WO2003058642A1 - Reacteur a faible temperature utilisant le combustible epuise d'une centrale nucleaire - Google Patents

Reacteur a faible temperature utilisant le combustible epuise d'une centrale nucleaire Download PDF

Info

Publication number
WO2003058642A1
WO2003058642A1 PCT/CN2003/000006 CN0300006W WO03058642A1 WO 2003058642 A1 WO2003058642 A1 WO 2003058642A1 CN 0300006 W CN0300006 W CN 0300006W WO 03058642 A1 WO03058642 A1 WO 03058642A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
spent fuel
reactor
fuel
water container
Prior art date
Application number
PCT/CN2003/000006
Other languages
English (en)
French (fr)
Inventor
Yulun Li
Fubang Ma
Yinghua Wu
Original Assignee
Nuclear Power Institut Of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN02100022A external-priority patent/CN1355540A/zh
Application filed by Nuclear Power Institut Of China filed Critical Nuclear Power Institut Of China
Priority to AU2003203320A priority Critical patent/AU2003203320A1/en
Priority to US10/500,809 priority patent/US20050069074A1/en
Publication of WO2003058642A1 publication Critical patent/WO2003058642A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/14Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being substantially not pressurised, e.g. swimming-pool reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a nuclear reactor technology, in particular to a low-temperature nuclear reactor using spent fuel of a nuclear power plant as the nuclear fuel of the reactor. Background technique
  • Spent fuel at a nuclear power plant is fuel that has reached the expected value but has not yet reached the limit and cannot meet nuclear power plant operation requirements, and is therefore unloaded.
  • the spent fuel at nuclear power plants does not undergo post-processing, and only undergoes final disposal after intermediate storage; After processing, the remaining uranium-235 and the generated plutonium-239 in the spent fuel are extracted into MOX elements, which are then used as fuel for nuclear power plants.
  • the uranium resource utilization rate of the spent fuel that passed the "one-off” policy is not high; the remaining uranium-235 and plutonium-239 generated after reprocessing are used as fuel for nuclear power plants, which improves the utilization rate of uranium resources, but the spent fuel Post-processing costs are high.
  • the present invention utilizes spent fuel to form the core of a low-parameter heating reactor to utilize its fission energy.
  • a low-temperature reactor refers to a reactor whose core is composed of a fuel assembly, a normal-temperature and normal-pressure coolant, and a moderator.
  • the normal temperature and normal pressure coolant flows through the fuel assembly and takes the heat generated by the fission out of the core, and provides users with low-temperature hot water through the heat exchanger.
  • the water layer is mainly used for moderation and radiation shielding.
  • the core is composed of fuel assembly, core upper grid plate, core lower grid plate, control rod and its driving mechanism. The fuel assembly is fixed by the core upper and lower grid plates, and the control rod is inserted into the core from above the core.
  • the upper end of the control rod is connected to its driving mechanism, and the core is placed in the core water container.
  • the core water container is provided with a coolant inlet pipe and an outlet pipe, and a coolant inlet pipe and an outlet pipe. It is connected to the heat exchanger through pipes, and the core heat is taken out by the coolant, and hot water without any radioactivity is supplied to the heating network.
  • Low-temperature reactors designed and constructed in the world can be divided into two types.
  • One is a metal shell pressurized type, such as a natural circulating boiling water reactor designed and constructed in West Germany and Russia.
  • the core is housed in a pressure-resistant shell and its internal structure. It is similar to a power reactor; the other is a pressurized prestressed concrete shell type, such as a low-pressure pressurized water reactor designed by Sweden.
  • the above domestic and foreign low-temperature reactors use unirradiated "fresh" nuclear fuel.
  • the purpose of the present invention is to provide a low-temperature and low-pressure nuclear reactor that directly uses spent fuel of a nuclear power plant to perform seawater desalination, nuclear heating, and isotope production. It has the characteristics of low construction cost, safety and reliability.
  • a nuclear power plant spent fuel low temperature nuclear reactor The core is composed of a fuel assembly, a core upper and lower grid plate, a control rod and a driving mechanism thereof, and the fuel assembly is fixed by the core upper and lower grid plates.
  • the control rod is inserted from the upper part of the core into the grid formed by the core upper and lower grid plates and the fuel assembly.
  • the upper end of the control rod is connected to its driving mechanism.
  • the core is set in the core water container, and the core water container is provided with a coolant inlet.
  • the pipe and the outlet pipe, the coolant inlet pipe and the outlet pipe are connected to the heat exchanger through a pipeline, and the fuel assembly of the core is composed of spent fuel of a nuclear power plant.
  • the upper part of the core water container is provided with a sealing cap, and the sealing cap is filled with a certain pressure of gas to form a pressurized gas cavity to form a primary gas barrier.
  • an upper part of the core water container is provided with an airtight barrier, which constitutes Secondary gas barrier.
  • the coolant inlet pipe is provided with a voltage stabilizer or a large pool to increase the hydrostatic pressure at the core outlet to maintain the core outlet pressure.
  • the core water container is provided with an underwater loading and unloading channel, which is in communication with the spent fuel storage pool. The underwater loading and unloading channel is used to replace the material to replace the additional water layer solution.
  • a waste heat cooler is provided in the spent fuel storage pool, and a solenoid valve is arranged on the connecting pipeline to form a passive waste heat extraction system.
  • the spent fuel of a nuclear power plant is directly used as the nuclear fuel of a low-temperature and low-pressure nuclear reactor.
  • the core formed can not only be critical, but also have considerable reserve reactivity, which can meet operational requirements. These backup reactivity mainly comes from:
  • the temperature drop can release positive reactivity
  • plutonium-149 and plutonium-151 absorb neutrons to sterilize and release positive reactivity, which extends the operating life.
  • the core loading nuclear design and thermal calculations show that the low-temperature, low-pressure nuclear reactor composed of spent fuel in nuclear power plants has the following safety characteristics: 1.
  • the temperature coefficient is negative under any conditions from cold to hot.
  • the composed core has a large volume and low power density, which is only 1/12 to 1/15 of the power density of nuclear power plants. At the rated power, the maximum temperature of the fuel core is only about 400 degrees. In addition to the inherent safety of the reactor and the use of passive safety facilities, the reactor core will not melt under severe accidents.
  • the reactor adopts more than one airtight barrier to prevent the radioactive gas from diffusing into the atmosphere, plus the effective disposal of the radioactive gas, it meets the level of "no radioactive consequences" when it meets the environmental impact stipulated by regulations.
  • the neutron chain reaction device that directly uses the spent fuel of nuclear power plants as nuclear fuel has increased the value of uranium resources and does not generate new spent fuel. At the same time, it is only necessary to properly inspect the fuel components discharged from the nuclear power plant. It can be packed, which reduces the fuel cost, and significantly reduces the investment and operating costs of the reactor, which has good economic and environmental protection effects.
  • the reactor has low power density, adopts passive residual heat to evacuate, and the core does not melt under severe accidents. It has at least one gas-tight barrier to meet the requirements of "no radioactive consequences”. It has the same safety performance and high safety. A high pile type.
  • the generated thermal energy can be used for desalination, centralized heating in urban areas, and suitable for the production of carrier-free radioisotopes.
  • FIG. 1 Schematic diagram of the structure of a nuclear power plant's spent fuel cryogenic nuclear reactor (pressurizer pressurization).
  • the invention takes a heating reactor with a thermal power of 200MW as an example, and its structure is shown in FIG. 1.
  • the core water container 8 and the spent fuel storage pool 15 surrounded by the concrete biological shielding layer 7 are provided with a coolant inlet pipe 9 and a coolant outlet pipe 10 at the upper part of the core water container 8, and the side of the core water container 8 is provided with An underwater loading and unloading channel 14 communicates with the spent fuel reservoir 15 and the reactor is sealed by a plug during operation to ensure the isolation between the core water container and the spent fuel storage pool.
  • the spent fuel storage pool 15 can be used to transport spent fuel.
  • the container and the spent fuel storage shelf are provided with a discharging trolley 16, and the opening is opened during discharging to realize the transfer of the spent fuel assembly.
  • the concrete biological shielding layer 7 is covered with stainless steel to ensure that the pool does not leak water.
  • the core container 4 is provided below the core water container 8.
  • the core is composed of a fuel assembly 3, an upper grid plate 5, a lower core grid 2, a control rod and a driving mechanism 6, and the fuel assembly 3 is fixed through the upper and lower grid plates 5, 2 of the core.
  • the upper part of the core is inserted into the grid formed by the upper and lower grid plates of the core, and the upper end of the control rod is connected to its driving mechanism.
  • the core is set in the core container 4 under the core water container 8, and the fuel assembly is discharged from the nuclear power plant. Spent fuel assemblies, the arrangement status of fuel assemblies in the core is determined according to the different burnup depths of each group of spent fuel assemblies.
  • the spent fuel assemblies with deep burnups are placed in the center of the core to burn up
  • Shallow spent fuel components are arranged around the core of the reactor, and a graphite reflective layer is placed around the core if necessary to reduce neutron leakage and improve backup reactivity.
  • Spent fuel assemblies are arranged in reverse.
  • the fuel assembly of the core is inserted on the lower grid plate 2 of the core, and is then pressed and fixed by the upper grid plate 5 of the core to prevent the fuel assembly from moving up and down.
  • the lower end of the core is supported by the support skirt 1.
  • Figure 1 shows the static pressure type of the regulator.
  • a coolant regulator 13 is connected to the coolant inlet pipe 9 and the regulator 13 is placed at a higher position to form the core outlet pressure.
  • the core container 4 in the lower part of the core water container 8 is completely filled with water, and the core container 4 and the cooling circuit form a primary boundary to prevent the leakage of radioactive water.
  • the driving mechanism is fixed on the sealing cover 11 provided on the upper part of the core water container, and is connected to the control rod.
  • An airtight barrier 12 is also provided on the top of the core water container 8. The area between the sealing cover 11 and the airtight barrier 12 of the core water container 8 draws a negative pressure to form a gas barrier to ensure that the radioactive gas does not Environmental leakage.
  • a waste heat cooler 19 is provided in the spent fuel reservoir, and a solenoid valve 18 is provided on the connecting pipe. When the external power supply loses power, the solenoid valve 18 is automatically turned off and opened.
  • the waste heat cooler 19 takes hot water inside the tube and is cooled by the water in the spent fuel storage pool to form a double natural circulation heat exchange. When the temperature is too high, water evaporates to take away heat, and it may also be cooled.
  • Embodiment 1 Another core structure is aeration tank, and the core outlet pressure is formed by air pressure, and its structure is shown in FIG. 2.
  • a gas-tight lid 11 in the shape of a cap line is provided on the upper part of the core water container 8 to form a pressurized gas cavity 17 filled with a certain pressure of air or nitrogen or helium. Gas-tight barrier.
  • an airtight screen gap 12 is also provided on the top of the core water container 8 to constitute a secondary gas barrier.
  • a negative pressure is drawn in the area between the gas seal cover 11 and the airtight barrier 12 on the upper part of the core water container 8, To ensure that radioactive gases are not leaked to the environment.
  • the present invention is provided with a gas circulation circuit (not shown in the figure) to synthesize hydrogen and oxygen and remove iodine. Inert gas.
  • the core is cooled by cooling water through the support skirt, the core lower grid, the fuel assembly, and the stack.
  • the grid on the core flows out of the core, flows through the core outlet pipe to a primary heat exchanger, and the water pump returns to the core inlet, forming a forced cycle.
  • the heat of the primary water is transmitted to the intermediate circuit, and then to the third circuit through the secondary heat exchanger, and the hot water or steam can be used for heating or desalination.
  • the target can be placed in a control rod or an irradiation tube.
  • the device can run continuously for 600 full power days, and the heat generated from the fission of 121 spent fuel components can supply 5 million square meters for about 4 years;

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

核电站乏燃料低温核反应堆
技术领域
本发明涉及一种核反应堆技术, 具体地说是一种利用核电站 乏燃料作为本堆的核燃料的低温核反应堆。 背景技术
核电站乏燃料是燃耗达到预期值但尚未达到限值、 不能满足 核电站运行要求、 因而卸下的燃料。
核电站压水堆卸出的乏燃料組件一般还剩余约 0.9%-1.1 % 的铀 -235,新生成约 0.6%的钚 -239和 0.15%的钚 -241等可裂变物 质, 这是可利用的资源。
目前, 世界上核电站乏燃料管理有二种基本政策, 一是" 一 次性" 通过政策, 核电站的乏燃料不经后处理, 只经过中间储存 后直接进行最终处置; 二是乏燃料后处理政策, 经后处理把乏燃 料中剩余的铀 -235和生成的钚 -239提取出来制成 MOX元件, 再 用作核电站的燃料。 " 一次性"通过政策的乏燃料显然铀资源利 用率不高; 经后处理分离出的剩余铀 -235和生成的钚 -239再用作 核电站的燃料, 提高了铀资源利用率, 但乏燃料后处理成本很高。
为了充分利用这些资源, 加拿大、 韩国和美国等正在联合开 发一项技术, 将压水堆乏燃料芯块重新加工制成 CANDU燃料元 件, 在重水堆核电站里继续使用, 即 " DUPTC" 计划。 其技术 工艺过程很复杂, 成本很高, 该计划正处于开发中。
此外, 也有对乏燃料衰变热和 γ射线利用的探讨。
核电站运行实践和燃料组件辐照考验表明, 乏燃料燃耗没有 达到限值, 因此, 只要对乏燃料组件进行适当的检查和评估, 乏 燃料还是可以直接再利用的。 本发明利用乏燃料, 组成低参数供 热反应堆的堆芯, 来利用它的裂变能。
低温堆是指其堆芯由燃料组件、 常温常压冷却剂和慢化剂組 成的反应堆。 常温常压冷却剂流经燃料组件将裂变产生的热量带 出堆芯, 通过热交换器为用户提供低温热水, 主要利用水层作中 了 -慢化和射线屏蔽。 堆芯由燃料组件、 堆芯上栅板、 堆芯下栅 板、 控制棒及其驱动机构组成, 燃料组件通过堆芯上、 下栅板固 定, 控制棒从堆芯上部插入堆芯上、 下栅板和燃料组件构成的栅 格内, 控制棒上端与其驱动机构连接, 堆芯放在堆芯水容器内, 堆芯水容器设有冷却剂入口管和出口管, 冷却剂入口管和出口管 通过管道与热交换器连接, 通过冷却剂将堆芯热量带出, 向热网 供给无任何放射性的热水。
世界上设计与建造的低温堆可分成两种类型, 一种为金属壳 式加压型, 如西德、 俄罗斯设计建造的自然循环沸水堆, 堆芯装 在耐压壳内, 其堆内结构与动力堆相近; 另一种为承压预应力混 凝土壳式, 如瑞典设计的低压压水堆。 在国内也有两种堆型, 一 为压壳式, 一为池式。 以上各种国内、 外的低温堆都是利用未辐 照过的 " 新鲜" 核燃料。
利用核能供热是解决采暖与海水淡化的一个重要手段。 尽管目前 国内外低温供热核反应堆概念设计种类很多, 但受制于经济性和 安全性还未被广泛接受, 因此要寻求一种建造成本低又安全可靠 的堆型, 这是决定核能供热堆推广的关键。 本发明能很好地解决 低温供热堆的经济性和安全性问题。 发明内容
本发明的目的在于提供一种直接利用核电站乏燃料的低温、 低压核反应堆, 进行海水淡化、 核供热以及兼顾同位素生产, 具 有建造成本低、 安全可靠的特点。
实现本发明目的的技术方案: 一种核电站乏燃料低温核反应 堆, 堆芯由燃料组件、 堆芯上、 下栅板、 控制棒及其驱动机构组 成, 燃料组件通过堆芯上、 下栅板固定, 控制棒从堆芯上部插入 堆芯上、 下栅板和燃料组件构成的栅格内, 控制棒上端与其驱动 机构连接, 堆芯设在堆芯水容器内, 堆芯水容器设有冷却剂入口 管和出口管, 冷却剂入口管和出口管通过管道与热交换器连接, 堆芯的燃料组件是由核电站乏燃料組成。 堆芯水容器的上部设有 密封盖, 密封盖内充有一定压力的气体, 形成一加压气腔, 构成 一次气体屏障; 此外, 在堆芯水容器的上部还设有气密屏障, 构 成二次气体屏障。 冷却剂入口管上设稳压器或大型水池以提高堆 芯出口水静压维持堆芯出口压力。 在堆芯水容器设有水下装卸料 孔道, 该孔道与乏燃料贮存水池相通, 通过水下装卸料孔道换料 取代了附加换料水层方案。在乏燃料贮存水池内设有余热冷却器, 连接管道上设有电磁阀, 构成非能动的余热导出系统。
核电站的乏燃料直接用作低温、 低压核反应堆的核燃料, 所 构成的堆芯不仅可以临界, 而且有相当的后备反应性, 可满足运 行要求。 这些后备反应性主要来源于:
1.由核电站高参数变为低参数,温度下降可释放出正反应性;
2.功率密度降低(中子通量降低) , 平衡氙毒吸收反应性减 小也可释放正反应性;
3.必要时在堆芯周围加适当的反射层以减少中子泄漏提高后 备反应性;
4.由于乏燃料組成的堆芯含有 " 渣" , 在运行中钐 -149、 钐 -151吸收中子消毒释放出正反应性, 使运行寿期得到延长。
堆芯装载核设计及热工计算表明, 核电站乏燃料组成的低 温、 低压的核反应堆具有下述安全特性: 1.温度系数从冷态到热态的任何工况下均为负值。
2.组成的堆芯体积大, 功率密度低, 只是核电站功率密度的 1/12 ~ 1/15。 在额定功率下, 燃料芯体最高温度只有 400度左右, 加上该堆的固有安全性以及采取非能动的安全设施, 在严重事故 下堆芯不会溶化。
3.由于本堆采取防止放射性气体向大气扩散的一道以上的气 密屏障, 再加上放射性气体的有效处置, 满足法规规定的对环境 的影响为 " 无放射性后果" 水平。
本发明的效果如下:
1.将核电站乏燃料直接再用作核燃料的中子链式反应装置, 提高了铀资源的利用价值, 并且不产生新的乏燃料, 同时由于只 需对核电站卸出的燃料组件进行适当检查即可装堆, 减少了燃料 费, 并使反应堆的投资和运行成本明显下降, 具有很好的经济性 和环保效果。
2.本堆具有功率密度低, 采用非能动余热导出, 在严重事故 下堆芯不熔化; 设有至少一道气体密封屏障, 满足 " 无放射性后 果" 要求, 是具有同有安全性能、 安全性很高的一种堆型。
3.由于核电站乏燃料组成的堆芯, 具有相当的后备反应性, 完全满足核能供热的要求, 所产生的热能可用于海水淡化、 城市 地区集中供热以及适用于生产无载体放射性同位素。
4.由于技术上采取了特殊的水下装卸料孔道, 取代了常用的装卸 料系统, 简化了装卸料工艺和设备, 方便操作, 提高了安全性。 附图概述
图 1.核电站乏燃料低温核反应堆的结构示意图 (稳压器加 压) 。
图 2.核电站乏燃料低温核反应堆的结构示意图 (气腔加压) 图中:
1.支承裙, 2.堆芯下栅板, 3.燃料组件, 4.堆芯容器, 5.堆芯上栅 板, 6.控制棒及其驱动机构, 7.混凝土生物屏蔽, 8.堆芯水池, 9. 冷却剂入口管, 10.冷却剂出口管, 11.密封盖, 12.二次气密屏障, 13.稳压器, 14.卸料孔道, 15.乏燃料贮存水池, 16.卸料小车, 17. 加压气腔, 18.电磁阀, 19.余热冷却器。 最佳实施方式
实施例 1.
本发明以一座热功率为 200MW的供热堆为例, 其结构如图 1所示。 用混凝土生物屏蔽层 7围成的堆芯水容器 8和乏燃料贮 存水池 15, 堆芯水容器 8的上部设有冷却剂入口管 9和冷却剂出 口管 10, 堆芯水容器 8的侧面设有一水下装卸料孔道 14与乏燃 料^存水池 15相通, 反应堆运行时由密封塞塞上, 保证堆芯水容 器与乏燃料储存水池之间隔离,乏燃料贮存水池 15中可放置乏燃 料运输容器以及乏燃料贮存隔架, 并设有卸料小车 16, 卸料时孔 道打开, 实现乏燃料组件的转运。 混凝土生物屏蔽层 7均用不锈 钢覆面, 以确保水池不漏水。 堆芯容器 4设在堆芯水容器 8的下 方。 堆芯由燃料组件 3、 堆芯上栅板 5、 堆芯下栅板 2、 控制棒及 其驱动机构 6组成, 燃料組件 3通过堆芯上、 下栅板 5、 2安装固 定, 控制棒从堆芯上部插入堆芯上、 下栅板构成的栅格内, 控制 棒上端与其驱动机构连接, 堆芯设在堆芯水容器 8下的堆芯容器 4 内, 燃料组件是从核电站卸出的乏燃料組件, 燃料组件在堆芯 的布置状态根据各組乏燃料组件燃耗深度的不同来确定, 当需后 备反应性时, 将燃耗深的乏燃料组件布置在堆芯的中心, 燃耗浅 的乏燃料组件布置在堆芯外围, 必要时在堆芯周围设石墨反射层 以减少中子泄漏提高后备反应性。 当需展平径向功率分布时, 则 乏燃料组件相反布置。 堆芯的燃料组件插在堆芯下栅板 2上, 再 由堆芯上栅板 5压紧固定, 防止燃料组件上下窜动。 堆芯的下端 由支撑裙 1支撑。 堆芯结构有两种, 图 1为稳压器静压式, 冷却 剂入口管 9上连接一稳压器 13, 将稳压器 13放在较高位置, 形 成堆芯出口压力。堆芯水容器 8下部的堆芯容器 4内全部充满水, 堆芯容器 4及冷却回路构成一次边界, 阻止放射性水外漏。 驱动 机构固定在堆芯水容器上部设有的密封盖 11 上, 并于控制棒相 连。 在堆芯水容器 8的顶部还设有一个气密屏障 12, 堆芯水容器 8的密封盖 11与气密屏障 12之间的区域抽负压, 构成一道气体 屏障, 以保证放射性气体不向环境外泄。 在乏燃料] 存水池内设 有余热冷却器 19, 连接管道上设有电磁阀 18。 在外电源失电时, 电磁阀 18 自动断电打开, 余热冷却器 19管内走热水, 由乏燃料 贮存水池中的水进行冷却, 构成双自然循环换热, 乏燃料贮存水 池为最终热阱, 温度过高时水蒸发带走热量, 也可能动冷却。
实施例 2.
与实施例 1不同在于, 另一种堆芯结构为堆水池充气, 利用 气压形成堆芯出口压力, 其结构如图 2所示。 在堆芯水容器 8的 上部设有状如帽行的一个气体密封盖 11, 形成加压气腔 17, 充有 一定压力的空气或氮气或氦气, 下部为水池的水位波动区, 构成 一次气体密封屏障。 同样, 在堆芯水容器 8的顶部还设有一个气 密屏隙 12, 构成二次气体屏障, 堆芯水容器 8上部的气体密封盖 11 与气密屏障 12之间的区域抽负压, 以保证放射性气体不向环 境外泄。
为了消除密封盖内由水分解产生的氢、 氧气体以及由燃料裂 变产生的气态碘、放射性惰性气体,本发明设有气体循环回路(本 图未标出) , 使氢、 氧合成以及去除碘、 惰性气体。
堆芯的冷却由冷却水经支撑裙、 堆芯下栅板、 燃料组件、 堆 芯上栅板流出堆芯, 通过堆芯出口管流向一次换热器、 水泵再流 回堆芯入口, 构成强迫循环。 一次水热量传给中间回路, 再经过 二次换热器传给三回路,该回路热水或汽可用于采暖或海水淡化。
本发明用于生产同位素时, 可将靶件置于控制棒或辐照管 内。
以秦山核电厂的乏燃料组成常温、 常压(水池表面为 1个大 气压、 平均温度低于 100°C ) 池堆为例, 采用 121 个乏燃料組件 (与秦山核电厂堆芯组件数相同) , 轻水作为冷却剂和漫化剂, 组成热功率为 200MW反应堆堆芯为例, 该中子链式反应装置的 有效倍增因子约 1.05, 该装置产生的热能、 中子和 Τ可在相关领域 应用。
( 1 )若为采暖目的设计该装置, 可连续运行 600满功率日, 121个乏燃料组件裂变产生的热量可供应 500万平方米约 4年;
( 2 ) 若为低温多效蒸馏法海水淡化提供低温蒸汽(72°C ) , 则可每日生产淡水(含盐量 5ppm高质量) 8万吨, 连续运动 600 满功能曰,则 121个乏燃料組件可总共生产 4800万吨高质量淡水。

Claims

1. 一种核电站乏燃料低温核反应堆, 其反应堆堆芯由燃料组 件、 堆芯上、 下栅板、 控制棒及其驱动机构组成, 燃料組件通过 堆芯上、 下栅板固定, 控制棒从堆芯上部插入堆芯上、 下栅板和 燃料組件构成的栅格内, 控制棒上端与其驱动机构连接, 堆芯设 在堆芯水容器内, 堆芯水容器设有冷却剂入口管和出口管, 冷却 剂入口管和出口管通过管道与热交换器连接, 其特征在于所述反 应堆堆芯的燃料是核电站乏燃料。
2. 如权利要求 1所述的核电站乏燃料低温核反应堆, 其特征 在于堆芯水容器的上部设有密封盖和 /或气密屏障, 构成至少一道 气体屏障。
3. 如权利要求 1所述的核电站乏燃料低温核反应堆, 其特征 在于冷却剂入口管上设稳压器或大型水池, 以提高堆芯出口水静 压维持堆芯出口压力。
4. 如权利要求 1所述的核电站乏燃料低温核反应堆, 其特征 在于在堆芯水容器设有水下装卸料孔道, 该孔道与乏燃料贮存水 池相通, 通过水下装卸料孔道换料取代了附加换料水层方案。
5. 如权利要求 1所述的核电站乏燃料低温核反应堆, 其特征 在于在乏燃料贮存水池内设有余热冷却器, 连接管道上设有电磁 岡, 构成非能动的余热导出系统。
PCT/CN2003/000006 2002-01-08 2003-01-06 Reacteur a faible temperature utilisant le combustible epuise d'une centrale nucleaire WO2003058642A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003203320A AU2003203320A1 (en) 2002-01-08 2003-01-06 A nuclear plant spent fuel low temperature reactor
US10/500,809 US20050069074A1 (en) 2002-01-08 2003-01-06 Nuclear plant spent fuel low temperature reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN02100022.0 2002-01-08
CN02100022A CN1355540A (zh) 2002-01-08 2002-01-08 核电站乏燃料低温核反应堆
CN02120704.6 2002-05-29
CNB021207046A CN1170290C (zh) 2002-01-08 2002-05-29 核电站乏燃料低温核反应堆

Publications (1)

Publication Number Publication Date
WO2003058642A1 true WO2003058642A1 (fr) 2003-07-17

Family

ID=25741089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000006 WO2003058642A1 (fr) 2002-01-08 2003-01-06 Reacteur a faible temperature utilisant le combustible epuise d'une centrale nucleaire

Country Status (4)

Country Link
US (1) US20050069074A1 (zh)
CN (1) CN1170290C (zh)
AU (1) AU2003203320A1 (zh)
WO (1) WO2003058642A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497209C1 (ru) * 2012-07-24 2013-10-27 Открытое Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Система аварийного расхолаживания ядерного реактора бассейнового типа
RU2501103C1 (ru) * 2012-07-24 2013-12-10 Открытое Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Система охлаждения активной зоны и отражателя ядерного реактора бассейного типа
CN112037950A (zh) * 2020-09-24 2020-12-04 中国核动力研究设计院 一种燃料棒裂变产物释放模拟装置及其使用方法
RU2769102C1 (ru) * 2021-06-14 2022-03-28 Виталий Алексеевич Узиков Пассивная система охлаждения ядерного реактора
RU2776024C1 (ru) * 2021-12-05 2022-07-12 Виталий Алексеевич Узиков Способ пассивного расхолаживания реакторной установки с реактором под давлением

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206930B (zh) * 2006-12-22 2011-06-15 深圳中广核工程设计有限公司 多堆联合核燃料循环利用方法
KR20170038129A (ko) 2010-09-03 2017-04-05 아토믹 에너지 오브 캐나다 리미티드 토륨을 함유하는 핵연료 다발 및 그것을 포함하는 원자로
KR20170052701A (ko) 2010-11-15 2017-05-12 아토믹 에너지 오브 캐나다 리미티드 중성자 흡수제를 함유하는 핵연료
WO2012066368A1 (en) 2010-11-15 2012-05-24 Atomic Energy Of Canada Limited Nuclear fuel containing recycled and depleted uranium, and nuclear bundle and nuclear reactor comprising same
CN103377738A (zh) * 2012-04-27 2013-10-30 上海核工程研究设计院 一种液体淹没式乏燃料贮存系统
RU2497207C1 (ru) * 2012-07-24 2013-10-27 Открытое Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Ядерный реактор для производства изотопов
CN104898150B (zh) * 2015-05-04 2017-10-10 中广核核电运营有限公司 放射性检测设备及检测方法
CN105355244B (zh) * 2015-11-05 2019-12-13 中国核电工程有限公司 乏燃料贮存及冷却系统
CN107451398B (zh) * 2017-07-07 2018-07-06 西安交通大学 压水堆核电厂严重事故分析方法
RU2672140C1 (ru) * 2017-07-26 2018-11-12 Александр Николаевич Фадеев Способ использования в системе горячего водоснабжения отработанного ядерного топлива
CN108231218B (zh) * 2017-12-29 2023-05-30 安徽中科超核科技有限公司 一种用于核电宝和其它反应堆的非能动停堆保护系统
CN109378089A (zh) * 2018-11-12 2019-02-22 中国原子能科学研究院 一种用于泳池式低温供热堆功率扩展的堆内构件
CN109585047B (zh) * 2018-11-12 2022-05-20 中核核电运行管理有限公司 一种国产核燃料组件入堆辐照考验方法
CN110148482B (zh) * 2019-05-31 2024-03-26 中核能源科技有限公司 一种自动扶梯式燃料传输装置
CN112037954B (zh) * 2020-07-21 2023-03-21 中国原子能科学研究院 一种适用于连续驱除乏燃料溶解液中碘的方法
CN113921156B (zh) * 2021-11-22 2023-12-12 中国原子能科学研究院 乏燃料的临界实验装置和方法
CN115527696B (zh) * 2022-10-11 2023-08-22 华能核能技术研究院有限公司 一种串列式高温气冷堆核能系统及其运行方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170496A (ja) * 1984-09-14 1986-04-11 株式会社日立製作所 使用済燃料プ−ル崩壊熱回収利用装置
JPS62269099A (ja) * 1986-05-19 1987-11-21 株式会社東芝 原子力発電所における使用済燃料の崩壊熱回収・利用装置
CN1061104A (zh) * 1990-10-25 1992-05-13 清华大学 增设隔离层的深水池式核供热反应堆
JP2000221297A (ja) * 1999-01-28 2000-08-11 Toshiba Corp 使用済み燃料利用発電プロセスとシステム
CN1385861A (zh) * 2002-06-19 2002-12-18 北京北大青鸟有限责任公司 采用核电站乏燃料的深水池核供热反应堆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2708656A (en) * 1944-12-19 1955-05-17 Fermi Enrico Neutronic reactor
US2714577A (en) * 1945-11-02 1955-08-02 Fermi Enrico Neutronic reactor
GB961234A (en) * 1961-01-05 1964-06-17 Allis Chalmers Mfg Co Improvements in or relating to nuclear reactors
US5268942A (en) * 1992-09-10 1993-12-07 Pacific Nuclear Systems, Inc. Temporary cooling system and method for removing decay heat from a nuclear reactor
US5426681A (en) * 1994-01-04 1995-06-20 General Electric Company Boiling water reactor with combined active and passive safety systems
US5577085A (en) * 1995-04-24 1996-11-19 General Electric Company Boiling water reactor with compact containment and simplified safety systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170496A (ja) * 1984-09-14 1986-04-11 株式会社日立製作所 使用済燃料プ−ル崩壊熱回収利用装置
JPS62269099A (ja) * 1986-05-19 1987-11-21 株式会社東芝 原子力発電所における使用済燃料の崩壊熱回収・利用装置
CN1061104A (zh) * 1990-10-25 1992-05-13 清华大学 增设隔离层的深水池式核供热反应堆
JP2000221297A (ja) * 1999-01-28 2000-08-11 Toshiba Corp 使用済み燃料利用発電プロセスとシステム
CN1385861A (zh) * 2002-06-19 2002-12-18 北京北大青鸟有限责任公司 采用核电站乏燃料的深水池核供热反应堆

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2497209C1 (ru) * 2012-07-24 2013-10-27 Открытое Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Система аварийного расхолаживания ядерного реактора бассейнового типа
RU2501103C1 (ru) * 2012-07-24 2013-12-10 Открытое Акционерное Общество "Ордена Ленина Научно-Исследовательский И Конструкторский Институт Энерготехники Имени Н.А. Доллежаля" Система охлаждения активной зоны и отражателя ядерного реактора бассейного типа
CN112037950A (zh) * 2020-09-24 2020-12-04 中国核动力研究设计院 一种燃料棒裂变产物释放模拟装置及其使用方法
CN112037950B (zh) * 2020-09-24 2022-02-11 中国核动力研究设计院 一种燃料棒裂变产物释放模拟装置及其使用方法
RU2769102C1 (ru) * 2021-06-14 2022-03-28 Виталий Алексеевич Узиков Пассивная система охлаждения ядерного реактора
RU2776024C1 (ru) * 2021-12-05 2022-07-12 Виталий Алексеевич Узиков Способ пассивного расхолаживания реакторной установки с реактором под давлением

Also Published As

Publication number Publication date
CN1170290C (zh) 2004-10-06
CN1396603A (zh) 2003-02-12
US20050069074A1 (en) 2005-03-31
AU2003203320A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
WO2003058642A1 (fr) Reacteur a faible temperature utilisant le combustible epuise d'une centrale nucleaire
Kok Nuclear engineering handbook
Sinha et al. Design and development of the AHWR—the Indian thorium fuelled innovative nuclear reactor
Forsberg The advanced high-temperature reactor: high-temperature fuel, liquid salt coolant, liquid-metal-reactor plant
Zheng et al. The general design and technology innovations of CAP1400
US3819476A (en) Industrial technique
Reutler et al. The modular high-temperature reactor
Sinha Advanced nuclear reactor systems–an Indian perspective
Nosov et al. Decommissioning Features of BN-350,-600 Fast Reactors.
Agnew Gas-cooled nuclear power reactors
CN1355540A (zh) 核电站乏燃料低温核反应堆
Hannerz Towards intrinsically safe light-water reactors
Wang et al. The 200 MW nuclear heating reactor and its possible application in seawater desalination
Song Small modular reactors (SMRs): The case of China
Guidez et al. Proposal of new safety measures for European Sodium Fast Reactor to be evaluated in framework of Horizon-2020 ESFR-SMART project
US4976913A (en) Nuclear energy system using pelletized fuel in a boiling liquid reactor
Oka et al. Light water reactor design
Forsberg The Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal Reactor Plant
Cheng et al. Sodium fast reactors
de Haas et al. Burnup and Transient Analysis of a HTR-400 Design Loaded with PUO 2
Labrousse et al. Thermos reactors
Keller et al. Passive cooling to cold shutdown
Gabaraev et al. Direct-flow channel reactor with supercritical coolant pressure
Hiraiwa et al. Development of High Burnup Fuel for Next Generation Light Water Reactor (Total Performance of 5wt%-10wt% Enrichment High Burnup Fuel)
Schreiber Pressurized Water Reactors (PWRs)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10500809

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP