JP2004230343A - Differential pressure continuous filtering device - Google Patents

Differential pressure continuous filtering device Download PDF

Info

Publication number
JP2004230343A
JP2004230343A JP2003024893A JP2003024893A JP2004230343A JP 2004230343 A JP2004230343 A JP 2004230343A JP 2003024893 A JP2003024893 A JP 2003024893A JP 2003024893 A JP2003024893 A JP 2003024893A JP 2004230343 A JP2004230343 A JP 2004230343A
Authority
JP
Japan
Prior art keywords
filtration
filter
differential pressure
dynamic
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003024893A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nishimura
一敏 西村
Yoichiro Kono
洋一郎 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintobrator Ltd
Original Assignee
Sintobrator Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintobrator Ltd filed Critical Sintobrator Ltd
Priority to JP2003024893A priority Critical patent/JP2004230343A/en
Publication of JP2004230343A publication Critical patent/JP2004230343A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a differential pressure continuous filtering device requiring no large driving pressure for filtering separation (membrane separation) and from which a filtered cake can be easily taken out. <P>SOLUTION: This differential pressure continuous filtering device comprises a filtering tube 12 disposed in a longitudinal direction and a dynamic filtering means 14 disposed within the filtering tube (filtering vessel). The dynamic filtering means 14 has a plurality of dynamic filtering elements (filtering module) 16. The dynamic filtering element 16 comprises a hollow longitudinal rotation shaft 18 and a plurality of filtering plates 20, and the filtering plates 20 are attached on the hollow longitudinal rotation shaft 18 parallelly in the vertical direction with a specified interval by crossing the plates 20 with the axis of the rotation shaft 18 to allow the filtrate to flow in the plates. The dynamic filtering elements 16 are disposed in such a relation with each other that the plates 20 are meshed with each other. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は、濾筒と、該濾筒(ろ容器:貯槽)内に配設される動的濾過手段とを備えた差圧連続濾過装置に関する。特に、工場廃水の連続処理を行う場合に好適な差圧連続濾過装置に関する。
【0002】
【背景技術】
種々の工場排水の処理法として膜分離法が注目されているが、濾過面(濾材面又は膜面)に堆積したケークにより濾過速度が低下するという欠点がある。この欠点を補う膜分離法として濾過面に高剪断力を与えることにより堆積ケークを剥離させる濾過法があるが、この方法はダイナミック濾過と呼ばれる。
【0003】
従来は通液循環型ダイナミック濾過が広く採用されている(図1参照)。
【0004】
この方法では、図例の如く、原水に圧力をかけ、濾過材の表面を高速(1〜3m/s)で通過させることにより剪断力を与え、濾過を継続している。原水を1回通過させるだけでは濾過水量が得られないので原水は繰り返し圧力をかけられ、濾過材表面に高速で供給される。このため、得られる濾過水に対して多大な動力源が必要となる。
【0005】
このため、膜分離手段(ダイナミック濾過手段)として、下記構成(構造)のものが特許文献1等において紹介されている(特許請求の範囲、第3頁2柱下第2段等参照)。
【0006】
「被処理液の流入口および流出口を備えた筒状ケース内に、中空縦回転軸に多数の円盤膜を並列に取付けた膜モジュールを収納し、円板膜からの透過液を前記中空縦回転軸の中空部を経由して装置外へ排出する構造。」
さらに、ケースの断面を楕円状とし、そのケース内に2本の膜モジュールをそれぞれ円板膜が交互に噛合うように収納する構成が変形例として紹介されている(同第下2段)。
【0007】
この構成の場合、「各膜モジュールを同方向に回転させることによって、円板膜が交差する領域では被処理液の攪拌が促進し、円板膜と被処理液が良好に接触する。」また、「円板膜の膜面に付着した固形分は、この領域で容易に剥離するので、膜面を常に性状して維持できる。このため、洗浄工程の頻度を少なくできる。」旨の記載がある。
【0008】
しかし、上記構成の差圧濾過装置の場合、ケース(濾筒)が横置きであり、濾過(膜分離)のための駆動圧力として大きなものを必要とするとともに、高度のシール性も要求された。さらには、濾過ケークの取り出しも面倒であった。
【0009】
【特許文献1】
特公平6−98275号公報
【0010】
【発明の開示】
本発明は、上記にかんがみて、濾過分離(膜分離)のための大きな駆動圧力を必要とせず、しかも、濾過ケークの取り出しも容易な差圧連続濾過装置を提供することを目的とする。
【0011】
本発明者らは、上記課題を解決するために、鋭意、開発に努力をした結果、下記構成の差圧連続濾過装置に想到した。
【0012】
縦方向に配設される濾筒と、該濾筒(ろ容器:貯槽)内に配設される動的濾過手段とを備えた加圧連続濾過装置であって、
動的濾過手段は、複数個の動的濾過要素(濾過モジュール)を備え、
該動的濾過要素は、中空縦回転軸と、複数枚の濾過板とを備え、該濾過板は濾液が流入可能に中空縦回転軸の軸心に交差させて所定間隔をおいて上下方向に並列して取り付けられる構成であり、
動的濾過要素相互は、それらの濾過板相互が噛合い状態となるように配設されている、ことを特徴とする。
【0013】
濾筒を縦方向に配設するとともに、該濾筒に中空縦回転軸を介して複数枚の濾過板を上下に並列させる構成としたため、水柱圧により(特に下方の濾過板)に対しては、濾筒を横型とし、濾過板を水平方向に並列させる場合に比して、ろ過(膜分離)のために必要な駆動圧を発生させるための動力が少なくてすむ。また、結果的に、上方のシールは、ガス対応シールでかつシール圧も小さいため、液対応シールに比して、シール構造も簡単なものとなる。また、濾過板から剥離した濾過ケークの取り出しも、濾筒の底壁から重力を利用して容易に行うことができる。さらに、濾過モジュール相互が、濾過板相互が噛合い状態で配設されているため、濾過板の剪断作用により、剪断ゾーンにおいて、被処理液の攪拌が促進されるとともに、濾過板に付着したケークの剥離が促進される。したがって、攪拌による被処理液の濾過効率の増大と濾過板の洗浄による連続濾過時間の長時間化が可能となる。
【0014】
上記構成において、中空縦回転軸を、下端自由端として濾筒天井壁で軸受け支持するとともに、中空縦回転軸の上方から濾液が差圧により取り出される機構を備えている構成とすることが望ましい。中空縦回転軸が下端自由端であるため、下端の回転軸シールが不要となり、即ち、シールが対気体(空気)シールのみでよくなり、さらに、底壁からのケーク含有液の取り出しが容易となる。
【0015】
そして、上記各構成において、少なくとも最下段の濾過板が下面邪魔板を備えていること、及び/又は、濾過板の周面に側面邪魔板を備えていることことが望ましい。下面邪魔板及び/または側面邪魔板の作用により、被処理液(濾過原液又は濾過原水)の分散粒子の均一化が可能となり、さらに、沈降してくるケーク形成粒子(分散粒子)を均一分散させることができ、濾過効率の増大が期待できる。
【0016】
また、上記各構成において、濾過板が、濾過層と該濾過層の内側に配される多孔心材層とを備えたものであり、多孔心材層は、濾過層の孔径に比して大きい孔径を有する剛性連泡多孔体で形成されていことが望ましい。濾過層を形成する材料が剛性を有しないものでもよく、濾過層形成材料の選択幅が増大する。また、濾過層を可及的に薄いものでも使用可能となり、かつ、内側の剛性連泡多孔体の孔径が濾過層の孔径に比して大きいため、濾過層も可及的に薄くできて、濾過層透過液の圧損を小さくできる。したがって、濾過駆動圧が小さなもので済み、結果的に省エネルギー化につながる。
【0017】
そして、上記各構成の差圧連続濾過装置を操作して差圧連続濾過をする場合の濾過方法は、動的濾過要素が、同一方向で同期回転させて行うことが望ましい。
濾過板の進行方向が互いに逆方向となる剪断ゾーン(濾過板噛合い部分)が発生して、該剪断作用により、ケーク剥離が促進されるとともに被処理の攪拌が促進される。結果的に、洗浄効果及び濾過効率が向上する。
【0018】
上記濾過装置の操作に際して、動的濾過要素の回転数を、被処理液(処理水)の性状に対応させて可変制御することが望ましい。運転効率の最適化のためである。
【0019】
なお、本発明の差圧連続濾過装置のコンセプトを、従来の通液循環型ダイナミック濾過装置と対比して概略的に述べると、下記の如くになる。
【0020】
円板型の濾過材をひとつの軸に竪型に積層させる。さらにそれらを交互に組み合わせ、同一方向に高速で回転させる。ひとつの軸に固定された円板は他の軸と組み合わされた部分において円板の進行方向が逆方向となっているため、互いの円板濾過材表面に高剪断場を与えることが可能となる。さらに被処理液(原水)には振動をかけ、被濾液の濃縮に伴い円板濾過材表面に堆積するケークの剥離を促進する。この方法によれば原水の循環は必要ではなく、円板回転についても低回転数でケーク剥離の効果が期待できるため動力源は最小の状態で問題ないという利点を持っている。
【0021】
また、このコンセプトによれば円板回転数を変更することにより、剪断力を容易に変更することが可能である。このため、回収する固形分からなるケークを意図的に濾過材表面に付着させることもコントロールできるので、サブミクロンオーダーの細かい粒子についてもダイナミック層を形成できる。このため微細粒子を回収する際にも一般濾過に用いるような目の粗い濾過材料(濾材)が使用でき、薬剤(凝集剤)添加を行わない固液分離が可能となる。従来法(通液循環型)で微細粒子を分離する場合では、この操作の適用範囲が限られる。
【0022】
さらに、回転円板濾過材が形成する剪断場は周速度が異なるため、円板の中心部が小さく、外周部が大きくなる問題があるが、多軸積層型であるため隣接する円板濾過材では逆に周速度の高い外周部が当該円板濾過材の中心部に位置することになり、剪断力の均一化を測ることができる。これにより、濾過材に均一な剪断場が形成でき安定した濾過が継続できる。
【0023】
【発明を実施するための最良の形態】
以下、本発明の実施形態を、図例2〜4に基づいて、詳細に説明をする。図2は、本実施形態の概略モデル断面図であり、図3は濾過板の一例を示す拡大半断面図であり、図4は図2の濾過板の噛合い状態を示す平面用説明図である。
【0024】
基本的には、縦方向に配設される濾筒(貯槽)12と、該濾筒12内に配設される動的濾過手段14とを備えた差圧連続濾過装置であり、動的濾過手段(濾過モジュール)14は、複数個の動的濾過要素16からなるものである。
【0025】
そして、該動的濾過要素16は、中空縦回転軸18と、複数枚の濾過板20とを備え、該濾過板20は濾液が流入可能に中空縦回転軸18の軸心に交差させて所定間隔をおいて上下方向に並列して取り付けられる構成であり、また、動的濾過要素16相互は、それらの濾過板20、20相互が噛合い状態となるように配設されている。
【0026】
本実施形態では、濾筒12及び中空縦回転軸18は垂直方向に配設されているが、ともに斜設方向でもよく(傾斜角45°以上)、また、動的濾過要素16は、図例では2個であるが、3個以上であってもよい。また、濾筒12は、水平断面、平面長円状であるが、これに限られるものではない。即ち、濾筒12水平断面も濾過板20の外周形状に沿った図4のような長円状でいなくてもよく、矩形断面でもよい。
【0027】
また、濾過板20は、図例の如く、円板形状とするが、楕円形状、多角形状(三角形、四角形、八角形)であってもよい。また、濾過板20の取り付け方向は、通常、水平とするが、斜め方向(傾斜角度45°以下)であってもよい。この場合、最上段の濾過板20は、部分水没した形態になるが、水面上のでた部分が水没する際に、水による剪断力を受けて、ケーク剥離(洗浄)作用を期待できる。
【0028】
そして、本実施形態では、中空縦回転軸18が、下端自由端として濾筒12天井壁で軸受け支持されるとともに、中空縦回転軸18の上方から濾液が差圧により取り出される機構を備えている。
【0029】
具体的には、一対の中空縦回転軸18は、濾筒12の天井壁に取り付けられた一対のスラスト軸受け22に支持されている。ここで、通常、スラスト軸受け22の下部側に図示しないが0リング等のシール部材を配設しておく。
【0030】
また、中空縦回転軸18の上端部には、従動プーリ24が取り付けられ、タイミングベルト26により、同一方向にモータ(原動機)28の出力軸28aに取り付けられた駆動プーリ30により、同一方向に同期回転可能とされている。なお、各中空回転軸18の駆動手段は、異なるモータ等を用いた別駆動手段としもよい。
【0031】
また、濾筒12には、原水(被処理液)を原水タンク32から供給可能に原水供給ポンプ34を備えた原水供給配管36が接続されている。このとき、濾筒12の天井壁には、液面計13が取り付けられ、原水供給量を制御可能となっている。
【0032】
また、濾過駆動圧(分離駆動圧)を得るために、濾筒12内に加圧空気(加圧気体)を供給する元部側でコンプレッサ38を備えた加圧気体(空気)供給配管40が接続されている。なお、加圧気体は空気でなくても、被処理液が酸化を嫌うような場合によっては、窒素等の不活性気体であってもよい。
【0033】
他方、濾筒12の底部には濃縮液(ケーク含有液)を回収するために、バルブ(ボールコック)42を備えた濃縮液排出口44が配設されている。
【0034】
さらに、各中空縦回転軸18の上端には、濾液回収配管45が接続されている。なお、上記濾過駆動圧を得る為の上記加圧手段(コンプレッサ38)とともに、または加圧手段の替わりに、真空吸引手段(例えば、コンプレッサ)を、ろ液回収配管側に、配設してもよい。
【0035】
上記濾過板20は、適宜、少なくとも最下段の濾過板20が下面邪魔板46(または46A)を備えている構成、及び/又は、濾過板20の周面に側面邪魔板48を備えている構成とすることができる。被処理液の攪拌促進させて、濾過効率を増大させるためである(図3参照)。
【0036】
各邪魔板46、48の形状は、図3のような半円型に限定されることなく、攪拌翼に多用されている、タービン形(例えば、矩形)、ひねり形等任意である。例えば、図2の二点鎖線で示す如く、楔型等であってもよい。
【0037】
そして、濾過板20としては、図3に示す如く、濾過層20aと該濾過層20aの内側に配される多孔心材層20bとを備えたものであり、多孔心材層20bは、濾過層20aの孔径に比して大きい孔径を有する剛性連泡多孔体で形成されてい構成のものが望ましい。ここで、通常、濾過層20a、さらには、濾過板20は取り外し可能としておく。濾過層20aは損傷し易いためであり、ろ液により孔径の異なるものを使用する必要があるためである。
【0038】
濾過層20aは、通常、数ミクロンオーダの孔径を有するものを使用し、多孔芯材層(剛性連泡多孔体)20bは、通常、数百ミクロンオーダの孔径を有するものを使用する。ここで、濾過層20aの形成材料としては、多孔質のセラミック・プラスチック・焼結金属等でもよいが、本実施形態では、内側を剛性連泡多孔体で形成するため、織布、不織布、紙製や多孔プラスチックフィルム等の可撓性のものも使用可能である。他方、多孔芯材層20bの形成材料としては、上記セラミック・プラスチック・焼結金属等のうち孔径の大きなものを使用できるが、金網、パンチングメタルにより支持構造体を形成してもよい。なお、濾過層の厚みは、要求される濾過性能・濾材等にもよるが、例えば、セラミックフィルターの場合、通常、0.5〜5mmとする。
【0039】
次に、上記差圧濾過装置の操作方法について説明をする。
供給ポンプ34を稼動させて、原水供給配管36を介して、原水タンク32から被処理液を所定量になるまで、液面計13で制御しながら供給するとともに、コンプレッサ38を稼動させて加圧空気を、濾筒12内に供給して、濾筒12内を加圧状態とする(通常、0.05Mpa以上)。
【0040】
次に、モータ28を稼動させて縦中空縦回転軸18を回転させる。このときの回転数は、通常、0〜1000min−1、望ましくは100〜1000min−1とする。
【0041】
すると、濾液は加圧空気により加圧状態(濾過駆動圧以上)となっているため、濾過板20の濾過層20aを介して濾過され、濾液は、多孔芯材層(剛性連泡多孔体)20b及び中空縦回転軸18の外周壁18aに形成された濾液流通孔19を経て中空縦回転軸18内に流入し、濾液回収配管45を介して濾液として回収される。
【0042】
このとき、縦中空縦回転軸18が回転しているため、被処理液(濾過原液:原水)が攪拌混合されて、被処理液中の分散粒子(残留粒子:ケーク形成粒子)が均一に分散される為は濾過効率が良好となる。また、濾過板20の噛合う部分では、回転方向が逆方向となり、剪断ゾーンS(図4ハッチ部)が発生し、濾過ケークが濾過面に堆積され難い。したがって、良好な濾過効率を長時間に亘って維持可能となる。それでも、濾過面に濾過ケークが堆積するような場合には、濾過要素を間欠的に逆回転をさせることが望ましい。この間欠的な濾過要素の逆回転により、正逆反転直後に剪断ゾーンにおける剪断作用が増大するばかりでなく、噛合い部分以外でも濾過面に剪断作用が発生して、濾過面からのケーク剥離(洗浄)が促進される。即ち、濾過面の洗浄性がさらに増大する。なお、ここで、間欠的とは、一次的に逆転させることばかりでなく、正転運転時間と逆転運転時間とが略同一時間とする場合も含むものとする。
【0043】
そして、濾過ケーク含有液の濃度が増大してきて(即ち、被処理液が所定以上の濃度になったら、底部の開閉弁を開け、濃縮液回収配管から濃縮液を回収する。
【0044】
【試験例】
図2に示す差圧連続濾過装置を使用して、10%のO/W形エマルションを0.2MPaの濾過駆動圧で濾過したので、その結果を図5に示す。
【0045】
なお、使用した濾過装置の寸法仕様は、下記の如くである。
【0046】
濾筒12内(長径:420mm、短径:300mm、高さ:300mm)
濾板(200mmφ×8mmt、表面層の孔径0.10μmセラミック製)、濾過板20ピッチ(20mm)
中空軸(外径20mmφ×内径10mmφ)、中空軸間距離(120mm)
ここでvは単位濾過面積当たりの累積濾過量(cm)、θは経過時間であるためdθ/dvは濾過速度の逆数となる.
即ち、右肩上がりのdead end濾過(円板を回転しない場合)では濾過速度はどんどん低下するのに対して円板を回転すれば濾過速度の安定化が図られる。濾過速度は濾過板20(円板)の回転数が高いほど速くなるが、500rpmと1000rpmでは殆ど濾過速度の差異は観察されなかった.
【0047】
【産業上の利用可能性】
本発明の差圧連続濾過装置の用途としては、下記のようなものを挙げることができる。
【0048】
▲1▼工場排水のリサイクル一次処理装置
薬品添加なしでの濾過が可能であるため、無機塩類の増加がない点が極めて有効である。なお、工場排水の例としては、各種洗浄排水、CMP(Chemical Mechanical Polishing )廃水、エマルション系各種排水を挙げることができる。
【0049】
▲2▼液体工業薬剤からの不純物回収装置
例えば、油性、水溶性切削液、研削液などの循環利用に使用できる。
【0050】
▲3▼有用物回収装置
工場の各工程での固液分離装置として導入でき、薬品無添加のため有用固形物の回収に極めて有効である。
【0051】
▲4▼濃縮装置
生産工程における液中固形分としての有機・無機材料の濃縮で次工程の乾燥コストの低減可能
【図面の簡単な説明】
【図1】通液循環型ダイナミック濾過の模式図である。
【図2】本実施形態の概略モデル断面図である。
【図3】濾過板の一例を示す拡大半断面図である。
【図4】図2の濾過板相互の噛合い状態を示す平面用説明断面図である。
【図5】本発明の濾過装置の試験結果を示すグラフ図である。
【符号の説明】
12 濾筒(貯槽)
14 動的濾過手段
16 動的濾過要素
18 中空縦回転軸
20 濾過板
20a 濾過層
20b 多孔心材層
38 コンプレッサ(差圧発生手段)
46 下面邪魔板
48 側面邪魔板
S 剪断ゾーン(濾過板の相互の噛合い部)
[0001]
【Technical field】
TECHNICAL FIELD The present invention relates to a differential pressure continuous filtration device provided with a filter tube and dynamic filtration means provided in the filter tube (filter container: storage tank). Particularly, the present invention relates to a differential pressure continuous filtration device suitable for performing continuous treatment of factory wastewater.
[0002]
[Background Art]
Membrane separation has attracted attention as a method of treating various industrial wastewaters, but has the disadvantage that the filtration rate is reduced by cakes deposited on the filtration surface (filter media surface or membrane surface). As a membrane separation method for compensating for this disadvantage, there is a filtration method in which a high shear force is applied to a filtration surface to peel off the deposited cake. This method is called dynamic filtration.
[0003]
Conventionally, dynamic circulation type dynamic filtration is widely used (see FIG. 1).
[0004]
In this method, as shown in the drawing, a pressure is applied to the raw water, and a shear force is applied by passing the raw water at a high speed (1 to 3 m / s) to continue the filtration. Since the amount of filtered water cannot be obtained only by passing the raw water once, the raw water is repeatedly applied with pressure and supplied at high speed to the surface of the filter medium. For this reason, a large power source is required for the obtained filtered water.
[0005]
For this reason, the following structure (structure) is introduced in Patent Document 1 and the like as a membrane separation means (dynamic filtration means) (see Claims, page 3, two pillars, second stage, etc.).
[0006]
"In a cylindrical case having an inlet and an outlet for a liquid to be treated, a membrane module having a number of disk membranes mounted in parallel on a hollow vertical rotation shaft is housed, and the permeate from the disk membrane is transferred to the hollow vertical axis. A structure that discharges out of the device through the hollow part of the rotating shaft. "
Further, a configuration in which a cross section of a case is made elliptical and two membrane modules are housed in the case so that disk membranes are alternately meshed with each other is introduced as a modification (the second lower stage in the same).
[0007]
In the case of this configuration, "by rotating each membrane module in the same direction, the agitation of the liquid to be treated is promoted in the region where the disk films intersect, and the disk film and the liquid to be processed come into good contact with each other.""The solids adhered to the film surface of the disc film are easily peeled off in this region, so that the film surface can always be maintained in the properties. Therefore, the frequency of the washing step can be reduced." is there.
[0008]
However, in the case of the differential pressure filtration device having the above configuration, the case (filter tube) is placed horizontally, which requires a large driving pressure for filtration (membrane separation) and also requires a high degree of sealing. . Furthermore, taking out the filter cake was troublesome.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 6-98275
DISCLOSURE OF THE INVENTION
In view of the above, an object of the present invention is to provide a continuous-pressure differential filtration device that does not require a large driving pressure for filtration separation (membrane separation) and that can easily take out a filter cake.
[0011]
Means for Solving the Problems The present inventors have diligently made efforts for development in order to solve the above-mentioned problems, and as a result, have arrived at a differential pressure continuous filtration device having the following configuration.
[0012]
A pressurized continuous filtration device comprising: a filter tube provided in a vertical direction; and dynamic filtration means provided in the filter tube (filter container: storage tank).
The dynamic filtration means includes a plurality of dynamic filtration elements (filtration modules),
The dynamic filtration element includes a hollow vertical rotation shaft and a plurality of filter plates, and the filter plates are vertically intersected at predetermined intervals by intersecting the axis of the hollow vertical rotation shaft so that a filtrate can flow thereinto. It is a configuration that can be installed in parallel,
The dynamic filtration elements are characterized in that they are arranged such that their filtration plates are in mesh with each other.
[0013]
Since the filter tube is disposed in the vertical direction and a plurality of filter plates are vertically arranged in parallel with the filter tube via the hollow vertical rotation shaft, the filter column is particularly pressed against the water column pressure (particularly, the lower filter plate). In addition, as compared with the case where the filter cylinder is a horizontal type and the filter plates are arranged in parallel in the horizontal direction, less power is required for generating a driving pressure required for filtration (membrane separation). Further, as a result, the upper seal is a gas-compatible seal and has a low sealing pressure, so that the seal structure is simpler than that of the liquid-compatible seal. Also, the filter cake peeled off from the filter plate can be easily taken out from the bottom wall of the filter tube by utilizing gravity. Further, since the filtration modules are arranged in a state where the filtration plates are in mesh with each other, the shearing action of the filtration plates promotes the stirring of the liquid to be treated in the shear zone, and the cake adhered to the filtration plates. Is promoted. Therefore, it becomes possible to increase the filtration efficiency of the liquid to be treated by stirring and to increase the continuous filtration time by washing the filter plate.
[0014]
In the above-described configuration, it is preferable that the hollow vertical rotation shaft be supported by the filter cylinder ceiling wall as a free end at the lower end, and that a mechanism be provided to remove a filtrate from above the hollow vertical rotation shaft by differential pressure. Since the hollow vertical rotating shaft has a free end at the lower end, the rotating shaft seal at the lower end is not required. That is, only the seal against gas (air) is required, and the cake-containing liquid can be easily removed from the bottom wall. Become.
[0015]
In each of the above-described configurations, it is desirable that at least the lowermost filter plate includes a lower surface baffle plate and / or that a side surface baffle plate is provided on a peripheral surface of the filter plate. By the action of the lower surface baffle and / or the side baffle, the dispersed particles of the liquid to be treated (filtration solution or raw water) can be made uniform, and the cake-forming particles (dispersion particles) that settle out are evenly dispersed. Therefore, an increase in filtration efficiency can be expected.
[0016]
Further, in each of the above configurations, the filter plate includes a filtration layer and a porous core layer disposed inside the filtration layer, and the porous core layer has a pore size larger than the pore size of the filtration layer. It is desirable to be formed with a rigid open-celled porous material having the same. The material for forming the filtration layer may not have rigidity, and the selection range of the material for forming the filtration layer is increased. In addition, the filter layer can be used as thin as possible, and since the pore diameter of the inner rigid open-cell porous body is larger than the pore size of the filter layer, the filter layer can be made as thin as possible. The pressure loss of the liquid permeated through the filtration layer can be reduced. Therefore, a small filtration driving pressure is required, which results in energy saving.
[0017]
In addition, it is desirable that the dynamic filtration element be rotated synchronously in the same direction as the filtration method in the case of performing the differential pressure continuous filtration by operating the differential pressure continuous filtration device of each of the above configurations.
A shear zone (the mesh portion of the filter plate) in which the traveling directions of the filter plates are opposite to each other is generated, and the shearing action promotes cake peeling and promotes agitation of the treatment. As a result, the cleaning effect and the filtration efficiency are improved.
[0018]
When operating the above-mentioned filtration device, it is desirable to variably control the number of revolutions of the dynamic filtration element according to the properties of the liquid to be treated (treated water). This is for optimization of operation efficiency.
[0019]
The concept of the differential pressure continuous filtration device of the present invention is schematically described in comparison with a conventional flow-through circulation type dynamic filtration device as follows.
[0020]
A disk-shaped filter medium is vertically stacked on one shaft. Further, they are alternately combined and rotated at a high speed in the same direction. The disk fixed to one axis has the opposite direction of the disk in the part combined with the other axis, so it is possible to apply a high shear field to the surface of each disk filtration material Become. Further, the liquid to be treated (raw water) is vibrated to promote the peeling of the cake deposited on the surface of the disk-shaped filter medium as the filtrate is concentrated. According to this method, the circulation of the raw water is not necessary, and the effect of cake separation can be expected at a low rotation speed even for a disk rotation.
[0021]
Further, according to this concept, it is possible to easily change the shearing force by changing the number of rotations of the disk. For this reason, it is also possible to control the intentional attachment of the cake made of the solid content to be collected to the surface of the filter medium, so that it is possible to form a dynamic layer even with fine particles on the order of submicrons. For this reason, when collecting fine particles, a coarse filter material (filter material) as used in general filtration can be used, and solid-liquid separation without adding a chemical (aggregating agent) becomes possible. In the case of separating fine particles by a conventional method (liquid circulation type), the applicable range of this operation is limited.
[0022]
Furthermore, the shear field formed by the rotating disk filter medium has different peripheral speeds, so the center of the disk is small and the outer periphery is large. Conversely, the outer peripheral portion having a high peripheral speed is located at the center of the disc filtration material, so that the uniformity of the shearing force can be measured. Thereby, a uniform shear field can be formed in the filter medium, and stable filtration can be continued.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. FIG. 2 is a schematic model sectional view of the present embodiment, FIG. 3 is an enlarged half sectional view showing an example of a filter plate, and FIG. 4 is an explanatory plan view showing a meshing state of the filter plate of FIG. is there.
[0024]
Basically, it is a continuous differential pressure filtration device provided with a filter tube (reservoir) 12 disposed in the vertical direction and a dynamic filtration means 14 disposed in the filter tube 12. The means (filtration module) 14 comprises a plurality of dynamic filtration elements 16.
[0025]
The dynamic filtration element 16 includes a hollow vertical rotation shaft 18 and a plurality of filter plates 20, and the filter plate 20 intersects the axis of the hollow vertical rotation shaft 18 so that a filtrate can flow therethrough. The dynamic filtration elements 16 are arranged so as to be in parallel with each other in an up-down direction at intervals, and the filter plates 20, 20 are in mesh with each other.
[0026]
In the present embodiment, the filter tube 12 and the hollow vertical rotation shaft 18 are arranged in the vertical direction, but may be both inclined directions (inclination angle of 45 ° or more). In this example, the number is two, but may be three or more. In addition, the filter tube 12 has a horizontal cross section and a flat oval shape, but is not limited thereto. That is, the horizontal cross section of the filter cylinder 12 does not have to be an elliptical shape as shown in FIG. 4 along the outer peripheral shape of the filter plate 20, and may be a rectangular cross section.
[0027]
The filter plate 20 has a disk shape as shown in the figure, but may have an elliptical shape or a polygonal shape (triangle, square, octagon). Further, the attachment direction of the filter plate 20 is usually horizontal, but may be an oblique direction (inclination angle of 45 ° or less). In this case, the uppermost filter plate 20 is in a partially submerged form. However, when the bent portion on the water surface is submerged, it receives a shearing force by water, and can expect a cake peeling (cleaning) action.
[0028]
In the present embodiment, the hollow vertical rotation shaft 18 is supported by the ceiling wall of the filter tube 12 as a free end at the lower end, and a mechanism is provided for extracting a filtrate from above the hollow vertical rotation shaft 18 by differential pressure. .
[0029]
Specifically, the pair of hollow vertical rotation shafts 18 are supported by a pair of thrust bearings 22 attached to the ceiling wall of the filter tube 12. Here, although not shown, a seal member such as an O-ring is usually provided below the thrust bearing 22.
[0030]
A driven pulley 24 is attached to the upper end of the hollow vertical rotation shaft 18, and is synchronized in the same direction by a timing belt 26 by a drive pulley 30 attached to an output shaft 28 a of a motor (motor) 28 in the same direction. It is rotatable. The driving means of each hollow rotary shaft 18 may be a separate driving means using a different motor or the like.
[0031]
Further, a raw water supply pipe 36 having a raw water supply pump 34 is connected to the filter tube 12 so that raw water (liquid to be treated) can be supplied from a raw water tank 32. At this time, a liquid level gauge 13 is attached to the ceiling wall of the filter tube 12 so that the supply amount of raw water can be controlled.
[0032]
In addition, in order to obtain a filtration drive pressure (separation drive pressure), a pressurized gas (air) supply pipe 40 provided with a compressor 38 at a source side for supplying pressurized air (pressurized gas) into the filter tube 12 is provided. It is connected. The pressurized gas is not necessarily air, but may be an inert gas such as nitrogen depending on the case where the liquid to be treated refuses to oxidize.
[0033]
On the other hand, a concentrated liquid discharge port 44 provided with a valve (ball cock) 42 is disposed at the bottom of the filter tube 12 in order to collect the concentrated liquid (cake-containing liquid).
[0034]
Further, a filtrate recovery pipe 45 is connected to the upper end of each hollow vertical rotation shaft 18. In addition, a vacuum suction means (for example, a compressor) may be provided on the filtrate collection pipe side together with or instead of the pressurizing means (compressor 38) for obtaining the filtration drive pressure. Good.
[0035]
The filter plate 20 has a configuration in which at least the lowermost filter plate 20 includes a lower surface baffle plate 46 (or 46A) and / or a configuration in which a side surface baffle plate 48 is provided on the peripheral surface of the filter plate 20. It can be. This is because the stirring efficiency of the liquid to be treated is promoted to increase the filtration efficiency (see FIG. 3).
[0036]
The shape of each of the baffles 46 and 48 is not limited to a semicircular shape as shown in FIG. 3, but may be any shape such as a turbine shape (for example, a rectangular shape) or a twist shape frequently used for a stirring blade. For example, as shown by a two-dot chain line in FIG.
[0037]
As shown in FIG. 3, the filter plate 20 includes a filter layer 20a and a porous core layer 20b disposed inside the filter layer 20a. The porous core layer 20b is formed of the filter layer 20a. It is desirable to use a rigid open-cell porous body having a larger pore diameter than the pore diameter. Here, the filter layer 20a and the filter plate 20 are usually detachable. This is because the filtration layer 20a is easily damaged, and it is necessary to use a filter having a different pore size depending on the filtrate.
[0038]
The filtration layer 20a usually has a pore size on the order of several microns, and the porous core material layer (rigid open-celled porous material) 20b usually has a pore size on the order of several hundred microns. Here, as a material for forming the filtration layer 20a, a porous ceramic, plastic, sintered metal, or the like may be used. However, in the present embodiment, since the inside is formed of a rigid open-celled porous body, woven fabric, nonwoven fabric, paper It is also possible to use a flexible material such as a plastic or a porous plastic film. On the other hand, as a material for forming the porous core layer 20b, a material having a large hole diameter among the above-mentioned ceramics, plastics, sintered metals and the like can be used, but the support structure may be formed by a wire mesh or a punching metal. In addition, the thickness of the filtration layer depends on the required filtration performance, filtration medium, and the like, but is usually 0.5 to 5 mm in the case of a ceramic filter, for example.
[0039]
Next, an operation method of the differential pressure filtration device will be described.
The supply pump 34 is operated to supply the liquid to be treated from the raw water tank 32 through the raw water supply pipe 36 to a predetermined amount while being controlled by the level gauge 13, and the compressor 38 is operated to increase the pressure. Air is supplied into the filter tube 12 to pressurize the inside of the filter tube 12 (normally 0.05 Mpa or more).
[0040]
Next, the motor 28 is operated to rotate the vertical hollow vertical rotation shaft 18. The rotation speed at this time is usually 0 to 1000 min -1 , preferably 100 to 1000 min -1 .
[0041]
Then, since the filtrate is in a pressurized state (not less than the driving pressure for filtration) by the pressurized air, it is filtered through the filter layer 20a of the filter plate 20, and the filtrate is a porous core material layer (rigid open cell porous body). The fluid flows into the hollow vertical rotation shaft 18 through a filtrate flow hole 19 formed in the outer peripheral wall 18a of the hollow vertical rotation shaft 18 and the hollow vertical rotation shaft 18, and is collected as a filtrate through a filtrate recovery pipe 45.
[0042]
At this time, since the vertical hollow vertical rotation shaft 18 is rotating, the liquid to be treated (filtration solution: raw water) is stirred and mixed, and the dispersed particles (residual particles: cake-forming particles) in the liquid to be treated are uniformly dispersed. Therefore, the filtration efficiency is improved. In addition, in a portion where the filter plates 20 mesh with each other, the rotation direction is reversed, a shear zone S (a hatched portion in FIG. 4) is generated, and the filter cake is not easily deposited on the filter surface. Therefore, good filtration efficiency can be maintained for a long time. Nevertheless, if filter cake accumulates on the filtration surface, it is desirable to intermittently reverse the filtration element. This intermittent reverse rotation of the filter element not only increases the shearing action in the shearing zone immediately after the reversal, but also causes a shearing action on the filtering surface other than at the meshing portion, and causes cake separation from the filtering surface ( Washing) is promoted. That is, the cleanability of the filtration surface further increases. Here, the term “intermittently” includes not only the case where the rotation is temporarily reversed, but also the case where the normal rotation operation time and the reverse rotation operation time are substantially the same time.
[0043]
Then, when the concentration of the liquid containing the filter cake increases (that is, when the concentration of the liquid to be treated reaches a predetermined level or more), the on-off valve at the bottom is opened and the concentrated liquid is collected from the concentrated liquid collecting pipe.
[0044]
[Test example]
The 10% O / W emulsion was filtered at a filtration drive pressure of 0.2 MPa using the continuous differential pressure filtration device shown in FIG. 2, and the results are shown in FIG.
[0045]
The dimensional specifications of the used filtering device are as follows.
[0046]
Inside the filter tube 12 (major axis: 420 mm, minor axis: 300 mm, height: 300 mm)
Filter plate (200 mmφ × 8 mmt, surface layer pore diameter 0.10 μm made of ceramic), filter plate 20 pitch (20 mm)
Hollow shaft (outer diameter 20mmφ x inner diameter 10mmφ), distance between hollow shafts (120mm)
Here, v is the accumulated filtration amount per unit filtration area (cm), and θ is the elapsed time, so dθ / dv is the reciprocal of the filtration speed.
In other words, the filtration speed decreases steadily in the case of dead end filtration (when the disk is not rotated) rising to the right, whereas the rotation of the disk stabilizes the filtration speed. The filtration speed was higher as the rotation speed of the filter plate 20 (disc) was higher, but almost no difference in the filtration speed was observed between 500 rpm and 1000 rpm.
[0047]
[Industrial applicability]
Examples of applications of the continuous pressure differential filtration device of the present invention include the following.
[0048]
{Circle around (1)} Recycling of factory wastewater Primary treatment equipment It is very effective that inorganic salts can be filtered without adding chemicals. Examples of the factory wastewater include various washing wastewater, CMP (Chemical Mechanical Polishing) wastewater, and various emulsion-based wastewater.
[0049]
{Circle over (2)} An apparatus for recovering impurities from liquid industrial chemicals, which can be used for circulating, for example, oily, water-soluble cutting fluids, grinding fluids and the like.
[0050]
(3) Useful substance recovery device It can be introduced as a solid-liquid separation device in each step of the factory, and is extremely effective for the recovery of useful solids because no chemicals are added.
[0051]
(4) Concentration of organic and inorganic materials as solids in the liquid in the production process of the concentration device can reduce the drying cost of the next process [Brief description of the drawings]
FIG. 1 is a schematic view of a flow-through circulation type dynamic filtration.
FIG. 2 is a schematic model sectional view of the present embodiment.
FIG. 3 is an enlarged half sectional view showing an example of a filter plate.
FIG. 4 is an explanatory sectional view for a plane showing a meshing state of the filter plates of FIG. 2;
FIG. 5 is a graph showing test results of the filtration device of the present invention.
[Explanation of symbols]
12 Filter tube (storage tank)
14 Dynamic filtration means 16 Dynamic filtration element 18 Hollow longitudinal rotation shaft 20 Filter plate 20a Filter layer 20b Porous core layer 38 Compressor (differential pressure generation means)
46 Lower surface baffle plate 48 Side baffle plate S Shear zone (intermeshing portion of filter plates)

Claims (7)

縦方向に配設される濾筒と、該濾筒(濾容器)内に配設される動的濾過手段とを備えた加圧連続濾過装置であって、
前記動的濾過手段は、複数個の動的濾過要素(濾過モジュール)を備え、
該動的濾過要素は、中空縦回転軸と、複数枚の濾過板とを備え、該濾過板は濾液が流入可能に前記中空縦回転軸の軸心に交差させて所定間隔をおいて上下方向に並列して取り付けられる構成であり、
前記動的濾過要素相互は、それらの前記濾過板相互が噛合い状態となるように配設されている、ことを特徴とする差圧連続濾過装置。
A pressurized continuous filtration device comprising a filter tube disposed in a vertical direction and dynamic filtration means disposed in the filter tube (filter container),
The dynamic filtration means includes a plurality of dynamic filtration elements (filtration modules),
The dynamic filtration element includes a hollow vertical rotation shaft, and a plurality of filter plates, and the filter plate intersects the axis of the hollow vertical rotation shaft so that a filtrate can flow in the vertical direction at a predetermined interval. It is a configuration that can be attached in parallel to
The continuous differential pressure filtration device, wherein the dynamic filtration elements are arranged such that the filtration plates are in mesh with each other.
前記中空縦回転軸が、下端自由端として濾筒天井壁で軸受け支持されるとともに、前記中空縦回転軸の上方から濾液が差圧により取り出される機構を備えていることを特徴とする請求項1記載の差圧連続濾過装置。The hollow vertical rotation shaft is supported as a lower end free end by a filter cylinder ceiling wall, and a mechanism is provided for extracting a filtrate from above the hollow vertical rotation shaft by a differential pressure. The differential pressure continuous filtration device as described in the above. 前記少なくとも最下段の濾過板が下面邪魔板を備えていることを特徴とする請求項1又は2記載の差圧連続濾過装置。3. The continuous differential pressure filtration device according to claim 1, wherein the at least the lowermost filtration plate includes a lower surface baffle plate. 前記濾過板の周面に側面邪魔板を備えていることを特徴とする請求項1、2又は3記載の差圧連続濾過装置。The differential pressure continuous filtration device according to claim 1, wherein a side wall baffle is provided on a peripheral surface of the filter plate. 前記濾過板が、濾過層と該濾過層の内側に配される多孔心材層とを備えたものであり、前記多孔心材層は、濾過層の孔径に比して大きい孔径を有する剛性連泡多孔体で形成されていことを特徴とする請求項1記載の差圧連続濾過装置。The filter plate includes a filtration layer and a porous core layer disposed inside the filtration layer, wherein the porous core layer has a rigid open-cell structure having a pore size larger than a pore size of the filtration layer. 2. The continuous differential pressure filtration device according to claim 1, wherein the filtration device is formed of a body. 請求項1〜5のいずれかに記載の差圧連続濾過装置を操作して差圧連続濾過をする方法であって、前記複数の動的濾過要素を同一方向で同期回転させて行うことを特徴とする差圧連続濾過方法。A method for performing continuous differential pressure filtration by operating the continuous differential pressure filtration device according to any one of claims 1 to 5, wherein the plurality of dynamic filtration elements are synchronously rotated in the same direction. Differential pressure continuous filtration method. 前記動的濾過要素の回転数を、処理水の性状に対応させて可変制御することを特徴とする請求項6記載の差圧連続濾過方法。The method according to claim 6, wherein the number of rotations of the dynamic filtration element is variably controlled in accordance with the property of the treated water.
JP2003024893A 2003-01-31 2003-01-31 Differential pressure continuous filtering device Pending JP2004230343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024893A JP2004230343A (en) 2003-01-31 2003-01-31 Differential pressure continuous filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024893A JP2004230343A (en) 2003-01-31 2003-01-31 Differential pressure continuous filtering device

Publications (1)

Publication Number Publication Date
JP2004230343A true JP2004230343A (en) 2004-08-19

Family

ID=32953302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024893A Pending JP2004230343A (en) 2003-01-31 2003-01-31 Differential pressure continuous filtering device

Country Status (1)

Country Link
JP (1) JP2004230343A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007600A (en) * 2012-12-11 2013-04-03 新疆农业大学 Ceramic membrane filter device, dynamic filter-assisting filter device, and application method of ceramic membrane filter device and dynamic filter-assisting filter device
JP2014522719A (en) * 2011-06-29 2014-09-08 パントレオン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for filtering liquid
JP2018042555A (en) * 2016-09-12 2018-03-22 株式会社明治 Manufacturing method of pseudo-milk foods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522719A (en) * 2011-06-29 2014-09-08 パントレオン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Device for filtering liquid
CN103007600A (en) * 2012-12-11 2013-04-03 新疆农业大学 Ceramic membrane filter device, dynamic filter-assisting filter device, and application method of ceramic membrane filter device and dynamic filter-assisting filter device
JP2018042555A (en) * 2016-09-12 2018-03-22 株式会社明治 Manufacturing method of pseudo-milk foods
JP7062858B2 (en) 2016-09-12 2022-05-09 株式会社明治 How to make curd food

Similar Documents

Publication Publication Date Title
US5944998A (en) Rotary filtration device with flow-through inner member
CN101700472B (en) Rotary membrane separation device and application thereof
EP1059985B1 (en) Rotary disc filtration device with means to reduce axial forces
EP0586591A4 (en)
JP6155783B2 (en) Waste water treatment apparatus and waste water treatment method provided with solid-liquid separation unit
AU2668200A (en) Method and device for cross-flow filtration
US20050252843A1 (en) Filter device
US7241383B2 (en) Fluid treating method and apparatus
CN201586483U (en) Novel rotary membrane separation device
EP3758825B1 (en) Filtering apparatus and method
JP2017056371A (en) Operation method of filtration apparatus
JP2004230343A (en) Differential pressure continuous filtering device
CN201101951Y (en) High-efficiency oil-water and liquid-solid separating equipment
JP2006281031A (en) Method of washing flat membrane element used for membrane filter device, and membrane filter device
JP3792108B2 (en) Sludge concentration dewatering equipment
CN212025026U (en) Anti-blocking domestic sewage treatment device
WO2013173257A2 (en) Liquid filtration system with energy recovery devices
RU2425710C1 (en) Plant for obtaining filtered sediment from suspension
JP5005180B2 (en) Centrifugal membrane device
JPH0857270A (en) Membrane filter apparatus
JP4219509B2 (en) Suspension concentration method and concentration apparatus
JP2006297298A (en) Sludge concentration device
CN215138349U (en) Air-flotation water purifier with waste gas collecting structure
JPS61181503A (en) Apparatus for filtering solution
JPS6233509A (en) Centrifugal self-cleaning filter apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729