WO2003049171A1 - Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism - Google Patents

Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism Download PDF

Info

Publication number
WO2003049171A1
WO2003049171A1 PCT/JP2002/012826 JP0212826W WO03049171A1 WO 2003049171 A1 WO2003049171 A1 WO 2003049171A1 JP 0212826 W JP0212826 W JP 0212826W WO 03049171 A1 WO03049171 A1 WO 03049171A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
exhaust ring
magnets
exhaust
plasma
Prior art date
Application number
PCT/JP2002/012826
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiki Takahashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2002354107A priority Critical patent/AU2002354107A1/en
Publication of WO2003049171A1 publication Critical patent/WO2003049171A1/en
Priority to US10/739,351 priority patent/US20040129218A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Definitions

  • the present invention relates to a plasma processing apparatus, and more particularly, to an exhaust ring mechanism and a plasma processing apparatus used in a plasma processing apparatus capable of confining plasma in a plasma region. Related.
  • a plasma processing apparatus is an apparatus that performs processing such as an etching process and a film forming process on an object to be processed such as a wafer by using plasma generated in a processing chamber.
  • plasma processing devices for example, a capacitive coupling type and an inductive coupling type.
  • the parallel plate type plasma processing apparatus has a processing chamber capable of maintaining a vacuum by an exhaust system including a vacuum pump.
  • a holder serving also as a lower electrode for mounting an object to be processed such as a wafer is mounted in the processing chamber.
  • an upper electrode is provided with a space (processing space).
  • a high-frequency power supply for applying high-frequency power is provided to one of the upper and lower electrodes or both the upper and lower electrodes. Further, a focusing ring is provided on the outer peripheral edge of the holder.
  • the high-frequency power supply High-frequency power is applied to either the upper or lower electrode or both electrodes under vacuum, and plasma is generated in an atmosphere of the process gas introduced into the processing chamber. Perform plasma processing such as switching.
  • a ring-shaped exhaust ring having a plurality of exhaust holes is provided between the holding body and the inner peripheral wall of the processing chamber, and by-products and unnecessary products are passed through the exhaust holes of the exhaust ring. Process gas (used) is exhausted evenly around the plasma area.
  • the processing chamber is divided into a plasma region and a non-plasma region via the exhaust ring.
  • the inner wall of the processing chamber is worn out due to snow and water ring by plasma mist, and is contaminated by by-products adhering and accumulating. Ceramic spraying is applied to the walls.
  • the non-plasma region there is almost no attack by plasma ions, and there is little contamination by by-products. Therefore, no such measures are taken on the inner wall of the treatment chamber.
  • the exhaust ring is provided with exhaust holes for exhaust throughout the entire surface, when the density of the plasma is increased, the exhaust holes are used to form a non-plasma region.
  • Zuma leakage occurs. Due to this plasma leakage, the plasma density at the outer peripheral portion of the object to be processed is reduced, and as a result, there is a problem that the uniformity of plasma processing such as an etching rate is deteriorated. In addition, the plasma leakage may damage or contaminate the inner wall of the processing chamber in the non-plasma region.
  • an exhaust ring mechanism that contacts a plasma region for performing plasma processing on an object to be processed in a processing chamber and forms an exhaust flow path for generated gas in the plasma region.
  • the exhaust ring mechanism includes an exhaust ring having a surface in contact with the plasma region, and a magnetic field forming unit that forms a magnetic field having magnetic lines of force parallel to the surface direction of the exhaust ring. It is composed and blocks the passage of plasma ions and electrons by the formed magnetic field, confining the plasma in the plasma region and preventing the plasma leakage from the plasma region to the non-plasma region It becomes possible to do. As a result, the diffusion of the plasma is prevented, and the uniformity of the plasma density between the peripheral portion of the wafer W and the central portion of the wafer W is improved. In addition, plasma processing such as etching at the outer peripheral portion of the wafer W is prevented from lowering, and the in-plane uniformity of the plasma processing is maintained.
  • FIG. 1 is a diagram showing a configuration of a plasma processing apparatus and an exhaust ring mechanism according to a first embodiment of the present invention.
  • FIG. 2A is a plan view partially illustrating the operation of the exhaust ring mechanism shown in FIG. 1
  • FIG. 2B is a radial cross-sectional view of FIG. 2A
  • FIG. It is sectional drawing of a direction.
  • FIG. 3A is a diagram showing a partial plane of an exhaust ring mechanism according to a second embodiment of the present invention
  • FIG. 3B is a diagram showing a radial cross-sectional configuration of FIG. 3A
  • FIG. 3B is a diagram showing a cross-sectional configuration in the circumferential direction of FIG. 3A.
  • FIG. 4A is a view showing a partial plane of an exhaust ring mechanism according to a third embodiment of the present invention
  • FIG. 4B is a view showing a radial cross-sectional configuration of FIG. 4A.
  • FIG. 5A is a diagram showing a partial plan view of a configuration of an exhaust ring mechanism according to a fourth embodiment of the present invention
  • FIG. 5B is a diagram showing a direction of a magnetic field vector in the configuration of FIG. 5A. It is.
  • FIG. 6A is a view showing a partial plane of a plane configuration of an exhaust ring mechanism according to a fifth embodiment of the present invention
  • FIG. 6B is a direction of a magnetic field vector in the configuration of FIG. 6A.
  • FIG. 7A is a diagram showing a partial plan view of a planar configuration of an exhaust ring mechanism according to a sixth embodiment of the present invention
  • FIG. 7B is a diagram showing a first magnet arrangement example
  • FIG. FIG. 4 is a diagram showing an example of an arrangement of a second magnet.
  • FIG. 8A is a diagram showing a plan configuration of the exhaust ring in the exhaust ring mechanism according to the seventh embodiment of the present invention as viewed from above, and FIG. FIG. 8A is a diagram showing an example of the arrangement of magnets and the direction of a magnetic field vector in the configuration of FIG. 8A, and FIG.
  • FIG. 9A is a diagram showing a plan view of an exhaust ring in an exhaust ring mechanism according to an eighth embodiment of the present invention, as viewed from above, and FIG. 9B is an example of a magnet arrangement in the configuration of FIG. 9A.
  • FIG. 4 is a diagram showing the direction of a magnetic field vector.
  • FIG. 1 OA is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the ninth embodiment of the present invention as viewed from above, and FIG. 10B is a magnet in the configuration of FIG. 1 OA.
  • FIG. 2 is a diagram showing an example of the arrangement of the magnetic field and the direction of a magnetic field vector.
  • Fig. 11A is a diagram showing an external configuration of a depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied.
  • Fig. 11B is a top view of the depot shield shown in Fig. 11A.
  • Fig. 11C shows a plan view, Fig. 11C shows a side view of the deposit shield of Fig. 11A, and
  • Fig. 11 D shows a part of the deposit shield where magnets are arranged in the radial direction.
  • FIG. 12A shows the cross-sectional configuration of the depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied.
  • FIG. 12B shows the external configuration of FIG. Fig. 12C shows the top view of the depot shield shown in Fig.
  • Fig. 12C shows the external view of the depot shield of Fig. 12A viewed from the side
  • Fig. 12D shows the magnet in the depot shield.
  • the invention showing the partial cross-sectional configuration of the configuration in which is arranged in the circumferential direction is carried out. Best form for
  • FIG. 1 is a diagram schematically showing a configuration of a plasma processing apparatus and an exhaust ring mechanism according to a first embodiment of the present invention.
  • 2A shows a partial plan view of the configuration of the exhaust ring mechanism 7
  • FIG. 2B shows a cross-sectional configuration along the radial direction
  • FIG. 2C shows a cross-sectional configuration along the circumferential direction. are doing.
  • the plasma processing apparatus is roughly divided into a processing chamber 1, a holder 2, an upper electrode 3, a matching unit 4, a high-frequency power supply 5, a focus ring 6, and an exhaust ring.
  • the mechanism 7 consists of an exhaust system 12 and a gas supply system (purge gas and process gas) 13.
  • the processing chamber 1 is formed of a conductive material such as aluminum and has an airtight structure for maintaining a predetermined high vacuum state.
  • the inner walls exposed to plasma are subjected to well-known corrosion-resistant treatment such as alumite treatment.
  • the holder 2 is mounted in the processing chamber 1, on which an object to be processed (for example, a wafer) W is placed and held by an electrostatic chuck (not shown). Further, a delivery mechanism (not shown) is provided, and a wafer is transferred to and from a wafer transfer mechanism (not shown). Further, a high-frequency power source 5 is connected to the holder 2 via a matching device 4 described later, and also serves as a lower electrode to which high-frequency power is applied for plasma generation. Hereinafter, the holder 2 is referred to as a lower electrode 2.
  • a focusing ring 6 is arranged on the outer peripheral edge of the mounting surface on which the wafer is mounted on the lower electrode 2.
  • the focusing ring 6 is formed in a ring shape by using a silicon or the like, and the inside thereof has a gap. Ha is inserted.
  • the focus ring 6 allows the plasma generated between the lower electrode 2 and the upper electrode 3 to be focused on the wafer W.
  • the upper electrode 3 is provided above the lower electrode 2 in the processing chamber 1 so as to be opposed to and parallel to the mounting surface of the lower electrode at a predetermined interval from the lower electrode 2.
  • the upper electrode 3 is formed in a hollow shape like a box, and has a function of diffusing a process gas, for example, an etching gas into the processing chamber in a shower shape to supply the gas.
  • the high-frequency power supply 5 applies a high-frequency power of, for example, 13.5.6 MHz to the lower electrode 2.
  • the matching unit 4 is provided between the high-frequency power source 5 and the lower electrode 2 to match the impedance between the upper electrode and the lower electrode during discharge and to reduce the applied high-frequency power. Acts to minimize the loss due to reflected waves and the like. By applying high-frequency power with this consistency to the process gas atmosphere of the process gas supplied into the processing chamber 1, the lower electrode 2 and the upper electrode 3 Plasma occurs in between.
  • the exhaust ring mechanism 7 is formed in a ring shape on the outer periphery of the mounting surface of the lower electrode 2 (the outer periphery of the focusing ring 6) and arranged.
  • the inside of the processing chamber 1 is divided into a plasma region and a non-plasma region by the upper and lower surfaces of the main surface of the exhaust ring mechanism 7.
  • the plasma region above the upper surface of the exhaust ring mechanism 7 is a plasma region
  • the plasma region below the lower surface is a non-plasma region.
  • the exhaust ring mechanism 7 includes an exhaust ring 71 and a main surface direction (a direction parallel to the exhaust ring main surface) of the exhaust ring 71.
  • the exhaust ring mechanism 7 is in contact with a plasma region in which the plasma processing is performed on the wafer W in the processing chamber 1 and forms an exhaust flow path for generated gas in the plasma region.
  • the exhaust ring 71 a plurality of circular exhaust holes 71A are uniformly distributed over the entire circumference as shown in the figure, and the exhaust rings 71A are formed through these exhaust holes 71A. Then, the gas in the plasma region is exhausted outside the processing chamber 1 via the non-plasma region.
  • the exhaust holes are illustrated as being formed in triple circles in the circumferential direction, but the present invention is not limited to this, and the exhaust holes may be evenly distributed on the main surface of the exhaust ring. However, any arrangement is acceptable as long as the exhaust capacity and characteristics are taken into consideration.
  • the magnetic field forming unit 72 of the present embodiment includes a first ring magnet 72 A (a permanent magnet or an electromagnet) that covers the inner peripheral surface of the exhaust ring 71. It is composed of a second ring magnet 72 B (permanent magnet or electromagnet) that covers the outer peripheral surface of the exhaust ring 71.
  • the magnetic field forming section 72 moves in the exhaust ring 71 in a direction parallel to the main surface from the lower electrode 2 to the inner wall of the processing chamber 1. Create a magnetic field. This magnetic field traps the generated plasma in the above-mentioned plasma region and prevents the leakage of the plasma to the non-plasma region. Works.
  • FIG. 2B shows only the minus ion. The same applies to the following embodiments to be described later.
  • etching rate etching rate
  • the exhaust ring mechanism 7 includes a magnetic field sealing portion 73 as shown in FIGS. 2A and 2B, for example.
  • the magnetic field sealing portion 73 is made of a magnetic material such as iron, for example, and is made of a magnetic ring 71 and first and second ring magnets 72 A and 72 B as shown in the figure. It is formed as a magnetic housing that is housed integrally. Below The magnetic field sealing portion 73 will be described as a magnetic container 73.
  • a magnetic path Y is formed from the outer peripheral surface to the inner peripheral surface of the magnetic storage body 73 integrally stored as described above, and the exhaust ring is formed. 7 It is possible to prevent the magnetic field from leaking, and it is possible to effectively use the magnetic field. As a result, it is possible to more reliably confine the plasma within the plasma region. Therefore, the plasma miions and electrons in the processing chamber 1 are reliably closed in the plasma region, and the uniformity of the plasma processing can be further improved. In addition, it is possible to prevent the inner wall of the processing chamber 1 in the non-plasma region from being damaged by the plasma and from being contaminated with by-products.
  • first ring magnet 72A is adjacent to the lower electrode 2, a magnetic field also acts on the outer peripheral edge of the upper surface of the lower electrode 2, and this magnetic field is generated when the outer peripheral edge of the wafer W is etched.
  • the in-plane uniformity of plasma processing such as etching rate can be further improved.
  • the exhaust ring mechanism 7 forms the radial magnetic field of the processing chamber, and the plasma ions and the electrons try to pass through the exhaust holes of the exhaust ring.
  • the generated magnetic field acts on the plasma and the electrons to swirl and collide in the exhaust hole, preventing the plasma and the electrons from passing and confining the plasma to the plasma region. be able to. Therefore, the diffusion of the plasma at the outer peripheral portion of the wafer W is prevented, and the uniformity of the plasma density between the peripheral portion of the wafer W and the central portion of the wafer W can be improved.
  • the wafer W The plasma processing such as etching can be prevented from lowering, and the in-plane uniformity of the plasma processing can be maintained.
  • the inner wall of the processing chamber 1 in the non-plasma region can be prevented from being damaged by plasma, and can be prevented from being contaminated with by-products. Then, a magnetic field is formed by the magnetic field forming portion also on the outer peripheral edge of the upper surface of the lower electrode 2, and the uniformity of plasma processing such as etching can be improved by the influence of the magnetic field. Furthermore, since the exhaust ring and the first and second ring magnets are housed integrally in the magnetic housing, the magnetic housing prevents the leakage of the magnetic field, and effectively uses the magnetic field without waste. The plasma can be more reliably confined to the plasma region.
  • FIG. 3A is a diagram illustrating a partial plan view of a configuration of an exhaust ring mechanism according to a second embodiment of the present invention
  • FIG. 3B is a cross-sectional view of the processing chamber in FIG. 3A in a radial direction.
  • FIG. 3C is a diagram showing a configuration
  • FIG. 3C is a diagram showing a cross-sectional configuration thereof in a circumferential direction of FIG. 3A.
  • the exhaust ring mechanism 10 used in the plasma processing apparatus includes, for example, an exhaust ring 101 and a magnetic field forming unit 102 as shown in FIGS. 3A and 33B.
  • the magnetic field generator 102 is composed of a plurality of magnets 102 A radially arranged at predetermined intervals in the circumferential direction of the exhaust ring 101. Each of the magnets 102A is formed in a plate shape, and is attached so as to fill an elongated hole formed in the exhaust ring 101. Then, the adjacent magnets 10 2 A in the exhaust ring 101 Between them, a magnetic field is formed in the direction parallel to the exhaust ring main surface in the clockwise direction (CW) as shown by arrow Z in Fig. 3A.
  • CW clockwise direction
  • the magnetic field lines B of this magnetic field are substantially perpendicular to the direction in which plasma and electrons leak. For this reason, even if plasma ions and electrons in the plasma region try to pass through the exhaust hole 101A of the exhaust ring 101 as shown in FIG. Thus, it turns around the line of magnetic force under the action of the magnetic field. Therefore, the plasmion and the electrons collide with the inner peripheral surface of the exhaust hole 101A of the exhaust ring 101, do not leak to the non-plasma region, and are confined in the plasma region. .
  • a magnetic field in the CW direction is formed between a plurality of magnets arranged radially, and plasma and electrons pass through the exhaust holes. Even so, it turns due to the action of the magnetic field, collides with the exhaust holes, and is prevented from passing. For this reason, the plasma can be confined in the plasma region, and the same operation and effect as those of the first embodiment can be obtained.
  • FIG. 4A is a diagram showing a partial plan view of a configuration of an exhaust ring mechanism according to a third embodiment of the present invention
  • FIG. 4B is a diagram showing a radial cross-sectional configuration of FIG. 4A. .
  • the magnetic field forming unit 112 in the exhaust ring mechanism is composed of first and second ring magnets 112A and 112B, similarly to the exhaust ring mechanism 7 shown in FIG. 2 described above.
  • the exhaust of this embodiment As shown in FIGS. 4A and 4B, the ring mechanism 11 includes first and second ring magnets 11 A and 11 B which are formed on the inner peripheral lower surface of the exhaust ring 11 1 and the outer side. They are arranged in contact with the lower surface of the peripheral portion.
  • This magnetic field is generally formed as a horizontal magnetic field that crosses the exhaust hole 111A of the exhaust ring 111 substantially horizontally as shown in FIG. 4B.
  • the magnetic field lines B of this magnetic field are substantially orthogonal to the direction in which the plasma and the electrons leak as in the above-described embodiments, the plasma and the electrons in the plasma region are exhausted as shown in FIG. 4B. Even if it tries to pass through the exhaust hole 71 A of the ring 71, the plasma myon and the electrons rotate around the magnetic field line B under the action of the magnetic field and leak to the non-plasma region. Without being trapped in the plasma region. Therefore, in this embodiment, the same operation and effect as those of the exhaust ring mechanism 7 shown in FIG. 2A can be obtained.
  • each component can be redesigned as needed.
  • the magnetic field forming unit is not limited to the first and second ring magnets or the plate-like magnets, but may use an electromagnet having the same form as these magnets.
  • arc-shaped magnets may be arranged along the entire circumference of the exhaust ring.
  • the magnetic field forming unit may form a magnetic field parallel to the main surface direction in the exhaust ring.
  • the direction of the magnetic field can be in any direction.
  • the exhaust hole 71A opened by the exhaust ring 71 of the exhaust ring mechanism in the first embodiment shown in FIG. 2 described above has a circular shape, but in the fourth embodiment, In this configuration, the slit-shaped exhaust holes are radially arranged from the inner side to the outer side.
  • the exhaust ring mechanism 13 includes an exhaust ring 13 1 and a magnetic field forming unit 13 2.
  • the magnetic field forming section 13 2 includes a first ring magnet 13 2 A covering the inner peripheral surface of the exhaust ring 13 1, and an outer peripheral surface of the exhaust ring 13 1. It is composed of a second ring magnet 132B and a coil covering the second magnet.
  • the magnetic field forming unit 13 2 moves from the lower electrode 2 shown in FIG. 1 to the inner wall of the processing chamber 1 in the exhaust ring 13 1.
  • Force ⁇ A magnetic field is formed in the direction X 1 parallel to the main surface. This magnetic field acts to confine the generated plasma in the above-mentioned plasma region and prevent the leakage of the plasma to the non-plasma region.
  • FIG. 6A is a view showing a partial plane of a plane configuration of an exhaust ring mechanism according to a fifth embodiment of the present invention
  • FIG. 6B is a view showing the direction of a magnetic field vector in the configuration of FIG. 6A.
  • the exhaust ring mechanism 14 used in this plasma processing apparatus includes, for example, as shown in FIGS. 6A and 6B, an exhaust ring 14 1 and a magnetic field forming section 142.
  • the magnetic field forming part 142 is composed of a plurality of magnets 142 A radially arranged at predetermined intervals in the circumferential direction of the exhaust ring 141.
  • Each magnet 142A is formed in a plate shape, and is attached along the slit-shaped exhaust hole 144A formed in the exhaust ring 141. I have. Then, between the adjacent magnets 14 2 A and 14 2 A at the exhaust ring 14 1, the clockwise rotation (CW) as shown by the arrow Z 1 in FIG. A magnetic field is formed.
  • FIG. 7A is a diagram showing a partial plane of a plane configuration of an exhaust ring mechanism according to a sixth embodiment of the present invention
  • FIG. 7B is a diagram showing a first magnet arrangement example
  • FIG. 7C is a diagram showing an example of the arrangement of the second magnet.
  • the exhaust ring mechanism of the present embodiment includes the exhaust ring 151, a plurality of magnets 152A of the magnetic field forming unit, or the exhaust ring 151, and the magnets 152B. Let's do it.
  • Exhaust ring 1 5 1 Similar to the exhaust ring in the fourth embodiment described above, slit-shaped exhaust holes 151A are arranged radially from the inside toward the outer periphery.
  • magnets 152A for forming a magnetic field are spaced at an angle of 30 ° in the circumferential direction of exhaust ring 151. It is arranged radially. These magnets 152A are each formed in a plate shape, and are arranged and mounted on the lower surface side of the exhaust ring 1515.
  • magnets 15 2 B for forming a magnetic field are spaced at an angle of 45 ° in the circumferential direction of exhaust ring 15 1. It is arranged radially. These magnets 15A and 15B are each formed in a plate shape, and are arranged and mounted on the lower surface side of the exhaust ring 15I. In the first and second arrangement examples, between the adjacent magnets 15A and 15B, the clockwise direction (CW) as shown by the arrow Z1 in FIG. A magnetic field is formed.
  • FIG. 8A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the seventh embodiment of the present invention as viewed from above
  • FIG. FIG. 8C is a diagram showing an example of the arrangement of magnets and the direction of a magnetic field vector.
  • FIG. 8C is a diagram for explaining the concept of magnetic field formation in the present embodiment.
  • the exhaust ring The magnet is arranged directly below the bottom, and the process gas that has passed through the exhaust hole passes through the surface of the magnet. If the processing device is an etching device or the like, a corrosive gas is used as the process gas, and when the exhaust gas is exhausted, the magnet is corroded by the corrosive gas.
  • the exhaust gas (corrosive gas) exhaust passage is configured not to directly touch the magnet.
  • the exhaust ring 161 has a slit-shaped exhaust hole 161A that extends from the inside to the outside over the entire circumference. Arrange in a shape.
  • the ring-shaped inner peripheral side magnet base member 16 2 A and the outer peripheral side magnet base member 16 3 B, each of which is made of a conductor, are connected to the exhaust ring. It is mounted so as to fit into the exhaust ring cover part 161B provided at the lower end of the inner and outer peripheries of the 161.
  • Two ring-shaped magnets 163 A are attached to the inside and outside of the magnet base member 16 A, respectively, and two ring-shaped magnets are attached to the inside of the magnet base member 16 B. Magnet 1 6 3 B is installed.
  • the ring-shaped magnet 1663A and the ring-shaped magnet 1663B are arranged so that the N pole and the S pole face each other, and the main surface direction (main direction) of the exhaust ring 161 is set. Magnetic field in the direction parallel to the plane). This is conceptually equivalent to arranging two U-shaped magnets as shown in Fig. 8C so that the N pole and the S pole face each other. This magnetic field traps the generated plasma in the above-mentioned plasma region, and transmits the non-plasma region to the non-plasma region. Acts to prevent plasma leakage.
  • the exhaust passage of the exhaust gas does not directly contact the magnet, it is possible to prevent the corrosion of the magnet, and further, due to the formed magnetic field, The generated plasma is confined in the plasma region, and the leakage of the plasma to the non-plasma region can be prevented.
  • the same operation and effect as those of the first embodiment can be obtained.
  • FIG. 9A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the eighth embodiment of the present invention as viewed from above
  • FIG. 9B is a view showing the arrangement of magnets in the configuration of FIG. 9A.
  • FIG. 9B is a diagram showing an example and the direction of a magnetic field vector (in the present embodiment, as shown in FIG.
  • 17 1 has a slit-shaped exhaust hole 1771 A over the entire circumference, and has a plurality of radial exhaust holes extending from the inside to the outer periphery.
  • the group 171A is arranged, and a space 171B is provided between the groups.
  • exhaust holes 1 7 are provided in the example shown in Fig. 9A, exhaust holes 1 7
  • 1A is a group consisting of 5 to 7 tubes. Such an arrangement may be appropriately arranged according to the design and configuration of the exhaust efficiency and the like.
  • a plate-like magnet 174 is attached to a magnet base member 173 made of a conductor.
  • the lower side of the space 17 1 B of the exhaust ring 1 ⁇ 1 described above is formed in a concave shape capable of accommodating the magnet 17 3 and covering the entire magnet.
  • Space 1 7 1 Magnet to 1 B 1 7 3 By storing the gas, the exhaust gas flow path of the exhaust gas (corrosive gas) is configured not to directly touch the magnet.
  • the corrosion of the magnet due to the corrosive gas exhausted can be prevented, and the generated plasma can be prevented from being generated by the generated magnetic field. It can be confined within the region and prevent the leakage of plasma into the non-plasma region. The same operation and effect as those of the first embodiment can be obtained.
  • FIG. 10A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the ninth embodiment of the present invention as viewed from above, and FIG. 10B is a magnet in the configuration of FIG.
  • FIG. 2 is a diagram showing an example of the arrangement of the magnetic field and the direction of a magnetic field vector.
  • the exhaust ring 181 in the exhaust ring mechanism shown in FIG. 10A has a slit-shaped exhaust hole 181A arranged in the same manner as in the above-described eighth embodiment.
  • the magnetic field forming part of the exhaust ring mechanism is provided on the lower surface side of each space 18 1 B provided between the groups of exhaust holes 18 A, as shown in FIG. 10B.
  • the magnet 1 8 3 (permanent magnet or electromagnet) is provided.
  • the magnet 183 is formed in a shape having a taper like a trapezoid, and the magnetic field formed is such that the magnetic field lines are exhausted from the magnet 183 to the adjacent magnet 183. It is formed so as to pass through the ring 18 1 and bend in a convex shape.
  • the magnetic field as in the above-described embodiments, the plasma region and the plasma ion Even if electrons try to pass through the exhaust holes 182, they are swirled by the action of the magnetic field and are confined in the plasma region without leaking to the non-plasma region.
  • the magnets 183 are located behind the space 181B (non-plasma area), the exhaust gas (corrosive gas) exhaust flow path does not directly touch the magnets.
  • the corrosion of the magnet due to the corrosive gas exhausted can be prevented, and the generated plasma can be prevented from being generated by the generated magnetic field. It can be confined within the region and prevent the leakage of plasma into the non-plasma region. The same operation and effect as those of the first embodiment can be obtained.
  • Fig. 11A is a diagram showing an external configuration of a depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied.
  • Fig. 11B is a top view of the depot shield shown in Fig. 11A.
  • Fig. 11C shows a plan view, Fig. 11C shows a side view of the deposit shield of Fig. 11A, and
  • Fig. 11 D shows a part of the deposit shield where magnets are arranged in the radial direction.
  • the exhaust ring mechanism in which the magnetic field generated by the magnet is incorporated in the exhaust ring has been described. In the present embodiment, this magnetic field is applied around the lower electrode.
  • a magnetic field is formed on a deposit shield that covers the inner wall of the processing chamber. In this example Is assumed to be a processing chamber having a cylindrical inside, so that it is cylindrical, but is not limited to this.
  • the deposit shield 19 is formed of a conductive material such as aluminum, and is supported by an outer peripheral ring portion 191B and a plurality of ring support portions 191C at an upper portion thereof. And an inner peripheral ring portion 1991A.
  • This inner ring portion 1991A is fitted to the lower electrode when installed in the processing chamber, and has a height that is slightly lower than the mounting surface of the lower electrode. It has been.
  • a pair of ring magnets 1992A and a magnet are arranged on the inner wall side of the outer ring portion 1991B and the outer wall side of the inner ring portion 1991A so that the N pole and the S pole face each other. 192 B and are provided.
  • magnets 19A and 19B (permanent magnets or magnetic stones) form a radial magnetic field equivalent to that shown in Fig. 5B described above, and generate plasma. It is possible to prevent the plasma from leaking into the non-plasma region by being confined in the plasma region. Also, in the present embodiment, the exhaust ring as in the first to ninth embodiments described above is used. If the device configuration cannot generate this magnetic field, the depot shield placed around the lower electrode has the function of forming a magnetic field, thereby realizing prevention of plasma leakage. And can be.
  • FIG. 12A shows the exhaust ring mechanism in each of the embodiments described above.
  • Figure 12B shows the external configuration of the deposit shield mechanism to which the functions shown in Figs. 12A and 12B are applied.
  • Fig. 12B shows the top view of the deposit shield shown in Fig. 12A.
  • Fig. 12C shows Fig. 12A.
  • FIG. 12D shows a partial cross-sectional configuration of a configuration in which magnets are arranged in the circumferential direction in the depot shield, as viewed from the side.
  • the ring magnets were arranged so as to face each other in the radial direction to form a magnetic field in the radial direction. It is what forms.
  • the processing chamber is of course cylindrical, but is not limited to this.
  • the deposit shield 20 is formed of a conductive material such as aluminum, and has an outer peripheral ring portion and a plurality of circumferential ring members on its upper portion, similarly to the tenth embodiment. And an inner peripheral ring portion supported by the support portion.
  • the inner peripheral ring portion is fitted to the lower electrode when installed in the processing chamber, and has a height that is equal to or slightly lower than the mounting surface of the lower electrode. .
  • a plate-like magnet 202 is provided on each of these ring support portions.
  • this magnetic field is formed in the exhaust ring as in the first to ninth embodiments described above.
  • a plasma shield can be prevented by providing a depot shield disposed around the lower electrode with a magnetic field forming function.
  • the magnet in each of the embodiments described above may be a permanent magnet, an electromagnetic magnet, or the like.
  • magnets, electromagnets, and magnetic storage bodies may be affected by a temperature increase due to the impact of plasma, electrons, or the like, which may fluctuate the magnetic field and impair the original function. It may be covered by storing it in an aluminum case that has been processed.
  • the exhaust ring has been described as having a circular or slit-shaped exhaust hole, but is not limited to this, and can be applied to various exhaust holes such as an ellipse, a rectangle, and a rhombus.
  • the parallel plate type plasma processing apparatus has been described as an example. However, if it is a type of plasma processing apparatus that exhausts gas through an exhaust ring, the exhaust gas of the present invention is used. Deposition shield mechanism can be applied.
  • the present invention includes: a lower electrode provided in a processing chamber and holding a wafer W; and an exhaust ring mechanism provided between the lower electrode and an inner wall of the processing chamber.
  • the exhaust ring mechanism has an exhaust ring and a magnetic field forming unit that forms a magnetic field in the exhaust ring. Plasma leakage from a plasma region to a non-plasma region is caused by the formed magnetic field. Can be prevented.

Abstract

An exhaust ring mechanism includes a lower electrode which is disposed in a treatment chamber to hold a wafer (W) and an exhaust ring mechanism disposed between the lower electrode and inner walls of the treatment chamber. The exhaust ring mechanism has an exhaust ring and a magnetic field forming unit to form a magnetic field parallel to a main surface of the exhaust ring. The exhaust ring mechanism prevents plasma leakage from a plasma area to a non-plasma area by the formed magnetic field. A plasma treatment device employs the exhaust ring mechanism.

Description

明 細 書  Specification
排気 リ ング機構及びその排気 リ ング機構を用いたプラ ズマ処 理装置 Exhaust ring mechanism and plasma processing apparatus using the exhaust ring mechanism
技術分野 Technical field
本発明は、 プラズマ処理装置に関 し、 更に詳 し く は、 ブラ ズマ領域内にプラズマを封 じ込める こ と ができ る プラ ズマ処 理装置に用い られる排気 リ ング機構及びプラ ズマ処理装置に 関する。  The present invention relates to a plasma processing apparatus, and more particularly, to an exhaust ring mechanism and a plasma processing apparatus used in a plasma processing apparatus capable of confining plasma in a plasma region. Related.
背景技術 Background art
プラズマ処理装置は、 処理チャ ンバ一内で発生させたプラ ズマを用いて ウェハ等の被処理体に対 して、 エ ッチング処理 や成膜処理等の処理を施す装置である。 プラ ズマ処理装置と しては、 例えば、 容量結合タイ プと誘導結合タイ プ等、 種々 のタイ プの ものがある。  2. Description of the Related Art A plasma processing apparatus is an apparatus that performs processing such as an etching process and a film forming process on an object to be processed such as a wafer by using plasma generated in a processing chamber. There are various types of plasma processing devices, for example, a capacitive coupling type and an inductive coupling type.
この容量結合タイ プのプラズマ処理装置 と しては、 電極が 平行平板型のものが広 く 用い られている。 平行平板型プラ ズ マ処理装置は、 真空ポンプを含む排気系によ り 真空保持可能 な処理チャ ンバ一を備えている。 この処理チャ ンバ一内には ウェハ等の被処理体を載置する下部電極を兼ねる保持体を搭 載する。 この保持体の上方には、 スペース (処理空間) を空 けて上部電極が配設 される。 これらの上、 下電極のいずれか 一方、 または上下電極両方に、 高周波電力を印加する 高周波 電源を備える。 さ ら に、 この保持体の外周縁部には、 フ ォー カス リ ングが設け られている。  As the plasma processing apparatus of this capacitive coupling type, those having parallel-plate electrodes are widely used. The parallel plate type plasma processing apparatus has a processing chamber capable of maintaining a vacuum by an exhaust system including a vacuum pump. A holder serving also as a lower electrode for mounting an object to be processed such as a wafer is mounted in the processing chamber. Above the holder, an upper electrode is provided with a space (processing space). A high-frequency power supply for applying high-frequency power is provided to one of the upper and lower electrodes or both the upper and lower electrodes. Further, a focusing ring is provided on the outer peripheral edge of the holder.
こ の構成において、 高周波電源から処理チャ ンバ一内を高 真空下で上下いずれかの電極または両電極に高周波電力を印 加 し、 処理チャ ンバ一内に導入されたプロセスガスに よ る雰 囲気中でプラズマを発生させ、 被処理体に対 してエ ッチング 等のプラ ズマ処理を施す。 In this configuration, the high-frequency power supply High-frequency power is applied to either the upper or lower electrode or both electrodes under vacuum, and plasma is generated in an atmosphere of the process gas introduced into the processing chamber. Perform plasma processing such as switching.
また、 保持体と処理チャ ンバ一の内周壁間には、 複数の排 気孔を有する リ ング状の排気 リ ングが設け られ、 この排気 リ ングの排気孔を通 じて副生成物や不要な (使用 さ れた) プロ セスガス をプラ ズマ領域の周囲から均等に排気 している。  In addition, a ring-shaped exhaust ring having a plurality of exhaust holes is provided between the holding body and the inner peripheral wall of the processing chamber, and by-products and unnecessary products are passed through the exhaust holes of the exhaust ring. Process gas (used) is exhausted evenly around the plasma area.
こ の処理チャ ンバ一内は、 この排気 リ ングを介 して、 プラ ズマ領域 と 非プラズマ領域に分かれている。 このプラ ズマ領 域側では、 処理チャ ンバ一内壁がプラ ズマイ オンによ る ス ノ、 ° ッ タ リ ングを受けて消耗した り 、 副生成物が付着及び堆積 し て汚染されるため、 内壁面にセ ラ ミ ッ ク溶射等が施さ れてい る。 一方、 非プラズマ領域ではプラズマイ オンに よ る攻撃が 殆どな く 、 また、 副生成物に よ る汚染も少ないため、 処理チ ヤ ンバー内壁には、 このよ う な対策は施されていない。  The processing chamber is divided into a plasma region and a non-plasma region via the exhaust ring. In the plasma region side, the inner wall of the processing chamber is worn out due to snow and water ring by plasma mist, and is contaminated by by-products adhering and accumulating. Ceramic spraying is applied to the walls. On the other hand, in the non-plasma region, there is almost no attack by plasma ions, and there is little contamination by by-products. Therefore, no such measures are taken on the inner wall of the treatment chamber.
しか しなが ら、 排気 リ ングには排気のための排気孔が全面 に亘つて形成されている ため、 プラズマが高密度化された場 合には、 この排気孔から非プラ ズマ領域へプラ ズマの漏洩が 発生する。 このプラ ズマ漏洩に よ り 、 被処理体の外周縁部に おけ る プラ ズマ密度が低下 し、 結果、 エ ッチング レー ト 等の ブラ ズマ処理の均一性が損なわれる と い う 問題が発生する。 また、 こ のプラ ズマ漏洩は、 非プラズマ領域における処理チ ヤ ンバー内壁を損傷 した り 、 汚染する虞も ある。  However, since the exhaust ring is provided with exhaust holes for exhaust throughout the entire surface, when the density of the plasma is increased, the exhaust holes are used to form a non-plasma region. Zuma leakage occurs. Due to this plasma leakage, the plasma density at the outer peripheral portion of the object to be processed is reduced, and as a result, there is a problem that the uniformity of plasma processing such as an etching rate is deteriorated. In addition, the plasma leakage may damage or contaminate the inner wall of the processing chamber in the non-plasma region.
こ の対策 と して排気孔の総面積を小さ く してプラズマ漏洩 を防止する方法もある が、 こ の方法では、 プラズマ領域か ら のガス排気量が制限されて、 副生成物の滞留が発生する な ど の弊害がある。 特に、 大気開放後若 し く は窒素ガスパージ後 の大気圧に近い圧力からの排気には、 所定真空度まで達する のた めの排気時間が長 く な り 、 そ の結果、 スループッ ト を下 げる原因 と もな り かねない と い う 問題がある。 As a countermeasure, plasma leakage is reduced by reducing the total area of the exhaust holes. Although there is a method to prevent this, this method has disadvantages such as limiting the amount of gas exhausted from the plasma region and causing stagnation of by-products. In particular, evacuation from a pressure close to the atmospheric pressure after opening to the atmosphere or after purging with nitrogen gas increases the evacuation time to reach a predetermined degree of vacuum, and as a result, lowers throughput. There is a problem that may be caused.
発明の開示 Disclosure of the invention
本発明の 目 的は、 十分なガス排気性を確保 しつつ、 処理チ ヤ ンバー内のプラズマ領域内にプラズマを閉 じ込める こ と が 可能な排気 リ ング機構と その排気 リ ングを搭載するプラ ズマ 処理装置を提供する こ と である。  It is an object of the present invention to provide an exhaust ring mechanism capable of confining plasma in a plasma region in a processing chamber while ensuring sufficient gas exhaustability, and a plug mounted with the exhaust ring. It is to provide a zuma treatment device.
本発明においては、 処理チヤ ンバー内で被処理体にプラ ズ マ処理を施すためのプラ ズマ領域と接触 し、 且つ上記プラ ズ マ領域での生成ガス の排気流路を形成する排気 リ ング機構で あって、 上記排気 リ ング機構は、 上記プラ ズマ領域に接する 面を有する排気 リ ング と 、 こ の排気 リ ングの上記面方向 と 平 行する磁力線を有する磁場を形成する磁場形成部 と で構成さ れ、 形成された磁場に よ り プラ ズマイ オン及び電子の通過を 阻止 して、 プラ ズマをプラ ズマ領域に閉 じ込めて、 プラ ズマ 領域から非プラ ズマ領域へのプラ ズマ漏洩を防止する こ と が 可能と なる。 これに よ り 、 プラ ズマの拡散が防止 され、 ゥェ ハ W周縁部 と ウェハ Wの中央部分 と のプラ ズマ密度の均一性 を高める。 さ ら に、 ウェハ W外周縁部でのエ ッチング等のプ ラ ズマ処理の低下を防止 してプラ ズマ処理の面内均一性を保 持する。 図面の簡単な説明 In the present invention, an exhaust ring mechanism that contacts a plasma region for performing plasma processing on an object to be processed in a processing chamber and forms an exhaust flow path for generated gas in the plasma region. The exhaust ring mechanism includes an exhaust ring having a surface in contact with the plasma region, and a magnetic field forming unit that forms a magnetic field having magnetic lines of force parallel to the surface direction of the exhaust ring. It is composed and blocks the passage of plasma ions and electrons by the formed magnetic field, confining the plasma in the plasma region and preventing the plasma leakage from the plasma region to the non-plasma region It becomes possible to do. As a result, the diffusion of the plasma is prevented, and the uniformity of the plasma density between the peripheral portion of the wafer W and the central portion of the wafer W is improved. In addition, plasma processing such as etching at the outer peripheral portion of the wafer W is prevented from lowering, and the in-plane uniformity of the plasma processing is maintained. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1 の実施形態に係る プラズマ処理装置 及び排気 リ ング機構の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a plasma processing apparatus and an exhaust ring mechanism according to a first embodiment of the present invention.
図 2 Aは、 図 1 に示 した排気 リ ング機構の作用を説明する ための一部を示す平面図、 図 2 B は図 2 Aの径方向の断面図 図 2 C は図 2 Aの周方向の断面図である。  FIG. 2A is a plan view partially illustrating the operation of the exhaust ring mechanism shown in FIG. 1, FIG. 2B is a radial cross-sectional view of FIG. 2A, and FIG. It is sectional drawing of a direction.
図 3 Aは、 本発明の第 2 の実施形態に係る排気 リ ング機構 における一部の平面を示す図、 図 3 B は図 3 Aの径方向の断 面構成を示す図、 図 3 C は図 3 Aの周方向における断面構成 を示す図である。  FIG. 3A is a diagram showing a partial plane of an exhaust ring mechanism according to a second embodiment of the present invention, FIG. 3B is a diagram showing a radial cross-sectional configuration of FIG. 3A, and FIG. FIG. 3B is a diagram showing a cross-sectional configuration in the circumferential direction of FIG. 3A.
図 4 Aは、 本発明の第 3 の実施形態に係る排気 リ ング機構 における一部の平面を示す図、 図 4 B は図 4 Aの径方向の断 面構成を示す図である。  FIG. 4A is a view showing a partial plane of an exhaust ring mechanism according to a third embodiment of the present invention, and FIG. 4B is a view showing a radial cross-sectional configuration of FIG. 4A.
図 5 Aは、 本発明の第 4 の実施形態に係る排気 リ ング機構 における構成の一部平面を示す図、 図 5 B は図 5 Aの構成に おける磁場べク ト ルの方向を示す図である。  FIG. 5A is a diagram showing a partial plan view of a configuration of an exhaust ring mechanism according to a fourth embodiment of the present invention, and FIG. 5B is a diagram showing a direction of a magnetic field vector in the configuration of FIG. 5A. It is.
図 6 Aは、 本発明の第 5 の実施形態に係る排気 リ ング機構 における 平面構成の一部平面を示す図、 図 6 B は図 6 Aの構 成におけ る磁場べク ト ルの方向 を示す図である。  FIG. 6A is a view showing a partial plane of a plane configuration of an exhaust ring mechanism according to a fifth embodiment of the present invention, and FIG. 6B is a direction of a magnetic field vector in the configuration of FIG. 6A. FIG.
図 7 Aは、 本発明の第 6 の実施形態に係る排気 リ ング機構 における 平面構成の一部平面を示す図、 図 7 B は、 第 1 の磁 石配置例を示 し図、 図 7 C は、 第 2 の磁石の配置例を示す図 であ る。  FIG. 7A is a diagram showing a partial plan view of a planar configuration of an exhaust ring mechanism according to a sixth embodiment of the present invention, FIG. 7B is a diagram showing a first magnet arrangement example, and FIG. FIG. 4 is a diagram showing an example of an arrangement of a second magnet.
図 8 Aは、 本発明の第 7 の実施形態に係る排気 リ ング機構 における排気 リ ン グの上か ら見た平面構成を示す図、 図 8 B は、 図 8 Aの構成における磁石の配置例 と磁場べク ト ルの方 向を示す図、 図 8 C は本実施形態の磁場形成の概念説明する ための図である。 FIG. 8A is a diagram showing a plan configuration of the exhaust ring in the exhaust ring mechanism according to the seventh embodiment of the present invention as viewed from above, and FIG. FIG. 8A is a diagram showing an example of the arrangement of magnets and the direction of a magnetic field vector in the configuration of FIG. 8A, and FIG.
図 9 Aは、 本発明の第 8 の実施形態に係る排気 リ ング機構 における排気 リ ングの上から見た平面構成を示す図、 図 9 B は、 図 9 Aの構成における磁石の配置例 と磁場べク ト ルの方 向を示す図である。  FIG. 9A is a diagram showing a plan view of an exhaust ring in an exhaust ring mechanism according to an eighth embodiment of the present invention, as viewed from above, and FIG. 9B is an example of a magnet arrangement in the configuration of FIG. 9A. FIG. 4 is a diagram showing the direction of a magnetic field vector.
図 1 O Aは、 本発明の第 9 の実施形態に係る排気 リ ング機 構におけ る排気 リ ングの上から見た平面構成を示す図、 図 1 0 B は、 図 1 O Aの構成における磁石の配置例と磁場べク ト ルの方向を示す図である。  FIG. 1 OA is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the ninth embodiment of the present invention as viewed from above, and FIG. 10B is a magnet in the configuration of FIG. 1 OA. FIG. 2 is a diagram showing an example of the arrangement of the magnetic field and the direction of a magnetic field vector.
図 1 1 Aは、 前述 した各実施形態における排気 リ ング機構 の機能を適用 したデポシール ド機構の外観構成を示す図、 図 1 1 B は図 1 1 Aに示すデポシール ドを上か ら見た平面構成 を示す図、 図 1 1 C は、 図 1 1 Aのデポシール ドを側面から 見た外観構成を示す図、 図 1 1 D は、 デポシール ドにおける 径方向に磁石を配置 した構成の一部の断面構成を示 している 図 1 2 Aは、 前述 した各実施形態におけ る排気 リ ング機構 の機能を適用 したデポシール ド機構の外観構成を示す図、 図 1 2 B は図 1 2 Aに示すデポシール ドを上か ら見た平面構成 を示す図、 図 1 2 C は、 図 1 2 Aのデポシール ドを側面から 見た外観構成を示す図、 図 1 2 D は、 デポシール ドにおける 磁石を周方向に配置 した構成の一部の断面構成を示 している 発明 を実施する ための最良の形態  Fig. 11A is a diagram showing an external configuration of a depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied. Fig. 11B is a top view of the depot shield shown in Fig. 11A. Fig. 11C shows a plan view, Fig. 11C shows a side view of the deposit shield of Fig. 11A, and Fig. 11 D shows a part of the deposit shield where magnets are arranged in the radial direction. FIG. 12A shows the cross-sectional configuration of the depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied. FIG. 12B shows the external configuration of FIG. Fig. 12C shows the top view of the depot shield shown in Fig. 12C, Fig. 12C shows the external view of the depot shield of Fig. 12A viewed from the side, and Fig. 12D shows the magnet in the depot shield. The invention showing the partial cross-sectional configuration of the configuration in which is arranged in the circumferential direction is carried out. Best form for
以下、 本発明によ る実施形態について詳細に説明する。 図 1 は、 本発明の第 1 の実施形態に係る プラズマ処理装置 及び排気 リ ング機構の構成を概略的に示す図である。 図 2 A は、 排気 リ ング機構 7 における構成の一部平面を示 し、 図 2 B はその径方向の沿 う 断面構成を示 し、 図 2 Cはその周方向 に沿 う 断面構成を示 している。 Hereinafter, embodiments according to the present invention will be described in detail. FIG. 1 is a diagram schematically showing a configuration of a plasma processing apparatus and an exhaust ring mechanism according to a first embodiment of the present invention. 2A shows a partial plan view of the configuration of the exhaust ring mechanism 7, FIG. 2B shows a cross-sectional configuration along the radial direction, and FIG. 2C shows a cross-sectional configuration along the circumferential direction. are doing.
このプラ ズマ処理装置は、 図 1 に示すよ う に大別 して、 処 理チャ ンバ一 1 、 保持体 2 、 上部電極 3 、 整合器 4 、 高周波 電源 5 、 フォーカス リ ング 6 、 排気 リ ング機構 7 、 排気系 1 2及びガス供給系 (パージガス及びプロセスガス) 1 3 で構 成さ れる。  As shown in FIG. 1, the plasma processing apparatus is roughly divided into a processing chamber 1, a holder 2, an upper electrode 3, a matching unit 4, a high-frequency power supply 5, a focus ring 6, and an exhaust ring. The mechanism 7 consists of an exhaust system 12 and a gas supply system (purge gas and process gas) 13.
処理チャ ンバ一 1 は、 アルミ ニ ゥム等の導電性材料で形成 され、 所定の高真空状態を保持する気密構造を有 している。 また、 プラ ズマに晒 される 内壁面は、 アルマイ ト処理等の周 知な耐食処理が施されている。  The processing chamber 1 is formed of a conductive material such as aluminum and has an airtight structure for maintaining a predetermined high vacuum state. In addition, the inner walls exposed to plasma are subjected to well-known corrosion-resistant treatment such as alumite treatment.
上記保持体 2 は、 処理チャ ンバ一 1 内に搭載さ れ、 被処理 体 (例えば、 ウェハ) Wが載置され、 図示 しない静電チヤ ッ ク装置よ り 保持される。 また図示 しない受け渡 し機構を備え 図示 しない ウェハー搬送機構と の ウェハ受け渡 しを行 う 。 さ らに保持体 2 には、 後述する整合器 4 を介 して高周波電源 5 が接続さ れ、 プラ ズマ生成のために高周波電力が印加される 下部電極を兼ねている。 以下、 保持体 2 を下部電極 2 と称 し て ヽる。  The holder 2 is mounted in the processing chamber 1, on which an object to be processed (for example, a wafer) W is placed and held by an electrostatic chuck (not shown). Further, a delivery mechanism (not shown) is provided, and a wafer is transferred to and from a wafer transfer mechanism (not shown). Further, a high-frequency power source 5 is connected to the holder 2 via a matching device 4 described later, and also serves as a lower electrode to which high-frequency power is applied for plasma generation. Hereinafter, the holder 2 is referred to as a lower electrode 2.
この下部電極 2 に ウェハを載置する載置面の外周縁部には フォーカ ス リ ング 6 が配置される。 このフ ォーカ ス リ ング 6 は、 シ リ コ ン等によ り リ ング形状に形成さ れ、 内側には ゥェ ハが嵌め入れられる。 このフォーカス リ ング 6 に よ り 、 下部 電極 2 と 上部電極 3 間で発生 したプラ ズマを ウェハ W上に集 束させる こ と ができ る。 A focusing ring 6 is arranged on the outer peripheral edge of the mounting surface on which the wafer is mounted on the lower electrode 2. The focusing ring 6 is formed in a ring shape by using a silicon or the like, and the inside thereof has a gap. Ha is inserted. The focus ring 6 allows the plasma generated between the lower electrode 2 and the upper electrode 3 to be focused on the wafer W.
上記上部電極 3 は、 下部電極 2 の上方に所定間隔を空けて 下部電極の載置面と 対向 し且つ平行になる よ う に処理チャ ン バー 1 内の上方に設け られている。 こ の上部電極 3 は、 箱の よ う な中空形状を成 し、 処理チャ ンバ一内へプロセスガス、 例えばエ ッチングガス をシャ ワー状に拡散 してガス供給を行 う機能を有 している。  The upper electrode 3 is provided above the lower electrode 2 in the processing chamber 1 so as to be opposed to and parallel to the mounting surface of the lower electrode at a predetermined interval from the lower electrode 2. The upper electrode 3 is formed in a hollow shape like a box, and has a function of diffusing a process gas, for example, an etching gas into the processing chamber in a shower shape to supply the gas.
上記高周波電源 5 は、 例えば 1 3 . 5 6 M H z の高周波電 力を下部電極 2 へ印加する。 上記整合器 4 は、 上記高周波電 源 5 と下部電極 2 と の間に設け られてお り 、 放電における上 部電極と 下部電極間のィ ンピーダンスの整合性を取 り 、 印加 される高周波電力へ反射波等に よ る ロ スが最小限になる よ う に作用する。 処理チャ ンバ一 1 内に供給されたプロセス ガス によ るプロセスガス雰囲気内に、 この整合性が取れた状態で 高周波電力が印加さ れる こ と によ り 、 この下部電極 2 と 上部 電極 3 の間にプラ ズマが発生する。  The high-frequency power supply 5 applies a high-frequency power of, for example, 13.5.6 MHz to the lower electrode 2. The matching unit 4 is provided between the high-frequency power source 5 and the lower electrode 2 to match the impedance between the upper electrode and the lower electrode during discharge and to reduce the applied high-frequency power. Acts to minimize the loss due to reflected waves and the like. By applying high-frequency power with this consistency to the process gas atmosphere of the process gas supplied into the processing chamber 1, the lower electrode 2 and the upper electrode 3 Plasma occurs in between.
そ して、 排気 リ ング機構 7 は、 下部電極 2 の載置面の外周 (フ ォーカ ス リ ング 6 の外周) に、 リ ング形状に形成されて 配置 されている。 こ の排気 リ ング機構 7 の主面の上、 下面に よ り 、 処理チャ ンバ一 1 内をプラ ズマ領域、 非プラズマ領域 に分割 している。 こ こ では、 排気 リ ング機構 7 の上面側よ り 上方がプラ ズマ領域にな り 、 下面側よ り 下方が非プラ ズマ領 域である。 こ の排気 リ ング機構 7 は、 例えば、 図 2 A、 2 B に示すよ う に、 排気 リ ング 7 1 と 、 この排気 リ ング 7 1 における 主面 方向 (排気 リ ング主面と 平行な方向) の磁場を形成する磁場 形成部 7 2 と を備えている。 但 し、 下部電極 2 の載置面 と排 気 リ ング主面と は平行 している。 この排気 リ ング機構 7 は、 処理チャ ンバ一 1 内では、 ウェハ Wにプラ ズマ処理を施すプ ラズマ領域 と接触 し且つ、 プラ ズマ領域での生成ガスの排気 流路を形成 している。 The exhaust ring mechanism 7 is formed in a ring shape on the outer periphery of the mounting surface of the lower electrode 2 (the outer periphery of the focusing ring 6) and arranged. The inside of the processing chamber 1 is divided into a plasma region and a non-plasma region by the upper and lower surfaces of the main surface of the exhaust ring mechanism 7. In this case, the plasma region above the upper surface of the exhaust ring mechanism 7 is a plasma region, and the plasma region below the lower surface is a non-plasma region. For example, as shown in FIGS. 2A and 2B, the exhaust ring mechanism 7 includes an exhaust ring 71 and a main surface direction (a direction parallel to the exhaust ring main surface) of the exhaust ring 71. ), And a magnetic field forming unit 72 for forming the magnetic field of. However, the mounting surface of the lower electrode 2 is parallel to the main surface of the exhaust ring. The exhaust ring mechanism 7 is in contact with a plasma region in which the plasma processing is performed on the wafer W in the processing chamber 1 and forms an exhaust flow path for generated gas in the plasma region.
こ の排気 リ ング 7 1 は、 図示する よ う に全周に亘つて、 複 数の円形状の排気孔 7 1 Aが均等に分散 して形成され、 これ らの排気孔 7 1 Aを介 してプラ ズマ領域のガス を非プラ ズマ 領域を経由 させて処理チャ ンバ一 1 外へ排気する。 この例で は、 排気孔は周方向に 3 重の輪になる よ う に図示 されている が、 これに限定される ものではな く 、 排気 リ ング主面に均一 に分布されて も よ く 、 排気能力や特性が考慮されていればど のよ う な配置でも よ い。  In the exhaust ring 71, a plurality of circular exhaust holes 71A are uniformly distributed over the entire circumference as shown in the figure, and the exhaust rings 71A are formed through these exhaust holes 71A. Then, the gas in the plasma region is exhausted outside the processing chamber 1 via the non-plasma region. In this example, the exhaust holes are illustrated as being formed in triple circles in the circumferential direction, but the present invention is not limited to this, and the exhaust holes may be evenly distributed on the main surface of the exhaust ring. However, any arrangement is acceptable as long as the exhaust capacity and characteristics are taken into consideration.
本実施形態の磁場形成部 7 2 は、 図 2 Aに示すよ う に、 排 気 リ ング 7 1 の内周面を被覆する第 1 リ ング磁石 7 2 A (永 久磁石または電磁石) と 、 排気 リ ング 7 1 の外周面を被覆す る第 2 リ ング磁石 7 2 B (永久磁石または電磁石) と か ら構 成さ れる。 この構成に よ り 、 図 2 B に示すよ う に、 磁場形成 部 7 2 は、 排気 リ ング 7 1 内において下部電極 2 から処理チ ヤ ンバー 1 内壁に向か う 主面 と 平行な方向に磁場を形成する。 この磁場は、 発生 したプラ ズマを前述 したプラズマ領域内に 閉 じ込め、 非プラ ズマ領域へのプラズマの漏洩を防止する よ う に作用する。 As shown in FIG. 2A, the magnetic field forming unit 72 of the present embodiment includes a first ring magnet 72 A (a permanent magnet or an electromagnet) that covers the inner peripheral surface of the exhaust ring 71. It is composed of a second ring magnet 72 B (permanent magnet or electromagnet) that covers the outer peripheral surface of the exhaust ring 71. With this configuration, as shown in FIG. 2B, the magnetic field forming section 72 moves in the exhaust ring 71 in a direction parallel to the main surface from the lower electrode 2 to the inner wall of the processing chamber 1. Create a magnetic field. This magnetic field traps the generated plasma in the above-mentioned plasma region and prevents the leakage of the plasma to the non-plasma region. Works.
具体的には、 第 1 リ ング磁石 7 2 A と第 2 リ ン グ磁石 7 2 B の間では、 図 2 Aの矢印 Xで示すよ う に第 1 リ ング磁石 7 2 Aから第 2 リ ング磁石 7 2 B に向力、 う 主面と 平行な方向の 磁場が形成される。 こ の磁場の磁力線 B は、 プラ ズマイ オン 及び電子の漏れる方向 と略直交 してる ため、 プラ ズマ領域の プラ ズマイ オン及び電子が図 2 B に示すよ う に排気 リ ング 7 1 の排気孔 7 1 Aを通過 し よ う と して もプラ ズマイ オン及び 電子は、 図 3 C に示すよ う に磁場の作用を受けて磁力線 B を 中心に旋回する。 但 し、 図 2 B 、 2 C ではマイ ナスイ オンの みを図示 してある。 後述する以降の各実施形態において も 同 様である。  Specifically, between the first ring magnet 72A and the second ring magnet 72B, as shown by an arrow X in FIG. A magnetic field in the direction parallel to the main surface is formed on the magnet 72B. Since the magnetic field lines B of this magnetic field are substantially perpendicular to the direction in which the plasma and the electrons leak, the plasma and the electrons in the plasma region are exhausted as shown in FIG. 2B. Even when passing through 1A, the plasmion and electrons rotate around the magnetic field line B under the action of the magnetic field as shown in Fig. 3C. However, FIGS. 2B and 2C show only the minus ion. The same applies to the following embodiments to be described later.
このプラズマイ オン及び電子は、 排気孔 7 1 Aの内周面に 衝突 し、 非プラ ズマ領域へ漏出せず、 プラ ズマ領域内に閉 じ 込め られる。 従って、 ウェハ W外周縁部でのプラ ズマの拡散 を防止 し、 ウェハ W周縁部 と ウェハ W中央部分と のプラ ズマ 密度の均一性を保持する こ と ができ る。 そのため、 ウェハ W 外周縁部でのエ ッチング等の処理速度 (エ ッチングレー ト) の低下を防止 してプラ ズマ処理の面内均一性を高める こ と が でき る。  The plasma ions and electrons collide with the inner peripheral surface of the exhaust hole 71A, do not leak to the non-plasma region, and are confined in the plasma region. Therefore, it is possible to prevent the diffusion of the plasma at the outer peripheral portion of the wafer W, and to maintain the uniformity of the plasma density between the peripheral portion of the wafer W and the central portion of the wafer W. Therefore, it is possible to prevent a reduction in the processing speed (etching rate) such as etching at the outer peripheral edge portion of the wafer W, and to improve the in-plane uniformity of the plasma processing.
また、 上記排気 リ ング機構 7 は、 例えば図 2 A、 2 B に示 すよ う に、 磁場封止部 7 3 を備えている。 こ の磁場封止部 7 3 は、 例えば鉄等の磁性体を材料と して、 図示する よ う に棑 気 リ ング 7 1 及び第 1 、 第 2 リ ング磁石 7 2 A、 7 2 B を一 体的に収納する磁性収納体と して形成 されている。 以下では 磁場封止部 7 3 を磁性収納体 7 3 と して説明する。 Further, the exhaust ring mechanism 7 includes a magnetic field sealing portion 73 as shown in FIGS. 2A and 2B, for example. The magnetic field sealing portion 73 is made of a magnetic material such as iron, for example, and is made of a magnetic ring 71 and first and second ring magnets 72 A and 72 B as shown in the figure. It is formed as a magnetic housing that is housed integrally. Below The magnetic field sealing portion 73 will be described as a magnetic container 73.
このよ う に一体的に収納する磁性収納体 7 3 に よ り 、 図 2 B に示すよ う に、 その外周面か ら内周面に向か う 磁路 Yが形 成され、 排気 リ ング 7 1 からの磁場漏洩を防止する こ と がで き、 磁場を有効に利用する こ と ができ る。 結果、 プラ ズマを よ り 確実にプラ ズマ領域内へ閉 じ込める こ と が可能と なる。 従って、 処理チャ ンバ一 1 内のプラ ズマイ オン及び電子を プラ ズマ領域に確実に閉 じこ め、 プラ ズマ処理の均一性を更 に高める こ と ができ る。 また、 非プラ ズマ領域におけ る処理 チャ ンバ一 1 内壁をプラズマに よ る損傷から防止する こ と が でき る と 共に副生成物の汚染から防止する こ と ができ る。  As shown in FIG. 2B, a magnetic path Y is formed from the outer peripheral surface to the inner peripheral surface of the magnetic storage body 73 integrally stored as described above, and the exhaust ring is formed. 7 It is possible to prevent the magnetic field from leaking, and it is possible to effectively use the magnetic field. As a result, it is possible to more reliably confine the plasma within the plasma region. Therefore, the plasma miions and electrons in the processing chamber 1 are reliably closed in the plasma region, and the uniformity of the plasma processing can be further improved. In addition, it is possible to prevent the inner wall of the processing chamber 1 in the non-plasma region from being damaged by the plasma and from being contaminated with by-products.
また、 第 1 リ ング磁石 7 2 Aは、 下部電極 2 と 隣接 してい るため、 下部電極 2 上面の外周縁部に も磁場が作用 し、 この 磁場が ウェハ W外周縁部のエ ッチング時のエ ッチング レー ト 等のプラ ズマ処理の面内均一性を よ り 一層向上させる こ と が でき る。  Further, since the first ring magnet 72A is adjacent to the lower electrode 2, a magnetic field also acts on the outer peripheral edge of the upper surface of the lower electrode 2, and this magnetic field is generated when the outer peripheral edge of the wafer W is etched. The in-plane uniformity of plasma processing such as etching rate can be further improved.
以上説明 した第 1 の実施形態によれば、 排気 リ ング機構 7 は、 処理チャ ンバ一の径方向の磁場を形成 し、 プラズマィォ ン及び電子が排気 リ ングの排気孔を通過 しよ う と して も、 形 成された磁場が作用 して、 プラ ズマイ オン及び電子が排気孔 内で旋回 して衝突 し、 プラ ズマイ オン及び電子の通過を阻止 してプラ ズマをプラ ズマ領域に閉 じ込める こ と ができ る。 従って、 ウェハ W外周縁部でのプラ ズマの拡散が防止 され ウェハ W周縁部と ウェハ Wの中央部分と のプラズマ密度の均 一性を高める こ と ができ る。 さ ら に、 ウェハ W外周縁部での エ ッチング等のプラ ズマ処理の低下を防止 してプラ ズマ処理 の面内均一性を保持する こ と ができ る。 According to the first embodiment described above, the exhaust ring mechanism 7 forms the radial magnetic field of the processing chamber, and the plasma ions and the electrons try to pass through the exhaust holes of the exhaust ring. However, the generated magnetic field acts on the plasma and the electrons to swirl and collide in the exhaust hole, preventing the plasma and the electrons from passing and confining the plasma to the plasma region. be able to. Therefore, the diffusion of the plasma at the outer peripheral portion of the wafer W is prevented, and the uniformity of the plasma density between the peripheral portion of the wafer W and the central portion of the wafer W can be improved. In addition, the wafer W The plasma processing such as etching can be prevented from lowering, and the in-plane uniformity of the plasma processing can be maintained.
ま た、 非プラ ズマ領域での処理チャ ンバ一 1 内壁をプラ ズ マ損傷から防止する こ と ができ る と共に、 副生成物の汚染か ら防止する こ と ができ る。 そ して、 下部電極 2 上面の外周縁 部でも磁場形成部に よ って磁場が形成され、 この磁場の影響 でエ ッチングレー ト等のプラ ズマ処理の均一性を高める こ と ができ る。 更に、 排気 リ ング と 第 1 、 第 2 リ ング磁石を磁性 収納体内に一体的に収納 したため、 磁性収納体に よ って磁場 の漏洩を防止 し、 磁場を無駄な く 有効に利用 し、 プラ ズマを プラ ズマ領域に よ り 確実に閉 じ込める こ と ができ る。  In addition, the inner wall of the processing chamber 1 in the non-plasma region can be prevented from being damaged by plasma, and can be prevented from being contaminated with by-products. Then, a magnetic field is formed by the magnetic field forming portion also on the outer peripheral edge of the upper surface of the lower electrode 2, and the uniformity of plasma processing such as etching can be improved by the influence of the magnetic field. Furthermore, since the exhaust ring and the first and second ring magnets are housed integrally in the magnetic housing, the magnetic housing prevents the leakage of the magnetic field, and effectively uses the magnetic field without waste. The plasma can be more reliably confined to the plasma region.
次に本発明の第 2 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 3 Aは、 本発 明の第 2 の実施形態に係る排気 リ ング機構におけ る構成の一 部平面を示す図、 図 3 B は図 3 Aの処理チャ ンバの径方向に おけるその断面構成を示す図、 図 3 C は図 3 Aの周方向にお ける その断面構成を示す図である。  Next, an exhaust ring mechanism used in the plasma processing apparatus according to the second embodiment of the present invention will be described. FIG. 3A is a diagram illustrating a partial plan view of a configuration of an exhaust ring mechanism according to a second embodiment of the present invention, and FIG. 3B is a cross-sectional view of the processing chamber in FIG. 3A in a radial direction. FIG. 3C is a diagram showing a configuration, and FIG. 3C is a diagram showing a cross-sectional configuration thereof in a circumferential direction of FIG. 3A.
こ のプラ ズマ処理装置に用い られる排気 リ ング機構 1 0 は 例えば、 図 3 A、 3 3 B に示すよ う に、 排気 リ ング 1 0 1 及 び磁場形成部 1 0 2 を備えている。 上記磁場形成部 1 0 2 は 排気 リ ング 1 0 1 の周方向で所定間隔を空けて放射状に配設 された複数の磁石 1 0 2 Aによ って構成されている。 各磁石 1 0 2 Aはそれぞれ板状に形成さ れ、 排気 リ ング 1 0 1 に形 成さ れた細長形状の孔を埋める よ う に して取 り 付け られてい る。 そ して、 排気 リ ング 1 0 1 において隣合 う 磁石 1 0 2 A 間で図 3 Aの矢印 Z で示すよ う な時計の回転方向 ( C W ) の 排気 リ ング主面 と 平行な方向の磁場が形成さ れる。 The exhaust ring mechanism 10 used in the plasma processing apparatus includes, for example, an exhaust ring 101 and a magnetic field forming unit 102 as shown in FIGS. 3A and 33B. The magnetic field generator 102 is composed of a plurality of magnets 102 A radially arranged at predetermined intervals in the circumferential direction of the exhaust ring 101. Each of the magnets 102A is formed in a plate shape, and is attached so as to fill an elongated hole formed in the exhaust ring 101. Then, the adjacent magnets 10 2 A in the exhaust ring 101 Between them, a magnetic field is formed in the direction parallel to the exhaust ring main surface in the clockwise direction (CW) as shown by arrow Z in Fig. 3A.
こ の磁場の磁力線 B は、 プラ ズマ及び電子の漏れる方向 と 略直交 してる。 このため、 プラ ズマ領域のプラズマイ オン及 び電子は、 図 3 B に示すよ う に排気 リ ング 1 0 1 の排気孔 1 0 1 Aを通過 しょ う と して も、 図 3 C に示すよ う に磁場の作 用を受けて磁力線を中心に旋回する。 従って、 こ のプラ ズマ イ オン及び電子は、 排気 リ ング 1 0 1 の排気孔 1 0 1 Aの内 周面に衝突 して、 非プラズマ領域へ漏出せず、 プラズマ領域 内に閉 じ込め られる。  The magnetic field lines B of this magnetic field are substantially perpendicular to the direction in which plasma and electrons leak. For this reason, even if plasma ions and electrons in the plasma region try to pass through the exhaust hole 101A of the exhaust ring 101 as shown in FIG. Thus, it turns around the line of magnetic force under the action of the magnetic field. Therefore, the plasmion and the electrons collide with the inner peripheral surface of the exhaust hole 101A of the exhaust ring 101, do not leak to the non-plasma region, and are confined in the plasma region. .
以上説明 した よ う に第 2 の実施形態の排気 リ ング機構によ れば、 放射状に配設さ れた複数の磁石間で C W方向の磁場が 形成 され、 プラ ズマ及び電子が排気孔を通過 しよ う と して も 磁場の作用で旋回 して排気孔に衝突 して通過が阻止される。 このため、 プラ ズマをプラ ズマ領域に閉 じ込め られる こ と と な り 、 前述 した第 1 の実施形態 と 同様な作用効果を得る こ と ができ る。  As described above, according to the exhaust ring mechanism of the second embodiment, a magnetic field in the CW direction is formed between a plurality of magnets arranged radially, and plasma and electrons pass through the exhaust holes. Even so, it turns due to the action of the magnetic field, collides with the exhaust holes, and is prevented from passing. For this reason, the plasma can be confined in the plasma region, and the same operation and effect as those of the first embodiment can be obtained.
次に本発明の第 3 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 4 Aは、 本発 明の第 3 の実施形態に係る排気 リ ング機構におけ る構成の一 部平面を示す図、 図 4 B は図 4 Aの径方向の断面構成を示す 図である。  Next, an exhaust ring mechanism used in a plasma processing apparatus according to a third embodiment of the present invention will be described. FIG. 4A is a diagram showing a partial plan view of a configuration of an exhaust ring mechanism according to a third embodiment of the present invention, and FIG. 4B is a diagram showing a radial cross-sectional configuration of FIG. 4A. .
排気 リ ング機構における磁場形成部 1 1 2 は、 前述 した図 2 に示 した排気 リ ング機構 7 と 同様に、 第 1 、 第 2 リ ング磁 石 1 1 2 A、 1 1 2 B と で構成される が、 本実施形態の排気 リ ング機構 1 1 は、 図 4 A、 4 B に示すよ う に第 1 、 第 2 リ ング磁石 1 1 2 A、 1 1 2 B が排気 リ ング 1 1 1 の内周縁部 下面側及び外周縁部下面側にそれぞれ接触 して配置さ れてい る。 The magnetic field forming unit 112 in the exhaust ring mechanism is composed of first and second ring magnets 112A and 112B, similarly to the exhaust ring mechanism 7 shown in FIG. 2 described above. However, the exhaust of this embodiment As shown in FIGS. 4A and 4B, the ring mechanism 11 includes first and second ring magnets 11 A and 11 B which are formed on the inner peripheral lower surface of the exhaust ring 11 1 and the outer side. They are arranged in contact with the lower surface of the peripheral portion.
こ の構成において、 排気 リ ング 1 1 1 を通 り 抜けて、 第 1 リ ング磁石 1 1 2 Aから第 2 リ ング磁石 1 1 2 B に向力 ぅ磁 場の一部が凸型に湾曲 して形成さ れる。 この磁場は全体的に は、 図 4 B に示すよ う に排気 リ ング 1 1 1 の排気孔 1 1 1 A を略水平に横切る水平方向の磁場 と して形成される。  In this configuration, the magnetic force passes through the exhaust ring 111 and moves from the first ring magnet 112A to the second ring magnet 112B. Formed. This magnetic field is generally formed as a horizontal magnetic field that crosses the exhaust hole 111A of the exhaust ring 111 substantially horizontally as shown in FIG. 4B.
この磁場の磁力線 B は、 前述 した各実施形態と 同様に、 プ ラズマイ オン及び電子の漏れる方向 と 略直交 してるため、 プ ラズマ領域のプラ ズマイ オン及び電子が図 4 B に示すよ う に 排気 リ ング 7 1 の排気孔 7 1 Aを通過 しよ う と しても プラ ズ マイ オン及び電子は磁場の作用を受けて磁力線 B を中心に旋 回 し、 非プラ ズマ領域へ漏出する こ と な く プラズマ領域内に 閉 じ込め られる。 従って、 本実施形態においても 図 2 Aに示 した排気 リ ング機構 7 と 同様な作用効果を得る こ と ができ る , 以上説明 した第 1 乃至第 3 の実施形態においては、 何等制 限される も のではな く 、 必要に応 じて各構成要素を設計変更 する こ と ができ る。 例えば、 磁場形成部は第 1 、 第 2 リ ング 磁石あるいは、 板状の磁石に制限される も のはな く 、 これら の磁石 と 同様の形態を呈する電磁石を用いて も良い。 第 1 、 第 2 リ ング磁石の代わ り に円弧状の磁石を排気リ ング全周に 亘つて配列 した ものであっても 良い。 また、 磁場形成部は、 排気 リ ングにおいて主面方向 と 平行の磁場を形成する こ と が できればよ く 、 磁場の向き は如何なる方向であって も よい。 次に本発明の第 4 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 5 Aは、 本発 明の第 4 の実施形態に係る排気 リ ング機構におけ る構成の一 部平面を示す図、 図 5 B は図 5 Aの構成における磁場べク ト ルの方向を示す図であ る。 Since the magnetic field lines B of this magnetic field are substantially orthogonal to the direction in which the plasma and the electrons leak as in the above-described embodiments, the plasma and the electrons in the plasma region are exhausted as shown in FIG. 4B. Even if it tries to pass through the exhaust hole 71 A of the ring 71, the plasma myon and the electrons rotate around the magnetic field line B under the action of the magnetic field and leak to the non-plasma region. Without being trapped in the plasma region. Therefore, in this embodiment, the same operation and effect as those of the exhaust ring mechanism 7 shown in FIG. 2A can be obtained. In the first to third embodiments described above, there is no limitation. Instead, each component can be redesigned as needed. For example, the magnetic field forming unit is not limited to the first and second ring magnets or the plate-like magnets, but may use an electromagnet having the same form as these magnets. Instead of the first and second ring magnets, arc-shaped magnets may be arranged along the entire circumference of the exhaust ring. Also, the magnetic field forming unit may form a magnetic field parallel to the main surface direction in the exhaust ring. Preferably, the direction of the magnetic field can be in any direction. Next, an exhaust ring mechanism used in a plasma processing apparatus according to a fourth embodiment of the present invention will be described. FIG. 5A is a diagram illustrating a partial plan view of a configuration of an exhaust ring mechanism according to a fourth embodiment of the present invention, and FIG. 5B is a diagram illustrating a direction of a magnetic field vector in the configuration of FIG. 5A. FIG.
前述 した図 2 に示 した第 1 の実施形態における排気 リ ング 機構の排気 リ ング 7 1 で開 口 された排気孔 7 1 Aは、 円形状 であったが、 こ の第 4 の実施形態では、 ス リ ッ ト 状の排気孔 が内側か ら外周 に向か う よ う な放射状に配列 されている構成 であ る。  The exhaust hole 71A opened by the exhaust ring 71 of the exhaust ring mechanism in the first embodiment shown in FIG. 2 described above has a circular shape, but in the fourth embodiment, In this configuration, the slit-shaped exhaust holes are radially arranged from the inner side to the outer side.
こ の排気 リ ング機構 1 3 は、 排気 リ ング 1 3 1 と 、 磁場形 成部 1 3 2 と で構成されている。 磁場形成部 1 3 2 は、 図 5 Aに示すよ う に、 排気 リ ング 1 3 1 の内周面を被覆する第 1 リ ング磁石 1 3 2 A と 、 排気 リ ング 1 3 1 の外周面を被覆す る第 2 リ ング磁石 1 3 2 B と カゝ ら構成される。  The exhaust ring mechanism 13 includes an exhaust ring 13 1 and a magnetic field forming unit 13 2. As shown in FIG. 5A, the magnetic field forming section 13 2 includes a first ring magnet 13 2 A covering the inner peripheral surface of the exhaust ring 13 1, and an outer peripheral surface of the exhaust ring 13 1. It is composed of a second ring magnet 132B and a coil covering the second magnet.
こ の構成によ り 、 図 5 B に示すよ う に、 磁場形成部 1 3 2 は、 排気 リ ング 1 3 1 内において、 図 1 に示 した下部電極 2 から処理チャ ンバ一 1 内壁へ向力ゝ ぅ 主面と 平行な方向 X 1 に 磁場を形成する。 この磁場は、 発生 したプラ ズマを前述 した プラ ズマ領域内に閉 じ込め、 非プラズマ領域へのプラ ズマの 漏洩を防止する よ う に作用する。  According to this configuration, as shown in FIG. 5B, the magnetic field forming unit 13 2 moves from the lower electrode 2 shown in FIG. 1 to the inner wall of the processing chamber 1 in the exhaust ring 13 1. Force ゝ A magnetic field is formed in the direction X 1 parallel to the main surface. This magnetic field acts to confine the generated plasma in the above-mentioned plasma region and prevent the leakage of the plasma to the non-plasma region.
本実施形態においては、 前述 した第 1 の実施形態と 同等の 作用効果を得る こ と ができ る。  In the present embodiment, it is possible to obtain the same operation and effect as those of the above-described first embodiment.
次に本発明の第 5 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 6 Aは、 本発 明の第 5 の実施形態に係る排気 リ ング機構におけ る平面構成 の一部平面を示す図、 図 6 B は図 6 Aの構成における磁場べ ク トルの方向を示す図である。 Next, the present invention is applied to a plasma processing apparatus according to a fifth embodiment of the present invention. The exhaust ring mechanism used will be described. FIG. 6A is a view showing a partial plane of a plane configuration of an exhaust ring mechanism according to a fifth embodiment of the present invention, and FIG. 6B is a view showing the direction of a magnetic field vector in the configuration of FIG. 6A. FIG.
こ のプラ ズマ処理装置に用い られる排気 リ ング機構 1 4 は , 例えば、 図 6 A、 6 B に示すよ う に、 排気 リ ング 1 4 1 及び 磁場形成部 1 4 2 を備えている。 上記磁場形成部 1 4 2 は、 排気 リ ング 1 4 1 の周方向で所定間隔を空けて放射状に配設 された複数の磁石 1 4 2 Aによ って構成されている。 各磁石 1 4 2 Aはそれぞれ板状に形成 され、 排気 リ ング 1 4 1 に形 成されたス リ ッ ト状の排気孔 1 4 1 Aに沿 う よ う に して取 り 付け られている。 そ して、 排気 リ ング 1 4 1 において隣合 う 磁石 1 4 2 A と磁石 1 4 2 A と 間で、 図 6 B の矢印 Z 1 で示 すよ う な時計の回転方向 ( C W) の磁場が形成される。  The exhaust ring mechanism 14 used in this plasma processing apparatus includes, for example, as shown in FIGS. 6A and 6B, an exhaust ring 14 1 and a magnetic field forming section 142. The magnetic field forming part 142 is composed of a plurality of magnets 142 A radially arranged at predetermined intervals in the circumferential direction of the exhaust ring 141. Each magnet 142A is formed in a plate shape, and is attached along the slit-shaped exhaust hole 144A formed in the exhaust ring 141. I have. Then, between the adjacent magnets 14 2 A and 14 2 A at the exhaust ring 14 1, the clockwise rotation (CW) as shown by the arrow Z 1 in FIG. A magnetic field is formed.
本実施形態に よれば、 前述 した第 1 の実施形態 と 同様な作 用効果に加えて、 第 2 の実施形態 と 同等の作用効果を得る こ と ができ る。  According to the present embodiment, in addition to the operation and effect similar to the above-described first embodiment, the same operation and effect as the second embodiment can be obtained.
次に本発明の第 6 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 7 Aは、 本発 明の第 6 の実施形態に係る排気 リ ング機構におけ る平面構成 の一部平面を示す図、 図 7 B は、 第 1 の磁石配置例を示 し図 . 図 7 C は、 第 2 の磁石の配置例を示す図であ る。  Next, an exhaust ring mechanism used in a plasma processing apparatus according to a sixth embodiment of the present invention will be described. FIG. 7A is a diagram showing a partial plane of a plane configuration of an exhaust ring mechanism according to a sixth embodiment of the present invention, and FIG. 7B is a diagram showing a first magnet arrangement example. FIG. 7C is a diagram showing an example of the arrangement of the second magnet.
本実施形態の排気 リ ング機構は、 排気 リ ング 1 5 1 と磁場 形成部の複数の磁石 1 5 2 A若 し く は、 排気 リ ング 1 5 1 と 磁石 1 5 2 B と で構成 されてレ、る。 排気 リ ング 1 5 1 は、 前 述 した第 4 の実施形態における排気 リ ング と 同様にス リ ッ ト 状の排気孔 1 5 1 Aが内側か ら外周へ向か う 放射状に配列さ れている。 The exhaust ring mechanism of the present embodiment includes the exhaust ring 151, a plurality of magnets 152A of the magnetic field forming unit, or the exhaust ring 151, and the magnets 152B. Let's do it. Exhaust ring 1 5 1 Similar to the exhaust ring in the fourth embodiment described above, slit-shaped exhaust holes 151A are arranged radially from the inside toward the outer periphery.
図 7 B に示すよ う に第 1 の配置例と して、 磁場形成するた め の磁石 1 5 2 Aは、 排気 リ ング 1 5 1 の周方向で角度 3 0 ° 毎に間隔を空けて、 放射状に配設 さ れている。 これらの 磁石 1 5 2 Aは、 それぞれ板状に形成 され、 排気 リ ング 1 5 1 の下面側に配列されて取 り 付け られている。  As shown in Fig. 7B, as a first arrangement example, magnets 152A for forming a magnetic field are spaced at an angle of 30 ° in the circumferential direction of exhaust ring 151. It is arranged radially. These magnets 152A are each formed in a plate shape, and are arranged and mounted on the lower surface side of the exhaust ring 1515.
図 7 C に示すよ う に第 2 の配置例と して、 磁場形成する た めの磁石 1 5 2 B は、 排気 リ ング 1 5 1 の周方向で角度 4 5 ° 毎に間隔を空けて、 放射状に配設 されている。 これらの 磁石 1 5 2 A、 1 5 2 B は、 それぞれ板状に形成され、 排気 リ ング 1 5 1 の下面側に配列 されて取 り 付け られている。 第 1 、 第 2 の配置例において、 隣合 う 磁石 1 5 2 A間又は 1 5 2 B 間では、 前述 した図 6 B の矢印 Z 1 に示すよ う な時計の 回転方向 ( C W ) 向か う 磁場が形成される。  As shown in FIG. 7C, as a second arrangement, magnets 15 2 B for forming a magnetic field are spaced at an angle of 45 ° in the circumferential direction of exhaust ring 15 1. It is arranged radially. These magnets 15A and 15B are each formed in a plate shape, and are arranged and mounted on the lower surface side of the exhaust ring 15I. In the first and second arrangement examples, between the adjacent magnets 15A and 15B, the clockwise direction (CW) as shown by the arrow Z1 in FIG. A magnetic field is formed.
本実施形態においては、 前述 した第 2 の実施形態と 同等の 作用効果を得る こ と ができ る。  In the present embodiment, it is possible to obtain the same operation and effect as in the above-described second embodiment.
次に本発明の第 7 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 8 Aは、 本発 明の第 7 の実施形態に係る排気 リ ング機構におけ る排気 リ ン グの上か ら見た平面構成を示す図、 図 8 B は、 図 8 Aの構成 における磁石の配置例 と磁場べク ト ルの方向を示す図、 図 8 C は本実施形態の磁場形成の概念説明する ための図である。 前述 した第 1 乃至第 6 の実施形態においては、 排気 リ ング の下側に直接的に磁石が配置されてお り 、 排気孔を抜けたプ ロ セ スガスが磁石表面上を通 り 抜ける構成である。 処理装置 がエ ッチング装置等であった場合、 プロセスガス に腐食性ガ ス を用いてお り 、 その排気の際に磁石が腐食性ガスに よ り 腐 食される こ と と なる。 Next, an exhaust ring mechanism used in a plasma processing apparatus according to a seventh embodiment of the present invention will be described. FIG. 8A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the seventh embodiment of the present invention as viewed from above, and FIG. FIG. 8C is a diagram showing an example of the arrangement of magnets and the direction of a magnetic field vector. FIG. 8C is a diagram for explaining the concept of magnetic field formation in the present embodiment. In the first to sixth embodiments described above, the exhaust ring The magnet is arranged directly below the bottom, and the process gas that has passed through the exhaust hole passes through the surface of the magnet. If the processing device is an etching device or the like, a corrosive gas is used as the process gas, and when the exhaust gas is exhausted, the magnet is corroded by the corrosive gas.
そ こで本実施形態では、 排気ガス (腐食性ガス) の排気流 路が直接的に磁石に触れないよ う な構成と なっている。 図 8 Aに示すよ う に、 排気 リ ング 1 6 1 には、 全周に亘つて、 ス リ ッ ト状の排気孔 1 6 1 Aが内側から外周に向カゝ う よ う な放 射状に配列する。  Therefore, in the present embodiment, the exhaust gas (corrosive gas) exhaust passage is configured not to directly touch the magnet. As shown in FIG. 8A, the exhaust ring 161 has a slit-shaped exhaust hole 161A that extends from the inside to the outside over the entire circumference. Arrange in a shape.
図 8 B に示すよ う に、 それぞれが導電体か らな る リ ング形 状の内周側磁石ベース部材 1 6 2 A と 外周側磁石べ一ス部材 1 6 3 B と が、 排気 リ ング 1 6 1 の内外周の下側端部に設け られた排気 リ ングカバー部 1 6 1 B 内に嵌め込まれる よ う に 取 り 付け られている。  As shown in FIG. 8B, the ring-shaped inner peripheral side magnet base member 16 2 A and the outer peripheral side magnet base member 16 3 B, each of which is made of a conductor, are connected to the exhaust ring. It is mounted so as to fit into the exhaust ring cover part 161B provided at the lower end of the inner and outer peripheries of the 161.
それぞれ、 磁石ベース部材 1 6 2 A の外内側には上下に 2 つの リ ング状磁石 1 6 3 Aが取 り 付け られ、 磁石ベース部材 1 6 2 B の内側には上下に 2 つの リ ング状磁石 1 6 3 B が取 り 付け られている。 こ の時、 リ ング状磁石 1 6 3 A と リ ング 状磁石 1 6 3 B と は、 N極と S極を対峙する よ う に配置 して 排気 リ ング 1 6 1 の主面方向 (主面と 平行な方向) の磁場を 形成する。 これは、 概念的には、 図 8 C に示すよ う な U字型 磁石の 2 つを、 N極 と S極が対峙する よ う に向かい合わせて 配置する こ と と 同等である。 こ の磁場は、 発生 したプラ ズマ を前述 したプラ ズマ領域内に閉 じ込め、 非プラ ズマ領域への プラ ズマの漏洩を防止する よ う に作用する。 Two ring-shaped magnets 163 A are attached to the inside and outside of the magnet base member 16 A, respectively, and two ring-shaped magnets are attached to the inside of the magnet base member 16 B. Magnet 1 6 3 B is installed. At this time, the ring-shaped magnet 1663A and the ring-shaped magnet 1663B are arranged so that the N pole and the S pole face each other, and the main surface direction (main direction) of the exhaust ring 161 is set. Magnetic field in the direction parallel to the plane). This is conceptually equivalent to arranging two U-shaped magnets as shown in Fig. 8C so that the N pole and the S pole face each other. This magnetic field traps the generated plasma in the above-mentioned plasma region, and transmits the non-plasma region to the non-plasma region. Acts to prevent plasma leakage.
本実施形態に よれば、 排気ガス (腐食性ガス) の排気流路 が直接的に磁石に触れないため、 磁石の腐食を防止する こ と ができ、 ま た、 形成された磁場に よ り 、 発生 したプラ ズマを プラ ズマ領域内に閉 じ込め、 非プラズマ領域へのプラ ズマの 漏洩を防止する こ と ができ る。 前述 した第 1 の実施形態 と 同 様な作用効果を得る こ と ができ る。  According to the present embodiment, since the exhaust passage of the exhaust gas (corrosive gas) does not directly contact the magnet, it is possible to prevent the corrosion of the magnet, and further, due to the formed magnetic field, The generated plasma is confined in the plasma region, and the leakage of the plasma to the non-plasma region can be prevented. The same operation and effect as those of the first embodiment can be obtained.
次に本発明の第 8 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。 図 9 Aは、 本発 明の第 8 の実施形態に係る排気 リ ング機構における排気 リ ン グの上から見た平面構成を示す図、 図 9 B は、 図 9 Aの構成 における磁石の配置例 と磁場べク ト ルの方向を示す図である( 本実施形態においては、 図 9 Aに示すよ う に、 排気 リ ング Next, an exhaust ring mechanism used in a plasma processing apparatus according to an eighth embodiment of the present invention will be described. FIG. 9A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the eighth embodiment of the present invention as viewed from above, and FIG. 9B is a view showing the arrangement of magnets in the configuration of FIG. 9A. FIG. 9B is a diagram showing an example and the direction of a magnetic field vector (in the present embodiment, as shown in FIG.
1 7 1 には、 全周に亘つて、 ス リ ッ ト 状の排気孔 1 7 1 Aが 内側から外周に向か う よ う な放射状で、 且つ複数本の排気孔17 1 has a slit-shaped exhaust hole 1771 A over the entire circumference, and has a plurality of radial exhaust holes extending from the inside to the outer periphery.
1 7 1 A群を配列 し、 その群 と群 と の間にスペース 1 7 1 B を設けて配列されている。 図 9 Aの配置例では、 排気孔 1 7The group 171A is arranged, and a space 171B is provided between the groups. In the example shown in Fig. 9A, exhaust holes 1 7
1 Aが 5 〜 7 本を 1 つの群 と している。 この よ う な配置は、 排気効率等の設計上や構成上に照 ら し合わせて適宜、 配置 し て も よい。 1A is a group consisting of 5 to 7 tubes. Such an arrangement may be appropriately arranged according to the design and configuration of the exhaust efficiency and the like.
そ して、 図 9 B に示すよ う に、 磁場形成部は、 導電体から なる磁石ベース部材 1 7 3 に板状の磁石 1 7 4 が取 り 付け ら れてレ、る。 前述 した排気 リ ング 1 Ί 1 のス ペース 1 7 1 B の 下側は、 こ の磁石 1 7 3 を収納 し、 磁石全体をカバー可能な 凹型形状に形成 されている。 スペース 1 7 1 Bへ磁石 1 7 3 を収納する こ と によ り 、 排気ガス (腐食性ガス) の排気流路 が直接的に磁石に触れないよ う な構成 と な る。 Then, as shown in FIG. 9B, in the magnetic field forming section, a plate-like magnet 174 is attached to a magnet base member 173 made of a conductor. The lower side of the space 17 1 B of the exhaust ring 1 Ί 1 described above is formed in a concave shape capable of accommodating the magnet 17 3 and covering the entire magnet. Space 1 7 1 Magnet to 1 B 1 7 3 By storing the gas, the exhaust gas flow path of the exhaust gas (corrosive gas) is configured not to directly touch the magnet.
本実施形態に よれば、 前述 した第 7 の実施形態 と 同様に排 気される腐食性ガス に よ る磁石の腐食を防止でき 、 また形成 された磁場によ り 、 発生 したプラ ズマをプラ ズマ領域内に閉 じ込め、 非プラ ズマ領域へのプラ ズマの漏洩を防止する こ と ができ る。 前述 した第 1 の実施形態と 同様な作用効果を得る こ と ができ る。  According to the present embodiment, similarly to the above-described seventh embodiment, the corrosion of the magnet due to the corrosive gas exhausted can be prevented, and the generated plasma can be prevented from being generated by the generated magnetic field. It can be confined within the region and prevent the leakage of plasma into the non-plasma region. The same operation and effect as those of the first embodiment can be obtained.
次に本発明の第 9 の実施形態に係る プラ ズマ処理装置に用 い られる排気 リ ング機構について説明する。  Next, an exhaust ring mechanism used in a plasma processing apparatus according to a ninth embodiment of the present invention will be described.
図 1 0 Aは、 本発明の第 9 の実施形態に係る排気 リ ング機 構における排気 リ ン グの上から見た平面構成を示す図、 図 1 0 B は、 図 1 O Aの構成における磁石の配置例と磁場べク ト ルの方向を示す図である。  FIG. 10A is a diagram showing a plan view of the exhaust ring in the exhaust ring mechanism according to the ninth embodiment of the present invention as viewed from above, and FIG. 10B is a magnet in the configuration of FIG. FIG. 2 is a diagram showing an example of the arrangement of the magnetic field and the direction of a magnetic field vector.
図 1 0 Aに示す排気 リ ング機構における排気 リ ング 1 8 1 は、 前述 した第 8 の実施形態と 同等に配置される ス リ ッ ト状 の排気孔 1 8 1 Aを有 している。 排気 リ ング機構における磁 場形成部は、 図 1 0 B に示すよ う に、 排気孔 1 8 1 Aの群 と 群と の間に設け られた各スペース 1 8 1 B の下面側にそれぞ れ磁石 1 8 3 (永久磁石または電磁石) が設け られている。  The exhaust ring 181 in the exhaust ring mechanism shown in FIG. 10A has a slit-shaped exhaust hole 181A arranged in the same manner as in the above-described eighth embodiment. As shown in FIG. 10B, the magnetic field forming part of the exhaust ring mechanism is provided on the lower surface side of each space 18 1 B provided between the groups of exhaust holes 18 A, as shown in FIG. 10B. The magnet 1 8 3 (permanent magnet or electromagnet) is provided.
こ の構成において、 磁石 1 8 3 は、 台形の よ う にテー パ ー を有 した形状に作成 され、 形成される磁場は、 磁石 1 8 3 か ら隣の磁石 1 8 3 へ磁力線が排気 リ ング 1 8 1 内を通 り 抜け て、 凸型に湾曲する よ う に形成する。 こ の磁場に よ り 前述 し た各実施形態と 同様に、 プラズマ領域のプラ ズマイ オン及び 電子は、 排気孔 1 8 2 を通過 しよ う と して も、 磁場の作用を 受けて旋回 して しまい、 非ブラ ズマ領域へ漏出する こ と な く プラ ズマ領域内に閉 じ込め られる。 In this configuration, the magnet 183 is formed in a shape having a taper like a trapezoid, and the magnetic field formed is such that the magnetic field lines are exhausted from the magnet 183 to the adjacent magnet 183. It is formed so as to pass through the ring 18 1 and bend in a convex shape. By this magnetic field, as in the above-described embodiments, the plasma region and the plasma ion Even if electrons try to pass through the exhaust holes 182, they are swirled by the action of the magnetic field and are confined in the plasma region without leaking to the non-plasma region.
ま たスペース 1 8 1 B の後方 (非プラ ズマ領域) に磁石 1 8 3 が配置 されているため、 排気ガス (腐食性ガス) の排気 流路が直接的に磁石に触れないよ う な構成 と なる。  Also, since the magnets 183 are located behind the space 181B (non-plasma area), the exhaust gas (corrosive gas) exhaust flow path does not directly touch the magnets. And
本実施形態に よれば、 前述 した第 7 の実施形態 と 同様に排 気される腐食性ガス に よ る磁石の腐食を防止でき 、 また形成 された磁場によ り 、 発生 したプラ ズマをプラ ズマ領域内に閉 じ込め、 非プラ ズマ領域へのプラ ズマの漏洩を防止する こ と ができ る。 前述 した第 1 の実施形態と 同様な作用効果を得る こ と ができ る。  According to the present embodiment, similarly to the above-described seventh embodiment, the corrosion of the magnet due to the corrosive gas exhausted can be prevented, and the generated plasma can be prevented from being generated by the generated magnetic field. It can be confined within the region and prevent the leakage of plasma into the non-plasma region. The same operation and effect as those of the first embodiment can be obtained.
次に本発明の第 1 0 の実施形態に係る プラ ズマ処理装置に 用い られる排気 リ ング機構の機能をデポシール ド機構に適用 した構成について説明する。  Next, a configuration in which the function of the exhaust ring mechanism used in the plasma processing apparatus according to the tenth embodiment of the present invention is applied to a deposit shield mechanism will be described.
図 1 1 Aは、 前述 した各実施形態における排気 リ ング機構 の機能を適用 したデポシール ド機構の外観構成を示す図、 図 1 1 B は図 1 1 Aに示すデポシール ドを上か ら見た平面構成 を示す図、 図 1 1 C は、 図 1 1 Aのデポシール ドを側面から 見た外観構成を示す図、 図 1 1 D は、 デポシール ドにおける 径方向に磁石を配置 した構成の一部の断面構成を示 している, 前述 した各実施形態では、 磁石によ る磁場を排気リ ングに 組み込んだ排気 リ ング機構について説明 したが、 本実施形態 は、 この磁場を下部電極の周囲で処理チャ ンバ一内壁を覆 う ためのデポシール ドに磁場を形成 した ものである。 こ の例で は内部が円筒形の処理チャ ンバ一を想定 している ため、 筒形 状であるが勿論これに限定される ものではない。 Fig. 11A is a diagram showing an external configuration of a depot shield mechanism to which the function of the exhaust ring mechanism in each of the above-described embodiments is applied. Fig. 11B is a top view of the depot shield shown in Fig. 11A. Fig. 11C shows a plan view, Fig. 11C shows a side view of the deposit shield of Fig. 11A, and Fig. 11 D shows a part of the deposit shield where magnets are arranged in the radial direction. In each of the embodiments described above, the exhaust ring mechanism in which the magnetic field generated by the magnet is incorporated in the exhaust ring has been described. In the present embodiment, this magnetic field is applied around the lower electrode. A magnetic field is formed on a deposit shield that covers the inner wall of the processing chamber. In this example Is assumed to be a processing chamber having a cylindrical inside, so that it is cylindrical, but is not limited to this.
このデポシール ド 1 9 は、 アル ミ ニ ウム等の導電材料によ り 形成され、 その上部には、 外周 リ ング部 1 9 1 B と 、 複数 の リ ング支持部 1 9 1 Cで支持さ れた内周 リ ング部 1 9 1 A と が設け られている。 この内周 リ ング部 1 9 1 Aは、 処理チ ヤ ンバー内の取 り 付け られた際に、 下部電極に嵌め られ、 下 部電極の載置面 と 同等から僅かに低く なる高 さ に構成されて いる。  The deposit shield 19 is formed of a conductive material such as aluminum, and is supported by an outer peripheral ring portion 191B and a plurality of ring support portions 191C at an upper portion thereof. And an inner peripheral ring portion 1991A. This inner ring portion 1991A is fitted to the lower electrode when installed in the processing chamber, and has a height that is slightly lower than the mounting surface of the lower electrode. It has been.
この外周 リ ング部 1 9 1 Bの内壁側 と 内周 リ ング部 1 9 1 Aの外壁側に、 N極 と S極が対峙する よ う に一対の リ ング磁 石 1 9 2 A と磁石 1 9 2 B と が設け られている。  A pair of ring magnets 1992A and a magnet are arranged on the inner wall side of the outer ring portion 1991B and the outer wall side of the inner ring portion 1991A so that the N pole and the S pole face each other. 192 B and are provided.
これ ら の磁石 1 9 2 A と 1 9 2 B (永久磁石ま たは電磁 石) に よ り 、 前述 した図 5 B に示すと 同等な径方向の磁場が 形成され、 発生 したプラ ズマをプラ ズマ領域内に閉 じ込め、 非プラズマ領域へのプラ ズマの漏洩を防止する こ と ができ る, また、 本実施形態では、 前述 した第 1 乃至第 9 の実施形態の よ う に排気 リ ングに この磁場を形成でき ない装置構成であつ た場合には、 下部電極の周囲に配置されるデポシール ドに磁 場形成機能を持たせる こ と によ り 、 プラ ズマの漏洩防止を実 現する こ と ができ る。  These magnets 19A and 19B (permanent magnets or magnetic stones) form a radial magnetic field equivalent to that shown in Fig. 5B described above, and generate plasma. It is possible to prevent the plasma from leaking into the non-plasma region by being confined in the plasma region. Also, in the present embodiment, the exhaust ring as in the first to ninth embodiments described above is used. If the device configuration cannot generate this magnetic field, the depot shield placed around the lower electrode has the function of forming a magnetic field, thereby realizing prevention of plasma leakage. And can be.
次に本発明の第 1 1 の実施形態に係るプラ ズマ処理装置に 用い られる排気 リ ング機構の機能をデポシール ド機構に適用 した構成について説明する。  Next, a configuration in which the function of the exhaust ring mechanism used in the plasma processing apparatus according to the eleventh embodiment of the present invention is applied to a deposit shield mechanism will be described.
図 1 2 Aは、 前述 した各実施形態におけ る排気 リ ング機構 の機能を適用 したデポシール ド機構の外観構成を示す図、 図 1 2 B は図 1 2 Aに示すデポシール ドを上か ら見た平面構成 を示す図、 図 1 2 C は、 図 1 2 Aのデポシール ドを側面から 見た外観構成を示す図、 図 1 2 Dは、 デポシール ドにおける 磁石を周方向に配置 した構成の一部の断面構成を示 している 前述 した第 1 0 の実施形態では、 リ ング磁石を径方向に対 峙する よ う に配置 して径方向の磁場を形成 したが、 本実施形 態では、 周方向に磁石配置 して、 周方向 ( C W方向) の磁場 を形成する ものである。 尚、 こ の例において も、 内部が円筒 形の処理チャ ンバ一を想定 している ため、 筒形状であ る が勿 論これに限定さ れる ものではない。 FIG. 12A shows the exhaust ring mechanism in each of the embodiments described above. Figure 12B shows the external configuration of the deposit shield mechanism to which the functions shown in Figs. 12A and 12B are applied. Fig. 12B shows the top view of the deposit shield shown in Fig. 12A. Fig. 12C shows Fig. 12A. FIG. 12D shows a partial cross-sectional configuration of a configuration in which magnets are arranged in the circumferential direction in the depot shield, as viewed from the side. In the above, the ring magnets were arranged so as to face each other in the radial direction to form a magnetic field in the radial direction. It is what forms. Also in this example, since the inside of the processing chamber is assumed to be cylindrical, the processing chamber is of course cylindrical, but is not limited to this.
こ のデポシール ド 2 0 は、 アルミ ニ ウム等の導電材料によ り 形成され、 その上部には、 第 1 0 の実施形態と 同様に、 外 周 リ ング部 と 、 周方向で複数の リ ング支持部によ り 支持され た内周 リ ング部 と が設け られている。 内周 リ ング部は、 処理 チャ ンバ一内の取 り 付け られた際に、 下部電極に嵌め られ、 下部電極の載置面と 同等か ら僅かに低 く なる高さ に構成され て ヽる。  The deposit shield 20 is formed of a conductive material such as aluminum, and has an outer peripheral ring portion and a plurality of circumferential ring members on its upper portion, similarly to the tenth embodiment. And an inner peripheral ring portion supported by the support portion. The inner peripheral ring portion is fitted to the lower electrode when installed in the processing chamber, and has a height that is equal to or slightly lower than the mounting surface of the lower electrode. .
これ らの リ ング支持部上には、 板状の磁石 2 0 2 がそれぞ れ設け られている。  A plate-like magnet 202 is provided on each of these ring support portions.
これ らの磁石 2 0 2 によ り 、 前述 した図 3 Aに示す と 同等 な周方向の磁場が形成され、 発生 したプラ ズマをプラ ズマ領 域内に閉 じ込め、 非プラズマ領域へのプラ ズマの漏洩を防止 する こ と ができ る。 また、 本実施形態においても、 前述 した 第 1 乃至第 9 の実施形態の よ う に排気 リ ングにこの磁場を形 成でき ない装置構成であっ た場合には、 下部電極の周囲に配 置されるデポシール ドに磁場形成機能を持たせる こ と に よ り 、 プラズマの漏洩防止を実現する こ と ができ る。 By these magnets 202, a circumferential magnetic field equivalent to that shown in FIG. 3A described above is formed, and the generated plasma is confined in the plasma region, and the plasma is transferred to the non-plasma region. Leakage can be prevented. Also in this embodiment, this magnetic field is formed in the exhaust ring as in the first to ninth embodiments described above. In the case of a device configuration that cannot be formed, a plasma shield can be prevented by providing a depot shield disposed around the lower electrode with a magnetic field forming function.
前述 した各実施形態における磁石は、 永久磁石や電磁磁石 等が考え られる。  The magnet in each of the embodiments described above may be a permanent magnet, an electromagnetic magnet, or the like.
更に、 磁石、 電磁石及び磁性収納体は、 プラ ズマイ オンや 電子等の衝突に よ り 温度上昇がある と磁場が変動 し本来の機 能を損なわれる虞があるため、 これら を例えば表面がアルマ ィ ト加工されたアル ミ ニゥ ムケース内に収納する な ど して被 覆 しても 良い。 また、 排気 リ ングは円形状やス リ ッ ト状の排 気孔を有する ものについて説明 したが、 これに限定されず、 楕円、 矩形や菱形等種々 の排気孔に適用する こ と もでき る。  Further, magnets, electromagnets, and magnetic storage bodies may be affected by a temperature increase due to the impact of plasma, electrons, or the like, which may fluctuate the magnetic field and impair the original function. It may be covered by storing it in an aluminum case that has been processed. Also, the exhaust ring has been described as having a circular or slit-shaped exhaust hole, but is not limited to this, and can be applied to various exhaust holes such as an ellipse, a rectangle, and a rhombus.
また、 上記各実施形態では平行平板型のプラ ズマ処理装置 を例に挙げて説明 したが、 排気 リ ングを介 してガス排気する タイ プのプラ ズマ処理装置であれば、 本発明の排気 リ ング機 構ゃデポシール ド機構を適用する こ と ができ る。  Further, in each of the above embodiments, the parallel plate type plasma processing apparatus has been described as an example. However, if it is a type of plasma processing apparatus that exhausts gas through an exhaust ring, the exhaust gas of the present invention is used. Deposition shield mechanism can be applied.
産業上の利用可能性 Industrial applicability
本発明は、 処理チヤ ンバー内に配設され且つ ウェハ Wを保 持する下部電極と 、 こ の下部電極 と処理チ ャ ンバ一の内壁間 に配設さ れた排気 リ ング機構と を備え、 上記排気 リ ング機構 は、 排気 リ ング と該排気 リ ングにおいて磁場を形成する磁場 形成部と を有 してお り 、 形成された磁場に よ り プラ ズマ領域 から非プラ ズマ領域へのプラズマ漏洩を防止する こ と が可能 と なる。  The present invention includes: a lower electrode provided in a processing chamber and holding a wafer W; and an exhaust ring mechanism provided between the lower electrode and an inner wall of the processing chamber. The exhaust ring mechanism has an exhaust ring and a magnetic field forming unit that forms a magnetic field in the exhaust ring. Plasma leakage from a plasma region to a non-plasma region is caused by the formed magnetic field. Can be prevented.

Claims

請 求 の 範 囲 The scope of the claims
1 . 処理チャ ンバ一内で被処理体にプラ ズマ処理を施すた めのプラ ズマ領域と 接触 し、 且つ上記プラ ズマ領域での生成 ガス の排気流路を形成する排気 リ ング機構であっ て、  1. An exhaust ring mechanism that comes into contact with a plasma region for performing plasma processing on an object to be processed in a processing chamber and forms an exhaust flow path for generated gas in the plasma region. ,
上記排気 リ ング機構は、  The exhaust ring mechanism is
上記プラ ズマ領域に接する面を有する排気 リ ングと 、 この排気 リ ングの上記面方向 と 実質的に平行する磁力線を 有する磁場を形成する磁場形成部 と で構成される。  An exhaust ring having a surface in contact with the plasma region, and a magnetic field forming unit that forms a magnetic field having magnetic lines of force substantially parallel to the surface direction of the exhaust ring.
2 . 請求項 1 に記載の排気 リ ング機構において、  2. In the exhaust ring mechanism according to claim 1,
上記磁場形成部は、 上記磁場の少な く と も一部の磁力線が 上記排気 リ ング内部を通過する よ う に形成される。  The magnetic field forming section is formed such that at least a part of the magnetic field lines of the magnetic field passes through the inside of the exhaust ring.
3 . 請求項 1 に記載の排気 リ ング機構において、  3. In the exhaust ring mechanism according to claim 1,
上記磁場形成部は、 上記排気 リ ングの上記面における 内周 面及び外周面のそれぞれに沿って配設 された複数の磁石また は電磁石に よ って構成される。  The magnetic field forming unit is configured by a plurality of magnets or electromagnets disposed along each of the inner peripheral surface and the outer peripheral surface of the surface of the exhaust ring.
4 . 請求項 2 に記載の排気 リ ング機構において、  4. In the exhaust ring mechanism according to claim 2,
上記磁場形成部は、 上記排気 リ ングの上記面におけ る 内周 面及び外周面のそれぞれに沿って配設 された磁石または電磁 石に よ って構成される。  The magnetic field forming section is configured by a magnet or an electromagnetic stone disposed along each of the inner peripheral surface and the outer peripheral surface on the surface of the exhaust ring.
5 . 請求項 1 に記載の排気 リ ング機構において、  5. In the exhaust ring mechanism according to claim 1,
上記磁場形成部は、 上記排気 リ ング下面の内周縁部分及び 外周縁部分に沿ってそれぞれ配設 された複数の磁石ま たは電 磁石によ って構成される。  The magnetic field forming section is constituted by a plurality of magnets or electromagnets disposed along the inner peripheral edge portion and the outer peripheral edge portion of the lower surface of the exhaust ring, respectively.
6 . 請求項 2 に記載の排気 リ ング機構において、  6. The exhaust ring mechanism according to claim 2,
上記磁場形成部は、 上記排気 リ ング下面の内周縁部分及び 外周縁部分に沿ってそれぞれ配設された複数の磁石または電 磁石に よ って構成される。 The magnetic field forming portion includes an inner peripheral portion of the lower surface of the exhaust ring and It is composed of a plurality of magnets or electromagnets respectively arranged along the outer periphery.
7 . 請求項 1 に記載の排気リ ング機構において、  7. The exhaust ring mechanism according to claim 1,
上記磁場形成部は、 上記排気 リ ング内にその周方向所定間 隔を空けて放射状に配設さ れた複数の磁石ま たは複数の電磁 石に よ って構成される。  The magnetic field forming section is constituted by a plurality of magnets or a plurality of electromagnetic stones radially arranged in the exhaust ring at predetermined circumferential intervals.
8 . 請求項 2 に記載の排気 リ ング機構において、  8. The exhaust ring mechanism according to claim 2,
上記磁場形成部は、 上記排気 リ ング内にその周方向所定間 隔を空けて放射状に配設された複数の磁石ま たは複数の電磁 石に よ っ て構成される。  The magnetic field forming unit is constituted by a plurality of magnets or a plurality of electromagnetic stones radially arranged in the exhaust ring at predetermined circumferential intervals.
9 . 請求項 1 に記載の排気リ ング機構において、  9. In the exhaust ring mechanism according to claim 1,
上記磁場形成部は、 上記排気 リ ング下面側にその周方向所 定間隔を空けて放射状に配設さ れた複数の磁石または複数の 電磁石に よ って構成される。  The magnetic field forming section is constituted by a plurality of magnets or a plurality of electromagnets radially arranged on the lower surface side of the exhaust ring at predetermined circumferential intervals.
1 0 . 請求項 2 に記載の排気 リ ング機構において、 上記磁場形成部は、 上記排気 リ ング下面側にその周方向所 定間隔を空けて放射状に配設さ れた複数の磁石ま たは複数の 電磁石に よ って構成される。  10. The exhaust ring mechanism according to claim 2, wherein the magnetic field forming portion includes a plurality of magnets or radially arranged on the lower surface side of the exhaust ring at predetermined circumferential intervals. It is composed of multiple electromagnets.
1 1 . 請求項 1 に記載の排気 リ ング機構において、 上記排気 リ ング機構は、 磁場封止部を有する。  11. The exhaust ring mechanism according to claim 1, wherein the exhaust ring mechanism has a magnetic field sealing portion.
1 2 . 請求項 1 1 に記載の排気 リ ング機構において、 上記磁場封止部は、 磁性体か ら なる。  12. The exhaust ring mechanism according to claim 11, wherein the magnetic field sealing portion is made of a magnetic material.
1 3 . 処理チャ ンバ一内に配設 され、 且つ被処理体を保持 する保持体と 、  1 3. A holder which is disposed in the processing chamber and holds the object to be processed;
こ の保持体と 上記処理チャ ンバ一間に配設 され、 且つ排気 孔を有する排気 リ ング機構と 、 を備えて上記被処理体にブラ ズマ処理を施すプラ ズマ処理装置であって、 Disposed between the holder and the processing chamber and exhausted A plasma processing apparatus comprising: an exhaust ring mechanism having holes; and performing a plasma process on the object to be processed, comprising:
上記排気 リ ング機構は、  The exhaust ring mechanism is
上記プラ ズマ領域に接する面を有する排気 リ ングと 、 こ の排気 リ ングの上記面方向 と 実質的に平行する磁力線を 有する磁場を形成する磁場形成部と 、 で構成される。  An exhaust ring having a surface in contact with the plasma region, and a magnetic field forming unit that forms a magnetic field having magnetic lines of force substantially parallel to the surface direction of the exhaust ring.
1 4 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記磁場の少な く と も一部の磁力線が 上記排気 リ ング内部を通過する よ う に形成 される。  14. The plasma processing apparatus according to claim 13, wherein the magnetic field forming unit is formed such that at least a part of the magnetic field lines of the magnetic field pass through the inside of the exhaust ring.
1 5 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ングの上記面におけ る 内周 面及び外周面のそれぞれに沿って配設 された複数の磁石また は電磁石に よ って構成される。  15. The plasma processing apparatus according to claim 13, wherein the magnetic field forming unit includes a plurality of magnets disposed along each of an inner peripheral surface and an outer peripheral surface on the surface of the exhaust ring. Or, it is composed of an electromagnet.
1 6 . 請求項 1 4 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ングの上記面におけ る 内周 面及び外周面のそれぞれに沿っ て配設された複数の磁石また は電磁石に よ って構成される。  16. The plasma processing apparatus according to claim 14, wherein the magnetic field forming unit includes a plurality of magnets disposed along each of an inner peripheral surface and an outer peripheral surface on the surface of the exhaust ring. Or, it is composed of an electromagnet.
1 7 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング下面の内周縁部分及び 外周縁部分に沿ってそれぞれ配設された複数の磁石ま たは電 磁石に よ って構成される。  17. The plasma processing apparatus according to claim 13, wherein the magnetic field forming unit includes a plurality of magnets or electromagnets disposed along inner and outer peripheral portions of the lower surface of the exhaust ring. It is composed of magnets.
1 8 . 請求項 1 4 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング下面の内周縁部分及び 外周縁部分に沿ってそれぞれ配設 された複数の磁石ま たは電 磁石によ っ て構成される。 18. The plasma processing apparatus according to claim 14, wherein the magnetic field forming unit includes a plurality of magnets or electromagnets disposed along an inner peripheral portion and an outer peripheral portion of the lower surface of the exhaust ring. It is composed of magnets.
1 9 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング内にその周方向所定間 隔を空けて放射状に配設された複数の磁石ま たは複数の電磁 石に よ っ て構成される。 19. The plasma processing apparatus according to claim 13, wherein the magnetic field forming unit includes a plurality of magnets or a plurality of magnets radially arranged in the exhaust ring at predetermined circumferential intervals in the exhaust ring. It is composed of electromagnetic stones.
2 0 . 請求項 1 4 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング内にその周方向所定間 隔を空けて放射状に配設された複数の磁石または複数の電磁 石に よ っ て構成される。  20. The plasma processing apparatus according to claim 14, wherein the magnetic field forming unit includes a plurality of magnets or a plurality of electromagnetic waves radially arranged in the exhaust ring at predetermined circumferential intervals in the exhaust ring. It is composed of stone.
2 1 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング内にその周方向所定間 隔を空けて放射状に配設された複数の磁石または複数の電磁 石に よ っ て構成される。  21. The plasma processing apparatus according to claim 13, wherein the magnetic field forming unit includes a plurality of magnets or a plurality of electromagnetic waves radially arranged in the exhaust ring at predetermined circumferential intervals in the exhaust ring. It is composed of stone.
2 2 . 請求項 1 4 に記載のプラ ズマ処理装置において、 上記磁場形成部は、 上記排気 リ ング下面側にその周方向所 定間隔を空けて放射状に配設された複数の磁石ま たは複数の 電磁石に よ って構成される。  22. The plasma processing apparatus according to claim 14, wherein the magnetic field forming unit includes a plurality of magnets or a plurality of magnets radially arranged on the lower surface side of the exhaust ring at predetermined circumferential intervals. It is composed of multiple electromagnets.
2 3 . 請求項 1 3 に記載のプラ ズマ処理装置において、 上記排気 リ ング機構は、 磁場封止部を有する。  23. The plasma processing apparatus according to claim 13, wherein the exhaust ring mechanism has a magnetic field sealing portion.
2 4 . 請求項 2 3 に記載のプラ ズマ処理装置において、 上記磁場封止部は、 磁性体から なる。  24. In the plasma processing apparatus according to claim 23, the magnetic field sealing portion is made of a magnetic material.
2 5 . 処理チャ ンバ一内で被処理体にプラ ズマ処理を施す ためのプラ ズマ領域と接触 し、 且つ上記プラ ズマ領域での生 成ガスの排気流路に接 して、 処理チャ ンバ一内壁を保護する デポシール ド機構であって、  25. Within the processing chamber, the processing chamber contacts the plasma region for performing plasma processing on the object to be processed, and contacts the exhaust gas flow path of the generated gas in the plasma region. A depot shield mechanism that protects the inner wall,
上記デポシール ドは、 上記プラズマ領域に接する端部に上記プラズマを形成する 電極面の方向 と実質的に平行する磁力線を有する磁場を形成 する磁場形成部とで構成される。 The above depot shield is A magnetic field forming unit that forms a magnetic field having lines of magnetic force substantially parallel to the direction of the electrode surface that forms the plasma at an end in contact with the plasma region.
2 6 . 請求項 2 5 に記載のデポシール ド機構において、 上記磁場形成部は、 上記磁場の少な く と も一部の磁力線を 上記デポシール ド上部を通過する よ う に形成される。  26. In the deposit shield mechanism according to claim 25, the magnetic field forming section is formed so that at least a part of the magnetic field lines of the magnetic field passes through the upper portion of the deposit shield.
2 7 . 請求項 2 5 に記載のデポシール ド機構において、 上記磁場形成部は、 上記デポシール ド上部に設けられた内 周部及び外周縁部にそれぞれに沿って配設された複数の磁石 または複数の電磁石によって構成される。  27. The deposit shield mechanism according to claim 25, wherein the magnetic field forming section includes a plurality of magnets or a plurality of magnets disposed along respective inner and outer peripheral portions provided on the upper portion of the depot shield. Is constituted by the electromagnet.
2 8 . 請求項 2 6 に記載のデポシール ド機構において、 上記磁場形成部は、 上記デポシール ド上部における周方向 に沿って所定間隔を空けて配設された複数の磁石または複数 の電磁石によって構成される。  28. The deposit shield mechanism according to claim 26, wherein the magnetic field forming portion is constituted by a plurality of magnets or a plurality of electromagnets arranged at a predetermined interval along a circumferential direction in an upper portion of the deposit shield. You.
PCT/JP2002/012826 2001-12-07 2002-12-06 Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism WO2003049171A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002354107A AU2002354107A1 (en) 2001-12-07 2002-12-06 Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism
US10/739,351 US20040129218A1 (en) 2001-12-07 2003-12-19 Exhaust ring mechanism and plasma processing apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001373858A JP4392852B2 (en) 2001-12-07 2001-12-07 Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus
JP2001-373858 2001-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/739,351 Continuation-In-Part US20040129218A1 (en) 2001-12-07 2003-12-19 Exhaust ring mechanism and plasma processing apparatus using the same

Publications (1)

Publication Number Publication Date
WO2003049171A1 true WO2003049171A1 (en) 2003-06-12

Family

ID=19182507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012826 WO2003049171A1 (en) 2001-12-07 2002-12-06 Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism

Country Status (3)

Country Link
JP (1) JP4392852B2 (en)
AU (1) AU2002354107A1 (en)
WO (1) WO2003049171A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521654A (en) * 2003-06-20 2007-08-02 ラム リサーチ コーポレーション Magnetic improvements for mechanical confinement of plasmas.

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658802B2 (en) * 2005-11-22 2010-02-09 Applied Materials, Inc. Apparatus and a method for cleaning a dielectric film
KR100994469B1 (en) * 2006-04-04 2010-11-16 엘아이지에이디피 주식회사 Baffle Structure of Plasma processing Apparatus
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
JP6018757B2 (en) * 2012-01-18 2016-11-02 東京エレクトロン株式会社 Substrate processing equipment
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI766433B (en) 2018-02-28 2022-06-01 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629259A (en) * 1992-07-09 1994-02-04 Fujitsu Ltd Semiconductor manufacturing apparatus
EP0786794A2 (en) * 1996-01-24 1997-07-30 Applied Materials, Inc. Plasma reactors for processing semiconductor wafers
JPH1012597A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Plasma-etching equipment and plasma etching method
JP2001093699A (en) * 1999-09-22 2001-04-06 Hitachi Kokusai Electric Inc Plasma treatment device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629259A (en) * 1992-07-09 1994-02-04 Fujitsu Ltd Semiconductor manufacturing apparatus
EP0786794A2 (en) * 1996-01-24 1997-07-30 Applied Materials, Inc. Plasma reactors for processing semiconductor wafers
JPH1012597A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Plasma-etching equipment and plasma etching method
JP2001093699A (en) * 1999-09-22 2001-04-06 Hitachi Kokusai Electric Inc Plasma treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007521654A (en) * 2003-06-20 2007-08-02 ラム リサーチ コーポレーション Magnetic improvements for mechanical confinement of plasmas.

Also Published As

Publication number Publication date
AU2002354107A1 (en) 2003-06-17
JP2003174020A (en) 2003-06-20
JP4392852B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
WO2003049171A1 (en) Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism
US20040129218A1 (en) Exhaust ring mechanism and plasma processing apparatus using the same
US11443926B2 (en) Substrate processing apparatus
US11430640B2 (en) Substrate processing apparatus
JP5398942B2 (en) Magnetic barrier to plasma in chamber exhaust
US6096161A (en) Dry etching apparatus having means for preventing micro-arcing
KR100408990B1 (en) Plasma processing apparatus
JP2008251764A (en) Plasma treatment equipment
WO2003083923A1 (en) Plasma processing device and baffle plate thereof
KR20020088408A (en) Method and apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
US20140373867A1 (en) Cleaning method and substrate processing apparatus
JP3181473B2 (en) Plasma processing equipment
KR100585437B1 (en) Plasma processing device
TWI789492B (en) Mounting apparatus for object to be processed and processing apparatus
US20080196744A1 (en) In-chamber member, a cleaning method therefor and a plasma processing apparatus
JP6396819B2 (en) Plasma processing method and plasma processing apparatus
TWI781488B (en) A substrate processing apparatus
JP5302813B2 (en) Deposit control cover and plasma processing apparatus
CN116711060A (en) Thin substrate handling via edge clamping
US20160126071A1 (en) Method of etching organic film
TWI680515B (en) A single oxide metal deposition chamber
JP3399467B2 (en) Plasma processing apparatus and cleaning method
US7282702B2 (en) Ion neutralizer
JP2006060073A (en) Plasma processing equipment
JP2019508852A (en) Cathode for plasma processing equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10739351

Country of ref document: US

122 Ep: pct application non-entry in european phase