circulated by a spiral structure steam feeder and circulation fan, and the temperature is raised in a short time.
  • the heated recirculated steam and the steam supplied from the IH heater were rotationally supplied by a rotating motor (M), and were forcedly turbulent in the inner cylinder.
  • the heating quantity Q of the processing object is supplied by radiative and conductive heat transfer from the inner cylinder of punched metal heated at high temperature, turbulent forced heat transfer from spar steam and radiant heat transfer. With this Q, the temperature was raised to about 1000 ° C in a short time (about 3 minutes) when a 10kW high-frequency electromagnetic induction heating coil was used.
  • Figure 3 shows a screw-type heating device.
  • the high-temperature steam generated by the super-steam generator is efficiently transmitted to the treated waste by radiant heat, convective heat, and conductive heat, achieving more efficient treatment.
  • the basic structure of the screw-type heating device is a cylinder and a screw-shaped spiral plate installed in the cylinder.
  • the screw-shaped spiral plate is rotated by a motor (M), and the treated waste is moved from left to right with the rotation of the screw-shaped spiral plate.
  • the cylinder of the fuselage is entirely composed of an induction heating body (magnetic material), and an induction heating coil (about 25 kHz high-frequency electromagnetic induction heating coil: 10 kW) is installed around the cylinder. The entire body is induction heated. Treated waste and superheated steam are moved from left to right by a screw-type feeder (screw-shaped spiral plate) installed inside the fuselage.
  • the steam is sent to the recirculation system by a circulation fan, and is reused from the waste input port on the left side of Fig. 3 and the left side of the fuselage.
  • the superheated steam is produced by the IH heater, the inflow from the left part of the fuselage, the processing waste is crushed, and the steam is reused by the heat exchanger as in the third embodiment.
  • the steam was heated by conduction heat transfer due to the contact of the disturbed steam with the surface of the spiral plate, and radiative heat transfer from the screw-like spiral plate.
  • the input material is agitated by the feeder and receives forced and radiant heat from the feeder.At the same time, it receives further forced and radiant heat from the fuselage. Due to the turbulent forced convection heat transfer and radiant heat transfer by the disturbed steam, the temperature rose to a high level in a short time. From the above results, it was found that the apparatus comprising the means of the present invention was effective for sterilizing medical waste. Industrial applicability
  • the present invention obtains steam under ultra-high temperature by high-frequency electromagnetic induction heating, under a controlled super-steam atmosphere, under system pressure adjustment conditions, and under system air or oxygen content adjustment conditions.
  • the ultra-high temperature condition it has been possible to provide an apparatus for sterilization or virus inactivation treatment, and to provide a means for performing sterilization or virus inactivation treatment inexpensively, easily, ultra-express and reliably.
  • the device of the present invention achieves ultra-compact and lightweight It is movable and energy saving. It also has the function of adjusting the desired pressure and oxygen concentration, and is safe.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

It is intended to provide a means of sterilizing or inactivating a virus or a genetic modification-related material using super steam and an apparatus for the inactivation. More specifically, an apparatus for sterilizing or inactivating a virus or a genetic modification-related material characterized in that super steam, which has been super-heated with the use of a heating means inducing high-frequency electromagnetic field of about 20 to 30 KHz, can be repeatedly employed in a circulatory system and super-heating conditions at about 300 to 1300 ° C can be achieved in a controlled super steam atmosphere while controlling the pressure and the air or oxygen content in the system.

