WO2003052176A2 - Method for making crystalline semiconductor substrates - Google Patents

Method for making crystalline semiconductor substrates Download PDF

Info

Publication number
WO2003052176A2
WO2003052176A2 PCT/FR2002/004372 FR0204372W WO03052176A2 WO 2003052176 A2 WO2003052176 A2 WO 2003052176A2 FR 0204372 W FR0204372 W FR 0204372W WO 03052176 A2 WO03052176 A2 WO 03052176A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
bonding
growth
sic
Prior art date
Application number
PCT/FR2002/004372
Other languages
French (fr)
Other versions
WO2003052176A3 (en
Inventor
Pierre Ferret
Guy Feuillet
Eric Jalaguier
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Publication of WO2003052176A2 publication Critical patent/WO2003052176A2/en
Publication of WO2003052176A3 publication Critical patent/WO2003052176A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • C30B19/106Controlling or regulating adding crystallising material or reactants forming it in situ to the liquid
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present invention relates to a method for manufacturing crystalline semiconductor substrates, and in particular monocrystalline substrates. It is aimed in particular at the production of solid semiconductor ingots such as SiC, CdTe, GaN, AIN or other materials for which obtaining ingots of good crystalline quality is difficult.
  • the manufacture of monocrystalline semiconductor substrates for the microelectronics industry generally involves the drawing of solid ingots, the slicing of the ingots and then the polishing of the wafers.
  • This constantly improved manufacturing technique is particularly suitable for silicon. It makes it possible to obtain circular slices with a diameter of 300 mm and a very high crystallographic quality.
  • thermodynamic parameters governing the ingot drawing process cannot be maintained or controlled in such a way as to obtain substrates of large diameter and of good crystalline quality.
  • a so-called Lely method is used for the manufacture of SiC substrates. This method essentially consists in subliming a charge of granular SiC at a temperature of the order of 2300 ° C. and condensing it on a seed whose temperature is maintained above 2100 ° C.
  • Other substrates, made of materials such as
  • heterosubstrate is understood to mean a substrate made of a given material and serving as an epitaxy support for the formation of a layer made of a material different from the material of the substrate.
  • sapphire can be used as a support material for GaN heteroepitaxy.
  • Dislocations may indeed propagate in the layer formed by heteroepitaxy, and alter its crystalline quality.
  • the heterosubstrate, or possibly adaptation layers which it is provided with can constitute electrical barriers. parasites. These prohibit, for example, contacting the rear side.
  • the document (1) mentioned above indicates yet another method of manufacturing substrates, derived from the previous one, and aimed essentially at the production of substrates of silicon carbide (SiC).
  • This method essentially consists in growing by heteroepitaxy a thin layer of SiC on a silicon substrate, then using the layer of SiC as an epitaxy crucible in liquid phase. The silicon in the substrate is then used as a bath and as a source of growth material.
  • the method comprises complex and delicate operations consisting in particular of carrying out growth initiation spikes. Obtaining a final substrate free of dislocations remains, moreover, uncertain.
  • Yet another technique for manufacturing substrates consists in transferring by molecular bonding a thin layer of a given semiconductor material onto a substrate of a different material. This technique does not however allow the renewal of the semiconductor material of the donor substrate and therefore does not solve the problem of its manufacture.
  • the object of the invention is to propose a method of manufacturing crystalline substrates, and in particular monocrystalline, which does not have the limitations of the methods mentioned above.
  • One aim is in particular to propose a process suitable for certain semiconductor materials whose physical properties do not allow the implementation of traditional drawing techniques.
  • Another aim is to propose a simple process making it possible to obtain substrates of large diameter and of good crystalline quality.
  • the invention relates more precisely to a crystal growth process in which: a) a substrate is formed comprising an initial layer
  • step a the layer of second material is applied, without respecting the crystal coherence, to the initial layer of first material.
  • the second material is used to form a liquid bath for the growth of the first material. This is akin to growth in the liquid phase.
  • the filler materials for the growth of the first material may in all or part to be supplied by the reactive gas. However, the second material, forming the liquid bath, can also be used as filler material. It is then consumed as the first material grows.
  • the initial layer of first material which has a crystal coherence, for example which is monocrystalline, is used to initiate the growth of the first material during step b). More specifically, the face of the thin layer which is in contact with the layer of second material, has the particularity of acting as a growth germ for the first material. This feature is taken advantage of in the process of the invention and thus makes it possible to avoid additional steps such as steps of spike formation or of germ formation.
  • the layer of second material can be added, for example, by bringing a block of the second material into contact with the layer of first material.
  • the block of second material can be a slice of said second material, obtained, for example, by sawing or cleavage of a donor substrate, and transferred to the initial layer of first material.
  • the donor substrate can, for example, be cleaved using a technique known under the name "Smart-Cut".
  • This technique consists in implanting light ions in a donor substrate before the transfer of the donor substrate to a target substrate.
  • the shoulder ⁇ the future thin layer is fixed by the depth implantation.
  • the cleavage technique makes it possible to use relatively thin layers of the first material, which saves the donor substrate.
  • the thin layer of the first material has a thickness of the order of a few micrometers, for example of the order of 1 to 10 ⁇ for SiC.
  • the subsequent growth of the first material in accordance with the method of the invention, makes it possible to produce new substrates for the first material. Some of these can optionally be used later as donor substrates.
  • the thickness of the new substrates obtained essentially depends on the thickness of the layer of the second material when this material is used as filler material for growth. For example, it is possible to use, in the case of silicon, layers with a thickness of the order of 100 to 1000 ⁇ m.
  • Bringing the block of second material into contact with the initial layer of first material may include direct bonding, by molecular adhesion, or indirect bonding by means of a film of bonding.
  • the bonding film is, for example made of a silicon oxide or nitride Si0 2 -Si 3 N 4 . It may incidentally have the function of improving the quality of the bonding between the assembled layers.
  • the " bonding is a direct bonding by molecular adhesion, that is to say without addition of material, the molecular bonding can be carried out at ambient temperature after an adequate cleaning of the surfaces to be brought into contact.
  • the bonding forces are Van der Walls type with interatomic distances of a few nanometers These bonds are much weaker than those which would be obtained by heteroepitaxy By heteroepitaxy, we obtain covalent bonds with atomic distances of the order of a few tenths of a nanometer.
  • the layer of second material not by bonding a block, but by depositing said material on the initial layer of first material.
  • the deposition of material is distinguished here from an epitaxy. While an epitaxy agrees with the crystal coherence of the support on which it is performed, the deposit remains incoherent.
  • the deposition can take place according to any technique such as sputtering, chemical vapor deposition (CVD), electroplating, etc.
  • the first and second materials can be chosen so that the first material is a binary compound of the second material.
  • the first material can be chosen from SiC, InP, GaP, GaAs, CdTe, AIN, GaN, and the second material, respectively from Si In, Cd, Te, Al, Ga and their compounds.
  • the second material can advantageously be composed of elements of which at least one does not participate directly in the development of the layer. For example, it may be preferable to deposit AsGa as a second material on a layer of GaN or GaP rather than pure gallium. During the heating, the arsenic evaporates to leave only the molten gallium in which diffuses nitrogen or phosphorus.
  • the first material remains solid during the growth stage.
  • the layer of second material is selectively melted. This can take place by suitable heating or, more simply, by using a first material whose melting temperature is higher than that of the second material. This is often the case for the materials targeted by the invention, and for which the conventional drawing methods prove to be difficult to implement.
  • the melting of the second material can take place in a crucible, or without a crucible.
  • the layer can in fact be maintained on the layer of the first material.
  • a crucible makes it possible to give the final substrate a desired shape.
  • a crucible with flared walls makes it possible to increase the surface of the substrate.
  • the method can be implemented with additions of the second material to compensate for its consumption.
  • a layer of an additional material chosen for a particular function such as controlling the temperature or the quality of the surface.
  • a Ge film on Si can play the role of surfactant.
  • FIG. 1 is a schematic section of an initial substrate formed of an assembly of layers.
  • Figures 2 and 3 are schematic sections of crucibles containing substrates comparable to the substrate of Figure 1.
  • - Figure 4 is a schematic section of the crucible of Figure 2, containing a substrate, and illustrates a step of material growth.
  • - Figure 5 is a schematic section of a substrate as obtained at the end of the growth process.
  • - Figure 6 is a schematic section of another crucible containing a substrate and illustrates a particular implementation of the method.
  • - Figure 7 is a schematic section of yet another crucible containing a substrate and illustrates yet another particular implementation of the method.
  • FIG. 1 shows a substrate comprising a thick layer 10 of silicon on which a thin layer of SiC 20 has been transferred.
  • the layer of Si 10 has for example a thickness of the order of 300 ⁇ m and the layer of SiC 20 a thickness of the order of 3 ⁇ m.
  • the thin layer 20 is transferred to the thick layer 10 by direct bonding.
  • a dashed line 12 represents possible intermediate layers such as oxide and nitride layers. These intermediate layers are not shown in the following figures for reasons of clarity.
  • FIG. 2 shows the substrate of FIG. 1 which has been placed in a crucible 30 of suitable dimensions.
  • the crucible is, for example, a graphite crucible.
  • the thin layer 20 of SiC is oriented towards the bottom of the crucible 30 and is maintained against the bottom. The maintenance can result from a bonding. Direct bonding can be considered. A bonding using a graphite lacquer, or any other compound containing carbon, can also be retained.
  • the crucible, provided with the substrate is placed in a reactor allowing temperatures suitable for melting the material of the thick layer 10 to be reached, under a controlled atmosphere. For example, for silicon, the melting temperatures are of the order of 1450-1500 ° C. To simplify the drawing, the reactor is not shown.
  • FIG. 3 illustrates a variant in which the crucible has dimensions greater than the substrate.
  • the substrate is held in the crucible 30 by a guard ring 32, also made of graphite, which comes to bear on a flange which the thin layer 20 of the substrate forms relative to the thick layer 10.
  • the crucible can be removed or replaced by a support without side walls.
  • FIG. 4 shows the growth of the first material, in this case SiC, on the thin layer 20.
  • the crucible is heated to a temperature sufficient to melt the thick layer 10 of silicon but low enough not to melt the SiC.
  • the thick layer 10 is subjected in the reactor to a reactive gas containing the species necessary for the growth of the first material.
  • the reactive gas is symbolized by arrows in Figure 4.
  • it it is a gas such as propane or silane which contains carbon or silicon with which a carrier gas such as hydrogen can be mixed.
  • the supply of silicon is, in the present case, provided essentially by the bath of the thick molten layer.
  • the pressure of the reactive gas is preferably maintained at a value below a limit corresponding to a formation of SiC on the surface of the silicon bath. Passivation of the surface should be avoided. This would risk blocking the diffusion of the carbon element towards the thin layer 20.
  • the partial pressure of propane is for example 1000 Pa.
  • the growth of the first material takes place from the contact interface between the thin layer and the thick layer, which, as indicated above, behaves like a seed. Crystal growth of SiC from a liquid Si phase is faster than growth in the gas phase. It can reach 100 ⁇ m per hour.
  • the reference 22 indicates solid SiC which has grown on the thin layer 20.
  • the silicon of the thick layer 10 is consumed until exhaustion.
  • the layer 22 of SiC obtained by growth has a crystalline quality comparable to the initial layer 20.
  • FIG. 6 A variant of the process is illustrated in FIG. 6.
  • the flared walls lead to an increase in the diameter of the substrate as the first material grows. It may be advantageous to open the crucible to an angle of 180 ° so as to obtain a substantial gain in the size of the crystal.
  • FIG. 7 It makes it possible to use initial sections of the first material with a diameter smaller than that of the first material finally obtained.
  • FIG. 6 also symbolically shows an addition of the second material, in this case silicon, to compensate for the consumption of the material during growth.
  • a silicon block 14 is added to the surface of the thick layer of silicon 10 initially present. The addition can take place before or after the complete transformation of the silicon layer 10 into SiC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

The invention concerns a method for crystal growth of a first material from a substrate comprising an initial layer (20) of the first material, coated with a layer (10) of a second material, the second material enabling, in liquid state, diffusion of atoms in the composition of the first material; said method consists in melting the second material layer and growing a layer of the first material on the initial layer by subjecting the second material to a reactive gas of the first material. The invention is characterized in that it consists in forming the substrate by bonding or depositing a thin film of the second material on a layer of the first material. The invention is useful for making SiC substrates.

Description

PROCEDE DE FABRICATION DE SUBSTRATS SEMI-CONDUCTEURS METHOD FOR MANUFACTURING SEMICONDUCTOR SUBSTRATES
CRISTALLINS .CRYSTALLINS.
Domaine technique La présente invention concerne un procédé de fabrication de substrats semi-conducteurs cristallins, et notamment de substrats monocristallins. Elle vise notamment la fabrication de lingots massifs de semiconducteurs tels que SiC, CdTe, GaN, AIN ou d'autres matériaux pour lesquels l'obtention de lingots de bonne qualité cristalline est difficile.Technical Field The present invention relates to a method for manufacturing crystalline semiconductor substrates, and in particular monocrystalline substrates. It is aimed in particular at the production of solid semiconductor ingots such as SiC, CdTe, GaN, AIN or other materials for which obtaining ingots of good crystalline quality is difficult.
Etat de la technique antérieureState of the art
Les documents (1) à (3) dont les références sont précisées à la fin de la présente description illustrent des techniques de fabrication de substrats.Documents (1) to (3), the references of which are specified at the end of this description illustrate techniques for manufacturing substrates.
La fabrication des substrats de semiconducteurs monocristallins destinés à l'industrie de la microélectronique comprend généralement le tirage de lingots massifs, le découpage en tranches des lingots puis le polissage des tranches. Cette technique de fabrication, constamment améliorée, est particulièrement adaptée au silicium. Elle permet d'obtenir des tranches circulaires d'un diamètre de 300 mm et d'une très grande qualité cristallographique.The manufacture of monocrystalline semiconductor substrates for the microelectronics industry generally involves the drawing of solid ingots, the slicing of the ingots and then the polishing of the wafers. This constantly improved manufacturing technique is particularly suitable for silicon. It makes it possible to obtain circular slices with a diameter of 300 mm and a very high crystallographic quality.
Pour d'autres matériaux semi-conducteurs, en revanche, il est quasiment impossible de contrôler la qualité cristalline sur toute la longueur et sur tout le diamètre d'un lingot. Les paramètres thermodynamiques gouvernant le processus de tirage des lingots ne peuvent pas être maintenus ou contrôlés d'une façon permettant d'obtenir des substrats de diamètre élevé et de bonne qualité cristalline.For other semiconductor materials, on the other hand, it is almost impossible to control the crystal quality over the entire length and over the entire diameter of an ingot. The thermodynamic parameters governing the ingot drawing process cannot be maintained or controlled in such a way as to obtain substrates of large diameter and of good crystalline quality.
De plus, pour certains matériaux tels que SiC, AIN, GaN, il est impossible d'obtenir, aux pressions et températures ordinairement accessibles, une phase liquide adaptée au tirage de lingots.In addition, for certain materials such as SiC, AIN, GaN, it is impossible to obtain, at pressures and temperatures ordinarily accessible, a liquid phase suitable for drawing ingots.
Pour la réalisation de substrats en ces matériaux, d'autres techniques de fabrication sont envisagées. A titre d'exemple, pour la fabrication de substrats de SiC, on a recours à une méthode dite de Lely. Cette méthode consiste pour l'essentiel à sublimer une charge de SiC granulaire à une température de l'ordre de 2300 °C et de la condenser sur un germe dont la température est maintenue supérieure à 2100 °C. D'autres substrats, en des matériaux tels queFor the production of substrates in these materials, other manufacturing techniques are envisaged. For example, for the manufacture of SiC substrates, a so-called Lely method is used. This method essentially consists in subliming a charge of granular SiC at a temperature of the order of 2300 ° C. and condensing it on a seed whose temperature is maintained above 2100 ° C. Other substrates, made of materials such as
GaN, sont obtenus par hétéroépitaxie d'un film mince sur un hétérosubstrat. On entend par hétérosubstrat, un substrat en un matériau donné et servant de support d'épitaxie pour la formation d'une couche en un matériau différent du matériau du substrat. Par exemple, le saphir peut être utilisé comme matériau de support pour une hétéroépitaxie de GaN.GaN, are obtained by heteroepitaxy of a thin film on a heterosubstrate. The term “heterosubstrate” is understood to mean a substrate made of a given material and serving as an epitaxy support for the formation of a layer made of a material different from the material of the substrate. For example, sapphire can be used as a support material for GaN heteroepitaxy.
Lors de la fabrication de tels substrats, on rencontre des difficultés liées à la propagation de défauts cristallins, tels que des dislocations. Les dislocations risquent en effet de se propager dans la couche formée par hétéroépitaxie, et d'en altérer la qualité cristalline. Par ailleurs, l' hétérosubstrat, ou éventuellement des couches d'adaptation dont il est pourvu, peuvent constituer des barrières électriques parasites. Celles-ci interdisent, par exemple, des prises de contact par la face arrière.During the manufacture of such substrates, difficulties are encountered linked to the propagation of crystalline defects, such as dislocations. Dislocations may indeed propagate in the layer formed by heteroepitaxy, and alter its crystalline quality. Furthermore, the heterosubstrate, or possibly adaptation layers which it is provided with, can constitute electrical barriers. parasites. These prohibit, for example, contacting the rear side.
Le document (1) mentionné ci-dessus, indique encore une autre méthode de fabrication de substrats, dérivée de la précédente, et visant essentiellement la production de substrats de carbure de silicium (SiC) . Cette méthode consiste pour l'essentiel à faire croître par hétéroépitaxie une fine couche de SiC sur un substrat de silicium, puis d'utiliser la couche de SiC comme un creuset d'épitaxie en phase liquide. Le silicium du substrat est alors utilisé comme bain et comme source de matériau de croissance. Cependant, pour obtenir une couche de SiC de qualité acceptable, le procédé comprend des opérations complexes et délicates consistant notamment en la réalisation de pointes d'initiation de la croissance. L'obtention d'un substrat final exempt de dislocations reste, de plus, aléatoire.The document (1) mentioned above, indicates yet another method of manufacturing substrates, derived from the previous one, and aimed essentially at the production of substrates of silicon carbide (SiC). This method essentially consists in growing by heteroepitaxy a thin layer of SiC on a silicon substrate, then using the layer of SiC as an epitaxy crucible in liquid phase. The silicon in the substrate is then used as a bath and as a source of growth material. However, in order to obtain a layer of SiC of acceptable quality, the method comprises complex and delicate operations consisting in particular of carrying out growth initiation spikes. Obtaining a final substrate free of dislocations remains, moreover, uncertain.
Encore une autre technique de fabrication de substrats consiste à reporter par collage moléculaire une fine couche d'un matériau semi-conducteur donné sur un substrat d'un matériau différent. Cette technique ne permet cependant pas le renouvellement du matériau semi-conducteur du substrat donneur et ne résout donc pas le problème de sa fabrication.Yet another technique for manufacturing substrates consists in transferring by molecular bonding a thin layer of a given semiconductor material onto a substrate of a different material. This technique does not however allow the renewal of the semiconductor material of the donor substrate and therefore does not solve the problem of its manufacture.
Exposé de l'inventionStatement of the invention
L'invention a pour but de proposer un procédé de fabrication de substrats cristallins, et en particulier monocristallins, ne présentant pas les limitations des procédés évoqués ci-dessus. Un but est en particulier de proposer un procédé adapté à certains matériaux semi-conducteurs dont les propriétés physiques ne permettent pas la mise en œuvre des techniques traditionnelles de tirage. Un but est encore de proposer un procédé simple permettant d'obtenir des substrats de grand diamètre et de bonne qualité cristalline.The object of the invention is to propose a method of manufacturing crystalline substrates, and in particular monocrystalline, which does not have the limitations of the methods mentioned above. One aim is in particular to propose a process suitable for certain semiconductor materials whose physical properties do not allow the implementation of traditional drawing techniques. Another aim is to propose a simple process making it possible to obtain substrates of large diameter and of good crystalline quality.
Pour atteindre ces buts, l'invention concerne plus précisément un procédé de croissance cristalline dans lequel : a) on forme un substrat comportant une couche initialeTo achieve these goals, the invention relates more precisely to a crystal growth process in which: a) a substrate is formed comprising an initial layer
(20) d'un premier matériau présentant une cohérence cristalline, et une couche (10) d'un second matériau, le second matériau autorisant, à l'état liquide, la diffusion d'atomes entrant dans la composition du premier matériau, b) on fait fondre la couche de second matériau et on fait croître une couche du premier matériau sur l'a couche initiale de premier matériau (20) , en soumettant la couche de second matériau, fondue, à un gaz réactif comprenant au moins un composant du premier matériau.(20) of a first material having a crystal coherence, and a layer (10) of a second material, the second material allowing, in the liquid state, the diffusion of atoms entering into the composition of the first material, b ) melting the second material layer and growing a layer of first material on a initial layer of first material (20) by subjecting the layer of second material melt, a reactant gas comprising at least one component of the first material.
Conformément à l'invention, lors de l'étape a), on rapporte, sans respect de la cohérence cristalline, la couche de second matériau sur la couche initiale de premier matériau.In accordance with the invention, during step a), the layer of second material is applied, without respecting the crystal coherence, to the initial layer of first material.
Le second matériau est utilisé pour former un bain liquide en vue de la croissance du premier matériau. Celle-ci s'apparente à une croissance en phase liquide. Les matériaux d'apport pour la croissance du premier matériau peuvent en tout ou partie être fournis par le gaz réactif. Cependant le second matériau, formant le bain liquide, peut également être utilisé comme matériau d'apport. Il est alors consommé au fur et à mesure de la croissance du premier matériau.The second material is used to form a liquid bath for the growth of the first material. This is akin to growth in the liquid phase. The filler materials for the growth of the first material may in all or part to be supplied by the reactive gas. However, the second material, forming the liquid bath, can also be used as filler material. It is then consumed as the first material grows.
La couche initiale de premier matériau, qui présente une cohérence cristalline, par exemple qui est monocristalline, est utilisée pour initier la croissance du premier matériau lors de l'étape b) . Plus précisément, la face de la couche mince qui est en contact avec la couche de second matériau, présente la particularité d'agir comme germe de croissance pour le premier matériau. Cette particularité est mise à profit dans le procédé de l'invention et permet ainsi d'éviter des étapes supplémentaires telles que des étapes de formation de pointes ou de formation de germes.The initial layer of first material, which has a crystal coherence, for example which is monocrystalline, is used to initiate the growth of the first material during step b). More specifically, the face of the thin layer which is in contact with the layer of second material, has the particularity of acting as a growth germ for the first material. This feature is taken advantage of in the process of the invention and thus makes it possible to avoid additional steps such as steps of spike formation or of germ formation.
Selon une mise en œuvre particulière du procédé, on peut rapporter la couche de second matériau, par exemple, par mise en contact d'un bloc du deuxième matériau avec la couche de premier matériau. Le bloc de deuxième matériau peut être une tranche dudit second matériau, obtenue, par exemple, par sciage ou clivage d'un substrat donneur, et reportée vers la couche initiale de premier matériau.According to a particular implementation of the method, the layer of second material can be added, for example, by bringing a block of the second material into contact with the layer of first material. The block of second material can be a slice of said second material, obtained, for example, by sawing or cleavage of a donor substrate, and transferred to the initial layer of first material.
Le substrat donneur peut, par exemple, être clivé selon une technique connue sous la dénomination «Smart-Cut». Cette technique consiste à implanter dans un substrat donneur des ions légers avant le report du substrat donneur sur un substrat cible. L'épa^ la future couche mince est fixée par la profondeur d'implantation. Après un collage entre la face implantée du substrat donneur et le substrat cible, des traitements thermiques, et/ou l'exercice de forces mécaniques, permettent une coalescence des espèces implantées et fragilisent le substrat donneur en favorisant le clivage. Le clivage permet finalement de détacher la partie restante du substrat donneur en laissant sur le substrat cible la couche mince. On peut se reporter à ce sujet au document (2) évoqué précédemment.The donor substrate can, for example, be cleaved using a technique known under the name "Smart-Cut". This technique consists in implanting light ions in a donor substrate before the transfer of the donor substrate to a target substrate. The shoulder ^ the future thin layer is fixed by the depth implantation. After bonding between the implanted face of the donor substrate and the target substrate, heat treatments, and / or the exercise of mechanical forces, allow coalescence of the implanted species and weaken the donor substrate by promoting cleavage. Cleavage finally makes it possible to detach the remaining part of the donor substrate, leaving the thin layer on the target substrate. We can refer to this subject in the document (2) mentioned above.
La technique de clivage permet d'utiliser des couches relativement fines du premier matériau, ce qui permet d'économiser le substrat donneur. La couche mince du premier matériau présente une épaisseur de l'ordre de quelques micromètres, par exemple de l'ordre de 1 à 10 μ pour du SiC. Par ailleurs, la croissance ultérieure du premier matériau, conformément au procédé de l'invention, permet de produire de nouveaux substrats du premier matériau. Une partie de ceux-ci peut éventuellement être utilisée ultérieurement comme substrats donneurs.The cleavage technique makes it possible to use relatively thin layers of the first material, which saves the donor substrate. The thin layer of the first material has a thickness of the order of a few micrometers, for example of the order of 1 to 10 μ for SiC. Furthermore, the subsequent growth of the first material, in accordance with the method of the invention, makes it possible to produce new substrates for the first material. Some of these can optionally be used later as donor substrates.
L'épaisseur des nouveaux substrats obtenus dépend essentiellement de l'épaisseur de la couche du second matériau lorsque ce matériau est utilisé comme matériau d'apport pour la croissance. Par exemple on peut utiliser, dans le cas du silicium, des couches d'une épaisseur de l'ordre de 100 à 1000 μm.The thickness of the new substrates obtained essentially depends on the thickness of the layer of the second material when this material is used as filler material for growth. For example, it is possible to use, in the case of silicon, layers with a thickness of the order of 100 to 1000 μm.
La mise en contact du bloc de deuxième matériau avec la couche initiale de premier matériau peut comporter un collage direct, par adhésion moléculaire, ou un collage indirect par l'intermédiaire d'un film de collage. Le film de collage est, par exemple en un oxyde ou un nitrure de silicium Si02-Si3N4. Il peut accessoirement avoir pour fonction d'améliorer la qualité du collage entre les couches assemblées. Lorsque le " collage est un collage direct par adhésion moléculaire, c'est-à-dire sans apport de matière, l'adhésion moléculaire peut être réalisée à température ambiante après un nettoyage adéquat des surfaces devant être mises en contact. Les forces de liaison sont de type Van der Walls avec des distances interatomiques de quelques nanomètres. Ces liaisons sont beaucoup plus faibles que celles qui seraient obtenues par hétéroépitaxie. Par hétéroépitaxie, on obtient des liaisons covalentes avec des distances atomiques de l'ordre de quelques dixièmes de nanomètre.Bringing the block of second material into contact with the initial layer of first material may include direct bonding, by molecular adhesion, or indirect bonding by means of a film of bonding. The bonding film is, for example made of a silicon oxide or nitride Si0 2 -Si 3 N 4 . It may incidentally have the function of improving the quality of the bonding between the assembled layers. When the " bonding is a direct bonding by molecular adhesion, that is to say without addition of material, the molecular bonding can be carried out at ambient temperature after an adequate cleaning of the surfaces to be brought into contact. The bonding forces are Van der Walls type with interatomic distances of a few nanometers These bonds are much weaker than those which would be obtained by heteroepitaxy By heteroepitaxy, we obtain covalent bonds with atomic distances of the order of a few tenths of a nanometer.
Selon une autre possibilité de mise en œuvre de l'invention, on peut aussi rapporter la couche de second matériau, non pas par collage d'un bloc, mais par dépôt dudit matériau sur la couche initiale de premier matériau. Le dépôt de matériau se distingue ici d'une épitaxie. Tandis qu'une épitaxie s'accorde à la cohérence cristalline du support sur lequel elle est effectuée, le dépôt reste incohérent. Le dépôt peut avoir lieu selon une technique quelconque telle que la pulvérisation cathodique (sputtering) , le dépôt chimique en phase vapeur (CVD) , l' électrodéposition, etc.According to another possibility of implementing the invention, it is also possible to add the layer of second material, not by bonding a block, but by depositing said material on the initial layer of first material. The deposition of material is distinguished here from an epitaxy. While an epitaxy agrees with the crystal coherence of the support on which it is performed, the deposit remains incoherent. The deposition can take place according to any technique such as sputtering, chemical vapor deposition (CVD), electroplating, etc.
Selon une mise en œuvre particulière et avantageuse du procédé, les premier et deuxième matériaux peuvent être choisis de sorte que le premier matériau est un composé binaire du second matériau. A titre d'illustration, le premier matériau peut être choisi parmi SiC, InP, GaP, GaAs, CdTe, AIN, GaN, et le deuxième matériau, respectivement parmi Si In, Cd, Te, Al, Ga et leurs composés. Le deuxième matériau peut avantageusement être composé d'éléments dont au moins un ne participe pas directement à l'élaboration de la couche. Par exemple, il peut être préférable de déposer de l'AsGa comme deuxième matériau sur une couche de GaN ou GaP plutôt que du gallium pur. Au cours de l 'échauffement , l'arsenic s'évapore pour ne laisser que le gallium fondu dans lequel diffuse l'azote ou le phosphore.According to a particular and advantageous implementation of the method, the first and second materials can be chosen so that the first material is a binary compound of the second material. AT As an illustration, the first material can be chosen from SiC, InP, GaP, GaAs, CdTe, AIN, GaN, and the second material, respectively from Si In, Cd, Te, Al, Ga and their compounds. The second material can advantageously be composed of elements of which at least one does not participate directly in the development of the layer. For example, it may be preferable to deposit AsGa as a second material on a layer of GaN or GaP rather than pure gallium. During the heating, the arsenic evaporates to leave only the molten gallium in which diffuses nitrogen or phosphorus.
Le premier matériau reste solide lors de l'étape de croissance. En d'autres termes, on fait fondre sélectivement la couche de deuxième matériau. Ceci peut avoir lieu par un chauffage approprié ou, plus simplement, en utilisant un premier matériau dont la température de fusion est supérieure à celle du deuxième matériau. Ceci est souvent le cas pour les matériaux visés par l'invention, et pour lesquels les méthodes classiques de tirage s'avèrent difficiles à mettre en œuvre.The first material remains solid during the growth stage. In other words, the layer of second material is selectively melted. This can take place by suitable heating or, more simply, by using a first material whose melting temperature is higher than that of the second material. This is often the case for the materials targeted by the invention, and for which the conventional drawing methods prove to be difficult to implement.
La fusion du deuxième matériau peut avoir lieu dans un creuset, ou sans creuset. Lorsque le mouillage du deuxième matériau sur le premier matériau est bien adapté, la couche peut en effet être maintenue sur la couche du premier matériau.The melting of the second material can take place in a crucible, or without a crucible. When the wetting of the second material on the first material is well suited, the layer can in fact be maintained on the layer of the first material.
L'utilisation d'un creuset permet toutefois de donner au substrat final une forme souhaitée. Par exemple, un creuset à parois évasées permet d'augmenter la surface du substrat . Il convient de noter que le procédé peut être mis en œuvre avec des ajouts du deuxième matériau pour compenser sa consommation.However, the use of a crucible makes it possible to give the final substrate a desired shape. For example, a crucible with flared walls makes it possible to increase the surface of the substrate. It should be noted that the method can be implemented with additions of the second material to compensate for its consumption.
Il peut être aussi avantageux de déposer à la surface libre du substrat une couche d'un matériau supplémentaire choisi pour une fonction particulière comme le contrôle de la température ou de la qualité de la surface. Par exemple, un film de Ge sur le Si peut jouer le rôle de surfactant . D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre, en référence aux figures des dessins annexés. Cette description est donnée à titre purement illustratif et non limitatif.It may also be advantageous to deposit on the free surface of the substrate a layer of an additional material chosen for a particular function such as controlling the temperature or the quality of the surface. For example, a Ge film on Si can play the role of surfactant. Other characteristics and advantages of the invention will emerge from the description which follows, with reference to the figures of the accompanying drawings. This description is given purely by way of non-limiting illustration.
Brève description des figuresBrief description of the figures
- La figure 1 est une coupe schématique d'un substrat initial formé d'un assemblage de couches.- Figure 1 is a schematic section of an initial substrate formed of an assembly of layers.
- Les figures 2 et 3 sont des coupes schématiques de creusets contenant des substrats comparables au substrat de la figure 1.- Figures 2 and 3 are schematic sections of crucibles containing substrates comparable to the substrate of Figure 1.
- La figure 4 est une coupe schématique du creuset de la figure 2, contenant un substrat, et illustre une étape de croissance de matériau. - La figure 5 est une coupe schématique d'un substrat tel qu'obtenu au terme du procédé de croissance.- Figure 4 is a schematic section of the crucible of Figure 2, containing a substrate, and illustrates a step of material growth. - Figure 5 is a schematic section of a substrate as obtained at the end of the growth process.
- La figure 6 est une coupe schématique d'un autre creuset contenant un substrat et illustre une mise en œuvre particulière du procédé. - La figure 7 est une coupe schématique d'encore un autre creuset contenant un substrat et illustre encore une autre mise en œuvre particulière du procédé .- Figure 6 is a schematic section of another crucible containing a substrate and illustrates a particular implementation of the method. - Figure 7 is a schematic section of yet another crucible containing a substrate and illustrates yet another particular implementation of the method.
Description détaillée de modes de mise en œuyre de 1' invention.Detailed description of methods of implementing the invention.
Dans la description qui suit, des parties identiques, similaires ou équivalentes des différentes figures sont repérées par les mêmes signes de référence pour faciliter le report entre les figures. Par ailleurs, et dans un souci de clarté des figures, tous les éléments ne sont pas représentés selon une échelle uniforme. La figure 1 montre un substrat comprenant une couche épaisse 10 de silicium sur laquelle on a reporté une couche mince de SiC 20. La couche de Si 10 présente par exemple une épaisseur de l'ordre de 300μm et la couche de SiC 20, une épaisseur de l'ordre de 3μm. La couche mince 20 est reportée sur la couche épaisse 10 par collage direct. Une ligne en trait discontinu 12 représente d'éventuelles couches intercalaires telles que des couches d'oxyde, de nitrure. Ces couches intercalaires ne sont pas représentées sur les figures suivantes pour des raisons de clarté.In the following description, identical, similar or equivalent parts of the different figures are identified by the same reference signs to facilitate transfer between the figures. Furthermore, and for the sake of clarity of the figures, all the elements are not represented according to a uniform scale. FIG. 1 shows a substrate comprising a thick layer 10 of silicon on which a thin layer of SiC 20 has been transferred. The layer of Si 10 has for example a thickness of the order of 300 μm and the layer of SiC 20 a thickness of the order of 3 μm. The thin layer 20 is transferred to the thick layer 10 by direct bonding. A dashed line 12 represents possible intermediate layers such as oxide and nitride layers. These intermediate layers are not shown in the following figures for reasons of clarity.
La figure 2 montre le substrat de la figure 1 qui a été mis en place dans un creuset 30 aux dimensions adaptées. Le creuset est, par exemple, un creuset en graphite. La couche mince 20 de SiC est orientée vers le fond du creuset 30 et est maintenue contre le fond. Le maintien peut résulter d'un collage. Un collage direct peut être envisagé. Un collage au moyen d'une laque graphite, ou de tout autre composé contenant du carbone, peut aussi être retenu. Le creuset, pourvu du substrat, est mis en place dans un réacteur permettant d'atteindre des températures adaptées à la fusion du matériau de la couche épaisse 10, sous atmosphère contrôlée. A titre d'exemple, pour le silicium, les températures de fusion sont de l'ordre de 1450-1500°C. Pour simplifier le dessin, le réacteur n'est pas représenté.FIG. 2 shows the substrate of FIG. 1 which has been placed in a crucible 30 of suitable dimensions. The crucible is, for example, a graphite crucible. The thin layer 20 of SiC is oriented towards the bottom of the crucible 30 and is maintained against the bottom. The maintenance can result from a bonding. Direct bonding can be considered. A bonding using a graphite lacquer, or any other compound containing carbon, can also be retained. The crucible, provided with the substrate, is placed in a reactor allowing temperatures suitable for melting the material of the thick layer 10 to be reached, under a controlled atmosphere. For example, for silicon, the melting temperatures are of the order of 1450-1500 ° C. To simplify the drawing, the reactor is not shown.
La figure 3 illustre une variante dans laquelle le creuset présente des dimensions supérieures au substrat. Le maintien du substrat dans le creuset 30 est assuré par un anneau de garde 32, également en graphite, qui vient en appui sur un rebord que la couche mince 20 du substrat forme par rapport à la couche épaisse 10.FIG. 3 illustrates a variant in which the crucible has dimensions greater than the substrate. The substrate is held in the crucible 30 by a guard ring 32, also made of graphite, which comes to bear on a flange which the thin layer 20 of the substrate forms relative to the thick layer 10.
Dans un cas particulier, le creuset peut être supprimé ou remplacé par un support sans parois latérales .In a particular case, the crucible can be removed or replaced by a support without side walls.
Une étape importante du procédé est illustrée à la figure 4 qui montre la croissance du premier matériau, en l'occurrence du SiC, sur la couche mince 20. Le creuset est chauffé à une température suffisante pour faire fondre la couche épaisse 10 de silicium mais suffisamment faible pour ne pas faire fondre le SiC. La couche épaisse 10 est soumise dans le réacteur à un gaz réactif contenant les espèces nécessaires à la croissance du premier matériau. Le gaz réactif est symbolisé par des flèches sur la figure 4. Ici, il s'agit d'un gaz tel que le propane ou le silane qui contient du carbone ou du silicium auquel on peut mélanger un gaz porteur tel que l'hydrogène. L'apport en silicium est, dans le présent cas, assuré essentiellement par le bain de la couche épaisse fondue. La pression du gaz réactif est maintenue de préférence à une valeur inférieure à une limite correspondant à une formation de SiC à la surface du bain de silicium. Il convient en effet d'éviter une passivation de la surface. Celle-ci risquerait de bloquer la diffusion de l'élément carbone vers la couche mince 20. La pression partielle de propane est par exemple de 1000 Pa.An important step in the process is illustrated in FIG. 4 which shows the growth of the first material, in this case SiC, on the thin layer 20. The crucible is heated to a temperature sufficient to melt the thick layer 10 of silicon but low enough not to melt the SiC. The thick layer 10 is subjected in the reactor to a reactive gas containing the species necessary for the growth of the first material. The reactive gas is symbolized by arrows in Figure 4. Here it it is a gas such as propane or silane which contains carbon or silicon with which a carrier gas such as hydrogen can be mixed. The supply of silicon is, in the present case, provided essentially by the bath of the thick molten layer. The pressure of the reactive gas is preferably maintained at a value below a limit corresponding to a formation of SiC on the surface of the silicon bath. Passivation of the surface should be avoided. This would risk blocking the diffusion of the carbon element towards the thin layer 20. The partial pressure of propane is for example 1000 Pa.
La croissance du premier matériau a lieu à partir de l'interface de contact entre la couche mince et la couche épaisse, qui, comme indiqué précédemment, se comporte comme un germe. La croissance cristalline du SiC à partir d'une phase liquide de Si est plus rapide qu'une croissance en phase gazeuse. Elle peut atteindre 100 μm par heure.The growth of the first material takes place from the contact interface between the thin layer and the thick layer, which, as indicated above, behaves like a seed. Crystal growth of SiC from a liquid Si phase is faster than growth in the gas phase. It can reach 100 μm per hour.
Sur la figure 4, la référence 22 indique du SiC solide qui a crû sur la couche mince 20.In FIG. 4, the reference 22 indicates solid SiC which has grown on the thin layer 20.
Lors de la croissance, le silicium de la couche épaisse 10 se consomme jusqu'à épuisement. On obtient alors un substrat final tel que représenté par la figure 5, entièrement en SiC. La couche 22 de SiC obtenue par croissance, présente une qualité cristalline comparable à la couche initiale 20.During the growth, the silicon of the thick layer 10 is consumed until exhaustion. We then obtain a final substrate as shown in Figure 5, entirely of SiC. The layer 22 of SiC obtained by growth has a crystalline quality comparable to the initial layer 20.
Une variante du procédé est illustrée par la figure 6. Celle-ci montre un creuset 30 avec un insert de carbone 34 permettant de conférer au creuset des parois latérales évasées. Les parois évasées conduisent à une augmentation du diamètre du substrat au fur et à mesure de la croissance du premier matériau. Il peut être avantageux d'ouvrir le creuset jusqu'à un angle de 180° de façon à obtenir un gain conséquent sur la taille du cristal. Cette variante est représentée sur la figure 7. Elle permet d'utiliser des tranches initiales du premier matériau avec un diamètre inférieur à celui du premier matériau finalement obtenu.A variant of the process is illustrated in FIG. 6. This shows a crucible 30 with a carbon insert 34 allowing the crucible to be given flared side walls. The flared walls lead to an increase in the diameter of the substrate as the first material grows. It may be advantageous to open the crucible to an angle of 180 ° so as to obtain a substantial gain in the size of the crystal. This variant is shown in FIG. 7. It makes it possible to use initial sections of the first material with a diameter smaller than that of the first material finally obtained.
La figure 6 montre aussi de façon symbolique un apport du deuxième matériau, en l'occurrence du silicium, pour compenser la consommation du matériau lors de la croissance. Un bloc de silicium 14 est ajouté sur la surface de la couche épaisse de silicium 10 initialement présente. L'ajout peut avoir lieu avant ou après la transformation complète de la couche de silicium 10 en SiC.FIG. 6 also symbolically shows an addition of the second material, in this case silicon, to compensate for the consumption of the material during growth. A silicon block 14 is added to the surface of the thick layer of silicon 10 initially present. The addition can take place before or after the complete transformation of the silicon layer 10 into SiC.
Si le silicium initialement présent est épuisé, un nouveau collage moléculaire peut avoir lieu pour fixer le bloc de silicium 14 sur le substrat obtenu, entièrement en SiC. Le bloc de silicium 14 peut aussi être posé sur le silicium restant de la couche épaisseIf the silicon initially present is exhausted, a new molecular bonding can take place to fix the silicon block 14 on the substrate obtained, entirely of SiC. The silicon block 14 can also be placed on the remaining silicon of the thick layer
10, dans l'état fondu ou non.10, in the molten state or not.
DOCUMENTS CITES (1)CITED DOCUMENTS (1)
WO- 00/31322WO- 00/31322
(2)(2)
« Silicon carbide on insulator formation by the S art-Cut process » de L.Di Cioccio et al., Materials Science and Engineering B46 (1997) pp. 349-356."Silicon carbide on insulator formation by the S art-Cut process" by L. Di Cioccio et al., Materials Science and Engineering B46 (1997) pp. 349-356.
(3) « Semiconductor wafer Bonding : Science and Technology » de Q.Y. TONG et U. GOSELE, A WILEY INTERSCIENCE PUBLICATION, JOHN WILEY S- SONS, INC. (3) “Semiconductor wafer Bonding: Science and Technology” by Q.Y. TONG and U. GOSELE, A WILEY INTERSCIENCE PUBLICATION, JOHN WILEY S- SONS, INC.

Claims

REVENDICATIONS
1. Procédé de croissance cristalline dans lequel : a) on forme un substrat comportant une couche initiale (20) d'un premier matériau présentant une cohérence cristalline, et une couche (10) d'un second matériau, le second matériau autorisant, à l'état liquide, la diffusion d'atomes entrant dans la composition du premier matériau, b) on fait fondre la couche de second matériau et on fait croître une couche du premier matériau sur la couche initiale de premier matériau (20) , en soumettant la couche de second matériau, fondue, à un gaz réactif comprenant au moins un composant du premier matériau, caractérisé en ce que, lors de l'étape a), on rapporte, sans respect de la cohérence cristalline, la couche de second matériau sur la couche initiale de premier matériau.1. A crystal growth method in which: a) a substrate is formed comprising an initial layer (20) of a first material having a crystal coherence, and a layer (10) of a second material, the second material allowing, the liquid state, the diffusion of atoms entering into the composition of the first material, b) the layer of second material is melted and a layer of the first material is grown on the initial layer of first material (20), subjecting the layer of second material, melted, with a reactive gas comprising at least one component of the first material, characterized in that, during step a), the layer of second material is applied, without respecting the crystal coherence the initial layer of first material.
2. Procédé selon la revendication 1, dans lequel on rapporte la couche de second matériau par mise en contact d'un bloc du deuxième matériau avec la couche de premier matériau.2. Method according to claim 1, in which the layer of second material is added by bringing a block of the second material into contact with the layer of first material.
3. Procédé selon la revendication 2, dans lequel la mise en contact comprend un collage direct par adhésion moléculaire. 3. The method of claim 2, wherein the contacting comprises direct bonding by molecular adhesion.
4. Procédé selon la revendication 2 , dans lequel la mise en contact comprend un collage par l'intermédiaire d'un film de collage (12).4. The method of claim 2, wherein the contacting comprises bonding by means of a bonding film (12).
5. Procédé selon la revendication 1, dans lequel on rapporte la couche de second matériau par dépôt dudit matériau sur la couche initiale de premier matériau.5. Method according to claim 1, in which the second material layer is added by deposition of said material on the initial layer of first material.
6. Procédé selon la revendication 1, dans lequel le premier matériau est un composé du second matériau.6. The method of claim 1, wherein the first material is a compound of the second material.
7. Procédé selon la revendication 6, comprenant un ajout du deuxième matériau compensant une consommation de ce matériau lors de la croissance du premier matériau.7. Method according to claim 6, comprising an addition of the second material compensating for a consumption of this material during the growth of the first material.
8. Procédé selon la revendication 1, dans lequel le premier matériau présente une température de fusion supérieure à celle du deuxième matériau.8. The method of claim 1, wherein the first material has a higher melting temperature than that of the second material.
9. Procédé selon la revendication 1, dans lequel le premier matériau est choisi parmi SiC, CdTe, AlN, InP, GaP, GaAs, GaN, et dans lequel le deuxième matériau est choisi respectivement parmi Si, Cd, Te, Al, Ga et leurs composés.9. Method according to claim 1, in which the first material is chosen from SiC, CdTe, AlN, InP, GaP, GaAs, GaN, and in which the second material is chosen from Si, Cd, Te, Al, Ga and their compounds.
10. Procédé selon la revendication 1, dans lequel le deuxième matériau comprend au moins un composant différent des composants du premier matériau. 10. The method of claim 1, wherein the second material comprises at least one component different from the components of the first material.
11. Procédé selon la revendication 1, dans lequel on fait fondre la couche de deuxième matériau dans un creuset (30) à parois évasées.11. The method of claim 1, wherein the layer of second material is melted in a crucible (30) with flared walls.
12. Procédé selon la revendication 1, dans lequel on dépose en outre au moins une couche supplémentaire en un troisième matériau à la surface libre du premier matériau.. 12. The method of claim 1, wherein at least one additional layer of a third material is further deposited on the free surface of the first material.
PCT/FR2002/004372 2001-12-17 2002-12-16 Method for making crystalline semiconductor substrates WO2003052176A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0116304 2001-12-17
FR0116304A FR2833619A1 (en) 2001-12-17 2001-12-17 Fabrication of crystalline semiconductor substrates involves using a molten layer of a second material for diffusion of atoms into a first material

Publications (2)

Publication Number Publication Date
WO2003052176A2 true WO2003052176A2 (en) 2003-06-26
WO2003052176A3 WO2003052176A3 (en) 2004-02-12

Family

ID=8870572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004372 WO2003052176A2 (en) 2001-12-17 2002-12-16 Method for making crystalline semiconductor substrates

Country Status (2)

Country Link
FR (1) FR2833619A1 (en)
WO (1) WO2003052176A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399075A4 (en) * 2015-12-28 2019-08-28 Toyo Tanso Co., Ltd. METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582561A (en) * 1979-01-25 1986-04-15 Sharp Kabushiki Kaisha Method for making a silicon carbide substrate
WO2000031322A1 (en) * 1998-11-25 2000-06-02 Centre National De La Recherche Scientifique (Cnrs) Method for epitaxial growth on a substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105000A (en) * 1979-01-29 1980-08-11 Sharp Corp Production of silicon carbide crystal layer
JPS55104999A (en) * 1979-01-29 1980-08-11 Sharp Corp Production of silicon carbide crystal layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582561A (en) * 1979-01-25 1986-04-15 Sharp Kabushiki Kaisha Method for making a silicon carbide substrate
WO2000031322A1 (en) * 1998-11-25 2000-06-02 Centre National De La Recherche Scientifique (Cnrs) Method for epitaxial growth on a substrate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 159 (C-030), 6 novembre 1980 (1980-11-06) & JP 55 104999 A (SHARP CORP), 11 août 1980 (1980-08-11) *
PATENT ABSTRACTS OF JAPAN vol. 004, no. 159 (C-030), 6 novembre 1980 (1980-11-06) & JP 55 105000 A (SHARP CORP), 11 août 1980 (1980-08-11) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399075A4 (en) * 2015-12-28 2019-08-28 Toyo Tanso Co., Ltd. METHOD FOR MANUFACTURING SINGLE-CRYSTAL SiC, AND HOUSING CONTAINER

Also Published As

Publication number Publication date
FR2833619A1 (en) 2003-06-20
WO2003052176A3 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
CA2411606C (en) Preparation method of a coating of gallium nitride
FR2857983A1 (en) Fabrication of an epitaxial layer using atomic species implantation to produce a thin support layer for epitaxial growth, for optics, opto-electronics and electronics applications
EP1338030B1 (en) Method for making a substrate in particular for optics, electronics or optoelectronics and resulting substrate
EP1324385B1 (en) Process for transfering semiconductor thin layers from a donor wafer.
FR2857982A1 (en) Fabrication of an epitaxial layer on a thin support layer produced in a substrate by implantation of atomic species, for optic, opto-electronic and electronic applications
FR2817394A1 (en) METHOD FOR MANUFACTURING A SUBSTRATE, PARTICULARLY FOR OPTICS, ELECTRONICS OR OPTOELECTRONICS AND SUBSTRATE OBTAINED BY THIS PROCESS
WO1999039371A2 (en) METHOD FOR PRODUCING A STRUCTURE SUCH AS AN INSULATOR SEMICONDUCTOR AND IN PARTICULAR SiCOI
FR2840731A1 (en) Monocrystalline semiconductor substrate manufacturing method for laser diode, involves forming nucleation layer that acts as barrier for diffusion of thermally dissociated elements from gallium arsenide intermediate support
EP4128328B1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
WO2006000691A1 (en) Hybrid epitaxy support and method for making same
FR2860248A1 (en) PROCESS FOR PRODUCING AUTOMATED SUBSTRATES OF ELEMENT III NITRIDES BY HETERO-EPITAXIA ON A SACRIFICIAL LAYER
FR3030877B1 (en) FABRICATION OF GROUP IIIA NITRIDE LAYERS ON SEMICONDUCTOR STRUCTURES ON INSULATION
FR2926674A1 (en) METHOD OF MANUFACTURING A COMPOSITE STRUCTURE WITH A STABLE BONDING OXIDE LAYER
FR3103961A1 (en) PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE INCLUDING A THIN SIC MONOCRISTALLINE SIC LAYER ON A SIC SUPPORT SUBSTRATE
WO2021191512A1 (en) Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of sic
FR2787919A1 (en) Nitride growth substrate, especially for hetero epitaxial deposition of gallium nitride useful in optoelectronic devices, produced by bonding compliant thin films of growth and support substrates and thinning the growth substrate
WO2023186498A1 (en) Composite structure comprising a monocrystalline thin film on a polycrystalline silicon carbide support substrate, and associated manufacturing method
FR2905799A1 (en) IMPLEMENTING A GAN SUBSTRATE
EP4066275B1 (en) Method for manufacturing a composite structure comprising a thin layer of monocrystalline sic on an sic carrier substrate
WO2003052176A2 (en) Method for making crystalline semiconductor substrates
WO2020127603A1 (en) Semiconductor substrate with n-doped intermediate layer
WO2006100301A1 (en) Method of producing a hetero-structure comprising at least one thick layer of semiconductor material
FR2928031A1 (en) METHOD OF TRANSFERRING A THIN LAYER TO A SUPPORT SUBSTRATE.
EP4016585B1 (en) Silicon carbide electronic device and method for manufacturing same
FR2849714A1 (en) Recycling donor wafer after having taken off useful layer of semiconductor materials, involves removing substance using mechanical mechanism so that part of taking-off structure will remain

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP