WO2003049854A2 - Bande pour module de garnissage, module et colonne correspondants - Google Patents

Bande pour module de garnissage, module et colonne correspondants Download PDF

Info

Publication number
WO2003049854A2
WO2003049854A2 PCT/FR2002/004214 FR0204214W WO03049854A2 WO 2003049854 A2 WO2003049854 A2 WO 2003049854A2 FR 0204214 W FR0204214 W FR 0204214W WO 03049854 A2 WO03049854 A2 WO 03049854A2
Authority
WO
WIPO (PCT)
Prior art keywords
strip
curve
ridge
valley
curvature
Prior art date
Application number
PCT/FR2002/004214
Other languages
English (en)
Other versions
WO2003049854A3 (fr
Inventor
Jean-Yves Lehman
Etienne Werlen
Gilles Lebain
Original Assignee
L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP02796899A priority Critical patent/EP1461148A2/fr
Priority to JP2003550899A priority patent/JP2005511284A/ja
Priority to US10/498,614 priority patent/US7147215B2/en
Publication of WO2003049854A2 publication Critical patent/WO2003049854A2/fr
Publication of WO2003049854A3 publication Critical patent/WO2003049854A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04896Details of columns, e.g. internals, inlet/outlet devices
    • F25J3/04909Structured packings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32227Vertical orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32258Details relating to the extremities of the sheets, such as a change in corrugation geometry or sawtooth edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32255Other details of the sheets
    • B01J2219/32262Dimensions or size aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32265Sheets characterised by the orientation of blocks of sheets
    • B01J2219/32272Sheets characterised by the orientation of blocks of sheets relating to blocks in superimposed layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32408Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/326Mathematical modelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/328Manufacturing aspects
    • B01J2219/3281Pleating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/10Mathematical formulae, modeling, plot or curves; Design methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/72Packing elements

Definitions

  • the present invention relates to a corrugated strip of sheet material, in particular of plastically deformed sheet metal, for a packing module for treating a fluid, of the type delimiting fluid flow channels and comprising a current region whose channels define, in side view, ridge / valley lines having a general direction inclined with respect to a general direction of circulation of said fluid, the strip further comprising at least one transition region adjacent to the current region, transition region the direction of which ridge / valley lines gradually approach the general direction of circulation of said fluid.
  • the term “packing” is intended to mean a device intended for mixing a phase and / or bringing several phases flowing in co-current or counter-current into contact.
  • the lining in particular, there may be an exchange of heat and / or material and / or a chemical reaction.
  • a particular application of the invention resides in the columns separating from gas mixtures, in particular the air distillation columns.
  • the modules include corrugated sheets or strips arranged parallel and vertically, sheets whose corrugations are oblique with respect to a general direction of circulation of fluid in the installation, and inclined alternately, generally crossed by 90 °, from sheet to sheet. 'other.
  • the packing modules are threaded into the distillation column so that the sheets of a module are angularly offset with respect to the sheets of an adjacent module around the axis of the column, generally 90 ° by a module to another.
  • the gas is forced to change direction at such an angle to pass from one module to another, with a corresponding pressure drop at this location.
  • This pressure drop causes an accumulation of liquid in the lower zone of the upper module and engorgement of the column at this location, while the central part of the modules has not yet reached its point of engorgement. This phenomenon decreases the processing capacity of the column.
  • Such a packing module is described for example in WO-A-97 / l ⁇ 247.
  • the packing strips include in their marginal regions corrugations with curved apices which extend, on the edge facing an adjacent module, parallel to the general direction of circulation of the fluids.
  • the packing strips described in the aforementioned WO-A-97 / 16,247 nevertheless still generate a substantial pressure drop in the interface areas of the modules.
  • the invention aims to provide a packing module whose pressure drop is further reduced.
  • the subject of the invention is a corrugated strip of the aforementioned type, characterized in that each ridge / valley line of the transition region, seen from the side, extends inside an area determined, centered on a . curve which tangentially extends the ridge / valley line of the current region, and whose radial width is 10% of the corresponding radius of curvature of curvature, and in that the radius of curvature of the curve is at any point greater than 1.5 times, preferably greater than 1.6 times, the hydraulic diameter of a channel.
  • the strip according to the invention may include one or more of the following characteristics:
  • the radius of curvature of the curve is greater than three times the hydraulic diameter of a channel. - The radius of curvature of the curve is less than five times the hydraulic diameter of a channel.
  • the curve is an arc.
  • the center of the circular arc is located on the edge of the strip or on an extension of this edge.
  • the curve comprises at least two circular arcs of different radii of curvature, the circular arcs connecting to each other in ascending order of the value of their radius of curvature from the edge of the strip. (to be checked by M. WERLEN).
  • the edge direction of the ridge / valley lines at the location of their intersection with the edge of the strip is substantially the general direction of circulation of said fluid.
  • the ridge / valley lines of the transition region consist of at least two rectilinear segments, in particular of identical lengths.
  • the invention further relates to a packing module for a column for exchanging material and / or heat, characterized in that it comprises a stack of corrugated strips as defined above, with their general directions of the lines. of ridges / valley of their current region inverted from one band to another.
  • the packing density is greater than 300 m 2 / m 3 , and preferably greater than 400 m 2 / m 3 .
  • the subject of the invention is a cryogenic distillation column, in particular for air distillation, characterized in that it comprises at least one packing module as defined above.
  • FIG. 1 is a schematic side view of a packing strip according to the invention.
  • - Figure 2 is a sectional view along line II-II of Figure 1, on a larger scale;
  • - Figures 3 and 4 are graphs showing the behavior of an example of a packing module 1 according to the invention compared to packing modules of the prior art;
  • - Figure 5 is a side view of part of a variant of a packing strip according to the invention, on a larger scale. .
  • Figure 1 is shown, in side view, a packing strip 2 according to the invention.
  • the packing strip 2 is intended to be mounted in a column for treating a fluid with a vertical central axis (not shown). During operation of the column the fluid flows over the surface of the strip 2 in a general direction D ⁇ fluid flow, which in this case vertical.
  • the packing strip 2 is made from a strip of smooth sheet metal, and is plastically deformed by folding.
  • the lining strip 2 has a wavy running region 4 to which the wavy regions of - upper 6 and lower transition 8 are connected in the direction D f .
  • Each transition region 6, 8 is terminated by a horizontal edge 10, 12.
  • the transition regions 6, 8 are, in the assembled state of the strip 2, adjacent to neighboring packing modules, made up of similar strips but angularly offset around the central axis of the column.
  • FIG. 2 a sectional view of the main part 4 along line II-II of Figure 1.
  • the strip 2 consists of a succession of surfaces 14, 16 inclined planes, relative to the plane of Figure 1, alternately forwards and backwards.
  • Two adjacent surfaces 14, 16 form a fluid flow channel 18 between them.
  • Each channel 18 has a substantially triangular section and is closed on two sides and open on the third side.
  • the surfaces of a channel 14, 16 form an angle of ⁇ folding, which in this case is 60 °.
  • the channels 18, and therefore the strip have a thickness E.
  • the flat surfaces 14, 16 include curved connecting zones 22, 24 which connect two adjacent surfaces 14, 16. These connecting zones have a radius of curvature r.
  • the connecting zones 22, 24 form, in side view (FIG. 1), ridge 26 and valley lines 28.
  • two ridge lines 26 or two neighboring valley lines 28 extend parallel l to each other at a distance B, which is the step of the ripple.
  • the angle ⁇ is generally between 30 ° and 60 °.
  • each ridge 26 / valley 28 lines of the channels 18 extend substantially in the direction Di in an area connected to the current region 4 and change their inclination gradually towards an edge inclination direction D b to the location of the edge 10, 12 of the strip.
  • each ridge 26 / valley line 28 has in the transition region, in side view, the shape of an arc of circle A of radius Rc.
  • the center C of each arc A is located on the edge 10, 12 of the strip or on an extension of it, so that the direction D b is identical to the direction D f .
  • Each circular arc A is tangentially connected to a ridge 26 / valley line 28 of the current region 4.
  • Each of the transition regions upper 6 and lower 8 has a height Hc, measured in the direction Df.
  • each channel 18 is defined by two surfaces 14, 16 in V, that is to say by neglecting the radius r, the hydraulic diameter of a channel (18)
  • the radius Rc of each arc A is greater than 1.5 times the hydraulic diameter Dh. In practice it is between 1.6 Dh and 5 Dh, and is preferably around 3 Dh.
  • Curve C1 shows the capacity of a first, conventional packing, without transition regions, namely a packing made up of corrugated strips which are formed only by a current region.
  • Curve C2 indicates the capacity of a second lining, having two lower and upper transition regions whose ratio Rc / Dh is equal to 1. For a pressure drop of lOmbar / m there is an increase in capacity of 25% compared to conventional upholstery.
  • the curve C3 indicates the capacity of a lining according to the invention, the ratio Rc / Dh of which is 3. The capacity is, for a pressure drop of 10 mbar / m, further increased by 12% compared to the second lining.
  • the abscissa indicates the degree of clogging of the lining, while the ordinate indicates the pressure drop per unit of height.
  • Curve C4 shows the behavior of the first conventional packing.
  • Curve C5 indicates the behavior of the second lining, and curve C6 indicates the behavior of the third lining.
  • Figure 5 is shown part of a transition region of a variant of a packing strip according to the invention.
  • the inclination ⁇ of the ridge 26 / valley 28 lines of the current region 4 is 30 °. Consequently, they are inclined by 60 ° with respect to D f .
  • the ridge 26 / valley lines 28 are formed in the transition region 8 of three straight segments 36, 38, 40 of identical length 1. The successive segments 36, 38, 40 are inclined, from the current region towards the edge, by 77 ° to the edge 12.
  • Each ridge 26 / valley line 28 of the strip 2 extends, in the transition region 8, inside a zone 42 which is defined as follows: A curve in the form of an arc of circle A is tangentially connected to the end point T1 of the crest line 26 / of the valley 28 concerned in the current region.
  • This circular arc A has a radius Rc of at least 1.5 times, preferably at least 1.6 times, the hydraulic diameter Dh of the channels 18 of the strip 4.
  • this circular arc has a tangential direction D t which is more inclined towards the general direction of flow of the fluid D f than the ridge lines 26 / of valley 28 of the current region 4.
  • Zone 42 has a radial width Lr which is 10% of the radius Rc. Zone 42 is centered on the arc of circle A, so that it extends by 5% x Rc on either side of the arc of circle A.
  • this arc of circle A is the ideal line of curvature for a crest line 26 / of the valley 28 extending in the zone 42.
  • a packing module made from a packing strip according to the invention has an increased capacity.
  • the packing modules produced from the strips according to the invention preferably have a packing density a greater than 300 m 2 / m 3 and preferably greater than 400 m 2 / m 3 .
  • the modules comprising a stack of packing strips according to the invention are for example used in cryogenic distillation columns, in particular for air distillation.
  • the curve defining the area 42 may have a variable radius of curvature, in particular decreasing from the current region of the strip. It can in particular be made up of a plurality of circular arcs of different radii of curvature. For example, it can consist of two arcs of a circle having radii of curvature Rc of 1.5 Dh and 2 Dh. Preferably, the arcs of a circle extend from the edge in the ascending order of their radii of curvature (to be checked by M. ERLEN).

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Cette bande ondulée de garnissage de traitement d'un fluide délimite des canaux (18). Elle comporte une région courante (4) dont les canaux (18) définissent des lignes de crête (26) ayant une direction générale inclinée (Di) par rapport à une direction générale de circulation (Df) du fluide. La bande comporte une région de transition (6, 8) adjacente à la région courante (4). Chaque ligne de crête (26) de la région de transition (6, 8) s'étend à l'intérieur d'une zone déterminée centrée sur une courbe (A) qui prolonge tangentiellement la ligne de crête (26) de la région courante (4). La largeur radiale (Lr) est 10% du rayon de courbure correspondant de la courbe (A). Le rayon de courbure (Rc) de la courbe (A) est en tout point supérieur à 1,5 fois le diamètre hydraulique (Dh) d'un canal (18). Application aux colonnes de distillation d'air.

Description

Bande pour module de garnissage, module et colonne correspondants
La présente invention concerne une bande ondulée en matière en feuille, notamment en tôle plastiquement déformée, pour module de garnissage de traitement d'un fluide, du type délimitant des canaux d'écoulement du fluide et comportant une région courante dont les canaux définissent, en vue de côté, des lignes de crête/de vallée ayant une direction générale inclinée par rapport à une direction générale de circulation dudit fluide, la bande comportant en outre au moins une région de transition adjacente à la région courante, région de transition dont la direction des lignes de crête /de vallée se rapproche progressivement de la direction générale de circulation dudit fluide.
On entend par garnissage un dispositif destiné au mélange d'une phase et/ou à la mise en contact de plusieurs phases circulant à co-courant ou à contre- courant. Dans le garnissage peut en particulier se produire un échange de chaleur et/ou de matière et/ou une réaction chimique. Une application particulière de l'invention réside dans les colonnes séparant de mélanges gazeux, notamment les colonnes de distillation d' air . On connaît dans l'état de la technique des installations de distillation d'air comprenant des modules de garnissage ondulé-croisé, également appelés « packs ». Les modules comprennent des tôles ou bandes ondulées disposées parallèlement et verticalement, tôles dont les ondulations sont obliques par rapport à une direction générale de circulation de fluide dans l'installation, et inclinées alternativement, généralement croisées de 90° , d'une tôle à l'autre. Les modules de garnissage sont enfilés dans la colonne de distillation de façon à ce que les tôles d'un module soient décalées angulairement par rapport aux tôles d'un module adjacent autour de l'axe de la colonne, généralement de 90° d'un module à l'autre.
Pendant l'utilisation, le gaz est contraint de changer de direction selon un tel angle pour passer d'un module à l'autre, avec une perte de charge correspondante à cet emplacement. Cette perte de charge provoque une accumulation de liquide dans la zone inférieure du module supérieur et un engorgement de la colonne à cet emplacement, tandis que la partie centrale des modules n'a pas encore atteint son point d'engorgement. Ce phénomène diminue la capacité de traitement de la colonne.
Afin de réduire cet effet, on a proposé dans l'état de la technique des modules de garnissage ayant une zone d' interface structurée .
Un tel module de garnissage est décrit par exemple dans le WO-A-97/lβ 247.
Dans ce module, les bandes de garnissage comprennent dans leurs régions marginales des ondulations à sommets courbes qui s'étendent, sur le bord faisant face à un module adjacent, parallèlement à la direction générale de circulation des fluides.
Ces ondulations courbes raccordent ce bord de la bande aux ondulations se trouvant dans la région courante du module, lesquelles s'étendent obliquement par rapport à la direction générale de circulation des fluides.
Les bandes de garnissage décrites dans le WO-A- 97/16 247 précité engendrent néanmoins encore une perte de charge substantielle dans les zones d'interface des modules . L'invention a pour but de proposer un module de garnissage dont la perte de charge est encore diminuée.
A cet effet, l'invention a pour objet une bande ondulée du type précité, caractérisé en ce que chaque ligne de crête /de vallée de la région de transition, en vue de côté, s'étend à l'intérieur d'une zone déterminée, centrée sur une .courbe qui prolonge tangentiellement la ligne de crête/de vallée de la région courante, et dont la largeur radiale est 10% du rayon de courbure correspondant de la courbure, et en ce que le rayon de courbure de la courbe est en tout point supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, le diamètre hydraulique d'un canal.
Selon des modes particuliers de réalisation, la bande selon l'invention peut comporter l'une ou plusieurs des caractéristiques suivantes :
Le rayon de courbure de la courbe est supérieur à trois fois le diamètre hydraulique d'un canal . - Le rayon de courbure de la courbe est inférieur à cinq fois le diamètre hydraulique d'un canal .
La courbe est un arc de cercle.
- Le centre de l'arc de cercle est situé sur le bord de la bande ou sur un prolongement de ce bord.
La courbe comprend au moins deux arcs de cercle de rayons de courbure différents, les arcs de cercle se raccordant les uns aux autres dans l'ordre croissant de la valeur de leur rayon de courbure à partir du bord de la bande. (à vérifier par M. WERLEN) .
- La direction de bord des lignes de crête/ de vallée à l'emplacement de leur intersection avec le bord de la bande est sensiblement la direction générale de circulation dudit fluide.
- Les lignes de crête/de vallée de la région de transition sont constituées d'au moins deux segments rectilignes, notamment de longueurs identiques.
- Les lignes de crête/de vallée de la région de transition sont confondues avec la courbe.
L'invention a en outre pour objet un module de garnissage pour colonne d'échange de matière et/ou de chaleur, caractérisé en ce qu'il comprend un empilement de bandes ondulées telles que définies ci-dessus, avec leurs directions générales des lignes de crêtes/ de vallée de leur région courante inversées d'une bande à 1 ' autre . Suivant un mode particulier de réalisation du module, la densité de garnissage est supérieure à 300 m2/m3, et de préférence supérieure à 400 m2/m3.
Par ailleurs, l'invention a pour objet une colonne de distillation cryogénique, notamment de distillation d'air, caractérisée en ce qu'elle comprend au moins un module de garnissage tel que défini ci-dessus.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :-
- la Figure 1 est une vue schématique de côté d'une bande de garnissage selon l'invention ;
- la Figure 2 est une vue en coupe suivant la ligne II-II de la Figure 1, à plus grande échelle ; - les Figures 3 et 4 sont des graphiques montrant le comportement d'un exemple d'un module de garnissage selon 1 ' invention par rapport à des modules de garnissage de l'état de la technique ; - la Figure 5 est une vue de côté d'une partie d'une variante d'une bande de garnissage selon l'invention, à plus grande échelle. .
Sur la Figure 1 est représentée, en vue de côté, une bande de garnissage 2 selon l'invention. La bande de garnissage 2 est destinée à être montée dans une colonne de traitement d'un fluide à axe central vertical (non représentée) . Pendant le fonctionnement de la colonne, du fluide s'écoule sur la surface de la bande 2 suivant une direction générale DÊ d'écoulement de fluide, qui est en l'occurrence verticale. La bande de garnissage 2 est fabriquée à partir d'une bande en tôle lisse, et est déformée plastiquement par pliage.
La bande de garnissage 2 comporte une région courante 4 ondulée à laquelle se raccordent suivant la direction Df des régions ondulées de - transition supérieure 6 et inférieure 8. Chaque région de transition 6, 8 est terminée par un bord horizontal 10, 12. Les régions de transition 6, 8 se trouvent, à l'état monté de la bande 2, adjacentes à des modules de garnissage voisins, constitués de bandes analogues mais décalés angulairement autour de l'axe central de la colonne .
Sur la Figure 2 est représentée une vue en coupe de la partie courante 4 suivant la ligne II-II de la Figure 1. La bande 2 est constituée d'une succession de surfaces 14, 16 planes inclinées, par rapport au plan de la Figure 1, alternativement vers l'avant et vers l'arrière. Deux surfaces voisines 14, 16 forment un canal 18 d'écoulement de fluide entre elles. Chaque canal 18 a une section sensiblement triangulaire et est fermé sur deux côtés et ouvert sur le troisième côté. Les surfaces d'un canal 14, 16 forment un angle de pliage γ, qui est en l'occurrence 60°. Les canaux 18, et donc la bande, présentent une épaisseur E. Les surfaces planes 14, 16 comportent des zones courbes de liaison 22, 24 qui relient deux surfaces 14, 16 adjacentes. Ces zones de liaison ont un rayon de courbure r. Les zones de liaison 22, 24 forment, en vue de côté, (Figure 1) des lignes de crête 26 et de vallée 28. En vue de coté, deux lignes de crête 26 ou deux lignes de vallée 28 voisines s'étendent parallèlement l'une à l'autre à une distance B, qui est le pas de l'ondulation. Les lignes de crête 26/de vallée 28 de la région courante 4 sont rectilignes et s'étendent suivant une direction Di . Cette direction s'étend suivant un angle δ = 45° par rapport aux bords 10, 12 de la bande et par rapport à la direction Df. L'angle δ est généralement compris entre 30° et 60°.
Comme différence par rapport à la région courante, les canaux 18 des régions de transition 6, 8 sont courbes. Plus précisément, les lignes de crête 26 /de vallée 28 des canaux 18 s'étendent sensiblement dans la direction Di dans une zone raccordée à la région courante 4 et changent leur inclinaison progressivement vers une direction d'inclinaison de bord Db à l'emplacement du bord 10, 12 de la bande. Dans le présent mode de réalisation, chaque ligne de crête 26/de vallée 28 a dans la région de transition, en vue de coté, la forme d'un arc de cercle A de rayon Rc . Le centre C de chaque arc de cercle A est situé sur le bord 10, 12 de la bande ou sur un prolongement de celui-ci, de telle sorte que la direction Db soit identique à la direction Df. Chaque arc de cercle A se raccorde tangentiellement à une ligne de crête 26/de vallée 28 de la région courante 4. Chacune des régions de transition supérieure 6 et inférieure 8 a une hauteur Hc, mesurée suivant la direction Df . La hauteur Hc en fonction de δ est Hc = Rc cos(δ) .
Le diamètre hydraulique de chaque canal 18 de la
_, 4 x Section du Canal région courante 4 est Un =
Périmètredu Canal
Dans le cas où chaque canal 18 est défini par deux surfaces 14, 16 en V, c'est-à-dire en négligeant le rayon r, le diamètre hydraulique d'un canal (18)
Figure imgf000009_0001
Le rayon Rc de chaque arc A est supérieur à 1,5 fois le diamètre hydraulique Dh. Dans la pratique il est compris entre 1,6 Dh et 5 Dh, et est de préférence environ 3 Dh.
Sur la Figure 3 sont représentées des courbes comparant les capacités de deux garnissages de l'état de la technique et d'un garnissage selon l'invention. Chaque garnissage a une densité de 500m2/m3. L'inclinaison des canaux dans la région courante δ est 45°. On a porté en abscisses le débit surfacique maximal du gaz, tandis que les ordonnées indiquent la perte de charge par unité de hauteur.
La courbe Cl montre la capacité d'un premier garnissage, classique, sans régions de transition, à savoir un garnissage constitué de bandes ondulées qui sont constituées uniquement par une région courante. La courbe C2 indique la capacité d'un deuxième garnissage, ayant deux régions de transition inférieure et supérieure dont le rapport Rc/Dh est égal à 1. Pour une perte de charge de lOmbar/m on constate une augmentation de la capacité de 25% par rapport au garnissage classique . La courbe C3 indique la capacité d'un garnissage selon l'invention dont le rapport Rc/Dh est de 3. La capacité est, pour une perte de charge de lOmbar/m, encore augmentée de 12% par rapport au deuxième garnissage.
Sur la Figure 4 sont représentées des courbes comparant les comportements des garnissages précités.
Les abscisses indiquent le degré d'engorgement du garnissage, tandis que les ordonnées indiquent la perte de charge par unité de hauteur.
La courbe C4 montre le comportement du premier garnissage classique. La courbe C5 indique le comportement du deuxième garnissage, et la courbe C6 indique le comportement du troisième garnissage. Pour une perte de charge de 6mbar/m, la capacité est augmentée de 8% d'un garnissage de Rc/Dh = 3, par rapport à un garnissage de Rc/Dh = 1.
Sur la Figure 5 est représentée une partie d'une région de transition d'une variante d'une bande de garnissage selon l'invention.
Comme différence par rapport au premier mode de réalisation, l'inclinaison δ des lignes de crête 26/de vallée 28 de la région courante 4 est de 30°. En conséquence, elles sont inclinées de 60° par rapport à Df . De plus, les lignes de crête 26/de vallée 28 sont constituées dans la région de transition 8 de trois segments de droite 36, 38, 40 de longueur 1. identique. Les segments successifs 36, 38, 40 sont inclinés, de la région courante vers le bord, de
Figure imgf000010_0001
77° par rapport au bord 12.
Chaque ligne de crête 26/ de vallée 28 de la bande 2 s'étend, dans la région de transition 8, à l'intérieur d'une zone 42 qui est définie comme suit : Une courbe en forme d'arc de cercle A se raccorde tangentiellement au point terminal Tl de la ligne de crête 26/ de vallée 28 concernée de la région courante . Cet arc de cercle A présente un rayon Rc d'au moins 1,5 fois, de préférence d'au moins 1,6 fois, le diamètre hydraulique Dh des canaux 18 de la bande 4.
Au point d'intersection T2 de l'arc de cercle A avec le bord 12, cet arc de cercle présente une direction tangentielle Dt qui est plus inclinée vers la direction générale d'écoulement du fluide Df que les lignes de crête 26/ de vallée 28 de la région courante 4.
La zone 42 présente une largeur radiale Lr qui est 10% du rayon Rc . La zone 42 est centrée sur l'arc de cercle A, de telle sorte qu'elle s'étend de 5% x Rc de part et d'autre de l'arc de cercle A.
Il est à noter que cet arc de cercle A est la ligne idéale de courbure pour une ligne de crête 26/ de la vallée 28 s ' étendant dans la zone 42.
On constate qu'un module de garnissage fabriqué à partir d'une bande de garnissage selon l'invention présente une capacité augmentée.
Les modules de garnissage fabriqués à partir des bandes selon l'invention ont de préférence une densité de garnissage a supérieure à 300 m2/m3 et de préférence supérieure à 400 m2/m3.
Il est à noter que le diamètre hydraulique Dh peut être calculé également de façon approximative en fonction de la densité du garnissage a suivant la formule : Dh=— a
Les modules comprenant un empilement de bandes de garnissage selon l'invention sont par exemple utilisés dans des colonnes de distillation cryogénique, notamment de distillation d'air.
En variante, la courbe définissant la zone 42 peut être à rayon de courbure variable, notamment décroissant à partir de la région courante de la bande. Elle peut en particulier être constituée d'une pluralité d'arcs de cercle de rayons de courbure différents. Par exemple, elle peut être constituée de deux arcs de cercle ayant des rayons de courbure Rc de 1,5 Dh et de 2 Dh. De préférence, les arcs de cercle s'étendent à partir du bord dans l'ordre croissant de leurs rayons de courbure (à vérifier par M. ERLEN) .

Claims

REVENDICATIONS
1. Bande ondulée en matière en feuille, notamment en tôle plastiquement déformée, pour module de garnissage de traitement d'un fluide, du type délimitant des canaux d'écoulement (18) du fluide et comportant une région courante (4) dont les canaux (18) définissent, en vue de côté, des lignes de crête (26) /de vallée (28) ayant une direction générale inclinée (Di) par rapport a une direction générale de circulation (Df) dudit fluide, la bande (4) comportant en outre au moins une région de transition (6, 8) adjacente à la région courante (4), région de transition (6, 8) dont la direction des lignes de crête (26) /de vallée (28) se rapproche progressivement de la direction générale de circulation (Df) dudit fluide, caractérisée en ce que chaque ligne de crête (26) /de vallée (28) de la région de transition (6, 8), en vue de côté, s'étend à l'intérieur d'une zone déterminée (42), centrée sur une courbe (A) qui prolonge tangentiellement la ligne de crête (26) /de vallée (28) de la région courante (4) et dont la largeur radiale
(Lr) est 10% du rayon de courbure correspondant de la courbe (A) , et en ce que le rayon de courbure (Rc) de la courbe (A) est en tout point supérieur à 1,5 fois, de préférence supérieur à 1,6 fois, le diamètre hydraulique (Dh) d'un canal (18) .
2. Bande selon la revendication 1, caractérisée en ce que le rayon de courbure (Rc) de la courbe (A) est supérieur à trois fois le diamètre hydraulique (Dh) d'un canal (18) .
3. Bande selon l'une quelconque des revendications 1 ou 2 , caractérisée en ce que le rayon de courbure (Rc) de la courbe (A) est inférieur à cinq fois le diamètre hydraulique (Dh) d'un canal (18) .
4. Bande selon l'une quelconque des revendications précédentes, caractérisée en ce que la courbe est un arc de cercle (A) .
5. Bande selon la revendication 4, caractérisée en ce que le centre (C) de l'arc de cercle (A) est situé sur le bord (10, 12) de la bande ou sur un prolongement de ce bord.
6. Bande selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la courbe comprend au moins deux arcs de cercle de rayons de courbure différents, les arcs de cercle se raccordant les uns aux autres dans l'ordre croissant de la valeur de leur rayon de courbure à partir du bord de la bande, (à vérifier par M. WERLEN)
7. Bande selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la direction de bord (Db)des lignes de crête (26)/ de vallée (28) à l'emplacement de leur intersection avec le bord (10, 12) de la bande est sensiblement la direction générale de circulation (Df) dudit fluide.
8. Bande selon l'une quelconque des revendications précédentes, caractérisée en ce que les lignes de crête (26) /de vallée (28) de la région de transition (6, 8) sont constituées d'au moins deux segments rectilignes (36, 38, 40), notamment de longueurs identiques ( 1 ) .
9. Bande selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les lignes de crête (26) /de vallée (28) de la région de transition (6, 8) sont confondues avec la courbe (A) .
10. Module de garnissage pour colonne d'échange de matière et/ou de chaleur, caractérisé en ce qu'il comprend un empilement de bandes (2) suivant l'une quelconque des revendications précédentes, avec leurs directions générales des lignes de crêtes (26)/ de vallée (28) (Di) de leur région courante inversées d'une bande à 1 ' autre .
11. Module selon la revendication 10, caractérisé en ce que sa densité de garnissage (a) est supérieure à 300 m2/m3, et de préférence supérieure à 400 m2/m3.
12. Colonne de distillation cryogénique, notamment de distillation d'air, caractérisée en ce qu'elle comprend au moins un module de garnissage selon l'une des revendications 10 ou 11.
PCT/FR2002/004214 2001-12-10 2002-12-06 Bande pour module de garnissage, module et colonne correspondants WO2003049854A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02796899A EP1461148A2 (fr) 2001-12-10 2002-12-06 Bande pour module de garnissage, module et colonne correspondants
JP2003550899A JP2005511284A (ja) 2001-12-10 2002-12-06 充填材モジュールのためのストリップ、対応するモジュール及びカラム
US10/498,614 US7147215B2 (en) 2001-12-10 2002-12-06 Strip for packing module, corresponding module and column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/15933 2001-12-10
FR0115933A FR2833190B1 (fr) 2001-12-10 2001-12-10 Bande pour module de garnissage, module et colonne correspondants

Publications (2)

Publication Number Publication Date
WO2003049854A2 true WO2003049854A2 (fr) 2003-06-19
WO2003049854A3 WO2003049854A3 (fr) 2003-12-24

Family

ID=8870293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004214 WO2003049854A2 (fr) 2001-12-10 2002-12-06 Bande pour module de garnissage, module et colonne correspondants

Country Status (6)

Country Link
US (1) US7147215B2 (fr)
EP (1) EP1461148A2 (fr)
JP (1) JP2005511284A (fr)
CN (1) CN1241682C (fr)
FR (1) FR2833190B1 (fr)
WO (1) WO2003049854A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734315A4 (fr) * 2011-07-21 2015-03-18 Sulzer Chemtech Ag Outil de formation de feuille et procédé pour la fabrication d'une feuille ondulée

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005004859U1 (de) * 2005-03-26 2006-08-03 2H Kunststoff Gmbh Kontaktkörper für einen Verdunstungsbefeuchter oder Stoffaustauscher für die Befeuchtung, Kühlung und/oder Reinigung von Luft
FR2947188A1 (fr) * 2009-06-24 2010-12-31 Air Liquide Bande pour module de garnissage, module de garnissage et installation de distillation correspondants
US9295925B2 (en) * 2012-12-11 2016-03-29 Praxair Technology, Inc. Structured packing and method
US9956540B1 (en) * 2015-03-31 2018-05-01 Gtc Technology Us Llc Structured packing with enhanced fluid-flow interface
CN105458088B (zh) * 2015-11-03 2018-06-05 天津市北方高效石化设备制造有限公司 一种双曲填料拐弯模具
AU2019335072A1 (en) * 2018-09-06 2021-03-04 Curtin University Structured packing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921270A1 (de) * 1979-05-25 1980-11-27 Montz Gmbh Julius Packung fuer stoffaustauschkolonnen mit gebogenen rippen
EP1078684A1 (fr) * 1999-08-24 2001-02-28 Sulzer Chemtech AG Garnissage structuré pour des colonnes de séparation
US6212907B1 (en) * 2000-02-23 2001-04-10 Praxair Technology, Inc. Method for operating a cryogenic rectification column
DE10001694A1 (de) * 2000-01-18 2001-07-19 Montz Gmbh Julius Packung für Wärme- und Stoffaustauschkolonnen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1080991A (en) * 1963-03-04 1967-08-31 Ici Ltd Improvements in or relating to film-flow packins
CH617357A5 (fr) * 1977-05-12 1980-05-30 Sulzer Ag
US4957276A (en) * 1988-02-22 1990-09-18 Baltimore Aircoil Company Trapezoidal fill sheet for low silhouette cooling tower
DE8904345U1 (de) * 1989-04-07 1989-05-18 Streng, Andreas, Dipl.-Ing., 5210 Troisdorf Wärme- und Stoffübertrager
DE3918483A1 (de) * 1989-06-06 1990-12-13 Munters Euroform Gmbh Carl Fuellkoerper
GB9522086D0 (en) 1995-10-31 1996-01-03 Ici Plc Fluid-fluid contacting apparatus
US5876638A (en) * 1996-05-14 1999-03-02 Air Products And Chemicals, Inc. Structured packing element with bi-directional surface texture and a mass and heat transfer process using such packing element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921270A1 (de) * 1979-05-25 1980-11-27 Montz Gmbh Julius Packung fuer stoffaustauschkolonnen mit gebogenen rippen
EP1078684A1 (fr) * 1999-08-24 2001-02-28 Sulzer Chemtech AG Garnissage structuré pour des colonnes de séparation
DE10001694A1 (de) * 2000-01-18 2001-07-19 Montz Gmbh Julius Packung für Wärme- und Stoffaustauschkolonnen
US6212907B1 (en) * 2000-02-23 2001-04-10 Praxair Technology, Inc. Method for operating a cryogenic rectification column

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2734315A4 (fr) * 2011-07-21 2015-03-18 Sulzer Chemtech Ag Outil de formation de feuille et procédé pour la fabrication d'une feuille ondulée

Also Published As

Publication number Publication date
EP1461148A2 (fr) 2004-09-29
FR2833190B1 (fr) 2004-02-27
WO2003049854A3 (fr) 2003-12-24
CN1241682C (zh) 2006-02-15
US7147215B2 (en) 2006-12-12
JP2005511284A (ja) 2005-04-28
CN1606470A (zh) 2005-04-13
US20050040549A1 (en) 2005-02-24
FR2833190A1 (fr) 2003-06-13

Similar Documents

Publication Publication Date Title
EP2134463B1 (fr) Garnissage structure haute performance pour colonne de mise en contact de fluides et méthode de fabrication
EP0491591B1 (fr) Colonne de distillation d'air à garnissage ondulé-croisé
US20120312167A1 (en) Fluted filter media
EP0367817B1 (fr) Dispositif d'echange de chaleur et de matiere
WO1991005211A1 (fr) Condenseur pour automobile et methode pour sa realisation
EP1073515B1 (fr) Structure maritime flottante perfectionnee avec colonne de distillation
WO2014041269A1 (fr) Garnissage structuré haute performance pour colonne de mise en contact de fluides
FR2784437A1 (fr) Bague ou joint d'etancheite metallique pour conditions de faible charge
WO2003049854A2 (fr) Bande pour module de garnissage, module et colonne correspondants
WO2002086359A1 (fr) Joint d'etancheite metallique elastique ouvert a parties saillantes desaxees
EP2895263B1 (fr) Garnissage structuré haute performance pour colonne de mise en contact de fluides
EP1295077B1 (fr) Echangeur spirale multiecartement
FR2871073A1 (fr) Bande pour module de garnissage ondule-croise, procede de fabrication et module de garnissage ondule-croise correspondants
WO2016097032A1 (fr) Plaque d'echange thermique a microcanaux et echangeur thermique comportant au moins une telle plaque
EP3645184A1 (fr) Tube pour echangeur de chaleur avec dispositif de perturbation
WO2010058115A1 (fr) Garnissage ondulé-croisé et colonne incorporant un tel garnissage
FR2827527A1 (fr) Module d'interface,son procede de fabrication,et appareil de fluide(s) comportant un module d'interface correspondant.
FR2947188A1 (fr) Bande pour module de garnissage, module de garnissage et installation de distillation correspondants
CA2451830A1 (fr) Bande pour module de garnissage, module et installation correspondants
FR2827526A1 (fr) Bande d'interface,garnissage correspondant,et appareil de traitement de fluide(s) correspondant.
WO2004110617A1 (fr) Bande pour module de garnissage et installation correspondante
FR2826879A1 (fr) Bande pour module de garnissage, module et installation correspondants
EP1949012A1 (fr) Tubes rainures pour echangeurs thermiques a resistance a l'expansion amelioree
FR2594943A1 (fr) Faisceau de tubes a ailettes a ecartement constant pour un echangeur de chaleur
FR2815889A1 (fr) Entretoise pour modules de garnissage et appareil de traitement de fluides correspondant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002796899

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003550899

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028246527

Country of ref document: CN

Ref document number: 10498614

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002796899

Country of ref document: EP