WO2003056378A1 - Appareillage d'imagerie confocale notamment pour endoscope - Google Patents

Appareillage d'imagerie confocale notamment pour endoscope Download PDF

Info

Publication number
WO2003056378A1
WO2003056378A1 PCT/FR2002/004481 FR0204481W WO03056378A1 WO 2003056378 A1 WO2003056378 A1 WO 2003056378A1 FR 0204481 W FR0204481 W FR 0204481W WO 03056378 A1 WO03056378 A1 WO 03056378A1
Authority
WO
WIPO (PCT)
Prior art keywords
image guide
lenses
mirror
optical
signal
Prior art date
Application number
PCT/FR2002/004481
Other languages
English (en)
Inventor
Bertrand Viellerobe
Magalie Genet
Frédéric BERIER
François LACOMBE
Aymeric Perchant
Georges Le Goualher
Sandra Marti
Stéphane BOURRIAUX
Original Assignee
Mauna Kea Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mauna Kea Technologies filed Critical Mauna Kea Technologies
Priority to DE60205408T priority Critical patent/DE60205408T2/de
Priority to IL16270602A priority patent/IL162706A0/xx
Priority to BR0215371-8A priority patent/BR0215371A/pt
Priority to AU2002364671A priority patent/AU2002364671B2/en
Priority to AT02805803T priority patent/ATE301294T1/de
Priority to US10/500,160 priority patent/US7285089B2/en
Priority to JP2003556843A priority patent/JP4455059B2/ja
Priority to CA2471721A priority patent/CA2471721C/fr
Priority to EP02805803A priority patent/EP1468322B1/fr
Publication of WO2003056378A1 publication Critical patent/WO2003056378A1/fr
Priority to IL162706A priority patent/IL162706A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0233Special features of optical sensors or probes classified in A61B5/00
    • A61B2562/0242Special features of optical sensors or probes classified in A61B5/00 for varying or adjusting the optical path length in the tissue

Definitions

  • the present invention relates to a confocal imaging apparatus in particular for an endoscope and of the type using a bundle of flexible optical fibers.
  • the confocal character lies in the use of the same path to illumination and detection, and in the spatial filtration of the signal returning from the subsurface analysis plan.
  • the fields of application of the invention are the analysis of biological tissues in vivo on humans or animals, external for example in the field of dermatology, or internal and accessible using a channel endoscope operator into which the flexible optical fiber bundle can be introduced, as well as the ex-vivo analysis of tissue samples from biopsy samples, and the in-vitro culture analysis in cell biology.
  • the device can also be used to analyze the interior of a manufactured device.
  • the apparatus according to the invention is of the type comprising a source emitting radiation at a given wavelength producing a parallel illumination beam.
  • This beam of illumination is then separated for example by a separating blade in order to dissociate the illumination pathway and the detection pathway. It is then angularly deflected in two directions of space (scanning) by an optomechanical system of mirrors.
  • An optical means picks up the angularly scanned beam and injects it into an image guide located in the focal plane of the latter and consisting of an ordered beam of several tens of thousands of flexible optical fibers.
  • the optical fibers constituting the image guide are successively injected by angularly deflecting the beam by means of the mirrors, and this point by point for a given line, and line after line to constitute the image.
  • the beam injected into the image guide (if necessary previously placed in (the endoscope operator canaf) is guided, emerges from it and is taken up by an optical means making it possible to illuminate point to point the site which is At any time, the spot illuminating the tissue is backscattered and follows the reverse path of the incident beam.
  • This backscattered flux is therefore reinjected into the image guide, emerges from it, reaches the scanning system, is then returned to the detection channel by means of the separating plate, then focused in a filtering hole. It is then detected for example by a photomultiplier or an avalanche photodiode.
  • the signal from the photodetector is then integrated, then digitized to be viewed on a screen .
  • a device of this type is described in particular in international patent application WO 00/16151.
  • the difficulties encountered are linked to the low ratio of the useful backscattered signal to the parasitic signal, which requires, for the image produced to be acceptable, a beam quality of the best possible illumination and preserved throughout the optical path, in particular in terms of the quality of the wavefront and the spatial distribution of the intensity of the focal spot which must be as close as possible to the diameter of the heart of a fiber.
  • the degradation of the illumination beam both from an energy and spatial point of view is notably due to the parasitic reflections which operate at the input of the image guide and to optical transmission faults in the scanning systems and injection (field distortion, wavefront error).
  • the scanning system comprises optomechanical and / or galvanometric resonant mirrors and the system for injecting into the image guide a focusing lens L4 or a microscope objective .
  • the object of the present invention is to propose an apparatus whose quality of the illumination beam is improved at the entrance of the image guide and consequently the image quality is also improved. It also aims to propose a solution for this at low cost, simple to implement, miniaturizable and industrializable. It offers confocal imaging equipment, in particular for endoscopes, comprising an image guide made up of flexible optical fibers with:
  • a source producing an illumination beam, means for angular scanning of said beam, means for injecting the deflected beam in turn into one of the fibers of the guide image, means for separating the illumination beam and the back-sent signal, means for spatial filtering, means for detecting said signal, electronic means for controlling, analyzing and digitally processing the detected signal and for displaying ; and - on the side of the distal end of the image guide: an optical head adapted to focus the illumination beam leaving the illuminated fiber,
  • the invention is characterized in that the angular scanning means comprise a resonant line mirror and a galvanometric raster mirror with a variable frequency and two afocal optical systems adapted to combine the two mirrors first then the raster mirror and the injection means into the image guide in a second step, each optical system respecting the initial wavefront quality (WFE) and having a spatial distribution of the intensity of the focal spot (PSF) equal to the diameter of the core of a fiber.
  • WFE initial wavefront quality
  • PSF focal spot
  • Each optical system can comprise either a set of standard lenses making it possible to carry out the scanning and the injection into the image guide coupled to additional custom-made lenses having the function of correcting the residual aberrations of the standard lenses, or a set of Very good quality custom lenses.
  • an optical afocal system comprises four lenses including a correcting doublet placed symmetrically with respect to the image plane making it possible to correct the field curvature and to minimize the error of the wavefront.
  • the means for injecting into the image guide comprise a set of lenses for transforming the angular scanning of the illumination beam into a translation scanning of the image guide which includes upstream a suitable doublet correcting the residual field curvature of said set of lenses.
  • the electronic means for controlling, analyzing and digitally processing the detected signal and for viewing includes a synchronization card adapted in particular to synchronously control the movement of the line and frame mirrors and adapted to know at any time the position of the scanned illumination beam.
  • FIG. 1 an apparatus for producing an image of a site situated at a given depth in a plane P of section XY perpendicular to the optical axis, said apparatus comprising an image guide 1 made up of several tens of thousands of flexible optical fibers with:
  • a source 2 producing an illumination beam
  • angular scanning means 3 of said beam means 4 for injecting the beam deflected in turn into one fibers of the image guide 1
  • means 5 for separating the illumination beam and the back-emitted signal
  • spatial filtering means 6 means for detecting said signal
  • electronic means 8 for controlling, analyzing and digital processing of the detected signal and display;
  • an optical head 9 adapted to focus the illumination beam leaving the illuminated fiber of the image guide at a focused point 10 in the plane P under the area of contact 1 1 of the optical head 9.
  • the image guide 1 provides access to the subsurface analysis zone by shifting the source 2. If it is intended, with the optical head 9, to be inserted into the operating channel of the endoscope, it must have dimensions that are compatible (a few millimeters in diameter depending on the clinical application). It consists of an ordered bundle of flexible optical fibers surrounded by a sheath. Any guide with sufficient fiber and low inter-core spacing can be used to obtain good spatial resolution.
  • the fibers are illuminated one by one in turn and in an addressed manner, thanks to the scanning means 3 and to the injection means 4.
  • the useful diameter of the image guide therefore corresponds to the diameter of the heart of an illuminated fiber.
  • the image guide 1 is equipped at its two ends with a glass slide (not shown in the figure) sufficiently thick to reject parasitic reflections outside the filtering means 6 for the reflection which occurs at entry of the fiber bundle, and outside of the illuminated optical fiber for the reflection which takes place at the exit of the image guide.
  • the glass slides are anti-reflective treated to minimize the reflected light.
  • Source 2 consists of a laser diode at 683 nm which must have a very good quality wavefront, less than or equal to ⁇ / 10. According to the invention, this diode is pulsed in order to dissociate by synchronous detection the useful signal from the stray reflection which takes place at the input of the image guide 1.
  • a solid or gas laser it is possible to use a solid or gas laser, but the choice in wavelength in the 600-800 nm band where the absorption in the tissues is less, is less extensive; moreover, the cost at equivalent power is much higher.
  • the means 5 for separating the illumination beam and the return signal here consist of a 50/50 separator cube for adjustment convenience. You can also use a 50/50 separator blade.
  • the scanning means 3 have the function of reproducing a matrix of diodes of the same optical quality as the laser diode of the source 2 and which will be injected fiber to fiber. This requires a combination of non-standard optical means making it possible to correct the aberrations present in the transport and source duplication system in order to illuminate the signal guide fiber by fiber.
  • the scanning system consists of two mirrors M1 and M2 and two optical systems.
  • the mirror M1 is a “line” mirror resonating at a frequency of 4 kHz and the mirror M2 is a “frame” mirror, galvanometric with a variable frequency between 0 and 300 Hz.
  • Each optical system is made up of four lenses, respectively, L1- L4 and L5-L8, allowing to combine the two mirrors at first, then the M2 mirror and the entry of the image guide.
  • These optical systems must not present any aberrations which could: - broaden the spatial distribution of the intensity of the focal spot (FEP: Point Spreading Function or PSF: "Point Spread Function” in English) after the injection means 4 and thus degrade the coupling in the guide d 'image 1; - propagate the flux in the sheath of the image guide 1 which would degrade the PSF at the end of the guide and therefore the resolution of the image.
  • FEP Point Spreading Function
  • PSF Point Spread Function
  • the lenses L2-L3 and L6-L7 are identical correcting doublets placed symmetrically with respect to the image plane. This makes it possible to homogenize the injection into the image guide by correcting the curvature of the field and minimizing the error of the wavefront due to the use of afocal systems outside the axes (L1-L4 and L5- L8).
  • the injection means 4 They must have the minimum of aberrations and must not degrade the quality of the wavefront in order to achieve a focusing spot close to the diffraction limit, thereby achieving optimal coupling with the addressed fiber. (a PSF equal to the core diameter of a fiber). They include a custom-made doublet L9 and a standard triplet L10. The doublet L9 makes it possible to correct the residual aberrations of the triplet L10, namely the field curvature.
  • the spatial filtering means 6 comprise a lens L1 1 and a filtering hole T making it possible to select only the illumination fiber and not the adjacent fibers which can generate a spurious signal.
  • the size of the filtering hole is such that it corresponds to the diameter of the core of a fiber growing near the optical system between the entry of the fiber bundle and the filtering hole.
  • the optical head 9 comprises several optical means making it possible to converge the beam emerging from the illuminated optical fiber and two glass slides, one is that described above at the output of the image guide and the other is a window adapted to come into contact with the site and carry out an index adaptation.
  • the optical means have the following characteristics: - allow an analysis of the tissue at a depth of several tens to several hundred microns;
  • the optical means include for example a lens system forming a custom-made objective.
  • the detection means 7 comprise as signal detector an avalanche photodiode which acquires the signal continuously, the parasitic signal coming from the two ends of the signal guide being reduced to the same order of magnitude as the useful signal so as not to saturate the detector .
  • the removal of the stray reflection residue at the input of the image guide is then carried out by digital time filtering.
  • the electronic means 8 for controlling, analyzing and digitally processing the detected signal and for displaying includes the following cards: - a modulation card 20 of the laser source. This card allows the source to be modulated at a relatively high frequency (of the order of 100 MHz) in order to produce pulses (10 ns ⁇ T ⁇ 100 ns) at regular intervals (duty cycle of the order of 4). - A synchronization card 21 which has the following functions: - to synchronously control the scanning, that is to say the movement of the line M1 and frame M2 mirrors;
  • a detector card 22 which includes an analog circuit which in particular performs an impedance adaptation and integration, an analog digital converter then a programmable logic component (for example an FGPA circuit) which formats the signal; a digital acquisition card 23 which makes it possible to process a stream of digital data at variable frequency and to display it on a screen 24;
  • Image processing is done as follows.
  • the raw information at the output of the detector card is formatted and processed in order to be visible and then interpretable.
  • the method of acquiring images through the image guide made up of several tens of thousands of optical fibers and by scanning the latter induces specificities in the image and appropriate processing.
  • the first group consists of signal processing methods aimed at calibrating the acquired signal. We can thus overcome the laser / guide coupling faults inherent in the acquisition process, as well as faults due to certain system noises. Calibration can take different forms depending on the precision of the sweep control and its stability over time. These treatments are essentially one-dimensional. 2.
  • the second group improves the interpretation by integrating image processing (2D and 2D + time) specific to the opto-mechanical process. These treatments consist of a process of restoring images, followed by a rapid registration process allowing to overcome small movements. These treatments are fast compared to the acquisition time. These algorithms are fully automatic and adapt to the nature of the image. It goes without saying that alternative embodiments are possible, in particular with regard to the line mirror M1 which can resonate at another frequency, for example 8 kHz, the optical focal length systems which can be entirely made-to-measure or include other sets of suitable corrective lenses.

Abstract

Il comporte un guide d’image (1) constitué de fibres optiques souples avec : du côté de l’extrémité proximale : une source (2), des moyens de balayage angulaire (3), des moyens d’injection (4) dans l’une des fibres, des moyens de séparation (5) du faisceau d’illumination et du signal rétroémis, des moyens de filtrage spatial (6), des moyens de détection (7) dudit signal, des moyens électroniques (8) de commande, d’analyse et de traitement numérique du signal détecté et de visualisation ; et du côté de l’extrémité distale : une tête optique (9) adaptée à focaliser le faisceau d’illumination sortant de la fibre illuminée. Selon l’invention, les moyens (3) comprennent un miroir ligne résonnant (M1) et un miroir trame (M2) galvanométrique avec une fréquence variable et deux systèmes optiques d’afocaux adaptés à conjuguer les deux miroirs (M1, M2) dams un premier temps puis le miroir trame (M2) et le moyen d’injection (4) dans le guide d’image dans un deuxième temps.

Description

«Appareillage d'imagerie confocale notamment pour endoscope»
La présente invention concerne un appareillage d'imagerie confocale notamment pour endoscope et du type utilisant un faisceau de fibres optiques souples. Le caractère confocal réside dans l'utilisation du même chemin à l'illumination et à la détection, et dans la filtration spatiale du signal revenant du plan d'analyse subsurfacique.
Les domaines d'applications de l'invention sont l'analyse de tissus biologiques in-vivo sur l'homme ou l'animal, externes par exemple dans le domaine de la dermatologie, ou internes et accessibles à l'aide d'un canal opérateur d'endoscope dans lequel on peut introduire le faisceau dé fibres optiques souples, et également l'analyse ex-vivo d'échantillons tissulaires provenant de prélèvements biopsiques, et l'analyse in-vitro de culture en biologie cellulaire. En outre encore, le dispositif peut servir à l'analyse de l'intérieur d'un dispositif manufacturé.
Actuellement sont visés les domaines médicaux de la gastro- entérologie, la pneumologie, la gynécologie, l'urologie, l'ORL, la dermatologie, l'ophtalmologie, la cardiologie et de la neurologie.
La mise en œuvre d'un faisceau de fibres optiques souples de petit diamètre (plusieurs centaines de microns) est nécessaire pour un couplage avec le canal opérateur d'un endoscope mais elle peut être également avantageuse pour des systèmes de tests automatiques dans lesquels le faisceau de fibres optiques, avec à son extrémité une tête optique de focalisation, est manipulé de manière automatisée comme un bras de mesure sur une matrice d'échantillon. Par ailleurs, indépendamment d'une application endoscopique, une miniaturisation de la tête optique est également avantageuse pour augmenter la précision du positionnement et également pour minimiser l'inertie mécanique dans les applications automatisées.
Plus particulièrement, l'appareillage selon l'invention est du type comprenant une source émettant une radiation à une longueur d'onde donnée produisant un faisceau d'illumination parallèle. Ce faisceau d'illumination est ensuite séparé par exemple par une lame séparatrice afin de dissocier la voie d'illumination et la voie de détection. Il est ensuite dévié angulairement dans deux directions de l'espace (balayage) par un système optomécanique de miroirs. Un moyen optique reprend ensuite le faisceau balayé angulairement et l'injecte dans un guide d'image situé dans le plan focal de ce dernier et constitué d'un faisceau ordonné de plusieurs dizaines de milliers de fibres optiques souples. On injecte ainsi, à un instant donné, une des fibres optiques du guide d'image pour une position angulaire donnée du faisceau. Au cours du temps, on injecte successivement les fibres optiques constituant le guide d'image en déviant angulairement le faisceau au moyen des miroirs, et ce point par point pour une ligne donnée, et ligne après ligne pour constituer l'image. Le faisceau injecté dans le guide d'image (le cas échéant préalablement disposé dans (e canaf opérateur d'un endoscope) est guidé, en émerge et est repris par un moyen optique permettant d'illuminer point à point le site que l'on souhaite observer. A chaque instant, le spot illuminant le tissu est rétrodiffusé et suit le trajet inverse du faisceau incident. Ce flux rétrodiffusé est donc réinjecté dans le guide d'image, en émerge, atteint le système de balayage, est ensuite renvoyé sur la voie de détection au moyen de la lame séparatrice, puis focalisé dans un trou de filtrage. Il est alors détecté par exemple par un photomultiplicateur ou une photodiode à avalanche. Le signal issu du photodétecteur est ensuite intégré, puis numérisé pour être visualisé sur un écran.
Un dispositif de ce type est décrit notamment dans la demande de brevet internationale WO 00/16151 . Dans le cas de l'analyse d'un tissu biologique, les difficultés que l'on rencontre sont liées au faible rapport du signal utile rétrodiffusé sur le signal parasite, qui nécessite, pour que l'image produite soit acceptable, une qualité de faisceau d'illumination la meilleure possible et conservée tout au long du trajet optique, notamment au niveau de la qualité du front d'onde et de la répartition spatiale de l'intensité de la tache focale qui doit être la plus proche possible du diamètre de cœur d'une fibre. Du côté de l'extrémité proximale du guide d'image, la dégradation du faisceau d'illumination tant sur le plan énergétique que spatial est notamment due aux réflexions parasites qui s'opèrent à l'entrée du guide d'image et aux défauts de transmission optique au niveau des systèmes de balayage et d'injection (déformation de champ, erreur du front d'onde).
Dans la demande de brevet internationale WO 00/16151 mentionnée ci- dessus, le système de balayage comprend des miroirs résonnants optomécaniques et/ou galvanométriques et le système d'injection dans le guide d'image une lentille L4 de focalisation ou un objectif de microscope. La présente invention a pour but de proposer un appareillage dont la qualité du faisceau d'illumination est améliorée à l'entrée du guide d'image et par conséquent la qualité d'image est améliorée aussi. Elle a également pour but de proposer une solution pour cela à faible coût, simple à mettre en œuvre, miniaturisable et industrialisable. Elle propose un appareillage d'imagerie confocale notamment pour endoscope comportant un guide d'image constitué de fibres optiques souples avec :
- du côté de l'extrémité proximale du guide d'image : une source produisant un faisceau d'illumination, des moyens de balayage angulaire dudit faisceau, des moyens d'injection du faisceau dévié tour à tour dans l'une des fibres du guide d'image, des moyens de séparation du faisceau d'illumination et du signal rétroémis, des moyens de filtrage spatial, des moyens de détection dudit signal, des moyens électroniques de commande, d'analyse et de traitement numérique du signal détecté et de visualisation ; et - du côté de l'extrémité distale du guide d'image : une tête optique adaptée à focaliser le faisceau d'illumination sortant de la fibre illuminée,
L'invention est caractérisée en ce que les moyens de balayage angulaire comprennent un miroir ligne résonnant et un miroir trame galvanométrique avec une fréquence variable et deux systèmes optiques d'afocaux adaptés à conjuguer les deux miroirs dans un premier temps puis le miroir trame et le moyen d'injection dans le guide d'image dans un deuxième temps, chaque système optique respectant la qualité du front d'onde (WFE) initiale et présentant une répartition spatiale de l'intensité de la tache focale (PSF) égale au diamètre de cœur d'une fibre.
Grâce à ces moyens optiques, on peut garantir une qualité du faisceau d'illumination et un taux de couplage fibre à fibre homogène et optimal.
Chaque système optique peut comprendre soit un ensemble de lentilles standards permettant de réaliser le balayage et l'injection dans le guide d'image couplé à des lentilles supplémentaires sur-mesure ayant pour fonction de corriger les aberrations résiduelles des lentilles standards, soit un ensemble de lentilles sur-mesure de très bonne qualité.
Selon un exemple particulier un système optique d'afocaux comprend quatre lentilles dont un doublet correcteur placé symétriquement par rapport au plan image permettant de corriger la courbure de champ et de minimiser l'erreur du front d'onde. Pour minimiser encore les aberrations résiduelles, les moyens d'injection dans le guide d'image comprennent un jeu de lentilles pour transformer le balayage angulaire du faisceau d'illumination en un balayage en translation du guide d'image qui comporte en amont un doublet adapté à corriger la courbure de champ résiduelle dudit jeu de lentilles. De manière avantageuse selon l'invention, les moyens électroniques de commande, d'analyse et de traitement numérique du signal détecté et de visualisation comprennent une carte de synchronisation adaptée notamment à commander de manière synchronisée le mouvement des miroirs ligne et trame et adaptée à connaître à tout instant la position du faisceau d'illumination balayé.
La présente invention sera mieux comprise et d'autres avantages apparaîtront à la lumière de la description qui va suivre d'un exemple de réalisation, description faite en référence à la figure 1 sur laquelle est représenté schématiquement un appareillage selon ledit exemple. Sur la figure 1 , il est proposé un appareillage pour réaliser une image d'un site situé à une profondeur donnée dans un plan P de coupe XY perpendiculaire à l'axe optique, ledit appareillage comportant un guide d'image 1 constitué de plusieurs dizaines de milliers de fibres optiques souples avec :
- du côté de l'extrémité proximale du guide d'image 1 : une source 2 produisant un faisceau d'illumination, des moyens de balayage angulaire 3 dudit faisceau, des moyens d'injection 4 du faisceau dévié tour à tour dans l'une des fibres du guide d'image 1 , des moyens de séparation 5 du faisceau d'illumination et du signal rétroémis, des moyens de filtrage spatial 6, des moyens de détection 7 dudit signal, des moyens électroniques 8 de commande, d'analyse et de traitement numérique du signal détecté et de visualisation ; et
- du côté de l'extrémité distale du guide d'image 1 : une tête optique 9 adaptée à focaliser le faisceau d'illumination sortant de la fibre illuminée du guide d'image en un point focalisé 10 dans le plan P sous la zone de contact 1 1 de la tête optique 9.
Tous ces moyens sont décrits ci-après en détails. Le guide d'image 1 permet d'accéder à la zone d'analyse subsurfacique en déportant la source 2. S'il est destiné, avec la tête optique 9, à être inséré dans le canal opérateur de l'endoscope, il doit présenter des dimensions qui soient compatibles (quelques millimètres de diamètre suivant l'application clinique). Il est constitué d'un faisceau ordonné de fibres optiques souples entouré d'une gaine. On peut utiliser tout guide présentant suffisamment de fibres et un faible espacement inter-cœur afin d'obtenir une bonne résolution spatiale. A titre d'exemple, on peut utiliser un guide de marque Sumitomo® constitué de 30 000 fibres de diamètre de cœur de 2,5 μm et d'espacement inter-cœur de 4 μm, ou bien un guide de marque Fujikura® constitué de 30 000 fibres de diamètre de cœur de 2 m et d'espacement inter-cœur de 3,7 μm. Selon l'invention, les fibres sont illuminées une à une tour à tour et de manière adressée, grâce aux moyens de balayage 3 et aux moyens d'injection 4. Le diamètre utile du guide d'image correspond donc au diamètre de cœur d'une fibre illuminée. Le guide d'image 1 est équipé à ses deux extrémités d'une lame de verre (non représentées sur la figure) suffisamment épaisse afin de rejeter les réflexions parasites en dehors des moyens de filtrage 6 pour la réflexion qui s'opère à l'entrée du faisceau de fibres, et en dehors de la fibre optique illuminée pour la réflexion qui s'opère en sortie du guide d'image. Les lames de verre sont traitées anti-reflet afin de minimiser la lumière réfléchie.
La source 2 est constituée d'une diode laser à 683 nm devant présenter une très bonne qualité de front d'onde, inférieure ou égale à λ/10. Selon l'invention, cette diode est puisée afin de dissocier par détection synchrone le signal utile de la réflexion parasite qui s'opère à l'entrée du guide d'image 1. En variante, on peut utiliser un laser solide ou à gaz, mais le choix en longueur d'onde dans la bande 600-800 nm où l'absorption dans les tissus est moindre, est moins étendu; de plus, le coût à puissance équivalente est bien plus important. Les moyens 5 pour séparer le faisceau d'illumination et le signal retour sont constitués ici d'un cube séparateur 50/50 pour des commodités de réglage. On peut aussi utiliser une lame séparatrice 50/50.
Les moyens de balayage 3 ont pour fonction de reproduire une matrice de diodes de même qualité optique que la diode laser de la source 2 et que l'on injectera fibre à fibre. Ceci nécessite une combinaison de moyens optiques non standards permettant de corriger les aberrations présentes dans le système de transport et de duplication de source afin d'éclairer le guide de signal fibre par fibre. Le système de balayage est constitué de deux miroirs M1 et M2 et de deux systèmes optiques. Le miroir M1 est un miroir « ligne » résonant à une fréquence de 4 kHz et le miroir M2 un miroir « trame », galvanométrique avec une fréquence variable entre 0 et 300 Hz. Chaque système optique est constitué de quatre lentilles, respectivement, L1-L4 et L5-L8, permettant de conjuguer les deux miroirs dans un premier temps, puis le miroir M2 et l'entrée du guide d'image. Ces systèmes optiques ne doivent pas présenter d'aberrations qui pourraient : - élargir la répartition spatiale de l'intensité de la tache focale (FEP : Fonction d'Etalement du Point ou PSF : « Point Spread Function » en langue anglaise) après les moyens d'injection 4 et ainsi dégrader le couplage dans le guide d'image 1 ; - faire propager le flux dans la gaine du guide d'image 1 qui dégraderait la PSF en bout de guide et de ce fait la résolution de l'image.
Les lentilles L2-L3 et L6-L7 sont des doublets correcteurs identiques placés symétriquement par rapport au plan image. Cela permet d'homogénéiser l'injection dans le guide d'image en corrigeant la courbure de champ et en minimisant l'erreur du front d'onde dues à l'utilisation de systèmes afocaux hors d'axes (L1-L4 et L5-L8).
Les moyens d'injection 4 : Ils doivent présenter le minimum d'aberrations et ne doivent pas dégrader la qualité du front d'onde afin de réaliser une tache de focalisation proche de la limite de diffraction pour ainsi réaliser un couplage optimal avec la fibre adressée (une PSF égale au diamètre de cœur d'une fibre). Ils comprennent un doublet sur-mesure L9 et un triplet standard L10. Le doublet L9 permet de corriger les aberrations résiduelles du triplet L10, à savoir la courbure de champ.
Les moyens de filtrage spatial 6 comprennent une lentille L1 1 et un trou de filtrage T permettant de ne sélectionner que la fibre d'illumination et non les fibres adjacentes qui peuvent générer un signal parasite. La taille du trou de filtrage est telle qu'elle correspond au diamètre de cœur d'une fibre au grandissement près du système optique entre l'entrée du faisceau de fibres et le trou de filtrage. La tête optique 9 comprend plusieurs moyens optiques permettant de faire converger le faisceau émergeant de la fibre optique illuminée et deux lames de verre, l'une est celle décrite plus haut en sortie du guide d'image et l'autre est un hublot adapté à venir en contact du site et réalisant une adaptation d'indice. Les moyens optiques présentent les caractéristiques suivantes : - permettre une analyse du tissu à une profondeur de plusieurs dizaines à plusieurs centaines de microns ;
- minimiser les aberrations afin de transcrire la PSF en sortie du guide d'image sur le tissu sans élargir celle-ci ou la déformer ; - optimiser le taux de couplage en retour dans le guide d'image en optimisant la qualité du front d'onde ;
- le cas échant, des dimensions compatibles avec celles du canal opérateur d'un endoscope.
Les moyens optiques comprennent par exemple un système de lentilles formant un objectif sur-mesure.
Les moyens de détection 7 comprennent comme détecteur de signal une photodiode à avalanche qui acquiert le signal en continu, le signal parasite provenant des deux extrémités du guide de signal étant ramené au même ordre de grandeur que le signal utile afin de ne pas saturer le détecteur. La suppression du résidu de réflexion parasite à l'entrée du guide d'image est ensuite effectuée par un filtrage temporel numérique.
Les moyens électroniques 8 de commande, d'analyse et de traitement numérique du signal détecté et de visualisation comprennent les cartes suivantes: - une carte de modulation 20 de la source laser. Cette carte permet de moduler la source à une fréquence relativement élevée (de l'ordre de 100 MHz) afin de produire des impulsions (10 ns < T < 100 ns ) à intervalles réguliers (rapport cyclique de l'ordre de 4). - une carte de synchronisation 21 qui a pour fonctions : - de commander de manière synchronisée le balayage, c'est-à-dire le mouvement des miroirs ligne M1 et trame M2 ;
- de connaître à tout instant la position du spot laser ainsi balayé ;
- de synchroniser l'émission des impulsions de la source laser avant la détection ; - de gérer toutes les autres cartes par l'intermédiaire d'un microcontrôleur lui-même pouvant être piloté ; - une carte détecteur 22 qui comprend un circuit analogique qui réalise notamment une adaptation d'impédance et une intégration, un convertisseur analogique numérique puis un composant logique programmable (par exemple un circuit FGPA) qui met en forme le signal ; - une carte d'acquisition numérique 23 qui permet de traiter un flot de données numériques à fréquence variable et de l'afficher sur un écran 24 ;
- une carte graphique 25.
Le traitement d'image se fait de la manière suivante. L'information brute en sortie de carte de détecteur est mise en forme et traitée afin d'être visualisable puis interprétable. Le procédé d'acquisition des images à travers le guide d'image constitué de plusieurs dizaines de milliers de fibres optiques et par balayage de ce dernier induit des spécificités dans l'image et un traitement approprié.
Deux groupes de traitements sont prévus : 1. Le premier groupe est constitué de procédés de traitement de signal visant à calibrer le signal acquis. On peut ainsi s'affranchir des défauts de couplage laser/guide inhérent au procédé d'acquisition, ainsi que des défauts dus à certains bruits du système. La calibration peut prendre différentes formes suivant la précision du contrôle de balayage, et sa stabilité dans le temps. Ces traitements sont essentiellement monodimensionnels. 2. Le second groupe permet d'améliorer l'interprétation en intégrant des traitements d'image (2D et 2D +temps) spécifiques au procédé opto- mécanique. Ces traitements consistent en un procédé de restauration d'images, suivis d'un procédé de recalage rapide permettant de s'affranchir des petits mouvements. Ces traitements sont rapides par rapport à la durée d'acquisition. Ces algorithmes sont entièrement automatiques et s'adaptent à la nature de l'image. Il va de soi que des variantes de réalisation sont possibles notamment en ce qui concerne le miroir ligne M1 qui peut résonner à une autre fréquence par exemple 8kHz, les systèmes optiques d'afocaux qui peuvent être entièrement sur-mesure ou bien comporter d'autres jeux de lentilles correctrices adaptées.

Claims

Revendications
1 . Appareillage d'imagerie confocale notamment pour endoscope comportant un guide d'image (1 ) constitué de fibres optiques souples avec : - du côté de l'extrémité proximale du guide d'image (1 ) : une source (2) produisant un faisceau d'illumination, des moyens de balayage angulaire (3) dudit faisceau, des moyens d'injection (4) du faisceau dévié tour à tour dans l'une des fibres du guide d'image (1 ), des moyens de séparation (5) du faisceau d'illumination et du signal rétroémis, des moyens de filtrage spatial (6), des moyens de détection (7) dudit signal, des moyens électroniques (8) de commande, d'analyse et de traitement numérique du signal détecté et de visualisation ; et
- du côté de l'extrémité distale du guide d'image (1 ) : une tête optique (9) adaptée à focaliser le faisceau d'illumination sortant de la fibre illuminée, caractérisé en ce que les moyens de balayage angulaire (3) comprennent un miroir ligne résonnant (M1 ) et un miroir trame (M2) galvanométrique avec une fréquence variable et deux systèmes optiques d'afocaux adaptés à conjuguer les deux miroirs (M1 ,M2) dans un premier temps puis le miroir trame (M2) et le moyen d'injection (4) dans le guide d'image dans un deuxième temps, chaque système optique respectant la qualité du front d'onde (WFE) initiale et présentant une répartition spatiale de l'intensité de la tache focale (PSF) égale au diamètre de cœur d'une fibre.
2. Appareillage selon la revendication 1 , caractérisé par un système optique d'afocaux comprenant des lentilles standards et des lentilles correctrices adaptées à corriger les aberrations résiduelles desdites lentilles standards.
3. Appareillage selon la revendication 2, caractérisé en ce que le système optique d'afocaux comprend quatre lentilles (L1-L4 ; L5-L8) dont un doublet correcteur (L2,L3 ; L6,L7) placé symétriquement par rapport au plan image permettant de corriger la courbure de champ et de minimiser l'erreur du front d'onde.
4. Appareillage selon la revendication 1 , caractérisé par un système optique d'afocaux sur-mesure.
5. Appareillage selon l'une des revendications précédentes, caractérisé en ce que les moyens d'injection (4) comprennent un jeu de lentilles (L10) adapté à transformer le balayage angulaire en un balayage en translation du guide d'image et en amont un doublet (L9) adapté à corriger la courbure de champ résiduelle dudit jeu de lentilles (L10).
6. Appareillage selon la revendication 5, caractérisé en ce que ledit jeu de lentilles (L10) est un triplet.
7. Appareillage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une lame de verre ménagée à l'entrée du guide d'image destinée à rejeter les réflexions parasites en dehors des moyens de filtrage (6).
8. Appareillage selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une lame de verre ménagée à la sortie du guide d'image destinée à rejeter les réflexions parasites en dehors de la fibre optique illuminée.
9. Appareillage selon l'une des revendications précédentes, caractérisé en ce que le miroir ligne (M1 ) est un miroir résonnant à une fréquence de 4 kHz.
10. Appareillage selon l'une quelconque des revendications précédentes, caractérisé en ce que le miroir trame (M2) a une fréquence variable entre 0 et
300 Hz.
1 1 . Appareillage selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens électroniques (8) de commande, d'analyse et de traitement numérique du signal détecté et de visualisation comprennent une carte de synchronisation (21 ) adaptée notamment à commander de manière synchronisée le mouvement des miroirs ligne (M1 ) et trame (M2) et adaptée à connaître à tout instant la position du faisceau d'illumination balayé.
PCT/FR2002/004481 2001-12-28 2002-12-20 Appareillage d'imagerie confocale notamment pour endoscope WO2003056378A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE60205408T DE60205408T2 (de) 2001-12-28 2002-12-20 Konfokale abbildungsgeräte insbesondere für ein endoskop
IL16270602A IL162706A0 (en) 2001-12-28 2002-12-20 Confocal imaging equipment in particular for endoscope
BR0215371-8A BR0215371A (pt) 2001-12-28 2002-12-20 Equipamento de imagem confocal, em particular para endoscópio
AU2002364671A AU2002364671B2 (en) 2001-12-28 2002-12-20 Confocal imaging equipment in particular for endoscope
AT02805803T ATE301294T1 (de) 2001-12-28 2002-12-20 Konfokale abbildungsgeräte insbesondere für ein endoskop
US10/500,160 US7285089B2 (en) 2001-12-28 2002-12-20 Confocal imaging equipment in particular for endoscope
JP2003556843A JP4455059B2 (ja) 2001-12-28 2002-12-20 特に内視鏡用の共焦点式イメージング装置
CA2471721A CA2471721C (fr) 2001-12-28 2002-12-20 Appareillage d'imagerie confocale notamment pour endoscope
EP02805803A EP1468322B1 (fr) 2001-12-28 2002-12-20 Appareillage d imagerie confocale notamment pour endoscope
IL162706A IL162706A (en) 2001-12-28 2004-06-23 Confocal imaging equipment in particular for endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0116980A FR2834349B1 (fr) 2001-12-28 2001-12-28 Appareillage d'imagerie confocale notamment pour endoscope
FR01/16980 2001-12-28

Publications (1)

Publication Number Publication Date
WO2003056378A1 true WO2003056378A1 (fr) 2003-07-10

Family

ID=8871053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004481 WO2003056378A1 (fr) 2001-12-28 2002-12-20 Appareillage d'imagerie confocale notamment pour endoscope

Country Status (14)

Country Link
US (1) US7285089B2 (fr)
EP (1) EP1468322B1 (fr)
JP (1) JP4455059B2 (fr)
CN (1) CN1288473C (fr)
AT (1) ATE301294T1 (fr)
AU (1) AU2002364671B2 (fr)
BR (1) BR0215371A (fr)
CA (1) CA2471721C (fr)
DE (1) DE60205408T2 (fr)
DK (1) DK1468322T3 (fr)
ES (1) ES2247427T3 (fr)
FR (1) FR2834349B1 (fr)
IL (2) IL162706A0 (fr)
WO (1) WO2003056378A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009754A1 (fr) * 2004-06-17 2006-01-26 Bayer Healthcare Llc Tete de lecture coaxiale de reflectance diffuse
WO2006051811A1 (fr) * 2004-11-10 2006-05-18 Olympus Corporation Dispositif d'observation de corps biologique
JP2006138928A (ja) * 2004-11-10 2006-06-01 Olympus Corp 生体観察装置
JP2006204505A (ja) * 2005-01-27 2006-08-10 Olympus Corp 生体観察装置
US8496579B2 (en) 2006-09-28 2013-07-30 Jenlab Gmbh Method and arrangement for high-resolution microscope imaging or cutting in laser endoscopy
WO2014013412A1 (fr) 2012-07-17 2014-01-23 Ecole Polytechnique Federale De Lausanne (Epfl) Objectif optique réfléchissant
US10539776B2 (en) 2017-10-31 2020-01-21 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US10928621B2 (en) 2017-10-31 2021-02-23 Samantree Medical Sa Sample dishes for use in microscopy and methods of their use
US11609186B2 (en) 2015-03-31 2023-03-21 Samantree Medical Sa Systems and methods for in-operating-theatre imaging of fresh tissue resected during surgery for pathology assessment
US11747603B2 (en) 2017-10-31 2023-09-05 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US11966037B2 (en) 2022-05-09 2024-04-23 Samantree Medical Sa Sample dishes for use in microscopy and methods of their use

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222870A (ja) * 2003-01-21 2004-08-12 Pentax Corp 内視鏡用プローブ
US20050018944A1 (en) * 2003-07-25 2005-01-27 Mozdy Eric J. Polarization modulation interrogation of grating-coupled waveguide sensors
US7414729B2 (en) * 2005-10-13 2008-08-19 President And Fellows Of Harvard College System and method for coherent anti-Stokes Raman scattering endoscopy
JP4892316B2 (ja) 2006-11-06 2012-03-07 株式会社フジクラ マルチコアファイバ
US20080238583A1 (en) * 2007-03-30 2008-10-02 Shelton Todd R Discrete component electromagnetic coupler
US8983581B2 (en) * 2008-05-27 2015-03-17 Massachusetts Institute Of Technology System and method for large field of view, single cell analysis
JP2011530082A (ja) 2008-08-04 2011-12-15 ユニバーシティ オブ ユタ リサーチ ファウンデーション 細胞ミクロ構造の共焦点画像化のための染料適用
US9155471B2 (en) * 2009-05-27 2015-10-13 Lumicell, Inc'. Methods and systems for spatially identifying abnormal cells
KR101207695B1 (ko) 2010-08-11 2012-12-03 서울대학교산학협력단 형광 및 라만 신호 표적에 대한 형광 및 라만 신호 동시검출방법 및 이를 이용한 표적 동시검출용 의학영상장치
US9833145B2 (en) 2010-08-11 2017-12-05 Snu R&Db Foundation Method for simultaneously detecting fluorescence and raman signals for multiple fluorescence and raman signal targets, and medical imaging device for simultaneously detecting multiple targets using the method
US9314304B2 (en) 2010-12-08 2016-04-19 Lumicell, Inc. Methods and system for image guided cell ablation with microscopic resolution
CN103006168A (zh) * 2012-12-29 2013-04-03 上海乾衡生物科技有限公司 集束光纤快速成像装置
CN105473051B (zh) 2013-03-14 2019-04-30 卢米切拉有限公司 医学成像设备及使用方法
US10194788B2 (en) * 2013-06-19 2019-02-05 Optiscan Pty Ltd. Optical scanner and scanned lens optical probe
US10061111B2 (en) 2014-01-17 2018-08-28 The Trustees Of Columbia University In The City Of New York Systems and methods for three dimensional imaging
US9675430B2 (en) * 2014-08-15 2017-06-13 Align Technology, Inc. Confocal imaging apparatus with curved focal surface
CN105534470B (zh) * 2015-12-22 2018-01-30 精微视达医疗科技(武汉)有限公司 一种共焦显微内窥镜系统及其调节方法
CN109477956B (zh) * 2016-05-30 2022-01-14 纽约市哥伦比亚大学理事会 使用扫掠、共焦对准的平面激发的三维成像
WO2018013489A1 (fr) 2016-07-10 2018-01-18 The Trustees Of Columbia University In The City Of New York Imagerie tridimensionnelle utilisant une excitation planaire balayée, confocale et alignée avec un relais d'images
US10712545B2 (en) 2017-03-07 2020-07-14 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Systems and methods for conducting contact-free thickness and refractive-index measurements of intraocular lenses using a self-calibrating dual confocal microscopy system
GB201707239D0 (en) 2017-05-05 2017-06-21 Univ Edinburgh Optical system and method
US10514586B2 (en) 2017-07-18 2019-12-24 The Regents Of The University Of Colorado, A Body Corporate Methods and systems for control of nonlinear light transmission
US11426075B1 (en) 2017-08-23 2022-08-30 Lumicell, Inc. System and method for residual cancer cell detection
CN110353609A (zh) * 2019-01-11 2019-10-22 北京航空航天大学 一种具备三维成像能力的光场3d共聚焦内窥镜
KR102348428B1 (ko) * 2020-09-18 2022-01-07 그린스펙(주) 별도의 수광파이버 모듈과 별도의 발광파이버 모듈을 구비하지 않는 내시경

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995867A (en) * 1997-03-19 1999-11-30 Lucid Inc Cellular surgery utilizing confocal microscopy
WO2000016151A1 (fr) * 1998-09-15 2000-03-23 Assistance Publique - Hopitaux De Paris Dispositif d'observation de l'interieur d'un corps produisant une qualite d'observation perfectionnee
US6208886B1 (en) * 1997-04-04 2001-03-27 The Research Foundation Of City College Of New York Non-linear optical tomography of turbid media
WO2001044854A2 (fr) * 1999-12-17 2001-06-21 Digital Optical Imaging Corporation Procedes et appareil d'imagerie utilisant un faisceau de guides optiques et un modulateur spatial de lumiere
US20010043383A1 (en) * 1999-03-05 2001-11-22 Takeshi Suga Direct-view-type confocal point optical system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3214268A1 (de) * 1982-04-17 1983-10-20 Fa. Carl Zeiss, 7920 Heidenheim Optisches justierelement
JP3082346B2 (ja) * 1991-09-12 2000-08-28 株式会社ニコン 蛍光コンフォーカル顕微鏡
US5659642A (en) * 1992-10-23 1997-08-19 Optiscan Pty. Ltd. Confocal microscope and endoscope
US5880880A (en) * 1995-01-13 1999-03-09 The General Hospital Corp. Three-dimensional scanning confocal laser microscope
AU3102699A (en) * 1998-03-19 1999-10-11 Board Of Regents, The University Of Texas System Fiber-optic confocal imaging apparatus and methods of use
US6429968B1 (en) * 2000-03-09 2002-08-06 Agere Systems Guardian Corp Apparatus for photoluminescence microscopy and spectroscopy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995867A (en) * 1997-03-19 1999-11-30 Lucid Inc Cellular surgery utilizing confocal microscopy
US6208886B1 (en) * 1997-04-04 2001-03-27 The Research Foundation Of City College Of New York Non-linear optical tomography of turbid media
WO2000016151A1 (fr) * 1998-09-15 2000-03-23 Assistance Publique - Hopitaux De Paris Dispositif d'observation de l'interieur d'un corps produisant une qualite d'observation perfectionnee
US20010043383A1 (en) * 1999-03-05 2001-11-22 Takeshi Suga Direct-view-type confocal point optical system
WO2001044854A2 (fr) * 1999-12-17 2001-06-21 Digital Optical Imaging Corporation Procedes et appareil d'imagerie utilisant un faisceau de guides optiques et un modulateur spatial de lumiere

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009754A1 (fr) * 2004-06-17 2006-01-26 Bayer Healthcare Llc Tete de lecture coaxiale de reflectance diffuse
US7724374B2 (en) 2004-06-17 2010-05-25 Bayer Healthcare Llc Coaxial diffuse reflectance read head
US7952716B2 (en) 2004-06-17 2011-05-31 Bayer Healthcare Llc Coaxial diffuse reflectance read head
WO2006051811A1 (fr) * 2004-11-10 2006-05-18 Olympus Corporation Dispositif d'observation de corps biologique
JP2006138928A (ja) * 2004-11-10 2006-06-01 Olympus Corp 生体観察装置
US7609440B2 (en) 2004-11-10 2009-10-27 Olympus Corporation In-vivo examination apparatus
JP4652775B2 (ja) * 2004-11-10 2011-03-16 オリンパス株式会社 生体観察装置
JP2006204505A (ja) * 2005-01-27 2006-08-10 Olympus Corp 生体観察装置
US8496579B2 (en) 2006-09-28 2013-07-30 Jenlab Gmbh Method and arrangement for high-resolution microscope imaging or cutting in laser endoscopy
US10335016B2 (en) 2012-07-17 2019-07-02 Ecole Polytechnique Federale De Lausanne (Epfl) Reflective optical objective
WO2014013412A1 (fr) 2012-07-17 2014-01-23 Ecole Polytechnique Federale De Lausanne (Epfl) Objectif optique réfléchissant
US11609186B2 (en) 2015-03-31 2023-03-21 Samantree Medical Sa Systems and methods for in-operating-theatre imaging of fresh tissue resected during surgery for pathology assessment
US11828710B2 (en) 2015-03-31 2023-11-28 Samantree Medical Sa Systems and methods for in-operating-theatre imaging of fresh tissue resected during surgery for pathology assessment
US10539776B2 (en) 2017-10-31 2020-01-21 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US10816788B2 (en) 2017-10-31 2020-10-27 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US10928621B2 (en) 2017-10-31 2021-02-23 Samantree Medical Sa Sample dishes for use in microscopy and methods of their use
US11181728B2 (en) 2017-10-31 2021-11-23 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US11609416B2 (en) 2017-10-31 2023-03-21 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US11747603B2 (en) 2017-10-31 2023-09-05 Samantree Medical Sa Imaging systems with micro optical element arrays and methods of specimen imaging
US11966037B2 (en) 2022-05-09 2024-04-23 Samantree Medical Sa Sample dishes for use in microscopy and methods of their use

Also Published As

Publication number Publication date
BR0215371A (pt) 2004-12-07
CA2471721C (fr) 2012-03-13
AU2002364671B2 (en) 2007-06-14
DK1468322T3 (da) 2005-12-05
ES2247427T3 (es) 2006-03-01
JP4455059B2 (ja) 2010-04-21
AU2002364671A1 (en) 2003-07-15
US7285089B2 (en) 2007-10-23
EP1468322B1 (fr) 2005-08-03
DE60205408D1 (de) 2005-09-08
CN1288473C (zh) 2006-12-06
FR2834349B1 (fr) 2004-04-09
JP2005512746A (ja) 2005-05-12
IL162706A0 (en) 2005-11-20
US20050078924A1 (en) 2005-04-14
CN1620625A (zh) 2005-05-25
IL162706A (en) 2010-04-29
FR2834349A1 (fr) 2003-07-04
CA2471721A1 (fr) 2003-07-10
EP1468322A1 (fr) 2004-10-20
DE60205408T2 (de) 2006-06-01
ATE301294T1 (de) 2005-08-15

Similar Documents

Publication Publication Date Title
EP1468322B1 (fr) Appareillage d imagerie confocale notamment pour endoscope
CA2491748C (fr) Procede et appareillage d&#39;imagerie de fluorescence haute resolution par fibre optique et notamment d&#39;imagerie confocale
EP1114348B1 (fr) Dispositif d&#39;observation de l&#39;interieur d&#39;un corps produisant une qualite d&#39;observation perfectionnee
CA2584748C (fr) Systeme et procede d&#39;imagerie microscopique multiphotonique fibre d&#39;un echantillon
CA2650856C (fr) Tete optique miniaturisee a haute resolution spatiale et haute sensibilite, notamment pour l&#39;imagerie de fluorescence confocale fibree
EP1468321B1 (fr) Tete optique de focalisation miniaturisee notamment pour endoscope
EP1461601B1 (fr) Appareillage de spectroscopie d&#39;autofluorescence subsurfacique
CA2647688A1 (fr) Microscopie de fluorescence fibree a base de bleu de methylene
WO2007132085A1 (fr) Dispositif et procede d&#39;endoscopie pour une observation simultanee de plusieurs zones d&#39;interet
FR2852394A1 (fr) Procede et appareillage d&#39;imagerie de fluorescence fibree haute resolution
EP1513446B1 (fr) Dispositif de tomobiopsie optique confocale in vivo

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002364671

Country of ref document: AU

Ref document number: 1766/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2471721

Country of ref document: CA

Ref document number: 162706

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2003556843

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10500160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002805803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028283228

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002805803

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002805803

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002364671

Country of ref document: AU