Description

スーパー蒸気を利用した滅菌用装置、 又はウィルス若しくは遺伝子組換え関連物 の不活化用装置、 及び不活化方法 本出願は、 参照によ り ここに援用されるところの、 日本特許出願番号 2002-006020力 らの優先権を請求する。 技術分野 Apparatus for sterilization using super-steam, or apparatus for inactivating virus or genetic modification-related substances, and method for inactivating the same Japanese Patent Application No. 2002-006020, which is incorporated herein by reference. Claim your priority. Technical field
本発明は、 スーパー蒸気を利用した滅菌 · ウィルス不活化処理のための装置に 関する。 更に詳しくは、 蒸気を約 2 5 KH zの高周波電磁誘導加熱によって超高 温化し、 調整されたスーパー蒸気雰囲気下、 系の圧力調整条件下、 及び空気若し くは酸素含有量の調整条件下で、約 3 0 0〜1 3 0 0 °Cに超高温化条件を達成し、 この条件下で滅菌 · ウィルスの不活化処理方法、 及び不活化処理をするだめの装 置に関する。 背景技術  The present invention relates to an apparatus for sterilization and virus inactivation using super steam. More specifically, the steam is heated to a very high temperature by high-frequency electromagnetic induction heating at about 25 KHz, under a regulated super-steam atmosphere, under system pressure adjustment conditions, and under air or oxygen content adjustment conditions. The present invention relates to an ultra-high temperature condition of about 300 to 130 ° C., a sterilization / virus inactivation method under such conditions, and an apparatus for inactivating the virus. Background art
ウィルス不活化 ·滅菌方法は、 加熱処理することが一般的である。 典型的な方 法は、 6 0 °C 1 0時間のような液状加熱、 乾燥状態での 1 0 0〜 1 3 0 °C加熱処 理等である。 蒸気を利用したウィルス不活化 ·滅菌方法は、 蒸気を担体にするも のであり、 いまだ一般化はされていない。 従来、 1 0 0 °Cを越える蒸気を生成す るには、 石油、 ガス、 石炭等の燃料を燃焼させ、 多管式熱交換器等に配置された 蒸気配管を加熱させると同時に圧力を加えて (例えば 2 0気圧から 6 0気圧) 飽 和蒸気にするか、 又は蒸気配管を燃焼ガスや電気抵抗ヒータで加熱することによ つて得られるようにしている。  Virus inactivation • Generally, heat treatment is used for sterilization. Typical methods include liquid heating such as 10 hours at 60 ° C, heat treatment at 100 ° C to 130 ° C in a dry state, and the like. Virus inactivation using steam · Sterilization uses steam as a carrier and has not yet been generalized. Conventionally, in order to generate steam exceeding 100 ° C, fuel such as oil, gas, and coal is burned, and steam pipes arranged in a multi-tube heat exchanger are heated and pressurized at the same time. (For example, from 20 to 60 atm) to obtain saturated steam or to obtain the steam by heating the steam pipe with combustion gas or an electric resistance heater.
し力 し、 上記方法によれば、 石油、 ガス、 石炭等の燃料を燃焼させるボイラ等 に対する消火設備等の特別な安全手段が必要であるだけでなく、 ボイラ等の装置 の他、 圧力を上昇させるための装置等も要するため、 装置全体が大型化してしま う問題点があり、 ウィルス不活化 ·滅菌手段として適当ではなかった。 However, according to the above method, not only special safety measures such as fire extinguishing equipment for boilers and the like that burn fuel such as oil, gas, and coal are required, but also equipment for boilers and the like. In addition, a device for increasing the pressure is required, which causes a problem that the whole device becomes large, and is not suitable as a means for inactivating and sterilizing viruses.
また、 燃焼ガスや電気抵抗ヒータで加熱する場合には、 上記ポイラ等による場 合のように消火設備等の特別な安全手段を不要にすることができるとともに、 装 置の小型化を図ることができるものの、水を加熱するときの熱伝導率が低いため、 1 0 0 °Cを越える蒸気を生成するまでの時間が多くかかる問題点が発生しており、 ウィルス不活化 ·滅菌手段としては適当でなかった。 発明の開示  In addition, when heating with a combustion gas or electric resistance heater, special safety measures such as fire extinguishing equipment as in the case of the above-mentioned poiler can be eliminated, and the size of the equipment can be reduced. Although it is possible, it has a problem that it takes a long time to generate steam exceeding 100 ° C due to low thermal conductivity when heating water, and it is suitable as a virus inactivation and sterilization means. Was not. Disclosure of the invention
本発明は、 蒸気を利用したウィルス若しくは遺伝子組換え関連物の不活化又は 滅菌手段の新規な装置を提供するものである。 前述の状況に鑑み、 解決しようと するところは、特別な安全装置や圧力を上昇させるための特別な装置を不要にし、 一方で、 効率よく約 3 0 0 °C以上、 3 0 0 °C〜 1 3 0 0 °Cの超高温化条件を達成 することができる調整されたスーパー蒸気雰囲気下でのウィルス若しくは遺伝子 組換え関連物の夾雑する可能性ある対象物に不活化又は滅菌のための装置を提供 することにある。  The present invention provides a novel device for inactivating or sterilizing a virus or a genetic modification-related substance using steam. In view of the situation described above, the solution is to eliminate the need for special safety devices or special devices for increasing pressure, while at the same time efficiently increasing the temperature to about 300 ° C or more, Apparatus for inactivating or sterilizing potentially contaminating virus or genetically modified substances in a regulated super-steam atmosphere capable of achieving ultra-high temperature conditions of 130 ° C It is to provide
本発明は、 前述の課題解決のために、 蒸気を約 2 5 K H zの高周波電磁誘導加 熱手段によって超高温化し、 調整されたスーパー蒸気雰囲気下、 系の圧力調整条 件下、 及ぴ空気若しくは酸素含有量の調整条件下で、 約 3 0 0〜1 3 0 0 °Cの超 高温化条件を達成し、 えられた条件下で、 滅菌又はウィルス若しくは遺伝子組換 え関連物の夾雑可能性ある対象物の不活化処理をする装置を提供することによつ て本発明を完成した。 すなわち本発明は、  In order to solve the above-mentioned problems, the present invention raises the temperature of steam to an extremely high temperature by means of high-frequency electromagnetic induction heating at about 25 KHz, and in a regulated super-steam atmosphere, under system pressure regulation conditions, and air Or, under the condition of adjusting the oxygen content, achieve the condition of extremely high temperature of about 300 to 130 ° C, and under the obtained condition, sterilization or contamination of virus or genetic modification related substances is possible. The present invention has been completed by providing an apparatus for inactivating a sexual object. That is, the present invention
1 . 約 2 0〜 3 O K H zの高周波電磁場誘導加熱手段によって超高温化したスー パー蒸気が循環系において繰り返し利用可能であり、 調整されたスーパー蒸気雰 囲気下、系の圧力調整条件下及び、系の空気若しくは酸素含有量の調整条件下で、 約 3 0 0〜1 3 0 0 °Cの超高温化条件が達成されることを特徴とする滅菌用装置、 又はウィルス若しくは遺伝子組換え関連物の不活化用装置。 1.Super steam super-heated by high frequency electromagnetic field induction heating means of about 20 ~ 3 OKH z can be repeatedly used in the circulation system, under the adjusted super steam atmosphere, system pressure adjustment condition, and Under the condition of adjusting the air or oxygen content of the system, An apparatus for sterilization, or an apparatus for inactivating a virus or a genetic modification-related substance, wherein an ultra-high temperature condition of about 300 to 130 ° C. is achieved.
2 . 蒸気発生手段で発生させた蒸気が、 高周波電磁誘導加熱手段により超高温に 加熱されたスーパー蒸気発生装置による輻射熱、 対流熱、 及ぴ伝導熱によって、 超高温化が達成される前項 1に記載の装置。  2. The super-high temperature is achieved by the radiant heat, convection heat, and conduction heat of the super-steam generator in which the steam generated by the steam generating means is heated to ultra-high temperature by the high-frequency electromagnetic induction heating means. The described device.
3 . 蒸気発生手段が、 沸騰又は蒸発手段によって蒸気を発生する前項 1又は 2に 記載の装置。  3. The apparatus according to the above 1 or 2, wherein the steam generating means generates steam by boiling or evaporating means.
4 . 系が、 蒸気回収、 熱回収、 蒸気源補給、 圧力調整、 空気又は酸素含有量調整 の各機能の少なくとも 1を備える循環系である前項 1〜3の何れか一に記載の装 置。  4. The apparatus according to any one of the above items 1 to 3, wherein the system is a circulation system having at least one of the functions of steam recovery, heat recovery, steam source replenishment, pressure regulation, and air or oxygen content regulation.
5 . 空気又は酸素含有量が、 爆発限界内濃度である前項 1〜4の何れか一に記載 の装置。  5. The apparatus according to any one of items 1 to 4, wherein the air or oxygen content is within the explosion limit.
6 . 吸引手段によって、 圧力調整及び/又は発生ガス調整が行われる前項 1〜5 の何れか一に記載の装置。  6. The apparatus according to any one of the above items 1 to 5, wherein pressure adjustment and / or generated gas adjustment is performed by the suction means.
7 . 処理対象物が、 スーパー蒸気の調整された雰囲気下でスーパー蒸気発生装置 中に投入される前項 1〜 6の何れか一に記載の装置。  7. The apparatus according to any one of the above items 1 to 6, wherein the object to be treated is charged into a super steam generator under an atmosphere in which super steam is adjusted.
8 . 前項 1〜 7の何れか一に記載の装置を使用する滅菌方法、 又はウィルス若し くは遺伝子組換え関連物の不活化方法。  8. A sterilization method using the apparatus according to any one of the above items 1 to 7, or a method of inactivating a virus or a gene-related product.
からなる。 図面の簡単な説明 Consists of BRIEF DESCRIPTION OF THE FIGURES
(図 1 ) 本発明手段による装置の原理図である。  (FIG. 1) It is a principle view of an apparatus according to the means of the present invention.
(図 2 ) 誘導パンチングメタル筒型の加熱装置である。  (Fig. 2) This is an induction punching metal cylinder type heating device.
(図 3 ) スクリュー型の加熱装置である。 発明を実施するための最良の形態  (Fig. 3) This is a screw type heating device. BEST MODE FOR CARRYING OUT THE INVENTION
滅菌又はウィルス若しくは遺伝子組換え関連物を夾雑するものの不活化処理 は、 蒸気を、 約 2 0〜3 0好ましくは約 2 5 K H zの高周波電磁場誘導加熱手段 によって、 超高温化し、 えられた超高温化蒸気 (スーパー蒸気) を調整されたス 一パー蒸気雰囲気下で使うことを基本とする。 ' Sterilization or inactivation of viruses or contaminants containing genetic modification Is a super-steam atmosphere in which the steam is heated to an ultra-high temperature by high-frequency electromagnetic field induction heating means of about 20 to 30 and preferably about 25 KHz, and the obtained ultra-high-temperature steam (super steam) is adjusted. Basically use below. '
本発明で蒸気とは、 水蒸気、 アンモニアなど加熱によって、 容易に蒸気になる 物質が選択される。 特に、 蒸気の状態において、 輻射熱の吸収効率のよい媒体が 好ましい。 後述する実施例では水蒸気を最良の態様として選択したがこれに限ら れるものではない。 最初の蒸気の発生は、 後のスーパー蒸気の発生と同一室内で おこなってもよいし、 別の室で行ってもよい。 好ましくは、 別室がよい。 スーパ 一蒸気発生の室 (スーパー蒸気発生装置) は、 約 3 0 0 °C〜1 3 0 0 °Cの高温と なる可能性があるので、 そのような高温に耐える構造及び Z又は材料を使う必要 があるからである。最初の蒸気の発生は、沸縢又は蒸発による。沸騰又は蒸発は、 水等の蒸気原料を適宜供給しおこなう。 沸騰のためには、 効率的には、 高周波交 流電源によって電磁場を形成させ、 渦電流によるジュール熱で加熱する。  In the present invention, the term “steam” refers to a substance such as water vapor or ammonia which can be easily turned into steam by heating. In particular, a medium having good absorption efficiency of radiant heat in a vapor state is preferable. In the examples described later, steam was selected as the best mode, but the present invention is not limited to this. The first generation of steam may occur in the same room as the subsequent generation of super steam, or may occur in a separate room. Preferably, a separate room is good. The super-steam generation chamber (super steam generator) can reach a high temperature of about 300 ° C to 130 ° C. Use a structure and Z or material that can withstand such high temperature. It is necessary. Initial vapor generation is by boiling or evaporation. Boiling or evaporation is performed by appropriately supplying a steam raw material such as water. For boiling, efficiently, an electromagnetic field is formed by a high-frequency AC power supply, and heating is performed by Joule heat due to eddy current.
高周波とは、 通常 2 0 K H z以上、 好ましくは 2 0〜 3 0 K H zである。 電磁 場の形成は、 熱伝導性に優れた例えば銅製 (その他、 銀やアルミニウム) の筒状 タンクを断熱性物質例えばセラミック等でおおい、 この断熱性物質の外面を導電 性線材 (例えばガラス繊維で被覆された銅線等) で卷回して誘導コイルを形成さ せ、 高周波交流電源を流して、 ジュール熱を発生させる。  The high frequency is usually 20 KHz or more, preferably 20 to 30 KHz. The electromagnetic field is formed by covering a cylindrical tank made of, for example, copper (other than silver or aluminum), which has excellent thermal conductivity, with an insulating material, such as ceramics, and coating the outer surface of the insulating material with a conductive wire (eg, glass fiber). It is wound with a covered copper wire to form an induction coil, and a high-frequency AC power is supplied to generate Joule heat.
本発明で最初の蒸気の発生は蒸気原料例えば水をタンク内に供給し、 熱源の供 給によって、 沸縢 ·蒸気化せしめる (蒸気発生手段)。 この処理により、 沸騰蒸気 の発生を連続的に数秒で行うことができる。 蒸気原料の供給は、 一般的には 1〜 1 0 0 m 1 Z秒で行われる。 あるいは、 蒸気原料の一定量をタンク内に留置させ る手段を導入してもよい。  In the present invention, the first generation of steam is to supply steam raw material, for example, water into the tank, and to supply the heat source to make the water vapor and vaporize (steam generating means). With this process, boiling steam can be continuously generated in a few seconds. The supply of the steam raw material is generally performed in 1 to 100 m1Z seconds. Alternatively, a means for retaining a certain amount of steam raw material in the tank may be introduced.
本発明の好ましい態様は、 系が、 蒸気回収、 熱回収、 蒸気源補給、 圧力調整、 吸引手段及び酸素又は空気調節の各機能を備える循環系である。 蒸気回収とは、 スーパー蒸気を発生させる手段との閉鎖的接続によって循環されるスーパー蒸気 の一部を選択的に回収し、 その蒸気が保持する熱を回収し所望用途に活用する一 方で蒸気を凝集水として再利用することを意味する。 また、 蒸気源補給とは、 水 等の新たな補充を意味する。 圧力調整とは、 系における蒸気の高温化或は蒸気の 補給による圧力上昇を圧力調整弁等の開閉によって所望の圧に調整することを意 味し、 1気圧に調整されることが好ましい。 酸素又は空気調節とは、 系内の酸素 濃度を爆発の限度内に調節しながらも目的処理のための最適温度を達成するため に必要十分な状態に維持することを意味する。 また酸素濃度は、 処理対象物の燃 焼をおこさせるように調整することも可能である。 系内の酸素濃度は、 例えば、 0〜1 0 %V/Vに調節される。 吸引装置 (手段) は、 圧力調節及び/又は系内で 発生する可能性あるガス類の除去調整を行い、 前記圧力調整手段と同じでも良い し、 別でも良い。 A preferred embodiment of the present invention is a circulation system in which the system has the functions of steam recovery, heat recovery, steam source replenishment, pressure regulation, suction means and oxygen or air regulation. Steam recovery is a method of selectively recovering a part of the super steam circulated by closed connection with the means for generating super steam, recovering the heat retained by the steam, and utilizing it for desired applications. Means that the steam is reused as coagulated water. In addition, steam source replenishment means new replenishment of water and the like. The pressure adjustment means that the pressure rise due to the high temperature of steam or the supply of steam in the system is adjusted to a desired pressure by opening and closing a pressure adjusting valve or the like, and is preferably adjusted to 1 atm. Oxygen or air conditioning means adjusting the oxygen concentration in the system to within the limits of the explosion, but maintaining it at a level necessary and sufficient to achieve the optimum temperature for the intended treatment. Further, the oxygen concentration can be adjusted so as to cause combustion of the object to be treated. The oxygen concentration in the system is adjusted, for example, to 0 to 10% V / V. The suction device (means) adjusts pressure and / or removes and adjusts gases that may be generated in the system, and may be the same as or different from the pressure adjusting means.
沸騰蒸気は、 ついで、 2 0 K H z以上、 好ましくは 2 0〜 3 0 K H zの高周波 を使つた電磁場誘導加熱手段(スーパー蒸気発生装置)によつて加熱処理がされ、 超高温化が達成されてスーパー蒸気となる。 加熱は、 輻射熱、 対流熱、 伝導熱等 を利用し超高温化が達成される。 超高温化に際し、 酸素又は空気の調整条件下で 爆発限度内の酸素濃度に調節することは超高温化達成のためには効率的である。 スーパー蒸気発生装置は、 より高熱となるため例えば 3 0 0 °C〜千数百。 Cの高熱 にたえうる構造、 材料、 厚さを形成することが必要である。 好ましくは、 電磁誘 導金属を含む金属系セラミック材料等の導入が好ましい。  The boiling steam is then subjected to heat treatment by electromagnetic field induction heating means (super steam generator) using a high frequency of 20 KHz or more, preferably 20 to 30 KHz, thereby achieving an ultra-high temperature. It becomes super steam. Ultra-high temperature is achieved by using radiant heat, convective heat, and conduction heat. Adjusting to an oxygen concentration within the explosion limit under oxygen or air conditioning conditions at ultra-high temperatures is an efficient way to achieve ultra-high temperatures. Super steam generators have higher heat, for example, at a temperature of 300 ° C to a few hundred. It is necessary to form structures, materials, and thicknesses that can withstand the high heat of C. Preferably, introduction of a metal-based ceramic material or the like containing an electromagnetic induction metal is preferable.
沸騰蒸気は、 順次このスーパー蒸気発生装置に送り込まれ、 高周波交流電源一 誘導コイルによる電磁場の電磁場誘導加熱手段によって加熱処理が行われる。 ス ーパ蒸気発生装置に送り込まれた沸騰蒸気は、 発生した熱を効率的に吸収して、 急速な温度上昇が達成される。 約 5 0 0 °Cになるのに数秒である。 温度調整は、 送り込まれる沸騰蒸気量と高周波電源の通電量によって行われる。 かくして、 3 0 0〜千数百 °Cの超高温化蒸気 (スーパー蒸気) が極めて容易に調製される。 得られたスーパー蒸気は処理容器 (滅菌チャンパ一) に送られ又はスーパー蒸 気発生装置内で、 対象とする菌、 ウィルス若しくは遺伝子組換え関連物を夾雑又 は含む可能性のある対象物の処理に供される。 処理時間は、 数秒で十分であり、 例えば 1 0 0 0 °Cの条件下におく場合、 1〜3秒ほどで、 夾雑する菌又はウィル スは死滅する。 又、 3 0 0 °C程度に調整した条件の場合は、 1〜6 0秒、 1〜1 0分程度の処置を要する。 処理は、 直接又は間接におこなわれ、 目的とする対象 物の種類により適宜選択される。 対象が、 事後廃棄処理されるものであれば、 無 論直接に 1 0 0 0 °Cで数秒の処理で十分である。 対象が、 事後利用される蛋白質 等ではその変性との関係を考慮した温度 ·時間の調整が必須である。 Boiling steam is sequentially sent to this super steam generator, and heat treatment is performed by means of electromagnetic field induction heating of an electromagnetic field using a high-frequency AC power supply and an induction coil. The boiling steam sent to the super steam generator efficiently absorbs the generated heat and achieves a rapid temperature rise. It takes a few seconds to reach about 500 ° C. Temperature adjustment is performed by the amount of boiling steam sent and the amount of power supplied to the high frequency power supply. Thus, ultra-high-temperature steam (super-steam) of 300 to several hundreds of degrees Celsius can be prepared very easily. The resulting super-steam is sent to a processing vessel (sterilized champer) or processed in a super-steam generator to treat the target bacteria, viruses or genetically modified substances that may be contaminated or contained. To be served. A few seconds are sufficient, For example, under the condition of 1000 ° C., contaminating bacteria or viruses die in about 1 to 3 seconds. In the case where the temperature is adjusted to about 300 ° C., a treatment of about 1 to 60 seconds and about 1 to 10 minutes is required. The treatment is performed directly or indirectly, and is appropriately selected depending on the type of the target object. If the target is to be disposed of after the fact, treatment at 100 ° C for several seconds directly is sufficient. If the target is a protein to be used after the fact, it is necessary to adjust the temperature and time in consideration of the relationship with the denaturation.
本発明の装置の使用の一態様では、 処理対象物はスーパー蒸気の調整された雰 囲気下で処理される。 処理対象物を少量から十分に調整されたスーパー蒸気雰囲 気下のスーパー蒸気発生装置内に直接投入、 又は、 スーパー蒸気の非雰囲気下の スーパー蒸気発生装置内 (単に加熱容器と呼べる) に投入される。 本発明の装置 では、 スーパー蒸気の非雰囲気下でも、 装置からの輻射、 対流、 伝導熱で、 処理 に必要な超高温化条件は達成可能である。 装置内は、 例えばらせん状構造を担持 する回転体 (回転ドラム) からなる投入物移動手段が備えられ、 投入された対象 物が該手段の回転により自動的に移動が達成される。 適当な時間の超高熱条件下 での処理が終えた処理対象物は該手段の回転により装置から排出される。 このら せん状の手段により、 装置内と外部は効率的に閉鎖が達成される。  In one embodiment of the use of the device according to the invention, the object to be treated is treated in a conditioned atmosphere of super-steam. The object to be treated is directly charged from a small amount into a super steam generator under a super steam atmosphere that has been sufficiently adjusted, or into a super steam generator under a super steam non-atmosphere (simply called a heating vessel) Is done. In the device of the present invention, even in a non-atmosphere of super steam, the condition of ultra-high temperature required for treatment can be achieved by radiation, convection, and conduction heat from the device. In the apparatus, for example, an input object moving means including a rotating body (rotary drum) having a helical structure is provided, and the input object is automatically moved by the rotation of the input means. The object to be treated, which has been treated under ultra-high heat conditions for an appropriate time, is discharged from the apparatus by rotation of the means. By this helical means, the inside and outside of the device are efficiently closed.
本発明においては、 スーパー蒸気は循環系において繰り返し利用可能であり、 スーパー蒸気雰囲気部が所望圧、 好ましくは約 1気圧に調節されている。 スーパ 一蒸気は、 再利用のため循環系でスーパー蒸気発生装置にもどり、 処理そして循 環により低下した温度の再上昇が達成される。一方、スーパー蒸気発生装置内は、 高温化による高圧状態を、圧力調整弁の開閉により約 1気圧の常圧に調整される。 本発明の装置の一態様において、 処理対象物に燃焼がおこり、 ガスが発生した場 合には、 真空引き手段 (吸引装置) 等によって、 吸引 ·排気が行われる。  In the present invention, the super steam can be repeatedly used in the circulation system, and the atmosphere of the super steam is adjusted to a desired pressure, preferably about 1 atm. The super-steam returns to the super-steam generator in the circulation system for reuse, and the reduced temperature re-rise is achieved by treatment and circulation. On the other hand, the inside of the super steam generator is adjusted to a normal pressure of about 1 atm by opening and closing a pressure regulating valve. In one embodiment of the apparatus of the present invention, when combustion occurs in the processing object and gas is generated, suction and exhaust are performed by a vacuuming means (suction device) or the like.
本発明の対象となる細菌は、 大腸菌群、 ボツリヌス菌、 腸炎ビブリオ菌、 黄色 ブドウ球菌、 表皮ブドウ球菌、 緑膿菌、 コレラ菌等の病原菌、 及び遺伝子工学的 に利用できる宿主細菌であり、 ウィルスはへルぺスウィルス、 サイトメガロウイ ルス (C MV;)、 B型肝炎ウィルス (H B V;)、 C型肝炎ウィルス (H C V)、 A型 肝炎ウィルス (HA V)、 ボックスウィルス, パルボウイルス、 アデノウイルス、 及び遺伝子工学的に利用できる宿主ウィルス等である。また、本発明の対象には、 クロウイツフェルト 'ヤコプ病、 スクレイピー病、 狂牛病等の病原体 (プリオン) も含む。 また、 これら病原体 ·細菌 · ウィルス ·昆虫 .プラスミ ド ·ベクター · 動物細胞 ·遺伝子 ·核酸 ·無細胞産生系を含む ·夾雑する遺伝子組換え関連物 · 廃棄物をも対象とする。 なお、本発明で遺伝子組換え関連物とは、原料 *生産物 · 廃棄物を含む。 本発明は、 微生物を含む生物一般の不活化に適用することができ る。 Bacteria that are the subject of the present invention include Escherichia coli, botulinum, vibrio parahaemolyticus, Staphylococcus aureus, staphylococcus epidermidis, Pseudomonas aeruginosa, cholera bacteria, and other host bacteria, and host bacteria that can be used in genetic engineering. Is herpes virus, cytomegalovirus (CMV;), hepatitis B virus (HBV;), hepatitis C virus (HCV), type A Hepatitis virus (HAV), box virus, parvovirus, adenovirus, and host viruses that can be used for genetic engineering. The subject of the present invention also includes pathogens (prions) such as Kroitfeld's Jakob disease, scrapie disease and mad cow disease. It also covers these pathogens, bacteria, viruses, insects, plasmids, vectors, animal cells, genes, nucleic acids, including cell-free production systems, contaminating genetically modified products, and waste. In the present invention, the genetically modified products include raw materials * products and wastes. INDUSTRIAL APPLICABILITY The present invention can be applied to inactivation of general organisms including microorganisms.
処理対象物としては、 食品、 食器、 調理器、 医薬品、 試薬、 医療器具、 医療補 助品、 医療捕助具、 医療容器、 遺伝子組換え試験産物、 遺伝子組換え試験原料、 血液製剤、 これらの何れかの廃棄物等である。 特に廃棄物の処理のためには、 超 高温で短時間の処理で目的が達成されるため極めて効率のよい手段となる。 処理 対象物は、 乾燥状態、 半乾燥状態、 液体状態の何れであってもよく、 いずれも瞬 時に滅菌 · ウィルス不活化効果が達成される。 処理対象物が厚みを有するもので あっても、 1 0 0 0 °Cをこえるスーパー蒸気は 1 0 c m〜 3 0 c mの幅の繊維状 のものは透過するため、 瞬時に滅菌 · ウィルス不活化効果が達成される。  Processing objects include food, tableware, cooking utensils, pharmaceuticals, reagents, medical equipment, medical aids, medical aids, medical containers, genetically modified test products, genetically modified test materials, blood products, Any waste. In particular, it is an extremely efficient means of treating waste, because the purpose is achieved by processing at a very high temperature for a short time. The object to be treated may be in any of a dry state, a semi-dry state, and a liquid state, and in any case, a sterilizing / virus inactivating effect is achieved instantaneously. Even if the object to be processed has a thickness, super steam exceeding 100 ° C permeates a fibrous material with a width of 10 cm to 30 cm, so it is instantaneously sterilized and virus inactivated. The effect is achieved.
使用された蒸気は、 そのまま廃棄してもよいが、 循環式で回収し再利用するこ とが効率的である。 蒸気が液体になったものを自体公知の循環系の導入で回収し 再利用してもよいし、 蒸気状態で吸引式で回収再利用してもよい。 後者がより効 率的である。 実施例  The used steam may be discarded as it is, but it is efficient to collect and reuse it by circulation. The vaporized liquid may be collected and reused by introducing a circulation system known per se, or may be collected and reused in a vapor state by a suction method. The latter is more efficient. Example
以下に実施例で本発明を説明する。  Hereinafter, the present invention will be described with reference to Examples.
(実施例 1 ) (処理装置)  (Example 1) (Processing device)
図 1は、 スーパー蒸気による滅菌又は微生物不活化処理装置の原理図であり、 蒸気発生装置とスーパー蒸気発生装置とその循環系の関係を示すものである。 図 1によると、 蒸気源である水供給タンクから、 蒸気発生装置に水が供給され例え ば誘導加熱用中空コイル (約 2 5 k H zの高周波交流電流) による熱源で水は 1 0 0 °Cの水蒸気となる (第 1段)。発生した蒸気は、 スーパー蒸気発生装置への通 路が開口され、 スーパー蒸気発生装置内に移動される。 一方、 既にスーパー蒸気 化され循環系にある蒸気も通路の開閉調整によりスーパー蒸気発生装置内に再流 入される。 スーパー蒸気発生装置は、 高耐熱性の材料で作製され、 約 2 5 k H z の高周波交流電流をコイルに通電させることで、磁場を形成し、流入した蒸気が、 熱を吸収して数秒で約 3 0 0 °C以上の超高温度に上昇し、 スーパー蒸気となる。 超高温化は、 調整されたスーパー蒸気雰囲気下、 っ丰り酸素濃度の調整を空気又 は酸素調整装置 (酸素濃度調整弁) で爆発限度内調整し、 約 3 0 0〜 1 3 0 0 °C の超高温化条件が達成される。 真空引きは発生したガス類を排除するための装置 である。 Fig. 1 is a principle diagram of a sterilization or microbial inactivation device using super steam, and shows the relationship between the steam generator, the super steam generator, and its circulation system. According to Fig. 1, water is supplied from the water supply tank, which is the steam source, to the steam generator. For example, water is converted into water vapor at 100 ° C by the heat source using a hollow coil for induction heating (high-frequency alternating current of about 25 kHz) (first stage). The generated steam opens the passage to the super steam generator and moves into the super steam generator. On the other hand, steam that has already been converted into super-steam and is in the circulation system is also re-flowed into the super-steam generator by opening and closing the passage. The super-steam generator is made of a high heat-resistant material, and a high-frequency alternating current of about 25 kHz is applied to the coil to form a magnetic field. The temperature rises to an ultra-high temperature of about 300 ° C or more and becomes super steam. For ultra-high temperature, under an adjusted super-steam atmosphere, adjust the oxygen concentration thoroughly within the explosion limit using air or an oxygen adjustment device (oxygen concentration adjustment valve), about 300 to 130 °. The ultra-high temperature condition of C is achieved. Vacuum is a device for removing generated gases.
処理の一態様はこのスーパー蒸気発生装置 (図中において、 廃棄物処理チャン バーとも記す) 内に直接順次処理対象物が投入され、 スーパー蒸気による滅菌 · 微生物不活化処理がなされる。 滅菌又は微生物不活化は数秒で完了し、 スーパー 蒸気は蒸気回収用のスーパー蒸気流出口から再利用のため蒸気発生装置に回収さ れる。 かくして調製された装置は、 静かで、 小型で、 極めて効率的な滅菌 ·微生 物不活化装置を提供する。  In one mode of the treatment, the objects to be treated are directly and sequentially injected into the super steam generator (also referred to as a waste treatment chamber in the figure), and sterilization and microbial inactivation treatment using the super steam is performed. Sterilization or microbial inactivation is completed within seconds, and the super-steam is recovered from the super-steam outlet for steam recovery to the steam generator for reuse. The device thus prepared provides a quiet, compact and extremely efficient sterilization and microbial inactivation device.
別実施例では、対象物処理装置(滅菌チャンバ一と記す:約 3 0 0〜 1 3 0 0 °C の超高温化条件が達成) が準備され、 そこに順次処理対象物及ぴスーパー蒸気が 投入され、 超高温化条件による滅菌又は微生物不活化処理がなされる。 滅菌又は 微生物不活化は数秒で完了し、 スーパー蒸気は蒸気回収用のスーパー蒸気流出口 から再利用のため蒸気発生装置に回収される。  In another embodiment, an object processing apparatus (referred to as a sterilization chamber: an ultra-high temperature condition of about 300 to 130 ° C. is achieved) is prepared, and an object to be processed and super steam are sequentially placed there. It is put in and subjected to sterilization or microbial inactivation treatment under ultra-high temperature conditions. Sterilization or microbial inactivation is completed within seconds, and the super-steam is recovered from the super-steam outlet for steam recovery to the steam generator for reuse.
(実施例 2 ) (Example 2)
以下に本発明の装置使用の具体例を説明する。  Hereinafter, specific examples of use of the device of the present invention will be described.
1 . 患者に使用した医療器具の 1次消毒、 滅菌及ぴ廃棄  1. Primary disinfection, sterilization and disposal of medical equipment used for patients
1 ) 水洗後の医療器具を本発明装置で (約 500〜800°C) 3秒間処理し 1次消毒 した。 1) Treat medical equipment after washing with the device of the present invention (approximately 500 to 800 ° C) for 3 seconds and perform primary disinfection did.
2 ) ガーゼ ·紙類 ·プラスチック類などの医療廃棄物を本発明装置で (約 500〜 800°C) を用いて約 2分間滅菌し、 同時に廃棄物量を激減させて一般ゴミとして 処分可能とした。  2) Medical waste such as gauze, paper, plastic, etc. is sterilized for about 2 minutes using the device of the present invention (about 500 to 800 ° C), and at the same time, the amount of waste is drastically reduced to enable disposal as general waste. .
3 ) 病棟詰所内で再使用する金属製医療器具を本発明装置で (約 500〜800°C) 約 1分間消毒 ·滅菌処理をした。 病院で特に問題となっている消毒は、 感染症患 者 (HIV、 HBV: B型肝炎ウィルス、 HCV: C型肝炎ウィルス、 結核、 MRSA、 梅毒など) に使用した医療器具の 1次消毒である。 現状は、 使用後のハサミ等を 軽く水洗後に刺激臭の強い消毒薬 (ステリハイド) に浸潰し、 さらに水洗後に滅 菌用の包装袋に入れてオートクレープをかけるカ 熱に弱い物品は EOG (ェチレ ンォキサイトガス) 滅菌をし再使用しているが、 この代替となる。 3) The metal medical instruments to be reused in the ward house were disinfected and sterilized for about 1 minute (approximately 500 to 800 ° C) using the device of the present invention. Disinfection of particular concern in hospitals is the primary disinfection of medical equipment used for infectious disease patients (HIV, HBV: hepatitis B virus, HCV: hepatitis C virus, tuberculosis, MRSA, syphilis, etc.). . At present, scissors after use are lightly rinsed, then immersed in a disinfectant with a strong pungent odor (sterihide), then washed and placed in a sterile packaging bag and autoclaved. Heat-sensitive items are EOG (Echile). (Nokisite gas) Sterilized and reused, this is an alternative.
4 )手術中の手術用具の迅速消毒及び滅菌手術中に手術用具を床に落とした場合、 本発明装置で (約5 0 0〜8 0 0 °0 3分間処理して、 再利用可能とした。 2 . 採血後の注射針の滅菌に用いる 4) Rapid disinfection of surgical tools during surgery and sterilization When surgical tools are dropped on the floor during surgery, they can be reused by treating with the device of the present invention (approximately 500 to 800 ° C for 3 minutes). 2. Used for sterilization of injection needle after blood collection
針刺し事故防止のために、 採血後の針は注射筒を外さずにメスキュード缶に廃 棄し、 専門業者が高額請負で melting処理しているのが現状である。 本発明装置 で (約 500〜800°C) 5分間処理し melting処理を完成した。 (実験例 1 ) (本発明装置による滅菌効果) .  In order to prevent needle stick accidents, needles after blood collection are discarded in mescue cans without removing the syringes, and specialists are currently performing melting treatment at high contracts. The melting process was completed by treating for 5 minutes (approximately 500-800 ° C) with the apparatus of the present invention. (Experimental example 1) (Sterilization effect by the device of the present invention).
未滅菌のガラス試験管に 1 m L当たり約 1 0万個の大腸菌を市販の完全培地に 接種した。 その試験管を本発明装置内で 5 0 0 °Cで 3分間処理後、 無菌的に 1 0 m Lの培地を添加し、 3 7 °Cで 5時間培養後の大腸菌の増殖を波長 6 6 0 n mの 吸光度測定により調べた。 同一菌数を接種した試験管を用意し、 室温 (2 5 °C) で 3分間置いたものを対照とした。 その結果を表 1に示した。 表 1 A non-sterile glass tube was inoculated with about 100,000 E. coli cells per ml in a commercially available complete medium. After treating the test tube at 500 ° C. for 3 minutes in the apparatus of the present invention, 10 mL of medium was aseptically added, and the growth of E. coli after culturing at 37 ° C. for 5 hours was monitored at a wavelength of 66 ° C. It was determined by measuring absorbance at 0 nm. Test tubes inoculated with the same number of bacteria were prepared and left at room temperature (25 ° C) for 3 minutes as a control. Table 1 shows the results. table 1
1 1  1 1
1 滅菌処理 1 660 nmの吸光度 |  1 Sterilization 1 Absorbance at 660 nm |
500 °C 3分 1 0. 0 1 500 ° C 3 minutes 1 0.0 1
1 25°C 3分 i 1. 6 1  1 25 ° C 3 minutes i 1.6 1
1 以上の結果、 対照の試料は大腸菌の大幅な増殖が認められたが、 500°C、 3 分間の処理をしたものは全く大腸菌の増殖が認められなかったことより、 完全に 滅菌されることが分かった。  1) As a result, the control sample showed significant growth of E. coli, but the sample treated at 500 ° C for 3 minutes was completely sterilized because no growth of E. coli was observed. I understood.
(実験例 2) (滅菌効果) (Experimental example 2) (Sterilization effect)
市販の脱脂綿片 (約 3 c m X 3 c m) に実験例 1で用いた大腸菌の代わりに遺 伝子組換え大腸菌液 1 mLを含ませ、 シャーレに入れ、 実験例 1と同様に処理し た。 処理後、 市販の微生物検查用血液寒天培地に脱脂綿をのせ 3 7 °Cで 5時間培 養後、 寒天培地表面に出現するコロニーを観察した。  A commercially available piece of cotton wool (about 3 cm X 3 cm) was filled with 1 mL of the recombinant E. coli solution instead of the E. coli used in Example 1, placed in a petri dish, and treated in the same manner as in Example 1. After the treatment, absorbent cotton was placed on a commercially available blood agar medium for microbial testing, and after culturing at 37 ° C for 5 hours, colonies appearing on the surface of the agar medium were observed.
その結果、 本発明装置での処理を施さなかった対照は、 全面にコロニーが観察 されたにもかかわらず、 一方、 処理したものは、 全くコロニーは観察されなかつ た。  As a result, the control that was not treated with the apparatus of the present invention had colonies observed on the entire surface, whereas the treated specimen did not show any colonies.
以上の結果、 脱脂綿に含まれた細菌も完全に滅菌できることが分かった。  As a result, it was found that bacteria contained in cotton wool could be completely sterilized.
(実験例 3) (ウィルス不活化効果) (Experimental example 3) (Effect of virus inactivation)
本発明の装置を用いてウィルスの不活化効果を確かめるため、 モデルウィルス とし—し B o v i n e v i r a l d i a r r h o e a v i r u s 、BVD) を用い、 ウィルスの不活化効果を観察し表 2の成績を得た。 ガラス試験管に 1 0 ι°の感染価の B VDを入れ、その試験管を本発明装置で 500°Cで 3分間処理後, 感染価を測定した、 その結果を表 2に示した。 表 2 B V Dの不活化効果 In order to confirm the inactivating effect of the virus using the apparatus of the present invention, the inactivating effect of the virus was observed using Bovineviral diarrhoeavirus (BVD) as a model virus, and the results shown in Table 2 were obtained. A BVD having an infectivity of 10 ι ° was placed in a glass test tube, and the test tube was treated with the device of the present invention at 500 ° C. for 3 minutes, and the infectivity was measured. The results are shown in Table 2. Table 2 BVD inactivation effect
厂 - 1 1  Factory-1 1
1 処理時間 (分) 1 感染価 L o g ( P F U/m L ) |  1 Treatment time (min) 1 Infectious titer L o g (P F U / mL) |
h  h
1 0 1 1 0 1  1 0 1 1 0 1
1 . 3 1 0 1  1. 3 1 0 1
1 _L 」  1 _L "
以上の結果より B V Dウィルスは本発明の装置を用いることにより 3分間で完 全にウィルスを不活化できることが確認された。  From the above results, it was confirmed that the BVD virus can completely inactivate the virus in 3 minutes by using the apparatus of the present invention.
(実験例 4 ) (Experimental example 4)
未滅菌の手術用メス、 はさみ、 ピンセッ ト、 ガラス製注射器をステンレス製の 収納箱に入れ、 本発明の装置内で 300°Cで 2分間滅菌した。 一方、 対照として、 同様の用具を 121°Cで 20分間のオートクレープによる滅菌処理、 150°Cで 3時間 の乾熱滅菌を施した。 滅菌後、 各用具を滅菌したガーゼ片で入念に拭い取りその ガーゼ片を滅菌水に浸漬し、 市販の完全培地に浸漬水の一部を移し培養した。 そ の結果を表 3に示した。  A non-sterile surgical scalpel, scissors, tweezers, and a glass syringe were placed in a stainless steel storage box, and sterilized at 300 ° C for 2 minutes in the apparatus of the present invention. On the other hand, as a control, the same device was sterilized by autoclaving at 121 ° C for 20 minutes, and sterilized by dry heat at 150 ° C for 3 hours. After sterilization, each tool was thoroughly wiped with a sterilized gauze piece, and the gauze piece was immersed in sterile water. A part of the immersion water was transferred to a commercially available complete medium and cultured. Table 3 shows the results.
表 3 Table 3
滅菌処理 培養の結果  Sterilization results of culture
未滅菌 陽性  Not sterilized positive
本発明による滅菌 陰性  Sterilization according to the invention Negative
ォートクレープ滅菌 陰性  Auto crepe sterilization negative
陰性 以上の結果、 未滅の用具では培養結果が陽性となり、 微生物の存在が認められ たが、 本発明による滅菌では、 従来から行われてきたオートクレープによる蒸気 滅菌及び乾熱滅菌と同等の滅菌効果が確かめられた。 しかも、 本発明の手段から なる装置では、 従来の滅菌方法に比べて大幅に短時間で滅菌できることがわかつ た。 Negative As a result, the culture results were positive for the intact utensils and the presence of microorganisms was recognized.However, in the sterilization according to the present invention, sterilization equivalent to the conventional steam sterilization and dry heat sterilization using an autoclave was performed. The effect was confirmed. Moreover, from the means of the present invention It was found that such a device can perform sterilization in a much shorter time than conventional sterilization methods.
(実験例 5 ) (Experimental example 5)
治療に用いた、 ポリプロピレン製注射筒、 ガーゼ、 脱脂綿を集めて金属ケース に入れ、 本発明の装置を用いて 300°Cで 2分間の滅菌処理を行った。 その後、 実 施例 1と同様に、 市販の完全培地で培養により滅菌効果を確かめた。 滅菌処理に より、 注射筒はその形状を残さない程度に溶融しており、 ガーゼ、 脱脂綿からは 培養により微生物は検出されなかった。  The polypropylene syringe, gauze, and absorbent cotton used for the treatment were collected and placed in a metal case, and sterilized at 300 ° C. for 2 minutes using the apparatus of the present invention. Thereafter, as in Example 1, the sterilization effect was confirmed by culturing in a commercially available complete medium. As a result of the sterilization treatment, the syringe was melted to the extent that it did not retain its shape, and no microorganisms were detected from the gauze or cotton wool by culture.
(実施例 3 ) (Example 3)
図 2は、 誘導パンチングメタル筒型の加熱装置を示す。 この装置は、 スーパー 蒸気発生装置によって発生された高熱蒸気が、 さらに輻射熱、 対流熱、 及び伝導 熱によって効率的に処理廃棄物に伝わり、 処理の効率化を達成した。  Figure 2 shows an induction punched metal tube type heating device. In this system, the high-temperature steam generated by the super-steam generator is efficiently transmitted to the treated waste by radiant heat, convective heat, and conductive heat, achieving more efficient treatment.
(装置の構成)  (Device configuration)
誘導パンチングメタル筒型の加熱装置の構成は、 外筒と内筒の 2層構造の円筒 を基本構造とし、 さらに外筒外周には誘導加熱コイル (約 2 5 K H zの高周波電 磁誘導加熱) が設置されている。 内円筒は、 回転可能で自体加熱される磁性体で 作られたメタル性で空気流通孔となるパンチ穴が複数個、 多数あけられている。 この孔は、 筒内に投入される廃棄物が、 この穴から容易には流出しないが、 蒸気 の流出入が可能な大きさである。 内筒の外周には、 螺旋状に巻かれた磁性体であ る突起物 (蒸気送り装置) が取り付けられており、 内筒の回転により、 内筒と外 筒の間隙部のスーパー蒸気の移動 (例えば矢印方向へ) が可能となる。 外筒は、 内筒を囲む状態で覆われ、 その構造における構成が非磁性体物質と磁性体物質の 組み合わ.せ構造となっている。 図 2では、 外円筒の左右両側に非磁性体物質、 中 央に磁性体物質という 3相となっている。この構成は、多様的に変更可能であり、 製造上の困難性と加熱効率の効果を比較考量して構造は決めることができる。 無 論 2相、 4相、 5相等の多相構造は有用である。 磁性体部は誘導加熱部 (電磁誘 導加熱で自体加熱がおこる) であり、 非磁性体部は非誘導加熱部 (電磁誘導加熱 で自体加熱がおこらない) である。 磁性体部は、誘導加熱コイル (約 25kHzの高 周波電磁誘導加熱コイル: 10kW) によって高温に誘導加熱され、 さらには、 胴 体外筒の内壁からの放射熱によって内筒であるパンチングメタル筒が加熱される。 非磁性部を通過する磁界は直接に内筒であるパンチングメタル筒の加熱に作用す る。 The basic structure of the induction punching metal cylinder type heating device is a two-layer cylinder consisting of an outer cylinder and an inner cylinder, and an induction heating coil (about 25 kHz high frequency electromagnetic induction heating) on the outer cylinder outer periphery. Is installed. The inner cylinder is made of a rotatable and heated magnetic material and has a number of punched holes, which are air holes. This hole is large enough that the waste put into the cylinder does not easily flow out of the hole, but allows steam to flow in and out. A helically wound projection (steam feeder), which is a magnetic material, is attached to the outer periphery of the inner cylinder, and the rotation of the inner cylinder moves super-steam in the gap between the inner cylinder and the outer cylinder. (For example, in the direction of the arrow). The outer cylinder is covered so as to surround the inner cylinder, and the structure of the structure is a combination of a non-magnetic substance and a magnetic substance. In Fig. 2, there are three phases: a non-magnetic substance on the left and right sides of the outer cylinder, and a magnetic substance on the center. This configuration can be changed in various ways, and the structure can be determined by weighing the effect of manufacturing difficulty and the effect of heating efficiency. Nothing Discussion Multiphase structures such as two-phase, four-phase, and five-phase are useful. The magnetic part is an induction heating part (self-heating occurs by electromagnetic induction heating), and the non-magnetic part is a non-induction heating part (no heating occurs by electromagnetic induction heating). The magnetic part is induction-heated to a high temperature by an induction heating coil (high-frequency electromagnetic induction heating coil of about 25 kHz: 10 kW), and the inner cylinder, a punching metal cylinder, is heated by radiant heat from the inner wall of the body outer cylinder. Is done. The magnetic field passing through the non-magnetic portion directly affects the heating of the punching metal cylinder, which is the inner cylinder.
この 2層構造の円筒を胴体と呼ぶこともある。 この胴体の外側に蒸気を加熱し スーパー蒸気化するための高周波電磁誘導コイルが卷きつけられており、 その外 側には安全のための外覆いが装着される。  This two-layer cylinder is sometimes called the fuselage. A high-frequency electromagnetic induction coil for heating the steam and super-vaporizing the steam is wound around the outside of the body, and an outer cover for safety is attached to the outside.
蒸気は、 内筒と外筒の間の間隙を通過しながら高温化され、 一部は内筒のパン チ孔から内筒内の廃棄物処理部に流入し、 一部は高温化を保ちながら循環ファン によって廃棄物入口付近に戻され再度廃棄物とともに胴体部に流入し、 内筒内及 び内筒 -外筒間隙へと分けられ加熱に利用される。 スーパー蒸気は、 高周波電磁 誘導加熱コイルで巻かれた I Hヒータ (高周波電磁誘導加熱ヒータ) でも作られ 内筒内に流入される。 内筒内のスーパー蒸気は、 乱流状態にされ、 内筒のパンチ 孔からの流出入、 処理廃棄物と共に処理廃棄物流出口への流出によつて移動がお る。 なお、 図 2において I Hヒータの周りのマル印は誘導加熱用コイルを意味 する。 蒸気は、 廃棄物の加熱処理後破碎機から熱交換器に流入し、 熱交換器を通 過する冷却水によって、 処理物から十分に熱を奪い再利用のために I Hヒータ部 の蒸気発生用水として流入される。 そして再加熱後、 再びスーパー蒸気を内筒内 に流入させ廃棄物処理にふされる。  The steam is heated while passing through the gap between the inner cylinder and the outer cylinder, and partly flows into the waste treatment section inside the inner cylinder through the punch hole of the inner cylinder, and partly while maintaining the high temperature It is returned to the vicinity of the waste inlet by the circulation fan, flows into the body again with the waste, and is divided into the inner cylinder and the gap between the inner cylinder and the outer cylinder, which is used for heating. Super steam is also produced by an IH heater (high-frequency electromagnetic induction heating heater) wound by a high-frequency electromagnetic induction heating coil and flows into the inner cylinder. The super steam in the inner cylinder is turbulent, and moves by the inflow and outflow from the punch holes in the inner cylinder, and the outflow to the processing waste distribution outlet together with the processing waste. In FIG. 2, the circle around the IH heater means an induction heating coil. The steam flows into the heat exchanger from the crusher after the heat treatment of the waste, and the cooling water that passes through the heat exchanger sufficiently removes the heat from the treated material and water for generating steam in the IH heater section for reuse. Flowed in. Then, after reheating, the super steam flows into the inner cylinder again and is subjected to waste treatment.
廃棄物は、 廃棄物投入口から投入され、 過熱化蒸気と接触下胴体内筒内を内筒 のモーター (M) による回転にともない移動する。 この移動のために内筒内にも 螺旋状に巻かれた突起物からなる送り装置を設置することが好ましい。 加熱処理 された処理物は、 図 2で左から右に移動し、 流出口部分には破砕機を設置し、 加 熱処理された処理物の細分化処理が行われる。 破砕された処理物は、 処理物送り 装置にのり熱交換器 (装置) へ移動され、 熱の蒸気への吸収処理がなされ、 処理 物の低温化が達成される。 冷却器は、 蒸気の凝縮及ぴ圧力の調整のために機能す る。 Waste is injected from the waste inlet and moves with the superheated steam through the inner cylinder of the body under contact with the rotation by the motor (M) of the inner cylinder. For this movement, it is preferable to install a feeding device consisting of a spirally wound projection in the inner cylinder. The heat-treated material moves from left to right in Fig. 2, and a crusher is installed at the outlet, and the heat-treated material is subdivided. The crushed processed material is sent to the processed material. After being transferred to the heat exchanger (equipment), the heat is absorbed by the steam and the temperature of the processed material is reduced. The cooler functions for steam condensation and pressure regulation.
(伝熱促進効果)  (Heat transfer promotion effect)
①蒸気の加熱  ① Steam heating
本装置によれば、 I Hヒータからの蒸気が、 高温に誘導加熱された外筒 (磁性 体部における加熱) と非磁性体部を通過して誘導加熱されたパンチングメタルの 内筒との隙間空間において、 螺旋構造の蒸気送り装置と循環ファンによって強制 循環され、 短時間に昇温される。 昇温された再循環蒸気と I Hヒータから供給さ れた蒸気は回転モーター (M) によって回転供給され、 内筒内で強制乱流化され た。  According to this device, the gap space between the outer cylinder (heated in the magnetic body) heated by induction heating to a high temperature and the inner cylinder of the punched metal heated by induction heating through the non-magnetic body. In, the water is forcibly circulated by a spiral structure steam feeder and circulation fan, and the temperature is raised in a short time. The heated recirculated steam and the steam supplied from the IH heater were rotationally supplied by a rotating motor (M), and were forcedly turbulent in the inner cylinder.
②処理物に対する高速加熱  ②High-speed heating of processed material
例えば、 処 a物 の加熱量 Qは、 高温誘導加熱されたパンチングメタルの内 筒からの放射伝熱と伝導伝熱、 ス一パー蒸気からの乱流強制伝熱およぴ放射伝熱 により供給され、 この Qにより、 10kWの高周波電磁誘導加熱コイルを使った場 合、 短時間 (約 3分) で約 1000°Cに昇温された。  For example, the heating quantity Q of the processing object is supplied by radiative and conductive heat transfer from the inner cylinder of punched metal heated at high temperature, turbulent forced heat transfer from spar steam and radiant heat transfer. With this Q, the temperature was raised to about 1000 ° C in a short time (about 3 minutes) when a 10kW high-frequency electromagnetic induction heating coil was used.
(実施例 4 ) (Example 4)
図 3は、 スクリュー型の加熱装置を示す。 この装置は、 スーパー蒸気発生装置 によって発生された高熱蒸気が、 さらに輻射熱、 対流熱、 及び伝導熱によって効 率的に処理廃棄物に伝わり、 処理の効率化を達成した。  Figure 3 shows a screw-type heating device. In this system, the high-temperature steam generated by the super-steam generator is efficiently transmitted to the treated waste by radiant heat, convective heat, and conductive heat, achieving more efficient treatment.
(装置の構成)  (Device configuration)
スクリユー型の加熱装置の構成は、 円筒と円筒内に設置されたスクリユー状の 螺旋板を基本構造とする。スクリユー状の螺旋板は、モーター(M)で回転され、 処理廃棄物がスクリュー状の螺旋板の回転に伴い左から右に移動される。 胴体の 円筒は、 全部が誘導加熱体 (磁性体)によって構成され、 その円筒の周りに設置さ れた誘導加熱コイル (約 25kHzの高周波電磁誘導加熱コイル: 10kW) によって 胴全体が誘導加熱される。 処理廃棄物と過熱蒸気は、 胴体内部に設置されたスク リュウ式の送り装置 (スクリュー状の螺旋板) で左から右へと移動される。 蒸気 は、 循環ファンで再循環系にふされ、 図 3の左部の廃棄物投入ロ及ぴ胴体部左側 から再利用される。 過熱蒸気を I Hヒータで作り胴体左部からの流入、 処理廃棄 物の破碎処理、 熱交換器による蒸気の再利用は実施例 3と同様である。 The basic structure of the screw-type heating device is a cylinder and a screw-shaped spiral plate installed in the cylinder. The screw-shaped spiral plate is rotated by a motor (M), and the treated waste is moved from left to right with the rotation of the screw-shaped spiral plate. The cylinder of the fuselage is entirely composed of an induction heating body (magnetic material), and an induction heating coil (about 25 kHz high-frequency electromagnetic induction heating coil: 10 kW) is installed around the cylinder. The entire body is induction heated. Treated waste and superheated steam are moved from left to right by a screw-type feeder (screw-shaped spiral plate) installed inside the fuselage. The steam is sent to the recirculation system by a circulation fan, and is reused from the waste input port on the left side of Fig. 3 and the left side of the fuselage. The superheated steam is produced by the IH heater, the inflow from the left part of the fuselage, the processing waste is crushed, and the steam is reused by the heat exchanger as in the third embodiment.
(伝熱促進効果)  (Heat transfer promotion effect)
①蒸気の加熱  ① Steam heating
本装置によれば、 高温に誘導加熱された胴体 (円筒) からの放射熱、 スクリュ 一状の螺旋板でかく乱された蒸気による胴体内壁への直接接触による伝導伝熱、 蒸気により高温化したスクリユー状の螺旋板表面に攪乱した蒸気が接触すること による伝導伝熱、 及ぴスクリユー状の螺旋板からの放射伝熱によって蒸気の加熱 がおこなわれた。  According to this device, radiant heat from the body (cylinder), which is induction-heated to a high temperature, conduction heat transfer by direct contact with the inside wall of the body due to the steam disturbed by the screw-shaped spiral plate, and the screw heated by the steam The steam was heated by conduction heat transfer due to the contact of the disturbed steam with the surface of the spiral plate, and radiative heat transfer from the screw-like spiral plate.
②処理物への高速加熱  ②High-speed heating of processed material
投入された処理物は、 送り装置により攪拌され、 その際に送り装置からの強制 伝導伝熱と放射伝熱を受け、 同時に胴体からの強制伝導伝熱と放射伝熱を受けな がら、 さらに強制かく乱された蒸気による乱流強制対流伝熱と放射伝熱を受け、 短時間で高昇温した。 以上の結果より、 本発明の手段からなる装置は医療廃棄物の滅菌処理に有効で あることがわかった。 産業上の利用可能性  The input material is agitated by the feeder and receives forced and radiant heat from the feeder.At the same time, it receives further forced and radiant heat from the fuselage. Due to the turbulent forced convection heat transfer and radiant heat transfer by the disturbed steam, the temperature rose to a high level in a short time. From the above results, it was found that the apparatus comprising the means of the present invention was effective for sterilizing medical waste. Industrial applicability
本発明は、 蒸気を、 高周波電磁誘導加熱によって、 超高温化し、 調整されたス 一パー蒸気雰囲気下、 系の圧力調整条件下、 及び系の空気若しくは酸素含有量の 調整条件下で、 得られた超高温化条件を使って、 滅菌又はウィルス不活化処理の ための装置を提供することを達成し、 滅菌又はウィルス不活化処理が安価に簡便 に超特急で確実に行える手段を提供した。 本発明の装置は、 超小型 ·軽量化が達 成され、 可動式で省エネルギー型である。 また、 所望圧 '酸素濃度調整機能を担 持しており、 安全である。 The present invention obtains steam under ultra-high temperature by high-frequency electromagnetic induction heating, under a controlled super-steam atmosphere, under system pressure adjustment conditions, and under system air or oxygen content adjustment conditions. By using the ultra-high temperature condition, it has been possible to provide an apparatus for sterilization or virus inactivation treatment, and to provide a means for performing sterilization or virus inactivation treatment inexpensively, easily, ultra-express and reliably. The device of the present invention achieves ultra-compact and lightweight It is movable and energy saving. It also has the function of adjusting the desired pressure and oxygen concentration, and is safe.

Claims

請求の範囲 The scope of the claims
1 . 約 2 0〜3 O KH zの高周波電磁場誘導加熱手段によって超高温化したスー パー蒸気が循環系において繰り返し利用可能であり、 調整されたスーパー蒸気雰 囲気下、系の圧力調整条件下、及び系の空気若しくは酸素含有量の調整条件下で、 約 3 0 0〜1 3 0 0 °Cの超高温化条件が達成されることを特徴とする滅菌用装置、 又はウィルス若しくは遺伝子組換え関連物の不活化用装置。  1.Super steam of about 20 to 3 O KHz, super-heated to high temperature by means of high-frequency electromagnetic field induction heating, can be repeatedly used in the circulation system. And sterilization equipment characterized in that ultra-high temperature conditions of about 300 to 130 ° C are achieved under controlled conditions of the air or oxygen content of the system, or related to virus or genetic modification. Equipment for inactivating objects.
2 . 蒸気発生手段で発生させた蒸気が、 高周波電磁誘導加熱手段により超高温に 加熱されたスーパー蒸気発生装置による輻射熱、 対流熱、 及び伝導熱によって、 超高温化が達成される請求項 1に記載の装置。  2. The ultra-high temperature is achieved by the radiant heat, convection heat, and conduction heat of the super-steam generator in which the steam generated by the steam generating means is heated to an extremely high temperature by the high-frequency electromagnetic induction heating means. The described device.
3 . 蒸気発生手段が、 沸騰又は蒸発手段によって蒸気を発生する請求項 1又は 2 に記載の装置。  3. The apparatus according to claim 1, wherein the steam generating means generates steam by boiling or evaporating means.
4 . 系が、 蒸気回収、 熱回収、 蒸気源補給、 圧力調整、 空気又は酸素含有量調整 の各機能の少なくとも 1を備える循環系である請求項 1〜 3の何れか一に記載の  4. The system according to any one of claims 1 to 3, wherein the system is a circulation system having at least one of the functions of steam recovery, heat recovery, steam source replenishment, pressure regulation, air or oxygen content regulation.
5 . 空気又は酸素含有量が、 爆発限界内濃度である請求項 1〜4の何れか一に記 載の装置。 5. The apparatus according to any one of claims 1 to 4, wherein the air or oxygen content is within the explosion limit.
6 . 吸引手段によって、 圧力調整及び 又は発生ガス調整が行われる請求項 1〜 5の何れか一に記載の装置。  6. The apparatus according to any one of claims 1 to 5, wherein pressure adjustment and / or generated gas adjustment is performed by the suction means.
7 . 処理対象物が、 スーパー蒸気の調整された雰囲気下でスーパー蒸気発生装置 中に投入される請求項 1〜6の何れか一に記載の装置。  7. The apparatus according to any one of claims 1 to 6, wherein the object to be treated is charged into a super steam generator under an atmosphere in which super steam is adjusted.
8 . 請求項 1〜 7の何れか一に記載の装置を使用する滅菌方法、 又はウィルス若 しくは遺伝子組換え関連物の不活化方法。  8. A sterilization method using the device according to any one of claims 1 to 7, or a method for inactivating a virus or a gene-related product.
PCT/JP2003/000247 2002-01-15 2003-01-15 Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor WO2003059399A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003203228A AU2003203228A1 (en) 2002-01-15 2003-01-15 Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor
JP2003559559A JPWO2003059399A1 (en) 2002-01-15 2003-01-15 Apparatus for sterilization using super steam, or apparatus for inactivating virus or gene recombination related products, and inactivation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002006020 2002-01-15
JP2002-6020 2002-01-15

Publications (1)

Publication Number Publication Date
WO2003059399A1 true WO2003059399A1 (en) 2003-07-24

Family

ID=19191175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000247 WO2003059399A1 (en) 2002-01-15 2003-01-15 Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor

Country Status (3)

Country Link
JP (1) JPWO2003059399A1 (en)
AU (1) AU2003203228A1 (en)
WO (1) WO2003059399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129765A (en) * 2004-11-05 2006-05-25 Tokyo Rika Kikai Kk Culture apparatus and method for sterilizing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139753A (en) * 1980-04-02 1981-10-31 Toyo Seikan Kaisha Ltd Method and apparatus for preventing dew condensation of feeding cover group in cover sterilizing treating device
JPH0928773A (en) * 1995-07-14 1997-02-04 Tlv Co Ltd Steam heater
JPH09266943A (en) * 1996-02-01 1997-10-14 Miura Co Ltd Operation of sterilizer
JP2000051324A (en) * 1998-10-15 2000-02-22 Toyo Netsu Kogyo Kk Sterilizing device using atmospheric pressure steam
JP2001187118A (en) * 1999-12-28 2001-07-10 Thermo Electron Kk Method and apparatus for medical treatment
JP2002272818A (en) * 2001-03-19 2002-09-24 Sanyo Electric Co Ltd High-pressure steam sterilizer
JP2003102810A (en) * 2001-09-28 2003-04-08 Kazumasa Yokoyama Sterilization method and inactivation method of virus/ gene recombination related substance using superheated steam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139753A (en) * 1980-04-02 1981-10-31 Toyo Seikan Kaisha Ltd Method and apparatus for preventing dew condensation of feeding cover group in cover sterilizing treating device
JPH0928773A (en) * 1995-07-14 1997-02-04 Tlv Co Ltd Steam heater
JPH09266943A (en) * 1996-02-01 1997-10-14 Miura Co Ltd Operation of sterilizer
JP2000051324A (en) * 1998-10-15 2000-02-22 Toyo Netsu Kogyo Kk Sterilizing device using atmospheric pressure steam
JP2001187118A (en) * 1999-12-28 2001-07-10 Thermo Electron Kk Method and apparatus for medical treatment
JP2002272818A (en) * 2001-03-19 2002-09-24 Sanyo Electric Co Ltd High-pressure steam sterilizer
JP2003102810A (en) * 2001-09-28 2003-04-08 Kazumasa Yokoyama Sterilization method and inactivation method of virus/ gene recombination related substance using superheated steam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129765A (en) * 2004-11-05 2006-05-25 Tokyo Rika Kikai Kk Culture apparatus and method for sterilizing the same

Also Published As

Publication number Publication date
JPWO2003059399A1 (en) 2005-05-19
AU2003203228A1 (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US8940245B2 (en) Apparatus and method for sterilizing items
JP6975148B2 (en) Fluid sterilization system and method
JPWO2006016620A1 (en) Sterilization method and sterilization apparatus
KR20000070649A (en) Apparatus and method for disposal of infectious and medical waste
US8945468B2 (en) Apparatus and method for sterilizing items
CN211751295U (en) Air sterilizing device with heating device
JP3835551B2 (en) Treatment equipment using atmospheric superheated steam as a heat source
RU152576U1 (en) DEVICE FOR THERMAL DISINFECTION AND DESTRUCTION OF MEDICAL WASTE
KR101867904B1 (en) Evaporator device for sterilant
KR102381979B1 (en) Wastewater Sterilization System and Wastewater Sterilization Method Using
WO2003059399A1 (en) Sterlization apparatus or inactivation apparatus for virus or genetic modification-related material using super steam and inactivation method therefor
JP4489887B2 (en) Medical treatment equipment
JP2003175094A (en) Device for sterilizing and treating waste by microwave
US20150057650A1 (en) Device and method for inducing blood coagulation and reducing infection with sterilized heated air and locally directed light or other electromagnetic radiation
JP2003102810A (en) Sterilization method and inactivation method of virus/ gene recombination related substance using superheated steam
RU179774U1 (en) Apparatus for thermal disinfection and destruction of medical waste
JP2516495B2 (en) Medical waste treatment equipment
JPH0557268A (en) Treatment of medical waste and equipment
WO2002004033A1 (en) Method for sterilization and deactivation of virus/gene recombination associated material utilizing super steam
JP2507479Y2 (en) Medical waste treatment equipment
RU2664365C1 (en) Device for thermal disinfection and destruction of medical wastes
BR102021006262A2 (en) MICROWAVE HEAT TREATMENT UNIT FOR MICROBIOLOGICAL INACTIVATION OF BIOLOGICALLY UNSAFE WASTE
JP2009285020A (en) Sterilizer
CN109481702A (en) A kind of sterilization method of medical instrument
JPH0523657A (en) Treating device for medical treatment waste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003559559

Country of ref document: JP

122 Ep: pct application non-entry in european phase