WO2003050778A1 - Optical sensor system for detecting the formation of ice - Google Patents

Optical sensor system for detecting the formation of ice Download PDF

Info

Publication number
WO2003050778A1
WO2003050778A1 PCT/DE2002/004269 DE0204269W WO03050778A1 WO 2003050778 A1 WO2003050778 A1 WO 2003050778A1 DE 0204269 W DE0204269 W DE 0204269W WO 03050778 A1 WO03050778 A1 WO 03050778A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
light guide
ice
sensor system
optical sensor
Prior art date
Application number
PCT/DE2002/004269
Other languages
German (de)
French (fr)
Inventor
Walter Müller
Klaus-Dieter Probst
Klaus Tittl
Original Assignee
Mueller Walter
Klaus-Dieter Probst
Klaus Tittl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mueller Walter, Klaus-Dieter Probst, Klaus Tittl filed Critical Mueller Walter
Publication of WO2003050778A1 publication Critical patent/WO2003050778A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B19/00Alarms responsive to two or more different undesired or abnormal conditions, e.g. burglary and fire, abnormal temperature and abnormal rate of flow
    • G08B19/02Alarm responsive to formation or anticipated formation of ice
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/20Means for detecting icing or initiating de-icing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power

Definitions

  • the invention relates to an optical sensor system for detecting ice formation under atmospheric conditions.
  • ice sensors are known from motor vehicle technology for determining the icing condition of the windshield in various designs. Such systems are often coupled to heating devices for windshield heating or also to the windshield wiper system, which are controlled by electrical signals emitted by the sensor.
  • Ice sensors for stationary facilities in various areas of application have also become known.
  • Mainly electrical and optical measuring principles are used here.
  • sensor systems that react to changes in resistance or capacity caused by precipitation or ice formation and display them.
  • sensor systems based on light measurement methods are to be preferred if they are to be installed outdoors on technical systems at great heights above ground and atmospheric discharges, for example due to Lightning strikes cannot be excluded. Because the ice sensors based on electrical measuring principles are particularly at risk and highly prone to failure.
  • an ice detector for an ice warning system in which light from a radiation source is directed onto a transparent detection surface and the light reflected on this surface is registered by a radiation receiver.
  • the reflection of the incident light is particularly great when ice has deposited on the detection surface, while otherwise the light can pass through unhindered.
  • fiber-optic light guides are used, which are designed as 4-port branching, Y-branching or as partially spliced light guides. The setup is simple, and the useful / interference signal ratio is also described as sufficient.
  • the degree of reflection of ice is so strongly dependent on its frequently changing crystallization state that the measuring accuracy of such a device cannot be sufficient for many applications.
  • the object of the invention is therefore to provide a sensor system for the detection of ice formation, which works according to optical measurement principles and which is reliable even under the most varied of external conditions and ensures adequate measurement accuracy.
  • the measuring device should be robust and allow adjustment with little effort. Using appropriately adapted optical components, the light losses should remain as low as possible and the interferences caused by unwanted external radiation should be largely suppressed.
  • the sensor system should be especially for one Attachment at a greater height, such as. B. on supporting columns of Wmdkraftmaschinen or masts of power lines etc. are suitable.
  • a sensor system with the features of the preamble of the main claim, which is characterized according to the invention in that the sensor element is a reflection prism, in the hypotenuse surface of which the radiation transported by the first fiber optic light guide is coupled in under perpendicular light, reflected on the roof surfaces and in Direction reversal after perpendicular light exit from the hypotenuse surface is directed onto the light entry surface of the second fiber optic light guide.
  • the roof surfaces of the reflection prism form the sensor surfaces of the measuring system. The radiation incident on the reflection prism is totally reflected on these surfaces, because the angle of incidence is larger than the critical angle for total reflection for the glass / air transition.
  • the use of the flexible fiber optic light guide cables also allows the sensor element to be used in places that are difficult to access, such as near a mast tip and also in distance from the radiation source and the radiation receiver. This makes it possible to reduce the susceptibility to malfunction of such an arrangement, especially since the electrical supply lines and the like, which are particularly at risk in the case of atmospheric discharges, are also completely absent here.
  • the surface areas of the reflection prism not affected by the measurement light should be covered with an opaque lacquer.
  • the robust structure of the sensor system can be reinforced by placing the associated ends of the fiber optic light guide cables directly on the hypotenuse surface of the reflection prism and cementing them firmly to this prism surface.
  • the refractive indices of the prism material, the individual fibers of the light guide and the optical cement should differ only slightly from one another.
  • a radiation source 1 for example a luminescence diode
  • the radiation is directed through a fiber optic light guide 2, the individual fibers of which consist of quartz glass, onto a reflection prism 3 with a hypotenuse surface 4 and roof surfaces 5 and 6.
  • the beam of rays passes through the hypotenuse surface and is completely reflected one after the other on the roof surfaces of the prism, provided that the angle of incidence cci, _ is greater than the critical angle for total reflection.
  • a right-angled prism is used here as the reflection prism, so that the angle of incidence of light and the angle of reflection in the case of perpendicular light entry through the hypotenuse surface are 45 ° be.
  • the critical angle for total reflection for the glass / air transition is approx. 42 °.
  • the totally reflected radiation from the reflection prism passes through a fiber optic light guide 7 to a radiation receiver 8, for. B. a photodiode, which emits a signal corresponding to the incident radiation intensity to an evaluation unit 9.
  • the critical angle for total reflection becomes larger and is around 60 ° at the border crossing between the media glass and ice. Then only a small part of the incident total radiation is deflected at the reflection surfaces and directed onto the radiation receiver and the corresponding electrical signal is displayed in the evaluation unit.
  • the rest of the radiation comes out through the roof surfaces 5 and 6 of the reflection prism. In the arrangement described here, the changes in the measured values during the transition from complete to disturbed total reflection are so considerable that there is sufficient sensitivity for many purposes.
  • the exemplary embodiment can only show the main features of the invention. So it is e.g. possible that the radiation source emits pulsed light, in order to be able to eliminate the possibly still disturbing influence of constant light incident from the environment.
  • the light of the radiation receiver can also be directed onto a plurality of sensor elements using further fiber-optic light guides.
  • the evaluation unit could control a heating device in order, if necessary, to defrost the ice on the reflection prism and to put the system back into the ready-for-use state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to an optical sensor system for detecting ice formation, said system comprising a radiation source. The radiation of said source is guided onto a sensor element by means of a first fibre-optical light guide, the sensor surface of the sensor element reflecting the radiation and supplying it to a radiation receiver by means of a second fibre-optical light guide which produces an electrical signal corresponding to the respective radiation intensity and transmits the same to an evaluation unit. According to the invention, the sensor element is embodied as a reflecting prism. The radiation transported by the first fibre-optical light guide is coupled into the hypotenuse surface of the reflecting prism, with perpendicular light incidence, is reflected on the upper surfaces, and deviated in the inverse direction onto the light admission surface of the second fibre-optical light guide, after the light emergence perpendicular to the hypotenuse surface. If there is no formation of ice on the upper surfaces, a total reflection takes place, and if ice is present, the coupled radiation is only partially reflected.

Description

Optisches Sensorsystem zur Erfassung von Eisbildungen Optical sensor system for the detection of ice formation
Die Erfindung betrifft ein optisches Sensorsystem zum Erfassen von Eisbildungen unter atmosphärischen Bedingungen.The invention relates to an optical sensor system for detecting ice formation under atmospheric conditions.
Stand der TechnikState of the art
Die während der kalten Jahreszeit häufig auftretenden Vereisungen an technischen Anlagen zur Energieerzeugung oder dem Funkverkehr, auf Straßen und Flugplätzen sowie an Fahrzeugen u.a., die fortwährend der natürlichen Witterung ausgesetzt sind, stellen ein erhebliches Gefahrenpotential dar. Sie können nicht nur zu Zerstörungen an den betroffenen Einrichtungen selbst führen, sondern auch erhebliche Personenschäden zur Folge haben. Sogenannte Eissensoren sind vor allem aus der Kraftfahrzeugtechnik zur Ermittlung des Vereisungszustandes der Windschutzscheibe in mannigfaltigen Ausführungen bekannt. Häufig sind solche Systeme mit Heizvorrichtungen zur Scheibenbeheizung oder auch mit der Scheibenwischeranlage gekoppelt, die durch vom Sensor abgegebene elektrische Signale angesteuert werden.The icing on technical systems for power generation or radio communication, on roads and airfields, as well as on vehicles, etc., which occur frequently during the cold season and which are continuously exposed to natural weather, represent a considerable potential hazard. They can not only damage the affected facilities themselves, but also result in considerable personal injury. So-called ice sensors are known from motor vehicle technology for determining the icing condition of the windshield in various designs. Such systems are often coupled to heating devices for windshield heating or also to the windshield wiper system, which are controlled by electrical signals emitted by the sensor.
Bekannt wurden aber auch Eissensoren für stationäre Einrichtungen in unterschiedlichen Anwendungsbereichen. Es werden hierbei vor allem elektrische und optische Meßprinzipien benutzt. So gibt es beispielsweise Sensorsysteme, die auf die vom Niederschlag oder einer Eisbildung hervorgerufene Widerstands- oder Kapazitätsänderungen reagieren und diese zur Anzeige bringen. Sensorsystemen, die auf Lichtmeßverfahren basieren, sind unter anderem dann der Vorzug zu geben, wenn diese im Freien an technischen Anlagen in großer Höhe über dem Erdboden angebracht werden sollen und atmosphärische Entladungen, z.B. durch Blitzschlag nicht auszuschließen sind. Denn die auf elektrischen Meßprinzipien basierenden Eissensoren sind dann besonders gefährdet und im hohen Maße störanfällig.Ice sensors for stationary facilities in various areas of application have also become known. Mainly electrical and optical measuring principles are used here. For example, there are sensor systems that react to changes in resistance or capacity caused by precipitation or ice formation and display them. Among other things, sensor systems based on light measurement methods are to be preferred if they are to be installed outdoors on technical systems at great heights above ground and atmospheric discharges, for example due to Lightning strikes cannot be excluded. Because the ice sensors based on electrical measuring principles are particularly at risk and highly prone to failure.
Aus DE-PS 350 06 317 ist ein Eisdetektor für ein Eiswarnsystem bekannt, bei dem Licht einer Strahlungsquelle auf eine lichtdurchlässige Detektionsfläche gerichtet und das an dieser Fläche reflektierte Licht von einem Strahlungsempfänger registriert wird. Die Reflexion des eingestrahlten Lichtes ist dann besonders groß, wenn sich Eis auf der Detektionsfläche ablagert hat, während ansonsten das Licht ungehindert hindurch treten kann. Zur Übertragung des Lichtes von der Strahlungsquelle zur Detektionsfläche und des reflektierten Lichts von der Detektionsfläche auf den Strahlungsempfänger werden faseroptische Lichtleiter benutzt, die hierbei als 4-Tor-Ver-zweiger, Y- Verzweiger oder auch als teilweise gespleisste Lichtleiter ausgeführt sind. Die Einrichtung ist von einfachem Aufbau, auch wird das Nutz-/Stör- signal- Verhältnis als ausreichend beschrieben. Allerdings ist der Reflexionsgrad von Eis von dessen häufig wechselndem KristaUisationszustand so stark abhängig, daß die Meßgenauigkeit einer derartigen Einrichtung für viele Anwendungen nicht ausreichen kann.From DE-PS 350 06 317 an ice detector for an ice warning system is known, in which light from a radiation source is directed onto a transparent detection surface and the light reflected on this surface is registered by a radiation receiver. The reflection of the incident light is particularly great when ice has deposited on the detection surface, while otherwise the light can pass through unhindered. To transmit the light from the radiation source to the detection surface and the reflected light from the detection surface to the radiation receiver, fiber-optic light guides are used, which are designed as 4-port branching, Y-branching or as partially spliced light guides. The setup is simple, and the useful / interference signal ratio is also described as sufficient. However, the degree of reflection of ice is so strongly dependent on its frequently changing crystallization state that the measuring accuracy of such a device cannot be sufficient for many applications.
Darstellung der ErfindungPresentation of the invention
Die Aufgabe der Erfindung ist es daher, ein Sensorsystem für die Erfassung von Eisbildungen zu schaffen, das nach optischen Meßprinzipien arbeitet und das auch unter unterschiedlichsten Außenbedingungen zuverlässig ist und eine ausreichende Meßgenauigkeit gewährleistet. Die Meßeinrichtung soll robust sein und eine Justierung mit geringem Aufwand erlauben. Unter Verwendung von entsprechend angepaßten optischen Bauelementen sollen die Lichtverluste möglichst gering bleiben und auch die Störeinflüsse durch unerwünschte Fremdstrahlung weitgehend unterdrückt werden können. Das Sensorsystem sollte sich insbesondere für eine Anbringung in größerer Höhe, wie z. B. an Tragsäulen von Wmdkraftmaschinen oder Masten von Energiefreileitungen usw. eignen.The object of the invention is therefore to provide a sensor system for the detection of ice formation, which works according to optical measurement principles and which is reliable even under the most varied of external conditions and ensures adequate measurement accuracy. The measuring device should be robust and allow adjustment with little effort. Using appropriately adapted optical components, the light losses should remain as low as possible and the interferences caused by unwanted external radiation should be largely suppressed. The sensor system should be especially for one Attachment at a greater height, such as. B. on supporting columns of Wmdkraftmaschinen or masts of power lines etc. are suitable.
Zur Lösung der Aufgabe wird ein Sensorsystem mit den Merkmalen des Oberbegriffs des Hauptanspruches verwendet, das erfindungsgemäß dadurch gekennzeichnet ist, daß das Sensorelement ein Reflexionsprisma ist, in dessen Hypotenusenfläche die vom ersten faseroptischen Lichtleiters transportierte Strahlung unter senkrechtem Lichteinfall eingekoppelt, an den Dachflächen reflektiert und in Richtungsumkehr nach senkrechtem Lichtaustritt aus der Hypotenusenfläche auf die Lichteintrittsfläche des zweiten faseroptischen Lichtleiters gelenkt wird. Die Dachflächen des Reflexionsprisma bilden die Sensorflächen des Meßsytems. Die in das Reflexionsprisma einfallende Strahlung wird an diesen Flächen totalreflektiert, weil der Lichteinfallswinkel hierbei größer" als der Grenzwinkel für die Totalreflexion für den Übergang Glas/Luft ist. Sind aber eine oder auch beide Dachflächen mit einer Eisschicht bedeckt, so vergrößert sich dieser Grenzwinkel wegen des Übergang zwischen den Medien Glas/Eis. Infolge der gestörten Totalreflexion wird die einfallende Strahlung an den Dachflächen des Prismas dann nur noch teilweise reflektiert und aus dem Prisma ausgelenkt. Ein beträchtlicher Anteil der Gesamtstrahlung tritt dagegen ohne Reflexion aus den Dachflächen aus. Weil die Strahlung nacheinander auf zwei reflektierende Flächen auftrifft, wird dieser Effekt und damit auch die Meßempfindlichkeit der Anordnung noch wesentlich verstärkt. Der Strahlungsempfänger registriert die abgeschwächte Intensität der reflektierten Strahlung und erzeugt ein elektrisches Signal entsprechender Größe. Durch den senkrechten Durchtritt der Strahlung durch die Hypotenusenfläche des Reflexionsprima bleiben hierbei auftretende Strahlungsverluste auf ein Minimum beschränkt.To achieve the object, a sensor system with the features of the preamble of the main claim is used, which is characterized according to the invention in that the sensor element is a reflection prism, in the hypotenuse surface of which the radiation transported by the first fiber optic light guide is coupled in under perpendicular light, reflected on the roof surfaces and in Direction reversal after perpendicular light exit from the hypotenuse surface is directed onto the light entry surface of the second fiber optic light guide. The roof surfaces of the reflection prism form the sensor surfaces of the measuring system. The radiation incident on the reflection prism is totally reflected on these surfaces, because the angle of incidence is larger than the critical angle for total reflection for the glass / air transition. However, if one or both roof surfaces are covered with an ice layer, this critical angle increases because As a result of the disturbed total reflection, the incident radiation on the roof surfaces of the prism is then only partially reflected and deflected out of the prism. A considerable proportion of the total radiation, however, emerges from the roof surfaces without reflection, because the radiation This effect, and thus the measurement sensitivity of the arrangement, is significantly increased when two reflective surfaces hit one after the other The penetration of the radiation through the hypotenuse surface of the reflection prima remains to a minimum.
Die Verwendung der flexiblen faseroptischen Lichtleitkabel gestattet es zudem, das Sensorelement auch an schwer zugänglichen Orten, etwa in der Nähe einer Mastspitze und auch in größerer Entfernung zur Strahlungsquelle und dem Strahlungsempfänger anzubringen. Dadurch kann die Störanfälligkeit einer solchen Anordnung verringert werden, zumal auch die bei atmosphärischen Entladungen besonders gefährdeten elektrischen Zuleitungen und dergleichen hier völlig fehlen.The use of the flexible fiber optic light guide cables also allows the sensor element to be used in places that are difficult to access, such as near a mast tip and also in distance from the radiation source and the radiation receiver. This makes it possible to reduce the susceptibility to malfunction of such an arrangement, especially since the electrical supply lines and the like, which are particularly at risk in the case of atmospheric discharges, are also completely absent here.
Um den Einfluß von Fremdstrahlung auf das Meßergebnis möglichst gering zu halten, sollten die vom Meßlicht nicht beaufschlagten Flächenbereiche des Reflexionsprismas mit einem lichtundurchlässigen Lack abgedeckt werden.In order to keep the influence of external radiation on the measurement result as low as possible, the surface areas of the reflection prism not affected by the measurement light should be covered with an opaque lacquer.
Den robuste Aufbau des Sensorsystems läßt sich noch dadurch verstärken, indem man auf die Hypotenusenfläche des Reflexionsprismas die zugehörigen Enden der faseroptischen Lichtleitkabel direkt aufgesetzt und mit dieser Prismenfläche fest verkittet. Zur Vermeidung von unerwünschten Reflexionsverlusten sollten sich die Brechungsindizes des Prismenmaterials, der Einzelfasern der Lichtleiter sowie des optischen Kittes nur geringfügig voneinander unterscheiden.The robust structure of the sensor system can be reinforced by placing the associated ends of the fiber optic light guide cables directly on the hypotenuse surface of the reflection prism and cementing them firmly to this prism surface. To avoid undesired reflection losses, the refractive indices of the prism material, the individual fibers of the light guide and the optical cement should differ only slightly from one another.
Zeichnung und Beschreibung des AusführungsbeispielsDrawing and description of the embodiment
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels und unter Bezugnahme auf eine schematische Zeichnung näher erläutert. Von einer Strahlungsquelle 1, z.B. einer Lumineszenzdiode, wird die Strahlung durch einen faseroptischen Lichtleiter 2, dessen Einzelfasern aus Quarzglas bestehen, auf ein Reflexionsprisma 3 mit einer Hypotenusenfläche 4 und Dachflächen 5 und 6 gelenkt. Das Strahlenbündel tritt durch die Hypotenusenfläche hindurch und wird nacheinander an den Dachflächen des Prismas vollständig reflektiert, sofern die Lichteinfallswinkel cci, _ größer als der Grenzwinkel für die Totalreflexion sind. Als Reflexionsprisma wird hier ein rechtwinkliges Prisma verwendet, so daß der Lichteinfallswinkel sowie der Reflexionswinkel bei senkrechten Lichteintritt durch die Hypotenusenfläche 45 ° betragen. Hingegen liegt der Grenzwinkel für eine Totalreflexion für Übergang Glas/Luft bei ca. 42°. In Richtungsumkehr gelangt die totalreflektierte Strahlung aus dem Reflexionsprisma durch einen faseroptischen Lichtleiter 7 auf einen Strahlungsempfänger 8, z. B. eine Photodiode, der ein der einfallenden Strahlungsintensität entsprechendes Signal an eine Auswerteeinheit 9 abgibt. Ist auf den Dachflächen 5,6 des Prismas ein Eisbelag vorhanden, wird der Grenzwinkel für die Totalreflexion größer und liegt beim Grenzübergang zwischen den Medien Glas Eis bei Werten von ca. 60 ° . Es wird dann nur noch ein kleiner Teil der einfallenden Gesamtstrahlung an den Reflexionsflächen umgelenkt und auf den Strahlungsempfänger gerichtet und das entsprechende elektrische Signal in der Auswerteeinheit angezeigt. Hingegen tritt der restliche Strahlungsanteil durch die Dachflächen 5 und 6 des Reflexionsprisma nach außen aus. Bei der hier beschriebenen Anordnung sind die Änderungen in den Meßwerten beim Übergang von der vollständigen zur gestörten Totalreflexion so beträchtlich, so daß eine für viele Anwendungszwecke völlig ausreichende Empfindlichkeit vorhanden ist.The invention is explained in more detail below using an exemplary embodiment and with reference to a schematic drawing. From a radiation source 1, for example a luminescence diode, the radiation is directed through a fiber optic light guide 2, the individual fibers of which consist of quartz glass, onto a reflection prism 3 with a hypotenuse surface 4 and roof surfaces 5 and 6. The beam of rays passes through the hypotenuse surface and is completely reflected one after the other on the roof surfaces of the prism, provided that the angle of incidence cci, _ is greater than the critical angle for total reflection. A right-angled prism is used here as the reflection prism, so that the angle of incidence of light and the angle of reflection in the case of perpendicular light entry through the hypotenuse surface are 45 ° be. On the other hand, the critical angle for total reflection for the glass / air transition is approx. 42 °. In reverse direction, the totally reflected radiation from the reflection prism passes through a fiber optic light guide 7 to a radiation receiver 8, for. B. a photodiode, which emits a signal corresponding to the incident radiation intensity to an evaluation unit 9. If there is ice on the roof surfaces 5, 6 of the prism, the critical angle for total reflection becomes larger and is around 60 ° at the border crossing between the media glass and ice. Then only a small part of the incident total radiation is deflected at the reflection surfaces and directed onto the radiation receiver and the corresponding electrical signal is displayed in the evaluation unit. On the other hand, the rest of the radiation comes out through the roof surfaces 5 and 6 of the reflection prism. In the arrangement described here, the changes in the measured values during the transition from complete to disturbed total reflection are so considerable that there is sufficient sensitivity for many purposes.
Das Ausführungsbeispiel kann nur die Hauptmerkmale der Erfindung aufzeigen. So ist es z.B. möglich, das die Strahlungsquelle gepulstes Licht aussendet, um damit den eventuell noch störenden Einfluß von aus der Umgebung einfallendem Gleichlicht eliminieren zu können. Auch läßt sich das Licht des Strahlungsempfänger unter Verwendung von weiteren faseroptischen Lichtleitern auf mehrere Sensorelemente lenken. Ferner könnte die Auswerteeinheit eine Heizungsvorrichtung ansteuern, um bei Bedarf das auf dem Reflexionsprisma befindliche Eis wieder abzutauen und das System erneut in den fünktionsbereiten Zustand zu versetzen. The exemplary embodiment can only show the main features of the invention. So it is e.g. possible that the radiation source emits pulsed light, in order to be able to eliminate the possibly still disturbing influence of constant light incident from the environment. The light of the radiation receiver can also be directed onto a plurality of sensor elements using further fiber-optic light guides. Furthermore, the evaluation unit could control a heating device in order, if necessary, to defrost the ice on the reflection prism and to put the system back into the ready-for-use state.

Claims

Patentansprüche claims
1. Optisches Sensorsystem zur Erfassung von Eisbildung, mit einer Strahlungsquelle, deren Strahlung ein erster faseroptischer Lichtleiter auf ein Sensorelement führt, dessen Sensorfläche die Strahlung reflektiert und die reflektierte Strahlung einem Strahlungsempfänger mittels eines zweiten faseroptischen Lichtleiters zuführt, der ein der jeweiligen Strahlungsintensität entsprechendes elektrisches Signal erzeugt und an eine Auswerteeinheit weiterleitet, dadurch gekennzeichnet, daß das Sensorelement ein Reflexionsprisma ist, in dessen Hypotenusenfläche die vom ersten faseroptischen Lichtleiters transportierte Strahlung unter senkrechtem Lichteinfall eingekoppelt, an den Dachflächen reflektiert und in Richtungsumkehr nach senkrechtem Lichtaustritt aus der Hypotenusenfläche auf die Lichteintrittsfläche des zweiten faseroptischen Lichtleiters gelenkt wird, wobei bei fehlender Eisbedeckung der Dachflächen eine Totalreflexion und bei vorhandener Eisbedeckung eine nur teilweise Reflexion der eingekoppelten Strahlung erfolgt.1. Optical sensor system for detecting ice formation, with a radiation source, the radiation of which a first fiber optic light guide leads to a sensor element, the sensor surface of which reflects the radiation and the reflected radiation feeds a radiation receiver by means of a second fiber optic light guide, which has an electrical signal corresponding to the respective radiation intensity generated and forwarded to an evaluation unit, characterized in that the sensor element is a reflection prism, in the hypotenuse surface of which the radiation transported by the first fiber-optic light guide is coupled in under perpendicular light incidence, reflected on the roof surfaces and reversed in direction after perpendicular light emission from the hypotenuse surface onto the light entry surface of the second fiber-optic light guide is directed, with a total reflection in the absence of ice covering the roof surfaces and a partial ref lexion of the injected radiation takes place.
2. Optisches Sensorsystem nach Anspruch 1, dadurch gekennzeichnet, daß die vom Nutzlicht der Strahlungsquelle nicht beaufschlagten Flächenbereiche des Reflexionsprismas mit einem lichtundurchlässigen Lack abgedeckt sind.2. Optical sensor system according to claim 1, characterized in that the surface areas of the reflection prism not acted upon by the useful light of the radiation source are covered with an opaque lacquer.
3. Optisches Sensorsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf die Hypotenusenfläche des Reflexionsprismas die zugehörigen Enden der faseroptischen Lichtleiter direkt aufgesetzt und mit dem Reflexions- prisma fest verkittet sind. Optisches Sensorsystem nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Strahlungsquelle als Impulslichtquelle betrieben wird. 3. Optical sensor system according to claim 1 or 2, characterized in that the associated ends of the fiber optic light guides are placed directly on the hypotenuse surface of the reflection prism and firmly cemented to the reflection prism. Optical sensor system according to one or more of the preceding claims, characterized in that the radiation source is operated as a pulsed light source.
PCT/DE2002/004269 2001-12-05 2002-11-18 Optical sensor system for detecting the formation of ice WO2003050778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10160522.6 2001-12-05
DE2001160522 DE10160522A1 (en) 2001-12-05 2001-12-05 Optical sensor system for the detection of ice formation

Publications (1)

Publication Number Publication Date
WO2003050778A1 true WO2003050778A1 (en) 2003-06-19

Family

ID=7708618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004269 WO2003050778A1 (en) 2001-12-05 2002-11-18 Optical sensor system for detecting the formation of ice

Country Status (2)

Country Link
DE (1) DE10160522A1 (en)
WO (1) WO2003050778A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082635A1 (en) * 2006-01-19 2007-07-26 Siemens Aktiengesellschaft Rotor of a wind power plant comprising a rotor blade deformation measuring device
CN108278969A (en) * 2018-01-23 2018-07-13 智恒(厦门)微电子有限公司 A kind of photomicrosensor
WO2021101465A1 (en) * 2019-11-22 2021-05-27 Koc Universitesi An apparatus and a method for monitoring accretion of ice and deicing
US11686742B2 (en) 2020-11-20 2023-06-27 Rosemount Aerospace Inc. Laser airspeed measurement sensor incorporating reversion capability
US11851193B2 (en) 2020-11-20 2023-12-26 Rosemount Aerospace Inc. Blended optical and vane synthetic air data architecture

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004060449A1 (en) * 2004-12-14 2006-06-29 Aloys Wobben Rotor blade for wind power station has rotor blade nose, deposition sensor device arranged in area of rotor blade nose with transmitter for wireless transmission of signals via transmission link and receiver for receiving signals
US8500402B2 (en) * 2004-12-14 2013-08-06 Aloys Wobben Rotor blade for a wind power station
CN101983325B (en) 2008-03-31 2013-04-24 维斯塔斯风力系统集团公司 Optical transmission strain sensor for wind turbines
GB2461532A (en) 2008-07-01 2010-01-06 Vestas Wind Sys As Sensor system and method for detecting deformation in a wind turbine component
GB2461566A (en) 2008-07-03 2010-01-06 Vestas Wind Sys As Embedded fibre optic sensor for mounting on wind turbine components and method of producing the same.
GB2463696A (en) 2008-09-22 2010-03-24 Vestas Wind Sys As Edge-wise bending insensitive strain sensor system
GB2466433B (en) 2008-12-16 2011-05-25 Vestas Wind Sys As Turbulence sensor and blade condition sensor system
GB2472437A (en) 2009-08-06 2011-02-09 Vestas Wind Sys As Wind turbine rotor blade control based on detecting turbulence
GB2477529A (en) 2010-02-04 2011-08-10 Vestas Wind Sys As A wind turbine optical wind sensor for determining wind speed and direction
AT13109U1 (en) * 2012-06-25 2013-06-15 Bachmann Gmbh Method and device for detecting the ice accumulation and the rate of icing on the rotor blades of a wind energy plant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158939A (en) * 1984-05-15 1985-11-20 Plessey Co Plc Monitoring condition of surface
GB2212913A (en) * 1987-11-28 1989-08-02 Robin Edward Carmic Washington Ice warning detector
WO2001011582A1 (en) * 1999-08-10 2001-02-15 Rosemount Aerospace Inc. Optical ice detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2158939A (en) * 1984-05-15 1985-11-20 Plessey Co Plc Monitoring condition of surface
GB2212913A (en) * 1987-11-28 1989-08-02 Robin Edward Carmic Washington Ice warning detector
WO2001011582A1 (en) * 1999-08-10 2001-02-15 Rosemount Aerospace Inc. Optical ice detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007082635A1 (en) * 2006-01-19 2007-07-26 Siemens Aktiengesellschaft Rotor of a wind power plant comprising a rotor blade deformation measuring device
CN108278969A (en) * 2018-01-23 2018-07-13 智恒(厦门)微电子有限公司 A kind of photomicrosensor
WO2021101465A1 (en) * 2019-11-22 2021-05-27 Koc Universitesi An apparatus and a method for monitoring accretion of ice and deicing
US11686742B2 (en) 2020-11-20 2023-06-27 Rosemount Aerospace Inc. Laser airspeed measurement sensor incorporating reversion capability
US11851193B2 (en) 2020-11-20 2023-12-26 Rosemount Aerospace Inc. Blended optical and vane synthetic air data architecture

Also Published As

Publication number Publication date
DE10160522A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
WO2003050778A1 (en) Optical sensor system for detecting the formation of ice
DE4337835B4 (en) measuring device
EP0115575B1 (en) Displays in automobiles
DE3902997C1 (en)
DE10315676B4 (en) Sensor for surfaces
EP0115025A2 (en) Optical sensor
DE2823832C2 (en)
DE4102146C1 (en) Rain and dirt sensor for motor vehicle windscreen - uses light source below or at inner side of pane and light measurer at top or outside
DE19933641A1 (en) Sensor device for detecting wetting on a pane
EP0186138A2 (en) Laser warning device for military vehicles
DE2341074B2 (en) MEASURING DEVICE FOR THE VOLTAGE BETWEEN AN INNER CONDUCTOR AND THE OUTER TUBE OF AN ENCLOSED HIGH VOLTAGE SWITCHGEAR
DE102013000751B4 (en) Sensor device for detecting moisture on a pane
DE19515365C2 (en) Fiber optic light barrier
DE2746800C2 (en) Arrangement for receiving and reflecting light, in particular for shot simulation purposes
EP0419602A1 (en) Method and apparatus for determining movements in structures
DE2101319A1 (en) Method for the automatic control of a window cleaning system
DE4329188A1 (en) Optical sensor for interval control of vehicle windscreen wiper - directs light beam into internal face of windscreen acting as waveguide using TIR, and detects light reflected by rain drop and refracted into air at internal face towards sensor
DE3336210A1 (en) Method and device for level measurement
EP2887038B1 (en) Fibre optic measuring device
DE102005009424A1 (en) Optical sensor with optimized sensitivity
DE3543155A1 (en) Optical dew point sensor
DE3917571A1 (en) METHOD FOR MEASURING THE INTENSITY OF SPARKLIGHT AND MEASURING DEVICE FOR CARRYING OUT THE METHOD
DE4010949A1 (en) OPTOELECTRIC LEVEL INDICATOR
DE19631423B4 (en) Method for spatially resolved substance detection
DE3643842A1 (en) Method for contactless determination of the spatial position of an object point located on the surface of a body

Legal Events

Date Code Title Description
AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase