WO2003051496A1 - Rotary film separator and method for separation of film by rotary film separator - Google Patents

Rotary film separator and method for separation of film by rotary film separator Download PDF

Info

Publication number
WO2003051496A1
WO2003051496A1 PCT/JP2002/007527 JP0207527W WO03051496A1 WO 2003051496 A1 WO2003051496 A1 WO 2003051496A1 JP 0207527 W JP0207527 W JP 0207527W WO 03051496 A1 WO03051496 A1 WO 03051496A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
liquid
baffle
rotary
container
Prior art date
Application number
PCT/JP2002/007527
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Tanida
Yoshiya Kuide
Ryu Harada
Kazutaka Takada
Original Assignee
Kobelco Eco-Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002029097A external-priority patent/JP3801926B2/en
Application filed by Kobelco Eco-Solutions Co., Ltd. filed Critical Kobelco Eco-Solutions Co., Ltd.
Publication of WO2003051496A1 publication Critical patent/WO2003051496A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules

Definitions

  • the present invention provides solid-liquid separation, ion removal, soluble organic matter removal, latex concentration, colloidal silica concentration, valuable resource recovery, waste liquid treatment, metal classification, tap water filtration, activated sludge treatment, tap water sludge treatment, food waste liquid
  • the present invention relates to a rotary membrane separation apparatus and a membrane separation method using a rotary membrane separation apparatus that can be suitably used for processing, COD reduction, BOD reduction, slurry and colloid component filtration, and the like.
  • a membrane separation device is used to separate liquids (substances to be treated) in which various substances are dissolved in water into clean water (permeate) and concentrated liquids with high particle concentrations.
  • membrane separation devices There are various types of membrane separation devices.
  • membrane separation by a cross-flow method is widely performed. As shown in FIG. 44, this cross-flow method is to pump the liquid to be treated by a supply pump 52 to a membrane module 51 having a function of separating a permeate and a concentrate, and The solution is removed from the membrane module 51 via the route 53, the concentrate is removed from the membrane module 51 via the route 54, and the concentrate is returned to the membrane module 51 via the route 55.
  • 4 and 5 5 are circulated many times to increase the enrichment.
  • a rotary membrane separator has been provided as a membrane separator that is not easily clogged, has a high permeation flux, and can be concentrated to a high concentration.
  • a rotating shaft is arranged so as to penetrate the center of a container, and a number of membranes are mounted in a longitudinal direction of the rotating shaft.
  • This is a method that performs membrane separation while rotating.
  • the membrane has a porous structure with pores formed on the surface that prevent the passage of particles of a certain size or more, and a permeable membrane that has a path for transporting the permeated liquid is attached to both sides of the plate.
  • the rotating shaft is rotated and mounted on the rotating shaft in order to prevent fouling in which particles of a certain size or more in the liquid to be treated block the pores of the film or adhere or deposit particles on the film surface.
  • Rotating the attached film body is performed.
  • the liquid to be treated co-rotates with the film body, and the rotation effect of the film body is reduced. As it is not fully exhibited, prevention of membrane pore blockage is insufficient.
  • turbulence is generated on the membrane surface to prevent co-rotation and to efficiently exchange the liquid to be treated on the membrane surface.
  • concentration polarization can be reduced, thereby enabling high concentration.
  • performance of inhibiting the film can be improved.
  • a hollow rotary shaft 63 is provided so as to penetrate the center of a cylindrical container 62 having a supply inlet 61 for a pressurized liquid to be treated.
  • a number of membranes 64 having a structure capable of transferring the permeated liquid are mounted on the rotating shaft 63, and the liquid permeated by the membrane 64 is transferred from the membrane 64 to the rotating shaft 63.
  • the membrane 64 when the membrane 64 is rotated together with the rotating shaft 63 by a motor (not shown), the rotation between the surface of the rotating membrane 64 and the stationary ring-shaped baffle 68 is performed. A turbulent flow can be positively generated in the gap, and the effect of preventing pore clogging can be expected.
  • the ring-shaped baffle 68 completely separates the membranes, the baffle 68 has a large area covering the membrane 64, and the liquid to be treated in the container 62 passes through the narrow and long flow path 69. As a result, the pressure loss increases, and it cannot be efficiently transmitted. Further, due to the pressure loss, the pressure applied to the membrane 64 becomes non-uniform.
  • the deflection of the film body 64 increases, and the film body 64 and the ring-shaped baffle 6-8 come into contact with each other, and the relatively weak film body 64 may be damaged. Furthermore, when charging the container 62, it is necessary to alternately assemble the membrane body 64 and the ring-shaped baffle 68, which makes the assembly of the apparatus extremely complicated.
  • a holed baffle 71 having a hole 70 formed in the periphery of a ring-shaped baffle has been proposed in order to reduce the pressure loss (hereinafter, referred to as “baffle”).
  • the conventional membrane separation device 2 requires a high processing cost for perforating the baffle, and, like the conventional membrane separation device 1, requires a membrane 64 and a hole when charged into the container 62. It is necessary to assemble the baffles 71 alternately, and there is a disadvantage that the device assembly is very complicated.
  • the baffles 68 and 71 uniformly cover the membrane surface, so that there is a disadvantage that the turbulence of the liquid to be treated is small.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to reduce the time and labor required for assembling the device, to reduce the pressure loss, and to improve the efficiency. It is an object of the present invention to provide a rotary membrane separation apparatus and a membrane separation method using the rotary membrane separation apparatus, which can perform a permeation treatment on the membrane to effectively exhibit membrane separation performance.
  • the present invention provides a plurality of rectangular baffles provided with gaps on both sides of a membrane mounted on a rotating shaft of a rotary membrane separator, with a gap between the membrane and the membrane. Since a plurality of rectangular baffles are arranged parallel to each other from the vicinity of one inner wall of the container to the vicinity of the other inner wall of the container with the rotation axis interposed, the puffing covers the membrane surface unevenly, The turbulence is large, the concentration polarization and the effect of reducing fouling are large, so the permeation flux is extremely large, the pressure loss due to the presence of the baffle is small, and no special processing is required because the paffle has a simple shape.
  • the baffle can be inserted after the membrane is mounted on the rotating shaft, making assembly of the device simple.
  • the present invention relates to a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, wherein the liquid permeated in the container can be transferred.
  • a membrane having a structure is mounted on the rotating shaft, has an outlet connected to the membrane to discharge the permeated liquid, and a plurality of rectangles provided with gaps between the membrane and the membrane on both sides of the membrane.
  • Liquid baffle is provided, and a liquid flow path connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container. It is characterized by being arranged parallel to each other up to the vicinity of the inner wall.
  • the membrane separation device of the present invention configured as described above, as shown in FIG. 7, when the membrane body 12 is rotated clockwise as shown by arrow A, the supply from the supply inlet into the container proceeds.
  • the supplied and pressurized liquid to be treated flows from the flow path 16 along the inner wall 15 of the container along the rectangular paffle 13 as shown by an arrow B on the left side of the container.
  • the liquid to be treated on the surface of the membrane body 12 is in the container. The liquid is discharged toward the flow path 16 along the wall 15.
  • the liquid to be treated Due to the flow of the liquid to be treated formed between the surface of the membrane and the flow path along the inner wall of the container, the liquid to be treated does not stagnate on the surface of the membrane, and the liquid flowing outward in the container and The exchange of the liquid flowing to the side is performed smoothly.
  • the liquid to be treated since the liquid to be treated generates turbulence due to a baffle which is unevenly mounted, fouling and concentration polarization are reduced, and membrane separation can be performed efficiently.
  • both ends of the baffle are supported and fixed by a support independent of the container wall, assembly of the device becomes easy and cost can be reduced.
  • a hook-shaped baffle is provided with a gap between the membrane on both sides of the membrane, and a plurality of hook-shaped baffles are sandwiched across the rotating shaft. It can also be arranged symmetrically with respect to the body diameter or symmetrically with respect to the axis of rotation. It is also possible to arrange an S-shaped paffle with a gap between the membrane and the membrane on both sides of the membrane, and to arrange a plurality of S-shaped paffles point-symmetrically with respect to the rotation axis with the rotation axis interposed therebetween. it can.
  • an arc-shaped baffle is arranged on both sides of the membrane with a gap between the membrane and the arc-shaped baffle, and a plurality of arc-shaped baffles are arranged symmetrically with respect to the membrane diameter with the rotation axis interposed therebetween, or It can also be arranged point-symmetrically with respect to.
  • the same effect as a rectangular baffle can be expected by using a hook-shaped baffle, S-shaped baffle, or arc-shaped baffle.
  • hook-shaped, S-shaped or arc-shaped baffles can increase turbulence on the membrane surface. There is an effect that the membrane separation performance is improved. It also has the effect of promoting the exchange of fluid between the membranes.
  • the baffle covers the membrane surface unevenly, the turbulence is large, and the concentration polarization and the effect of reducing fouling are large, so that the permeation flux is large and the pressure loss due to the presence of the baffle is small.
  • a baffle having a configuration in which a plurality of baffles are arranged radially around the rotation axis toward the inner wall of the container (radial paffle) is used, the transmitted flux becomes large.
  • the projected area of the baffle with respect to the surface area of the membrane is preferably 1 to 90%. If it is less than 1%, the effect of promoting turbulence on the surface of the membrane is small, and if it exceeds 90%, the pressure loss of the liquid to be treated becomes too large. In addition, as shown in an example described later (see FIG. 22), even when the projected area of the baffle with respect to the surface area of the membrane is 1%, the permeation flux is significantly increased as compared with the case without the baffle, and 90% is reduced. If it exceeds, the decrease of the permeation flux becomes large.
  • a permeation flux of a certain value or more is required, depending on the properties of the liquid to be treated, the treatment purpose and the treatment cost, and the average permeation flux is 30 L (liter) / m.
  • the projected area of the baffle with respect to the surface area of the membrane is 10 to 9 More preferably, it is 0%, and in order to increase only the permeation flux without increasing the pressure loss in the apparatus, the projected area of the buffer with respect to the surface area of the membrane should be 26 to 70%. More preferred.
  • the projected area of the radial paffle on the surface area of the membrane is 30
  • ⁇ 70% is preferred.
  • the diameter of the membrane is preferably 200 to 110 wakes. If it is less than 200 mm, the number of membranes will be too large for a device with sufficient membrane separation capacity. The device and the rotating shaft will be too long, and those exceeding 110 mm will be manufactured. It is difficult, the production cost is greatly increased, and the power required for rotation is greatly increased. Further, as shown in an example to be described later (see FIG. 24), when the film body diameter is less than 20 O mm, when the rotation speed of the film body is low, the permeability is large enough to be practically used. If the overflux cannot be obtained and the membrane speed is low (eg.
  • the rotation speed of the membrane is as follows.
  • a membrane area of a certain value or more (for example, 10 m 2 or more) is required.
  • the membrane diameter is less than 30 Omm, a very large number of membranes will be required to secure the required membrane area, and the equipment and the rotating shaft will be too long, making it a practical industrial device. It is difficult to be established.
  • the diameter of the membrane increases, the transmitted flux increases, and the rotation axis can be shortened.However, the power required for rotation increases in proportion to the fifth power of the diameter of the membrane, resulting in economical operation. There is an inconvenience that it cannot be done.
  • the diameter of the membrane is larger than a certain value, the amount of increase in the permeation flux is small.
  • the diameter of the membrane is preferably in the range of 300 to 100 Omm, because an economical and efficient membrane separation device can be realized.
  • the diameter of the membrane is preferably in the range of 300 to 100 Omm, because an economical and efficient membrane separation device can be realized.
  • the rotation speed of the membrane is preferably in the range of 50 to 100 rpm.
  • the number of baffles is set at 20. Since the permeation flux does not increase even if the number is increased to more than this, the number of rectangular baffles, hook-shaped baffles, S-shaped baffles or arc-shaped baffles is preferably set to 1 to 20.
  • the number of radial baffles is preferably 4 to 12 ((6) The gap between the membrane and the baffle)
  • the gap between the membrane and the baffle is preferably 2 to 18 bandages. If the thickness is less than 2 mm, the membrane and the baffle will contact each other, causing the membrane to be damaged, and the membrane may be damaged.If the length exceeds 18 mm, the rotation axis becomes longer, and the volume of the container containing the membrane becomes too large. And the distance between the membrane and the baffle is too large to reduce the turbulence promoting effect of the baffle. Also, as shown in the embodiment described later (see FIG. 26), If the gap between the membrane and baffle is less than 2 mm or more than 18 mm, This is because a permeation flux large enough to be practically used cannot be obtained.
  • the gap between the membrane and the baffle is preferably 2 to 12 dragons. If less than 2 bandits, the membrane and the radial baffle may be easily in contact with each other, and the membrane may be damaged.If it exceeds 12 mm, the distance between the membrane and the radial baffle is too large, and This is because the effect of promoting turbulence cannot be expected, and the entire length of the device increases in order to secure the required film area, which is not economical.
  • the rotation speed of the membrane on the outer periphery is preferably 1 to 30 m / sec.
  • the centrifugal force becomes too large and is added to the pressurized liquid to be treated. This is because the effective pressure for permeation is canceled out and permeation efficiency is reduced, and the power required for rotation is greatly increased.
  • the baffle has a gap between the rotating membrane and the baffle. Should be installed and installed so that it does not come in contact with the membrane. You. On the other hand, it is preferable to reduce the thickness of the baffle as much as possible so as not to occupy a large volume. However, if the thickness is too small, the baffle should be at least lmm thick, since it is likely to bend and may come into contact with the membrane to damage the membrane.
  • the thickness of the paffle should be less than 20 bandages. Is preferred.
  • the material of the baffle is not particularly limited, but various metals such as iron and stainless steel, plastics, ceramics, and glass fiber reinforced plastics are preferable. .
  • the width of the baffle is preferably 0.1 to 40% of the membrane diameter. If it is less than 0.1%, the effect of promoting turbulence on the surface of the membrane is small, and if it exceeds 40%, the pressure loss of the liquid to be treated becomes too large.
  • the ratio of the inner diameter of the vessel to the diameter of the membrane is preferably in the range of 1.03 to 3.00. If it is less than 1.03, the area occupied by the film is too large, and the pressure loss of the liquid to be treated becomes too large. On the other hand, if it exceeds 3.0000, the area occupied by the membrane is too small and the membrane separation efficiency is undesirably reduced.
  • the pressure of the liquid to be treated introduced into the container exceeds 2 OMPa. There is an inconvenience that the pressure resistance of the container becomes difficult.
  • the water level is less than 0.5 m.-There is a disadvantage that the membrane is not immersed in the liquid to be treated.
  • the pressure of the liquid to be treated introduced into the tank is preferably 0.05 MPa to 20 MPa.
  • the liquid to be treated near the film body that rotates together with the film body is subjected to radial acceleration toward the outside of the circle.
  • this radial acceleration affects the membrane separation performance. That is, when the liquid to be treated is at a high concentration, the operation is performed in a range where the radial acceleration during rotation of the film is 200 mZsec 2 or more, and when the liquid to be treated is at a low concentration, the radial acceleration during the film rotation is increased.
  • a shearing force effective for permeation is applied to the liquid to be treated according to the viscosity of the liquid to be treated, and the permeation flux increases. .
  • the thickness of the film is preferably 1 to 20 mm. If it is less than 1, the strength is insufficient, and if it exceeds 20 dishes, the volume of the container for accommodating the membrane becomes too large.
  • the shape of the film body may be a circle, but is not necessarily limited to a circular shape, and may be a pentagon or more polygonal shape.
  • the rotary shaft is hollow, and a small hole is formed in a portion where the membrane is mounted in the longitudinal direction of the membrane.
  • the membrane has a structure in which a permeable membrane having a path through which a permeated liquid can be transferred is attached to both sides of the plate. If a configuration is adopted in which the permeated liquid transfer path of the permeable membrane communicates with the small hole provided in the rotating shaft.
  • the rotating shaft can also be used as a means for discharging the permeated liquid. There is an advantage of becoming.
  • diameter means "through the center of a circle or sphere.
  • a line segment having both ends on a circumference or a sphere it also means “in a polygon, a line segment twice as long as the distance from its center to one vertex.”
  • the rotary membrane separation apparatus and the membrane separation method using the rotary membrane separation apparatus of the present invention are configured as described above, and have the following effects.
  • the baffle does not have a structure that completely separates the membranes, so that the baffle can be used for processing. Low liquid pressure loss and excellent membrane separation performance.
  • the puffer can be inserted from the lateral direction of the laminated membrane, so that there is no need for installation.
  • the paffle shape is simple, machining is easy and low cost.
  • the width, thickness and number of baffles can be arbitrarily changed according to the properties of the liquid to be treated, the type of liquid to be treated is not limited, and the applicability is excellent.
  • the rotary membrane separator according to claims 2, 3, and 4 can increase turbulence generated on the membrane surface and improve membrane separation performance. There is an advantage. There is also an advantage that the exchange of fluid between the membranes is promoted.
  • the projected area of the baffle with respect to the surface area of the membrane is within an appropriate range.
  • the permeation flux becomes extremely large.
  • the rotary membrane separation device according to claims 6, 7, 8, and 9 may be a rectangular baffle, a hook-shaped baffle, an S-shaped baffle, or an arc-shaped baffle. Support both ends of Since it is held and fixed, it is easy to assemble the device and cost can be reduced.
  • the rotary membrane separation device according to claim 10 has an advantage that the baffle can be easily attached.
  • the rotary membrane separation device according to claim 12 has an advantage that the size of the device is appropriate and the production cost and running cost can be suppressed.
  • the rotary membrane separator according to claims 14 and 16 has the advantage that the baffle is less likely to bend and the membrane is less likely to be damaged.
  • the rotary membrane separation device described in claim 18 has an advantage that the device is compact.
  • the membrane is hardly clogged, has a high permeation flux, and can be concentrated to a high concentration. It is possible.
  • a pumping means such as a large pump, so energy costs are low, and it is not necessary to increase the number of circulations to increase the concentration.
  • the liquid to be treated is less likely to be sheared by the feed blades and the like, and the quality of the liquid to be treated is not easily changed.
  • FIG. 1 is a perspective view of one embodiment of the rotary membrane separation device of the present invention.
  • FIG. 2 (a) is a cross-sectional view of one embodiment showing a rectangular baffle, a membrane, and a container of the rotary membrane separator of the present invention
  • FIG. 2 (b) uses the rectangular baffle.
  • FIG. 2 is a side view including a cross section of the rotary membrane separation apparatus, in which a rotating means is omitted
  • FIG. 2 (c) is a cross-sectional view taken along the line II-II of FIG. 2 (a).
  • FIG. 3 (a) is a cross-sectional view of another embodiment showing a rectangular baffle, a membrane and a container of the rotary membrane separator of the present invention, and FIG. 3 (b) uses the rectangular baffle.
  • FIG. 3 is a side view including a cross section of the rotating membrane separation apparatus, in which a rotating means is omitted, and
  • FIG. 3 (c) is a cross-sectional view taken along the line III-III of FIG. 3 (a).
  • Fig. 4 (a) shows that a gap is provided between the membrane and the membrane on both sides of the membrane, and eight rod-shaped baffles are placed on each other from the vicinity of one inner wall of the container to the vicinity of the other inner wall across the rotation shaft.
  • Fig. 4 (b) is a side view including a cross-section of a rotary membrane separator using the rod-shaped baffle. Yes, the rotating means is omitted, and
  • FIG. 4 (c) is a diagram showing a method of fastening the rod-shaped paffle.
  • FIG. 5 (a) is an enlarged cross-sectional view showing a portion where the membrane is mounted on the rotating shaft in one embodiment of the rotary membrane separation apparatus of the present invention
  • FIG. 5 (b) is FIG. 13 is an enlarged cross-sectional view showing a place where the film body of another embodiment is mounted on a rotating shaft.
  • FIG. 6 (a) is an enlarged cross-sectional view showing the membrane and the rectangular baffle near the inner wall of the vessel in one embodiment of the rotary membrane separator of the present invention.
  • Fig. 6 (b) is an enlarged view of a permeated liquid transfer path in the permeable membrane.
  • FIG. 7 is a diagram showing a flow of the liquid to be treated in the rotary membrane separation device of the present invention.
  • FIG. 8 (a) is a cross-sectional view of one embodiment showing a radial membrane, a membrane and a container of the rotary membrane separation apparatus of the present invention
  • FIG. 8 (b) is a VIII of FIG. 8 (a).
  • -It is VIII arrow sectional drawing.
  • FIG. 9 is a sectional view of an embodiment showing an arc-shaped baffle, a membrane, and a container of the rotary membrane separator of the present invention.
  • FIG. 10 is a cross-sectional view of one embodiment showing a hook-shaped baffle, a membrane, and a container of the rotary membrane separator of the present invention.
  • FIG. 11 is a cross-sectional view of one embodiment showing an S-shaped profile, a membrane, and a container of the rotary membrane separator of the present invention.
  • FIG. 12 (a) is a cross-sectional view of one embodiment showing a wing-shaped baffle, a membrane and a container of the rotary type membrane separation device of the present invention
  • FIG. 12 (b) is a wing-shaped baffle of the same.
  • FIG. 12 is a side view including a cross section of the rotary membrane separator used, in which the rotating means is omitted.
  • FIG. 12 (c) is a cross-sectional view taken along the line XII--XII in FIG.
  • FIG. 4 is an enlarged view showing 0 and its vicinity.
  • FIG. 13 is a schematic configuration diagram showing one example of a membrane separation system
  • FIG. 14 is a schematic configuration diagram showing another example of a membrane separation system.
  • FIG. 15 is a diagram showing the relationship between the concentration of the concentrated liquid and the permeation flux
  • FIG. 16 is a diagram showing the relationship between the operating pressure and the permeation flux.
  • FIG. 17 is a cross-sectional view of an example showing a rod-shaped baffle, a membrane, and a container of a rotary membrane separator.
  • FIG. 18 is another diagram showing the relationship between the operating pressure and the permeation flux
  • FIG. 19 is a diagram showing a perforated plate-shaped baffle and membrane of a rotary membrane separator.
  • FIG. 4 is a cross-sectional view of an example showing a container and a container.
  • FIG. 20 is yet another diagram showing the relationship between the operating pressure and the permeation flux.
  • FIG. 21 is a diagram showing the relationship between the number of rectangular baffles and the permeation flux.
  • FIG. 22 is a diagram showing the relationship between the projected area (%) of the rectangular paffle and the permeation flux with respect to the surface area of the membrane.
  • FIG. 23 is a diagram showing a relationship between a membrane peripheral velocity and a permeation flux.
  • FIG. 24 is a diagram showing the relationship between the diameter of the membrane and the permeation flux.
  • FIG. 25 is a diagram showing the relationship between the number of revolutions of the membrane and the permeation flux (FIG. 26 is a diagram showing the relationship between the gap between the membrane and the baffle and the permeation flux).
  • FIG. 27 is a diagram showing a time change of a permeation flux of the rotary membrane separation device of the present invention.
  • FIG. 28 is a diagram showing the concentration polarization reducing effect of the rotary membrane separation device of the present invention.
  • FIG. 29 is another diagram showing the concentration polarization reducing effect of the rotary membrane separation device of the present invention.
  • FIG. 30 is a diagram showing the relationship between the number of revolutions of the membrane and the permeation flux, with the membrane diameter as a parameter, when the low-concentration latex is subjected to membrane separation using a radial baffle.
  • FIG. 31 is a diagram showing the relationship between the number of rotations of the membrane and the permeation flux with the membrane diameter as a parameter when the high-concentration latex is subjected to membrane separation using a radial baffle.
  • FIG. 32 is a diagram showing the relationship between the permeation flux and the gap between the membrane and the baffle when the membrane is separated using a radial baffle.
  • FIG. 33 uses a ring-shaped baffle or a radial baffle.
  • FIG. 4 is a diagram showing a relationship between a transmembrane pressure and a permeation flux when performing membrane separation by using the method shown in FIG.
  • FIG. 34 is a diagram showing the relationship between the number of radial baffles and the permeation flux when membrane separation is performed using a radial baffle.
  • FIG. 35 is a diagram showing the relationship between the projected area (%) of the radial baffle and the permeation flux with respect to the surface area of the membrane when performing membrane separation using a radial baffle.
  • FIG. 36 shows the relationship between the permeation flux and the radial acceleration when the membrane rotates, with the transmembrane pressure (operating pressure) as a parameter in the case of membrane separation using a ring-shaped paffle.
  • FIG. Fig. 37 shows the relationship between the permeation flux and the radial acceleration during rotation of the membrane, using the transmembrane pressure (operating pressure) as a parameter in the case of membrane separation using a ring-shaped paffle.
  • FIG. 36 is different from FIG.
  • FIG. 38 shows the relationship between the permeation flux and the radial acceleration during rotation of the membrane, using the transmembrane pressure (operating pressure) as a parameter in membrane separation using a ring-shaped baffle.
  • FIG. 36 is different from FIGS. 36 and 37.
  • FIG. 39 shows the relationship between the permeation flux and the radial acceleration when the membrane rotates when the membrane transmembrane pressure (operating pressure) is set as a parameter in the case of membrane separation using a ring-shaped baffle.
  • FIG. 36 is a view different from FIG. 37 and FIG.
  • FIG. 40 is a diagram showing the relationship between the radial acceleration and the radial flux during rotation of the membrane when the membrane is separated using a ring-shaped baffle, with the latex concentration as a parameter.
  • Fig. 41 shows the relationship between the radial flux and the radial flux during rotation of the membrane when the membrane is separated using a ring-shaped baffle, with the latex concentration as a parameter. Different from FIG.
  • Fig. 42 shows the relationship between permeate flux and radial acceleration during rotation of the membrane, using latex concentration as a parameter in the case of membrane separation using a ring-shaped paffle.
  • FIG. 41 is different from FIG.
  • FIG. 43 (a) is a plan view showing an example in which a large number of punched holes are provided in the paffle
  • FIG. 43 (b) is a cross-sectional view showing an example in which the front and back surfaces of the baffle are etched
  • FIG. 43 (c) is a cross-sectional view showing an example in which the front and back surfaces of the baffle are embossed.
  • FIG. 44 is a diagram showing a schematic configuration of a membrane separation device using a cross flow method.
  • FIG. 45 (a) is a cross-sectional view showing a ring-shaped baffle, a membrane and a container of a conventional rotary type membrane separation apparatus
  • FIG. 45 (b) is a rotary type using the ring-shaped baffle.
  • FIG. 2 is a side view including a cross section of the membrane separation device, omitting a rotating unit.
  • FIG. 46 (a) is a cross-sectional view showing a perforated ring-shaped baffle, a membrane and a container of a conventional rotary membrane separator
  • FIG. 46 (b) is a diagram showing the perforated ring-shaped baffle used.
  • FIG. 4 is a side view including a cross section of the rotating membrane separation apparatus, in which a rotating means is omitted.
  • FIG. 1 is a perspective view of a rotary membrane separation device of the present invention.
  • Reference numeral 1 denotes a supply inlet for the liquid to be treated.
  • a hollow rotary shaft 3 is arranged so as to pass through the center of the cylindrical container 2, and a number of membranes mounted on the hollow rotary shaft 3 (number 1 in FIG. 2).
  • the liquid permeated in 2) passes through the hollow rotary shaft 3 and is discharged from outlets 4 and 5, and the concentrated liquid is discharged from outlet 6.
  • Reference numeral 7 denotes a motor that rotates the membrane together with the rotating shaft 3, and the torque of the motor 7 is transmitted to the rotating shaft 3 by a belt 8.
  • the transmission of rotational force is not limited to this, and it is also possible to use a motor-direct connection type, a gear reducer, or a wrapping transmission device.
  • the membrane used in this example is a polyether sulfone permeate through woven fabric cloth 10 on both sides of a polypropylene plate 9. This is the structure to which the conductive film 11 is attached.
  • a metal plate or a ceramic plate other than the plastic plate used in this embodiment can be used as a plate on which the permeable membrane is attached, and it is preferable to use a material that does not easily deform and is resistant to breakage. .
  • a permeable membrane has a porous structure, and is capable of transporting permeated liquid by passing through a porous portion (by connecting the porous portions to each other).
  • a channel formed therein means a channel formed inside, and as long as it has such a function, a ceramic film or a metal film other than the above-mentioned organic film can be adopted.
  • the spacer cloth 10 can also transfer the permeated liquid, and the flow path of the permeated liquid in the spacer cloth 10 is larger in diameter than the permeated liquid transfer path 27 of the permeable membrane 11 described later.
  • the liquid is a single sacro It is easy to flow through the 10
  • a film body 12 composed of a plastic plate body 9, a cross cloth 10 and a permeable membrane 11 is mounted on the rotating shaft 3 as shown in FIG.
  • the two stainless steel rectangular baffles 13 are parallel to each other from the vicinity of one inner wall of the container 2 to the vicinity of the other inner wall of the container 2 with the rotating shaft 3 interposed therebetween. It is arranged (see FIG. 2 (a)), and both ends of the plurality of rectangular baffles 13 are supported and fixed by through bolts 14 connecting the surfaces 2a and 2b of the container 2. Further, a liquid flow path 16 connected to the supply inlet 1 of the liquid to be treated is formed along the inner wall surface 15 of the container 2.
  • the rotating shaft 3 is hollow, and as shown in Fig. 5 (a), a small hole 17 is provided in the mounting portion of the membrane member 12 in the longitudinal direction of the shaft, and the permeable membrane 1 forming the membrane member 12 is provided.
  • the permeated liquid transfer path of No. 1 and the permeated liquid transfer flow path of the spacer cloth 10 communicate with the small holes 17.
  • Reference numeral 18 denotes a rotating shaft mounting portion of the membrane body 12, which is a spacer interposed between the vertically adjacent membrane bodies 12 and 12.
  • a plurality of slits 19 are provided in a longitudinal direction of a portion where the spacer 18 and the film body 12 are mounted on the rotating shaft 3, and the slits 19 are provided.
  • a small hole 17 is provided at the end of the rotating shaft 3 using 9 as the permeate liquid transfer passage.
  • the permeate liquid transfer passage of the permeable membrane 11 and the permeate liquid transfer passage of the spacer cloth 10 are provided.
  • a configuration that leads to the small hole 17 through the slit 19 can also be adopted.
  • small holes 17 are provided at arbitrary positions of the rotating shaft 3.
  • Fig. 3 shows that four stainless steel rectangular paffles 20 are placed on one side of a container 2 with a rotating shaft 3 interposed between them.
  • An example is shown where they are arranged parallel to each other from the vicinity of the inner wall to the vicinity of the other inner wall.
  • the material of the baffle is It is also possible to use plastic or ceramic besides the above-mentioned metal.
  • the membrane pores 26 are not closed, and pass through the passages in the spacer cloth 10 from the passages 27 formed by connecting the porous portions.
  • the permeate is discharged from the small holes 17 shown in Figs. 5 (a) and (b) via the hollow rotary shaft 3 and the outlets 4 and 5 shown in Fig. 1, while the concentrated solution is discharged at the outlet 6 Is discharged from Since the permeated liquid flows more easily through the wide passage in the spacer cloth 10 than the narrow permeated liquid transfer path 27 in the permeable membrane, the permeate flows directly from the permeated liquid transfer path 27 directly to the small holes 17. The amount of the liquid is small, and the amount of the permeated liquid reaching the small holes 17 via the wide flow passage in the space cloth 10 is larger.
  • a radial baffle as shown in FIG. 8 can be used as the baffle.
  • Fig. 8 shows that eight baffles 28 are arranged radially toward the inner wall surface 15 of the container 2 with the rotation axis 3 as the center, with a gap provided between the film body 12 and the film body on both sides.
  • the end of the notch 28 is supported and fixed by a through bolt 14 connecting the surfaces 2 a and 2 b of the container 2.
  • an arc-shaped baffle 29a shown in Fig. 9, a hook-shaped baffle 29b shown in Fig. 10, and an S-shaped baffle 29c shown in Fig. 11 should be used. Can also.
  • the arc-shaped baffle 29a, hook-shaped baffle 29b, and S-shaped baffle 29c can increase turbulence on the membrane surface and improve membrane separation performance. This has the effect. It also has the effect of promoting the exchange of fluid between membranes.
  • the arc-shaped baffle 29 a and the hook-shaped baffle 29 b have a plurality of arc-shaped baffles 29 a or a plurality of arc-shaped baffles 29.
  • the hook-shaped baffle 29 b should be arranged symmetrically with respect to the diameter of the membrane 12, or a plurality of arc-shaped baffles 29 a or a plurality of hook-shaped baffles 29 b should be Can be arranged point-symmetrically.
  • a plurality of S-shaped baffles 29c can be arranged point-symmetrically with respect to the rotation axis 3 with the rotation axis 3 interposed therebetween.
  • the same number of baffles 29 a, 29 b, and 29 c are similarly arranged on the other side of the membrane 12, and the baffle shape is Except for the differences, the other configuration is basically the same as in FIG.
  • both ends of the arc-shaped notch 29a, the hook-shaped baffle 29b, and the S-shaped baffle 29c connect the surfaces 2a and 2b (see Fig. 2) of the container 2, respectively. It is supported and fixed by through bolts 14.
  • FIG. 12 (c) it is also possible to employ a knotle 30 having a cross section similar to that of the wing.
  • This baffle 3 0 According to this, there is an advantage that it is difficult to contact with the film body. Furthermore, there is an advantage that the rotation power can be reduced.
  • the cross-section in the longitudinal direction of the rectangular baffle 13 shown in FIG. 2 and the rectangular baffle 20 shown in FIG. 3 are as shown in FIG. 2 (c) or FIG. 3 (c).
  • the cross-sectional dimensions do not change.
  • the rectangular baffle of the present invention is not limited to those exemplified here.
  • the inner diameter of the cylindrical container 2 used in each of the following experiments was 350 thighs, and the diameter of the membranes other than those particularly indicated was 300 mm. It is common.
  • the liquid to be treated 33 stored in the storage tank 32 for the liquid to be treated via the path 31 is stirred by the stirrer 34, and the liquid to be treated is reduced to about 0 by the pump 35. It is pressurized to 0.05 to 20 MPa and sent to the membrane separation device 37 via the path 36.
  • Reference numeral 38 denotes a strainer for removing foreign matter in the liquid to be treated.
  • the permeate separated by the membrane in the membrane separation device 37 is discharged through the route 39, the concentrated solution is returned to the storage tank 32 again through the routes 40 and 41, and the route 36 is further removed. After that, it is supplied again to the membrane separation device 37 to be subjected to membrane separation.
  • the concentration of the concentrated solution is gradually increased.
  • the concentrated solution is taken out through the path 42.
  • 43 is a valve, and 44 is a motor.
  • the concentrated liquid does not necessarily need to be circulated, and the liquid separated by membrane in the membrane separation device 37 can be directly discharged through the path 42, or a part of the liquid can be returned to the storage tank to be partially recycled. Discharge You may.
  • FIG. 14 shows a configuration in which a pump 35 is installed in the permeate discharge path 39 of the membrane separation device 37, and the pump 35 sucks the liquid to be treated in this manner.
  • the membrane separation device 37 can be opened, and the number of auxiliary equipment of the membrane separation device can be reduced, so that the entire device becomes compact. This has the effect.
  • the pressure of the liquid to be treated supplied to the membrane separation device 37 is relatively small, so that an effect that fouling hardly occurs can be expected.
  • a membrane separation was performed using the membrane separation system shown in Fig. 13 and the result of investigating the relationship between the concentration of the concentrated solution and the permeation flux is shown in Fig. 15.
  • a membrane having two rectangular baffles on one side and the other side is used as a conventional membrane separation apparatus.
  • a membrane separation device of the type and a cross-mouth type membrane separation device shown in FIG. 44 were used. Are as follows. B. Common conditions
  • the symbols “”, “ ⁇ ”, and “ ⁇ ” mean the membrane separation method according to the present invention (using the rotary membrane separation device in FIG. 2) and FIG.
  • the membrane separation method using a rotary membrane separation device and the cross-flow type membrane separation method (in which the membrane separation device 37 in the membrane separation system of FIG. 13 is a non-rotation type) shown in Fig. 13 are shown.
  • the membrane separation method of the present invention shows a much larger permeation flux than that of the cross-flow method (symbol parable), and is shown in FIG.
  • the permeation flux at a concentration of 22.6% is almost zero, and it is impossible to further concentrate.
  • the membrane separation method of the present invention employs a concentration of 22.6%. Even at%, the permeation flux exceeds 30 L (liter) m 2 Zhr, and further high concentration is possible.
  • the membrane is a UF membrane (diameter of 26.5 mm).
  • a latex having a temperature of 25 ° C and an initial concentration of 3.3% by weight is supplied to each of the above-mentioned membrane separation devices at 1 m 3 / lir and 0.2 MPa, and the outer peripheral velocity of the membrane is set to 12 mZ seconds.
  • the flow rate of the permeate, the flow rate of the concentrate, and the pressure of the concentrate Inspected. The results are shown in Table 1 below.
  • the rotary membrane separator of Fig. 2 has substantially no pressure drop of the concentrated solution, while the rotary membrane separator of Fig. 45 using all partition baffles However, the outlet pressure of the concentrated liquid is reduced to 1/4 of the supply pressure of the liquid to be treated.
  • the flow rate of the permeate in the rotary membrane separator of the present invention is larger than that in FIG. 45 using the all-partitioned paffle, and conversely, the flow rate of the concentrate in the rotary membrane separator of the present invention Is half that of Fig. 45 using all-partitioned paffles. That is, according to the membrane separation method of the present invention, the concentration can be increased five-fold, but with the membrane separation device shown in FIG. 45, the concentration can be performed only 2.5-fold. Thus, according to the membrane separation method of the present invention, it is possible to concentrate to a high concentration at a high permeation flow rate, and to provide a membrane separation method with extremely small pressure loss.
  • the membrane separation device of the present invention has two rectangular paffles on one side and the other side of the membrane as shown in FIG.
  • the conventional membrane separation device having a ring-shaped paffle was used as shown in Fig. 45, and the result of investigating the relationship between operating pressure and permeation flux is shown in Fig. 16.
  • the operating pressure is the effective pressure obtained by subtracting the centrifugal force from the supply pressure of the liquid to be treated. Is the pressure used for the permeation of
  • the membrane separation device of the present invention having a rectangular baffle (symbol ⁇ , port) , ⁇ ) have a higher permeation flux than conventional membrane separation devices with a ring-shaped baffle (signs ⁇ , ⁇ , ⁇ ).
  • the membrane separation device of the present invention has four rectangular baffles on one side and the other side of the membrane as shown in FIG.
  • a membrane separator having four rod-shaped baffles 21 on one side of the membrane 12 was used as the membrane separator having rod-shaped baffles.
  • Fig. 18 shows the results of investigation of the relationship between permeation flux.
  • the same number of rod-shaped baffles are arranged in the same manner on the other side of the membrane 12, except for the difference in the number of rod-shaped baffles.
  • the configuration is basically the same as that shown in Fig. 4.
  • the rod-shaped paffle 21 connects the two surfaces 2a and 2b of the container 2, and the recess of the stepped fastener 22 shown in Fig. 4 (c). 2 and 3 are engaged.
  • the membrane separation device of the present invention having a rectangular paffle has a rod-shaped baffle regardless of whether the membrane peripheral speed is 8 m / sec or 16 m / sec.
  • the permeation flux is much higher than that of a membrane separation device with a symbol ( ⁇ , Peng).
  • the membrane separation device of the present invention has four rectangular baffles on one side and the other side of the membrane as shown in Fig. 3.
  • FIG. Fig. 20 shows the results of an investigation of the relationship between operating pressure and permeation flux using a perforated plate-like baffle 45 installed from the inner wall 15 of the container to the vicinity of the rotating shaft 3.
  • the same number of perforated plate-like baffles are similarly arranged on the other side of the membrane 12, except that the shape of the baffles is different.
  • the other configuration is basically the same as FIG.
  • the membrane separation device of the present invention having a rectangular paffle (symbols ⁇ , ⁇ , ⁇ ) at any of the membrane peripheral speeds of 8 mZsec, 16 m / sec, and 24 m / sec. ) Has a much higher permeation flux than a membrane separator with perforated plate-shaped baffles (signs ⁇ , ⁇ ,).
  • the number of baffles is 1 to 20 in order to avoid the complicated mounting of the baffle and to obtain a sufficient permeation flux.
  • the projected area of the paffle with respect to the surface area of the film body is 1%, compared to the case without the rectangular paffle.
  • the permeation flux increases significantly, and the permeation flux increases as the projected area of the paffle increases.
  • the permeation flux is greatly reduced.
  • the reason for the baffle projection area exceeding 90% is that, like the above-mentioned conventional ring-shaped baffle, the baffle has a large area covering the membrane and the pressure loss of the liquid to be treated is large. This is because the transmission efficiency decreases.
  • the permeation flux is larger at 24 m / sec when the outer peripheral velocity is 8 mZ sec, but the power required for rotation increases when the outer peripheral velocity increases (necessary for rotation). Power is approximately rotation speed However, the power required for rotation does not become excessive at a membrane peripheral speed of about 8 m / sec. Furthermore, in the technical field targeted by the present invention, an average permeation flux of 30 LZm 2 / hr or more is often required, so that it is necessary for economic efficiency and the technical field targeted by the present invention. In order to satisfy both requirements of the permeation flux, it is preferable from FIG. 22 and Table 2 that the projected area of the baffle with respect to the surface area of the membrane is 10 to 90%. Further, in order to increase only the permeation flux without increasing the pressure loss in the apparatus, the projected area of the baffle with respect to the surface area of the membrane is more preferably 26 to 70%.
  • Fig. 23 shows the results of an investigation of the relationship between the membrane peripheral velocity and the permeation flux when the projection area of the paffle was 50%).
  • symbols “Hata”, “ ⁇ ”, “Jiyu”, and “ ⁇ ” indicate that the concentration of the liquid to be treated is 10%, 20%, 30%, and 50%, respectively.
  • the outer peripheral velocity of the film is less than 1 m / sec, it is not possible to obtain a sufficiently high permeation flux for practical use.
  • the permeation flux becomes extremely low when the peripheral speed of the membrane is low. This is because in order to perform high-concentration liquid membrane separation, sufficient kinetic energy to overcome the high viscosity is required, and the kinetic energy is proportional to the square of the velocity. This is because sufficient energy for membrane separation cannot be supplied at the membrane rotation speed.
  • the permeation flux is almost constant when the membrane peripheral speed exceeds 15 mZsec, but at a high concentration of 30% or more, The permeation flux increases up to a membrane peripheral velocity of 30 m / sec. However, when the peripheral speed of the membrane exceeds 30 m / sec, the permeation flux decreases at both low and high concentrations.
  • the outer peripheral velocity of the membrane is preferably set to 1 to 30 mZsec.
  • Figure 24 shows the relationship between the diameter of the membrane and the permeation flux when the projected area of the baffle was 50%).
  • the symbols “parable”, “ ⁇ ”, “garden”, “ ⁇ ”, and “V” indicate that the rotational speed of the membrane is 200 rpm, 600 rpm, and 10 rpm, respectively. 0 0 rpm> 1400 rpm and 1800 rpm. At a very high rotation speed of 180 rpm, the permeation flux increases very little even if the membrane diameter increases. The membrane separation energy is proportional to the square of the rotation speed, and the effect of the rotation speed greatly contributes. Therefore, at ultra-high speed rotation, the difference in the diameter of the membrane body does not matter much.
  • the permeation flux increases as the membrane diameter increases, but the permeation flux increases when the membrane diameter exceeds 110 mm. Does not increase. If the diameter of the membrane is less than 200 mm, the permeation flux cannot be sufficiently large for practical use at a low rotation speed of less than 600 rpm.
  • the membrane diameter should be 200 mm: L100 mm. Is preferred. (9) Rotation speed and flux of membrane
  • Figure 25 shows the results of an investigation of the relationship between the membrane rotation speed and the permeation flux when the projected area of the baffle is 50%).
  • the symbols “see”, “ ⁇ ”, “sphere”, “instruction”, and “T” indicate that the diameters of the membranes are 110 mm, 7500 mm, and 450 mm, respectively. , 3 000 mm and 2 000 mm. If the rotation speed is less than 20 rpm, it is not possible to obtain a sufficiently high permeation flux with any membrane diameter. The permeation flux increased as the rotation speed increased from 20 rpm, but at 180 rpm, the permeation flux was almost the same for all membrane diameters, and the rotation speed was increased to 180 rpm. Larger values do not increase the permeation flux any further.
  • the rotation speed of the membrane is set to 20 to 180 rpm. It is preferred that
  • Figure 26 shows the results of an investigation of the relationship between the distance between the membrane and the baffle and the permeation flux when the projected area of the baffle is 50%).
  • the distance between the membrane and the baffle is preferably 2 to 18 mm.
  • Fig. 27 shows the results of an investigation of the change in permeation flux with respect to the operating time using the. As shown in FIG. 27, the permeation flux (A) does not change even after performing the membrane separation for 8 hours, which indicates that the membrane separation device of the present invention is excellent in the stability of the permeation flux.
  • Fig. 28 shows the results of an investigation into the effect of reducing the concentration polarization on the outer peripheral velocity of the membrane by using.
  • the MgS C rejection is defined by the following equation.
  • membrane separation apparatus of the present invention have a high degree of M g S 0 4 rejection for practical use ten minutes are doing.
  • the membrane separation device of the present invention has a high Na C 1 rejection ratio sufficient for practical use. have.
  • Fig. 30 shows the difference between the transmembrane pressure (the pressure obtained by subtracting the pressure on the permeate side from the pressure on the inflow side of the membrane) using the membrane separation system shown in Fig. 13 and using latex with a concentration of 1% by weight.
  • the pressure actually used for permeation of the liquid to be treated is 200 kPa
  • the temperature is 25 ° C
  • the membrane is an ultrafiltration membrane (UF membrane)
  • the baffle is shown in Fig. 8.
  • the radial baffle shown the number of baffles is 8
  • the projected area of the baffle is 40% of the surface area of the film
  • Fig. 31 shows the results obtained by using the membrane separation system shown in Fig. 13 and using latex at a concentration of 30% by weight, at a transmembrane pressure of 400 kPa and at a temperature of 25 ° C.
  • the baffles are radial baffles (the number of baffles is 8) shown in Fig. 8, and the projected area of the baffle is 40% of the surface area of the membrane, the diameter of the membrane is 3 This is the result of investigating the relationship between the membrane rotation speed and the permeation flux in the range of 0 to 1250.
  • Fig. 30 shows the membrane separation performance under low pressure and low concentration and low load conditions
  • FIG. 31 shows the membrane separation performance under high pressure and high concentration and high load conditions. .
  • the permeation flux sharply increases when the rotational speed reaches 50 rpm, when the membrane diameter is between 300 and 125 mm.
  • the amount of increase in the permeation flux when the rotation speed is increased to 50 rpm or more is small.
  • the rate of increase of the permeation flux with respect to the increase in the number of revolutions when the membrane diameter increases is large, but the membrane diameter is 1 It can be seen that the permeation flux does not increase so much even if the force increases from 250 mm to 1250. Also, the maximum value of the permeation flux in the membrane diameter range of 300 to 125 mm is almost the same, and the permeation flux of the membrane with a diameter of 300 mm is also obtained at the rotation speed of 100 rpm. The bundle has reached a maximum.
  • Gap between the membrane and radial paffle on the permeation flux Fig. 32 shows the transmembrane pressure using the membrane separation system shown in Fig. 13 and latex with a concentration of 20% by weight. Is 400 kPa, the temperature is 25 ° C, the membrane is a UF membrane, the baffle is a radial baffle (eight baffles shown in Fig. 8), and the baffle is projected on the surface area of the membrane. In the case where the area is 40% and the rotation speed of the membrane is 550 rpm, the relationship between the flux and the gap between the membrane and the radial baffle is examined.
  • the gap between the membrane and the baffle is less than 2 mm, the membrane and the baffle may be easily contacted and the membrane may be damaged. If the gap between the membrane and the radial baffle exceeds 12 mm, the thirty-two As shown in the figure, the permeation flux is greatly reduced. Moreover, if the membrane and the baffle are too far apart, the overall length of the device will be long in order to secure the required membrane area, making it difficult to establish a real industrial device. Therefore, it is preferable that the gap between the film body and the radial baffle be in the range of 2 to 12 mm.
  • Membrane Separation Performance of Radial Baffle and Ring Baffle Fig. 33 shows the use of the membrane separation system shown in Fig. 13 and the use of latex with a concentration of 30% by weight at a temperature of 25 ° C.
  • the membrane is a UF membrane and the rotation speed of the membrane is 550 rpm
  • the ring baffle 68 shown in FIG. 45 is used
  • the radial baffle 28 shown in FIG. 8 is used.
  • the number of baffles is 8, and the projected area of the baffle is 40% with respect to the surface area of the membrane.
  • the symbol “ ⁇ ” indicates a radial baffle
  • the symbol “letter” indicates a ring-shaped baffle.
  • Fig. 34 shows the results obtained using the membrane separation system shown in Fig. 13 using latex at a concentration of 20% by weight, a transmembrane pressure difference of 400 kPa and a temperature of 25 ° C.
  • the baffle is a radial baffle shown in Fig. 8
  • the projected area of the baffle is 40% of the surface area of the membrane
  • the rotation speed of the membrane is 550 rpm. It is the result of investigating the relationship between the number of projectile baffles and the permeation flux.
  • the number of baffles is less than four, the transmission flux is small, and when the number of baffles increases, the transmission flux increases, but when the number of baffles increases, the transmission flux no longer increases. You can see that it does not grow.
  • the number of radial baffles is between 4 and 12 within the range where membrane separation can be performed efficiently.
  • Fig. 35 shows the results obtained by using the membrane separation system shown in Fig. 13 and using latex at a concentration of 20% by weight, at a transmembrane pressure of 400 kPa and at a temperature of 25 ° C.
  • the baffle is a radial baffle shown in Fig. 8 (the number of paffles is eight), and the rotational speed of the membrane is 550 rpm, the radial baffle with respect to the surface area of the membrane is This is the result of investigating the relationship between the projected area (%) and the transmitted flux.-As shown in Fig. 35, the transmitted flux rapidly increases when the projected area of the radial buffer relative to the surface area of the membrane is 30% or more. It can be seen that when the projected area increases and the projected area exceeds 70%, the permeation flux decreases.
  • the projected area of the radial baffle with respect to the surface area of the membrane is in the range of 30 to 70% in which the membrane can be efficiently separated.
  • Fig. 36 to 42 show that the temperature is 25 ° C, the membrane is a UF membrane, the baffle is a ring-shaped baffle 68 shown in Fig. 45, and the transmembrane pressure (operating pressure) is a parameter.
  • the radial acceleration when the membrane rotates As the radial acceleration when the membrane rotates.
  • Fig. 36, Fig. 37, Fig. 38, Fig. 39 show the latex concentration of 1% by weight, 10% by weight, and 20% by weight, respectively. , 30% by weight.
  • Figs. 36 to 39 almost constant proportionality is observed between the radial acceleration and the permeation flux under all operating conditions regardless of the latex concentration. The higher the pressure, the higher the permeation flux.
  • the permeation flux increases as the radial acceleration increases, but as the latex concentration decreases, the relationship in the low acceleration range becomes more pronounced.
  • the third 7-3 9 figure in the high concentration of latex concentration of 1 0% by weight or more, if the radius Direction acceleration and 2 0 Om / sec 2 or more, can not be obtained to some extent transparent flux, From FIG. 36, it can be seen that at a low latex concentration of less than 10% by weight, a practically sufficient permeation flux can be obtained in a radial acceleration range of 100 mZsec 2 or more.
  • Figs. 40 to 42 show the results of Figs. 36 to 39 with different parameters arranged at different temperatures.
  • the temperature is 25 ° C
  • the membrane is UF membrane
  • the puffer is Fig. 45.
  • Fig. 40, Fig. 41, and Fig. 42 show the results of a study of the relationship between the radial flux during rotation of the membrane and the permeation flux with the latex concentration as a parameter in the ring-shaped baffle 68 shown in Fig. 40.
  • the figures show the cases where the transmembrane pressure (operating pressure) is 200 kPa, 300 kPa, and 400 kPa, respectively.
  • the transmembrane pressure operating pressure
  • FIG. 43 (a) shows the case of a radial baffle, it is also possible to provide a punched hole in a paffle of another shape, and it is possible to use the etching process shown in FIG.
  • the embossing in Fig. (C) can be applied to all shapes of baffles. The turbulence promoting effect of the baffle is increased by etching or embossing of these punched holes, and the permeation flux is increased.
  • the container 2 may have a shape other than a cylindrical shape, for example, a quadrangle or more polygon, or a tank without an upper lid.
  • the apparatus is used horizontally.
  • the present invention is not limited to this, and the apparatus can be used vertically.
  • the load of the membrane is not directly applied to the rotating shaft, so that the rotating shaft can be made longer than the device placed horizontally, and a large-sized membrane separation device can be manufactured.
  • the present invention is configured as described above, there is no need for assembling the apparatus, the cost is low, the pressure loss is small, the permeation process is performed efficiently, and the membrane separation performance is effectively improved. It is suitable for use as a rotary type membrane separation device that can be used in various applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A rotary film separator, wherein a hollow rotating shaft (3) is disposed in a cylindrical container having a processed fluid supply inlet (1) so as to pass through the center part thereof, a large number of film bodies formed of plates having transmission films on both surfaces thereof are installed on the rotating shaft (3), the fluid transmitted through the transmission films is discharged from outlets (5) and (6), rectangular baffles (13) are disposed on both sides of the film bodies through clearances therebetween, a motor to rotate the film bodies together with the rotating shaft (3) is installed on the outside of the container, and a fluid flow passage (16) connected to the processed fluid supply inlet (1) is provided on the inner wall surface of the container.

Description

明 細 書 回転型膜分離装置および回転型膜分離装置による膜分離方法 〔技術分野〕  Description Rotary membrane separator and membrane separation method using rotary membrane separator [Technical field]
本発明は、 固液分離、 イオン除去、 溶解性有機物除去、 ラテ ックス濃縮、 コロイ ドシリカ濃縮、 有価物回収、 廃液処理、 金 属分級、 水道水濾過、 活性汚泥処理、 上水汚泥処理、 食品廃液 処理、 C O D低減、 B O D低減、 スラリーおよびコロイ ド成分 のダイァフィルトレーション等に好適に用いることができる回 転型膜分離装置および回転型膜分離装置による膜分離方法に関 するものである。  The present invention provides solid-liquid separation, ion removal, soluble organic matter removal, latex concentration, colloidal silica concentration, valuable resource recovery, waste liquid treatment, metal classification, tap water filtration, activated sludge treatment, tap water sludge treatment, food waste liquid The present invention relates to a rotary membrane separation apparatus and a membrane separation method using a rotary membrane separation apparatus that can be suitably used for processing, COD reduction, BOD reduction, slurry and colloid component filtration, and the like.
〔背景技術〕 (Background technology)
水の中に様々な物質を溶解した液 (被処理液) を、 清浄な水 (透過液) と、 粒子濃度の高い濃縮液とに分離するために膜分 離装置が用いられている。 膜分離装置には様々な形式のものが あるが、 例えば、 クロスフロー方式による膜分離が広く行われ ている。 このクロスフロー方式とは、 第 4 4図に示すように、 透過液と濃縮液に分離する機能を有する膜モジュール 5 1に対 して供給ポンプ 5 2により被処理液を圧送し、 透過液を経路 5 3を経て膜モジュール 5 1から取り出し、 濃縮液を経路 5 4を 経て膜モジュール 5 1から取り出し、 この濃縮液を経路 5 5を 経て膜モジュール 5 1に戻し、 以降、 濃縮液を経路 5 4と 5 5 を多数回循環させてその濃縮度を増す方式である。 しかしなが ら、 クロスフロー方式で高濃縮を行うためには、 濃度分極ゃフ ァゥリングゃ流路の閉塞を低減するという理由により、 供給ポ ンプ 5 2で高流速で被処理液を循環させる必要があるが、 その ためには大型の供給ポンプが必要であり、 ポンプに必要なエネ ルギ一が大きくなる。 しかも、 ポンプのエネルギーが必要な割 には膜表面近傍に形成される速度境界層の影響によりファゥリ ングゃ濃度分極が低減されにく く、 結果として、 高濃縮するこ とができない。 その上、 高流速で被処理液を循環させても、 透 過流速が小さいため、 一定以上の濃度に濃縮するためには、 循 環回数を増やす必要があるが、 循環回数が多くなると、 被処理 液がポンプの送り羽根等で受けるせん断回数が増して被処理液 が変質することがある。 A membrane separation device is used to separate liquids (substances to be treated) in which various substances are dissolved in water into clean water (permeate) and concentrated liquids with high particle concentrations. There are various types of membrane separation devices. For example, membrane separation by a cross-flow method is widely performed. As shown in FIG. 44, this cross-flow method is to pump the liquid to be treated by a supply pump 52 to a membrane module 51 having a function of separating a permeate and a concentrate, and The solution is removed from the membrane module 51 via the route 53, the concentrate is removed from the membrane module 51 via the route 54, and the concentrate is returned to the membrane module 51 via the route 55. In this method, 4 and 5 5 are circulated many times to increase the enrichment. However, in order to perform high concentration by the cross-flow method, it is necessary to circulate the liquid to be treated at a high flow rate in the supply pump 52 because the concentration polarization, the filling, and the blockage of the flow path are reduced. There is Therefore, a large supply pump is required, and the energy required for the pump increases. Moreover, although the energy of the pump is necessary, it is difficult to reduce the fermentation / concentration polarization due to the influence of the velocity boundary layer formed near the membrane surface, and as a result, high concentration cannot be achieved. In addition, even if the liquid to be treated is circulated at a high flow rate, the number of circulations must be increased in order to concentrate to a certain concentration or more because the permeation flow rate is small. The frequency of shearing of the treatment liquid on the pump blades may increase, and the treatment liquid may be altered.
また、 蒸発濃縮装置や遠心分離器により、 被処理液を清浄な 水と濃縮液に分離する方法も知られているが、 それらの方法は. 液の分離に要するエネルギーが大きく、 また、 精密な分離が困 難で、 水の清浄度が低いという欠点がある。  It is also known to separate the liquid to be treated into clean water and concentrated liquid using an evaporating concentrator or a centrifugal separator. However, these methods require a large amount of energy to separate the liquid, The disadvantage is that separation is difficult and water cleanliness is low.
そこで、 膜が目詰まりしにく く、 透過流束が高く、 高濃度ま で濃縮することが可能な膜分離装置として回転型膜分離装置が 提供されている。 この回転型膜分離装置は、 一般的に、 容器の 中心部を貫通するように回転軸を配し、 この回転軸の軸長手方 向に多数の膜体を装着し、 回転軸とともに膜体を回転させつつ 膜分離を行う方式である。 その膜体は、 一定以上の大きさの粒 子の通過を妨げる小孔が表面に形成された多孔質の構造を備え 透過液体を移送可能な経路を有する透過性膜を板の両面に取り 付けた構造で、 容器内に投入された被処理液中の極く微細な物 質のみが膜体の小孔を透過することによって透過液を得ること ができる。 この場合、 被処理液中の一定以上の大きさの粒子が 膜の小孔を閉塞したり、 膜表面に粒子が付着あるいは堆積する ファゥリングを防ぐために、 回転軸を回転させて、 回転軸に装 着された膜体を回転させることが行われている。 しかし、 回転 するだけでは、 被処理液が膜体と共回りして膜体の回転効果が 十分に発揮されないので、 膜孔の閉塞防止は不十分である。 そ のため、 より効果的に膜孔の閉塞防止を図るための手段として、 膜体表面に乱流を生じさせることにより共回りを防止し、 膜体 表面の被処理液を効率的に入れ替えることが提案されている。 また、 乱流を発生させることにより、 濃度分極の低減も可能と なり、 このことによって、 高濃縮が可能となる。 また、 膜の阻 止性能を向上させることができる。 Therefore, a rotary membrane separator has been provided as a membrane separator that is not easily clogged, has a high permeation flux, and can be concentrated to a high concentration. Generally, in this rotary type membrane separation apparatus, a rotating shaft is arranged so as to penetrate the center of a container, and a number of membranes are mounted in a longitudinal direction of the rotating shaft. This is a method that performs membrane separation while rotating. The membrane has a porous structure with pores formed on the surface that prevent the passage of particles of a certain size or more, and a permeable membrane that has a path for transporting the permeated liquid is attached to both sides of the plate. With this structure, only a very fine substance in the liquid to be treated put into the container passes through the pores of the membrane, so that a permeated liquid can be obtained. In this case, the rotating shaft is rotated and mounted on the rotating shaft in order to prevent fouling in which particles of a certain size or more in the liquid to be treated block the pores of the film or adhere or deposit particles on the film surface. Rotating the attached film body is performed. However, just by rotating, the liquid to be treated co-rotates with the film body, and the rotation effect of the film body is reduced. As it is not fully exhibited, prevention of membrane pore blockage is insufficient. Therefore, as a means to more effectively prevent clogging of the membrane pores, turbulence is generated on the membrane surface to prevent co-rotation and to efficiently exchange the liquid to be treated on the membrane surface. Has been proposed. Also, by generating turbulence, concentration polarization can be reduced, thereby enabling high concentration. In addition, the performance of inhibiting the film can be improved.
例えば、 第 4 5図 (b ) に示すように、 加圧された被処理液 の供給入口 6 1を有する円筒状容器 6 2の中心部を貫通するよ うに中空の回転軸 6 3を配し、 透過された液体を移送すること の可能な構造を有する多数の膜体 6 4を回転軸 6 3に装着し、 膜体 6 4で透過された液体を、 膜体 6 4から回転軸 6 3に設け た小孔を経て中空の回転軸 6 3内を通過させて出口 6 5、 6 6 から排出し、 濃縮液を出口 6 7から排出し、 膜体 6 4の両側に, 膜体 6 4をほぼ全面的に覆うようなリング状のバッフル 6 8を 膜体 6 4との間に間隙を設けて容器 6 2に固定する構造の回転 型膜分離装置が知られている (以下、 「従来の膜分離装置 1」 という) 。 従来の膜分離装置 1 と同種のものは、 例えば、 特開 平 6— 2 7 7 4 6 5号公報に開示されている。  For example, as shown in FIG. 45 (b), a hollow rotary shaft 63 is provided so as to penetrate the center of a cylindrical container 62 having a supply inlet 61 for a pressurized liquid to be treated. A number of membranes 64 having a structure capable of transferring the permeated liquid are mounted on the rotating shaft 63, and the liquid permeated by the membrane 64 is transferred from the membrane 64 to the rotating shaft 63. After passing through the hollow rotary shaft 63 through the small holes provided in the holes, the liquid is discharged from the outlets 65, 66, and the concentrated liquid is discharged from the outlet 67, and on both sides of the film 64, the film 64 There is known a rotary membrane separation apparatus having a structure in which a ring-shaped baffle 68 that covers almost the entire surface is fixed to a container 62 with a gap provided between the membrane body 64 and the baffle 68 (hereinafter referred to as “conventional”). Membrane separation device 1 ”). The same type as the conventional membrane separation device 1 is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 6-277645.
従来の膜分離装置 1によれば、 図示しないモー夕によって回 転軸 6 3 とともに膜体 6 4を回転させると、 回転する膜体 6 4 の表面と静止したリング状のバッフル 6 8 との間の間隙に積極 的に乱流を生じさせることができ、 膜孔閉塞防止効果は期待で きる。 しかしながら、 リング状のバッフル 6 8は膜体間を完全 に仕切り、 バッフル 6 8が膜体 6 4を覆う面積が広く、 容器 6 2内の被処理液体は狭くて長い流路 6 9を通過するので、 圧力 損失が大きくなり、 効率的に透過することができない。 また、 圧力損失により、 膜体 6 4に付加される圧力に不均一が起こる と膜体 6 4のたわみが大きくなり、 膜体 6 4とリング状のバッ フル 6 - 8が接触し、 比較的強度の弱い膜体 6 4が破損すること がある。 さらに、 容器 6 2に装入するに際しては、 膜体 6 4と リング状のバッフル 6 8を交互に組み上げる必要があり、 装置 組立が非常に煩雑である。 According to the conventional membrane separation apparatus 1, when the membrane 64 is rotated together with the rotating shaft 63 by a motor (not shown), the rotation between the surface of the rotating membrane 64 and the stationary ring-shaped baffle 68 is performed. A turbulent flow can be positively generated in the gap, and the effect of preventing pore clogging can be expected. However, the ring-shaped baffle 68 completely separates the membranes, the baffle 68 has a large area covering the membrane 64, and the liquid to be treated in the container 62 passes through the narrow and long flow path 69. As a result, the pressure loss increases, and it cannot be efficiently transmitted. Further, due to the pressure loss, the pressure applied to the membrane 64 becomes non-uniform. The deflection of the film body 64 increases, and the film body 64 and the ring-shaped baffle 6-8 come into contact with each other, and the relatively weak film body 64 may be damaged. Furthermore, when charging the container 62, it is necessary to alternately assemble the membrane body 64 and the ring-shaped baffle 68, which makes the assembly of the apparatus extremely complicated.
そこで、 第 4 6図 ( a ) に示すように、 上記圧力損失を低減 するために、 リング状のバッフルの周縁部に孔 7 0をあけた孔 あきバッフル 7 1が提案されている (以下、 「従来の膜分離装 置 2」 という) 。 しかし、 従来の膜分離装置 2は、 バッフルに 孔をあけるための加工コストが上昇し、 従来の膜分離装置 1 と 同じように、 容器 6 2に装入するに際しては、 膜体 6 4と孔ぁ きバッフル 7 1を交互に組み上げる必要があり、 装置組立が非 常に煩雑であるという欠点がある。  Therefore, as shown in FIG. 46 (a), a holed baffle 71 having a hole 70 formed in the periphery of a ring-shaped baffle has been proposed in order to reduce the pressure loss (hereinafter, referred to as “baffle”). “Conventional membrane separation device 2”). However, the conventional membrane separation device 2 requires a high processing cost for perforating the baffle, and, like the conventional membrane separation device 1, requires a membrane 64 and a hole when charged into the container 62. It is necessary to assemble the baffles 71 alternately, and there is a disadvantage that the device assembly is very complicated.
また、 従来の膜分離装置 1、 2ともに、 バッフル 6 8と 7 1 が均一に膜表面を覆っているので、 被処理液の乱れが小さいと いう欠点もある。  Further, in both of the conventional membrane separation devices 1 and 2, the baffles 68 and 71 uniformly cover the membrane surface, so that there is a disadvantage that the turbulence of the liquid to be treated is small.
さらに、 従来の回転型膜分離装置 1、 2では、 膜分離性能を 効果的に発揮しうる適正な膜分離条件ならびに装置スペックが 明確でなく、 経済的で効率的な膜分離装置の運転が保証されて いなかった。  Furthermore, with the conventional rotary membrane separators 1 and 2, the appropriate membrane separation conditions and equipment specifications that can effectively exhibit membrane separation performance are not clear, and economical and efficient operation of the membrane separator is guaranteed. Had not been.
本発明は従来の技術の有するこのような問題点に鑑みてなさ れたものであって、 その目的は、 装置組み立ての手間がかから ず、 低コストで、 しかも、 圧力損失が小さく、 効率的に透過処 理を行い、 膜分離性能を効果的に発揮しうる回転型膜分離装置 および回転型膜分離装置による膜分離方法を提供することにあ る。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to reduce the time and labor required for assembling the device, to reduce the pressure loss, and to improve the efficiency. It is an object of the present invention to provide a rotary membrane separation apparatus and a membrane separation method using the rotary membrane separation apparatus, which can perform a permeation treatment on the membrane to effectively exhibit membrane separation performance.
〔発明の開示〕 上記目的を達成するために本発明は、 回転型膜分離装置の回 転軸に装着された膜体の両側に膜体との間に間隙を設けて複数 の長方形状バッフルを配し、 しかも、 回転軸を挟んで複数の長 方形状バッフルを容器の一方の内壁近傍から他方の内壁近傍ま で互いに平行に配置するように構成したので、 不均一にパッフ ルが膜面を覆っているため、 乱流が大きく、 濃度分極とファゥ リングの低減効果が大きいので、 透過流束が著しく大きく、 バ ッフルの存在による圧力損失が少なく、 パッフルがシンプルな 形状であるから特別の加工を施す必要がなくて低コストであり、 回転軸に膜体を装着した後にバッフルを挿入できるので、 装置 組み立てが簡単である。 [Disclosure of the Invention] In order to achieve the above object, the present invention provides a plurality of rectangular baffles provided with gaps on both sides of a membrane mounted on a rotating shaft of a rotary membrane separator, with a gap between the membrane and the membrane. Since a plurality of rectangular baffles are arranged parallel to each other from the vicinity of one inner wall of the container to the vicinity of the other inner wall of the container with the rotation axis interposed, the puffing covers the membrane surface unevenly, The turbulence is large, the concentration polarization and the effect of reducing fouling are large, so the permeation flux is extremely large, the pressure loss due to the presence of the baffle is small, and no special processing is required because the paffle has a simple shape. The baffle can be inserted after the membrane is mounted on the rotating shaft, making assembly of the device simple.
すなわち、 本発明は、 被処理液の供給入口を有する容器を貫 通するように回転軸を配した回転型膜分離装置において、 上記 容器内にあって透過された液体を移送することの可能な構造を 有する膜体を上記回転軸に装着し、 上記膜体に接続されて透過 液体を排出する出口を有し、 上記膜体の両側に膜体との間に間 隙を設けて複数の長方形状バッフルを配し、 被処理液の供給入 口に接続された液体流路が容器内壁面に設けられており、 回転 軸を挟んで複数の長方形状バッフルを容器の一方の内壁近傍か ら他方の内壁近傍まで互いに平行に配置したことを特徴として いる。  That is, the present invention relates to a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, wherein the liquid permeated in the container can be transferred. A membrane having a structure is mounted on the rotating shaft, has an outlet connected to the membrane to discharge the permeated liquid, and a plurality of rectangles provided with gaps between the membrane and the membrane on both sides of the membrane. Liquid baffle is provided, and a liquid flow path connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container. It is characterized by being arranged parallel to each other up to the vicinity of the inner wall.
上記のように構成される本発明の膜分離装置によれば、 第 7 図に示すように、 膜体 1 2を矢視 Aで示すように右方向に回転 させると、 供給入口から容器内に供給され加圧された被処理液 は、 長方形状バッフル 1 3の左側では矢視 Bで示すように、 容 器内壁 1 5に沿う流路 1 6から長方形状パッフル 1 3に沿って 容器内方に向かって流れ、 一方、 長方形状バッフル 1 3の右側 では、 矢視 Cで示すように、 膜体 1 2表面の被処理液は容器内 壁 1 5に沿う流路 1 6に向かって吐出される。 このような膜体 表面と容器内壁に沿う流路との間で形成される被処理液のフロ —により、 膜表面に被処理液が停滞せず、 容器内の外方へ流れ る液体と内方へ流れる液体の入れ替えがスムーズに行われる。 また、 被処理液は不均一に取り付けられたバッフルにより乱流 を発生させるので、 ファゥリングや濃度分極が低減され、 効率 的に膜分離を行うことができる。 According to the membrane separation device of the present invention configured as described above, as shown in FIG. 7, when the membrane body 12 is rotated clockwise as shown by arrow A, the supply from the supply inlet into the container proceeds. On the left side of the rectangular baffle 13, the supplied and pressurized liquid to be treated flows from the flow path 16 along the inner wall 15 of the container along the rectangular paffle 13 as shown by an arrow B on the left side of the container. On the other hand, on the right side of the rectangular baffle 13, as shown by the arrow C, the liquid to be treated on the surface of the membrane body 12 is in the container. The liquid is discharged toward the flow path 16 along the wall 15. Due to the flow of the liquid to be treated formed between the surface of the membrane and the flow path along the inner wall of the container, the liquid to be treated does not stagnate on the surface of the membrane, and the liquid flowing outward in the container and The exchange of the liquid flowing to the side is performed smoothly. In addition, since the liquid to be treated generates turbulence due to a baffle which is unevenly mounted, fouling and concentration polarization are reduced, and membrane separation can be performed efficiently.
以下、 本発明の回転型膜分離装置及び回転型膜分離装置によ る膜分離方法に関する特徴並びに有利な効果について説明する, ( 1 ) バッフルの支持固定  Hereinafter, features and advantageous effects of the rotary membrane separation apparatus and the membrane separation method using the rotary membrane separation apparatus of the present invention will be described. (1) Baffle support and fixation
バッフルの両端部を容器壁より独立した支持体で支持固定す れば、 装置の組立てが容易になり、 コストダウンを図ることが できる。  If both ends of the baffle are supported and fixed by a support independent of the container wall, assembly of the device becomes easy and cost can be reduced.
( 2 ) バッフル形状  (2) Baffle shape
① 鈎形形状パッフルと S形形状パッフルと円弧形状パッフル 膜体の両側に膜体との間に間隙を設けて鈎形形状バッフルを 配し、 回転軸を挟んで複数の鈎形形状バッフルを膜体直径に対 して線対称に配置するか又は回転軸に対して点対称に配置する こともできる。 また、 膜体の両側に膜体との間に間隙を設けて S形形状パッフルを配し、 回転軸を挟んで複数の S形形状パッ フルを回転軸に対して点対称に配置することもできる。 また、 膜体の両側に膜体との間に間隙を設けて円弧形状バッフルを配 し、 回転軸を挟んで複数の円弧形状バッフルを膜体直径に対し て線対称に配置するか又は回転軸に対して点対称に配置するこ ともできる。 鈎形形状パッフル、 S形形状バッフルまたは円弧 形状バッフルを用いても長方形状バッフルと同じ効果が期待で きる。 その上、 鈎形形状パッフル、 S形形状パッフルまたは円 弧形状バッフルによれば、 膜面の乱流を大きくすることができ. 膜分離性能が向上するという効果がある。 また、 膜体間の流体 の入れ替えを促進する効果もある。 ① Hook-shaped baffle, S-shaped baffle, and arc-shaped baffle A hook-shaped baffle is provided with a gap between the membrane on both sides of the membrane, and a plurality of hook-shaped baffles are sandwiched across the rotating shaft. It can also be arranged symmetrically with respect to the body diameter or symmetrically with respect to the axis of rotation. It is also possible to arrange an S-shaped paffle with a gap between the membrane and the membrane on both sides of the membrane, and to arrange a plurality of S-shaped paffles point-symmetrically with respect to the rotation axis with the rotation axis interposed therebetween. it can. In addition, an arc-shaped baffle is arranged on both sides of the membrane with a gap between the membrane and the arc-shaped baffle, and a plurality of arc-shaped baffles are arranged symmetrically with respect to the membrane diameter with the rotation axis interposed therebetween, or It can also be arranged point-symmetrically with respect to. The same effect as a rectangular baffle can be expected by using a hook-shaped baffle, S-shaped baffle, or arc-shaped baffle. In addition, hook-shaped, S-shaped or arc-shaped baffles can increase turbulence on the membrane surface. There is an effect that the membrane separation performance is improved. It also has the effect of promoting the exchange of fluid between the membranes.
② 放射状バッフル ② Radial baffle
不均一にバッフルが膜面を覆うと、 乱流が大きく、 濃度分極 とファゥリングの低減効果が大きいので、 透過流束が大きくな り、 バッフルの存在による圧力損失が小さくなる。 例えば、 回 転軸を中心として容器内壁に向けて複数本のバッフルを放射状 に配した構成のパッフル (放射状パッフル) を採用すれば、 透 過流束が大きくなる。  If the baffle covers the membrane surface unevenly, the turbulence is large, and the concentration polarization and the effect of reducing fouling are large, so that the permeation flux is large and the pressure loss due to the presence of the baffle is small. For example, if a baffle having a configuration in which a plurality of baffles are arranged radially around the rotation axis toward the inner wall of the container (radial paffle) is used, the transmitted flux becomes large.
( 3 ) 膜体の表面積に対するパッフルの投影面積  (3) Projected area of paffle against surface area of membrane
① 長方形状バッフルと鈎形形状バッフルと S形形状パッフル と円弧形状パッフルの場合  ① In case of rectangular baffle, hook-shaped baffle, S-shaped baffle and arc-shaped baffle
長方形状パッフル、 鈎形形状バッフル、 S形形状パッフルま たは円弧形状バッフルの場合、 膜体の表面積に対するバッフル の投影面積は、 1〜 9 0 %が好ましい。 1 %未満では、 膜体表 面の乱流促進効果が少なく、 9 0 %を超えると被処理液の圧力 損失が大きくなりすぎるからである。 また、 後記する実施例 ( 第 2 2図参照) に示すように、 膜体の表面積に対するバッフル の投影面積が 1 %でも、 バッフルなしの場合に比べて透過流束 は著しく増え、 9 0 %を超えると透過流束の低下が大きくなる からである。  In the case of a rectangular baffle, a hook-shaped baffle, an S-shaped baffle or an arc-shaped baffle, the projected area of the baffle with respect to the surface area of the membrane is preferably 1 to 90%. If it is less than 1%, the effect of promoting turbulence on the surface of the membrane is small, and if it exceeds 90%, the pressure loss of the liquid to be treated becomes too large. In addition, as shown in an example described later (see FIG. 22), even when the projected area of the baffle with respect to the surface area of the membrane is 1%, the permeation flux is significantly increased as compared with the case without the baffle, and 90% is reduced. If it exceeds, the decrease of the permeation flux becomes large.
さらに、 本発明が対象とする技術分野では、 被処理液の性状 や処理目的や処理コストによって異なるが、 ある値以上の透過 流束が求められ、 平均透過流束 3 0 L (リットル)/ m 2 Zhr 以上を 要求されることが多いので、 後記する第 2 2図に示すように、 そのような透過流束の要求を満たすには、 長方形状バッフル、 鉤形形状バッフル、 S形形状パッフルまたは円弧形状バッフル の場合、 膜体の表面積に対するバッフルの投影面積は 1 0〜 9 0 %であるのがより好ましく、 装置内の圧力損失を上昇させず に透過流束のみを増すためには、 膜体の表面積に対するバッフ ルの投影面積は 2 6〜 7 0 %であるのがさらに好ましい。 Further, in the technical field to which the present invention is directed, a permeation flux of a certain value or more is required, depending on the properties of the liquid to be treated, the treatment purpose and the treatment cost, and the average permeation flux is 30 L (liter) / m. As shown in Fig. 22 below, in order to satisfy such a requirement for permeation flux, a rectangular baffle, hook-shaped baffle, S-shaped baffle or In the case of an arc-shaped baffle, the projected area of the baffle with respect to the surface area of the membrane is 10 to 9 More preferably, it is 0%, and in order to increase only the permeation flux without increasing the pressure loss in the apparatus, the projected area of the buffer with respect to the surface area of the membrane should be 26 to 70%. More preferred.
② 放射状バッフルの場合  ② In case of radial baffle
放射状バッフルの場合、 膜体の表面積に対するバッフルの投 影面積が 3 0 %未満では膜体表面の乱流促進効果が少なく、 7 In the case of the radial baffle, if the projected area of the baffle with respect to the surface area of the membrane is less than 30%, the effect of promoting turbulence on the membrane surface is small, and
0 %を超えると被処理液の圧力損失が大きくなりすぎる。 そこ で、 膜体の表面積に対する放射状パッフルの投影面積は、 3 0If it exceeds 0%, the pressure loss of the liquid to be treated becomes too large. Therefore, the projected area of the radial paffle on the surface area of the membrane is 30
〜 7 0 %が好ましい。 ~ 70% is preferred.
( 4 ) 膜体直径と膜体の回転数  (4) Membrane diameter and membrane rotation speed
① 長方形状バッフルと鈎形形状バッフルと S形形状バッフル と円弧形状バッフルの場合  ① In case of rectangular baffle, hook-shaped baffle, S-shaped baffle and arc-shaped baffle
長方形状バッフル、 鉤形形状バッフル、 S形形状バッフルま たは円弧形状バッフルを用いる場合、 膜体の直径は、 2 0 0〜 1 1 0 0 醒とするのが好ましい。 2 0 0 mm未満では、 十分な膜 分離能力を持つ装置とするには、 膜体の枚数が多くなりすぎて. 装置と回転軸が長くなりすぎ、 1 1 0 0 mmを超えるものは製作 が困難で、 製造コストが大幅に増加し、 また、 回転に必要な動 力が大幅に増大するからである。 また、 後記する実施例 (第 2 4図参照) に示すように、 膜体直径が 2 0 O mm未満では、 膜体 の回転数が遅い場合、 十分に実用に供しうる程度の大きさの透 過流束を得ることはできず、 膜体の回転数が遅い場合 (例えば. When a rectangular baffle, a hook-shaped baffle, an S-shaped baffle, or an arc-shaped baffle is used, the diameter of the membrane is preferably 200 to 110 wakes. If it is less than 200 mm, the number of membranes will be too large for a device with sufficient membrane separation capacity. The device and the rotating shaft will be too long, and those exceeding 110 mm will be manufactured. It is difficult, the production cost is greatly increased, and the power required for rotation is greatly increased. Further, as shown in an example to be described later (see FIG. 24), when the film body diameter is less than 20 O mm, when the rotation speed of the film body is low, the permeability is large enough to be practically used. If the overflux cannot be obtained and the membrane speed is low (eg.
2 0 r p m以下の場合) 、 膜体の直径が大きくなると透過流束 は増加するが、 膜体直径が 1 1 0 0 mmを超えても、 透過流束は 上昇しないからである。 This is because the permeation flux increases as the diameter of the membrane increases, but does not increase even if the diameter of the membrane exceeds 110 mm.
また、 長方形状バッフル、 鉤形形状バッフル、 S形形状バッ フルもしくは円弧形状バッフルを用いる場合、 膜体の回転数は. When a rectangular baffle, hook-shaped baffle, S-shaped baffle or arc-shaped baffle is used, the rotation speed of the membrane is as follows.
2 0〜 1 8 0 0 r p mとするのが好ましい。 2 0 r p m未満で は膜孔閉塞防止効果と濃度分極低減効果がほとんどなく、 1 8 0 0 r pmを超えると、 遠心力が大きくなりすぎて、 上記した ように、 透過効率が低下し、 また、 回転に必要な動力が大幅に 増大するからである。 また、 後記する実施例 (第 2 5図参照) に示すように、 膜体の回転数が 2 0 r pm未満では、 透過流束 は著しく小さく、 1 8 00 r pmを超えても、 透過流束は上昇 しないからである。 It is preferably between 20 and 180 rpm. At less than 20 rpm Has almost no pore blocking effect and concentration polarization reducing effect, and if it exceeds 180 rpm, the centrifugal force becomes too large, and as described above, the permeation efficiency decreases, and This is because the power greatly increases. Further, as shown in an example described later (see FIG. 25), when the rotation speed of the membrane is less than 20 rpm, the permeation flux is extremely small. The bundle does not rise.
② 放射状バッフルの場合 ② In case of radial baffle
所定の透過流束を確保し、 現実的に求められる処理量の工業 装置とするためには、 一定以上 (例えば、 1 0 m2 以上) の膜 面積が必要である。 ところが、 膜体直径を 3 0 Omm未満にした 場合、 必要な膜面積を確保するために非常に多くの枚数の膜体 が必要になり、 装置と回転軸が長くなりすぎ、 現実の工業装置 として成立しにくくなる。 一方、 膜体直径が大きくなれば、 透 過流束は増加し、 また、 回転軸を短くできるが、 膜体直径の 5 乗に比例して回転に必要な動力が大きくなり、 経済的な運転が できなくなるという不都合な点がある。 しかも、 一定以上に膜 体直径が大きくなつても、 透過流束の上昇量は少ない。 In order to secure a predetermined permeation flux and to realize an industrial device having a practically required throughput, a membrane area of a certain value or more (for example, 10 m 2 or more) is required. However, if the membrane diameter is less than 30 Omm, a very large number of membranes will be required to secure the required membrane area, and the equipment and the rotating shaft will be too long, making it a practical industrial device. It is difficult to be established. On the other hand, as the diameter of the membrane increases, the transmitted flux increases, and the rotation axis can be shortened.However, the power required for rotation increases in proportion to the fifth power of the diameter of the membrane, resulting in economical operation. There is an inconvenience that it cannot be done. Moreover, even when the diameter of the membrane is larger than a certain value, the amount of increase in the permeation flux is small.
そこで、 放射状バッフルを用いる場合、 膜体直径は 3 0 0〜 1 0 0 Ommの範囲とするのが、 経済的で効率的な膜分離装置を 実現できるので好ましい。 この範囲の直径を有する膜体を回転 させる場合、 膜体の回転数が 5 0 r pm未満では膜孔閉塞防止 効果ゃファゥリング防止効果や濃度分極低減効果がほとんどな く、 十分に実用に供しうる程度の大きさの透過流束を得ること はできない。 一方、 膜体の回転数が l O O O r pmを超えると. 遠心力が大きくなりすぎて、 加圧された被処理液に付加された 透過に有効な圧力が相殺されて透過効率が低下し、 又、 回転に 必要な動力が大幅に増加する。 そこで、 放射状バッフルを用い る場合、 膜体の回転数は、 5 0〜 1 0 0 0 r p mの範囲とする のが好ましい。 Therefore, when a radial baffle is used, the diameter of the membrane is preferably in the range of 300 to 100 Omm, because an economical and efficient membrane separation device can be realized. When rotating a membrane having a diameter in this range, if the number of revolutions of the membrane is less than 50 rpm, the membrane pore blocking prevention effect, the fouling prevention effect, and the concentration polarization reduction effect are almost non-existent and can be used sufficiently. It is not possible to obtain a permeation flux of the order of magnitude. On the other hand, if the number of revolutions of the membrane exceeds l OOO r pm. The centrifugal force becomes too large, and the pressure effective for permeation applied to the pressurized liquid to be processed is canceled out, and the permeation efficiency decreases. Also, the power required for rotation is greatly increased. So, using radial baffles In this case, the rotation speed of the membrane is preferably in the range of 50 to 100 rpm.
( 5 ) ノ ッフルの本数  (5) Number of notches
① 長方形状バッフルと鈎形形状パッフルと S形形状バッフル と円弧形状バッフルの場合  ① Rectangular baffle, hook-shaped baffle, S-shaped baffle, and arc-shaped baffle
膜体の一方の側に設けるバッフルの数があまり多いと、 取付 が困難になるという欠点があり、 また、 後記する実施例 (第 2 1図参照) に示すように、 パッフルの数を 2 0本超に増やして も透過流束は上昇しないので、 長方形状バッフル、 鉤形形状バ ッフル、 S形形状パッフルまたは円弧形状バッフルの数は 1〜 2 0本にするのが好ましい。  If the number of baffles provided on one side of the membrane is too large, there is a drawback that mounting becomes difficult. In addition, as shown in an embodiment described later (see FIG. 21), the number of baffles is set at 20. Since the permeation flux does not increase even if the number is increased to more than this, the number of rectangular baffles, hook-shaped baffles, S-shaped baffles or arc-shaped baffles is preferably set to 1 to 20.
② 放射状バッフルの場合  ② In case of radial baffle
放射状バッフルの本数が少ないと透過流束は小さく、 パッフ ルの本数が増えると透過流束は大きくなるが、 一定以上に放射 状パッフル本数を増やしても、 透過流束は大きくならない。 そ こで、 放射状バッフルの本数は 4〜 1 2本であるのが好ましい ( ( 6 ) 膜体とバッフルの間隙  When the number of radial baffles is small, the permeation flux is small, and when the number of puffles increases, the permeation flux increases. However, even if the number of radial baffles is increased beyond a certain level, the permeation flux does not increase. Therefore, the number of radial baffles is preferably 4 to 12 ((6) The gap between the membrane and the baffle)
① 長方形状バッフルと鈎形形状バッフルと S形形状パッフル と円弧形状バッフルの場合 ① In case of rectangular baffle, hook-shaped baffle, S-shaped baffle and arc-shaped baffle
長方形状バッフル、 鈎形形状バッフル、 S形形状バッフルま たは円弧形状バッフルの場合、 膜体とバッフルの間隙は 2〜 1 8匪とするのが好ましい。 2 mm未満では膜体とバッフルが接触 しゃすくなって、 膜体が破損することがあり、 1 8讓を超える と、 回転軸が長くなり、 膜体を収容する容器の容積が大きくな りすぎて現実的ではなく、 また、 膜体とバッフルの距離が離れ すぎて、 バッフルによる乱流促進効果が小さくなるからである, また、 後記する実施例 (第 2 6図参照) に示すように、 膜体と バッフルの間隙が 2 mm未満であったり、 1 8 mmを超えると、 十 分に実用に供しうる程度の大きさの透過流束が得られないから である。 In the case of a rectangular baffle, a hook-shaped baffle, an S-shaped baffle, or an arc-shaped baffle, the gap between the membrane and the baffle is preferably 2 to 18 bandages. If the thickness is less than 2 mm, the membrane and the baffle will contact each other, causing the membrane to be damaged, and the membrane may be damaged.If the length exceeds 18 mm, the rotation axis becomes longer, and the volume of the container containing the membrane becomes too large. And the distance between the membrane and the baffle is too large to reduce the turbulence promoting effect of the baffle. Also, as shown in the embodiment described later (see FIG. 26), If the gap between the membrane and baffle is less than 2 mm or more than 18 mm, This is because a permeation flux large enough to be practically used cannot be obtained.
② 放射状バッフル  ② Radial baffle
放射状バッフルの場合、 膜体とバッフルの間隙は 2〜 1 2 龍 とするのが好ましい。 2 匪未満では膜体と放射状パッフルが接 触しやすくなつて、 膜体が破損することがあり、 1 2 mmを超え ると、 膜体と放射状バッフルの距離が離れすぎて、 放射状バッ フルによる乱流促進効果が期待できなくなり、 必要な膜面積を 確保するために装置の全長が長くなり、 経済的でなくなるから である。  In the case of a radial baffle, the gap between the membrane and the baffle is preferably 2 to 12 dragons. If less than 2 bandits, the membrane and the radial baffle may be easily in contact with each other, and the membrane may be damaged.If it exceeds 12 mm, the distance between the membrane and the radial baffle is too large, and This is because the effect of promoting turbulence cannot be expected, and the entire length of the device increases in order to secure the required film area, which is not economical.
( 7 ) 膜体の回転速度  (7) Rotation speed of membrane
長方形状バッフル、 鈎形形状バッフル、 S形形状バッフル、 円弧形状パッフルまたは放射状バッフルの場合、 膜体の回転速 度は、 外周において、 l〜 3 0 mノ sec とするのが好ましい。 1 mX s ec 未満の低速では膜孔閉塞防止効果と濃度分極低減効 果がほとんどなく、 3 0 m/ sec を超えると、 遠心力が大きく なりすぎて、 加圧された被処理液に付加された透過に有効な圧 力が相殺されて透過効率が低下し、 また、 回転に必要な動力が 大幅に増大するからである。 また、 後記する実施例 (第 2 3図 参照) に示すように、 膜外周速度が l m/ sec 未満では、 十分 に実用に供しうる程度の大きさの透過流束を得ることはできず、 低濃度の液でも、 高濃度の液でも、 膜外周速度が 3 O mZ sec を超えると、 透過流束が低下するからである。  In the case of a rectangular baffle, a hook-shaped baffle, an S-shaped baffle, an arc-shaped baffle, or a radial baffle, the rotation speed of the membrane on the outer periphery is preferably 1 to 30 m / sec. At low speeds of less than 1 mX sec, there is almost no effect of preventing pore clogging and concentration polarization reduction, and at more than 30 m / sec, the centrifugal force becomes too large and is added to the pressurized liquid to be treated. This is because the effective pressure for permeation is canceled out and permeation efficiency is reduced, and the power required for rotation is greatly increased. Further, as shown in an example to be described later (see FIG. 23), when the outer peripheral velocity of the film is less than lm / sec, it is not possible to obtain a sufficiently high permeation flux for practical use. This is because the permeation flux decreases when the peripheral velocity of the membrane exceeds 3 OmZ sec, regardless of whether the liquid has a high concentration or a high concentration.
( 8 ) バッフルの厚さ  (8) Baffle thickness
長方形状バッフル、 鈎形形状バッフル、 S形形状バッフルま たは円弧形状バッフルであれ、 放射状バッフルであれ、 いかな る形状のバッフルを用いても、 バッフルは回転する膜体との間 に間隙を設けて設置され、 膜体と接触しないようにすべきであ る。 一方、 バッフルは大きな容積を占めないように、 極力厚さ を薄くするのが好ましい。 しかし、 あまり薄すぎると、 たわみ やすくなつて膜体に接触して膜体を破損することがあるので、 バッフルは lmm以上の厚さにするのが好ましい。 しかし、 あま り大きな容積を占めないようにするためと膜体間のクリアラン スが広くなりすぎて、 装置と回転軸が長大にならないようにす るため、 パッフルの厚さは 2 0匪以下にするのが好ましい。 ま た、 たわみにく くするためには、 バッフルの材質は、 特に限定 されるものではないが、 鉄、 ステンレス鋼等の種々の金属、 プ ラスチック、 セラミック、 ガラス繊維強化プラスチックである のが好ましい。 Regardless of whether a rectangular baffle, hook-shaped baffle, S-shaped baffle, arc-shaped baffle, or radial baffle is used, the baffle has a gap between the rotating membrane and the baffle. Should be installed and installed so that it does not come in contact with the membrane. You. On the other hand, it is preferable to reduce the thickness of the baffle as much as possible so as not to occupy a large volume. However, if the thickness is too small, the baffle should be at least lmm thick, since it is likely to bend and may come into contact with the membrane to damage the membrane. However, in order not to occupy too large a volume and to prevent the clearance between the membranes from becoming too wide and the equipment and rotating shaft from becoming long, the thickness of the paffle should be less than 20 bandages. Is preferred. In addition, in order to prevent deflection, the material of the baffle is not particularly limited, but various metals such as iron and stainless steel, plastics, ceramics, and glass fiber reinforced plastics are preferable. .
( 9 ) ノ ッフルの幅  (9) Width of the notch
長方形状バッフル、 鈎形形状バッフル、 S形形状バッフル、 円弧形状パッフルまたは放射状バッフルの場合、 バッフルの幅 は膜体直径の 0. 1〜4 0 %とするのが好ましい。 0. 1 %未 満では膜体表面の乱流促進効果が少なく、 4 0 %を超えると被 処理液の圧力損失が大きくなりすぎるからである。  In the case of a rectangular baffle, hook-shaped baffle, S-shaped baffle, arc-shaped baffle or radial baffle, the width of the baffle is preferably 0.1 to 40% of the membrane diameter. If it is less than 0.1%, the effect of promoting turbulence on the surface of the membrane is small, and if it exceeds 40%, the pressure loss of the liquid to be treated becomes too large.
( 1 0 ) 膜体直径に対する容器内径の比  (10) Ratio of vessel inner diameter to membrane diameter
膜体直径に対する容器内径の比は、 1. 0 0 3〜 3. 0 0 0 にするのが好ましい。 1. 0 0 3未満では、 膜体の占める面積 が大きすぎて被処理液の圧力損失が大きくなりすぎるからであ る。 一方、 3. 0 0 0を超えると、 膜体の占める面積が小さす ぎて膜分離効率が低下するので好ましくない。  The ratio of the inner diameter of the vessel to the diameter of the membrane is preferably in the range of 1.03 to 3.00. If it is less than 1.03, the area occupied by the film is too large, and the pressure loss of the liquid to be treated becomes too large. On the other hand, if it exceeds 3.0000, the area occupied by the membrane is too small and the membrane separation efficiency is undesirably reduced.
( 1 1 ) 被処理液の圧力  (11) Pressure of liquid to be treated
容器内に導入される被処理液の圧力が 2 O MP aを超えると. 容器の耐圧が困難になるという不都合な点があり、 0. 0 0 5 MP a未満では、 現実的に容器内の水位が 0. 5 m未満となり - 膜体が被処理液に浸されないという不都合があるので、 容器内 に導入される被処理液の圧力は、 0. 0 0 5 MP a〜 2 0 MP aであるのが好ましい。 When the pressure of the liquid to be treated introduced into the container exceeds 2 OMPa. There is an inconvenience that the pressure resistance of the container becomes difficult. The water level is less than 0.5 m.-There is a disadvantage that the membrane is not immersed in the liquid to be treated. The pressure of the liquid to be treated introduced into the tank is preferably 0.05 MPa to 20 MPa.
( 1 2) 膜体回転時の半径方向加速度  (1 2) Radial acceleration during membrane rotation
膜体を回転させると、 膜体とともに回転する膜体近傍の被処 理液には円の外側に向かう半径方向加速度が作用する。 発明者 の知見によれば、 この半径方向加速度が膜分離性能に影響を与 えることが分かった。 すなわち、 被処理液が高濃度のときは膜 体回転時の半径方向加速度が 2 0 0 mZsec2以上の範囲におい て運転し、 被処理液が低濃度のときは膜体回転時の半径方向加 速度が 1 0 0 m/sec2以上の範囲において運転することにより. 被処理液の粘性に応じて透過に有効なせん断力が被処理液に付 加されて、 透過流束が大きくなるのである。 When the film body is rotated, the liquid to be treated near the film body that rotates together with the film body is subjected to radial acceleration toward the outside of the circle. According to the findings of the inventor, it has been found that this radial acceleration affects the membrane separation performance. That is, when the liquid to be treated is at a high concentration, the operation is performed in a range where the radial acceleration during rotation of the film is 200 mZsec 2 or more, and when the liquid to be treated is at a low concentration, the radial acceleration during the film rotation is increased. By operating at a speed of 100 m / sec 2 or more, a shearing force effective for permeation is applied to the liquid to be treated according to the viscosity of the liquid to be treated, and the permeation flux increases. .
( 1 3) 膜体の厚み  (1 3) Thickness of membrane
膜体の厚みは 1〜 2 0 mmとするのが好ましい。 1 未満では 強度的に不十分で、 2 0皿を超えると、 膜体を収容する容器の 容積が大きくなりすぎるからである。  The thickness of the film is preferably 1 to 20 mm. If it is less than 1, the strength is insufficient, and if it exceeds 20 dishes, the volume of the container for accommodating the membrane becomes too large.
(1 4) 膜体の形状  (1 4) Shape of membrane
膜体の形状は、 円形を採用することができるが、 必ずしも円 形に限るものではなく、 五角形以上の多角形状であればよい。  The shape of the film body may be a circle, but is not necessarily limited to a circular shape, and may be a pentagon or more polygonal shape.
( 1 5) 装置のコンパク ト化  (15) Making the equipment compact
回転軸を中空とし且つ軸長手方向の膜体装着部分に小孔を設 け、 膜体は透過液体を移送可能な経路を有する透過性膜を板の 両面に取り付けた構造であって、 上記透過性膜の透過液体移送 経路を回転軸に設けた小孔に連通するような構成を採用すれば. 回転軸を透過液体の排出手段としても利用することができるの で、 膜分離装置がコンパク トになるという利点がある。  The rotary shaft is hollow, and a small hole is formed in a portion where the membrane is mounted in the longitudinal direction of the membrane. The membrane has a structure in which a permeable membrane having a path through which a permeated liquid can be transferred is attached to both sides of the plate. If a configuration is adopted in which the permeated liquid transfer path of the permeable membrane communicates with the small hole provided in the rotating shaft. The rotating shaft can also be used as a means for discharging the permeated liquid. There is an advantage of becoming.
( 1 6) 直径の意味  (1 6) Meaning of diameter
本明細書において、 「直径」 とは、 「円または球の中心を通 過して円周または球面上に両端を有する線分」 をいうほか、 「 多角形においては、 その中心から一頂点に至る距離の 2倍の長 さの線分」 をもいう意である。 As used herein, "diameter" means "through the center of a circle or sphere. In addition to "a line segment having both ends on a circumference or a sphere," it also means "in a polygon, a line segment twice as long as the distance from its center to one vertex."
本発明の回転型膜分離装置および回転型膜分離装置による膜 分離方法は上記のとおり構成されているので、 次の効果を奏す る。  The rotary membrane separation apparatus and the membrane separation method using the rotary membrane separation apparatus of the present invention are configured as described above, and have the following effects.
( 1 ) 請求の範囲第 1項、 第 2項、 第 3項および第 4項記載の 回転型膜分離装置によれば、 バッフルは膜体間を完全に仕切る 構造ではないため、 バッフルによる被処理液の圧力損失が少な く、 優れた膜分離性能を有している。  (1) According to the rotary membrane separator according to claims 1, 2, 3, and 4, the baffle does not have a structure that completely separates the membranes, so that the baffle can be used for processing. Low liquid pressure loss and excellent membrane separation performance.
また、 膜体とバッフルを交互に組み上げる必要はなく、 回転 軸と膜体を組み上げた後に、 積層した膜体の横方向からパッフ ルを揷入できるので、 取り付けの手間がかからない。  Also, there is no need to alternately assemble the membrane and the baffle. After assembling the rotating shaft and the membrane, the puffer can be inserted from the lateral direction of the laminated membrane, so that there is no need for installation.
さらに、 パッフル形状がシンプルであるから、 加工が簡単で 低コストである。  Furthermore, since the paffle shape is simple, machining is easy and low cost.
そして、 被処理液の性状に応じて、 バッフルの幅や厚みや本 数を任意に変更することができるので、 対象とする被処理液の 種類が限定されず、 応用性に優れている。  Since the width, thickness and number of baffles can be arbitrarily changed according to the properties of the liquid to be treated, the type of liquid to be treated is not limited, and the applicability is excellent.
( 2 ) 特に、 請求の範囲第 2項、 第 3項および第 4項記載の回 転型膜分離装置は、 膜面に発生する乱流を大きくし、 膜分離性 能を向上させることができるという利点がある。 また、 膜体間 の流体の入れ替えを促進するという利点もある。  (2) In particular, the rotary membrane separator according to claims 2, 3, and 4 can increase turbulence generated on the membrane surface and improve membrane separation performance. There is an advantage. There is also an advantage that the exchange of fluid between the membranes is promoted.
( 3 ) 特に、 請求の範囲第 5項記載の回転型膜分離装置は、 膜 体表面積に対するバッフルの投影面積が適正な範囲であるから. 透過流束が極めて大きくなる。  (3) In particular, in the rotary membrane separator according to claim 5, the projected area of the baffle with respect to the surface area of the membrane is within an appropriate range. The permeation flux becomes extremely large.
( 4 ) 特に、 請求の範囲第 6項、 第 7項、 第 8項および第 9項 記載の回転型膜分離装置は、 長方形状パッフル、 鈎形形状バッ フル、 S形形状バッフルまたは円弧形状バッフルの両端部を支 持固定するので、 装置の組立が容易になり、 コストダウンを図 ることができる。 (4) In particular, the rotary membrane separation device according to claims 6, 7, 8, and 9 may be a rectangular baffle, a hook-shaped baffle, an S-shaped baffle, or an arc-shaped baffle. Support both ends of Since it is held and fixed, it is easy to assemble the device and cost can be reduced.
( 5 ) 特に、 請求の範囲第 1 0項記載の回転型膜分離装置は、 バッフルの取付が容易であるという利点がある。  (5) In particular, the rotary membrane separation device according to claim 10 has an advantage that the baffle can be easily attached.
( 6 ) 特に、 請求の範囲第 1 1項、 第 1 3項、 第 1 5項、 第 1 7項、 第 2 4項および第 2 5項記載の回転型膜分離装置によれ ば、 膜分離効率が極めて優れているという効果がある。  (6) In particular, according to the rotary membrane separation apparatus described in Claims 11, 13, 13, 15, 17, 24, and 25, membrane separation There is an effect that the efficiency is extremely excellent.
( 7 ) 特に、 請求の範囲第 1 2項記載の回転型膜分離装置は、 装置の大きさが適正であって、 製造コストおよびランニングコ ストを低く抑えることができるという利点がある。  (7) In particular, the rotary membrane separation device according to claim 12 has an advantage that the size of the device is appropriate and the production cost and running cost can be suppressed.
( 8 ) 特に、 請求の範囲第 1 4項および第 1 6項記載の回転型 膜分離装置によれば、 バッフルがたわみにくくて膜体が破損し にくいという利点がある。  (8) In particular, the rotary membrane separator according to claims 14 and 16 has the advantage that the baffle is less likely to bend and the membrane is less likely to be damaged.
( 9 ) 特に、 請求の範囲第 1 8項記載の回転型膜分離装置は、 装置がコンパク トになるという利点がある。  (9) In particular, the rotary membrane separation device described in claim 18 has an advantage that the device is compact.
( 1 0 ) 特に、 請求の範囲第 1 9項、 第 2 0項、 第 2 1項、 第 2 2項および第 2 3項記載の発明によれば、 膜分離性能を効果 的に発揮しうる回転型膜分離装置を提供することができる。  (10) In particular, according to the inventions set forth in claims 19, 20, 21, 21, and 23, the membrane separation performance can be effectively exhibited. A rotary membrane separation device can be provided.
( 1 1 ) 特に、 請求の範囲第 2 6項および第 2 7項記載の膜分 離方法によれば、 膜が目詰まりしにく く、 透過流束が高く、 高 濃度まで濃縮することが可能である。 また、 高流速で被処理液 を供給する必要がないため大型のポンプ等の圧送手段を必要と しないのでエネルギーコストが低く、 濃度を増加させるために 循環回数を増やす必要がな.いのでポンプの送り羽根等で被処理 液がせん断されることが少なく被処理液が変質しにくいという 効果がある。  (11) In particular, according to the membrane separation method described in claims 26 and 27, the membrane is hardly clogged, has a high permeation flux, and can be concentrated to a high concentration. It is possible. In addition, since there is no need to supply the liquid to be treated at a high flow rate, there is no need for a pumping means such as a large pump, so energy costs are low, and it is not necessary to increase the number of circulations to increase the concentration. There is an effect that the liquid to be treated is less likely to be sheared by the feed blades and the like, and the quality of the liquid to be treated is not easily changed.
( 1 2 ) 特に、 請求の範囲第 2 8項、 第 2 9項および第 3 0項 記載の発明によれば、 膜分離性能を効果的に発揮しうる回転型 膜分離装置の運転条件を提供することができる。 (12) In particular, according to the invention described in Claims 28, 29, and 30, the rotary type capable of effectively exhibiting the membrane separation performance is provided. Operating conditions of the membrane separation device can be provided.
〔図面の簡単な説明〕 [Brief description of drawings]
第 1図は、 本発明の回転型膜分離装置の一実施例の斜視図で ある。  FIG. 1 is a perspective view of one embodiment of the rotary membrane separation device of the present invention.
第 2図 (a) は、 本発明の回転型膜分離装置の長方形状バッ フルと膜体と容器とを示す一実施例の断面図、 第 2図 (b) は その長方形状バッフルを用いた回転型膜分離装置の断面を含む 側面図であり、 回転手段は省略しており、 第 2図 (c) は第 2 図 (a) の II— II矢視断面図である。  FIG. 2 (a) is a cross-sectional view of one embodiment showing a rectangular baffle, a membrane, and a container of the rotary membrane separator of the present invention, and FIG. 2 (b) uses the rectangular baffle. FIG. 2 is a side view including a cross section of the rotary membrane separation apparatus, in which a rotating means is omitted, and FIG. 2 (c) is a cross-sectional view taken along the line II-II of FIG. 2 (a).
第 3図 (a) は、 本発明の回転型膜分離装置の長方形状バッ フルと膜体と容器とを示す別の実施例の断面図、 第 3図 (b) はその長方形状バッフルを用いた回転型膜分離装置の断面を含 む側面図であり、 回転手段は省略しており、 第 3図 (c) は第 3図 (a) の III— III矢視断面図である。  FIG. 3 (a) is a cross-sectional view of another embodiment showing a rectangular baffle, a membrane and a container of the rotary membrane separator of the present invention, and FIG. 3 (b) uses the rectangular baffle. FIG. 3 is a side view including a cross section of the rotating membrane separation apparatus, in which a rotating means is omitted, and FIG. 3 (c) is a cross-sectional view taken along the line III-III of FIG. 3 (a).
第 4図 (a) は、 膜体の両側に膜体との間に間隙を設けて、 それぞれ 8本の棒状バッフルを回転軸を挾んで容器の一方の内 壁近傍から他方の内壁近傍まで互いに平行に配置した回転型膜 分離装置の棒状パッフルと膜体と容器とを示す一例の断面図、 第 4図 (b) はその棒状バッフルを用いた回転型膜分離装置の 断面を含む側面図であり、 回転手段は省略しており、 第 4図 ( c ) は棒状パッフルの締結方法を示す図である。  Fig. 4 (a) shows that a gap is provided between the membrane and the membrane on both sides of the membrane, and eight rod-shaped baffles are placed on each other from the vicinity of one inner wall of the container to the vicinity of the other inner wall across the rotation shaft. Sectional view of an example showing a rod-shaped paffle, membrane and container of a rotary membrane separator arranged in parallel. Fig. 4 (b) is a side view including a cross-section of a rotary membrane separator using the rod-shaped baffle. Yes, the rotating means is omitted, and FIG. 4 (c) is a diagram showing a method of fastening the rod-shaped paffle.
第 5図 (a) は本発明の回転型膜分離装置の一実施例におい て、 膜体が回転軸に装着される箇所を拡大して示す断面図であ り、 第 5図 (b) はその別の実施例の膜体が回転軸に装着され る箇所を拡大して示す断面図である。  FIG. 5 (a) is an enlarged cross-sectional view showing a portion where the membrane is mounted on the rotating shaft in one embodiment of the rotary membrane separation apparatus of the present invention, and FIG. 5 (b) is FIG. 13 is an enlarged cross-sectional view showing a place where the film body of another embodiment is mounted on a rotating shaft.
第 6図 (a) は本発明の回転型膜分離装置の一実施例におい て、 容器内壁近傍の膜体と長方形状バッフルを拡大して示す断 面図であり、 第 6図 (b) は、 透過性膜内の透過液体移送経路 を拡大して示す図である。 FIG. 6 (a) is an enlarged cross-sectional view showing the membrane and the rectangular baffle near the inner wall of the vessel in one embodiment of the rotary membrane separator of the present invention. Fig. 6 (b) is an enlarged view of a permeated liquid transfer path in the permeable membrane.
第 7図は、 本発明の回転型膜分離装置における被処理液のフ ローを示す図である。  FIG. 7 is a diagram showing a flow of the liquid to be treated in the rotary membrane separation device of the present invention.
第 8図 (a) は、 本発明の回転型膜分離装置の放射状パッフ ルと膜体と容器とを示す一実施例の断面図、 第 8図 (b) は第 8図 (a) の VIII— VIII矢視断面図である。  FIG. 8 (a) is a cross-sectional view of one embodiment showing a radial membrane, a membrane and a container of the rotary membrane separation apparatus of the present invention, and FIG. 8 (b) is a VIII of FIG. 8 (a). -It is VIII arrow sectional drawing.
第 9図は、 本発明の回転型膜分離装置の円弧形状のバッフル と膜体と容器とを示す一実施例の断面図である。  FIG. 9 is a sectional view of an embodiment showing an arc-shaped baffle, a membrane, and a container of the rotary membrane separator of the present invention.
第 1 0図は、 本発明の回転型膜分離装置の鈎形形状のバッフ ルと膜体と容器とを示す一実施例の断面図である。  FIG. 10 is a cross-sectional view of one embodiment showing a hook-shaped baffle, a membrane, and a container of the rotary membrane separator of the present invention.
第 1 1図は、 本発明の回転型膜分離装置の S形形状のパッフ ルと膜体と容器とを示す一実施例の断面図である。  FIG. 11 is a cross-sectional view of one embodiment showing an S-shaped profile, a membrane, and a container of the rotary membrane separator of the present invention.
第 1 2図 (a) は、 本発明の回転型膜分離装置の翼形状バッ フルと膜体と容器とを示す一実施例の断面図、 第 1 2図 (b) はその翼形状バッフルを用いた回転型膜分離装置の断面を含む 側面図であり、 回転手段は省略しており、 第 1 2図 (c) は第 1 2図 (a) の XII— XII矢視断面において、 バッフル 3 0及 びその近傍を拡大して示す図である。  FIG. 12 (a) is a cross-sectional view of one embodiment showing a wing-shaped baffle, a membrane and a container of the rotary type membrane separation device of the present invention, and FIG. 12 (b) is a wing-shaped baffle of the same. FIG. 12 is a side view including a cross section of the rotary membrane separator used, in which the rotating means is omitted. FIG. 12 (c) is a cross-sectional view taken along the line XII--XII in FIG. FIG. 4 is an enlarged view showing 0 and its vicinity.
第 1 3図は、 膜分離システムの一例を示す概略構成図である, 第 1 4図は、 膜分離システムの別の例を示す概略構成図であ る。  FIG. 13 is a schematic configuration diagram showing one example of a membrane separation system, and FIG. 14 is a schematic configuration diagram showing another example of a membrane separation system.
第 1 5図は、 濃縮液の濃度と透過流束の関係を示す図である, 第 1 6図は、 操作圧力と透過流束の関係を示す図である。 第 1 7図は、 回転型膜分離装置の棒状バッフルと膜体と容器 とを示す一例の断面図である。  FIG. 15 is a diagram showing the relationship between the concentration of the concentrated liquid and the permeation flux, and FIG. 16 is a diagram showing the relationship between the operating pressure and the permeation flux. FIG. 17 is a cross-sectional view of an example showing a rod-shaped baffle, a membrane, and a container of a rotary membrane separator.
第 1 8図は、 操作圧力と透過流束の関係を示す別の図である, 第 1 9図は、 回転型膜分離装置の孔あき板状バッフルと膜体 と容器とを示す一例の断面図である。 FIG. 18 is another diagram showing the relationship between the operating pressure and the permeation flux, and FIG. 19 is a diagram showing a perforated plate-shaped baffle and membrane of a rotary membrane separator. FIG. 4 is a cross-sectional view of an example showing a container and a container.
第 2 0図は、 操作圧力と透過流束の関係を示すさらに別の図 である。  FIG. 20 is yet another diagram showing the relationship between the operating pressure and the permeation flux.
第 2 1図は、 長方形状バッフルの本数と透過流束の関係を示 す図である。  FIG. 21 is a diagram showing the relationship between the number of rectangular baffles and the permeation flux.
第 2 2図は、 膜体の表面積に対する長方形状パッフルの投影 面積 (%) と透過流束の関係を示す図である。  FIG. 22 is a diagram showing the relationship between the projected area (%) of the rectangular paffle and the permeation flux with respect to the surface area of the membrane.
第 2 3図は、 膜外周速度と透過流束の関係を示す図である。 第 2 4図は、 膜体の直径と透過流束の関係を示す図である。 第 2 5図は、 膜体の回転数と透過流束の関係を示す図である ( 第 2 6図は、 膜体とバッフルの間隔と透過流束の関係を示す 図である。  FIG. 23 is a diagram showing a relationship between a membrane peripheral velocity and a permeation flux. FIG. 24 is a diagram showing the relationship between the diameter of the membrane and the permeation flux. FIG. 25 is a diagram showing the relationship between the number of revolutions of the membrane and the permeation flux (FIG. 26 is a diagram showing the relationship between the gap between the membrane and the baffle and the permeation flux).
第 2 7図は、 本発明の回転型膜分離装置の透過流束の時間変 化を示す図である。  FIG. 27 is a diagram showing a time change of a permeation flux of the rotary membrane separation device of the present invention.
第 2 8図は、 本発明の回転型膜分離装置の濃度分極低減効果 を示す図である。  FIG. 28 is a diagram showing the concentration polarization reducing effect of the rotary membrane separation device of the present invention.
第 2 9図は、 本発明の回転型膜分離装置の濃度分極低減効果 を示す別の図である。  FIG. 29 is another diagram showing the concentration polarization reducing effect of the rotary membrane separation device of the present invention.
第 3 0図は、 放射状バッフルを用いて低濃度ラテックスを膜 分離する場合において、 膜体直径をパラメータ一として、 膜体 回転数と透過流束の関係を示す図である。  FIG. 30 is a diagram showing the relationship between the number of revolutions of the membrane and the permeation flux, with the membrane diameter as a parameter, when the low-concentration latex is subjected to membrane separation using a radial baffle.
第 3 1図は、 放射状バッフルを用いて高濃度ラテックスを膜 分離する場合において、 膜体直径をパラメータ一として、 膜体 回転数と透過流束の関係を示す図である。  FIG. 31 is a diagram showing the relationship between the number of rotations of the membrane and the permeation flux with the membrane diameter as a parameter when the high-concentration latex is subjected to membrane separation using a radial baffle.
第 3 2図は、 放射状バッフルを用いて膜分離する場合におい て、 膜体とバッフルの間隙に対する透過流束の関係を示す図で ある。  FIG. 32 is a diagram showing the relationship between the permeation flux and the gap between the membrane and the baffle when the membrane is separated using a radial baffle.
第 3 3図は、 リング状バッフルまたは放射状バッフルを用い て膜分離する場合において、 膜間差圧と透過流束の関係を示す 図である。 Fig. 33 uses a ring-shaped baffle or a radial baffle. FIG. 4 is a diagram showing a relationship between a transmembrane pressure and a permeation flux when performing membrane separation by using the method shown in FIG.
第 3 4図は、 放射状バッフルを用いて膜分離する場合におい て、 放射状バッフルの本数と透過流束の関係を示す図である。  FIG. 34 is a diagram showing the relationship between the number of radial baffles and the permeation flux when membrane separation is performed using a radial baffle.
第 3 5図は、 放射状バッフルを用いて膜分離する場合におい て、 膜体の表面積に対する放射状バッフルの投影面積 ( % ) と 透過流束の関係を示す図である。  FIG. 35 is a diagram showing the relationship between the projected area (%) of the radial baffle and the permeation flux with respect to the surface area of the membrane when performing membrane separation using a radial baffle.
第 3 6図は、 リング状パッフルを用いて膜分離する場合にお いて、 膜間差圧 (操作圧力) をパラメ一夕一として、 膜体回転 時の半径方向加速度に対する透過流束の関係を示す図である。 第 3 7図は、 リング状パッフルを用いて膜分離する場合にお いて、 膜間差圧 (操作圧力) をパラメータ一として、 膜体回転 時の半径方向加速度に対する透過流束の関係を示す、 第 3 6図 とは別の図である。  Fig. 36 shows the relationship between the permeation flux and the radial acceleration when the membrane rotates, with the transmembrane pressure (operating pressure) as a parameter in the case of membrane separation using a ring-shaped paffle. FIG. Fig. 37 shows the relationship between the permeation flux and the radial acceleration during rotation of the membrane, using the transmembrane pressure (operating pressure) as a parameter in the case of membrane separation using a ring-shaped paffle. FIG. 36 is different from FIG.
第 3 8図は、 リング状バッフルを用いて膜分離する場合にお いて、 膜間差圧 (操作圧力) をパラメータ一として、 膜体回転 時の半径方向加速度に対する透過流束の関係を示す、 第 3 6図 および第 3 7図とは別の図である。  Fig. 38 shows the relationship between the permeation flux and the radial acceleration during rotation of the membrane, using the transmembrane pressure (operating pressure) as a parameter in membrane separation using a ring-shaped baffle. FIG. 36 is different from FIGS. 36 and 37.
第 3 9図は、 リング状バッフルを用いて膜分離する場合にお いて、 膜間差圧 (操作圧力) をパラメ一夕一として、 膜体回転 時の半径方向加速度に対する透過流束の関係を示す、 第 3 6図. 第 3 7図および第 3 8図とは別の図である。  Fig. 39 shows the relationship between the permeation flux and the radial acceleration when the membrane rotates when the membrane transmembrane pressure (operating pressure) is set as a parameter in the case of membrane separation using a ring-shaped baffle. FIG. 36 is a view different from FIG. 37 and FIG.
第 4 0図は、 リング状バッフルを用いて膜分離する場合にお いて、 ラテックス濃度をパラメータ一として、 膜体回転時の半 径方向加速度に対する透過流束の関係を示す図である。  FIG. 40 is a diagram showing the relationship between the radial acceleration and the radial flux during rotation of the membrane when the membrane is separated using a ring-shaped baffle, with the latex concentration as a parameter.
第 4 1図は、 リング状バッフルを用いて膜分離する場合にお いて、 ラテックス濃度をパラメ一ターとして、 膜体回転時の半 径方向加速度に対する透過流束の関係を示す、 第 4 0図とは別 の図である。 Fig. 41 shows the relationship between the radial flux and the radial flux during rotation of the membrane when the membrane is separated using a ring-shaped baffle, with the latex concentration as a parameter. Different from FIG.
第 4 2図は、 リング状パッフルを用いて膜分離する場合にお いて、 ラテックス濃度をパラメータ一として、 膜体回転時の半 径方向加速度に対する透過流束の関係を示す、 第 4 0図および 第 4 1図とは別の図である。  Fig. 42 shows the relationship between permeate flux and radial acceleration during rotation of the membrane, using latex concentration as a parameter in the case of membrane separation using a ring-shaped paffle. FIG. 41 is different from FIG.
第 4 3図 ( a ) は、 パッフルに多数の打ち抜き孔を設けた一 例を示す平面図、 第 4 3図 (b ) は、 バッフルの表裏面にエツ チングを施した一例を示す断面図、 第 4 3図 ( c ) は、 バッフ ルの表裏面にエンボス加工を施した一例を示す断面図である。 第 4 4図は、 クロスフロー方式による膜分離装置の概略構成 を示す図である。  FIG. 43 (a) is a plan view showing an example in which a large number of punched holes are provided in the paffle, and FIG. 43 (b) is a cross-sectional view showing an example in which the front and back surfaces of the baffle are etched. FIG. 43 (c) is a cross-sectional view showing an example in which the front and back surfaces of the baffle are embossed. FIG. 44 is a diagram showing a schematic configuration of a membrane separation device using a cross flow method.
第 4 5図 ( a ) は、 従来の回転型膜分離装置のリング状バッ フルと膜体と容器とを示す断面図、 第 4 5図 (b ) はそのリン グ状バッフルを用いた回転型膜分離装置の断面を含む側面図で あり、 回転手段は省略している。  FIG. 45 (a) is a cross-sectional view showing a ring-shaped baffle, a membrane and a container of a conventional rotary type membrane separation apparatus, and FIG. 45 (b) is a rotary type using the ring-shaped baffle. FIG. 2 is a side view including a cross section of the membrane separation device, omitting a rotating unit.
第 4 6図 ( a ) は、 従来の回転型膜分離装置の孔あきリング 状バッフルと膜体と容器とを示す断面図、 第 4 6図 (b ) はそ の孔あきリング状バッフルを用いた回転型膜分離装置の断面を 含む側面図であり、 回転手段は省略している。  FIG. 46 (a) is a cross-sectional view showing a perforated ring-shaped baffle, a membrane and a container of a conventional rotary membrane separator, and FIG. 46 (b) is a diagram showing the perforated ring-shaped baffle used. FIG. 4 is a side view including a cross section of the rotating membrane separation apparatus, in which a rotating means is omitted.
〔発明を実施するための最良の形態〕 [Best mode for carrying out the invention]
以下、 本発明の実施の形態について図面を参照しながら説明 するが、 本発明は下記の実施の形態に何ら限定されるものでは なく、 本発明の技術的範囲を逸脱しない範囲において、 当業者 であれば、 適宜変更し、 あるいは修正して実施することが可能 である。 また、 後記する膜分離特性に関する比較調査実験にお いて、 本発明の実施形態としては、 主として長方形状バッフル および放射状バッフルを用いた場合を示したが、 同様の効果は. 本発明の技術的範囲内において、 請求の範囲に記載した他の形 状のバッフルについても指摘できるものであり、 実験に使用し た形状のバッフルのみに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and those skilled in the art will be able to perform the present invention without departing from the technical scope of the present invention. If so, it can be changed or modified as appropriate. Further, in a comparative investigation experiment on membrane separation characteristics described later, as an embodiment of the present invention, a case where a rectangular baffle and a radial baffle were mainly used was shown, but the same effect was obtained. Within the technical scope of the present invention, it is possible to point out baffles having other shapes described in the claims, and the invention is not limited to the baffles having the shapes used in the experiments.
第 1図は、 本発明の回転型膜分離装置の斜視図である。 1は 被処理液の供給入口で、 円筒状容器 2の中心部を貫通するよう に中空の回転軸 3を配し、 中空の回転軸 3に装着した多数の膜 体 (第 2図の番号 1 2 ) で透過された液体は、 中空の回転軸 3 内を通過して出口 4、 5から排出され、 濃縮液は出口 6から排 出される。 7は回転軸 3とともに膜体を回転させるモータであ り、 モータ 7の回転力は、 ベルト 8により回転軸 3に伝達され る。 回転力の伝達はこれに限られるものではなく、 モ一夕直結 型、 歯車減速機、 巻き掛け伝導装置を用いてもよい。  FIG. 1 is a perspective view of a rotary membrane separation device of the present invention. Reference numeral 1 denotes a supply inlet for the liquid to be treated. A hollow rotary shaft 3 is arranged so as to pass through the center of the cylindrical container 2, and a number of membranes mounted on the hollow rotary shaft 3 (number 1 in FIG. 2). The liquid permeated in 2) passes through the hollow rotary shaft 3 and is discharged from outlets 4 and 5, and the concentrated liquid is discharged from outlet 6. Reference numeral 7 denotes a motor that rotates the membrane together with the rotating shaft 3, and the torque of the motor 7 is transmitted to the rotating shaft 3 by a belt 8. The transmission of rotational force is not limited to this, and it is also possible to use a motor-direct connection type, a gear reducer, or a wrapping transmission device.
本実施例で用いた膜体は、 第 5図 ( a ) ( b ) に示すように. ポリプロピレン製の板体 9の両面に織布のスぺーサクロス 1 0 を介してポリエーテルスルホン製の透過性膜 1 1を取り付けた 構造である。 なお、 透過性膜を取り付ける板としては本実施例 で用いたプラスチック板以外に金属板やセラミック板を用いる ことも可能であり、 容易に変形せず、 破損に強い材質を採用す るのが好ましい。  As shown in FIGS. 5 (a) and 5 (b), the membrane used in this example is a polyether sulfone permeate through woven fabric cloth 10 on both sides of a polypropylene plate 9. This is the structure to which the conductive film 11 is attached. In addition, a metal plate or a ceramic plate other than the plastic plate used in this embodiment can be used as a plate on which the permeable membrane is attached, and it is preferable to use a material that does not easily deform and is resistant to breakage. .
本明細書において、 透過性膜とは、 多孔質な構造を有し、 多 孔質部分を経由することによって透過された液体を移送するこ との可能な経路 (多孔質部分を接続することによって形成され る流路) が内部に形成されたものをいい、 このような機能を有 するものであれば、 上記の有機膜以外に、 セラミック膜や金属 膜を採用することもできる。  In this specification, a permeable membrane has a porous structure, and is capable of transporting permeated liquid by passing through a porous portion (by connecting the porous portions to each other). A channel formed therein means a channel formed inside, and as long as it has such a function, a ceramic film or a metal film other than the above-mentioned organic film can be adopted.
スぺーサクロス 1 0も透過液体を移送可能であり、 スぺーサ クロス 1 0内の透過液体の流路は後記する透過性膜 1 1の透過 液体移送経路 2 7より大径であって、 透過液体はスぺ一サクロ ス 1 0内を流れやすくなつている。 The spacer cloth 10 can also transfer the permeated liquid, and the flow path of the permeated liquid in the spacer cloth 10 is larger in diameter than the permeated liquid transfer path 27 of the permeable membrane 11 described later. The liquid is a single sacro It is easy to flow through the 10
プラスチック製の板体 9 とスぺ一サクロス 1 0 と透過性膜 1 1からなる膜体 1 2を、 第 2図 (b ) に示すように回転軸 3に 装着し、 膜体 1 2の両側に膜体との間に間隙を設けて、 それぞ れ 2本のステンレス鋼製の長方形状バッフル 1 3を回転軸 3を 挟んで容器 2の一方の内壁近傍から他方の内壁近傍まで互いに 平行に配置し (第 2図 ( a ) 参照) 、 複数の長方形状バッフル 1 3の両端部は容器 2の面 2 aと 2 bを接続する貫通ボルト 1 4によって支持固定されている。 また、 被処理液の供給入口 1 に接続された液体流路 1 6が容器 2の内壁面 1 5に沿うように 形成されている。  As shown in FIG. 2 (b), a film body 12 composed of a plastic plate body 9, a cross cloth 10 and a permeable membrane 11 is mounted on the rotating shaft 3 as shown in FIG. The two stainless steel rectangular baffles 13 are parallel to each other from the vicinity of one inner wall of the container 2 to the vicinity of the other inner wall of the container 2 with the rotating shaft 3 interposed therebetween. It is arranged (see FIG. 2 (a)), and both ends of the plurality of rectangular baffles 13 are supported and fixed by through bolts 14 connecting the surfaces 2a and 2b of the container 2. Further, a liquid flow path 16 connected to the supply inlet 1 of the liquid to be treated is formed along the inner wall surface 15 of the container 2.
回転軸 3は中空であって、 第 5図 ( a ) に示すように、 軸長 手方向の膜体 1 2装着部分に小孔 1 7を設け、 膜体 1 2を構成 する透過性膜 1 1の透過液体移送経路とスぺーサクロス 1 0の 透過液体移送流路は小孔 1 7に連通している。 1 8は、 膜体 1 2の回転軸装着部分で、 上下で隣接する膜体 1 2、 1 2の間に 介装したスぺーサである。 また、 第 5図 (b ) に示すように、 スぺーサ 1 8 と膜体 1 2が回転軸 3に装着される部分の軸長手 方向に複数のスリッ ト 1 9を設け、 このスリッ ト 1 9を透過液 体移送流路として利用して、 回転軸 3の端部に小孔 1 7を設け. 透過性膜 1 1の透過液体移送経路とスぺーサクロス 1 0の透過 液体移送流路をスリッ ト 1 9を経て小孔 1 7に通じるような構 成を採用することもできる。 第 5図 (b ) では省略しているが. 回転軸 3の任意の位置にも小孔 1 7が設けられている。  The rotating shaft 3 is hollow, and as shown in Fig. 5 (a), a small hole 17 is provided in the mounting portion of the membrane member 12 in the longitudinal direction of the shaft, and the permeable membrane 1 forming the membrane member 12 is provided. The permeated liquid transfer path of No. 1 and the permeated liquid transfer flow path of the spacer cloth 10 communicate with the small holes 17. Reference numeral 18 denotes a rotating shaft mounting portion of the membrane body 12, which is a spacer interposed between the vertically adjacent membrane bodies 12 and 12. In addition, as shown in FIG. 5 (b), a plurality of slits 19 are provided in a longitudinal direction of a portion where the spacer 18 and the film body 12 are mounted on the rotating shaft 3, and the slits 19 are provided. A small hole 17 is provided at the end of the rotating shaft 3 using 9 as the permeate liquid transfer passage. The permeate liquid transfer passage of the permeable membrane 11 and the permeate liquid transfer passage of the spacer cloth 10 are provided. A configuration that leads to the small hole 17 through the slit 19 can also be adopted. Although omitted in FIG. 5 (b), small holes 17 are provided at arbitrary positions of the rotating shaft 3.
第 3図は、 膜体 1 2の両側に膜体との間に間隙を設けて、 そ れぞれ 4本のステンレス鋼製の長方形状パッフル 2 0を回転軸 3を挟んで容器 2の一方の内壁近傍から他方の内壁近傍まで互 いに平行に配置した例を示す。 なお、 バッフルの材質は、 上記 した金属製以外にプラスチックやセラミックを採用することも 可能である。 Fig. 3 shows that four stainless steel rectangular paffles 20 are placed on one side of a container 2 with a rotating shaft 3 interposed between them. An example is shown where they are arranged parallel to each other from the vicinity of the inner wall to the vicinity of the other inner wall. The material of the baffle is It is also possible to use plastic or ceramic besides the above-mentioned metal.
以上のように構成される膜分離装置の容器 2内に加圧 (約 0 . O l M P a以上の圧力) された被処理液を供給するか又は容器 2内を被処理液で満たして、 回転軸 3を通して減圧もしくは吸 引し、 回転軸 3を回転させると、 第 6図 ( a ) の矢印 2 4に示 すように、 遠心力によって半径方向外方への流れを生じる。 し かも、 膜体 1 2の両側にはバッフル 1 3が存在するので、 膜体 1 2の膜孔を閉塞しょうとする粒子の作用や濃度分極を妨げる ような流れ 2 5が発生し、 第 6図 (b ) に示すように、 膜孔 2 6が閉塞されることはなく、 多孔質部分を接続することによつ て形成される経路 2 7からスぺーサクロス 1 0内の流路を経た 透過液は、 第 5図 ( a ) ( b ) に示す小孔 1 7から中空回転軸 3内を経由して、 第 1図に示す出口 4、 5から排出され、 一方. 濃縮液は出口 6から排出される。 透過液は透過性膜内の狭い透 過液体移送経路 2 7よりスぺーサクロス 1 0内の広い流路を流 れやすいので、 透過液体移送経路 2 7から直接小孔 1 7に向か う透過液は少なく、 スぺ一サクロス 1 0内の広い流路を経て小 孔 1 7に達する透過液の方が多い。 この点で、 透過液が流れや すい流路を確保するために、 板体 9に透過液の流路を形成する ことも可能であって、 この場合にはスぺーサクロス 1 0は不要 である。 しかし、 板体 9に透過液の流路を形成することはコス トが高くつくので、 経済性の点でスぺーサクロス 1 0を採用す るのが好ましい。  Either supply the pressurized liquid to be treated into the container 2 of the membrane separation apparatus configured as described above (at a pressure of about 0.1 MPa or more) or fill the container 2 with the liquid to be treated, When the pressure is reduced or sucked through the rotating shaft 3 and the rotating shaft 3 is rotated, as shown by an arrow 24 in FIG. 6 (a), a flow is generated radially outward due to centrifugal force. In addition, since baffles 13 are present on both sides of the membrane 12, a flow 25 that prevents the action of particles that try to block the pores of the membrane 12 and concentration polarization occurs, and As shown in Fig. (B), the membrane pores 26 are not closed, and pass through the passages in the spacer cloth 10 from the passages 27 formed by connecting the porous portions. The permeate is discharged from the small holes 17 shown in Figs. 5 (a) and (b) via the hollow rotary shaft 3 and the outlets 4 and 5 shown in Fig. 1, while the concentrated solution is discharged at the outlet 6 Is discharged from Since the permeated liquid flows more easily through the wide passage in the spacer cloth 10 than the narrow permeated liquid transfer path 27 in the permeable membrane, the permeate flows directly from the permeated liquid transfer path 27 directly to the small holes 17. The amount of the liquid is small, and the amount of the permeated liquid reaching the small holes 17 via the wide flow passage in the space cloth 10 is larger. At this point, it is also possible to form a flow path for the permeate in the plate 9 in order to secure a flow path through which the permeate flows easily. In this case, the spacer cloth 10 is unnecessary. . However, forming a permeate flow path in the plate body 9 is costly, so it is preferable to use spacer cloth 10 from the viewpoint of economy.
なお、 バッフルとしては、 第 8図に示すような放射状バッフ ルを使用することもできる。 第 8図は、 膜体 1 2の両側に膜体 との間に間隙を設けて、 回転軸 3を中心として容器 2の内壁面 1 5に向けて 8本のバッフル 2 8を放射状に配置した例を示す, ノ ッフル 2 8の端部は、 容器 2の面 2 aと 2 bを接続する貫通 ボルト 1 4によって支持固定されている。 さらに、 第 9図に示 す円弧形状のパッフル 2 9 aや第 1 0図に示す鈎形形状のバッ フル 2 9 bや第 1 1図に示す S形形状のバッフル 2 9 cを採用 することもできる。 これらのバッフル 2 9 a、 2 9 bおよび 2 9 cを用いても長方形状バッフルと同じ効果が期待できる。 そ の上、 円弧形状パッフル 2 9 a、 鈎形形状バッフル 2 9 bおよ び S形形状バッフル 2 9 cによれば、 膜面の乱流を大きくする ことができ、 膜分離性能が向上するという効果がある。 また、 膜体間の流体の入れ替えを促進する効果もある。 円弧形状バッ フル 2 9 aと鉤形形状のバッフル 2 9 bについては、 第 9図と 第 1 0図に示すように、 回転軸 3を挟んで複数の円弧形状パッ フル 2 9 aもしくは複数の鈎形形状バッフル 2 9 bを膜体 1 2 の直径に対して線対称に配置するか、 または複数の円弧形状バ ッフル 2 9 aもしくは複数の鈎形形状バッフル 2 9 bを回転軸 3に対して点対称に配置することができる。 S形形状バッフル 2 9 cについては、 第 1 1図に示すように、 回転軸 3を挾んで 複数の S形形状バッフル 2 9 cを回転軸 3に対して点対称に配 置することができる。 第 9〜 1 1図には示されていないが、 膜 体 1 2の他方の側にも同数のバッフル 2 9 a、 2 9 b、 2 9 c が同じように配置されており、 バッフル形状が異なる点を除け ば、 他の構成は基本的に第 2図と同様である。 また、 円弧形状 ノ ッフル 2 9 a、 鈎形形状バッフル 2 9 bおよび S形形状パッ フル 2 9 cの両端部は、 それぞれ容器 2の面 2 aと 2 b (第 2 図参照) を接続する貫通ボルト 1 4によって支持固定されてい る。 Note that a radial baffle as shown in FIG. 8 can be used as the baffle. Fig. 8 shows that eight baffles 28 are arranged radially toward the inner wall surface 15 of the container 2 with the rotation axis 3 as the center, with a gap provided between the film body 12 and the film body on both sides. For example, The end of the notch 28 is supported and fixed by a through bolt 14 connecting the surfaces 2 a and 2 b of the container 2. Furthermore, an arc-shaped baffle 29a shown in Fig. 9, a hook-shaped baffle 29b shown in Fig. 10, and an S-shaped baffle 29c shown in Fig. 11 should be used. Can also. Even if these baffles 29a, 29b and 29c are used, the same effect as that of the rectangular baffle can be expected. In addition, the arc-shaped baffle 29a, hook-shaped baffle 29b, and S-shaped baffle 29c can increase turbulence on the membrane surface and improve membrane separation performance. This has the effect. It also has the effect of promoting the exchange of fluid between membranes. As shown in FIGS. 9 and 10, the arc-shaped baffle 29 a and the hook-shaped baffle 29 b have a plurality of arc-shaped baffles 29 a or a plurality of arc-shaped baffles 29. The hook-shaped baffle 29 b should be arranged symmetrically with respect to the diameter of the membrane 12, or a plurality of arc-shaped baffles 29 a or a plurality of hook-shaped baffles 29 b should be Can be arranged point-symmetrically. Regarding the S-shaped baffle 29c, as shown in Fig. 11, a plurality of S-shaped baffles 29c can be arranged point-symmetrically with respect to the rotation axis 3 with the rotation axis 3 interposed therebetween. . Although not shown in FIGS. 9 to 11, the same number of baffles 29 a, 29 b, and 29 c are similarly arranged on the other side of the membrane 12, and the baffle shape is Except for the differences, the other configuration is basically the same as in FIG. Also, both ends of the arc-shaped notch 29a, the hook-shaped baffle 29b, and the S-shaped baffle 29c connect the surfaces 2a and 2b (see Fig. 2) of the container 2, respectively. It is supported and fixed by through bolts 14.
さらに、 第 1 2図 ( c ) に示すように、 翼類似の断面形状の ノ ッフル 3 0を採用することも可能である。 このバッフル 3 0 によれば、 膜体と接触しにくいという利点がある。 さらに、 回 転動力を低減できるという利点もある。 なお、 第 2図に示す長 方形状バッフル 1 3や第 3図に示す長方形状バッフル 2 0の長 手方向の断面は、 第 2図 ( c ) 又は第 3図 ( c ) に示すように、 断面寸法が変化しない。 本発明の長方形状バッフルは、 ここに 例示したものに限定されるものではない。 Further, as shown in FIG. 12 (c), it is also possible to employ a knotle 30 having a cross section similar to that of the wing. This baffle 3 0 According to this, there is an advantage that it is difficult to contact with the film body. Furthermore, there is an advantage that the rotation power can be reduced. The cross-section in the longitudinal direction of the rectangular baffle 13 shown in FIG. 2 and the rectangular baffle 20 shown in FIG. 3 are as shown in FIG. 2 (c) or FIG. 3 (c). The cross-sectional dimensions do not change. The rectangular baffle of the present invention is not limited to those exemplified here.
次に、 本発明の膜分離装置と従来の膜分離装置について、 各 種特性に関して比較調査したので説明する。 なお、 以下の各実 験に用いた円筒状容器 2の内径は 3 5 0腿であり、 特に示した もの以外の膜体の直径は 3 0 0 mmであり、 これらの数値は各実 験において共通である。  Next, the membrane separation device of the present invention and a conventional membrane separation device were compared and examined for various characteristics, and will be described. The inner diameter of the cylindrical container 2 used in each of the following experiments was 350 thighs, and the diameter of the membranes other than those particularly indicated was 300 mm. It is common.
( 1 ) 膜分離システム  (1) Membrane separation system
本発明に係る膜分離装置を適用することができる膜分離シス テムについて、 まず説明する。  First, a membrane separation system to which the membrane separation device according to the present invention can be applied will be described.
すなわち、 第 1 3図に示すように、 経路 3 1を経て被処理液 の貯留タンク 3 2に貯留した被処理液 3 3は攪拌機 3 4で撹拌 され、 ポンプ 3 5で被処理液は約 0 . 0 0 5〜 2 0 M P aに加 圧されて経路 3 6を経て膜分離装置 3 7に圧送される。 3 8は 被処理液中の異物を除去するためのストレーナである。 膜分離 装置 3 7で膜分離された透過液は経路 3 9を経て排出され、 濃 縮液は経路 4 0、 4 1を経て再び貯留タンク 3 2に戻され、 さ らに、 経路 3 6を経て再び膜分離装置 3 7に供給されて膜分離 される。 このような膜分離操作を繰り返して、 徐々に濃縮液の 濃度を増し、 所定の濃度に達した時点で、 その濃縮液は経路 4 2を経て取り出される。 4 3はバルブ、 4 4はモータである。 なお、 濃縮液は必ずしも循環させる必要はなく、 膜分離装置 3 7で膜分離されて濃縮された液を経路 4 2を経てそのまま排出 することもできるし、 一部を貯留タンクに戻して一部を排出し てもよい。 貯留タンク 3 2に貯留した、 ある性状の被処理液 3 3の膜分離を完了した後、 別の被処理液を経路 3 1を経て貯留 タンク 3 2に貯留し、 同様の操作で膜分離を行うことができる, 第 1 4図は、 ポンプ 3 5を膜分離装置 3 7の透過液排出経路 3 9に設置した構成を示し、 このようにポンプ 3 5で被処理液 を吸引するようにして膜分離装置 3 7に供給する場合は、 膜分 離装置 3 7を開放式とすることも可能で、 膜分離装置の付属設 備を少なくすることができるので、 装置全体がコンパク トにな るという効果がある。 また、 第 1 4図の膜分離システムの場合. 膜分離装置 3 7に供給される被処理液の圧力が比較的小さくな るので、 ファゥリングが発生しにく くなるという効果も期待で きる。 That is, as shown in FIG. 13, the liquid to be treated 33 stored in the storage tank 32 for the liquid to be treated via the path 31 is stirred by the stirrer 34, and the liquid to be treated is reduced to about 0 by the pump 35. It is pressurized to 0.05 to 20 MPa and sent to the membrane separation device 37 via the path 36. Reference numeral 38 denotes a strainer for removing foreign matter in the liquid to be treated. The permeate separated by the membrane in the membrane separation device 37 is discharged through the route 39, the concentrated solution is returned to the storage tank 32 again through the routes 40 and 41, and the route 36 is further removed. After that, it is supplied again to the membrane separation device 37 to be subjected to membrane separation. By repeating such a membrane separation operation, the concentration of the concentrated solution is gradually increased. When the concentration reaches a predetermined concentration, the concentrated solution is taken out through the path 42. 43 is a valve, and 44 is a motor. The concentrated liquid does not necessarily need to be circulated, and the liquid separated by membrane in the membrane separation device 37 can be directly discharged through the path 42, or a part of the liquid can be returned to the storage tank to be partially recycled. Discharge You may. After the membrane separation of the liquid to be treated 33 stored in the storage tank 32 is completed, another liquid to be treated is stored in the storage tank 32 via the path 31 and the membrane separation is performed by the same operation. FIG. 14 shows a configuration in which a pump 35 is installed in the permeate discharge path 39 of the membrane separation device 37, and the pump 35 sucks the liquid to be treated in this manner. When supplying to the membrane separation device 37, the membrane separation device 37 can be opened, and the number of auxiliary equipment of the membrane separation device can be reduced, so that the entire device becomes compact. This has the effect. In the case of the membrane separation system shown in Fig. 14, the pressure of the liquid to be treated supplied to the membrane separation device 37 is relatively small, so that an effect that fouling hardly occurs can be expected.
( 2 ) パッフル形状および膜分離時の回転の有無による透過流 束への影響  (2) Influence of permeation flux by paffle shape and presence or absence of rotation during membrane separation
第 1 3図に示す膜分離システムを使用して膜分離を行い、 濃 縮液の濃度と透過流束の関係を調査した結果を第 1 5図に示す, 本発明の膜分離装置としては、 第 2図に示すように、 膜体の一 方の側および他方の側にそれぞれ長方形状バッフルを 2本有す るものを使用し、 従来の膜分離装置としては、 第 4 5図に示す 回転型膜分離装置と、 第 4 4図に示すクロスフ口一方式の膜分 離装置を使用した。 の膜分離条件は以下のとおりである。 ィ. 共通条件  A membrane separation was performed using the membrane separation system shown in Fig. 13 and the result of investigating the relationship between the concentration of the concentrated solution and the permeation flux is shown in Fig. 15. As shown in FIG. 2, a membrane having two rectangular baffles on one side and the other side is used as a conventional membrane separation apparatus. A membrane separation device of the type and a cross-mouth type membrane separation device shown in FIG. 44 were used. Are as follows. B. Common conditions
a 膜体 U F膜 (限外濾過膜、 直径 2 6 5 mm)  a Membrane U F membrane (ultrafiltration membrane, diameter 2 65 mm)
b 温度 2 5 °C  b Temperature 25 ° C
c 被処理液 ラテックス、 初期濃度 3 . 3重量% d 操作圧力 4 5 0 k P a  c Liquid to be treated Latex, initial concentration 3.3% by weight d Operating pressure 450 kPa
口. 回転型膜分離装置の回転条件 Mouth. Rotational condition of rotary membrane separator
a 膜体の外周速度 1 2 mZ秒 第 1 5図において、 記号 「〇」 、 「▲」 、 「拿」 の意味は、 それぞれ本発明に係る膜分離方法 (第 2図の回転型膜分離装置 を使用したもの) 、 第 4 5図に示す回転型膜分離装置を使用し た膜分離方法、 クロスフロー方式による膜分離方法 (第 1 3図 の膜分離システムにおいて膜分離装置 3 7を非回転型としたも の) を示す。 第 1 5図に示すように、 本発明の膜分離方法 (記 号〇) は、 クロスフロー方式 (記号譬) のものに比べて遙かに 大きな透過流束を示し、 第 4 5図に示す回転型膜分離装置を使 用した膜分離方法 (記号▲) に比べても優れた透過流束を示し ている。 というのは、 第 4 5図の回転型膜分離装置では、 リン グ状のバッフル 6 8は膜体間を完全に仕切り、 バッフル 6 8が 膜体 6 4を覆う面積が広く、 容器 6 2内の被処理液体は狭くて 長い流路 6 9を通過するので、 圧力損失が大きくなり、 透過流 束を大きくすることができないのである。 なお、 第 4 5図の回 転型膜分離装置では、 バッフル 6 8が均一に膜表面を覆ってい るため、 被処理液の乱れが小さいという欠点もある。 a Peripheral velocity of the membrane 1 2 mZ seconds In FIG. 15, the symbols “”, “▲”, and “拿” mean the membrane separation method according to the present invention (using the rotary membrane separation device in FIG. 2) and FIG. The membrane separation method using a rotary membrane separation device and the cross-flow type membrane separation method (in which the membrane separation device 37 in the membrane separation system of FIG. 13 is a non-rotation type) shown in Fig. 13 are shown. As shown in FIG. 15, the membrane separation method of the present invention (symbol 〇) shows a much larger permeation flux than that of the cross-flow method (symbol parable), and is shown in FIG. It shows an excellent permeation flux compared to the membrane separation method using a rotary membrane separator (symbol ▲). That is, in the rotary membrane separator shown in Fig. 45, the ring-shaped baffle 68 completely separates the membranes, the baffle 68 has a large area covering the membrane 64, and the inside of the vessel 62 Since the liquid to be processed passes through the narrow and long flow path 69, the pressure loss increases, and the permeation flux cannot be increased. In addition, in the rotary membrane separation apparatus shown in FIG. 45, since the baffle 68 uniformly covers the membrane surface, there is a disadvantage that the turbulence of the liquid to be treated is small.
なお、 クロスフロー方式では、 濃度 2 2 . 6 %での透過流束 はほぼゼロであり、 これ以上に濃縮することは不可能であるが、 本発明の膜分離方法は、 濃度 2 2 . 6 %でも透過流束は 3 0 L (リットル) m 2 Zhrを超えており、 さらに、 高濃縮することが可 能である。 In the cross-flow method, the permeation flux at a concentration of 22.6% is almost zero, and it is impossible to further concentrate. However, the membrane separation method of the present invention employs a concentration of 22.6%. Even at%, the permeation flux exceeds 30 L (liter) m 2 Zhr, and further high concentration is possible.
( 3 ) 圧力損失に及ぼすバッフル形状の影響  (3) Effect of baffle shape on pressure loss
第 1 3図に示す膜分離システムを使用し、 第 2図に示す回転 型膜分離装置と第 4 5図に示す回転型膜分離装置において、 膜 体を U F膜 (直径 2 6 5 mm) とし、 温度 2 5 °C , 初期濃度が 3 . 3重量%であるラテックスを 1 m 3 /lir 、 0 . 2 M P aで上記 各膜分離装置に供給し、 膜体の外周速度を 1 2 mZ秒とした場 合において、 透過液の流量と濃縮液の流量と濃縮液の圧力を調 査した。 その結果を以下の表 1 に示す, Using the membrane separation system shown in Fig. 13 and the rotary membrane separator shown in Fig. 2 and the rotary membrane separator shown in Fig. 45, the membrane is a UF membrane (diameter of 26.5 mm). A latex having a temperature of 25 ° C and an initial concentration of 3.3% by weight is supplied to each of the above-mentioned membrane separation devices at 1 m 3 / lir and 0.2 MPa, and the outer peripheral velocity of the membrane is set to 12 mZ seconds. The flow rate of the permeate, the flow rate of the concentrate, and the pressure of the concentrate. Inspected. The results are shown in Table 1 below.
【表 1】 【table 1】
Figure imgf000030_0001
表 1 に示すように、 第 2図の回転型膜分離装置では、 濃縮液 の圧力低下は実質的になく、 一方、 全仕切型バッフルを使用し た第 4 5図の回転型膜分離装置では、 濃縮液の出口圧力は被処 理液の供給圧力の 1 / 4に低下している。 また、 本発明の回転 型膜分離装置の透過液の流量は全仕切型パッフルを使用した第 4 5図のものに比べて多く、 逆に、 本発明の回転型膜分離装置 の濃縮液の流量は全仕切型パッフルを使用した第 4 5図のもの の半分である。 すなわち、 本発明の膜分離方法によれば、 5倍 に濃縮することができるが、 第 4 5図の膜分離装置では 2 . 5 倍にしか濃縮することができない。 このように、 本発明の膜分 離方法によれば、 高透過流量で高濃度まで濃縮することが可能 で、 圧力損失が極めて小さい膜分離方法を提供することができ る。
Figure imgf000030_0001
As shown in Table 1, the rotary membrane separator of Fig. 2 has substantially no pressure drop of the concentrated solution, while the rotary membrane separator of Fig. 45 using all partition baffles However, the outlet pressure of the concentrated liquid is reduced to 1/4 of the supply pressure of the liquid to be treated. The flow rate of the permeate in the rotary membrane separator of the present invention is larger than that in FIG. 45 using the all-partitioned paffle, and conversely, the flow rate of the concentrate in the rotary membrane separator of the present invention Is half that of Fig. 45 using all-partitioned paffles. That is, according to the membrane separation method of the present invention, the concentration can be increased five-fold, but with the membrane separation device shown in FIG. 45, the concentration can be performed only 2.5-fold. Thus, according to the membrane separation method of the present invention, it is possible to concentrate to a high concentration at a high permeation flow rate, and to provide a membrane separation method with extremely small pressure loss.
( 4 ) パッフル形状の違いによる操作圧力と透過流束への影響 ( a ) 長方形状パッフルとリング状バッフルの場合  (4) Influence on operation pressure and permeation flux due to difference in paffle shape (a) For rectangular and ring baffles
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置としては、 第 2図に示すように、 膜体の一方の側および他方 の側にそれぞれ長方形状パッフルを 2本有するものを使用し、 リング状パッフルを有する従来の膜分離装置としては、 第 4 5 図に示すものを使用し、 操作圧力と透過流束の関係を調査した 結果を第 1 6図に示す。 なお、 操作圧力とは、 被処理液の供給 圧力から遠心力を差し引いた有効圧力をいい、 実際に被処理液 の透過に利用された圧力である。 Using the membrane separation system shown in FIG. 13, the membrane separation device of the present invention has two rectangular paffles on one side and the other side of the membrane as shown in FIG. The conventional membrane separation device having a ring-shaped paffle was used as shown in Fig. 45, and the result of investigating the relationship between operating pressure and permeation flux is shown in Fig. 16. The operating pressure is the effective pressure obtained by subtracting the centrifugal force from the supply pressure of the liquid to be treated. Is the pressure used for the permeation of
第 1 6図に示すように、 膜外周速度が 8 m/sec, 1 6 m/ sec、 2 4mZsecのいずれの速度においても、 長方形状バッフ ルを有する本発明の膜分離装置 (符号△、 口、 〇) は、 リング 状バッフルを有する従来の膜分離装置 (符号▲、 酾、 ·) より 透過流束は大きい。  As shown in FIG. 16, at any of the peripheral speeds of the membrane of 8 m / sec, 16 m / sec, and 24 mZsec, the membrane separation device of the present invention having a rectangular baffle (symbol △, port) , 〇) have a higher permeation flux than conventional membrane separation devices with a ring-shaped baffle (signs ▲, 酾, ·).
(b) 長方形状バッフルと棒状バッフルの場合  (b) Rectangular and bar baffles
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置としては、 第 3図に示すように、 膜体の一方の側および他方 の側にそれぞれ長方形状バッフルを 4本有するものを使用し、 棒状バッフルを有する膜分離装置としては、 第 1 7図に示すよ うに、 膜体 1 2の一方の側に 4本の棒状バッフル 2 1を有する ものを使用し、 操作圧力と透過流束の関係を調査した結果を第 1 8図に示す。 なお、 第 1 7図には示されていないが、 膜体 1 2の他方の側にも同数の棒状パッフルが同じように配置されて おり、 棒状バッフルの数が異なる点を除けば、 他の構成は基本 的に第 4図と同様であり、 棒状パッフル 2 1は、 容器 2の両面 2 aと 2 bを接続する、 第 4図 ( c ) に示すような段付き締結 具 2 2の凹部 2 3に係合している。  Using the membrane separation system shown in FIG. 13, the membrane separation device of the present invention has four rectangular baffles on one side and the other side of the membrane as shown in FIG. As shown in Fig. 17, a membrane separator having four rod-shaped baffles 21 on one side of the membrane 12 was used as the membrane separator having rod-shaped baffles. Fig. 18 shows the results of investigation of the relationship between permeation flux. Although not shown in FIG. 17, the same number of rod-shaped baffles are arranged in the same manner on the other side of the membrane 12, except for the difference in the number of rod-shaped baffles. The configuration is basically the same as that shown in Fig. 4. The rod-shaped paffle 21 connects the two surfaces 2a and 2b of the container 2, and the recess of the stepped fastener 22 shown in Fig. 4 (c). 2 and 3 are engaged.
第 1 8図に示すように、 膜外周速度が 8 m/sec または 1 6 m/sec のいずれにおいても、 長方形状パッフルを有する本発 明の膜分離装置 (符号△、 口) は、 棒状バッフルを有する膜分 離装置 (符号▲、 鵬) より透過流束は格段に大きい。  As shown in Fig. 18, the membrane separation device of the present invention having a rectangular paffle (symbol △, mouth) has a rod-shaped baffle regardless of whether the membrane peripheral speed is 8 m / sec or 16 m / sec. The permeation flux is much higher than that of a membrane separation device with a symbol (▲, Peng).
( c ) 長方形状バッフルと孔あき板状バッフルの場合  (c) Rectangular baffle and perforated plate baffle
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置としては、 第 3図に示すように、 膜体の一方の側および他方 の側に長方形状バッフルを 4本有するものを使用し、 孔あき板 状バッフルを有する膜分離装置としては、 第 1 9図に示すよう に、 容器の内壁 1 5から回転軸 3の近傍まで孔あき板状バッフ ル 4 5が設置されたものを使用し、 操作圧力と透過流束の関係 を調査した結果を第 2 0図に示す。 なお、 第 1 9図には示され ていないが、 膜体 1 2の他方の側にも同数の孔あき板状バッフ ルが同じように配置されており、 バッフルの形状が異なる点を 除けば、 他の構成は基本的に第 3図と同様である。 Using the membrane separation system shown in Fig. 13, the membrane separation device of the present invention has four rectangular baffles on one side and the other side of the membrane as shown in Fig. 3. As a membrane separation device having a perforated plate-shaped baffle, as shown in FIG. Fig. 20 shows the results of an investigation of the relationship between operating pressure and permeation flux using a perforated plate-like baffle 45 installed from the inner wall 15 of the container to the vicinity of the rotating shaft 3. . Although not shown in FIG. 19, the same number of perforated plate-like baffles are similarly arranged on the other side of the membrane 12, except that the shape of the baffles is different. The other configuration is basically the same as FIG.
第 2 0図に示すように、 膜外周速度が 8 mZsec , 1 6 m/ sec、 24 m/secのいずれにおいても、 長方形状パッフルを有 する本発明の膜分離装置 (符号△、 口、 〇) は、 孔あき板状バ ッフルを有する膜分離装置 (符号▲、 酾、 書) より透過流束は 格段に大きい。  As shown in FIG. 20, the membrane separation device of the present invention having a rectangular paffle (symbols △, 、, 〇) at any of the membrane peripheral speeds of 8 mZsec, 16 m / sec, and 24 m / sec. ) Has a much higher permeation flux than a membrane separator with perforated plate-shaped baffles (signs ▲, 酾,).
( 5 ) 長方形状バッフルの本数と透過流束  (5) Number of rectangular baffles and flux
第 1 3図に示す膜分離システムを使用し、 膜体の表面積に対 するバッフルの投影面積を 5 0 %で一定とした場合において、 膜体の一方の側および他方の側に、 容器の一方の内壁近傍から 他方の内壁近傍まで配置した長方形状バッフルの本数と透過流 束の関係を調査した結果を第 2 1図に示す。  Using the membrane separation system shown in Fig. 13 and when the projected area of the baffle with respect to the surface area of the membrane is fixed at 50%, one side of the membrane and the other Figure 21 shows the results of an investigation of the relationship between the number of rectangular baffles arranged from the vicinity of the inner wall to the vicinity of the other inner wall and the permeation flux.
第 2 1図に示すように、 膜外周速度が 8 mZsec (△) 、 2 4m/sec (〇) のいずれにおいても、 長方形状バッフルを 1 本有することにより、 長方形状パッフルなしの場合に比べて透 過流束は顕著に増加し、 長方形状バッフルの本数が増えるとと もに透過流束は大きくなる。 しかし、 長方形状パッフルを 2 0 本より増やしても、 透過流束は上昇しない。  As shown in Fig. 21, when the outer peripheral speed of the film is 8 mZsec (△) or 24 m / sec (〇), the presence of one rectangular baffle makes it possible to reduce The permeation flux increases significantly, and the permeation flux increases as the number of rectangular baffles increases. However, the permeation flux does not increase even if the number of rectangular paffles is increased beyond 20.
そこで、 バッフルの取付の煩雑さを回避し、 しかも、 十分な 透過流束を得るためには、 バッフルの数は 1〜 2 0本とするの が好ましい。  Therefore, it is preferable that the number of baffles is 1 to 20 in order to avoid the complicated mounting of the baffle and to obtain a sufficient permeation flux.
( 6 ) 膜体の表面積に対するバッフルの投影面積と透過流束 第 1 3図に示す膜分離システムを使用し、 第 2図に示すよう に、 膜体の一方の側および他方の側に設ける長方形状バッフル の本数をそれぞれ 2本とした場合に、 膜体の表面積に対する長 方形状バッフルの投影面積 (%) と透過流束の関係を調査した 結果を第 2 2図に示し、 第 2 2図の各パッフルの投影面積 (%) に対する透過流束 (L (リットル)ノ m2ノ hr) の数値を、 膜外周速 度が 8 m/sec の場合は以下の表 2に示し、 膜外周速度が 2 4 m/sec の場合は以下の表 3に示す。 (6) Projected area and permeation flux of the baffle with respect to the surface area of the membrane using the membrane separation system shown in Fig. 13 and as shown in Fig. 2 In addition, when the number of rectangular baffles provided on one side and the other side of the membrane is two, the relationship between the projected area (%) of the rectangular baffle and the permeation flux with respect to the surface area of the membrane is shown. shows the result of investigation into the second 2 figures, the numerical value of the flux (L (liters) Bruno m 2 Bruno hr) to the projected area of each Paffuru second FIG. 2 (%), Makugaishu speed is 8 m Table 2 below shows the case of / m, and Table 3 below shows the case of 24 m / sec.
【表 2】  [Table 2]
Figure imgf000033_0001
第 2 2図に示すように、 膜外周速度が 8mZsec (△) 、 2 4mZsec (〇) のいずれにおいても、 膜体の表面積に対する パッフルの投影面積が 1 %でも、 長方形状パッフルなしの場合 に比べて透過流束は顕著に増加し、 そのパッフルの投影面積が 増えるとともに透過流束は大きくなる。 しかし、 パッフルの投 影面積が 9 0 %を超えると、 透過流束は大きく低下することが 分かる。 というのは、 バッフルの投影面積が 9 0 %を超えるも のは、 上記した従来のリング状バッフルと同じように、 パッフ ルが膜体を覆う面積が多くて、 被処理液の圧力損失が大きくな るので透過効率が低下するからである。
Figure imgf000033_0001
As shown in Fig. 22, when the outer peripheral velocity of the film is 8 mZsec (△) or 24 mZsec (〇), the projected area of the paffle with respect to the surface area of the film body is 1%, compared to the case without the rectangular paffle. As a result, the permeation flux increases significantly, and the permeation flux increases as the projected area of the paffle increases. However, it can be seen that when the projected area of the paffle exceeds 90%, the permeation flux is greatly reduced. The reason for the baffle projection area exceeding 90% is that, like the above-mentioned conventional ring-shaped baffle, the baffle has a large area covering the membrane and the pressure loss of the liquid to be treated is large. This is because the transmission efficiency decreases.
第 2 2図において、 膜外周速度が 2 4 m/sec の方が 8 mZ sec より透過流束は大きいが、 一方、 膜外周速度が大きくなる と回転に必要な動力が増加する (回転に必要な動力は略回転数 の 3乗に比例して増加する) という不都合なことがあるが、 8 m/sec 程度の膜外周速度であれば、 回転に必要な動力が過大 になることはない。 さらに、 本発明が対象とする技術分野では、 平均透過流束として、 3 0 LZm2/hr 以上を要求されること が多いので、 経済性と本発明が対象とする技術分野で必要とさ れる透過流束の両方の要求を満たすためには、 第 2 2図および 表 2より、 膜体の表面積に対するバッフルの投影面積は、 1 0 〜 9 0 %とするのが好ましい。 また、 装置内の圧力損失を上昇 させずに透過流束のみを増すためには、 膜体の表面積に対する バッフルの投影面積は 2 6〜 7 0 %であるのがさらに好ましい。 In Fig. 22, the permeation flux is larger at 24 m / sec when the outer peripheral velocity is 8 mZ sec, but the power required for rotation increases when the outer peripheral velocity increases (necessary for rotation). Power is approximately rotation speed However, the power required for rotation does not become excessive at a membrane peripheral speed of about 8 m / sec. Furthermore, in the technical field targeted by the present invention, an average permeation flux of 30 LZm 2 / hr or more is often required, so that it is necessary for economic efficiency and the technical field targeted by the present invention. In order to satisfy both requirements of the permeation flux, it is preferable from FIG. 22 and Table 2 that the projected area of the baffle with respect to the surface area of the membrane is 10 to 90%. Further, in order to increase only the permeation flux without increasing the pressure loss in the apparatus, the projected area of the baffle with respect to the surface area of the membrane is more preferably 26 to 70%.
( 7 ) 膜外周速度と透過流束  (7) Peripheral velocity and permeation flux
第 1 3図に示す膜分離システムを使用し、 第 2図に示すよう に、 膜体の一方の側および他方の側に設ける長方形状パッフル の本数を 2本とした場合 (膜体の表面積に対するパッフルの投 影面積が 5 0 %の場合) に、 膜外周速度と透過流束の関係を調 査した結果を第 2 3図に示す。  When the membrane separation system shown in Fig. 13 is used and the number of rectangular paffles provided on one side and the other side of the membrane is two as shown in Fig. 2 (based on the surface area of the membrane) Fig. 23 shows the results of an investigation of the relationship between the membrane peripheral velocity and the permeation flux when the projection area of the paffle was 50%).
第 2 3図において、 符号 「秦」 、 「△」 、 「躍」 、 「◊」 は、 それぞれ、 被処理液の濃度が 1 0 %、 2 0 %、 3 0 %、 5 0 % を示す。 第 2 3図に示すように、 膜外周速度が 1 m/sec 未満 では十分に実用に供しうる程度の大きさの透過流束を得ること はできない。 特に、 3 0 %を超える高濃度では、 膜外周速度が 低いと透過流束は極めて低くなる。 というのは、 高濃度の液の 膜分離を行うためには、 高粘性にうち勝つだけの十分な運動ェ ネルギ一が必要であり、 運動エネルギーは速度の自乗に比例す るから、 1 mZsec 未満の膜体回転速度では、 膜分離に十分な エネルギーを供給できないからである。  In FIG. 23, symbols “Hata”, “△”, “Jiyu”, and “◊” indicate that the concentration of the liquid to be treated is 10%, 20%, 30%, and 50%, respectively. As shown in FIG. 23, if the outer peripheral velocity of the film is less than 1 m / sec, it is not possible to obtain a sufficiently high permeation flux for practical use. In particular, at a high concentration exceeding 30%, the permeation flux becomes extremely low when the peripheral speed of the membrane is low. This is because in order to perform high-concentration liquid membrane separation, sufficient kinetic energy to overcome the high viscosity is required, and the kinetic energy is proportional to the square of the velocity. This is because sufficient energy for membrane separation cannot be supplied at the membrane rotation speed.
2 0 %以下の低濃度では、 膜外周速度が 1 5 mZsec を超え ると、 透過流束はほぼ一定であるが、 3 0 %以上の高濃度では、 膜外周速度が 3 0 m/sec までは、 透過流束は増加している。 しかし、 膜外周速度が 3 0 m/sec を超えると、 低濃度でも高 濃度でも、 透過流束は小さくなる。 At a low concentration of 20% or less, the permeation flux is almost constant when the membrane peripheral speed exceeds 15 mZsec, but at a high concentration of 30% or more, The permeation flux increases up to a membrane peripheral velocity of 30 m / sec. However, when the peripheral speed of the membrane exceeds 30 m / sec, the permeation flux decreases at both low and high concentrations.
そこで、 低濃度から高濃度まで十分な透過流束を得るために は、 膜外周速度は、 l〜 3 0 mZsec とするのが好ましい。  Therefore, in order to obtain a sufficient permeation flux from a low concentration to a high concentration, the outer peripheral velocity of the membrane is preferably set to 1 to 30 mZsec.
( 8 ) 膜体の直径と透過流束  (8) Diameter of membrane and flux
第 1 3図に示す膜分離システムを使用し、 第 2図に示すよう に、 膜体の一方の側および他方の側に設ける長方形状パッフル の本数を 2本とした場合 (膜体の表面積に対するバッフルの投 影面積が 5 0 %の場合) に、 膜体の直径と透過流束の関係を調 查した結果を第 2 4図に示す。  When the membrane separation system shown in Fig. 13 is used and the number of rectangular paffles provided on one side and the other side of the membrane is two as shown in Fig. 2 (based on the surface area of the membrane) Figure 24 shows the relationship between the diameter of the membrane and the permeation flux when the projected area of the baffle was 50%).
第 2 4図において、 符号 「譬」 、 「▲」 、 「園」 、 「♦」 、 「V」 は、 それぞれ、 膜体の回転数が 2 0 0 r pm、 6 0 0 r pm、 1 0 0 0 r p m> 1 4 0 0 r pm、 1 8 0 0 r pmを示 す。 回転数が 1 8 0 0 r pmの超高速では、 膜体直径が増加し ても、 透過流束はごく僅かしか増えない。 膜分離エネルギーは 回転数の自乗に比例し、 回転数の効果が大きく寄与するので、 超高速回転では、 膜体直径の大小の差はそれほど問題とならな いからである。  In FIG. 24, the symbols “parable”, “▲”, “garden”, “♦”, and “V” indicate that the rotational speed of the membrane is 200 rpm, 600 rpm, and 10 rpm, respectively. 0 0 rpm> 1400 rpm and 1800 rpm. At a very high rotation speed of 180 rpm, the permeation flux increases very little even if the membrane diameter increases. The membrane separation energy is proportional to the square of the rotation speed, and the effect of the rotation speed greatly contributes. Therefore, at ultra-high speed rotation, the difference in the diameter of the membrane body does not matter much.
一方、 回転数が 1 4 0 0 r pm以下では、 膜体直径が増加す ると、 透過流束も大きくなるが、 膜体直径が 1 1 0 0mmを超え ると、 透過流束はそれ以上増加しない。 また、 膜体直径が 2 0 0 mm未満では、 回転数が 6 0 0 r p m未満の低速回転では十分 に実用に供しうる程度の大きさの透過流束を得ることはできな い。  On the other hand, when the rotation speed is 140 rpm or less, the permeation flux increases as the membrane diameter increases, but the permeation flux increases when the membrane diameter exceeds 110 mm. Does not increase. If the diameter of the membrane is less than 200 mm, the permeation flux cannot be sufficiently large for practical use at a low rotation speed of less than 600 rpm.
そこで、 回転に必要な動力の大幅な増加を抑え、 しかも、 低 速から高速回転まで十分な透過流束を得るためには、 膜体直径 は 2 0 0〜: L 1 0 0 mmとするのが好ましい。 ( 9 ) 膜体の回転数と透過流束 Therefore, in order to suppress a large increase in the power required for rotation and to obtain a sufficient permeation flux from low speed to high speed rotation, the membrane diameter should be 200 mm: L100 mm. Is preferred. (9) Rotation speed and flux of membrane
第 1 3図に示す膜分離システムを使用し、 第 2図に示すよう に、 膜体の一方の側および他方の側に設ける長方形状パッフル の本数を 2本とした場合 (膜体の表面積に対するバッフルの投 影面積が 5 0 %の場合) に、 膜体の回転数と透過流束の関係を 調査した結果を第 2 5図に示す。  When the membrane separation system shown in Fig. 13 is used and the number of rectangular paffles provided on one side and the other side of the membrane is two as shown in Fig. 2 (based on the surface area of the membrane) Figure 25 shows the results of an investigation of the relationship between the membrane rotation speed and the permeation flux when the projected area of the baffle is 50%).
第 2 5図において、 符号 「參」 、 「▲」 、 「圏」 、 「令」 、 「T」 は、 それぞれ、 膜体の直径が 1 1 0 0 mm、 7 5 0 mm, 4 5 0 mm, 3 0 0 0 mm, 2 0 0 0 mm を 示す。 回転数が 2 0 r p m未満では、 いずれの膜体直径でも十分に実用に供しうる程度 の大きさの透過流束を得ることはできない。 回転数が 2 0 r p mより増加するとともに透過流束は大きくなつているが、 1 8 0 0 r p mでは、 いずれの膜体直径でもほぼ同じ透過流束とな り、 回転数を 1 8 0 0 r p mより大きくしても透過流束はそれ 以上上昇しない。  In FIG. 25, the symbols “see”, “▲”, “sphere”, “instruction”, and “T” indicate that the diameters of the membranes are 110 mm, 7500 mm, and 450 mm, respectively. , 3 000 mm and 2 000 mm. If the rotation speed is less than 20 rpm, it is not possible to obtain a sufficiently high permeation flux with any membrane diameter. The permeation flux increased as the rotation speed increased from 20 rpm, but at 180 rpm, the permeation flux was almost the same for all membrane diameters, and the rotation speed was increased to 180 rpm. Larger values do not increase the permeation flux any further.
そこで、 回転に必要な動力の大幅な増加を抑え、 しかも、 膜 体直径の大小に関わらず十分な透過流束を得るためには、 膜体 の回転数は、 2 0〜 1 8 0 0 r p mとするのが好ましい。  Therefore, in order to suppress a large increase in the power required for rotation and to obtain a sufficient permeation flux regardless of the size of the membrane diameter, the rotation speed of the membrane is set to 20 to 180 rpm. It is preferred that
( 1 0 ) 膜体とバッフルの間隔と透過流束  (10) Interval between membrane and baffle and flux
第 1 3図に示す膜分離システムを使用し、 第 2図に示すよう に、 膜体の一方の側および他方の側に設ける長方形状パッフル の本数を 2本とした場合 (膜体の表面積に対するバッフルの投 影面積が 5 0 %の場合) に、 膜体とバッフルの間隔と透過流束 の関係を調査した結果を第 2 6図に示す。  When the membrane separation system shown in Fig. 13 is used and the number of rectangular paffles provided on one side and the other side of the membrane is two as shown in Fig. 2 (based on the surface area of the membrane) Figure 26 shows the results of an investigation of the relationship between the distance between the membrane and the baffle and the permeation flux when the projected area of the baffle is 50%).
第 2 6図に示すように、 膜体とバッフルの間隔が 2 mm未満で も、 1 8 mmを超えても、 十分に実用に供しうる程度の大きさの 透過流束を得ることはできない。  As shown in FIG. 26, even if the distance between the membrane and the baffle is less than 2 mm or more than 18 mm, it is not possible to obtain a sufficiently high permeation flux for practical use.
そこで、 膜体を破損せず、 しかも、 十分な透過流束を得るた めには、 膜体とバッフルの間隔は、 2〜 1 8 mmとするのが好ま しい。 Therefore, it is necessary to obtain a sufficient permeation flux without damaging the membrane. For this purpose, the distance between the membrane and the baffle is preferably 2 to 18 mm.
( 1 1 ) 透過流束の安定性  (11) Stability of permeation flux
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置として、 第 2図に示すように、 膜体の一方の側および他方の 側にそれぞれ長方形状バッフルを 2本有するものを使用し、 運 転時間に対する透過流束の変化を調査した結果を第 2 7図に示 す。 第 2 7図に示すように、 8時間膜分離を実行しても透過流 束 (A) は変化せず、 本発明の膜分離装置は透過流束の安定性 において優れていることが分かる。  Using the membrane separation system shown in Fig. 13 as the membrane separation device of the present invention, as shown in Fig. 2, having two rectangular baffles on one side and the other side of the membrane, respectively. Fig. 27 shows the results of an investigation of the change in permeation flux with respect to the operating time using the. As shown in FIG. 27, the permeation flux (A) does not change even after performing the membrane separation for 8 hours, which indicates that the membrane separation device of the present invention is excellent in the stability of the permeation flux.
( 1 2 ) 濃度分極低減効果  (1 2) Concentration polarization reduction effect
( a) M g S 04 阻止率 (a) M g S 0 4 rejection
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置として、 第 3図に示すように、 膜体の一方の側および他方の 側にそれぞれ長方形状パッフルを 4本有するものを使用し、 膜 外周速度に対する濃度分極低減効果を調査した結果を第 2 8図 に示す。 なお、 Mg S C 阻止率 (譬) とは、 次式で定義され るものをいう。  Using the membrane separation system shown in FIG. 13 and a membrane separation device of the present invention, as shown in FIG. 3, having four rectangular paffles on one side and the other side of the membrane, respectively. Fig. 28 shows the results of an investigation into the effect of reducing the concentration polarization on the outer peripheral velocity of the membrane by using. The MgS C rejection is defined by the following equation.
M g S C 阻止率 = 〔 1一 (透過液濃度) Z (原液 M g S C 濃度) 〕 X 1 0 0 (%)  M g S C rejection = [1-1 (permeate concentration) Z (stock solution M g S C concentration)] X 100 (%)
すなわち、 Mg S C 阻止率の数値が大きいほど、 濃度分極 低減効果が優れていることを示し、 本発明の膜分離装置は、 十 分に実用に供する程度の高い M g S 04 阻止率を有している。 That is, as the value of Mg SC rejection is high, indicates the superiority of the concentration polarization reducing effect, membrane separation apparatus of the present invention, have a high degree of M g S 0 4 rejection for practical use ten minutes are doing.
(b) N a C 1 阻止率  (b) N a C 1 rejection
第 1 3図に示す膜分離システムを使用し、 本発明の膜分離装 置として、 第 3図に示すように、 膜体の一方の側および他方の 側にそれぞれ長方形状バッフルを 4本有するものを使用し、 膜 外周速度に対する濃度分極低減効果を調査した結果を第 2 9図 に示す。 なお、 N a C l阻止率 (秦) とは、 次式で定義される あのをいう。 Using the membrane separation system shown in FIG. 13 and a membrane separation device of the present invention having four rectangular baffles on one side and the other side of the membrane as shown in FIG. Figure 29 shows the results of an investigation of the effect of reducing the concentration polarization on the peripheral velocity of the membrane using Shown in The NaCl rejection rate (Hata) is defined by the following equation.
N a C 1 阻止率二 〔 1 一 (透過液濃度) / (原液 N a C 1濃 度) 〕 X 1 0 0 ( % )  N a C 1 rejection rate 2 [1 (permeate concentration) / (stock solution N a C 1 concentration)] X 100 (%)
すなわち、 N a C 1 阻止率の数値が大きいほど、 濃度分極低 減効果が優れていることを示し、 本発明の膜分離装置は、 十分 に実用に供する程度の高い N a C 1 阻止率を有している。  In other words, the larger the numerical value of the NaC 1 rejection ratio, the better the concentration polarization reduction effect. The membrane separation device of the present invention has a high Na C 1 rejection ratio sufficient for practical use. have.
( 1 3 ) 放射状パッフルを用いる場合の透過流束に及ぼす膜体 直径と膜体回転数の効果  (13) Effects of membrane diameter and membrane rotation speed on permeation flux with radial paffle
第 3 0図は、 第 1 3図に示す膜分離システムを使用し、 濃度 1重量%のラテックスを用いて、 膜間差圧 (膜体に対する流入 側圧力から透過側圧力を引いた差分の圧力で、 実際に被処理液 の透過に利用された圧力) が 2 0 0 k P aで、 温度が 2 5 °Cで、 膜が限外濾過膜 (U F膜) で、 バッフルが第 8図に示す放射状 バッフル (バッフル本数が 8本) で、 膜体の表面積に対するバ ッフルの投影面積が 4 0 %である場合において、 膜体の直径を 3 0 0〜 1 2 5 0讓の範囲で変えて、 膜体回転数と透過流束の 関係を調査した結果である。  Fig. 30 shows the difference between the transmembrane pressure (the pressure obtained by subtracting the pressure on the permeate side from the pressure on the inflow side of the membrane) using the membrane separation system shown in Fig. 13 and using latex with a concentration of 1% by weight. The pressure actually used for permeation of the liquid to be treated is 200 kPa, the temperature is 25 ° C, the membrane is an ultrafiltration membrane (UF membrane), and the baffle is shown in Fig. 8. With the radial baffle shown (the number of baffles is 8) and the projected area of the baffle is 40% of the surface area of the film, the diameter of the film is changed in the range of 300 to 125 It is a result of investigating the relationship between the membrane rotation speed and the permeation flux.
第 3 1図は、 第 1 3図に示す膜分離システムを使用し、 濃度 3 0重量%のラテックスを用いて、 膜間差圧が 4 0 0 k P aで、 温度が 2 5 °Cで、 膜が U F膜で、 バッフルが第 8図に示す放射 状バッフル (バッフル本数が 8本) で、 膜体の表面積に対する バッフルの投影面積が 4 0 %である場合において、 膜体の直径 を 3 0 0〜 1 2 5 0匪の範囲で変えて、 膜体回転数と透過流束 の関係を調査した結果である。 いわば、 第 3 0図は、 低圧力、 低濃度の低負荷状態における膜分離性能を表す図で、 第 3 1図 は、 高圧力、 高濃度の高負荷状態における膜分離性能を表す図 である。 第 3 0図に示されているように、 低負荷状態では、 膜体直径 が 3 0 0〜 1 2 5 0 mmの間においては、 回転数が 5 0 r p mに なると、 急激に透過流束が増加しているが、 5 0 r pm以上に 回転数が増加した場合の透過流束の上昇量は少ない。 Fig. 31 shows the results obtained by using the membrane separation system shown in Fig. 13 and using latex at a concentration of 30% by weight, at a transmembrane pressure of 400 kPa and at a temperature of 25 ° C. When the membrane is a UF membrane, the baffles are radial baffles (the number of baffles is 8) shown in Fig. 8, and the projected area of the baffle is 40% of the surface area of the membrane, the diameter of the membrane is 3 This is the result of investigating the relationship between the membrane rotation speed and the permeation flux in the range of 0 to 1250. In other words, Fig. 30 shows the membrane separation performance under low pressure and low concentration and low load conditions, and Fig. 31 shows the membrane separation performance under high pressure and high concentration and high load conditions. . As shown in Fig. 30, under a low load condition, the permeation flux sharply increases when the rotational speed reaches 50 rpm, when the membrane diameter is between 300 and 125 mm. Although increasing, the amount of increase in the permeation flux when the rotation speed is increased to 50 rpm or more is small.
第 3 1図に示されているように、 高負荷状態では、 膜体直径 が大きくなった場合の回転数の増加に対する透過流束の増加割 合は大きくなつているが、 膜体直径が 1 0 0 0 mm力 ら 1 2 5 0 匪に増えても、 透過流束はそれほど上昇しないことが分かる。 また、 膜体直径が 3 0 0〜 1 2 5 0 mmの範囲の透過流束の最大 値はほぼ同じで、 直径 3 0 0 mmの膜体でも、 回転数 1 0 0 0 r pmで透過流束は最大値に達している。  As shown in Fig. 31, under high load conditions, the rate of increase of the permeation flux with respect to the increase in the number of revolutions when the membrane diameter increases is large, but the membrane diameter is 1 It can be seen that the permeation flux does not increase so much even if the force increases from 250 mm to 1250. Also, the maximum value of the permeation flux in the membrane diameter range of 300 to 125 mm is almost the same, and the permeation flux of the membrane with a diameter of 300 mm is also obtained at the rotation speed of 100 rpm. The bundle has reached a maximum.
装置が長くなりすぎないように現実的な膜枚数の装置を提供 するということと、 膜体直径に比例する回転に必要な動力が大 きくなりすぎないようにするという点を考慮すると、 第 3 0図 および第 3 1図より、 放射状バッフルを用いる場合、 膜体直径 は、 3 0 0〜 1 0 0 0 mmの範囲が適正であり、 膜体の回転数は、 5 0〜 1 0 0 0 r pmが経済的で効率的な運転範囲であること が分かる。  Considering that a realistic number of membranes should be provided so that the machine would not be too long, and that the power required for rotation in proportion to the membrane diameter should not be too large, From Fig. 0 and Fig. 31, when the radial baffle is used, the diameter of the membrane is appropriate in the range of 300 to 100 mm, and the rotation speed of the membrane is 50 to 100 It can be seen that r pm is an economical and efficient operating range.
( 1 4) 透過流束に及ぼす膜体と放射状パッフルの間隙 第 3 2図は、 第 1 3図に示す膜分離システムを使用し、 濃度 2 0重量%のラテックスを用いて、 膜間差圧が 4 0 0 k P aで、 温度が 2 5 °Cで、 膜が UF膜で、 バッフルが第 8図に示す放射 状バッフル (バッフル本数が 8本) で、 膜体の表面積に対する バッフルの投影面積が 4 0 %で、 膜体の回転数が 5 5 0 r pm である場合において、 膜体と放射状バッフルの間隙に対する透 過流束の関係を調査した結果である。  (14) Gap between the membrane and radial paffle on the permeation flux Fig. 32 shows the transmembrane pressure using the membrane separation system shown in Fig. 13 and latex with a concentration of 20% by weight. Is 400 kPa, the temperature is 25 ° C, the membrane is a UF membrane, the baffle is a radial baffle (eight baffles shown in Fig. 8), and the baffle is projected on the surface area of the membrane. In the case where the area is 40% and the rotation speed of the membrane is 550 rpm, the relationship between the flux and the gap between the membrane and the radial baffle is examined.
第 3 2図に示すように、 膜体と放射状バッフルの間隙が 1 2 mmまでは、 透過流束に大きな変化は見られないが、 その間隙が 1 2 mmを超えると、 急激に透過流束は低下する。 As shown in Fig. 32, there is no significant change in the permeation flux up to a gap of 12 mm between the membrane and the radial baffle. Above 12 mm, the flux decreases sharply.
膜体とバッフルの間隙が 2 mm未満の場合、 膜体とバッフルが 接触しやすくなつて膜体が破損することがあり、 膜体と放射状 バッフルの間隙が 1 2 mmを超えると、 第 3 2図に示すように、 透過流束が大きく低下する。 しかも、 膜体とバッフルが離れす ぎると、 必要な膜面積を確保するために装置の全長が長くなり、 現実の工業装置として成立しにく くなる。 そこで、 膜体と放射 状バッフルの間隙は、 2〜 1 2 mmの範囲とするのが好ましい。  If the gap between the membrane and the baffle is less than 2 mm, the membrane and the baffle may be easily contacted and the membrane may be damaged.If the gap between the membrane and the radial baffle exceeds 12 mm, the thirty-two As shown in the figure, the permeation flux is greatly reduced. Moreover, if the membrane and the baffle are too far apart, the overall length of the device will be long in order to secure the required membrane area, making it difficult to establish a real industrial device. Therefore, it is preferable that the gap between the film body and the radial baffle be in the range of 2 to 12 mm.
( 1 5 ) 放射状バッフルとリング状バッフルの膜分離性能 第 3 3図は、 第 1 3図に示す膜分離システムを使用し、 濃度 3 0重量%のラテックスを用いて、 温度が 2 5 °Cで、 膜が U F 膜で、 膜体の回転数が 5 5 0 r p mである場合において、 第 4 5図に示すリング状バッフル 6 8を用いた場合と、 第 8図に示 す放射状パッフル 2 8 (パッフル本数が 8本で、 膜体の表面積 に対するバッフルの投影面積が 4 0 % ) を用いた場合において, 膜間差圧と透過流束の関係を調査した結果である。  (15) Membrane Separation Performance of Radial Baffle and Ring Baffle Fig. 33 shows the use of the membrane separation system shown in Fig. 13 and the use of latex with a concentration of 30% by weight at a temperature of 25 ° C. When the membrane is a UF membrane and the rotation speed of the membrane is 550 rpm, the ring baffle 68 shown in FIG. 45 is used, and the radial baffle 28 shown in FIG. 8 is used. (The number of baffles is 8, and the projected area of the baffle is 40% with respect to the surface area of the membrane.) The result of investigating the relationship between the transmembrane pressure and the permeation flux is shown.
第 3 3図において、 記号 「〇」 は放射状バッフルを示し、 記 号 「書」 はリング状バッフルを示す。 第 3 3図に示すように、 膜間差圧が大きくなると放射状バッフルの方がリング状バッフ ルより透過流束が大きく、 放射状バッフルの方がリング状バッ フルより膜分離性能が優れていることが分かる。  In FIG. 33, the symbol “〇” indicates a radial baffle, and the symbol “letter” indicates a ring-shaped baffle. As shown in Fig. 33, when the transmembrane pressure increases, the radial baffle has a higher permeation flux than the ring baffle, and the radial baffle has better membrane separation performance than the ring baffle. I understand.
( 1 6 ) 放射状バッフルの本数と透過流束  (16) Number of radial baffles and flux
第 3 4図は、 第 1 3図に示す膜分離システムを使用し、 濃度 2 0重量%のラテックスを用いて、 膜間差圧が 4 0 0 k P aで- 温度が 2 5 °Cで、 膜が U F膜で、 バッフルが第 8図に示す放射 状バッフルで、 膜体の表面積に対するバッフルの投影面積が 4 0 %で、 膜体の回転数が 5 5 0 r p mである場合において、 放 射状バッフルの本数と透過流束の関係を調査した結果である。 第 3 4図に示すように、 バッフル本数が 4本より少ないと透 過流束は小さく、 バッフル本数が増えると透過流束も大きくな るが、 1 2本より増えても透過流束はもはや大きくならないこ とが分かる。 Fig. 34 shows the results obtained using the membrane separation system shown in Fig. 13 using latex at a concentration of 20% by weight, a transmembrane pressure difference of 400 kPa and a temperature of 25 ° C. When the membrane is a UF membrane, the baffle is a radial baffle shown in Fig. 8, the projected area of the baffle is 40% of the surface area of the membrane, and the rotation speed of the membrane is 550 rpm. It is the result of investigating the relationship between the number of projectile baffles and the permeation flux. As shown in Fig. 34, when the number of baffles is less than four, the transmission flux is small, and when the number of baffles increases, the transmission flux increases, but when the number of baffles increases, the transmission flux no longer increases. You can see that it does not grow.
そこで、 放射状バッフルの本数は、 4〜 1 2本が効率的に膜 分離を行える範囲であることが分かる。  Thus, it can be seen that the number of radial baffles is between 4 and 12 within the range where membrane separation can be performed efficiently.
( 1 7 ) 膜体の表面積に対する放射状バッフルの投影面積と透 過流束  (17) Projected area and transmission flux of radial baffle with respect to surface area of membrane
第 3 5図は、 第 1 3図に示す膜分離システムを使用し、 濃度 2 0重量%のラテックスを用いて、 膜間差圧が 4 0 0 k P aで, 温度が 2 5 °Cで、 膜が U F膜で、 バッフルが第 8図に示す放射 状バッフル (パッフル本数が 8本) で、 膜体の回転数が 5 5 0 r p mである場合において、 膜体の表面積に対する放射状バッ フルの投影面積 (%) と透過流束の関係を調査した結果である- 第 3 5図に示すように、 膜体の表面積に対する放射状バッフ ルの投影面積が 3 0 %以上において透過流束は急激に増加し、 その投影面積が 7 0 %を超えると透過流束は低下することが分 かる。  Fig. 35 shows the results obtained by using the membrane separation system shown in Fig. 13 and using latex at a concentration of 20% by weight, at a transmembrane pressure of 400 kPa and at a temperature of 25 ° C. When the membrane is a UF membrane, the baffle is a radial baffle shown in Fig. 8 (the number of paffles is eight), and the rotational speed of the membrane is 550 rpm, the radial baffle with respect to the surface area of the membrane is This is the result of investigating the relationship between the projected area (%) and the transmitted flux.-As shown in Fig. 35, the transmitted flux rapidly increases when the projected area of the radial buffer relative to the surface area of the membrane is 30% or more. It can be seen that when the projected area increases and the projected area exceeds 70%, the permeation flux decreases.
そこで、 膜体の表面積に対する放射状バッフルの投影面積は, 3 0〜 7 0 %の範囲が効率的に膜分離を行える範囲であること が分かる。  Thus, it can be seen that the projected area of the radial baffle with respect to the surface area of the membrane is in the range of 30 to 70% in which the membrane can be efficiently separated.
( 1 8 ) 膜体回転時の半径方向加速度と透過流束  (18) Radial acceleration and flux during membrane rotation
第 1 3図に示す膜分離システムを使用し、 膜体回転時の半径 方向加速度に対する透過流束の関係を調査した結果を第 3 6〜 4 2図に示す。  Using the membrane separation system shown in Fig. 13, the results of investigating the relationship between the permeation flux and the radial acceleration during rotation of the membrane are shown in Figs. 36-42.
第 3 6〜 4 2図は、 温度が 2 5 °Cで、 膜が U F膜で、 バッフ ルが第 4 5図に示すリング状バッフル 6 8で、 膜間差圧 (操作 圧力) をパラメータ一として、 膜体回転時の半径方向加速度に 対する透過流束の関係を調査した結果であり、 第 3 6図、 第 3 7図、 第 3 8図、 第 3 9図はそれぞれラテックス濃度が 1重量 %、 1 0重量%、 2 0重量%、 3 0重量%の場合を示す。 第 3 6〜 3 9図に明らかなように、 ラテックス濃度の高低に関わら ず、 すべての運転条件において、 半径方向加速度と透過流束と の間には、 ほぼ一定の比例関係が見られ、 操作圧力が高くなる ほど透過流束は大きくなる。 また、 半径方向加速度が増加する と透過流束は大きくなるが、 ラテックス濃度が低くなるほど低 加速度域におけるその関係は顕著である。 第 3 7〜 3 9図より、 ラテックス濃度が 1 0重量%以上の高濃度においては、 半径方 向加速度を 2 0 Om/sec2以上としなければ、 ある程度の透過 流束は得られないが、 第 3 6図より、 ラテックス濃度が 1 0重 量%未満の低濃度においては、 半径方向加速度が 1 0 0 mZsec2 以上の範囲において、 実用的に十分な透過流束が得られること が分かる。 Fig. 36 to 42 show that the temperature is 25 ° C, the membrane is a UF membrane, the baffle is a ring-shaped baffle 68 shown in Fig. 45, and the transmembrane pressure (operating pressure) is a parameter. As the radial acceleration when the membrane rotates. Fig. 36, Fig. 37, Fig. 38, Fig. 39 show the latex concentration of 1% by weight, 10% by weight, and 20% by weight, respectively. , 30% by weight. As is clear from Figs. 36 to 39, almost constant proportionality is observed between the radial acceleration and the permeation flux under all operating conditions regardless of the latex concentration. The higher the pressure, the higher the permeation flux. Also, the permeation flux increases as the radial acceleration increases, but as the latex concentration decreases, the relationship in the low acceleration range becomes more pronounced. Than the third 7-3 9 figure, in the high concentration of latex concentration of 1 0% by weight or more, if the radius Direction acceleration and 2 0 Om / sec 2 or more, can not be obtained to some extent transparent flux, From FIG. 36, it can be seen that at a low latex concentration of less than 10% by weight, a practically sufficient permeation flux can be obtained in a radial acceleration range of 100 mZsec 2 or more.
第 4 0〜 4 2図は、 第 3 6〜 3 9図を別のパラメ一夕一で整 理したもので、 温度が 2 5 °Cで、 膜が UF膜で、 パッフルが第 4 5図に示すリング状バッフル 6 8で、 ラテックス濃度をパラ メーターとして、 膜体回転時の半径方向加速度に対する透過流 束の関係を調査した結果であり、 第 4 0図、 第 4 1図、 第 4 2 図はそれぞれ膜間差圧 (操作圧力) が 2 0 0 k P a、 3 0 0 k P a、 4 0 0 k P aの場合を示す。 第 4 0〜 4 2図に明らかな ように、 操作圧力の高低に関わらず、 すべての運転条件におい て、 半径方向加速度と透過流束との間には、 ほぼ一定の比例関 係が見られ、 濃度が低くなるほど透過流束は大きくなる。  Figs. 40 to 42 show the results of Figs. 36 to 39 with different parameters arranged at different temperatures.The temperature is 25 ° C, the membrane is UF membrane, and the puffer is Fig. 45. Fig. 40, Fig. 41, and Fig. 42 show the results of a study of the relationship between the radial flux during rotation of the membrane and the permeation flux with the latex concentration as a parameter in the ring-shaped baffle 68 shown in Fig. 40. The figures show the cases where the transmembrane pressure (operating pressure) is 200 kPa, 300 kPa, and 400 kPa, respectively. As is evident from Figs. 40 to 42, there is a nearly constant proportional relationship between the radial acceleration and the flux under all operating conditions, regardless of the operating pressure. The lower the concentration, the higher the permeation flux.
また、 ノ ッフルとして、 第 4 3図 ( a) に示すように、 所定 形状の多数の孔を打ち抜いたものや、 第 4 3図 (b) に示すよ うに、 エッチングを施して、 バッフルの表裏面を荒らしたもの や、 第 4 3図 (c ) に示すように、 凹凸模様の付いたロールに バッフルを押し付けて (エンボス加工をして) 、 バッフルの表 裏面に凹凸模様を施したものを使用することもできる。 なお、 第 4 3図 ( a ) は放射状バッフルの場合を示しているが、 他の 形状のパッフルに打ち抜き孔を設けることも可能であり、 第 4 3図 (b ) のエッチング処理や第 4 3図 ( c ) のエンボス加工 はすべての形状のバッフルに適用できる。 これら打ち抜き孔ゃ エッチングやエンボス加工によりバッフルの乱流促進効果が増 大し、 透過流束が大きくなる。 In addition, as shown in Fig. 43 (a), a number of holes with a predetermined shape are punched out, or as shown in Fig. 43 (b), the baffle is etched by etching. The back side Alternatively, as shown in Fig. 43 (c), the baffle can be pressed against a roll with an uneven pattern (by embossing), and the baffle can be used with an uneven pattern on the front and back surfaces. . Although FIG. 43 (a) shows the case of a radial baffle, it is also possible to provide a punched hole in a paffle of another shape, and it is possible to use the etching process shown in FIG. The embossing in Fig. (C) can be applied to all shapes of baffles. The turbulence promoting effect of the baffle is increased by etching or embossing of these punched holes, and the permeation flux is increased.
なお、 容器 2は円筒状以外の形状、 例えば、 四角形以上の多 角形または上蓋の無い槽形を採用することも可能である。  The container 2 may have a shape other than a cylindrical shape, for example, a quadrangle or more polygon, or a tank without an upper lid.
本実施例においては、 装置を横にして用いる例を挙げている が、 これに限られるものではなく、 装置を縦にして用いること もできる。 装置を縦置きにすると、 膜体の荷重が直接回転軸に 付加されないので、 横置きの装置よりも回転軸を長くすること ができ、 大型の膜分離装置の製作が可能となる。  In this embodiment, an example in which the apparatus is used horizontally is described. However, the present invention is not limited to this, and the apparatus can be used vertically. When the device is placed vertically, the load of the membrane is not directly applied to the rotating shaft, so that the rotating shaft can be made longer than the device placed horizontally, and a large-sized membrane separation device can be manufactured.
〔産業上の利用の可能性〕 [Possibility of industrial use]
本発明は以上説明したように構成されているので、 装置組み 立ての手間がかからず、 低コストで、 しかも、 圧力損失が小さ く、 効率的に透過処理を行い、 膜分離性能を効果的に発揮しう る回転型膜分離装置として使用するのに適している。  Since the present invention is configured as described above, there is no need for assembling the apparatus, the cost is low, the pressure loss is small, the permeation process is performed efficiently, and the membrane separation performance is effectively improved. It is suitable for use as a rotary type membrane separation device that can be used in various applications.

Claims

請 求 の 範 囲 . 被処理液の供給入口を有する容器を貫通するように回転軸 を配した回転型膜分離装置において、 上記容器内にあって透 過された液体を移送することの可能な構造を有する膜体を上 記回転軸に装着し、 上記膜体に接続されて透過液体を排出す る出口を有し、 上記膜体の両側に膜体との間に間隙を設けて 複数の長方形状パッフルを配し、 被処理液の供給入口に接続 された液体流路が容器内壁面に設けられており、 回転軸を挟 んで複数の長方形状バッフルを容器の一方の内壁近傍から他 方の内壁近傍まで互いに平行に配置した回転型膜分離装置。 . 被処理液の供給入口を有する容器を貫通するように回転軸 を配した回転型膜分離装置において、 上記容器内にあって透 過された液体を移送することの可能な構造を有する膜体を上 記回転軸に装着し、 上記膜体に接続されて透過液体を排出す る出口を有し、 上記膜体の両側に膜体との間に間隙を設けて 鉤形形状バッフルを配し、 被処理液の供給入口に接続された 液体流路が容器内壁面に設けられており、 回転軸を挟んで複 数の鉤形形状バッフルを膜体直径に対して線対称に配置する か又は回転軸に対して点対称に配置した回転型膜分離装置。 . 被処理液の供給入口を有する容器を貫通するように回転軸 を配した回転型膜分離装置において、 上記容器内にあって透 過された液体を移送することの可能な構造を有する膜体を上 記回転軸に装着し、 上記膜体に接続されて透過液体を排出す る出口を有し、 上記膜体の両側に膜体との間に間隙を設けて S形形状バッフルを配し、 被処理液の供給入口に接続された 液体流路が容器内壁面に設けられており、 回転軸を挟んで複 数の S形形状バッフルを回転軸に対して点対称に配置した回 転型膜分離装置。In a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, it is possible to transfer the liquid that has passed through the container. A membrane having a structure is mounted on the rotating shaft, and has an outlet connected to the membrane to discharge a permeated liquid. A plurality of gaps are provided between the membrane and the membrane on both sides of the membrane. A rectangular paffle is arranged, and a liquid flow path connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container, and a plurality of rectangular baffles are sandwiched across the rotation axis from near one inner wall of the container to the other. Rotary membrane separation devices arranged parallel to each other up to the vicinity of the inner wall. In a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, a membrane having a structure capable of transferring the liquid that has passed through the container. Is mounted on the rotating shaft, and has an outlet connected to the membrane for discharging the permeated liquid.Hook-shaped baffles are provided on both sides of the membrane with gaps between the membrane and the membrane. A liquid flow path connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container, and a plurality of hook-shaped baffles are arranged symmetrically with respect to the diameter of the film body with the rotation axis interposed therebetween; or Rotary membrane separation device arranged symmetrically with respect to the rotation axis. In a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, a membrane having a structure capable of transferring the liquid that has passed through the container. Is mounted on the rotating shaft, has an outlet connected to the membrane, and discharges a permeated liquid, and an S-shaped baffle is provided on both sides of the membrane with a gap between the membrane and the membrane. A liquid passage connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container, and a plurality of S-shaped baffles are arranged point-symmetrically with respect to the rotation axis with the rotation axis interposed therebetween. Inverted membrane separation equipment.
. 被処理液の供給入口を有する容器を貫通するように回転軸 を配した回転型膜分離装置において、 上記容器内にあって透 過された液体を移送することの可能な構造を有する膜体を上 記回転軸に装着し、 上記膜体に接続されて透過液体を排出す る出口を有し、 上記膜体の両側に膜体との間に間隙を設けて 円弧形状パッフルを配し、 被処理液の供給入口に接続された 液体流路が容器内壁面に設けられており、 回転軸を挟んで複 数の円弧形状バッフルを膜体直径に対して線対称に配置する か又は回転軸に対して点対称に配置した回転型膜分離装置。 In a rotary membrane separation device having a rotary shaft arranged so as to penetrate a container having a supply inlet for a liquid to be treated, a membrane having a structure capable of transferring the liquid that has passed through the container. Is mounted on the rotating shaft, has an outlet connected to the membrane, and discharges the permeated liquid, and provides an arc-shaped paffle with a gap between the membrane and the membrane on both sides of the membrane. A liquid flow path connected to the supply inlet of the liquid to be treated is provided on the inner wall surface of the container, and a plurality of arc-shaped baffles are arranged line-symmetrically with respect to the diameter of the film body with respect to the rotation axis, or the rotation axis is Rotary membrane separation device arranged symmetrically with respect to point.
5 . 膜体の表面積に対するバッフルの投影面積が 1 0〜 9 0 % である請求の範囲第 1項、 第 2項、 第 3項または第 4項記載 の回転型膜分離装置。 5. The rotary membrane separator according to claim 1, wherein the projected area of the baffle with respect to the surface area of the membrane is 10 to 90%.
6 . 長方形状バッフルの両端部を容器壁より独立した支持体で 支持固定してなる請求の範囲第 1項記載の回転型膜分離装置, 6. The rotary membrane separator according to claim 1, wherein both ends of the rectangular baffle are supported and fixed by supports independent of the container wall.
7 . 鉤形形状バッフルの両端部を容器壁より独立した支持体で 支持固定してなる請求の範囲第 2項記載の回転型膜分離装置 <7. The rotary membrane separator according to claim 2, wherein both ends of the hook-shaped baffle are supported and fixed by supports independent of the container wall.
8 . S形形状バッフルの両端部を容器壁より独立した支持体で 支持固定してなる請求の範囲第 3項記載の回転型膜分離装置,8. The rotary membrane separator according to claim 3, wherein both ends of the S-shaped baffle are supported and fixed by supports independent of the vessel wall.
9 . 円弧形状バッフルの両端部を容器壁より独立した支持体で 支持固定してなる請求の範囲第 4項記載の回転型膜分離装置 <9. The rotary membrane separator according to claim 4, wherein both ends of the arc-shaped baffle are supported and fixed by supports independent of the vessel wall.
1 0 . 膜体の一方の側に設けるパッフルの数が、 2 0本以下で ある請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項または第 9項記載の回転型膜分離装 10. The number of paffles provided on one side of the film body is 20 or less. Claims 1, 2, 3, 4, 5, 6, 9 A rotary membrane separator according to paragraph 7, paragraph 8, or paragraph 9
1 . 膜体の回転速度は外周において、 l〜 3 0 m / s ec であ る請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項または第 1 0項記載の回転型 膜分離装置。 1. The rotation speed of the film body is 1 to 30 m / sec on the outer circumference. Claims 1, 2, 3, 4, 5, 6, and Rotary type according to paragraph 7, paragraph 8, paragraph 9 or paragraph 10 Membrane separation device.
1 2. 膜体の直径が、 2 0 0〜 1 1 0 0匪である請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項、 第 1 0項または第 1 1項記載の回転型膜分  1 2. Claims 1, 2, 3, 3, 4, 5, 6, and 7 in which the diameter of the membrane is 200 to 110 , Clause 8, Clause 9, Clause 10 or Clause 11;
1 3. 膜体の回転数は、 2 0〜 1 8 0 0 r pmである請求の範 囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7 項、 第 8項、 第 9項、 第 1 0項、 第 1 1項または第 1 2項記 載の回転型膜分離装置。 1 3. The rotation speed of the membrane is 20 to 180 rpm. Claims 1, 2, 3, 4, 5, 5, 6, The rotary membrane separator according to any one of Items 7, 8, 9, 9, 10, 11, and 12.
1 4. バッフルの厚さが、 1〜 2 Ommである請求の範囲第 1項. 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項. 第 9項、 第 1 0項、 第 1 1項、 第 1 2項または第 1 3項記載 の回転型膜分離装置。  1 4. Claim 1 wherein the thickness of the baffle is 1 to 2 Omm. Clause 2, Clause 3, Clause 4, Clause 5, Clause 6, Clause 7, Clause 8. Item 9. The rotary membrane separation device according to Item 9, Item 10, Item 11, Item 12, or Item 13.
1 5. バッフルの幅は、 膜体直径の 0 , 1〜40 %である請求 の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項または第 14項記載の回転型膜分離装置。  1 5. The width of the baffle is 0, 1 to 40% of the diameter of the membrane body. Claims 1, 2, 3, 4, 5, 6, 7 Item 15. The rotary membrane separation device according to Item 8, Item 9, Item 10, Item 11, Item 11, Item 12, Item 13, or Item 14.
1 6. 膜体とバッフルの間隙は、 2〜 1 8 mmである請求の範囲 第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項. 第 8項、 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項. 第 1 4項または第 1 5項記載の回転型膜分離装置。  1 6. The gap between the membrane and the baffle is 2 to 18 mm. Claims 1, 2, 3, 3, 4, 5, 6, and 7. Clause 8, Clause 9, Clause 10, Clause 11, Clause 12, Clause 13, Clause 13. The rotary membrane separator according to clauses 14 or 15.
1 7. 膜体直径に対する容器内径の比率が, 1. 0 0 3〜3. 0 0 0である請求の範囲第 1項、 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項、 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項、 第 14項、 第 1 5項又は第 1 6 項記載の回転型膜分離装置。  17. The ratio of the inner diameter of the container to the diameter of the membrane is 1.03 to 3.00. Clause 6, Clause 7, Clause 8, Clause 9, Clause 10, Clause 11, Clause 12, Clause 13, Clause 14, Clause 15, Clause 15 or Clause 16 Rotary membrane separation device.
1 8. 回転軸が中空であって且つ該軸に小孔を設け、 膜体は透 過液体を移送可能な経路を有する透過性膜を板の両面に取り 付けた構造であって、 上記透過性膜の透過液体移送経路を回 転軸に設けた小孔に通じるように構成した請求の範囲第 1項. 第 2項、 第 3項、 第 4項、 第 5項、 第 6項、 第 7項、 第 8項. 第 9項、 第 1 0項、 第 1 1項、 第 1 2項、 第 1 3項、 第 1 4 項、 第 1 5項、 第 1 6項または第 1 7項記載の回転型膜分離 9. 被処理液の供給入口を有する容器を貫通するように回転 軸を配し、 上記容器内にあって透過された液体を移送するこ との可能な構造を有する膜体を上記回転軸に装着し、 上記膜 体の両側に膜体との間に間隙を設けてバッフルを配している 回転型膜分離装置であって、 被処理液が高濃度のときは膜体 回転時の半径方向加速度が 2 0 0 m/sec2以上の範囲におい て運転し、 被処理液が低濃度のときは膜体回転時の半径方向 加速度が 1 0 0 mZsec2以上の範囲において運転することを 特徴とする回転型膜分離装置。 1 8. The rotating shaft is hollow and a small hole is provided in the shaft. Claims 1 and 2, wherein the permeated liquid transfer path of the permeable membrane is configured to communicate with a small hole provided in the rotation shaft. Clauses 5, 6, 7, 7, 8. Clause 9, Clause 10, Clause 11, Clause 12, Clause 13, Clause 14, Clause 15, Clause 15, Rotary membrane separation as described in Paragraph 16 or 17. 9. A rotating shaft is arranged so as to penetrate the container having the supply inlet for the liquid to be treated, and the permeated liquid in the container is transferred. A rotary type membrane separation device, comprising: a membrane having a structure capable of performing the above-mentioned operation, mounted on the rotating shaft, and a baffle provided with a gap between the membrane and the membrane on both sides of the membrane. treatment liquid radial acceleration at the time of the film body rotating at high concentrations operated Te 2 0 0 m / sec 2 or more ranges smell, radial acceleration at the time of the film body rotating when the liquid to be treated lightly 1 0 0 mZsec 2 or more Rotary membrane separation device, characterized by operating in the range.
0. 被処理液の供給入口を有する容器を貫通するように回転 軸を配し、 上記容器内にあって透過された液体を移送するこ との可能な構造を有する膜体を上記回転軸に装着し、 上記膜 体の両側に膜体との間に間隙を設けて回転軸を中心として容 器内壁に向けて複数本のバッフルを放射状に配している回転 型膜分離装置であって、 膜体直径が 3 0 0〜 1 0 0 0 mmで膜 体の回転数が 5 0〜 1 0 0 0 r p mの範囲において運転する ことを特徴とする回転型膜分離装置。 0. A rotating shaft is provided so as to penetrate a container having a supply inlet for the liquid to be treated, and a film having a structure capable of transferring the permeated liquid in the container is provided on the rotating shaft. A rotating membrane separation device which is mounted and has a gap between the membrane body on both sides of the membrane body and a plurality of baffles arranged radially toward the inner wall of the container around the rotation axis, A rotary type membrane separation apparatus characterized in that the membrane has a diameter of 300 to 100 mm and operates at a rotation speed of the membrane of 500 to 1000 rpm.
1. 放射状バッフルの本数が 4〜 1 2本である請求の範囲第 2 0項記載の回転型膜分離装置。  1. The rotary membrane separation device according to claim 20, wherein the number of radial baffles is 4 to 12.
2. 膜体の表面積に対する放射状バッフルの投影面積が 3 0 〜 7 0 %である請求の範囲第 2 0項または第 2 1記載の回転 型膜分離装置。 2. The rotary membrane separator according to claim 20, wherein a projected area of the radial baffle with respect to a surface area of the membrane is 30 to 70%.
2 3. 膜体と放射状バッフルの間隙が 2〜 1 2腿である請求の 範囲第 2 0項、 第 2 1項または第 2 2項記載の回転型膜分離 23. The rotary membrane separation according to claim 20, 20 or 21, wherein the gap between the membrane and the radial baffle is 2 to 12 thighs.
2 4. 膜体の回転速度は外周において、 l〜 3 0 m/sec であ る請求の範囲第 2 0項、 第 2 1項、 第 2 2項または第 2 3項 記載の回転型膜分離装置。 24. The rotating membrane separation according to claim 20, wherein the rotation speed of the membrane at the outer periphery is l to 30 m / sec. apparatus.
2 5. 放射状パッフルの幅は、 膜体直径の 0. 1〜4 0 %であ る請求の範囲第 2 0項、 第 2 1項、 第 2 2項、 第 2 3項また は第 2 4項記載の回転型膜分離装置。  25. The width of the radial paffle is 0.1 to 40% of the diameter of the film body, and the width of the radial paffle is 0.1 to 40% of the diameter of the film body. Item 8. The rotary membrane separation device according to Item 1.
2 6. 被処理液の供給入口を有する容器を貫通するように回転 軸を配し、 上記容器内にあって透過された液体を移送するこ との可能な構造を有する膜体を上記回転軸に装着し、 上記膜 体に接続されて透過液体を排出する出口を有し、 上記膜体の 両側に膜体との間に間隙を設けて長方形状バッフル、 鉤形形 状バッフル、 S形形状バッフルまたは円弧形状バッフルを配 し、 被処理液の供給入口に接続された液体流路を容器内壁面 に有してなる回転型膜分離装置を用いて膜分離する方法であ つて、 供給入口から容器内に被処理液を導入し、 膜体の被処 理液側より透過液側を低圧にしながら、 上記回転軸を回転さ せ且つ膜体間の被処理液の入れ替えを行いながら、 膜体を透 過した透過液を容器出口から排出し、 被処理液を透過液と濃 縮液に膜分離する方法。  2 6. A rotating shaft is arranged so as to penetrate the container having the supply inlet for the liquid to be treated, and the film having a structure capable of transferring the permeated liquid in the container is connected to the rotating shaft. A rectangular baffle, a hook-shaped baffle, and an S-shape having an outlet connected to the membrane and discharging the permeated liquid by being connected to the membrane, and providing a gap between the membrane and the membrane on both sides of the membrane A method in which a baffle or an arc-shaped baffle is arranged, and a membrane is separated using a rotary membrane separation device having a liquid flow path connected to a supply inlet of a liquid to be treated on an inner wall surface of the container. While introducing the liquid to be treated into the container and lowering the pressure of the permeated liquid side from the liquid to be treated side of the membrane, rotating the rotating shaft and replacing the liquid to be treated between the membranes, The permeate that has passed through is drained from the container outlet, and the liquid to be treated is permeated and concentrated. How to membrane separation.
2 7. 容器内に導入される被処理液の圧力が、 0. 0 0 5 MP a以上である請求の範囲第 2 6項記載の膜分離方法。  27. The membrane separation method according to claim 26, wherein the pressure of the liquid to be treated introduced into the container is 0.05 MPa or more.
2 8. 被処理液の供給入口を有する容器を貫通するように回転 軸を配し、 上記容器内にあって透過された液体を移送するこ との可能な構造を有する膜体を上記回転軸に装着し、 上記膜 体の両側に膜体との間に間隙を設けてバッフルを配している 回転型膜分離装置を用いて膜分離する方法であって、 被処理 液が高濃度のときは膜体回転時の半径方向加速度が 2 0 0 m Zsec2以上の範囲において運転し、 被処理液が低濃度のとき は膜体回転時の半径方向加速度が 1 0 O m/sec2以上の範囲 において運転することを特徴とする回転型膜分離装置による 膜分離方法。 2 8. A rotating shaft is arranged so as to penetrate the container having the supply inlet for the liquid to be treated, and the film having a structure capable of transferring the permeated liquid in the container is rotated by the rotating shaft. And a baffle is provided on both sides of the membrane with a gap between the membrane and the membrane. This is a method of performing membrane separation using a rotary membrane separation apparatus.When the liquid to be treated is at a high concentration, the radial acceleration during rotation of the membrane is operated within a range of 200 mZsec 2 or more. There membrane separation method according to the rotary membrane separation device, wherein the radial acceleration at the time of the film body rotating at low concentration is operated at 1 0 O m / sec 2 or more ranges.
9. 被処理液の供給入口を有する容器を貫通するように回転 軸を配し、 上記容器内にあって透過された液体を移送するこ との可能な構造を有する膜体を上記回転軸に装着し、 上記膜 体の両側に膜体との間に間隙を設けて回転軸を中心として容 器内壁に向けて複数本のバッフルを放射状に配している回転 型膜分離装置を用いて膜分離する方法であって、 膜体直径が 3 0 0〜 1 0 0 0 mmで膜体の回転数が 5 0〜 1 0 0 0 r pm の範囲において運転することを特徴とする回転型膜分離装置 による膜分離方法。 9. A rotating shaft is provided so as to penetrate the container having the supply inlet for the liquid to be treated, and a film having a structure capable of transferring the permeated liquid in the container is provided on the rotating shaft. The membrane is mounted using a rotary membrane separation device in which a plurality of baffles are arranged radially toward the inner wall of the container around the rotation axis with a gap provided between the membrane and the membrane on both sides of the membrane. A method for separating a membrane, wherein the membrane has a diameter of 300 to 100 mm and the rotation speed of the membrane is in a range of 50 to 100 rpm. Separation method using the device.
0. 膜体とバッフルの間隙を 2〜 1 2匪として運転する請求 の範囲第 2 9項記載の膜分離方法。 0. The method of claim 29, wherein the gap between the membrane and the baffle is operated as 2 to 12 bandages.
PCT/JP2002/007527 2001-12-18 2002-07-25 Rotary film separator and method for separation of film by rotary film separator WO2003051496A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001383941 2001-12-18
JP2001-383941 2001-12-18
JP2002-29097 2002-02-06
JP2002029097A JP3801926B2 (en) 2001-02-07 2002-02-06 Rotary membrane separator

Publications (1)

Publication Number Publication Date
WO2003051496A1 true WO2003051496A1 (en) 2003-06-26

Family

ID=26625103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007527 WO2003051496A1 (en) 2001-12-18 2002-07-25 Rotary film separator and method for separation of film by rotary film separator

Country Status (2)

Country Link
TW (1) TW550113B (en)
WO (1) WO2003051496A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292694A1 (en) * 2022-06-16 2023-12-20 Levitronix GmbH Rotary filter system, rotary filter device, and separation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112546707A (en) * 2020-11-29 2021-03-26 上海申亚动物保健品阜阳有限公司 A active ingredient extraction membrane piece-rate system for quick technology of traditional chinese veterinary medicine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281829A (en) * 1991-03-11 1992-10-07 Ngk Insulators Ltd Rotary disk type separating device
JPH0556228U (en) * 1991-12-26 1993-07-27 日立プラント建設株式会社 Rotating flat membrane filter
JPH05228349A (en) * 1992-08-17 1993-09-07 Hitachi Plant Eng & Constr Co Ltd Liquid membrane separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281829A (en) * 1991-03-11 1992-10-07 Ngk Insulators Ltd Rotary disk type separating device
JPH0556228U (en) * 1991-12-26 1993-07-27 日立プラント建設株式会社 Rotating flat membrane filter
JPH05228349A (en) * 1992-08-17 1993-09-07 Hitachi Plant Eng & Constr Co Ltd Liquid membrane separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292694A1 (en) * 2022-06-16 2023-12-20 Levitronix GmbH Rotary filter system, rotary filter device, and separation system

Also Published As

Publication number Publication date
TW550113B (en) 2003-09-01

Similar Documents

Publication Publication Date Title
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
US5707517A (en) Immersible rotary disc filtration device
EP0586591B1 (en) Rotary disc filtration device
US5944998A (en) Rotary filtration device with flow-through inner member
US20130186824A1 (en) Spiral Cross Flow Membrane Filtration Device And Process
WO2003051496A1 (en) Rotary film separator and method for separation of film by rotary film separator
EP2192973B1 (en) Disc type filtration device with aeration plates
KR20070075947A (en) A submerged membrane module and system equipped with rotating disc or propeller
FI96923B (en) Method and apparatus for regenerating a separation device for a liquid medium containing insoluble constituents
JP2006061911A (en) Rotary membrane separator
JP3741685B2 (en) Rotary membrane separator
JP3801926B2 (en) Rotary membrane separator
CN106799122A (en) A kind of hypergravity takes off ammonium salt device and technique
RU2179062C1 (en) Membrane apparatus for separating liquid mixtures
CN206897149U (en) A kind of hypergravity takes off ammonium salt device
JP2002292258A (en) Membrane separation method and membrane separation apparatus
CN214513806U (en) RO membrane filter core end cover
JP2004162038A (en) Method for concentrating latex
JP2009136744A (en) Hole diffusion-filtering module mounted with multistaged multilayered structure membrane
JP2004230343A (en) Differential pressure continuous filtering device
KR20140117946A (en) Cylindrical Dissolved Air Flotation Facility combined with Membrane Filtration
JP2004148271A (en) Physical cleaning method of rotary membrane separator
WO2008129531A2 (en) Device for filtering solid particles from liquids containing such particles
MXPA00008180A (en) Rotary disc filtration device with means to reduce axial forces
JPH01231915A (en) Method and device for cross-flow filtration

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)