WO2003052248A1 - Multipiston en columna - Google Patents

Multipiston en columna Download PDF

Info

Publication number
WO2003052248A1
WO2003052248A1 PCT/MX2002/000119 MX0200119W WO03052248A1 WO 2003052248 A1 WO2003052248 A1 WO 2003052248A1 MX 0200119 W MX0200119 W MX 0200119W WO 03052248 A1 WO03052248 A1 WO 03052248A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
piston
cylinders
ignition
multipiston
Prior art date
Application number
PCT/MX2002/000119
Other languages
English (en)
French (fr)
Inventor
Gustavo FERNÁNDEZ DEL CASTILLO Y SIMÓN
Original Assignee
Fernandez Del Castillo Y Simon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fernandez Del Castillo Y Simon filed Critical Fernandez Del Castillo Y Simon
Priority to AU2002361518A priority Critical patent/AU2002361518A1/en
Publication of WO2003052248A1 publication Critical patent/WO2003052248A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes

Definitions

  • each combustion chamber in a cylindrical shape, each operating as an individual mechanical unit, aligned with the other combustion chambers inserted in a monoblock.
  • Each cylinder houses a piston coupled to a connecting rod, which transmits the force of the impulse produced by the ignition of the fuel mixture inside the cylinder towards a crankshaft, as an arm on a crank transforms the linear force into a rotating movement. Consequently, the dimensions, weight and power of the engine are proportional to the volume of each internal combustion chamber and the number of these.
  • all piston rods are mechanically attached to the crankshaft that receives a rotating force that moves the pistons to produce pressure or vacuum.
  • crankshaft rotates due to the force that each piston exerts on its connecting rod when ignition occurs at the time of greatest compression of the fuel mixture, at the optimum angular position of the crankshaft and with a synchronized movement so that all the pistons carry out their function in time within the operating cycle, either at the time of admission, compression, ignition or expulsion.
  • each piston performs its functions of admission, compression, ignition and expulsion in the plane or upper face of the piston, while on the opposite side of the piston a connecting rod receives the force of the impulse generated by the ignition of the fuel mixture and He transfers it to the crankshaft.
  • a conventional internal combustion engine by pistons is manufactured from a molten monoblock, requires molds and sand cores to form the cavities that will constitute the combustion cylinders and the ducts for either the lubricant or the coolant, it is machined and prepares for the assembly of the other elements in a process of high cost for materials, labor and production equipment.
  • a column multipiston consists of an assembly of two closed cylinders joined in battery, each cylinder houses a double action piston to form two combustion chambers, four chambers for the two cylinders; the cylinders are separated by a barrier with a central hole through which a common arrow passes that joins the two pistons and transmits the force of the impulse generated by the ignition in each chamber to a crank, to convert the impulses of force into rotating movement, inversely as a compressor or vacuum pump, the movement of the crank turns into a linear force towards the column multipiston to generate either pressure or vacuum.
  • the multi-column column engine results in greater efficiency as there is less mass and friction surfaces that reduce resistance to movement and heat generation.
  • the multi-column column engine can be produced by assembling prefabricated and machined parts, making casting, molding a monoblock and all machining stages unnecessary, as well as the use of expensive and delicate sand molds and cores for formation of the cavities and the coolant and lubricant ducts.
  • the most notable characteristics of the multi-column column engine are: a) - It consists of two cylinders aligned along the battery. b) - Each cylinder houses a dual piston and forms two combustion chambers. c) - It only requires a connecting rod to transmit the force to a rotating steering wheel. d) - Dispense with the crankshaft, it only requires a force steering wheel. e) - It is assembled from previously machined parts so it does not require cast monoblock, molds, or sand hearts. METHOD FOR CARRYING OUT THE INVENTION
  • the column multipiston is exposed in half cut with its numbered assembled parts, which operate as follows:
  • a frame (1) In a frame (1) are the assembled components of the two cylinders, a common arrow (2) for the transmission of force of the multipiston, a combustion chamber (3) at the time of compression of the fuel mixture before the ignition, a combustion chamber (4) in the immediate moment after ignition, a combustion chamber (5) at the end of the expulsion of gases, a combustion chamber (6) at the end of the admission of the fuel mixture, a chamber coolant circulation (7), coolant chamber housing (8), camshaft (9) to open and close the intake and exhaust valves, driven and synchronized from the gearbox (10), the connecting rod ( 11) receives the impulses of the common arrow (2) of the multipiston to transform them into rotating force by means of the flywheel (12) that transfers this force to the gearbox and synchronizer (10) towards the output arrow (13), the closure and the opening of the intake and exhaust valves (15) are operated by the rotation of the cams (14), synchronized by two camshafts (9) by means of the chain or striated band (17), supported
  • the 2/2 sheet exposes the multipiston body in a column with a 90 ° rotation, the sequences of an operating cycle at times 1,2,3,4. Spark plugs are marked with No. 21
  • Figure 1 represents the column multipiston when chamber 1 is in the pre-ignition stage, at the time of greater compression of the fuel mixture.
  • Chamber 2 has completed the admission of the fuel mixture.
  • Chamber 3 at the end of gas expulsion.
  • Camera 4 in the immediate moment after ignition.
  • chamber 1 is in the immediate moment after ignition.
  • Chamber 2 in the pre-ignition stage, at maximum compression of the fuel mixture.
  • Chamber 3 at the end of the admission of the fuel mixture.
  • Chamber 4 at the end of gas expulsion.
  • chamber 1 at the conclusion of the expulsion of gases.
  • the chamber 2 immediately after ignition.
  • the chamber 3 in the pre-ignition stage, in the maximum compression of the fuel mixture.
  • Chamber 4 at the end of the admission of the fuel mixture.
  • the chamber 1 at the moment of completing the admission of the fuel mixture, the chamber 2 at the end of the expulsion of gases.
  • Camera 3 at the time after ignition.

Abstract

Un multipistón en columna es una batería de dos cilindros unidos a lo largo, separados por una barrera con un orificio central, por donde pasa une flecha común que une a dos pistones de efecto doble, cada pistón esta alojado en uno de los cilindros. La flecha común transmite por el extremo inferior la fuerza de impulso que genera la ignición de la mezcla combustible a una manivela. En cada cilindro doble con pistón dual se efectúan las operaciones de admisión, compresión, ignición y expulsión. El multipistón en columna no usa cigüeñal, una biela recibe la fuerza de los pistones hacia la flecha común y la transforma en fuerza giratoria por medio de una manivela. El multipistón en columna es utilizable como motor, bomba de vacío y compresora. Como resultado de la simplificación en el diseño, en su fabricación se logra la reducción de partes, tamaño, costos de fabricación, mantenimiento y operación.

Description

MULTIPISTÓN EN COLUMNA
Campo de la técnica: motores de combustión interna, compresores y bombas de vacío.
ANTECEDENTES DE LA INVENCIÓN
En un motor convencional de combustión interna por pistones existen varias cámaras de combustión en forma cilindrica, cada una opera como unidad mecánica individual, alineada con las demás cámaras de combustión insertas en un monoblock. Cada cilindro aloja un pistón acoplado a una biela, que transmite la fuerza del impulso que produce la ignición de la mezcla combustible en el interior del cilindro hacia un cigüeñal, a manera de brazo sobre una manivela transforma la fuerza lineal en movimiento giratorio. En consecuencia, las dimensiones, el peso y la potencia del motor son proporcionales al volumen de cada cámara de combustión interna y al número de éstas. Tratándose de compresoras y bombas de vacío de pistón, todas las bielas de los pistones se unen mecánicamente al cigüeñal que recibe una fuerza giratoria que mueve los pistones para producir presión o vacío.
En un motor convencional de pistones, el cigüeñal gira por efecto de la fuerza que cada pistón ejerce sobre su biela al producirse la ignición en el momento de mayor compresión de la mezcla combustible, en la posición angular óptima del cigüeñal y con un movimiento sincronizado para que todos los pistones efectúen a tiempo su función dentro del ciclo de operación, ya sea en el momento de la admisión, compresión, ignición o expulsión.
En un motor convencional cada pistón realiza sus funciones de admisión, compresión, ignición y expulsión en el plano o cara superior del pistón, mientras que en el lado opuesto del pistón una biela recibe la fuerza del impulso generado por la ignición de la mezcla combustible y la transfiere al cigüeñal. Un motor convencional de combustión interna por pistones se fabrica a partir de un monoblock fundido, requiere de moldes y corazones de arena para formar las cavidades que van a constituir los cilindros de combustión y los conductos ya sea para el lubricante o el refrigerante, se maquina y se prepara para el montaje de los demás elementos en un proceso de alto costo por materiales, mano de obra y equipos de producción.
DESCRIPCIÓN DE LA INVENCIÓN
Campo técnico: Motores de combustión interna, compresores y bombas de vacío.
Por la similitud en el diseño, la construcción y la operación de los compresores y las bombas de vacío de pistón con los motores de combustión interna, en esta descripción solamente se tratará del motor de combustión interna por multipistón en columna.
Un multipistón en columna consiste en un ensamble de dos cilindros cerrados unidos en batería, cada cilindro aloja un pistón de doble acción para conformar dos cámaras de combustión, cuatro cámaras por los dos cilindros; los cilindros están separados por una barrera con un orificio central por donde pasa una flecha común que une a los dos pistones y transmite la fuerza del impulso generado por la ignición en cada cámara hacia una manivela, para convertir los impulsos de fuerza en movimiento giratorio, de manera inversa como compresora o bomba de vacío el movimiento de la manivela se convierte en fuerza lineal hacia el multipistón en columna para generar ya sea presión o vacío.
En los cilindros de un motor por multipistón en columna, en el plano superior e inferior de cada pistón dual se realizan en sincronía alternada y bi lateral mente las funciones de admisión, compresión, ignición y expulsión.
Las principales diferencias y ventajas comparativas del motor por multipistón en columna con los motores de combustión interna convencionales son: no requiere cigüeñal, utiliza solamente una biela que mueve una manivela, no requiere de un monoblock fundido, usa la mitad de cilindros y pistones ya que cada cilindro como cámara dual permite desarrollar la misma potencia en un motor de peso y tamaño menor al 50% y requiere de menos lubricante y refrigerante.
El motor por multipistón en columna, resulta en mayor eficiencia al haber menos masa y superficies de fricción que disminuyen la resistencia al movimiento y la generación de calor.
El motor multipistón en columna se puede producir por el ensamble de piezas prefabricadas y maquinadas, hace innecesaria la fundición, el moldeo de un monoblock y todas las etapas de maquinado, así como del empleo de costosos y delicados moldes y corazones de arena para la formación de las cavidades y los ductos de refrigerante y lubricante.
Las características más notables del motor multipistón en columna son: a)- Se conforma por dos cilindros alineados a lo largo en batería. b)- Cada cilindro aloja un pistón dual y conforma dos cámaras de combustión. c)- Sólo requiere de una biela para transmitir la fuerza a un volante giratorio. d)- Prescinde del cigüeñal, solamente requiere un volante receptor de fuerza. e)- Se ensambla a partir de piezas maquinadas previamente por lo que no requiere monoblock fundido, moldes, ni corazones de arena. MÉTODO PARA LLEVAR A LA PRACTICA LA INVENCIÓN
La sencillez en su fabricación es una de las ventajas del motor con multipistón en columna, no requiere de cigüeñal, ni de monoblock moldeado por fundición ya que el ensamble de las cámaras de combustión se logra en un taller utilizando las piezas pre-formadas.
De acuerdo a la lámina anexa N°1/2, el multipistón en columna se expone en corte a la mitad con sus partes ensambladas numeradas, que operan de la siguiente manera:
En un armazón (1) se encuentran los componentes ensamblados de los dos cilindros, una flecha común (2) para la transmisión de fuerza del multipistón, una cámara de combustión (3) en el momento de la compresión de la mezcla combustible antes de la ignición, una cámara de combustión (4) en el momento inmediato posterior a la ignición, una cámara de combustión (5) al concluir la expulsión de gases, una cámara de combustión (6) al finalizar la admisión de la mezcla combustible, una cámara de circulación del refrigerante (7), carcasa de la cámara refrigerante (8), árbol de levas (9) para abrir y cerrar las válvulas de admisión y escape, impulsado y sincronizado desde la caja reductora de velocidad (10), la biela (11) recibe los impulsos de la flecha común (2) del multipistón para transformarlos en fuerza giratoria por medio del volante (12) que transfiere esta fuerza a la caja reductora y sincronizadora (10) hacia la flecha de salida (13), el cierre y la apertura de las válvulas de admisión y escape (15) son operados por el giro de las levas (14), sincronizadas por dos árboles de levas (9) por medio de la cadena o banda estriada (17), soportada e impulsada por poleas (16). La flecha común pasa por tres puntos sellados que requieren un deslizamiento sin pérdidas de presión y con lubricación continua: el centro superior (19), el centro medio (18) y el centro inferior (22).
La lámina 2/2 expone en corte con giro de 90° el cuerpo del multipistón en columna, las secuencias de un ciclo de operación en los tiempos 1,2,3,4. Se marcan las bujías con el N°21
La figura 1 representa al multipistón en columna cuando la cámara 1 está en la etapa previa a la ignición, en el momento de mayor compresión de la mezcla combustible. La cámara 2 ha completado la admisión de la mezcla combustible. La cámara 3 al fin de la expulsión de gases. La cámara 4 en el momento inmediato posterior a la ignición.
En la figura 2 se observa que la cámara 1 está en el momento inmediato posterior a la ignición. La cámara 2 en la etapa previa a la ignición, en la máxima compresión de la mezcla combustible. La cámara 3 al concluir la admisión de la mezcla combustible. La cámara 4 al concluir la expulsión de gases.
En la figura 3, la cámara 1 al concluir la expulsión de gases. La cámara 2 al momento inmediato posterior a la ignición. La cámara 3 en la etapa previa a la ignición, en la máxima compresión de la mezcla combustible. La cámara 4 al concluir la admisión de la mezcla combustible.
En la figura 4, la cámara 1 en el momento de completar la admisión de la mezcla combustible, la cámara 2 al concluir la expulsión de gases. La cámara 3 en el momento posterior a la ignición. La cámara 4 en la etapa previa a la ignición, en el momento de mayor compresión de la mezcla combustible.
Las ilustraciones excluyen los componentes más comunes en cualquier motor de pistón ya que son idénticos en funcionamiento y no son esenciales para la descripción y entendimiento de la presente invención, como son: carburador, bujías, inyectores, bombas, múltiples de admisión y escape, soportes y filtros.

Claims

REIVINDICACIONES
Habiendo descrito suficientemente mi invención, la considero una novedad y por lo tanto reclamo como de mi exclusiva propiedad, lo contenido en las siguientes cláusulas:
1). Un multipistón en columna para utilizarse como motor de combustión interna, compresora o bomba de vacío; caracterizado por estar constituido por dos cilindros cerrados, alineados en batería y separados por una barrera con un orificio central por donde pasa una flecha común que une a dos pistones alojados cada uno en un cilindro; la flecha común recibe la fuerza lineal de los impulsos generada en cada cámara de combustión interna y la transmite a una manivela para transformarla en movimiento giratorio.
2). Un multipistón en columna como el descrito en la cláusula anterior, tiene por característica que en cada cilindro operan dos cámaras de combustión que funcionan por igual en ambas caras del pistón efectuando una acción doble. El multipistón en columna como motor opera con cuatro cámaras de combustión interna en ciclos de cuatro tiempos alternados y sincronizados: admisión, compresión, ignición y expulsión.
3). Un multipistón en columna como el descrito en las cláusulas anteriores, que se caracterice por que no requiere de monoblock fundido, no usa cigüeñal y tiene la facilidad del ensamble de sus partes prefabricadas y también la facilidad de desensamblado para fines de reparación o reconstrucción.
PCT/MX2002/000119 2001-12-18 2002-12-18 Multipiston en columna WO2003052248A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002361518A AU2002361518A1 (en) 2001-12-18 2002-12-18 Column-type multi-piston

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/2001/013106 2001-12-18
MXPA01013106 2001-12-18

Publications (1)

Publication Number Publication Date
WO2003052248A1 true WO2003052248A1 (es) 2003-06-26

Family

ID=34056963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2002/000119 WO2003052248A1 (es) 2001-12-18 2002-12-18 Multipiston en columna

Country Status (2)

Country Link
AU (1) AU2002361518A1 (es)
WO (1) WO2003052248A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361922A1 (en) 2006-10-10 2011-08-31 Medivir AB Intermediate to HCV-Nucleoside Inhibitors
US20140290616A1 (en) * 2013-03-27 2014-10-02 Differential Dynamics Corporation One-stroke internal combustion engine
EP2999866A4 (en) * 2013-05-21 2017-04-26 HAN, Kyung Soo One-stroke internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR733356A (fr) * 1931-05-30 1932-10-05 Moteur à explosion
FR976803A (fr) * 1948-10-19 1951-03-22 Moteur rectiligne à explosion
FR1025842A (fr) * 1950-10-11 1953-04-20 Moteur à explosion
FR2055716A1 (es) * 1969-08-01 1971-04-30 Costin Dimitri
JPS59226231A (ja) * 1983-06-07 1984-12-19 「湧」井 貞美 複数の燃焼室を直列に配置して、それらを力学的に結合させた軽量小軽内燃機関

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR733356A (fr) * 1931-05-30 1932-10-05 Moteur à explosion
FR976803A (fr) * 1948-10-19 1951-03-22 Moteur rectiligne à explosion
FR1025842A (fr) * 1950-10-11 1953-04-20 Moteur à explosion
FR2055716A1 (es) * 1969-08-01 1971-04-30 Costin Dimitri
JPS59226231A (ja) * 1983-06-07 1984-12-19 「湧」井 貞美 複数の燃焼室を直列に配置して、それらを力学的に結合させた軽量小軽内燃機関

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 103 (M - 377) 8 May 1985 (1985-05-08) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2361922A1 (en) 2006-10-10 2011-08-31 Medivir AB Intermediate to HCV-Nucleoside Inhibitors
US20140290616A1 (en) * 2013-03-27 2014-10-02 Differential Dynamics Corporation One-stroke internal combustion engine
US9169772B2 (en) * 2013-03-27 2015-10-27 Differential Dynamics Corporation One-stroke internal combustion engine
EP2999866A4 (en) * 2013-05-21 2017-04-26 HAN, Kyung Soo One-stroke internal combustion engine

Also Published As

Publication number Publication date
AU2002361518A1 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US20030005894A1 (en) Radial internal combustion engine with floating balanced piston
JP2008517217A (ja) 燃焼機関のための動力伝達アセンブリ
WO2005106203A1 (es) Motor rotativo equilibrado
WO2003052248A1 (es) Multipiston en columna
US2117700A (en) Internal combustion engine
EP3090150B1 (en) Reciprocating positive-displacement machine with an automatic work fluid timing device
KR200303198Y1 (ko) 왕복동 연동식 엔진
RU2240432C1 (ru) Двигатель внутреннего сгорания
US1940788A (en) Internal combustion engine
ES2292326B1 (es) Motor rotativo hipocicloide de combustion interna.
US2974855A (en) Square free piston engine
US1274811A (en) Internal-combustion engine.
CN104481690A (zh) 组合式齿条直线往复旋转互换内燃机传动装置
US2684053A (en) High-speed internal-combustion reciprocating engine
RU2802108C1 (ru) Роторно-лопастной двигатель внутреннего сгорания "БО"
RU2374454C2 (ru) Устройство поршневой машины и способ выполнения ее рабочего объема для организации термодинамического цикла
US1361978A (en) Internal-combustion engine
KR20040031376A (ko) 왕복동 연동식 엔진
ES2312243B1 (es) Motor rotativo.
US1643581A (en) Internal-combustion engine
US1308400A (en) Internal combustion engine
US2545793A (en) Internal-combustion engine operating on the four-stroke cycle with compression ignition
RU2193094C1 (ru) Двигатель внутреннего сгорания
KR940003525B1 (ko) 로우터리 엔진
US1635533A (en) burtnett

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP