JP4392852B2 - Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus - Google Patents

Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus Download PDF

Info

Publication number
JP4392852B2
JP4392852B2 JP2001373858A JP2001373858A JP4392852B2 JP 4392852 B2 JP4392852 B2 JP 4392852B2 JP 2001373858 A JP2001373858 A JP 2001373858A JP 2001373858 A JP2001373858 A JP 2001373858A JP 4392852 B2 JP4392852 B2 JP 4392852B2
Authority
JP
Japan
Prior art keywords
magnetic field
exhaust
exhaust ring
plasma
ring mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001373858A
Other languages
Japanese (ja)
Other versions
JP2003174020A (en
Inventor
俊樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001373858A priority Critical patent/JP4392852B2/en
Priority to PCT/JP2002/012826 priority patent/WO2003049171A1/en
Priority to AU2002354107A priority patent/AU2002354107A1/en
Publication of JP2003174020A publication Critical patent/JP2003174020A/en
Priority to US10/739,351 priority patent/US20040129218A1/en
Application granted granted Critical
Publication of JP4392852B2 publication Critical patent/JP4392852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、プラズマ処理装置に関し、更に詳しくは、プラズマ領域内にプラズマを封じ込めることができるプラズマ処理装置に用いられる排気リング機構及びプラズマ処理装置に関する。
【0002】
【従来の技術】
プラズマ処理装置は、処理容器内で発生させたプラズマを用いてウエハ等の被処理体に対してエッチング処理や成膜処理等の処理を施す装置である。プラズマ処理装置としては、例えば容量結合タイプと誘導結合タイプ等種々のタイプのものがある。
【0003】
例えば、容量結合タイプのプラズマ処理装置としては平行平板型のものが広く用いられている。平行平板型プラズマ処理装置は、例えば、処理容器内に配設され且つウエハ等の被処理体を載置する下部電極を兼ねる保持体と、この保持体の上方に隙間を介して配設された上部電極と、保持体の外周縁部に配設されフォーカスリングとを備え、高真空下で上下いずれかの電極または両電極に高周波電力を印加し、処理容器内のプロセスガスからプラズマ発生させ、被処理体に対してエッチング等のプラズマ処理を施す。また、保持体と処理容器の内周壁間には複数の排気孔を有するリング状の排気リングが設けられ、この排気リングの排気孔を介して副生成物等のガスをプラズマ領域全体から均等に排気している。
【0004】
このように処理容器内は排気リングを介してプラズマ領域と非プラズマ領域に分かれている。プラズマ領域では処理容器内壁がプラズマイオンによるスパッタリング攻撃を受け消耗したり、副生成物が付着、堆積して汚染されるため、内壁面にセラミック溶射等が施されている。一方、非プラズマ領域ではプラズマイオンによる攻撃が殆どなく、また、副生成物による汚染も少ないため、処理容器内壁にはこのような対策は施されていない。
【0005】
【発明が解決しようとする課題】
しかしながら、排気リングには排気用の孔が全周に渡って形成されているため、プラズマの高密度化に伴って排気リングの排気孔から非プラズマ領域へのプラズマ漏洩があり、被処理体の外周縁部におけるプラズマ密度が低下し、ひいてはエッチングレート等のプラズマ処理の均一性が損なわれるという課題があった。この対策として排気孔の総面積を小さくしてプラズマ漏洩を防止する方法もあるが、この場合にはプラズマ領域からのガス排気量が制限され、副生成物の滞留等による弊害があり、好ましくない。また、排気孔からのプラズマ漏洩により非プラズマ領域で処理容器内壁を傷めたり、汚染したりする虞もある。
【0006】
本発明は、上記課題を解決するためになされたもので、十分なガス排気性を確保しつつ処理容器内のプラズマ領域内にプラズマを閉じ込めることができるプラズマ処理装置に用いられる排気リング機構及びプラズマ処理装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明の請求項1に記載の排気リング機構は、処理容器内で被処理体にプラズマ処理を施すプラズマ領域と接触し且つ上記プラズマ領域での生成ガスの排気流路を上記被処理体の径方向外側に形成する排気リング機構であって、上記排気リング機構は、複数の排気孔が形成された非磁性体からなる排気リングと、この排気リング面方向に沿って通り上記複数の排気孔を横切る磁場を形成する磁場形成手段とを有することを特徴とするものである。
【0008】
また、本発明の請求項2に記載の排気リング機構は、請求項1に記載の発明において、上記磁場形成手段は、少なくとも磁場の一部を上記排気リング内に形成することを特徴とするものである。
【0009】
また、本発明の請求項3に記載の排気リング機構は、請求項1または請求項2に記載の発明において、上記磁場形成手段は、上記排気リングの内周面及び外周面それぞれに沿って配設された磁石または電磁石によって構成されてなることを特徴とするものである。
【0010】
また、本発明の請求項4に記載の排気リング機構は、請求項1または請求項2に記載の発明において、上記磁場形成手段は、上記排気リング下面の内周縁部及び外周縁部に沿ってそれぞれ配設された磁石または電磁石によって構成されてなることを特徴とするものである。
【0011】
また、本発明の請求項5に記載の排気リング機構は、請求項1〜請求項4のいずれか1項に記載の発明において、上記排気リング機構は、磁場封止手段を有することを特徴とするものである。
【0012】
また、本発明の請求項6に記載の排気リング機構は、請求項1または請求項2に記載の発明において、上記磁場形成手段は、上記排気リング下面側にその周方向所定間隔を空けて放射状に配設された複数の磁石または複数の電磁石によって構成されてなることを特徴とするものである。
【0013】
また、本発明の請求項7に記載の排気リング機構は、請求項1〜請求項6のいずれか1項に記載の発明において、上記排気リング機構は、磁場封止手段を有することを特徴とするものである。
【0014】
また、本発明の請求項8に記載の排気リング機構は、請求項7に記載の発明において、上記磁場封止手段は、磁性体からなることを特徴とするものである。
【0015】
また、本発明の請求項9に記載のプラズマ処理装置は、処理容器内に配設され且つ被処理体を保持する保持体と、この保持体と上記処理容器間に配設され且つ複数の排気孔を有する排気リング機構とを備え、上記被処理体にプラズマ処理を施すプラズマ処理装置であって、上記排気リング機構は、複数の排気孔が形成された非磁性体からなる排気リングと、この排気リング面方向に沿って通り上記複数の排気孔を横切る磁場を形成する磁場形成手段とを有することを特徴とするものである。
【0016】
また、本発明の請求項10に記載のプラズマ処理装置は、請求項9に記載の発明において、上記磁場形成手段は、少なくとも磁場の一部を上記排気リング内に形成することを特徴とするものである。
【0017】
また、本発明の請求項11に記載のプラズマ処理装置は、請求項9または請求項10に記載の発明において、上記磁場形成手段は、上記排気リングの内周面及び外周面それぞれに沿って配設された磁石または電磁石によって構成されてなることを特徴とするものである。
【0018】
また、本発明の請求項12に記載のプラズマ処理装置は、請求項9または請求項10に記載の発明において、上記磁場形成手段は、上記排気リング下面の内周縁部及び外周縁部に沿ってそれぞれ配設された磁石または電磁石によって構成されてなることを特徴とするものである。
【0019】
また、本発明の請求項13に記載のプラズマ処理装置は、請求項9または請求項10に記載の発明において、上記磁場形成手段は、上記排気リング内にその周方向所定間隔を空けて放射状に配設された複数の磁石または電磁石によって構成されてなることを特徴とするものである。
【0020】
また、本発明の請求項14に記載のプラズマ処理装置は、請求項9または請求項10に記載の発明において、上記磁場形成手段は、上記排気リング下面側にその周方向所定間隔を空けて放射状に配設された複数の磁石または複数の電磁石によって構成されてなることを特徴とするものである。
【0021】
また、本発明の請求項15に記載のプラズマ処理装置は、請求項9〜請求項14のいずれか1項に記載の発明において、上記排気リング機構は、磁場封止手段を有することを特徴とするものである。
【0022】
また、本発明の請求項16に記載のプラズマ処理装置は、請求項15に記載の発明において、上記磁場封止手段は、磁性体からなることを特徴とするものである。
【0023】
【発明の実施の形態】
以下、図1〜図4に示す実施形態に基づいて本発明を説明する。
本実施形態のプラズマ処理装置は、例えば図1に示すように、アルミニウム等の導電性材料からなり且つ所定の高真空を保持する気密構造の処理容器1と、この処理容器1内に配設され且つ被処理体(例えば、ウエハ)Wを保持する下部電極を兼ねる保持体(以下、「下部電極」と称す。)2と、この下部電極2の上方に所定間隔を空けて下部電極2と平行に配設され且つエッチングガスの供給部を兼ねる中空状の上部電極3と、下部電極2に整合器4を介して接続された例えば13.56MHzの高周波電源5とを備え、高周波電源5から整合器4を介して下部電極2に所定の高周波電力を印加し、下部電極2と上部電極3の間で処理容器1内に供給されたプロセスガスからプラズマを発生させる。また、下部電極2上面の外周縁部にはシリコン等からなるフォーカスリング6が配設され、このフォーカスリング6を介して下部電極2と上部電極3間で発生したプラズマをウエハW上に集束させる。
【0024】
上記下部電極2の外周面上端部にはリング状に形成された本実施形態の排気リング機構7が取り付けられ、この排気リング機構7を介して処理容器1内を上下に分割している。排気リング機構7の上部がプラズマ領域になり、下部が非プラズマ領域になる。この排気リング機構7は、例えば図2の(a)、(b)に示すように、排気リング71と、この排気リング71において面方向の磁場を形成する磁場形成手段72とを備えている。従って、この排気リング機構7は、処理容器1内でウエハWにプラズマ処理を施すプラズマ領域と接触し且つプラズマ領域での生成ガスの排気流路を形成している。図2の(a)は排気リング機構7の一部を示す平面図、同図の(b)はその径方向の沿う断面図、同図(c)はその周方向に沿う断面図である。尚、図1において、8はプロセスガスの供給管、9は排気ガスの排気管である。
【0025】
而して、上記排気リング71には図2の(a)、(b)に示すように全周に渡って複数の円形状の排気孔71Aが均等に分散して形成され、これらの排気孔71Aを介してプラズマ領域のガスを非プラズマ領域を経由させて処理容器1外へ排気する。また、上記磁場形成手段72は、排気リング71において下部電極2から処理容器1内壁に向かう面方向の磁場を形成し、この磁場形成手段72を介してプラズマをプラズマ領域に閉じ込め、非プラズマ領域へのプラズマの漏洩を防止する。
【0026】
即ち、本実施形態の磁場形成手段72は、図2の(a)に示すように、排気リング71の内周面を被覆する第1リング磁石72Aと、排気リング71の外周面を被覆する第2リング磁石72Bとから構成され、第1リング磁石72Aと第2リング磁石72Bの間で同図(a)の矢印Xで示すように第1リング磁石72Aから第2リング磁石72Bに向かう面方向の磁場が形成される。この磁場の磁力線Bはプラズマイオン及び電子の漏れる方向と略直交してるため、プラズマ領域のプラズマイオン及び電子(図2の(b)、(c)ではマイナスイオンのみを図示してある。図3、図4においても同様である。)が同図の(b)に示すように排気リング71の排気孔71Aを通過しようとしてもプラズマイオン及び電子は同図に(c)に示すように磁場の作用を受けて磁力線Bを中心に旋回する。このプラズマイオン及び電子は排気孔71Aの内周面に衝突し、非プラズマ領域へ漏出せず、プラズマ領域内に閉じ込められる。従って、ウエハW外周縁部でのプラズマの拡散を防止し、ウエハW周縁部とウエハWの中央部分とのプラズマ密度の均一性を保持することができ、ウエハW外周縁部でのエッチング等のプラズマ処理の低下を防止してプラズマ処理の面内均一性を高めることができる。
【0027】
また、上記排気リング機構7は例えば図2の(a)、(b)に示すように磁場封止手段73を備えている。この磁場封止手段73は、例えば鉄等の磁性体からなり、同図に示すように排気リング71及び第1、第2リング磁石72A、72Bを一体的に収納する磁性収納体として形成されている。そこで、以下では磁場封止手段73を磁性収納体73として説明する。このようにリング状の磁性収納体73内に排気リング71及び第1、第2リング磁石72A、72Bを一体的に収納することで、図2の(b)に示すように磁性収納体73においてその外周面から内周面に向かう磁路Yが形成され、排気リング71からの磁場漏洩を防止することができ、磁場を有効に利用することができ、ひいてはプラズマをより確実にプラズマ領域内へ閉じ込めることができる。この結果、処理容器1内のプラズマイオン及び電子をプラズマ領域に確実に閉じこめ、プラズマ処理の均一性を更に高めることができる。また、非プラズマ領域における処理容器1内壁をプラズマによる損傷から防止することができると共に副生成物の汚染から防止することができる。
【0028】
また、第1リング磁石72Aは下部電極2と隣接しているため、下部電極2上面の外周縁部にも磁場が作用し、この磁場がウエハW外周縁部のエッチング時のエッチングレート等のプラズマ処理の面内均一性をより一層向上させることができる。
【0029】
以上説明したように本実施形態によれば、排気リング機構7は、排気リング71と、この排気リング71の内周面及び外周面をそれぞれ被覆する第1、第2リング磁石72A、72Bを備え、これらのリング磁石72A、72B間で排気リング71において径方向の水平磁場を形成するようにしたため、プラズマイオン及び電子が排気リング71の排気孔71Aを通過しようとしても水平磁場の作用でプラズマイオン及び電子が排気孔71A内で旋回して衝突し、プラズマイオン及び電子の通過を阻止してプラズマをプラズマ領域に閉じ込めることができる。従って、ウエハW外周縁部でのプラズマの拡散を防止し、ウエハW周縁部とウエハWの中央部分とのプラズマ密度の均一性を高めることができ、ウエハW外周縁部でのエッチング等のプラズマ処理の低下を防止してプラズマ処理の面内均一性を保持することができる。また、非プラズマ領域での処理容器1内壁をプラズマ損傷から防止することができると共に副生成物の汚染から防止することができる。また、下部電極2上面の外周縁部でも磁場形成手段72によって磁場が形成され、この磁場の影響でエッチングレート等のプラズマ処理の均一性を高めることができる。更に、排気リング71と第1、第2リング磁石72A、72Bを磁性収納体73内に収納したため、磁性収納体73によって磁場の漏洩を防止し、磁場を無駄なく有効に利用し、プラズマをプラズマ領域により確実に閉じ込めることができる。
【0030】
図3は本発明の他の実施形態を示す図である。本実施形態のプラズマ処理装置に用いられる排気リング機構10は、例えば図3の(a)、(b)に示すように、排気リング101及び磁場形成手段102を備えている。磁場形成手段102は、同図に示すように、排気リング101の周方向所定間隔を空けて放射状に配設された複数の磁石102Aによって構成されている。各磁石102Aはそれぞれ板状に形成され、排気リング101に形成された細長形状の孔を埋めるようにして取り付けられている。そして、排気リング101において隣合う磁石102A、102A間で同図(a)の矢印Zで示すように時計方向の水平磁場が形成される。この磁場の磁力線Bはプラズマ及び電子の漏れる方向と略直交してるため、プラズマ領域のプラズマイオン及び電子が同図の(b)に示すように排気リング101の排気孔101Aを通過しようとしてもプラズマイオン及び電子は同図に(c)に示すように磁場の作用を受けて磁力線を中心に旋回する。このプラズマイオン及び電子は排気リング101の排気孔101Aの内周面に衝突し、非プラズマ領域へ漏出せず、プラズマ領域内に閉じ込められる。
【0031】
以上説明したように本実施形態によれば、排気リング機構10は、排気リング101と、この排気リング101の周方向所定間隔を空けて放射状に配設された複数の磁石102Aによって構成され、これらの磁石102A、102A間で排気リング101において時計向の水平磁場を形成するようにしたため、プラズマ及び電子が排気リング101の排気孔101Aを通過しようとしても水平磁場の作用でプラズマイオン及び電子が旋回して排気孔101Aと衝突し、プラズマの通過を阻止してプラズマをプラズマ領域に閉じ込めることができる。従って、上記実施形態と同様の作用効果を期することができる。
【0032】
図4は本発明の更に他の実施形態を示す図である。本実施形態のプラズマ処理装置に用いられる排気リング機構11は、例えば図4の(a)、(b)に示すように、排気リング111及び磁場形成手段112を備えている。本実施形態の磁場形成手段112は、図2に示す排気リング機構7と同様に第1、第2リング磁石112A、112Bとからなっているが、本実施形態の排気リング機構11は図4の(a)、(b)に示すように第1、第2リング磁石112A、112Bが排気リング111下面の内周縁部及び外周縁部に接触させて配置されている点で、図2に示す排気リング機構7とは異なる構成を有している。このような構成から、第1リング磁石112Aから第2リング磁石112Bに向かう磁場の一部、即ち第1リング磁石112Aから第2リング磁石112Bに向かって湾曲して形成される磁場が全体的には図4の(b)に示すように排気リング111の排気孔111Aを略水平に横切る水平方向の磁場として形成される。この磁場の磁力線Bは、上記各実施形態と同様にプラズマイオン及び電子の漏れる方向と略直交してるため、プラズマ領域のプラズマイオン及び電子が同図の(b)に示すように排気リング71の排気孔71Aを通過しようとしてもプラズマイオン及び電子は磁場の作用を受けて磁力線Bを中心に旋回し非プラズマ領域へ漏出することなくプラズマ領域内に閉じ込められる。従って、本実施形態においても図2に示す排気リング機構7と同様の作用効果を期することができる。
【0033】
また、図示してないが、図3に示す排気リング機構10の磁場形成手段102を図4に示す実施形態と同様に排気リング101下面に放射状に配置しても同様の作用効果を期することができる。
【0034】
尚、本発明は上記各実施形態に何等制限されるものではなく、必要に応じて各構成要素を設計変更することができる。例えば磁場形成手段は第1、第2リング磁石あるいは板状の磁石に制限されるものはなく、これらの磁石と同様の形態を呈する電磁石を用いても良い。第1、第2リング磁石の代わりに円弧状の磁石を排気リング全周に渡って配列したものであっても良い。また、磁場形成手段は、排気リングにおいて面方向の磁場を形成することができれば良く、磁場の向きは如何なる方向であっても良い。更に、磁石、電磁石、磁性収納体は、プラズマイオン、電子等の衝突により温度上昇があると磁場が変動し本来の機能を損なわれる虞があるため、これらを例えば表面がアルマイト加工されたアルミニウムケース内に収納するなどして被覆しても良い。また、排気リングは円形状の排気孔を有するものについて説明したが、排気孔はスリット等の他の形状であっても良い。また、上記各実施形態では平行平板型のプラズマ処理装置を例に挙げて説明したが、排気リングを介してガス排気するタイプのプラズマ処理装置であれば、本発明の排気リング機構を適用することができる。
【0035】
【発明の効果】
本発明によれば、排気リング機構が、複数の排気孔が形成された非磁性体からなる排気リングと、この排気リングを面方向に沿って通り上記複数の排気孔を横切る磁場を形成する磁場形成手段と、を有し、排気リングの複数の排気孔を横切る磁場によって複数の排気孔を通ろうとするプラズマイオンや電子を排気孔に衝突させて非プラズマ領域への通過を阻止することができるため、複数の排気孔で十分なガス排気性を確保しつつ処理容器内のプラズマ領域内にプラズマを閉じ込めて、被処理体の外周縁部におけるプラズマ密度の低下を防止して被処理体の面内で均一なプラズマ処理を行うことができるプラズマ処理装置に用いられる排気リング機構及びプラズマ処理装置を提供することができる。
【図面の簡単な説明】
【図1】本発明のプラズマ処理装置及び排気リング機構の一実施形態を模式的に示す構成図である。
【図2】図1に示す排気リング機構の作用を説明するための図で、(a)はその一部を示す平面図、(b)は(a)の径方向の断面図、(c)は(a)の周方向の断面図である。
【図3】本発明の排気リング機構の他の実施形態を示す図2に相当する図で、(a)はその一部を示す平面図、(b)は(a)の径方向の断面図、(c)は(a)の周方向の断面図である。
【図4】本発明の排気リング機構の更に他の実施形態を示す図2に相当する図で、(a)はその一部を示す平面図、(b)は(a)の径方向の断面図である。
【符号の説明】
1 処理容器
2 下部電極(保持体)
7、10、11 排気リング機構
71、101、111 排気リング
71A、101A、111A 排気孔
72、102、112 磁場形成手段
72A、72B、112A、112B リング磁石(磁石)
73 磁性収納体(磁性体)
[0001]
[Industrial application fields]
The present invention relates to a plasma processing apparatus, and more particularly to an exhaust ring mechanism and a plasma processing apparatus used in a plasma processing apparatus that can contain plasma in a plasma region.
[0002]
[Prior art]
The plasma processing apparatus is an apparatus that performs processing such as etching processing or film formation processing on an object to be processed such as a wafer using plasma generated in a processing container. There are various types of plasma processing apparatuses such as a capacitive coupling type and an inductive coupling type.
[0003]
For example, as a capacitively coupled plasma processing apparatus, a parallel plate type is widely used. The parallel plate type plasma processing apparatus is, for example, disposed in a processing container and a holding body that also serves as a lower electrode on which an object to be processed such as a wafer is placed, and is disposed above the holding body via a gap. Provided with an upper electrode and a focus ring disposed on the outer peripheral edge of the holder, applying high frequency power to either the upper or lower electrode or both electrodes under high vacuum, generating plasma from the process gas in the processing vessel, Plasma processing such as etching is performed on the object to be processed. Further, a ring-shaped exhaust ring having a plurality of exhaust holes is provided between the holding body and the inner peripheral wall of the processing container, and gases such as by-products are evenly distributed from the entire plasma region through the exhaust holes of the exhaust ring. Exhaust.
[0004]
Thus, the inside of the processing chamber is divided into a plasma region and a non-plasma region via the exhaust ring. In the plasma region, the inner wall of the processing vessel is consumed by sputtering attack due to plasma ions, and by-products are deposited and deposited to be contaminated. Therefore, ceramic spraying is applied to the inner wall surface. On the other hand, since there is almost no attack by plasma ions in the non-plasma region and there is little contamination by by-products, such countermeasures are not taken on the inner wall of the processing vessel.
[0005]
[Problems to be solved by the invention]
However, since the exhaust holes are formed over the entire circumference of the exhaust ring, there is plasma leakage from the exhaust holes of the exhaust ring to the non-plasma region as the plasma density increases, There has been a problem that the plasma density at the outer peripheral edge is lowered, and as a result, the uniformity of plasma processing such as etching rate is impaired. As a countermeasure, there is a method of reducing the total area of the exhaust holes to prevent plasma leakage. However, in this case, the amount of gas exhausted from the plasma region is limited, and there is an adverse effect due to retention of byproducts, which is not preferable. . In addition, there is a possibility that the inner wall of the processing vessel is damaged or contaminated in the non-plasma region due to plasma leakage from the exhaust hole.
[0006]
The present invention has been made to solve the above-described problems, and an exhaust ring mechanism and a plasma used in a plasma processing apparatus capable of confining plasma in a plasma region in a processing vessel while ensuring sufficient gas exhaustability. An object is to provide a processing apparatus.
[0007]
[Means for Solving the Problems]
The exhaust ring mechanism according to claim 1 of the present invention is in contact with a plasma region that performs plasma processing on a target object in a processing container, and the exhaust path of the generated gas in the plasma region has a diameter of the target object. and an exhaust ring mechanism of forming the outward, the exhaust ring mechanism has a plurality of exhaust holes and exhaust ring made of a nonmagnetic material which is formed through the plurality of exhaust holes along the exhaust ring in the surface direction a magnetic field forming means for forming a magnetic field across the, is characterized in that it has a.
[0008]
The exhaust ring mechanism according to claim 2 of the present invention is the exhaust ring mechanism according to claim 1, wherein the magnetic field forming means forms at least a part of the magnetic field in the exhaust ring. It is.
[0009]
The exhaust ring mechanism according to claim 3 of the present invention is the exhaust ring mechanism according to claim 1 or 2, wherein the magnetic field forming means is arranged along each of an inner peripheral surface and an outer peripheral surface of the exhaust ring. It is characterized by comprising a magnet or an electromagnet provided.
[0010]
According to a fourth aspect of the present invention, there is provided the exhaust ring mechanism according to the first or second aspect, wherein the magnetic field forming means is provided along the inner peripheral edge and the outer peripheral edge of the lower surface of the exhaust ring. It is characterized by comprising a magnet or an electromagnet arranged respectively.
[0011]
The exhaust ring mechanism according to claim 5 of the present invention is the invention according to any one of claims 1 to 4, wherein the exhaust ring mechanism has a magnetic field sealing means. To do.
[0012]
The exhaust ring mechanism according to claim 6 of the present invention is the exhaust ring mechanism according to claim 1 or 2, wherein the magnetic field forming means is radially spaced from the lower surface side of the exhaust ring by a predetermined interval in the circumferential direction. It is constituted by a plurality of magnets or a plurality of electromagnets arranged in the above.
[0013]
According to a seventh aspect of the present invention, there is provided the exhaust ring mechanism according to any one of the first to sixth aspects, wherein the exhaust ring mechanism has a magnetic field sealing means. To do.
[0014]
An exhaust ring mechanism according to an eighth aspect of the present invention is the exhaust ring mechanism according to the seventh aspect, characterized in that the magnetic field sealing means is made of a magnetic material.
[0015]
According to a ninth aspect of the present invention, there is provided a plasma processing apparatus according to a ninth aspect of the present invention, a holding body disposed in a processing container and holding a target object, a plurality of exhausts disposed between the holding body and the processing container. An exhaust ring mechanism having a hole, and performing plasma processing on the object to be processed, wherein the exhaust ring mechanism includes an exhaust ring made of a non-magnetic material in which a plurality of exhaust holes are formed, a magnetic field forming means for forming a magnetic field across the street the plurality of exhaust holes of the exhaust ring along the surface direction, is characterized in that it has a.
[0016]
The plasma processing apparatus according to claim 10 of the present invention is the plasma processing apparatus according to claim 9, wherein the magnetic field forming means forms at least a part of the magnetic field in the exhaust ring. It is.
[0017]
The plasma processing apparatus according to an eleventh aspect of the present invention is the plasma processing apparatus according to the ninth or tenth aspect, wherein the magnetic field forming means is disposed along each of an inner peripheral surface and an outer peripheral surface of the exhaust ring. It is characterized by comprising a magnet or an electromagnet provided.
[0018]
According to a twelfth aspect of the present invention, in the plasma processing apparatus according to the ninth or tenth aspect of the present invention, the magnetic field forming means is provided along the inner peripheral edge and the outer peripheral edge of the lower surface of the exhaust ring. It is characterized by comprising a magnet or an electromagnet arranged respectively.
[0019]
According to a thirteenth aspect of the present invention, in the plasma processing apparatus according to the ninth or tenth aspect, the magnetic field forming means is arranged radially in the exhaust ring with a predetermined interval in the circumferential direction. It is constituted by a plurality of arranged magnets or electromagnets.
[0020]
According to a fourteenth aspect of the present invention, in the plasma processing apparatus according to the ninth or tenth aspect of the present invention, the magnetic field forming means is arranged radially with a predetermined interval in the circumferential direction on the lower surface of the exhaust ring. It is constituted by a plurality of magnets or a plurality of electromagnets arranged in the above.
[0021]
The plasma processing apparatus according to claim 15 of the present invention is the plasma processing apparatus according to any one of claims 9 to 14, wherein the exhaust ring mechanism has a magnetic field sealing means. To do.
[0022]
According to a sixteenth aspect of the present invention, there is provided the plasma processing apparatus according to the fifteenth aspect, wherein the magnetic field sealing means is made of a magnetic material.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
The plasma processing apparatus of the present embodiment is, for example, as shown in FIG. 1, an airtight structure processing container 1 made of a conductive material such as aluminum and maintaining a predetermined high vacuum, and the processing container 1. In addition, a holding body (hereinafter referred to as a “lower electrode”) 2 that also serves as a lower electrode that holds an object to be processed (for example, a wafer) W, and a parallel space to the lower electrode 2 with a predetermined interval above the lower electrode 2. And a high frequency power source 5 of 13.56 MHz, for example, connected to the lower electrode 2 via a matching unit 4, and is matched from the high frequency power source 5. A predetermined high-frequency power is applied to the lower electrode 2 through the vessel 4 to generate plasma from the process gas supplied into the processing vessel 1 between the lower electrode 2 and the upper electrode 3. A focus ring 6 made of silicon or the like is disposed on the outer peripheral edge of the upper surface of the lower electrode 2, and plasma generated between the lower electrode 2 and the upper electrode 3 is focused on the wafer W via the focus ring 6. .
[0024]
An exhaust ring mechanism 7 of the present embodiment formed in a ring shape is attached to the upper end portion of the outer peripheral surface of the lower electrode 2, and the inside of the processing container 1 is vertically divided through the exhaust ring mechanism 7. The upper part of the exhaust ring mechanism 7 is a plasma region, and the lower part is a non-plasma region. For example, as shown in FIGS. 2A and 2B, the exhaust ring mechanism 7 includes an exhaust ring 71 and a magnetic field forming unit 72 that forms a magnetic field in the surface direction in the exhaust ring 71. Therefore, the exhaust ring mechanism 7 is in contact with a plasma region in which plasma processing is performed on the wafer W in the processing chamber 1 and forms an exhaust passage for the generated gas in the plasma region. 2A is a plan view showing a part of the exhaust ring mechanism 7, FIG. 2B is a sectional view along the radial direction, and FIG. 2C is a sectional view along the circumferential direction. In FIG. 1, 8 is a process gas supply pipe, and 9 is an exhaust gas exhaust pipe.
[0025]
Thus, as shown in FIGS. 2A and 2B, the exhaust ring 71 is formed with a plurality of circular exhaust holes 71A uniformly distributed over the entire circumference. The gas in the plasma region is exhausted out of the processing vessel 1 through the non-plasma region via 71A. Further, the magnetic field forming means 72 forms a magnetic field in the surface direction from the lower electrode 2 toward the inner wall of the processing vessel 1 in the exhaust ring 71, and confines the plasma in the plasma region via the magnetic field forming means 72, and moves to the non-plasma region. Prevent plasma leakage.
[0026]
That is, the magnetic field forming means 72 of the present embodiment includes a first ring magnet 72A that covers the inner peripheral surface of the exhaust ring 71 and a first ring magnet that covers the outer peripheral surface of the exhaust ring 71, as shown in FIG. A surface direction from the first ring magnet 72A to the second ring magnet 72B as indicated by an arrow X in FIG. 5A between the first ring magnet 72A and the second ring magnet 72B. The magnetic field is formed. Since the magnetic field lines B of this magnetic field are substantially perpendicular to the direction of leakage of plasma ions and electrons, only the negative ions are shown in FIG. 2 (b) and (c). The same applies to FIG. 4). However, as shown in (b) of FIG. 4, even if an attempt is made to pass through the exhaust hole 71 </ b> A of the exhaust ring 71, plasma ions and electrons are in the magnetic field as shown in FIG. Under the action, it turns around the magnetic field line B. The plasma ions and electrons collide with the inner peripheral surface of the exhaust hole 71A, do not leak into the non-plasma region, and are confined in the plasma region. Accordingly, plasma diffusion at the outer peripheral edge of the wafer W can be prevented, and uniformity of the plasma density between the peripheral edge of the wafer W and the central portion of the wafer W can be maintained. The in-plane uniformity of the plasma processing can be improved by preventing the plasma processing from being lowered.
[0027]
Further, the exhaust ring mechanism 7 includes magnetic field sealing means 73 as shown in FIGS. 2A and 2B, for example. The magnetic field sealing means 73 is made of, for example, a magnetic material such as iron, and is formed as a magnetic storage body that integrally stores the exhaust ring 71 and the first and second ring magnets 72A and 72B as shown in FIG. Yes. Therefore, hereinafter, the magnetic field sealing means 73 will be described as the magnetic storage body 73. As shown in FIG. 2B, the exhaust ring 71 and the first and second ring magnets 72A and 72B are integrally stored in the ring-shaped magnetic storage body 73. A magnetic path Y from the outer peripheral surface to the inner peripheral surface is formed, magnetic field leakage from the exhaust ring 71 can be prevented, the magnetic field can be used effectively, and as a result, the plasma can be more surely moved into the plasma region. Can be confined. As a result, the plasma ions and electrons in the processing container 1 can be reliably confined in the plasma region, and the uniformity of the plasma processing can be further improved. In addition, the inner wall of the processing vessel 1 in the non-plasma region can be prevented from being damaged by plasma, and can be prevented from being contaminated with by-products.
[0028]
Further, since the first ring magnet 72A is adjacent to the lower electrode 2, a magnetic field also acts on the outer peripheral edge of the upper surface of the lower electrode 2, and this magnetic field generates plasma such as an etching rate when etching the outer peripheral edge of the wafer W. The in-plane uniformity of processing can be further improved.
[0029]
As described above, according to the present embodiment, the exhaust ring mechanism 7 includes the exhaust ring 71 and the first and second ring magnets 72A and 72B that cover the inner peripheral surface and the outer peripheral surface of the exhaust ring 71, respectively. Since a radial horizontal magnetic field is formed in the exhaust ring 71 between the ring magnets 72A and 72B, even if plasma ions and electrons try to pass through the exhaust hole 71A of the exhaust ring 71, plasma ions are caused by the action of the horizontal magnetic field. In addition, the electrons swirl and collide with each other in the exhaust hole 71A, and the plasma can be confined in the plasma region by preventing the passage of plasma ions and electrons. Accordingly, plasma diffusion at the outer peripheral edge of the wafer W can be prevented, the uniformity of the plasma density between the peripheral edge of the wafer W and the central portion of the wafer W can be improved, and plasma such as etching at the outer peripheral edge of the wafer W can be achieved. In-plane uniformity of the plasma processing can be maintained by preventing the processing from being lowered. In addition, the inner wall of the processing vessel 1 in the non-plasma region can be prevented from being damaged by plasma and can be prevented from being contaminated with by-products. A magnetic field is also formed by the magnetic field forming means 72 at the outer peripheral edge of the upper surface of the lower electrode 2, and the uniformity of the plasma processing such as the etching rate can be enhanced by the influence of this magnetic field. Further, since the exhaust ring 71 and the first and second ring magnets 72A and 72B are housed in the magnetic housing 73, the magnetic housing 73 prevents leakage of the magnetic field, effectively uses the magnetic field without waste, and converts the plasma into plasma. It can be surely confined by the area.
[0030]
FIG. 3 is a diagram showing another embodiment of the present invention. The exhaust ring mechanism 10 used in the plasma processing apparatus of this embodiment includes an exhaust ring 101 and a magnetic field forming unit 102 as shown in FIGS. 3A and 3B, for example. As shown in the figure, the magnetic field forming means 102 is composed of a plurality of magnets 102A arranged radially at predetermined intervals in the circumferential direction of the exhaust ring 101. Each magnet 102 </ b> A is formed in a plate shape, and is attached so as to fill an elongated hole formed in the exhaust ring 101. Then, a horizontal horizontal magnetic field is formed between the adjacent magnets 102A and 102A in the exhaust ring 101 as indicated by an arrow Z in FIG. Since the magnetic field lines B of this magnetic field are substantially orthogonal to the direction in which the plasma and electrons leak, the plasma ions and electrons in the plasma region will pass through the exhaust hole 101A of the exhaust ring 101 as shown in FIG. Ions and electrons are swung around the lines of magnetic force under the action of a magnetic field as shown in FIG. The plasma ions and electrons collide with the inner peripheral surface of the exhaust hole 101A of the exhaust ring 101 and are confined in the plasma region without leaking into the non-plasma region.
[0031]
As described above, according to the present embodiment, the exhaust ring mechanism 10 includes the exhaust ring 101 and the plurality of magnets 102 </ b> A arranged radially with a predetermined interval in the circumferential direction of the exhaust ring 101. Since a clockwise horizontal magnetic field is formed in the exhaust ring 101 between the magnets 102A and 102A, plasma ions and electrons are swung by the action of the horizontal magnetic field even if plasma and electrons pass through the exhaust hole 101A of the exhaust ring 101. Then, it collides with the exhaust hole 101A, and the plasma can be blocked and confined in the plasma region. Therefore, the same effect as the above embodiment can be expected.
[0032]
FIG. 4 is a view showing still another embodiment of the present invention. The exhaust ring mechanism 11 used in the plasma processing apparatus of the present embodiment includes an exhaust ring 111 and a magnetic field forming unit 112 as shown in FIGS. 4A and 4B, for example. The magnetic field forming means 112 of the present embodiment is composed of first and second ring magnets 112A and 112B, similar to the exhaust ring mechanism 7 shown in FIG. 2, but the exhaust ring mechanism 11 of the present embodiment is shown in FIG. As shown in FIGS. 2A and 2B, the first and second ring magnets 112A and 112B are arranged in contact with the inner peripheral edge and the outer peripheral edge of the lower surface of the exhaust ring 111, and the exhaust shown in FIG. The ring mechanism 7 has a different configuration. From such a configuration, a part of the magnetic field from the first ring magnet 112A to the second ring magnet 112B, that is, the magnetic field formed by bending from the first ring magnet 112A to the second ring magnet 112B is entirely formed. 4B is formed as a horizontal magnetic field that crosses the exhaust hole 111A of the exhaust ring 111 substantially horizontally as shown in FIG. Since the magnetic field lines B of this magnetic field are substantially orthogonal to the direction in which plasma ions and electrons leak, as in the above embodiments, the plasma ions and electrons in the plasma region of the exhaust ring 71 as shown in FIG. Even when trying to pass through the exhaust hole 71A, the plasma ions and electrons are confined in the plasma region without being leaked to the non-plasma region by turning around the magnetic field line B under the action of the magnetic field. Therefore, also in this embodiment, the same effect as the exhaust ring mechanism 7 shown in FIG. 2 can be expected.
[0033]
Although not shown, the same effect can be obtained even if the magnetic field forming means 102 of the exhaust ring mechanism 10 shown in FIG. 3 is arranged radially on the lower surface of the exhaust ring 101 as in the embodiment shown in FIG. Can do.
[0034]
In addition, this invention is not restrict | limited at all to said each embodiment, Each component can be design-changed as needed. For example, the magnetic field forming means is not limited to the first and second ring magnets or the plate-like magnets, and electromagnets having the same form as these magnets may be used. Instead of the first and second ring magnets, arc-shaped magnets may be arranged over the entire circumference of the exhaust ring. Further, the magnetic field forming means only needs to be able to form a magnetic field in the plane direction in the exhaust ring, and the direction of the magnetic field may be any direction. In addition, magnets, electromagnets, and magnetic storage bodies have a risk of losing their original function when the temperature rises due to collision of plasma ions, electrons, etc. You may coat | cover by accommodating in it. Moreover, although the exhaust ring has been described as having a circular exhaust hole, the exhaust hole may have another shape such as a slit. In each of the above embodiments, a parallel plate type plasma processing apparatus has been described as an example. However, the exhaust ring mechanism of the present invention can be applied to any plasma processing apparatus that exhausts gas through an exhaust ring. Can do.
[0035]
【The invention's effect】
According to the onset bright, exhaust ring mechanism forms an exhaust ring made of a nonmagnetic material having a plurality of exhaust holes are formed, a magnetic field across the street the plurality of exhaust holes along the exhaust ring in the surface direction A magnetic field forming means, and plasma ions and electrons that attempt to pass through the plurality of exhaust holes collide with the exhaust holes by a magnetic field across the exhaust holes of the exhaust ring to prevent passage to the non-plasma region. Therefore, it is possible to confine the plasma in the plasma region in the processing container while ensuring sufficient gas exhaustability with a plurality of exhaust holes, and to prevent a decrease in plasma density at the outer peripheral edge of the object to be processed. It is possible to provide an exhaust ring mechanism and a plasma processing apparatus used in a plasma processing apparatus capable of performing uniform plasma processing in a plane.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing an embodiment of a plasma processing apparatus and an exhaust ring mechanism of the present invention.
2A and 2B are views for explaining the operation of the exhaust ring mechanism shown in FIG. 1, wherein FIG. 2A is a plan view showing a part thereof, FIG. 2B is a radial sectional view of FIG. FIG. 3 is a sectional view in the circumferential direction of (a).
FIG. 3 is a view corresponding to FIG. 2 showing another embodiment of the exhaust ring mechanism of the present invention, where (a) is a plan view showing a part thereof, and (b) is a radial sectional view of (a). (C) is sectional drawing of the circumferential direction of (a).
FIG. 4 is a view corresponding to FIG. 2 showing still another embodiment of the exhaust ring mechanism of the present invention, wherein (a) is a plan view showing a part thereof, and (b) is a radial cross section of (a). FIG.
[Explanation of symbols]
1 Processing container 2 Lower electrode (holding body)
7, 10, 11 Exhaust ring mechanism 71, 101, 111 Exhaust ring 71A, 101A, 111A Exhaust hole 72, 102, 112 Magnetic field forming means 72A, 72B, 112A, 112B Ring magnet (magnet)
73 Magnetic container (magnetic material)

Claims (16)

処理容器内で被処理体にプラズマ処理を施すプラズマ領域と接触し且つ上記プラズマ領域での生成ガスの排気流路を上記被処理体の径方向外側に形成する排気リング機構であって、上記排気リング機構は、複数の排気孔が形成された非磁性体からなる排気リングと、この排気リング面方向に沿って通り上記複数の排気孔を横切る磁場を形成する磁場形成手段とを有することを特徴とする排気リング機構。An exhaust ring mechanism that is in contact with a plasma region that performs plasma treatment on a target object in a processing container and that forms an exhaust passage for a generated gas in the plasma region on a radially outer side of the target object. ring mechanism, to have an exhaust ring made of a nonmagnetic material having a plurality of exhaust holes are formed, and a magnetic field forming means for forming a magnetic field across the street the plurality of exhaust holes along the exhaust ring in the surface direction, the Exhaust ring mechanism characterized by 上記磁場形成手段は、少なくとも磁場の一部を上記排気リング内に形成することを特徴とする請求項1に記載の排気リング機構。  The exhaust ring mechanism according to claim 1, wherein the magnetic field forming unit forms at least a part of the magnetic field in the exhaust ring. 上記磁場形成手段は、上記排気リングの内周面及び外周面それぞれに沿って配設された磁石または電磁石によって構成されてなることを特徴とする請求項1または請求項2に記載の排気リング機構。  3. The exhaust ring mechanism according to claim 1, wherein the magnetic field forming means is constituted by a magnet or an electromagnet disposed along each of an inner peripheral surface and an outer peripheral surface of the exhaust ring. . 上記磁場形成手段は、上記排気リング下面の内周縁部及び外周縁部に沿ってそれぞれ配設された磁石または電磁石によって構成されてなることを特徴とする請求項1または請求項2に記載の排気リング機構。  3. The exhaust according to claim 1, wherein the magnetic field forming means is configured by a magnet or an electromagnet respectively disposed along an inner peripheral edge and an outer peripheral edge of the lower surface of the exhaust ring. Ring mechanism. 上記磁場形成手段は、上記排気リング内にその周方向所定間隔を空けて放射状に配設された複数の磁石または複数の電磁石によって構成されてなることを特徴とする請求項1または請求項2に記載の排気リング機構。  3. The magnetic field forming means comprises a plurality of magnets or a plurality of electromagnets arranged radially in the exhaust ring at predetermined intervals in the circumferential direction. The exhaust ring mechanism described. 上記磁場形成手段は、上記排気リング下面側にその周方向所定間隔を空けて放射状に配設された複数の磁石または複数の電磁石によって構成されてなることを特徴とする請求項1または請求項2に記載の排気リング機構。  3. The magnetic field forming means is constituted by a plurality of magnets or a plurality of electromagnets arranged radially on the lower surface side of the exhaust ring at predetermined intervals in the circumferential direction. The exhaust ring mechanism described in 1. 上記排気リング機構は、磁場封止手段を有することを特徴とする請求項1〜請求項6のいずれか1項に記載の排気リング機構。  The exhaust ring mechanism according to any one of claims 1 to 6, wherein the exhaust ring mechanism includes a magnetic field sealing means. 上記磁場封止手段は、磁性体からなることを特徴とする請求項7に記載の排気リング機構。  The exhaust ring mechanism according to claim 7, wherein the magnetic field sealing means is made of a magnetic material. 処理容器内に配設され且つ被処理体を保持する保持体と、この保持体と上記処理容器間に配設され且つ複数の排気孔を有する排気リング機構とを備え、上記被処理体にプラズマ処理を施すプラズマ処理装置であって、上記排気リング機構は、複数の排気孔が形成された非磁性体からなる排気リングと、この排気リング面方向に沿って通り上記複数の排気孔を横切る磁場を形成する磁場形成手段とを有することを特徴とするプラズマ処理装置。A holding body disposed in the processing container and holding the object to be processed; and an exhaust ring mechanism disposed between the holding body and the processing container and having a plurality of exhaust holes. a process in a plasma processing apparatus for performing, the exhaust ring mechanism includes an exhaust ring made of a nonmagnetic material having a plurality of exhaust holes are formed, crossing the street the plurality of exhaust holes along the exhaust ring in the surface direction the plasma processing apparatus characterized by having a magnetic field forming means for forming a magnetic field, a. 上記磁場形成手段は、少なくとも磁場の一部を上記排気リング内に形成することを特徴とする請求項9に記載のプラズマ処理装置。  The plasma processing apparatus according to claim 9, wherein the magnetic field forming unit forms at least a part of the magnetic field in the exhaust ring. 上記磁場形成手段は、上記排気リングの内周面及び外周面それぞれに沿って配設された磁石または電磁石によって構成されてなることを特徴とする請求項9または請求項10に記載のプラズマ処理装置。  11. The plasma processing apparatus according to claim 9, wherein the magnetic field forming means is configured by a magnet or an electromagnet disposed along each of an inner peripheral surface and an outer peripheral surface of the exhaust ring. . 上記磁場形成手段は、上記排気リング下面の内周縁部及び外周縁部に沿ってそれぞれ配設された磁石または電磁石によって構成されてなることを特徴とする請求項9または請求項10に記載のプラズマ処理装置。  The plasma according to claim 9 or 10, wherein the magnetic field forming means is constituted by a magnet or an electromagnet respectively disposed along an inner peripheral edge and an outer peripheral edge of the lower surface of the exhaust ring. Processing equipment. 上記磁場形成手段は、上記排気リング内にその周方向所定間隔を空けて放射状に配設された複数の磁石または電磁石によって構成されてなることを特徴とする請求項9または請求項10に記載のプラズマ処理装置。  The said magnetic field formation means is comprised by the some magnet or electromagnet radially arrange | positioned in the said exhaust ring at predetermined intervals in the circumferential direction, The said magnetism formation means is characterized by the above-mentioned. Plasma processing equipment. 上記磁場形成手段は、上記排気リング下面側にその周方向所定間隔を空けて放射状に配設された複数の磁石または複数の電磁石によって構成されてなることを特徴とする請求項9または請求項10に記載のプラズマ処理装置。  11. The magnetic field forming means is constituted by a plurality of magnets or a plurality of electromagnets arranged radially on the lower surface side of the exhaust ring at predetermined intervals in the circumferential direction. The plasma processing apparatus according to 1. 上記排気リング機構は、磁場封止手段を有することを特徴とする請求項9〜請求項14のいずれか1項に記載のプラズマ処理装置。  The plasma processing apparatus according to any one of claims 9 to 14, wherein the exhaust ring mechanism includes a magnetic field sealing unit. 上記磁場封止手段は、磁性体からなることを特徴とする請求項15に記載のプラズマ処理装置。  The plasma processing apparatus according to claim 15, wherein the magnetic field sealing means is made of a magnetic material.
JP2001373858A 2001-12-07 2001-12-07 Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus Expired - Fee Related JP4392852B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001373858A JP4392852B2 (en) 2001-12-07 2001-12-07 Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus
PCT/JP2002/012826 WO2003049171A1 (en) 2001-12-07 2002-12-06 Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism
AU2002354107A AU2002354107A1 (en) 2001-12-07 2002-12-06 Exhaust ring mechanism, and plasma treatment device using the exhaust ring mechanism
US10/739,351 US20040129218A1 (en) 2001-12-07 2003-12-19 Exhaust ring mechanism and plasma processing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373858A JP4392852B2 (en) 2001-12-07 2001-12-07 Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2003174020A JP2003174020A (en) 2003-06-20
JP4392852B2 true JP4392852B2 (en) 2010-01-06

Family

ID=19182507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373858A Expired - Fee Related JP4392852B2 (en) 2001-12-07 2001-12-07 Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus

Country Status (3)

Country Link
JP (1) JP4392852B2 (en)
AU (1) AU2002354107A1 (en)
WO (1) WO2003049171A1 (en)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455748B2 (en) * 2003-06-20 2008-11-25 Lam Research Corporation Magnetic enhancement for mechanical confinement of plasma
US7658802B2 (en) * 2005-11-22 2010-02-09 Applied Materials, Inc. Apparatus and a method for cleaning a dielectric film
KR100994469B1 (en) * 2006-04-04 2010-11-16 엘아이지에이디피 주식회사 Baffle Structure of Plasma processing Apparatus
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
JP6018757B2 (en) * 2012-01-18 2016-11-02 東京エレクトロン株式会社 Substrate processing equipment
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (en) 2018-02-28 2021-01-21 美商應用材料股份有限公司 Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629259A (en) * 1992-07-09 1994-02-04 Fujitsu Ltd Semiconductor manufacturing apparatus
TW303480B (en) * 1996-01-24 1997-04-21 Applied Materials Inc Magnetically confined plasma reactor for processing a semiconductor wafer
JPH1012597A (en) * 1996-06-20 1998-01-16 Hitachi Ltd Plasma-etching equipment and plasma etching method
JP2001093699A (en) * 1999-09-22 2001-04-06 Hitachi Kokusai Electric Inc Plasma treatment device

Also Published As

Publication number Publication date
WO2003049171A1 (en) 2003-06-12
JP2003174020A (en) 2003-06-20
AU2002354107A1 (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP4392852B2 (en) Exhaust ring mechanism and plasma processing apparatus used in plasma processing apparatus
KR100362596B1 (en) Magnetically confined plasma reactor for processing a semiconductor wafer
KR100743871B1 (en) Apparatus for plasma forming inner magnetic bucket to control a volume of a plasma
TW530523B (en) Method and apparatus for controlling the volume of a plasma
JP3833900B2 (en) Etching apparatus and etching method
US7754997B2 (en) Apparatus and method to confine plasma and reduce flow resistance in a plasma
US20040129218A1 (en) Exhaust ring mechanism and plasma processing apparatus using the same
TW202333196A (en) Plasma processing apparatus
US20040168771A1 (en) Plasma reactor coil magnet
JPH05502971A (en) Low frequency induction type high frequency plasma reactor
KR20030022334A (en) Ring-shaped high-density plasma source and method
KR20030005241A (en) Method and apparatus for varying a magnetic field to control a volume of a plasma
KR20040014130A (en) Magnetic barrier for plasma in chamber exhaust
JP2006511945A (en) Method and apparatus for enhancing and localizing capacitively coupled plasma and magnet assembly
JPH07201495A (en) Plasma processing device and its cleaning method
JP2004158272A (en) High-frequency inductively-coupled plasma source, and high-frequency inductively-coupled plasma device
KR100492068B1 (en) Inductive plasma chamber for generating wide volume plasma
JPH03190126A (en) Plasma etching device
JP3729769B2 (en) Plasma processing equipment
JPH10102260A (en) Plasma treating device
JP3399467B2 (en) Plasma processing apparatus and cleaning method
JP3281545B2 (en) Plasma processing equipment
JP2004031447A (en) Magnetron plasma processing apparatus
JP2006060073A (en) Plasma processing equipment
JP2011034705A (en) Plasma treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080104

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080411

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151023

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees