WO2003058305A1 - Optical transmission/reception module of optical waveguide type, and substrate for making the same - Google Patents

Optical transmission/reception module of optical waveguide type, and substrate for making the same Download PDF

Info

Publication number
WO2003058305A1
WO2003058305A1 PCT/JP2002/013666 JP0213666W WO03058305A1 WO 2003058305 A1 WO2003058305 A1 WO 2003058305A1 JP 0213666 W JP0213666 W JP 0213666W WO 03058305 A1 WO03058305 A1 WO 03058305A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
substrate
waveguide type
light
optical waveguide
Prior art date
Application number
PCT/JP2002/013666
Other languages
French (fr)
Japanese (ja)
Inventor
Tooru Takahashi
Nobuo Miyadera
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to AU2002367342A priority Critical patent/AU2002367342A1/en
Priority to JP2003558559A priority patent/JP3799611B2/en
Publication of WO2003058305A1 publication Critical patent/WO2003058305A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical waveguide type optical transmission / reception module and a substrate for manufacturing the module, and in particular, a so-called optical crosstalk in which transmission light leaks into a light receiving element of the same module to become a noise component and a minimum light receiving sensitivity is reduced.
  • the present invention relates to an optical waveguide type optical transceiver module and a substrate for manufacturing the module. Background art
  • an LD (Laser Diode) element for transmission and a PD (P hoto Diode) element for reception are integrated in one optical transceiver module.
  • LD light that is not coupled to the optical waveguide core leaks to the PD element for reception as light leakage, and this light leakage component becomes a noise component of signal light, and the optical transmission / reception module Reception sensitivity is reduced.
  • Another object of the present invention is to provide a substrate for producing an optical waveguide type optical transmission / reception module with reduced optical crosstalk.
  • the present invention provides the following optical waveguide type optical transmitting / receiving module and a substrate for manufacturing the module.
  • An optical waveguide type optical transceiver module including a substrate and an optical element formed on the surface thereof, wherein the substrate is provided with an optical crosstalk reducing means.
  • optical crosstalk reducing means includes means for absorbing and / or blocking light leakage or changing the optical path of light leakage.
  • optical crosstalk reduction means scatters light leakage by roughening the back surface and / or the surface of the substrate, thereby preventing the light from entering the light receiving element.
  • Type optical transceiver module
  • optical waveguide type optical transceiver module according to the above item 3, wherein the degree of surface roughening is JIS Rmax 6 to l2 lm.
  • optical crosstalk reducing means is a metal, ceramics, resin, or a combination of two or more of these opaque at the wavelength used.
  • an optical waveguide type optical transceiver module including a lower cladding layer, a core layer, an upper cladding layer in which the core layer is embedded, a light receiving element, and a light emitting element, at least the core layer near the light emitting element An optical waveguide type optical transceiver module, characterized in that the width of the cladding layer adjacent to the optical waveguide is 3 to 5 times the width of the core layer.
  • optical waveguide type optical transceiver module according to the above item 7, wherein the surface of the cladding layer configured to be 3 to 5 times the width of the core layer is coated with a light-impermeable material.
  • optical waveguide type optical transmission / reception module according to the above item 8, wherein the light impermeable material is a metal or a resin.
  • a substrate for producing an optical waveguide type optical transmission / reception module comprising an optical crosstalk reducing means.
  • optical crosstalk reducing means includes means for absorbing and / or blocking light leakage or changing an optical path of light leakage.
  • optical crosstalk reducing means according to the above item 10, wherein the optical crosstalk reduction means scatters light leakage by roughening the back surface and / or the surface of the substrate, and prevents the light from entering the light receiving element.
  • optical crosstalk reducing means is a substrate made of metal, ceramics, resin, or a combination of two or more of these materials opaque at the wavelength used. substrate.
  • Fig. 1 shows the present invention provided with an optical crosstalk reduction means with a sloped side surface of the substrate.
  • 3 is a drawing showing an example of the optical waveguide type optical transceiver module of FIG.
  • FIG. 2 is a plan view showing an embodiment of an optical waveguide type optical transmission / reception module of the present invention provided with an optical crosstalk reduction means.
  • FIG. 3 is a sectional view taken along line AA of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • optical crosstalk means that when the electric crosstalk (dBm) is so small that it does not matter, the light emitting element is not operated after the optical element (light emitting element, light receiving element, filter) is mounted.
  • An optical waveguide type optical transceiver module is characterized in that an optical element is provided on a substrate, and the substrate is provided with optical crosstalk reducing means.
  • the optical waveguide type optical transceiver module of the present invention is preferably provided with a lower cladding layer, a core layer, an upper cladding layer for embedding the core layer, a light receiving element, and a light emitting element on a substrate. .
  • the optical waveguide type optical transmitting / receiving module of the present invention includes, as a substrate, an inorganic material such as glass and quartz; a semiconductor such as silicon, gallium arsenide, aluminum and titanium; and a metal material such as polyimide and polyamide.
  • An optical element such as an optical waveguide, an optical multiplexer, an optical demultiplexer, an optical attenuator, an optical diffractor, or the like is formed on these substrates by using a polymer material or a material obtained by compounding these materials.
  • Optical amplifiers optical interferometers, optical filters, optical switches, wavelength converters, light-emitting elements, light-receiving elements, or composites of these, and at least optical waveguides, light-emitting elements, and light-receiving elements It has.
  • a semiconductor element or a metal film other than the light-emitting element and the light-receiving element may be formed on the above-described substrate.
  • a silicon film may be formed, or a film of silicon nitride, aluminum oxide, aluminum nitride, tantalum oxide, or the like may be formed.
  • the first example of the most typical optical waveguide type optical transceiver module of the present invention is
  • a silicon substrate on which a polymer optical waveguide, a light emitting element and a light receiving element are mounted. More specifically, a silicon dioxide layer for protecting the substrate and adjusting the refractive index is provided on the upper surface of the silicon single crystal substrate, and the polymer optical waveguide laminate is formed thereon.
  • a typical polymer optical waveguide laminate includes a silicon substrate, an organic zirconium compound layer, a fluorine-free resin layer, a lower cladding layer, a core layer, and a core layer formed on an upper silicon dioxide layer. It has a structure in which an upper cladding layer to be embedded and a protective layer are laminated in this order.
  • the lower cladding layer, the core layer and the upper cladding layer are all formed of a polyimide resin containing fluorine, and the organic zirconium compound layer and the resin layer containing no fluorine serve to improve the adhesion between the substrate and the lower cladding layer. Are arranged to enhance.
  • the optical crosstalk reducing means provided on the substrate of the present invention will be described.
  • Preferred examples of the optical crosstalk reducing means provided on the substrate of the present invention include the following means.
  • Rough light is scattered by roughening the back surface and / or the surface of the substrate to prevent the light from entering the light receiving element.
  • the side surface of the substrate which is usually formed in a direction perpendicular to the plane of the optical waveguide, is inclined at preferably 1 ° to 60 °, more preferably 2 ° to 45 ° with respect to the vertical direction. By doing so, it is possible to prevent light leaked from the inclined surface from being incident on the light receiving element.
  • the inclined surface may be provided on the light emitting element side, or may be provided on the light receiving element side. Good, or both. When both are provided, the inclination angles may be the same or different, and accordingly, the inclination directions may be the same direction or opposite directions.
  • the substrate is made of a material consisting of metals, ceramics, resins, and combinations of two or more of them that are opaque at the wavelength used.
  • the first method is to roughen the back surface and / or front surface of the substrate to scatter light leakage and prevent the light from entering the light receiving element. For example, polishing with sandpaper with a particle size of # 100, treatment with a laser beam, or treatment with ion etching so that the surface roughness JIS Rmax is about 6 to 12 / m I just need.
  • the roughening is performed on the entire back surface or the front surface or both.
  • the second method is to tilt the substrate side surface of the optical waveguide, which is usually formed perpendicular to the optical waveguide plane, preferably by 2 ° to 45 ° with respect to this vertical direction, In order to prevent the light reflected on the inclined surface from entering the light receiving element, a desired inclined surface can be obtained when dicing a large number of optical devices formed on a substrate and separating them into individual optical devices.
  • the inclined surface may be provided on the light emitting element side, the light receiving element side, or on both sides. When both are provided, the inclination angles thereof may be the same or different. Therefore, the inclination directions may be the same direction or opposite directions. For example, the slope
  • the substrate 1 may be inclined inward from the front surface (the surface on which the optical element is mounted) toward the back surface, and conversely, from the front surface of the substrate 1 as shown in FIG. 1B. It may be inclined outward toward the back.
  • the third method is to provide a non-reflective coating layer or a light-absorbing layer on the front surface and / or the back surface of the substrate, and to absorb light leaked by the non-reflective coating layer or the light-absorbing layer to the light receiving element to prevent the incident is on the front or rear surface or both of the substrate, the S i 0 2, M g F 2, T a 2 0 5, T i 0 -reflective coating layer, such as a 2, a vacuum deposition It may be formed by electron beam evaporation or the like, or a light-absorbing resin such as epoxy, polyamide, polyimide or the like may be dissolved in a suitable solvent, applied, and dried.
  • These non-reflective coating layers or light-absorbing layers may be a single layer or a multilayer, or may be formed by combining a plurality of layers.
  • the thickness of the antireflection coating layer is appropriately determined depending on the wavelength of the light used, but is usually preferably about 0.1 to about I0 m.
  • the thickness of the light-absorbing layer is preferably from 0.3 to 10 m, for example, about 0.5 / m.
  • the substrate is made of an opaque metal at the wavelength used, for example, aluminum, copper, chromium, titanium, etc., ceramics, resin, for example, polyimide, epoxy, polyamide, phenol resin, urethane, etc., and It is composed of a material consisting of a combination of two or more of these. By configuring the substrate with a material that is opaque at such wavelengths used, it is possible to effectively attenuate the propagation of light leakage within the substrate.
  • a second example of the most typical optical waveguide type optical transmission / reception module of the present invention is shown in FIG.
  • a typical polymer optical waveguide laminate includes a silicon substrate 1, an organic zirconium compound layer, a fluorine-free resin layer, a lower cladding layer 2, a core layer 3, The upper clad layer 4 in which the core layer 3 is embedded and the protective layer are laminated in this order.
  • the lower cladding layer 2, the core layer 3, and the upper cladding layer 4 are all formed of a polyimide resin containing fluorine, and an organic zirconium compound layer and a resin layer containing no fluorine are bonded to the substrate 1 and the lower cladding layer 2. It is arranged to enhance the performance.
  • optical crosstalk reducing means provided in the optical waveguide type optical transceiver module according to the second embodiment of the present invention will be described.
  • the optical crosstalk reducing means provided in the optical waveguide type optical transceiver module of the second embodiment of the present invention comprises at least an upper part adjacent to the core layer 3 near the light emitting element 5.
  • the structure is characterized in that 111 of the cladding layer 4 is configured to be 3 to 5 times the width L 2 of the core layer 3.
  • the core layer 3 In width 1 ⁇ 3 times less than the upper cladding layer 4 having a width L 2 is the core layer 3, may waveguide loss is increased, in 5-fold greater, is insufficient optical crosstalk reduction effect.
  • the surface of the clad layer configured to be 3 to 5 times the width of the core layer is coated with a light-impermeable material.
  • a light-impermeable material examples include a layer of a metal such as aluminum, chromium, nickel, and titanium, and a layer of a resin such as polyimide and polyimide that do not contain fluorine.
  • the thickness of the metal layer is preferably about 0.05 to 1.0 m, and these can be formed by vapor deposition, sputtering, or the like.
  • the thickness of the resin layer is preferably 1.0 / m or more, and usually 3 to 10 zm.
  • the resin is more preferably dyed with a black pigment or dye.
  • the present invention relates to an optical waveguide type optical transceiver module including a lower clad layer, a core layer, an upper clad layer in which the core layer is embedded, a light receiving element, and a light emitting element, wherein at least the core layer near the light emitting element is provided.
  • the width of the adjacent cladding layer is set to be 3 to 5 times the width of the core layer.
  • a typical method of forming the layer is as follows.
  • a lower clad layer, a core layer, and an upper clad layer for embedding the core layer are formed on a substrate, and the upper clad layer, preferably, the upper clad layer and the lower clad layer are formed by, for example, dry etching, wet etching, or the like. It is removed by a method such as etching, laser ablation, milling, or sandblasting until at least the width of the cladding layer adjacent to the core layer near the light emitting element becomes 3 to 5 times the width of the core layer. I just need.
  • the surface of the cladding layer configured to be 3 to 5 times the width of the core layer may be coated with the above-described light-impermeable material, if necessary.
  • Organic zirconium chelate is applied on a silicon wafer by spin coating to a dry film thickness of 100 ⁇ , and after drying, contains fluorine No polyimide resin is applied to a dry film thickness of 0.3 zm, and after drying, a lower cladding layer (8 / m) and a core layer (6.5 m) composed of fluorine-containing polyimide resin are formed. did.
  • a silicon-containing resist is applied to the core layer to a thickness of 0.5 ⁇ m, dried, exposed and developed through a mask having a core layer pattern, and reactive ions are formed using the resist pattern as a mask. Etching was performed to form a core layer.
  • an upper cladding layer (15 / m) and a protective layer (3 ⁇ m) made of a polyimide resin containing no fluorine were formed to form a polyimide optical waveguide.
  • the surface of the silicon wafer on which the optical waveguide was not formed (the back surface of the substrate) was roughened with a water-resistant vapor equivalent to JIS # 1000 to a roughening degree of JIS Rmax 9.6 m.
  • the chip was cut out by dicing, the light receiving element and the light emitting element were attached, and the optical crosstalk of the optical waveguide was evaluated. Comparative Example 1
  • Example 2 In the same manner as in Example 1, a polyimide optical waveguide was prepared. After that, without roughening the surface of the silicon wafer where the optical waveguide is not formed (the back surface of the substrate), the chip is cut out into chips by dicing, the light receiving element and the light emitting element are attached, and optical crosstalk of the optical waveguide is reduced. evaluated.
  • Example 2 the optical stress of the module of Example 1 of the present invention in which the back surface of the substrate was roughened was clearly improved as compared with the module of Comparative Example 1.
  • Organic zirconium chelate is dried on a silicon wafer by the Sincoat method and dried to a thickness of 100 ⁇ .After drying, a fluorine-free polyimide resin is dried to a thickness of 0.3 m. After coating and drying, the lower cladding layer (8 m) and core layer (6.5 ju) made of polyimide resin containing fluorine m) formed. Next, a silicon-containing resist is applied on the core layer so as to have a thickness of 0.5, dried, exposed and developed through a core pattern, and reactive ion etching is performed using the resist pattern as a mask. A layer was formed. After stripping the resist, an upper cladding layer (15 zm) was formed to create a polyimide optical waveguide.
  • a polyimide optical waveguide was formed on a silicon wafer by a spin coating method and a reactive ion etching method, and thereafter, a chip was formed by dicing without removing the cladding layers on both sides of the core layer. The cutout was used to evaluate the optical crosstalk of the optical waveguide.
  • the substrate is provided with the optical crosstalk reducing means, the optical waveguide type optical transceiver module manufactured using this substrate has a remarkable optical crosstalk. , And a decrease in reception sensitivity can be significantly suppressed. Further, since the optical crosstalk reducing means is provided on the substrate, the manufacture thereof is easier than the conventional method of providing the optical element on the substrate with the optical crosstalk reducing means.
  • the optical waveguide type optical transceiver module of the present invention provided with the optical crosstalk reducing means has a significantly reduced optical crosstalk.

Abstract

An optical transmission/reception module of optical waveguide type comprising a substrate and optical elements formed thereon, wherein optical crosstalk reducing means is provided to the substrate. An optical transmission/reception module of optical waveguide type comprising a lower clad layer, a core layer, an upper clad layer for embedding the core layer, a light receiving element and a light emitting element, wherein the width of the clad layer adjacent to the core layer at least in the vicinity of the light emitting element is three to five times the width of the core layer. A substrate for making an optical transmission/reception module of optical waveguide type, wherein optical crosstalk reducing means is provided. The optical transmission/reception module of optical waveguide type can significantly reduce optical crosstalk and significantly suppress degradation of reception sensitivity. Since the optical crosstalk reducing means is provided to the substrate, the manufacturing is easy as compared with the conventional way in which optical crosstalk reducing means is provided to the optical elements on the substrate.

Description

光導波路型光送受信モジュール及び該モジュール作成用基板 技術分野  Optical waveguide type optical transceiver module and substrate for manufacturing the module
本発明は、 光導波路型光送受信モジュール及び該モジュール作成用基板に関し 、 特に、 送信光が同一モジュールの受光素子に漏れ込むことによってノイズ成分 となり、 最低受光感度が低下するいわゆる光学的クロストークが低減された光導 波路型光送受信モジュール及び該モジュール作成用基板に関する。 背景技術  The present invention relates to an optical waveguide type optical transmission / reception module and a substrate for manufacturing the module, and in particular, a so-called optical crosstalk in which transmission light leaks into a light receiving element of the same module to become a noise component and a minimum light receiving sensitivity is reduced. The present invention relates to an optical waveguide type optical transceiver module and a substrate for manufacturing the module. Background art
近年のパソコンやイン夕一ネッ卜の普及に伴い、 情報伝送需要が急激に増大し ている。 このため、 伝送速度の速い光伝送を、 パソコン等の末端の情報処理装置 まで普及させることが望まれている。 これを実現するには、 光イン夕一コネクシ ョン用に、 高性能な光導波路等を使用して送信機能と受信機能とを一体ィ匕した、 小型の光送受信モジュールを、 安価かつ大量に製造する必要がある。  With the spread of personal computers and Internet networks in recent years, the demand for information transmission is rapidly increasing. For this reason, it is desired that optical transmission with a high transmission speed be spread to terminal information processing devices such as personal computers. In order to realize this, a small-sized optical transceiver module that integrates the transmission function and the reception function using a high-performance optical waveguide etc. for the optical connection is used inexpensively and in large quantities. Need to be manufactured.
光送受信モジュールでは送信用の L D (Laser Diode) 素子と受信用の P D (P hoto Diode) 素子とがーつの光送受信モジュールの中に集積化されている。 送信 と受信とが同時動作を行う光送受信モジュールでは、 光導波路コアに結合しない L D光が漏光として受信用の P D素子に回り込み、 この漏光成分が信号光のノィ ズ成分となり、 光送受信モジュ一ルの受信感度が低下する。  In an optical transceiver module, an LD (Laser Diode) element for transmission and a PD (P hoto Diode) element for reception are integrated in one optical transceiver module. In an optical transmitter / receiver module that performs simultaneous transmission and reception, LD light that is not coupled to the optical waveguide core leaks to the PD element for reception as light leakage, and this light leakage component becomes a noise component of signal light, and the optical transmission / reception module Reception sensitivity is reduced.
これまでに、 漏光成分が信号光のノイズ成分として、 受信用の P D素子に回り 込むいわゆる光学的クロストークが低減された光送受信モジュールとしては種々 のものが提案されているが、 いずれも、 製造が煩雑であったり、 あるいは光学的 クロストークを十分に低減できるものとはいえない。 発明の開示 Until now, various types of optical transmitting and receiving modules have been proposed in which the so-called optical crosstalk in which the light leakage component is transmitted as a noise component of the signal light to the PD device for reception is reduced. Is complicated, or it cannot be said that optical crosstalk can be sufficiently reduced. Disclosure of the invention
従って、 本発明の目的は、 光学的クロストークが低減された光導波路型光送受 信モジュールを提供することである。  Accordingly, it is an object of the present invention to provide an optical waveguide type optical transmitting / receiving module with reduced optical crosstalk.
本発明の他の目的は、 光学的クロストークが低減された光導波路型光送受信モ ジュール作成用の基板を提供することである。 本発明は、 以下の光導波路型光送受信モジュール及び該モジュール作成用基板 を提供するものである。  Another object of the present invention is to provide a substrate for producing an optical waveguide type optical transmission / reception module with reduced optical crosstalk. The present invention provides the following optical waveguide type optical transmitting / receiving module and a substrate for manufacturing the module.
1 . 基板と、 その表面に形成された光素子を含む光導波路型光送受信モジュール において、 該基板に光学的クロストーク低減手段を設けたことを特徴とする光導 波路型光送受信モジュール。  1. An optical waveguide type optical transceiver module including a substrate and an optical element formed on the surface thereof, wherein the substrate is provided with an optical crosstalk reducing means.
2 . 光学的クロストーク低減手段が、 漏光を吸収及び/又は遮断するか、 漏光の 光路を変更する手段を含む上記 1記載の光導波路型光送受信モジュール。  2. The optical waveguide type optical transceiver module according to the above item 1, wherein the optical crosstalk reducing means includes means for absorbing and / or blocking light leakage or changing the optical path of light leakage.
3 . 光学的クロストーク低減手段が、 基板の裏面又は表面又はその双方を粗面化 することにより漏光を散乱させ、 漏光が受光素子に入射するのを防止するもので ある上記 1記載の光導波路型光送受信モジュール。  3. The optical waveguide as described in 1 above, wherein the optical crosstalk reduction means scatters light leakage by roughening the back surface and / or the surface of the substrate, thereby preventing the light from entering the light receiving element. Type optical transceiver module.
4 . 粗面化度が J I S R ma x 6〜 l 2〃mである上記 3記載の光導波路型光 送受信モジュール。  4. The optical waveguide type optical transceiver module according to the above item 3, wherein the degree of surface roughening is JIS Rmax 6 to l2 lm.
5 . 光学的クロストーク低減手段が、 使用波長において不透明な金属、 セラミツ クス、 樹脂及びこれらの 2種以上の組合せから成る ¾Ϋ反である上記 1記載の光導 波路型光送受信モジュ一ル。  5. The optical waveguide type optical transmission / reception module according to the above item 1, wherein the optical crosstalk reducing means is a metal, ceramics, resin, or a combination of two or more of these opaque at the wavelength used.
6 . 合分波フィル夕を用いた光導波路型光送受信モジュールであって、 光学的ク ロストークが 5 d B以内であることを特徴とする光導波路型光送受信モジュール 7 . 下部クラッド層と、 コア層と、 このコア層を埋め込む上部クラッド層と、 受 光素子と、 発光素子とを含む光導波路型光送受信モジュールにおいて、 少なくと も該発光素子近傍の該コア層に隣接するクラッド層の幅を、 該コア層の幅の 3〜 5倍となるように構成したことを特徴とする光導波路型光送受信モジュール。6. An optical waveguide type optical transceiver module using a multiplexing / demultiplexing filter, wherein the optical crosstalk is within 5 dB. 7. In an optical waveguide type optical transceiver module including a lower cladding layer, a core layer, an upper cladding layer in which the core layer is embedded, a light receiving element, and a light emitting element, at least the core layer near the light emitting element An optical waveguide type optical transceiver module, characterized in that the width of the cladding layer adjacent to the optical waveguide is 3 to 5 times the width of the core layer.
8 . コア層の幅の 3〜5倍となるように構成されたクラッド層の表面を光不透過 性材料で被覆したことを特徴とする上記 7記載の光導波路型光送受信モジュール 8. The optical waveguide type optical transceiver module according to the above item 7, wherein the surface of the cladding layer configured to be 3 to 5 times the width of the core layer is coated with a light-impermeable material.
9 . 光不透過性材料が金属又は樹脂である上記 8記載の光導波路型光送受信モジ ユール。 9. The optical waveguide type optical transmission / reception module according to the above item 8, wherein the light impermeable material is a metal or a resin.
1 0 . 光学的クロストーク低減手段が設けられていることを特徴とする光導波路 型光送受信モジュ一ル作成用基板。  10. A substrate for producing an optical waveguide type optical transmission / reception module, comprising an optical crosstalk reducing means.
1 1 . 光学的クロストーク低減手段が、 漏光を吸収及び/又は遮断するか、 漏光 の光路を変更する手段を含む上記 1 0記載の光導波路型光送受信モジュール作成 用基板。  11. The substrate for producing an optical waveguide-type optical transceiver module according to 10 above, wherein the optical crosstalk reducing means includes means for absorbing and / or blocking light leakage or changing an optical path of light leakage.
1 2 . 光学的クロストーク低減手段が、 基板の裏面又は表面又はその双方を粗面 化することにより漏光を散乱させ、 漏光が受光素子に入射するのを防止するもの である上記 1 0記載の光導波路型光送受信モジュール作成用基板。  12. The optical crosstalk reducing means according to the above item 10, wherein the optical crosstalk reduction means scatters light leakage by roughening the back surface and / or the surface of the substrate, and prevents the light from entering the light receiving element. Substrate for making optical waveguide type optical transceiver module.
1 3 . 粗面化度が J I S R m a x 6〜l 2 mである上記 1 2記載の光導波路 型光送受信モジュール作成用基板。  13. The substrate for producing an optical waveguide type optical transceiver module according to 12 above, wherein the degree of surface roughening is JISR max 6 to l 2 m.
1 4 . 光学的クロストーク低減手段が、 使用波長において不透明な金属、 セラミ ックス、 樹脂及びこれらの 2種以上の組合せから成る基板である上記 1 0記載の 光導波路型光送受信モジュ一ル作成用基板。 図面の簡単な説明  14. The optical waveguide-type optical transceiver module according to 10 above, wherein the optical crosstalk reducing means is a substrate made of metal, ceramics, resin, or a combination of two or more of these materials opaque at the wavelength used. substrate. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 基板側面を傾斜面にした光学的クロストーク低減手段を設けた本発明 の光導波路型光送受信モジュールの一例を示す図面である。 Fig. 1 shows the present invention provided with an optical crosstalk reduction means with a sloped side surface of the substrate. 3 is a drawing showing an example of the optical waveguide type optical transceiver module of FIG.
図 2は、 光学的クロストーク低減手段を設けた本発明の光導波路型光送受信モ ジュ一ルのー実施例を示す平面図である。  FIG. 2 is a plan view showing an embodiment of an optical waveguide type optical transmission / reception module of the present invention provided with an optical crosstalk reduction means.
図 3は、 図 2の A— A断面図である。 発明を実施するための最良の形態  FIG. 3 is a sectional view taken along line AA of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において光学的クロストークとは、 電気的クロストーク (d B m) が問 題にならない程小さい場合において、 光素子 (発光素子、 受光素子、 フィル夕) を搭載後、 発光素子を動作させないときの受光素子の受光感度 ( d B m) と発光 素子を動作させたときの受光素子の受光感度 (d B m) の差をいう。  In the present invention, optical crosstalk means that when the electric crosstalk (dBm) is so small that it does not matter, the light emitting element is not operated after the optical element (light emitting element, light receiving element, filter) is mounted. The difference between the light receiving sensitivity (dBm) of the light receiving element when operating and the light receiving sensitivity (dBm) of the light receiving element when the light emitting element is operated.
本発明の光導波路型光送受信モジュールは、 基板上に、 光素子を含み、 該基板 に光学的クロストーク低減手段を設けたことを特徴とするものである。  An optical waveguide type optical transceiver module according to the present invention is characterized in that an optical element is provided on a substrate, and the substrate is provided with optical crosstalk reducing means.
本発明の光導波路型光送受信モジュールは、 好ましくは基板上に、 下部クラッ ド層と、 コア層と、 このコア層を埋め込む上部クラッド層と、 受光素子と、 発光 素子とを設けたものである。  The optical waveguide type optical transceiver module of the present invention is preferably provided with a lower cladding layer, a core layer, an upper cladding layer for embedding the core layer, a light receiving element, and a light emitting element on a substrate. .
さらに具体的には、 本発明の光導波路型光送受信モジュールは、 基板として、 ガラス、 石英等の無機材料、 シリコン、 ガリウムヒ素、 アルミニウム、 チタン等 の半導体や、 金属材料、 ポリイミド、 ポリアミ ド等の高分子材料、 またはこれら の材料を複合ィ匕した材料を用いて、 これら基板の上に、 光素子、 例えば、 光導波 路、 光合波器、 光分波器、 光減衰器、 光回折器、 光増幅器、 光干渉器、 光フィル 夕、 光スィッチ、 波長変換器、 発光素子、 受光素子あるいはこれらが複合化され たものなどを形成したものであって、 少なくとも光導波路、 発光素子及び受光素 子を有するものである。  More specifically, the optical waveguide type optical transmitting / receiving module of the present invention includes, as a substrate, an inorganic material such as glass and quartz; a semiconductor such as silicon, gallium arsenide, aluminum and titanium; and a metal material such as polyimide and polyamide. An optical element such as an optical waveguide, an optical multiplexer, an optical demultiplexer, an optical attenuator, an optical diffractor, or the like is formed on these substrates by using a polymer material or a material obtained by compounding these materials. Optical amplifiers, optical interferometers, optical filters, optical switches, wavelength converters, light-emitting elements, light-receiving elements, or composites of these, and at least optical waveguides, light-emitting elements, and light-receiving elements It has.
上記の基板上には、 上記発光素子、 受光素子以外の半導体素子や金属膜を形成 することもあり、 更に基板の保護や屈折率調整などのために、 基板上に、 二酸ィ匕 珪素被膜を形成したり、 あるいは、 窒化シリコン、 酸ィ匕アルミニウム、 窒化アル ミニゥム、 酸ィ匕タンタルなどの被膜を形成してもよい。 本発明の光導波路型光送受信モジュールとして最も代表的なものの第 1の例はA semiconductor element or a metal film other than the light-emitting element and the light-receiving element may be formed on the above-described substrate. A silicon film may be formed, or a film of silicon nitride, aluminum oxide, aluminum nitride, tantalum oxide, or the like may be formed. The first example of the most typical optical waveguide type optical transceiver module of the present invention is
、 シリコンを基板とし、 その上に、 ポリマー光導波路、 発光素子及び受光素子を 搭載したものである。 さらに具体的には、 シリコン単結晶の基板の上面に、 基板 を保護し、 屈折率を調整するための二酸化珪素層が備えられ、 その上にポリマー 光導波路積層体が形成されたものである。 典型的なポリマー光導波路積層体は、 シリコン基板、 その上層の二酸化珪素層の上に、 有機ジルコニウム化合物層と、 フッ素を含まない樹脂層と、 下部クラヅド層と、 コア層と、 このコア層を埋め込 む上部クラッド層と、 保護層とが、 この順に積層された構造を有する。 下部クラ ッド層、 コア層及び上部クラッド層は、 いずれもフッ素を含むポリイミ ド樹脂に より形成され、 有機ジルコニウム化合物層及びフッ素を含まない樹脂層が、 基板 と下部クラッド層との接着性を高めるために配置されている。 次に、 本発明の基板に設けられる光学的クロストーク低減手段について説明す 。 , A silicon substrate, on which a polymer optical waveguide, a light emitting element and a light receiving element are mounted. More specifically, a silicon dioxide layer for protecting the substrate and adjusting the refractive index is provided on the upper surface of the silicon single crystal substrate, and the polymer optical waveguide laminate is formed thereon. A typical polymer optical waveguide laminate includes a silicon substrate, an organic zirconium compound layer, a fluorine-free resin layer, a lower cladding layer, a core layer, and a core layer formed on an upper silicon dioxide layer. It has a structure in which an upper cladding layer to be embedded and a protective layer are laminated in this order. The lower cladding layer, the core layer and the upper cladding layer are all formed of a polyimide resin containing fluorine, and the organic zirconium compound layer and the resin layer containing no fluorine serve to improve the adhesion between the substrate and the lower cladding layer. Are arranged to enhance. Next, the optical crosstalk reducing means provided on the substrate of the present invention will be described.
本発明の基板に設けられる光学的クロストーク低減手段として好ましいものの 例としては、 例えば、 次のような手段が挙げられる。  Preferred examples of the optical crosstalk reducing means provided on the substrate of the present invention include the following means.
1 . 基板の裏面又は表面又はその双方を粗面化することにより漏光を散乱させ、 漏光が受光素子に入射するのを防止する。  1. Rough light is scattered by roughening the back surface and / or the surface of the substrate to prevent the light from entering the light receiving element.
2 . 光導波路平面に対して通常は垂直方向に形成されている基板側面を、 この垂 直方向に対して好ましくは 1 ° 〜6 0 ° 、 さらに好ましくは 2 ° ~ 4 5 ° 傾斜 させて形成することにより、 傾斜面で反射した漏光が受光素子に入射するのを防 止する。 この際、 傾斜面は発光素子側に設けても良いし、 受光素子側に設けても 良いし、 あるいは双方に設けても良い。 また双方に設ける場合、 その傾斜角は同 一でも異なっていても良く、 従って、 傾斜方向は同一方向でも反対方向でも良い 2. The side surface of the substrate, which is usually formed in a direction perpendicular to the plane of the optical waveguide, is inclined at preferably 1 ° to 60 °, more preferably 2 ° to 45 ° with respect to the vertical direction. By doing so, it is possible to prevent light leaked from the inclined surface from being incident on the light receiving element. At this time, the inclined surface may be provided on the light emitting element side, or may be provided on the light receiving element side. Good, or both. When both are provided, the inclination angles may be the same or different, and accordingly, the inclination directions may be the same direction or opposite directions.
3 . 基板の表面又は裏面又はその双方に、 無反射コーティング層又は光吸収性層 を設け、 漏光がこの無反射コーティング層又は光吸収性層に吸収され受光素子に 入射するのを防止する。 3. Provide a non-reflective coating layer or a light-absorbing layer on the front surface and / or back surface of the substrate to prevent light leakage from being absorbed by the non-reflective coating layer or the light-absorbing layer and entering the light receiving element.
4 . 基板を、 使用波長において不透明な金属、 セラミックス、 樹脂及びこれらの 2種以上の組合せから成る材料で構成する。 以下、 上記の光学的クロストーク低減手段についてさらに詳細に説明する。 第 1の方法である、 基板の裏面又は表面又はその双方を粗面化することにより 漏光を散乱させ、 漏光が受光素子に入射するのを防止するためには、 基板の裏面 又は表面又はその双方をその粗面化度 J I S Rm a xが 6〜1 2 /m程度とな るように、 例えば、 粒度 # 1 0 0 0のサンドペーパーで磨く、 レーザビームで処 理する、 あるいはイオンエッチングで処理すればよい。 粗面化度 J I S Rm a xが 6〜1 2 / mの範囲外の場合には、 漏光の散乱が十分に行われず、 漏光が受 光素子に入射するのを完全に防止することが困難である。 粗面化は基板の裏面又 は表面又はその双方の全面に施すことが望ましい。 第 2の方法である、 光導波路平面に対して通常は垂直方向に形成されている、 光導波路の基板側面を、 この垂直方向に対して好ましくは 2 ° 〜4 5 ° 傾斜さ せることにより、 傾斜面で反射した漏光が受光素子に入射するのを防止するため には、 基板上に多数作成された光デバイスをダイシングして個々の光デバイスに 分離する際に、 所望の傾斜面が得られるように特定形状のブレードを使用するか 、 垂直に形成した側面を所望の傾斜面が得られるように切断、 研磨等の加工を施 しても良い。 先に述べたように、 傾斜面は発光素子側、 受光素子側、 あるいは双 方に設けても良い。 また双方に設ける場合、 その傾斜角は同一でも異なっていて も良く、 従って、 傾斜方向は同一方向でも反対方向でも良い。 例えば、 傾斜面は4. The substrate is made of a material consisting of metals, ceramics, resins, and combinations of two or more of them that are opaque at the wavelength used. Hereinafter, the optical crosstalk reduction means will be described in more detail. The first method is to roughen the back surface and / or front surface of the substrate to scatter light leakage and prevent the light from entering the light receiving element. For example, polishing with sandpaper with a particle size of # 100, treatment with a laser beam, or treatment with ion etching so that the surface roughness JIS Rmax is about 6 to 12 / m I just need. When the surface roughness JIS Rmax is out of the range of 6 to 12 / m, light leakage is not sufficiently scattered and it is difficult to completely prevent light leakage from entering the light receiving element. . Preferably, the roughening is performed on the entire back surface or the front surface or both. The second method is to tilt the substrate side surface of the optical waveguide, which is usually formed perpendicular to the optical waveguide plane, preferably by 2 ° to 45 ° with respect to this vertical direction, In order to prevent the light reflected on the inclined surface from entering the light receiving element, a desired inclined surface can be obtained when dicing a large number of optical devices formed on a substrate and separating them into individual optical devices. Use a blade of a specific shape as described above, or perform processing such as cutting and polishing on the vertically formed side surface to obtain a desired inclined surface. You may. As described above, the inclined surface may be provided on the light emitting element side, the light receiving element side, or on both sides. When both are provided, the inclination angles thereof may be the same or different. Therefore, the inclination directions may be the same direction or opposite directions. For example, the slope
、 図 1 Aに示すように基板 1の表面 (光素子搭載面) から裏面に向かって内側に 傾斜させても良いし、 これとは逆に、 図 1 Bに示すように基板 1の表面から裏面 に向かって外側に傾斜させても良い。 第 3の方法である、 基板の表面又は裏面又はその双方に、 無反射コーティング 層又は光吸収性層を設け、 漏光がこの無反射コ一ティング層又は光吸収性層に吸 収され受光素子に入射するのを防止するためには、 基板の表面又は裏面又はその 双方に、 S i 02、 M g F 2、 T a 205、 T i 02等の無反射コーティング層を、 真空蒸着、 電子ビーム蒸着等により形成するか、 光吸収性樹脂、 例えば、 ェポキ シ、 ポリアミ ド、 ポリイミ ド等を適当な溶媒に溶解し、 塗布し、 乾燥すれば良い 。 これらの無反射コーティング層又は光吸収性層は単層でも多層でも良く、 また 、 複数の層を組み合わせて形成しても良い。 As shown in FIG. 1A, the substrate 1 may be inclined inward from the front surface (the surface on which the optical element is mounted) toward the back surface, and conversely, from the front surface of the substrate 1 as shown in FIG. 1B. It may be inclined outward toward the back. The third method is to provide a non-reflective coating layer or a light-absorbing layer on the front surface and / or the back surface of the substrate, and to absorb light leaked by the non-reflective coating layer or the light-absorbing layer to the light receiving element to prevent the incident is on the front or rear surface or both of the substrate, the S i 0 2, M g F 2, T a 2 0 5, T i 0 -reflective coating layer, such as a 2, a vacuum deposition It may be formed by electron beam evaporation or the like, or a light-absorbing resin such as epoxy, polyamide, polyimide or the like may be dissolved in a suitable solvent, applied, and dried. These non-reflective coating layers or light-absorbing layers may be a single layer or a multilayer, or may be formed by combining a plurality of layers.
無反射コーティング層の膜厚は使用する光の波長により、 適宜決定されるが、 通常は 0 . 1〜: I 0 m程度が好ましい。  The thickness of the antireflection coating layer is appropriately determined depending on the wavelength of the light used, but is usually preferably about 0.1 to about I0 m.
また、 光吸収性層の膜厚は、 0 . 3〜1 0〃m、 例えば、 0 . 5 /m程度が好 ましい。 第 4の方法は、 基板を、 使用波長において不透明な金属、 例えば、 アルミニゥ ム、 銅、 クロム、 チタン等、 セラミックス、 樹脂、 例えば、 ポリイミ ド、 ェポキ シ、 ポリアミ ド、 フエノール樹脂、 ウレタン等、 及びこれらの 2種以上の組合せ から成る材料で構成するものである。 基板をこのような使用波長において不透明 な材料で構成することにより、 基板内の漏光の伝播を効率的に減衰させることが できる < 本発明の光導波路型光送受信モジュ一ルとして最も代表的なものの第 2の例は 、 図 2に示すように、 シリコンを基板 1とし、 その上に、 ポリマー光導波路 (下 部クラッド層 2、 コア層 3、 上部クラッド層 4 ) 、 発光素子 5、 受光素子 6及び 合分波フィル夕 7を搭載したものである。 さらに具体的には、 シリコン単結晶の 基板の上面に、 基板を保護し、 屈折率を調整するための二酸化珪素層が備えられ 、 その上にポリマー光導波路積層体が形成されたものである。 典型的なポリマー 光導波路積層体は、 シリコン基板 1、 その上層の二酸化珪素層の上に、 有機ジル コニゥム化合物層と、 フッ素を含まない樹脂層と、 下部クラッド層 2と、 コア層 3と、 このコア層 3を埋め込む上部クラッド層 4と、 保護層とが、 この順に積層 された構造を有する。 下部クラヅド層 2、 コア層 3及び上部クラッド層 4は、 い ずれもフッ素を含むポリイミド樹脂により形成され、 有機ジルコニウム化合物層 及びフッ素を含まない樹脂層が、 基板 1と下部クラッド層 2との接着性を高める ために配置されている。 The thickness of the light-absorbing layer is preferably from 0.3 to 10 m, for example, about 0.5 / m. In the fourth method, the substrate is made of an opaque metal at the wavelength used, for example, aluminum, copper, chromium, titanium, etc., ceramics, resin, for example, polyimide, epoxy, polyamide, phenol resin, urethane, etc., and It is composed of a material consisting of a combination of two or more of these. By configuring the substrate with a material that is opaque at such wavelengths used, it is possible to effectively attenuate the propagation of light leakage within the substrate. A second example of the most typical optical waveguide type optical transmission / reception module of the present invention is shown in FIG. 2, in which a silicon substrate 1 and a polymer optical waveguide (lower cladding layer) 2, a core layer 3, an upper cladding layer 4), a light emitting element 5, a light receiving element 6, and a multiplexing / demultiplexing filter 7. More specifically, a silicon dioxide layer for protecting the substrate and adjusting the refractive index is provided on the upper surface of the silicon single crystal substrate, and the polymer optical waveguide laminate is formed thereon. A typical polymer optical waveguide laminate includes a silicon substrate 1, an organic zirconium compound layer, a fluorine-free resin layer, a lower cladding layer 2, a core layer 3, The upper clad layer 4 in which the core layer 3 is embedded and the protective layer are laminated in this order. The lower cladding layer 2, the core layer 3, and the upper cladding layer 4 are all formed of a polyimide resin containing fluorine, and an organic zirconium compound layer and a resin layer containing no fluorine are bonded to the substrate 1 and the lower cladding layer 2. It is arranged to enhance the performance.
次に、 本発明の第 2の実施態様の光導波路型光送受信モジュールに設けられる 光学的クロストーク低減手段について説明する。  Next, the optical crosstalk reducing means provided in the optical waveguide type optical transceiver module according to the second embodiment of the present invention will be described.
本発明の第 2の実施態様の光導波路型光送受信モジュールに設けられる光学的 クロストーク低減手段は、 図 2及び図 3に示すように、 少なくとも発光素子 5近 傍のコア層 3に隣接する上部クラッド層 4の 111 を、 該コア層 3の幅 L 2の 3 〜 5倍となるように構成したことを特徴とするものである。 As shown in FIGS. 2 and 3, the optical crosstalk reducing means provided in the optical waveguide type optical transceiver module of the second embodiment of the present invention comprises at least an upper part adjacent to the core layer 3 near the light emitting element 5. The structure is characterized in that 111 of the cladding layer 4 is configured to be 3 to 5 times the width L 2 of the core layer 3.
上部クラッド層 4の幅 L 2がコア層 3の幅 1^の 3倍未満では、 導波損失が増 加することがあり、 5倍超では、 光学的クロストーク低減効果が不充分である。 本発明において、 好ましくは、 コア層の幅の 3〜5倍となるように構成された クラッド層の表面を光不透過性材料で被覆する。 このような光不透過性材料とし ては、 アルミニウム、 クロム、 ニッケル、 チタン等の金属の層、 又はフッ素を含 まないポリイミ ド、 ポリアミ ド等の樹脂の層が挙げられる。 金属層の厚みは、 0 . 0 5〜1 . 0 m程度が好ましく、 これらは蒸着、 スパッタリング等により設 けることができる。 また、 樹脂層の厚みは 1 . 0 /m以上、 通常は 3〜 1 0 zm であることが好ましい。 樹脂は黒色の顔料又は染料で染色したものがさらに好ま しい。 本発明は、 下部クラッド層と、 コア層と、 このコア層を埋め込む上部クラッド 層と、 受光素子と、 発光素子とを含む光導波路型光送受信モジュールにおいて、 少なくとも該発光素子近傍の該コア層に隣接するクラッド層の媪を、 該コア層の 幅の 3〜 5倍となるように構成したことを特徴とするものであるが、 その代表的 な作成方法は以下のとおりである。 In width 1 ^ 3 times less than the upper cladding layer 4 having a width L 2 is the core layer 3, may waveguide loss is increased, in 5-fold greater, is insufficient optical crosstalk reduction effect. In the present invention, preferably, the surface of the clad layer configured to be 3 to 5 times the width of the core layer is coated with a light-impermeable material. Such a light-impermeable material Examples of such a layer include a layer of a metal such as aluminum, chromium, nickel, and titanium, and a layer of a resin such as polyimide and polyimide that do not contain fluorine. The thickness of the metal layer is preferably about 0.05 to 1.0 m, and these can be formed by vapor deposition, sputtering, or the like. Further, the thickness of the resin layer is preferably 1.0 / m or more, and usually 3 to 10 zm. The resin is more preferably dyed with a black pigment or dye. The present invention relates to an optical waveguide type optical transceiver module including a lower clad layer, a core layer, an upper clad layer in which the core layer is embedded, a light receiving element, and a light emitting element, wherein at least the core layer near the light emitting element is provided. The width of the adjacent cladding layer is set to be 3 to 5 times the width of the core layer. A typical method of forming the layer is as follows.
まず、 基板上に、 下部クラッド層と、 コア層と、 このコア層を埋め込む上部ク ラッド層を形成し、 上部クラッド層、 好ましくは上部クラッド層及び下部クラッ ド層を、 例えば、 ドライエッチング、 ウエットエッチング、 レーザーアブレ一シ ヨン、 ミリング、 サンドブラスト等の方法により、 少なくとも発光素子近傍のコ ァ層に隣接するクラッド層の幅が、 該コア層の幅の 3〜5倍となるまで、 除去す ればよい。  First, a lower clad layer, a core layer, and an upper clad layer for embedding the core layer are formed on a substrate, and the upper clad layer, preferably, the upper clad layer and the lower clad layer are formed by, for example, dry etching, wet etching, or the like. It is removed by a method such as etching, laser ablation, milling, or sandblasting until at least the width of the cladding layer adjacent to the core layer near the light emitting element becomes 3 to 5 times the width of the core layer. I just need.
不要な上部クラッド層を除去した後、 必要により、 コア層の幅の 3〜5倍とな るように構成されたクラッド層の表面を先に説明した光不透過性材料で被覆すれ ばよい。  After removing the unnecessary upper cladding layer, the surface of the cladding layer configured to be 3 to 5 times the width of the core layer may be coated with the above-described light-impermeable material, if necessary.
実施例 1 Example 1
シリコンウェハ上に有機ジルコニウムキレートをスピンコート法により乾燥膜 厚 1 0 0オングストロームとなるように塗布し、 乾燥後、 その上にフッ素を含ま ないポリイミ ド樹脂を乾燥膜厚 0. 3 zmとなるように塗布し、 乾燥後、 フッ素 を含むポリイミ ド樹脂からなる下部クラヅド層 (8 /m) 及びコア層 (6. 5〃 m) を形成した。 次にコア層の上にシリコン含有レジストを 0. 5〃m厚となる ように塗布、 乾燥し、 コア層パターンを有するマスクを介して露光、 現像し、 こ のレジストパターンをマスクとして反応性イオンエッチングを行い、 .コア層を形 成した。 レジスト剥離後、 上部クラッド層 ( 15 /m) 、 フッ素を含まないポリ ィミ ド樹脂からなる保護層 (3〃m) を形成してポリイミ ド光導波路を作成した 。 その後、 シリコンウェハの光導波路の作成されていない面 (基板裏面) を J I S# 1000相当の耐水べ一パーで粗面化し、 粗面化度 J I S Rmax 9. 6 mとした。 その後ダイシングによりチップに切り出し、 受光素子及び発光素子 を取り付け、 光導波路の光学的クロストークを評価した。 比較例 1 Organic zirconium chelate is applied on a silicon wafer by spin coating to a dry film thickness of 100 Å, and after drying, contains fluorine No polyimide resin is applied to a dry film thickness of 0.3 zm, and after drying, a lower cladding layer (8 / m) and a core layer (6.5 m) composed of fluorine-containing polyimide resin are formed. did. Next, a silicon-containing resist is applied to the core layer to a thickness of 0.5 μm, dried, exposed and developed through a mask having a core layer pattern, and reactive ions are formed using the resist pattern as a mask. Etching was performed to form a core layer. After stripping the resist, an upper cladding layer (15 / m) and a protective layer (3 μm) made of a polyimide resin containing no fluorine were formed to form a polyimide optical waveguide. After that, the surface of the silicon wafer on which the optical waveguide was not formed (the back surface of the substrate) was roughened with a water-resistant vapor equivalent to JIS # 1000 to a roughening degree of JIS Rmax 9.6 m. After that, the chip was cut out by dicing, the light receiving element and the light emitting element were attached, and the optical crosstalk of the optical waveguide was evaluated. Comparative Example 1
実施例 1と同様に、 ポリイミド光導波路を作成した。 その後、 シリコンウェハ の光導波路の作成されていない面 (基板裏面) の粗面化を行うことなく、 ダイシ ングによりチップに切り出し、 受光素子及び発光素子を取り付け、 光導波路の光 学的クロストークを評価した。  In the same manner as in Example 1, a polyimide optical waveguide was prepared. After that, without roughening the surface of the silicon wafer where the optical waveguide is not formed (the back surface of the substrate), the chip is cut out into chips by dicing, the light receiving element and the light emitting element are attached, and optical crosstalk of the optical waveguide is reduced. evaluated.
その結果、 基板裏面を粗面化した本発明の実施例 1のモジュールの光学的ク口 スト一クは、 比較例 1のモジュールと比べて、 明らかに改善された。 実施例 2  As a result, the optical stress of the module of Example 1 of the present invention in which the back surface of the substrate was roughened was clearly improved as compared with the module of Comparative Example 1. Example 2
シリコンウェハ上に有機ジルコニウムキレートをスビンコ一ト法により乾燥 J3莫 厚 100オングストロームとなるように塗布し、 乾燥後、 その上にフッ素を含ま ないポリイミ ド樹脂を乾燥膜厚 0. 3〃mとなるように塗布し、 乾燥後、 フヅ素 を含むポリイミ ド樹脂からなる下部クラッド層 (8 m) 及びコア層 (6. 5ju m) を形成した。 次にコア層の上にシリコン含有レジストを 0 . 5 厚となる ように塗布、 乾燥し、 コアパターンを介して露光、 現像し、 このレジストパ夕一 ンをマスクとして反応性イオンエッチングを行い、 コア層を形成した。 レジスト 剥離後、 上部クラヅド層 ( 1 5 zm) を形成してポリイミ ド光導波路を作成した 。 その後、 コア層の両側面のクラッド層をコア層幅 (6 . 5 ja m) の約 5倍 (約 3 2 . 5〃m) を残して削除し、 その後ダイシングによりチップに切り出し、 光 導波路の光学的クロストークを評価した。 比較例 2 Organic zirconium chelate is dried on a silicon wafer by the Sincoat method and dried to a thickness of 100 Å.After drying, a fluorine-free polyimide resin is dried to a thickness of 0.3 m. After coating and drying, the lower cladding layer (8 m) and core layer (6.5 ju) made of polyimide resin containing fluorine m) formed. Next, a silicon-containing resist is applied on the core layer so as to have a thickness of 0.5, dried, exposed and developed through a core pattern, and reactive ion etching is performed using the resist pattern as a mask. A layer was formed. After stripping the resist, an upper cladding layer (15 zm) was formed to create a polyimide optical waveguide. After that, the cladding layers on both sides of the core layer are deleted leaving about 5 times (about 32.5〃m) the core layer width (6.5 jam), and then cut into chips by dicing, and the optical waveguide is cut. Were evaluated for optical crosstalk. Comparative Example 2
実施例 2と同様に、 シリコンウェハ上にスビンコ一ト法と反応性ィオンエッチ ング法によりポリイミ ド光導波路を作成し、 その後、 コア層の両側面のクラッド 層を削除することなく、 ダイシングによりチップに切り出し、 光導波路の光学的 クロストークを評価した。  As in Example 2, a polyimide optical waveguide was formed on a silicon wafer by a spin coating method and a reactive ion etching method, and thereafter, a chip was formed by dicing without removing the cladding layers on both sides of the core layer. The cutout was used to evaluate the optical crosstalk of the optical waveguide.
その結果、 クラヅド層を削除した本発明の実施例 2のモジュールの光学的クロ スト一クは、 比較例 2のモジュールと比べて、 明らかに改善された。 産業上の利用可能性  As a result, the optical cross-section of the module of Example 2 of the present invention from which the cladding layer was removed was clearly improved as compared with the module of Comparative Example 2. Industrial applicability
本発明の第 1の実施態様によれば、 基板に光学的クロストーク低減手段が設け られているため、 この基板を使用して製造された光導波路型光送受信モジュール は、 光学的クロストークが顕著に低減し、 受信感度の低下を顕著に抑制すること ができる。 また、 光学的クロストーク低減手段が基板に設けられているため、 基 板上の光素子に光学的クロストーク低減手段を設ける従来の方法と比較して、 そ の製造が容易である。  According to the first embodiment of the present invention, since the substrate is provided with the optical crosstalk reducing means, the optical waveguide type optical transceiver module manufactured using this substrate has a remarkable optical crosstalk. , And a decrease in reception sensitivity can be significantly suppressed. Further, since the optical crosstalk reducing means is provided on the substrate, the manufacture thereof is easier than the conventional method of providing the optical element on the substrate with the optical crosstalk reducing means.
また、 本発明の第 2の実施態様に係る、 光学的クロストーク低減手段を設けた 本発明の光導波路型光送受信モジュールは、 光学的クロストークが顕著に低減し 、 受信感度の低下を顕著に抑制することができる ( Further, according to the second embodiment of the present invention, the optical waveguide type optical transceiver module of the present invention provided with the optical crosstalk reducing means has a significantly reduced optical crosstalk. However, it is possible to remarkably suppress a decrease in reception sensitivity (
2 Two

Claims

請求の範囲 The scope of the claims
1 . 基板と、 その表面に形成された光素子を含む光導波路型光送受信モジュール において、 該基板に光学的クロストーク低減手段を設けたことを特徴とする光導 波路型光送受信モジュール。  1. An optical waveguide type optical transceiver module comprising a substrate and an optical element formed on the surface thereof, wherein the substrate is provided with an optical crosstalk reducing means.
2 . 光学的クロストーク低減手段が、 漏光を吸収及び Z又は遮断するか、 漏光の 光路を変更する手段を含む請求項 1記載の光導波路型光送受信モジュール。 2. The optical waveguide type optical transceiver module according to claim 1, wherein the optical crosstalk reduction means includes means for absorbing and blocking or blocking the leaked light or changing the optical path of the leaked light.
3 . 光学的クロストーク低減手段が、 基板の裏面又は表面又はその双方を粗面化 することにより漏光を散乱させ、 漏光が受光素子に入射するのを防止するもので ある請求項 1記載の光導波路型光送受信モジュール。 3. The light guide according to claim 1, wherein the optical crosstalk reducing means scatters light leakage by roughening the back surface and / or the surface of the substrate, thereby preventing the light from entering the light receiving element. Waveguide type optical transceiver module.
4 . 粗面化度が J I S R ma x 6〜l 2 mである請求項 3記載の光導波路型 光送受信モジュール。  4. The optical waveguide type optical transceiver module according to claim 3, wherein the degree of surface roughening is JIS Rmax 6 to l2 m.
5 . 光学的クロストーク低減手段が、 使用波長において不透明な金属、 セラミツ クス、 樹脂及びこれらの 2種以上の組合せから成る基板である請求項 1記載の光 導波路型光送受信モジュ一ル。  5. The optical waveguide type optical transmission / reception module according to claim 1, wherein the optical crosstalk reducing means is a substrate made of a metal, a ceramic, a resin, or a combination of two or more of them, which is opaque at a used wavelength.
6 . 合分波フィル夕を用いた光導波路型光送受信モジュールであって、 光学的ク ロストークが 5 d B以内であることを特徴とする光導波路型光送受信モジュール ο  6. An optical waveguide type optical transceiver module using a multiplexing / demultiplexing filter, wherein the optical crosstalk is within 5 dB. Ο
7 . 下部クラッド層と、 コア層と、 このコア層を埋め込む上部クラッド層と、 受 光素子と、 発光素子とを含む光導波路型光送受信モジュールにおいて、 少なくと も該発光素子近傍の該コア層に隣接するクラッド層の幅を、 該コア層の幅の 3〜 5倍となるように構成したことを特徴とする光導波路型光送受信モジュール。 7. In an optical waveguide type optical transceiver module including a lower cladding layer, a core layer, an upper cladding layer in which the core layer is embedded, a light receiving element, and a light emitting element, at least the core layer near the light emitting element An optical waveguide type optical transceiver module, characterized in that the width of the cladding layer adjacent to the optical waveguide is 3 to 5 times the width of the core layer.
8 . コア層の幅の 3〜5倍となるように構成されたクラッド層の表面を光不透過 性材料で被覆したことを特徴とする請求項 7記載の光導波路型光送受信モジユー ル。 8. The optical waveguide type optical transmission / reception module according to claim 7, wherein the surface of the cladding layer configured to be 3 to 5 times the width of the core layer is coated with a light-impermeable material.
9 . 光不透過性材料が金属又は樹脂である請求項 8記載の光導波路型光送受信モ ジュール。 9. The optical waveguide type optical transceiver according to claim 8, wherein the light-impermeable material is metal or resin. Jules.
10. 光学的クロストーク低減手段が設けられていることを特徴とする光導波路 型光送受信モジュ一ル作成用基板。  10. A substrate for producing an optical waveguide type optical transmission / reception module, which is provided with optical crosstalk reduction means.
1 1. 光学的クロストーク低減手段が、 漏光を吸収及び/又は遮断するか、 漏光 の光路を変更する手段を含む請求項 10記載の光導波路型光送受信モジュール作 成用基板。  11. The substrate for producing an optical waveguide type optical transceiver module according to claim 10, wherein the optical crosstalk reducing means includes means for absorbing and / or blocking light leakage or changing an optical path of light leakage.
12. 光学的クロストーク低減手段が、 基板の裏面又は表面又はその双方を粗面 化することにより漏光を散乱させ、 漏光が受光素子に入射するのを防止するもの である請求項 10記載の光導波路型光送受信モジュール作成用基板。  12. The light guide according to claim 10, wherein the optical crosstalk reducing means scatters light leakage by roughening the back surface and / or the surface of the substrate, thereby preventing the light from entering the light receiving element. Substrate for making waveguide type optical transceiver module.
13. 粗面化度が J I S Rmax6~l 2〃mである請求項 12記載の光導波 路型光送受信モジュール作成用基板。  13. The substrate for producing an optical waveguide type optical transceiver module according to claim 12, wherein the degree of surface roughening is JISRmax6 to l2〃m.
14. 光学的クロストーク低減手段が、 使用波長において不透明な金属、 セラミ ックス、 樹脂及びこれらの 2種以上の組合せから成る謝反である請求項 10記載 の光導波路型光送受信モジュール作成用基板。  14. The substrate for producing an optical waveguide-type optical transceiver module according to claim 10, wherein the optical crosstalk reducing means is an opaque metal, ceramic, resin, or a combination of two or more of these at the operating wavelength.
4 Four
PCT/JP2002/013666 2001-12-28 2002-12-26 Optical transmission/reception module of optical waveguide type, and substrate for making the same WO2003058305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002367342A AU2002367342A1 (en) 2001-12-28 2002-12-26 Optical transmission/reception module of optical waveguide type, and substrate for making the same
JP2003558559A JP3799611B2 (en) 2001-12-28 2002-12-26 Optical waveguide type optical transceiver module and substrate for producing the module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-399045 2001-12-28
JP2001-399044 2001-12-28
JP2001399044 2001-12-28
JP2001399045 2001-12-28

Publications (1)

Publication Number Publication Date
WO2003058305A1 true WO2003058305A1 (en) 2003-07-17

Family

ID=26625357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013666 WO2003058305A1 (en) 2001-12-28 2002-12-26 Optical transmission/reception module of optical waveguide type, and substrate for making the same

Country Status (3)

Country Link
JP (1) JP3799611B2 (en)
AU (1) AU2002367342A1 (en)
WO (1) WO2003058305A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923669B2 (en) 2011-06-14 2014-12-30 Shinko Electric Industries Co., Ltd. Optical waveguide and method of manufacturing the same, and optical waveguide device
JP2018151572A (en) * 2017-03-14 2018-09-27 Nttエレクトロニクス株式会社 Optical circuit and optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301537A (en) * 1994-05-09 1995-11-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH10282351A (en) * 1997-04-11 1998-10-23 Kyocera Corp Optical waveguide, and optoelectronic mixed substrate
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3219781B2 (en) * 1991-02-19 2001-10-15 日本電気株式会社 Optical circuit
JP3721923B2 (en) * 2000-02-22 2005-11-30 株式会社日立製作所 Optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07301537A (en) * 1994-05-09 1995-11-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH10282351A (en) * 1997-04-11 1998-10-23 Kyocera Corp Optical waveguide, and optoelectronic mixed substrate
JPH11248954A (en) * 1998-03-06 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Optical hybrid module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923669B2 (en) 2011-06-14 2014-12-30 Shinko Electric Industries Co., Ltd. Optical waveguide and method of manufacturing the same, and optical waveguide device
JP2018151572A (en) * 2017-03-14 2018-09-27 Nttエレクトロニクス株式会社 Optical circuit and optical module

Also Published As

Publication number Publication date
JPWO2003058305A1 (en) 2005-05-19
JP3799611B2 (en) 2006-07-19
AU2002367342A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
JP3887371B2 (en) Optical transmission board, optical transmission board manufacturing method, and opto-electric integrated circuit
US8369675B2 (en) Optical waveguide, optical waveguide mounting substrate, and light transmitting and receiving device
US20110084047A1 (en) Methods For Fabrication Of Large Core Hollow Waveguides
JP2011523714A (en) Optical splitter device
US20110286692A1 (en) Optical waveguide device and method of manufacturing the same
JP2010113325A (en) Mirror-embedded light transmission medium and fabrication method of same
WO2021143910A1 (en) Light emission end device, method for preparing light emission end device, and optical communication device
CN112558219A (en) Optical device and manufacturing method thereof
JPH11274546A (en) Semiconductor photo detector element
WO2003058305A1 (en) Optical transmission/reception module of optical waveguide type, and substrate for making the same
JP2002033503A (en) Semiconductor photodetector
JP4506216B2 (en) Optical coupling device and manufacturing method thereof
JP2002365457A (en) Optical waveguide, method for manufacturing the same, and optical signal transmission device
US7409119B2 (en) Optical filter, manufacturing method thereof, and planar lightwave circuit using the same
KR20100094455A (en) Improved performance optically coated semiconductor devices and related methods of manufacture
US20040026604A1 (en) Optical transceiver
JP4222133B2 (en) Method for manufacturing optical path conversion element and method for manufacturing optical integrated circuit
JP2002156538A (en) Optical waveguide device and its manufacturing method
JP2004341412A (en) Optical waveguide device with filter
WO2021245874A1 (en) End-surface incident type semiconductor light receiving element
JP6972563B2 (en) Manufacturing method of optical waveguide device
CN1215480A (en) Process for the hybrid integration of at least one opto-electronic component and a waveguide, and an integrated electro-optical device
JP2003294965A (en) Optical waveguide device, method of manufacturing the same, and substrate therefor
JP2010061171A (en) Optical coupling device and its manufacturing method
JP2003279777A (en) Manufacturing method of light guide device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003558559

Country of ref document: JP

122 Ep: pct application non-entry in european phase