WO2003048527A1 - Gas turbine power generator and its assembling method - Google Patents

Gas turbine power generator and its assembling method Download PDF

Info

Publication number
WO2003048527A1
WO2003048527A1 PCT/JP2001/010483 JP0110483W WO03048527A1 WO 2003048527 A1 WO2003048527 A1 WO 2003048527A1 JP 0110483 W JP0110483 W JP 0110483W WO 03048527 A1 WO03048527 A1 WO 03048527A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter portion
compressor
gas turbine
power generator
rotor
Prior art date
Application number
PCT/JP2001/010483
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Hayasaka
Masaru Sekihara
Satoshi Dodo
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2003549693A priority Critical patent/JP4283114B2/en
Priority to PCT/JP2001/010483 priority patent/WO2003048527A1/en
Publication of WO2003048527A1 publication Critical patent/WO2003048527A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/066Connecting means for joining rotor-discs or rotor-elements together, e.g. by a central bolt, by clamps

Definitions

  • the present invention relates to a gas turbine power generator and an assembling method thereof.
  • the present invention relates to a gas bin generator that compresses sucked outside air, sends it to a combustor, rotates a turbine with combustion gas from the combustor to generate power, and a method of assembling the same.
  • Examples of such a gas turbine power generator include, for example, Japanese Patent Application Laid-Open No. 2001-125256, Japanese Patent Application Laid-Open No. Hei 9-313509, and Japanese Patent Application Laid-Open No. Hei 9-5105022. It has already been proposed in the official gazette. In these prior arts, a compressor connected to a turbine via a rotating shaft is rotated to compress external air drawn from an intake port and send the compressed air to a combustor. Is rotated at high speed, and at the same time, the rotor of a generator provided coaxially with the turbine is rotated to generate power.
  • the turbine, the compressor, the rotor of the generator, and the like are connected via a rotating shaft and constitute a rotating body that rotates integrally.
  • the rotating shaft is inserted or screwed into the center of rotation of each component of the rotating body such as the above-mentioned bin and compressor, when the diameter of the rotating shaft increases, the compressor, turbine, etc.
  • the diameter of the shaft hole for screwing the rotating shaft (the screw hole when the rotating shaft is screwed) also becomes larger.
  • the gas turbine power generation device in the above-mentioned conventional technology is configured to be small, it is necessary to rotate the rotating body at a considerably high speed in order to obtain a predetermined output. That Therefore, when the diameter of the shaft hole is increased, the stress acting on each component of the rotating body, such as the evening bottle, the rotor of the compressor and the generator, etc., increases, and the life of each component is shortened. There is a possibility. This is because the hoop stress acting near the surface of the shaft hole increases as the size of the shaft hole in each component increases. For this reason, it is preferable that the diameter of the rotating shaft be as small as possible within a range where desired strength can be secured.
  • the rotating shaft near the turbine that receives the combustion gas is susceptible to deterioration because it is exposed to the high temperature environment, and a higher strength is required for the rotating shaft near the turbine.
  • this part is also a place where small damage is likely to occur when joining with a turbine during assembly or the like, and the strength is likely to be reduced. From this viewpoint, it is necessary to provide sufficient strength in advance.
  • each of the rotating shafts is simply formed to have substantially the same diameter over the entire length in the longitudinal direction, and when the rotating shaft is made relatively thin in order to reduce the hoop stress, the rotating shaft becomes May not be strong enough to withstand high-speed rotation in a high-temperature environment near the turbine. For this reason, it is difficult to secure sufficient strength for high-speed rotation in a high-temperature environment while reducing the hoop stress acting on each component of the rotating body with the above-mentioned conventional technology. There is room for further improvement in terms of perspective. Disclosure of the invention
  • An object of the present invention is to provide a gas turbine power generator and a method for assembling the same, which can sufficiently ensure the reliability of a rotating shaft.
  • the present invention provides a compressor including a compressor and an evening bin in a casing, compressing the outside air taken in from an intake port by the compressor and sending the compressed air to a combustor.
  • a rotating center of the evening bin and the compressor both ends of which are engaged with the evening bin and the compressor.
  • a rotating shaft having a diameter portion and a small diameter portion connected to the large diameter portion is provided.
  • the rotating shaft serving as the rotation center of the turbine and the compressor has a large diameter portion and a small diameter portion. And a portion of the rotating shaft that engages with the turbine and the compressor.
  • the large diameter portion is used for the rotor, and the rotor of the generator is incorporated in the small diameter portion of the rotating shaft.
  • the rotating shaft has a large diameter at a portion relatively close to the evening bin, and can secure sufficient strength to withstand high-speed rotation in a high-temperature environment.
  • the rotor of the generator is incorporated in the small diameter portion of the rotating shaft, the diameter of the shaft hole through which the rotating shaft is inserted can be reduced, so that the above-mentioned hoop stress can be reduced. Life can be prevented. Therefore, the reliability of the rotating shaft can be sufficiently ensured.
  • the present invention also provides a compressor and a vial which are enclosed in a casing, and the compressor compresses outside air taken from an intake port and sends it to a combustor.
  • a gas turbine power generator that generates electricity by rotating the above-mentioned bin by the combustion gas discharged from the turbine, wherein the large-diameter portion is a rotation center of the above-mentioned turbine and compressor and both ends are engaged with the above-mentioned turbine and compressor.
  • a rotary shaft having a small-diameter portion connected to the large-diameter portion; and a support member for supporting the casing such that the axial direction of the rotary shaft rotates in the horizontal direction.
  • the evening bottle is provided with a joining boss for joining the rotating shaft.
  • the compressor has a shaft hole that fits into a large-diameter portion of the rotating shaft. At least a part of the contact surfaces of the large-diameter portions is a taper surface or a lavette surface.
  • any one of the above (1) to (4) preferably, further comprising an orifice shaft fitted to a small-diameter portion of the rotary shaft so as to abut on the compressor. At least a part of the contact surface between the rotor shaft and the compressor is a tapered surface or a lavet surface.
  • the contact surface is roughened.
  • the small-diameter portion of the rotating shaft comprises a plurality of portions made of different materials.
  • the mouth shaft is formed of a corrosion resistant alloy.
  • the apparatus further comprises a washing device for washing the compressor or the turbine.
  • the apparatus further comprises a cooling device for spraying cooling water near an intake port of the casing.
  • cooling water used for the cooling device is used as a refrigerant.
  • the present invention provides a compressor, which includes a compressor and an evening bottle in a casing, compresses outside air taken in from an intake port by the compressor, and sends the compressed air to a combustor.
  • the casing is fixed so that the axial direction of the turbine is substantially vertical, and the casing is fixed in the casing.
  • the above-mentioned turbine and a rotary shaft having a large-diameter portion joined to the turbine and a small-diameter portion connected to the large-diameter portion are installed in a substantially vertical direction, and a compressor is installed from the upper end of the small-diameter portion of the rotary shaft, which is almost vertically upward.
  • the rotary shaft is fitted to the upper end of the large-diameter portion of the rotating shaft, and the mouth shaft and the rotor of the generator are sequentially assembled into the small-diameter portion of the rotating shaft so as to be stacked on the compressor.
  • FIG. 1 is a side view showing a partial cross section of the entire structure of the first embodiment of the gas turbine power generator of the present invention.
  • FIG. 2 is a partial cross-sectional view illustrating a rotating body provided in the first embodiment of the gas evening bin power generator of the present invention.
  • FIG. 3 is a diagram schematically illustrating the structures of a cleaning device and a cooling device provided in the first embodiment of the gas turbine power generator of the present invention.
  • FIG. 4 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention.
  • FIG. 5 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention.
  • FIG. 6 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention. '
  • FIG. 7 is a partial cross-sectional view illustrating a modification of the rotating body provided in the first embodiment of the gas turbine power generator of the present invention.
  • FIG. 1 is a side view showing a partial cross section of the entire structure of a first embodiment of a gas evening bin power generator according to the present invention.
  • the gas turbine power generation device of the present embodiment is composed of a micro gas evening bin (not limited to a micro gas turbine, but may be a simple gas turbine) 1 and a generator 13.
  • the micro gas evening bin 1 includes a casing 2, a compressor 3 and a turbine 4 provided in the casing 2, and a tie bolt 5 serving as a rotating shaft of the compressor 3 and the evening bin 4. It is roughly composed of
  • the casing 2 is composed of split casings 6 and 7, a spacer 8 interposed between the split casings 6 and 7, and an inner casing 9 provided in the split casing 7.
  • the split casings 6, 7 and the spacer 8 are provided with bolts 10a and nuts with the spacer 8 sandwiched between the flanges 6a, 7a provided on the opposite end faces of the split casings 6, 7 respectively. It is concluded by 10b.
  • the inner casing 9 is welded to the split casing 7. However, the inner casing 9 may be configured to be detachable from the split casing 7, or may be integrally formed with the split casing 7 by precision construction or the like.
  • the inner peripheral surfaces of the split casings 6 and 7 face the outer peripheral surfaces of the compressor 3 and the turbine 4 with a predetermined gap therebetween.
  • a flow path 6c for drawing outside air sucked through the intake port 6b, and the outside air drawn from the flow path 6c is supplied to the regenerative heat exchanger (see FIG. (Not shown) and sent to a combustor (not shown).
  • the flow passage 6c is a passage for the compressed air compressed by the compressor 3, and although not particularly shown, a vane or the like may be provided in consideration of the pressure recovery of the passing compressed air.
  • a filter is provided at the intake port 6b to prevent dust from being sucked into the casing 2 together with the outside air.
  • the combustor mixes fuel with the outside air supplied through the flow path 6 c and burns the fuel.
  • the combustion gas from the combustor flows into the flow path 9 a in the inner casing 9.
  • the gas flows in and passes through the nozzle 9b, it is rectified and discharged from the exhaust port 9c, and is guided to the regenerative heat exchanger.
  • the nozzle 9 b is fixed to the inner casing 9 with, for example, a pin.
  • the spacer 8 be provided with, for example, a labyrinth seal / honeycomb seal, a brush seal, etc., in order to prevent leakage of the working fluid from the flow path.
  • FIG. 2 is a partial cross-sectional view illustrating a rotor 16 in the gas turbine power generator shown in FIG. As shown in Fig. 2, although details are described later,
  • the (rotating body) 16 is roughly composed of the compressor 3, the tarpin 4, and the tie bolt 5, and a mouth shaft 11 and a rotor 14, which will be described later.
  • the compressor 3 is a centrifugal compressor, and is composed of a disk 3a and a plurality of wings 3b provided on the disk 3a.
  • a disk 3a For example, titanium alloy or aluminum is formed by precision manufacturing, forging, machining, or the like. It is formed of an alloy or the like.
  • a shaft hole 3c passing through the tie port 5 is provided at the rotation center of the disk 3a.
  • the turpin 4 is a radial turbine, and includes a disk 4a, a plurality of blades 4b provided on the disk 4a, a joining boss 4c protruding from the disk 4a, and a grip 4d. It is configured.
  • the joining boss portion 4c is a joining portion with the tie bolt 5, and the outer peripheral portion is formed into an R-shaped shape so that the diameter increases toward the disk portion 4a. Since the turbine 4 is exposed to the high-temperature combustion gas, the turbine 4 is formed by, for example, precision forging, forging, or machining with a nickel-based superalloy or the like. Further, as a joining method of the evening bin 4 and the tie bolt 5, friction welding, electron beam welding, diffusion joining, or the like is preferable.
  • the grip portion 4d has a parallel surface such as a nut, and It has a shape that makes it easy to grasp with tools.
  • the grip portion 4 d is used to connect the turbine 4 to the tie bolt 5, to apply pretension to the tie bolt 5, and to tighten the nut 17 into the screw portion 5 be (described later). It is designed to ensure that it can be fixed securely.
  • the tie bolt 5 is a rotation center of the mouth 16 and has a large diameter portion 5a and a small diameter portion 5b extending from the other end (the right end in FIG. 2) of the large diameter portion 5a. are doing.
  • One end (the left end in FIG. 2) of the large diameter portion 5 a is joined to the joining boss 4 c of the turbine 4, and the other end (the right side in FIG. 2) is fitted to the shaft hole 3 c of the compressor 3. I'm fitting.
  • the contact surface between the shaft hole 3c and the large-diameter portion 5a is a tapered surface that increases in diameter toward one side (the left side in FIG. 2).
  • the small-diameter portion 5b of the tie bolt 5 has a connection portion 5ba with the large-diameter portion 5a on one end (the left end in FIG. 2), a long-axis portion 5bb connected to the connection portion 5ba, and It consists of a screw 5bc provided at the other end (right end in Fig. 2) of the shaft 5bb.
  • the connecting portion 5 ba is located relatively close to the bin 4 in a high-temperature environment, and is formed integrally with the large-diameter portion 5 a using a material having high high-temperature strength, such as a nickel-base superalloy. Have been.
  • the connecting portion 5ba forms a small diameter portion 5b together with the long shaft portion 5bb joined by a method such as friction welding.
  • the long shaft portion 5bb is made of an inexpensive iron-based material.
  • the small-diameter portion 5b of the evening bolt 5 is composed of two portions having different materials.
  • the tie bolt 5 is joined to the turbine 4 as described above.
  • the grip portion 4d of the turbine 4 is gripped, and the large-diameter portion 5a of the tie bolt 5 is joined to the joining boss portion 4c of the tarpin 4 by, for example, friction welding.
  • the long shaft portion 5bb is friction-welded to the connection portion 5ba of the small diameter portion 5b located at the other end (the right end in FIG. 2) of the large diameter portion 5a.
  • heat treatment is performed to remove residual stress, and in some cases, heat treatment for improving the strength of the alloy is performed. Finally, machining will be performed to balance turbine 4 and tie bolts 5.
  • a small-diameter portion 5 b of the turbine 5 is fitted (loosely fitted) with a mouth shaft 11 so as to be in contact with the compressor 3.
  • the contact surface between the rotor shaft 11 and the compressor 3 faces the turbine 4 (to the left in FIG. 2).
  • the tapered surface has a reduced diameter.
  • a bearing collar 12 for supporting loads in the radial and thrust directions is fitted to the outer peripheral portion of the mouth shaft 11.
  • the rotor 14 of the generator 13 (see Fig. 1) is fitted to the small diameter portion 5b of the tie bolt 5 so as to abut the other end of the shaft 11 (the right end in Fig. 2) (see Fig. 1). (Loose fitting).
  • the rotor 14 includes a generator core 14a, a permanent magnet 14b provided on an outer periphery of the generator core 14a, and a cover 1 provided on an outer periphery of the permanent magnet 14b. 4c and an end cover 14d at one end (the left end in FIG. 2) in the axial direction.
  • the generator core 14a is formed of a magnetic material into a substantially cylindrical shape, has a shaft hole 14e at the center of rotation, and is connected to the shaft hole 14e via an end cover 14d.
  • the small-diameter portion 5b is passed through.
  • the permanent magnet 14b is formed into a substantially cylindrical shape by a plurality of parts (although it may be formed integrally), and is fitted on the outer periphery of the generator core 14a.
  • the cover 14c located at the outermost periphery of the rotor 14 prevents the permanent magnets 14b from scattering or slipping between the generator core 14a and the permanent magnets 14b during rotation. It is.
  • the cover 14c has a fitting structure of interference fit with the permanent magnet 14b, and the permanent magnet 14b is preferably pressed radially inward against the generator core 14a. . Further, as the material of the cover 14c, a high-strength non-magnetic metal such as a nickel-based alloy or FRP is preferable.
  • the end cover 14 d is fitted to the other end of the shaft 11 (the right end in FIG. 2), and the end cover 14 d and the rotor shaft 11 are in contact with each other.
  • the surface is a tapered surface that expands toward turbine 4 (to the left in FIG. 2).
  • the rotor 16 incorporates the mouth shaft 5, the rotor 14, and the holding cover 15 into the evening bolt 5 joined to the vial 4, and the screw section 5 at the tip of the evening bolt 5 is assembled. Tighten nut 17 to bc.
  • a bearing collar 18 that supports a load in the radial direction is fitted to the holding cover 15.
  • the contact surfaces of the tie bolts 5 and the compressor 3, the compressor 3, the opening shaft 11, the shaft 11 and the rotor 14 described above are roughened by, for example, sand blasting and wire blasting. Surface processing is applied.
  • struts 19 are provided at the inlet 6b of the split casing 6 described above.
  • the casing 2 and the generator casing 20 are connected via the strut 19.
  • This generator casing 20 is composed of end casings 20a, 20b at both ends in the axial direction, and a coil casing 2 located between these end casings 20a, 20b. 0c, and spacers 20d, 20e interposed between the coil casing 20c and the end casings 20a, 20b, respectively. You. These are passed through bolt holes 21f substantially parallel to the tie bolts 5 at predetermined intervals on the outer peripheral side thereof, through bolts 21a, and fastened by nuts 21b.
  • Radial bearings 22a and thrust bearings 22b are provided on the inner peripheral side of the end casing 20a of the generator 13 and thrust bearings 22c are provided on the inner peripheral side of the spacer 20d. These bearings 22 a to 22 c constitute the bearing of the opening 16 together with the above-mentioned bearing collars 12.
  • a radial bearing 23 is fitted on the inner peripheral side of the spacer 20 e, and the radial bearing 23 also has the same bearing 16 as the above-mentioned bearing collar 18. Configured. With such a bearing structure, the rotor 16 is rotatably supported in the casing 2 and the generator casing 20.
  • this bearing structure shall be a sliding bearing using a working fluid such as an air bearing, a water bearing, or an oil bearing, a rolling bearing, or a magnetic bearing.
  • a working fluid such as an air bearing, a water bearing, or an oil bearing, a rolling bearing, or a magnetic bearing.
  • corrosive substances such as oxygen, salt, and chlorine may be mixed in the working fluid.
  • the material of the shaft 11 and the cover 15 is preferably a corrosion-resistant alloy such as 12Cr steel, 15Cr steel, an aluminum alloy, or a titanium alloy.
  • a cylindrical inner casing 24 was fitted on the inner periphery of the coil casing 20 c, and further formed on the inner periphery of the inner casing 24 by winding with a winding.
  • Coil 25 is fitted.
  • the inner peripheral surface of the coil 25 is opposed to the outer peripheral surface of the rotor 14 via a predetermined gap, and the rotor 14 rotates on the inner peripheral side of the coil 25 to generate power.
  • the material of the end cover 14 d of the rotor 16 and the holding cover 15 is preferably a non-magnetic alloy in order to prevent magnetic flux leakage from the permanent magnet 14 b.
  • a washing device 26 and a cooling device 27 of the compressor 3 are provided. I have.
  • FIG. 3 is a diagram schematically illustrating the structures of the cleaning device 26 and the cooling device 27.
  • the cleaning device 26 includes a plurality of spray holes 26a provided in the divided casing 6, a cleaning liquid tank 26b and a water storage tank 26c, a cleaning liquid tank 26b and a water storage tank 26c. It is composed of supply pipes 26 d to 26 f connecting the tank 26 c and the injection holes 26 a, and valves 26 g to 26 i provided respectively for these supply pipes 26 d to 26 p. Have been.
  • the cleaning liquid and water stored in the cleaning liquid tank 26b and the water storage tank 26c, respectively, are discharged to the supply pipes 26e and 26f by, for example, a pump (not shown). It has become so.
  • the cleaning liquid in the cleaning liquid tank 26 b flows into the injection port 26 a through the supply pipes 26 e and 26 d. It is guided and injected into the compressor 3. After the cleaning liquid is injected into the compressor 3, the valve 26g and the valve 26i are opened, and when the valve 26h is closed, water is supplied from the water storage tank 26c to the supply pipe 2.
  • a drain pipe is provided at the lower part of the split casing 6 (in this case, the lower part in FIG. 1) to drain the cleaning liquid and water. It has become.
  • the cleaning device 26 is for cleaning the compressor 3, but may be used for cleaning the turbine 4 or for cleaning both the compressor 3 and the evening bin 4. It is good also as composition.
  • the cooling device 27 includes the water storage tank 26 c, the supply pipe 26 f, the valve 26 i, and the nozzle 2 located near the intake port 6 b of the casing 2.
  • the gas turbine power generating device of the present embodiment is provided with a support member 28 that supports the casing 2 so that the axial direction of the tie port 5 rotates in the horizontal direction. ing.
  • the support member 28 is rotatably supported by a boss 30 provided on the divided casing 7 via a pin 29, and is divided by a plurality of (four in this example) stoppers 31.
  • the casing 2 can be fixed in a state in which the casing 2 is sequentially inclined at a predetermined angle (approximately 90 ° in this example). Therefore, the weight of the gas turbine is supported by the pins 29 and the moment is received by the four stoppers 31.
  • the lower end of the support member 28 (in this case, the lower end in FIG.
  • the gas evening bin power generation device in FIG. 1 has a cantilever support structure using the support member 28 as described above.
  • a support member is separately provided at an appropriate position of the generator casing 20 and a plurality of support members are provided. It is good also as a structure supported by.
  • a divided casing 7 incorporating an inner casing 9 and a nozzle 9b in advance is provided on a support member 28. Then, it is fixed by the stopper 31 in a state of being substantially vertically inverted so that the axial direction becomes substantially parallel to the gravity. Next, the evening bin 4 and the tie bolts 5 joined to the bin 4 are assembled into the inner casing 9. At this time, for example, a jig such as a spacer is used to keep a predetermined gap between the evening bin 4 and the inner casing 9 or the turbine nozzle 9b.
  • the spacer 8 is overlapped with the flange 7a of the split casing 7 through the tie bolt 5, and the compressor 3 is fitted to the large diameter portion 5a of the tie bolt 5. .
  • the divided casing 6 is overlapped on the spacer 8 through the tie bolts 5, and the casing 2 is fastened by the bolts 10a and the nuts 10b.
  • the split casing 6 is pre-
  • the end casing 20a of the generator 13 is connected.
  • the radial bearing 22a and the thrust bearing 22b are fitted to the end casing 20a.
  • the rotor shaft 11 into which the bearing collars 12 are fitted in advance is passed through the evening elongate 5 and is brought into contact with the compressor 3.
  • a spacer 20d in which the above-mentioned thrust bearing 22c is previously assembled is superimposed on the end casing 20a.
  • a coil casing 20c in which the coil 25 and the inner casing 24 are assembled is superimposed on a spacer 20d, and the rotor 14 assembled in advance is assembled in a tie bolt 5, and Evening shaft 1 1
  • the retaining cover 15 is assembled into the tie bolt 5, and the spacer 20e having the radial bearing 23 attached thereto is superimposed on the coil casing 20c.
  • the nut 17 is screwed into the screw portion 5 b c of the tie bolt 5.
  • a predetermined amount of elongation is applied to the tie bolt 5 so that the tie bolt 5 is loaded with pretension, and the nut 17 is tightened, or the nut 17 is fastened with a predetermined tightening torque.
  • the grip end 4d (see FIG. 2) of the turbine 4 may be gripped with a jig and the screw portion 5bc of the tie bolt 5 may be pulled.
  • the end casing 20b of the generator 13 is overlapped with the spacer 20e, and the generator casing 20 is fastened by the through bolt 21a and the nut 21b.
  • the split casing 7 is rotated with respect to the support member 28, and the gas turbine is set in a state substantially parallel to the ground so that the axial direction is substantially horizontal as shown in FIG. In this state, the split casing 7 is fixed to the support member 28 by the stopper 31.
  • the cleaning device 26 and the cooling device 27 described with reference to FIG. 3, and other devices such as a combustor and a regenerative heat exchanger are separately incorporated.
  • the reverse procedure is sufficient. In this case, it is easy to loosen the nut 17 fastened to the evening bolt 5, for example, by applying heat to the tie bolt 5 with a wrench or the like to extend the tie bolt 5.
  • the outside air sucked in through the intake port 6 b is compressed by the rotating blades 3 b by the rotating compressor 3, and the regenerative heat exchanger (FIG. (Not shown).
  • the compressed air is preheated in a regenerative heat exchanger and burned with fuel in a combustor (not shown).
  • the combustion gas from this combustor flows into the flow passage 9a in the casing 2, is rectified by the nozzle 9b, expands in the wing 4b, rotates the turbine 4, and is drawn out from the exhaust 9c. You.
  • the derived combustion gas is led to the regenerative heat exchanger.
  • the rotor 14 rotates at high speed in the coil 25 by the rotational force given to the turbine 4 to generate power.
  • the AC current induced in the coil 25 is converted into a DC current by a rectifier separately provided, and finally converted into an AC current by an inverter.
  • the tie bolt 5 serving as the rotating shaft of the rotor 16 has a large diameter portion 5a and a small diameter portion 5b.
  • the compressor 3 is assembled into the large-diameter portion 5a joined to the turbine 4, and the shaft 11 and the rotor 14 of the generator 13 are sequentially assembled into the small-diameter portion 5b of the tie bolt 5. It has a configuration.
  • the part near the evening bin 4 and the compressor 3 of the tie bolt 5 may be exposed to a high-temperature environment, but by increasing the diameter of this part, it can withstand high-speed rotation even in a high-temperature environment. Strength can be secured.
  • the rotor shaft 11 and the rotor 14 in a relatively low temperature environment are incorporated into the small diameter portion 5b of the tie bolt 5, the diameter of the shaft hole through which the small diameter portion 5b is inserted can be reduced. As a result, hoop stress acting near the inner diameter of the shaft hole can be reduced. Therefore, since the tie port 5 can be configured to be sufficiently resistant to high-speed rotation, the reliability of the rotating shaft can be sufficiently ensured.
  • the evening bin 4 is not provided with a shaft hole through which the tie bolt 5 is inserted, and one end of the large diameter portion 5 a of the evening bolt 5 is joined to the turbine 4.
  • the problem of hoop stress acting on pin 4 does not arise.
  • the connecting boss portion 4c for the tie bolt 5 is provided in the evening bin 4, the connecting portion between the turbine 4 and the tie bolt 5 has substantially the same cross-sectional area as the peripheral portion. There is no change and stress concentration on the joint can be prevented. Therefore, the joining strength between the turbine 4 and the tie bolt 5 can be improved.
  • the outer peripheral portion of the joining boss 4c is formed into an R-shaped surface so as to expand toward the disk 4a of the turbine 4, stress on the boundary between the joining boss 4c and the disk 4a is obtained. Concentration can be reduced.
  • a support member 28 that is rotatable with respect to the split casing 7 is provided, and during assembly and disassembly, the split casing 7 is turned with respect to the support member 28 so that the split casing 7 is rotated in the axial direction (that is, the tie bolts). 5 in the longitudinal direction) can be substantially vertical.
  • the workability of assembling and disassembling the gas turbine power generator can be improved, and the centering accuracy of the mouth 16 can be improved.
  • the rotatable support member 28 is used in order to fix the divided casing 7 in a state where the axial direction is substantially vertical, but as long as the same effect is obtained, It is not necessarily limited to such a configuration.
  • the end surface of the split casing 7 on the exhaust port 9c side may be smoothed, and the split casing 7 may be fixed in such a manner that the end face is seated on a surface plate, for example.
  • a stand may be provided separately, and the flange 7a of the divided casing 7 may be horizontally received and fixed by the stand.
  • the rotor 16 is assembled from a number of components such as the compressor 3, the turbine 4, the tie bolts 5, the rotor shaft 11, the rotor 14, and the like. It is difficult to completely eliminate the amount of deviation from the rotation center of the rotor 16.
  • the mouth (rotator) of the micro gas bottle is operated at a high speed of about 400 to 1300 [rpm], and the misalignment of each component When the wind speed became large, the residual unbalance in the sunset was large, and there was a risk that vibration at dangerous speeds would increase. Therefore, it is particularly important to improve the centering accuracy of the rotor in a micro gas turbine.
  • the compressor 4 and the tie bolt 5, the compressor 4, the rotor shaft 11, the rotor shaft 11 and the rotor 14 have their respective contact surfaces as tapered surfaces.
  • the tapered surfaces serve as guide surfaces
  • the compressor 3, the tie bolts 5, the mouth shafts 11, and the rotors 14 are aligned.
  • the amount of residual unbalance during the production of the Rho-Yu 16 can be reduced.
  • the turbine 4 and the tie bolt 5 are finally balanced by machining. Therefore, according to the present embodiment, the centering accuracy of the mouth 16 can be further improved.
  • the contact surfaces of the compressor 3 and the tie bolts 5 are configured as tapered surfaces as a whole.
  • the entire contact surfaces it suffices to have a configuration in which the taper surface makes contact.
  • the configuration is not necessarily limited to the configuration in which the contact surface of each component is a tapered surface. It is also conceivable to employ a configuration in which the contact surfaces of the elements are set as a lavette surface. In this case, the same effect can be obtained.
  • the difference between the mouth 16A shown in Fig. 7 and the rotor 16 in Fig. 2 is that the compressor 4 and tie bolts 5, the compressor 4 and the rotor shaft 11, the rotor shaft 11 and the rotor 1
  • the other configurations are the same in that the contact surfaces in 4 are each a lavette surface.
  • the contact surfaces of the compressor 4 and the tie port 5, the compressor 4 and the rotor shaft 11, the rotor shaft 11 and the rotor 14 are all tapered. (Or lavet surface), but it is essential that at least one of these three contact surfaces be a tapered surface (or lavet surface) even if all the contact surfaces are not tapered surfaces (or lavet surfaces). Surface), the centering accuracy can be improved accordingly.
  • tie bolt 16 presses tie bolt 5 against turbine 4 and incorporates compressor 3, rotor shaft 11, and rotor 14 into tie port 5 for fastening. It is the structure which did. In this structure, the compressor 3, the rotor shaft 11 and the rotor 14 are in contact with the tie bolt 5 and the compressor 3, the compressor 3 and the mouthshaft 11 and the rotor shaft 11 and the rotor 14 respectively. Rotational force is applied by the frictional force acting on the surface. This frictional force is applied by the pressing force due to the tension of the tie bolt 5.
  • the tension of the tie bolt 5 is reduced, and the friction transfer efficiency at each of the contact surfaces may be reduced.
  • the compressor 3, the rotor shaft 11, the rotor 14 and the like are subjected to a tensile stress in the radial direction due to centrifugal force. Force acts. Also according to this, the pressing force on each of the contact surfaces may be reduced, and the friction transfer efficiency may be reduced.
  • the above-described contact surfaces are roughened to suppress a decrease in frictional transfer efficiency between the components of the louver 16 even when the tension of the tie bolts 6 is reduced. can do. It should be noted that, as long as the friction transmission efficiency is prevented from lowering in this way, it is not necessary to limit to such a configuration.
  • the opposing end portions of the rotor 11 and the rotor 14 may be formed in a gear shape such as a spline, for example, and may be configured to be fitted to each other.
  • the opening shaft 11 and the holding cover 15 into which the bearing collars 12 and 18 are fitted, respectively, are molded using a corrosion-resistant alloy, so that the working fluid of the bearing and Corrosion and corrosion pits due to contact with the surface can be prevented.
  • the reliability of the rotor 16 can be improved. (7) Improved reliability and cost reduction of tieport
  • the tie port 5 is joined to the bin 4 at night, this joining surface is under a high temperature environment.
  • materials having high strength at high temperatures such as nickel-base superalloys, are used as materials for components exposed to such high temperatures.
  • the tie bolt 5 is a relatively long part, and the part far from the evening bin 4 is in a relatively low temperature environment, not in a high temperature environment over the entire length. Therefore, if all parts of Typo 5 were formed from expensive nickel-base superalloys, Typo 5 would be of excessive quality and production costs would increase.
  • the tie bolt 5 is configured such that only the connecting portion 5 ba of the large diameter portion 5 a and the small diameter portion 5 b is made of a nickel-based superalloy, and the other portions are iron-based. It consists of the material of. In this way, by taking into account the temperature environment around each part, the tie bolt 5 is formed by joining a plurality of parts made of different materials, thereby reducing the manufacturing cost while securing the reliability of the evening bolt 5. be able to.
  • a cleaning device 26 is provided to appropriately remove dust adhering to the compressor 3. Also, of course, the cleaning device 26 is applicable to cleaning of the vials 4. Thereby, corrosion of the compressor 3 and the turbine 4 can be prevented, and a decrease in compressor efficiency can be prevented. As a result, a decrease in power generation efficiency can be suppressed.
  • the gas turbine power generation device of the present embodiment is a simple cycle having one stage of the compressor 3 and the turbine 4, it is difficult to increase the compression ratio and the turbine inlet temperature, and the power generation efficiency cannot be improved. Have difficulty.
  • a cooling device 27 is provided. Water is sprayed in the vicinity of the intake port 6b of the casing 2 so as to lower the temperature of the outside air taken into the casing 2. As a result, the outside air to be taken in is made denser, and the heat loss in the compression process can be suppressed, so that the heat efficiency can be improved and the power generation efficiency can be improved.
  • the end cover 14 d and the holding cover 15 located at both ends in the axial direction of the permanent magnet 14 b are made of a non-magnetic alloy, so that the magnetic flux leakage in the generator 13 is reduced. As a result, the power generation efficiency can be improved.
  • the combustion air can be made into high humidity air.
  • the turbine 4 Since the turbine 4 is constantly in contact with the combustion gas during operation, if the operation time is long, the temperature of the entire mouth 16 gradually rises, causing damage due to creep deformation, thermal fatigue, etc. In some cases, this may reduce the reliability of Law 16. Also, when the temperature rises in this way, the temperature of the permanent magnet 14b in the rotor 14 may exceed one Curie point, and the power generation efficiency may be reduced. The temperature rise of the permanent magnets 14 also includes Joule heat due to the loss of the generator 13.
  • the water supplied from the cooling device 27 is supplied to, for example, the casing 2, the generator casing 20, the coil 25, or a combustor, a regenerative heat exchanger (not shown), or an inverter.
  • the cooling water such as the above, overheating of the rotor 16 can be prevented.
  • a reduction in the reliability of the rotor 16 can be prevented, and a reduction in the power generation efficiency can be prevented.
  • the rotating shaft serving as the rotation center of the turbine and the compressor has a large diameter portion and a small diameter portion.
  • the portion of the rotating shaft that engages with the turbine and the compressor is a large-diameter portion, and the rotor of the generator is incorporated in the small-diameter portion of the rotating shaft.
  • the rotating shaft has a large diameter in a portion relatively close to the turbine, and can secure sufficient strength to withstand high-speed rotation in a high-temperature environment.
  • the generator Since the rotor, etc., is incorporated in the small-diameter portion of the rotating shaft, the diameter of the shaft hole through which the rotating shaft is inserted can be reduced, so that the hoop stress described above can be reduced and the lifespan can be prevented. can do. Therefore, the reliability of the rotating shaft can be sufficiently ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

A gas turbine power generator is provided with a tie-bolt (5) having a large-diameter portion (5a) and a small-diameter portion (5b) and serving as a spindle. A compressor (3) and a turbine (4) engage with the large-diameter portion (5a), and the rotor (14) of a power generator (13) is fitted on the small-diameter portion (5b) to constitute an integral rotating rotor (16). The tie-bolt (5) has a larger diameter at a portion relatively close to the turbine (3) and in a high-temperature environment, to retain a strength enough to stand high-speed rotation in the high-temperature environment. The rotor (14) in a relatively low-temperature environment is fitted to the small-diameter portion (5b) of the tie-bolt (5), and the diameter of a shaft hole (14e) extending through the small-diameter portion (5b). In short, the hoop stress acting on the rotor (14) is reduced to prevent the lifetime from becoming short. Therefore, it is possible to ensure the reliability of the tie-bolt (5) serving as the spindle sufficiently.

Description

ガスタービン発電装置及びその組立方法 技術分野 TECHNICAL FIELD The present invention relates to a gas turbine power generator and an assembling method thereof.
本発明は、 吸入した外気を圧縮して燃焼器に送り込み、 燃焼器からの燃焼ガス によりタービンを回転させ発電するガス夕一ビン発電装置及びその組立方法に関 するものである。 背景技術  TECHNICAL FIELD The present invention relates to a gas bin generator that compresses sucked outside air, sends it to a combustor, rotates a turbine with combustion gas from the combustor to generate power, and a method of assembling the same. Background art
世界の多くの地域において、 電気分配線不足等によるエネルギー不足が問題と なっており、 近年、 小地域電力供給や非常時の電力供給等を目的として、 マイク 口ガスタービンと称する小型のガス夕一ビンを動力源としたガスタービン発電装 置が分配発電システムとして提案されている。  In many parts of the world, energy shortages due to shortage of electrical components and wiring have become a problem, and in recent years, a small gas turbine called a microphone-mouth gas turbine has been developed for the purpose of supplying electricity in small areas and emergency power. A gas turbine generator using a bin as a power source has been proposed as a distributed power generation system.
こうしたガスタービン発電装置としては、 例えば、 特開 2 0 0 1— 1 2 2 5 6 号公報、 特開平 9一 1 3 3 0 2 9号公報、 或いは特表平 9— 5 1 0 5 2 2号公報 等で既に提唱されている。 これら従来技術は、 回転軸を介してタービンと連結さ れた圧縮機を回転させることにより、 吸気口から吸入した外気を圧縮して燃焼器 に送り込み、 この燃焼器から排出される燃焼ガスによりタービンを高速回転させ、 同時に、 タービンと同軸に設けられた発電機の回転子を回転させて発電するよう になっている。  Examples of such a gas turbine power generator include, for example, Japanese Patent Application Laid-Open No. 2001-125256, Japanese Patent Application Laid-Open No. Hei 9-313509, and Japanese Patent Application Laid-Open No. Hei 9-5105022. It has already been proposed in the official gazette. In these prior arts, a compressor connected to a turbine via a rotating shaft is rotated to compress external air drawn from an intake port and send the compressed air to a combustor. Is rotated at high speed, and at the same time, the rotor of a generator provided coaxially with the turbine is rotated to generate power.
上記従来技術において、 タ一ビンや圧縮機、 発電機の回転子等は、 回転軸を介 して連結され一体となって回転する回転体を構成している。 このとき、 回転軸は、 先の夕一ビンや圧縮機等といった回転体の各構成要素の回転中心に挿通、 又は螺 着されているため、 回転軸の径が大きくなると、 圧縮機やタービン等に設けた回 転軸揷通用の軸穴 (回転軸を螺着する場合にはネジ穴) の径もそれだけ大きくな る。  In the above prior art, the turbine, the compressor, the rotor of the generator, and the like are connected via a rotating shaft and constitute a rotating body that rotates integrally. At this time, since the rotating shaft is inserted or screwed into the center of rotation of each component of the rotating body such as the above-mentioned bin and compressor, when the diameter of the rotating shaft increases, the compressor, turbine, etc. The diameter of the shaft hole for screwing the rotating shaft (the screw hole when the rotating shaft is screwed) also becomes larger.
ここで、 上記従来技術におけるガスタービン発電装置は小型に構成されている ので、 所定の出力を得るため、 回転体をかなり高速回転させる必要がある。 その ため、 上記軸穴の径が大きくなると、 夕一ビンや圧縮機、 発電機等の回転子等、 回転体の各構成要素に作用する応力が増大し、 各構成要素の短命化を招いてしま う可能性がある。 これは、 各構成要素における上記軸穴が大きくなると、 それだ けその軸穴表面付近に作用するフープ応力が増大するためである。 このことから、 回転軸の径は所望の強度を確保できる範囲内でなるべく小さい方が好ましい。 しかしその一方では、 燃焼ガスを受けるタ一ビン近傍の回転軸は、 高温環境に さらされるため劣化し易く、 この回転軸のタービン近傍部分にはより高い強度が 要求される。 また、 この部分は、 組立時等、 タービンとの接合の際に微小な傷が 付き強度が低下し易い場所でもあり、 この観点からも予め十分な強度を付与して おく必要がある。 Here, since the gas turbine power generation device in the above-mentioned conventional technology is configured to be small, it is necessary to rotate the rotating body at a considerably high speed in order to obtain a predetermined output. That Therefore, when the diameter of the shaft hole is increased, the stress acting on each component of the rotating body, such as the evening bottle, the rotor of the compressor and the generator, etc., increases, and the life of each component is shortened. There is a possibility. This is because the hoop stress acting near the surface of the shaft hole increases as the size of the shaft hole in each component increases. For this reason, it is preferable that the diameter of the rotating shaft be as small as possible within a range where desired strength can be secured. However, on the other hand, the rotating shaft near the turbine that receives the combustion gas is susceptible to deterioration because it is exposed to the high temperature environment, and a higher strength is required for the rotating shaft near the turbine. In addition, this part is also a place where small damage is likely to occur when joining with a turbine during assembly or the like, and the strength is likely to be reduced. From this viewpoint, it is necessary to provide sufficient strength in advance.
しかしながら、 上記従来技術において、 回転軸は、 いずれも単に長手方向全長 に渡ってほぼ同径に形成されており、 上記フープ応力の低減を狙って回転軸を比 較的細くした場合、 この回転軸は、 タービン付近では高温環境下での高速回転に 十分耐えるだけの強度が確保できない可能性がある。 そのため、 上記従来技術で は、 回転体の各構成要素に作用するフープ応力を低減しつつ、 高温環境下で高速 回転するために十分な強度を確保することは困難で、 回転軸の信頼性の観点にお いて更なる改善の余地がある。 発明の開示  However, in the above prior art, each of the rotating shafts is simply formed to have substantially the same diameter over the entire length in the longitudinal direction, and when the rotating shaft is made relatively thin in order to reduce the hoop stress, the rotating shaft becomes May not be strong enough to withstand high-speed rotation in a high-temperature environment near the turbine. For this reason, it is difficult to secure sufficient strength for high-speed rotation in a high-temperature environment while reducing the hoop stress acting on each component of the rotating body with the above-mentioned conventional technology. There is room for further improvement in terms of perspective. Disclosure of the invention
本発明の目的は、 回転軸の信頼性を十分に確保することができるガスタービン 発電装置及びその組立方法を提供することにある。  An object of the present invention is to provide a gas turbine power generator and a method for assembling the same, which can sufficiently ensure the reliability of a rotating shaft.
( 1 ) 上記目的を達成するために、 本発明は、 ケーシングに圧縮機及び夕一ビ ンを内包し、 上記圧縮機により吸気口から吸入した外気を圧縮して燃焼器に送り 込み、 この燃焼器から排出される燃焼ガスにより上記タービンを回転させ発電す るガスタービン発電装置において、 上記夕一ビン及び圧縮機の回転中心であって、 両端が上記夕一ビン及び圧縮機に係合する大径部と、 この大径部に連設する小径 部とを有する回転軸を備える。  (1) In order to achieve the above-mentioned object, the present invention provides a compressor including a compressor and an evening bin in a casing, compressing the outside air taken in from an intake port by the compressor and sending the compressed air to a combustor. In the gas turbine power generator for rotating the turbine by the combustion gas discharged from the compressor to generate electric power, a rotating center of the evening bin and the compressor, both ends of which are engaged with the evening bin and the compressor. A rotating shaft having a diameter portion and a small diameter portion connected to the large diameter portion is provided.
本発明において、 タービン及び圧縮機の回転中心となる回転軸は、 大径部及び 小径部を有している。 そして、 回転軸におけるタービン及び圧縮機と係合する部 分を大径部とし、 発電機の回転子等は、 回転軸の小径部に組み込む構成としてい る。 つまり、 回転軸は、 夕一ビンと比較的近い部分において径が大きく、 高温環 境下での高速回転に十分耐えられる強度を確保することができる。 また、 発電機 の回転子等は、 回転軸の小径部に組込まれるため、 この回転軸を挿通する軸穴の 径を小さくすることができるので、 前述のフープ応力を低減することができ、 短 命化を防止することができる。 従って、 回転軸の信頼性を十分に確保することが できる。 In the present invention, the rotating shaft serving as the rotation center of the turbine and the compressor has a large diameter portion and a small diameter portion. And a portion of the rotating shaft that engages with the turbine and the compressor. The large diameter portion is used for the rotor, and the rotor of the generator is incorporated in the small diameter portion of the rotating shaft. In other words, the rotating shaft has a large diameter at a portion relatively close to the evening bin, and can secure sufficient strength to withstand high-speed rotation in a high-temperature environment. Further, since the rotor of the generator is incorporated in the small diameter portion of the rotating shaft, the diameter of the shaft hole through which the rotating shaft is inserted can be reduced, so that the above-mentioned hoop stress can be reduced. Life can be prevented. Therefore, the reliability of the rotating shaft can be sufficiently ensured.
( 2 ) 上記目的を達成するために、 また本発明は、 ケーシングに圧縮機及び夕 —ビンを内包し、 上記圧縮機により吸気口から吸入した外気を圧縮して燃焼器に 送り込み、 この燃焼器から排出される燃焼ガスにより上記夕一ビンを回転させ発 電するガスタービン発電装置において、 上記タービン及び圧縮機の回転中心であ つて、'両端が上記タービン及び圧縮機に係合する大径部と、 この大径部に連設す る小径部とを有する回転軸と、 この回転軸の軸線方向が水平方向に対して回動す るよう、 上記ケーシングを支持する支持部材とを設ける。  (2) In order to achieve the above object, the present invention also provides a compressor and a vial which are enclosed in a casing, and the compressor compresses outside air taken from an intake port and sends it to a combustor. A gas turbine power generator that generates electricity by rotating the above-mentioned bin by the combustion gas discharged from the turbine, wherein the large-diameter portion is a rotation center of the above-mentioned turbine and compressor and both ends are engaged with the above-mentioned turbine and compressor. A rotary shaft having a small-diameter portion connected to the large-diameter portion; and a support member for supporting the casing such that the axial direction of the rotary shaft rotates in the horizontal direction.
( 3 ) 上記 (1 ) 又は (2 ) において、 好ましくは、 上記夕一ビンは、 上記回 転軸を接合する接合ボス部を備える。  (3) In the above (1) or (2), preferably, the evening bottle is provided with a joining boss for joining the rotating shaft.
( 4 ) 上記 (1 ) 〜 (3 ) のいずれか 1つにおいて、 好ましくは、 上記圧縮機 は、 上記回転軸の大径部に嵌合する軸穴を有し、 この圧縮機の軸穴及び上記大径 部の互いの接触面の少なくとも一部をテ一パ面又はラベット面とする。  (4) In any one of the above (1) to (3), preferably, the compressor has a shaft hole that fits into a large-diameter portion of the rotating shaft. At least a part of the contact surfaces of the large-diameter portions is a taper surface or a lavette surface.
( 5 ) 上記 (1 ) 〜 (4 ) のいずれか 1つにおいて、 また好ましくは、 上記圧 縮機に当接するよう上記回転軸の小径部に嵌合された口一夕シャフトを備え、 こ のロータシャフト及び上記圧縮機の互いの接触面の少なくとも一部をテーパ面又 はラベット面とする。  (5) In any one of the above (1) to (4), preferably, further comprising an orifice shaft fitted to a small-diameter portion of the rotary shaft so as to abut on the compressor. At least a part of the contact surface between the rotor shaft and the compressor is a tapered surface or a lavet surface.
( 6 ) 上記 (5 ) において、 また好ましくは、 上記ロータシャフトに当接する よう上記回転軸の小径部に嵌合された発電機の回転子を備え、 この回転子及び上 記口一夕シャフトの互いの接触面の少なくとも一部をテ一パ面又はラベット面と する。  (6) In the above (5), preferably, further comprising a rotor of a generator fitted to a small diameter portion of the rotating shaft so as to abut on the rotor shaft, wherein the rotor and the shaft of the opening and closing shaft are provided. At least a part of the contact surfaces is a taper surface or a lavette surface.
( 7 ) 上記 (4 ) 〜 (6 ) のいずれか 1つにおいて、 更に好ましくは、 上記接 触面に粗面加工を施す。 (8) 上記 (1) 〜 (7) のいずれか 1つにおいて、 また好ましくは、 上記回 転軸の小径部は、 材質の異なる複数の部分からなる。 (7) In any one of the above (4) to (6), more preferably, the contact surface is roughened. (8) In any one of the above (1) to (7), preferably, the small-diameter portion of the rotating shaft comprises a plurality of portions made of different materials.
(9) 上記 (1) 〜 (8) のいずれか 1つにおいて、 また好ましくは、 上記口 —夕シャフトを耐食性合金で形成する。  (9) In any one of the above (1) to (8), preferably, the mouth shaft is formed of a corrosion resistant alloy.
(10) 上記 (1) 〜 (9) のいずれか 1つにおいて、 好ましくは、 上記圧縮 機又はタービンを洗浄する洗浄装置をさらに備える。  (10) In any one of the above (1) to (9), preferably, the apparatus further comprises a washing device for washing the compressor or the turbine.
(11) 上記 (1) 〜 (10) のいずれか 1つにおいて、 好ましくは、 上記ケ —シングの吸気口近傍に冷却水を噴霧する冷却装置をさらに備える。  (11) In any one of the above (1) to (10), preferably, the apparatus further comprises a cooling device for spraying cooling water near an intake port of the casing.
(12) 上記 (1 1) において、 また好ましくは、 上記冷却装置に用いる冷却 水を冷媒として利用する。  (12) In (11) above, preferably, cooling water used for the cooling device is used as a refrigerant.
(13) 上記目的を達成するために、 本発明は、 ケーシングに圧縮機及び夕一 ビンを内包し、 上記圧縮機により吸気口から吸入した外気を圧縮して燃焼器に送 り込み、 この燃焼器から排出される燃焼ガスにより上記タービンを回転させ発電 するガスタービン発電装置の組立方法において、 上記タ一ビンの軸方向が略鉛直 となるように上記ケーシングを固定し、 このケ一シング内に、 上記タービンと、 大径部がこのタービンに接合し小径部が上記大径部に連設した回転軸を略鉛直方 向に組み込み、 略鉛直上向きの上記回転軸の小径部上端から圧縮機を組入れ、 上 記回転軸の大径部上端に嵌合させ、 この圧縮機に積み重ねるよう、 上記回転軸の 小径部に口一夕シャフト及び発電機の回転子を順次組み入れる。 図面の簡単な説明  (13) In order to achieve the above-described object, the present invention provides a compressor, which includes a compressor and an evening bottle in a casing, compresses outside air taken in from an intake port by the compressor, and sends the compressed air to a combustor. In the method of assembling a gas turbine power generator for generating electric power by rotating the turbine with the combustion gas discharged from a heater, the casing is fixed so that the axial direction of the turbine is substantially vertical, and the casing is fixed in the casing. The above-mentioned turbine and a rotary shaft having a large-diameter portion joined to the turbine and a small-diameter portion connected to the large-diameter portion are installed in a substantially vertical direction, and a compressor is installed from the upper end of the small-diameter portion of the rotary shaft, which is almost vertically upward. The rotary shaft is fitted to the upper end of the large-diameter portion of the rotating shaft, and the mouth shaft and the rotor of the generator are sequentially assembled into the small-diameter portion of the rotating shaft so as to be stacked on the compressor. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のガスタービン発電装置の第 1の実施の形態の全体構造を一部 断面で表す側面図である。  FIG. 1 is a side view showing a partial cross section of the entire structure of the first embodiment of the gas turbine power generator of the present invention.
図 2は、 本発明のガス夕一ビン発電装置の第 1の実施の形態に備えられた回転 体を抽出して表す一部断面図である。  FIG. 2 is a partial cross-sectional view illustrating a rotating body provided in the first embodiment of the gas evening bin power generator of the present invention.
図 3は、 本発明のガスタービン発電装置の第 1の実施の形態に備えられた洗浄 装置及び冷却装置の構造を模式的に表す図である。  FIG. 3 is a diagram schematically illustrating the structures of a cleaning device and a cooling device provided in the first embodiment of the gas turbine power generator of the present invention.
図 4は、 本発明のガスタービン発電装置の第 1の実施の形態の組立手順を表す 図である。 図 5は、 本発明のガスタービン発電装置の第 1の実施の形態の組立手順を表す 図である。 FIG. 4 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention. FIG. 5 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention.
図 6は、 本発明のガスタービン発電装置の第 1の実施の形態の組立手順を表す 図である。 '  FIG. 6 is a diagram illustrating an assembling procedure of the first embodiment of the gas turbine power generator of the present invention. '
図 7は、 本発明のガスタービン発電装置の第 1の実施の形態に備えられた回転 体の変形例を表す一部断面図である。 発明を実施するための最良の形態  FIG. 7 is a partial cross-sectional view illustrating a modification of the rotating body provided in the first embodiment of the gas turbine power generator of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のガスタービン発電装置の実施の形態を図面を用いて説明する。 図 1は本発明のガス夕一ビン発電装置の第 1の実施の形態の全体構造を一部断 面で表す側面図である。  Hereinafter, embodiments of the gas turbine power generation device of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing a partial cross section of the entire structure of a first embodiment of a gas evening bin power generator according to the present invention.
この図 1に示すように、 本実施の形態のガスタービン発電装置は、 マイクロガ ス夕一ビン (マイクロガスタービンに限らず、 単なるガスタービンでも良い) 1 と、 発電機 1 3とで構成されている。 また、 マイクロガス夕一ビン 1は、 ケ一シ ング 2と、 このケ一シング 2内に設けた圧縮機 3及びタービン 4と、 これら圧縮 機 3及び夕一ビン 4の回転軸となるタイボルト 5とで概略構成されている。  As shown in FIG. 1, the gas turbine power generation device of the present embodiment is composed of a micro gas evening bin (not limited to a micro gas turbine, but may be a simple gas turbine) 1 and a generator 13. I have. The micro gas evening bin 1 includes a casing 2, a compressor 3 and a turbine 4 provided in the casing 2, and a tie bolt 5 serving as a rotating shaft of the compressor 3 and the evening bin 4. It is roughly composed of
上記ケーシング 2は、 分割ケーシング 6, 7と、 これら分割ケ一シング 6, 7 に介設したスぺーサ 8と、 分割ケ一シング 7内に設けたインナーケ一シング 9と で構成されている。 分割ケ一シング 6, 7及びスぺーサ 8は、 分割ケーシング 6 , 7の対向端面にそれぞれ設けたフランジ 6 a , 7 aに、 スぺーサ 8を挟持した状 態でボルト 1 0 a及びナット 1 0 bにより締結されている。 また、 インナ一ケ一 シング 9は、 分割ケーシング 7に溶接されている。 但し、 このィンナ一ケーシン グ 9は、 分割ケ一シング 7に着脱可能な構成としても良いし、 精密铸造等により 分割ケーシング 7と一体成形するものとしても良い。 分割ケ一シング 6 , 7の内 周面は、 それぞれ上記圧縮機 3、 タービン 4の外周面に対し、 所定の間隙を介し て対向している。  The casing 2 is composed of split casings 6 and 7, a spacer 8 interposed between the split casings 6 and 7, and an inner casing 9 provided in the split casing 7. The split casings 6, 7 and the spacer 8 are provided with bolts 10a and nuts with the spacer 8 sandwiched between the flanges 6a, 7a provided on the opposite end faces of the split casings 6, 7 respectively. It is concluded by 10b. The inner casing 9 is welded to the split casing 7. However, the inner casing 9 may be configured to be detachable from the split casing 7, or may be integrally formed with the split casing 7 by precision construction or the like. The inner peripheral surfaces of the split casings 6 and 7 face the outer peripheral surfaces of the compressor 3 and the turbine 4 with a predetermined gap therebetween.
上記分割ケーシング 6の内部には、 吸気口 6 bを介して吸入した外気を導出す る流路 6 cが設けられており、 この流路 6 cから導出した外気は、 再生熱交換器 (図示せず) で予熱され、 燃焼器 (図示せず) に送り込まれるようになっている。 なお、 流路 6 cは、 圧縮機 3で圧縮された圧縮空気の通路であり、 特に図示しな いが、 通過する圧縮空気の圧力回復への配慮としてべ一ン等を設けると良い。 ま た、 繁雑防止のため特に図示しないが、 吸気口 6 bには外気とともに粉塵がケー シング 2内に吸入されることを防止するためにフィルタが設けられている。 また、 上記燃焼器は、 この流路 6 cを介して供給された外気に燃料を混合して 燃焼するもので、 この燃焼器からの燃焼ガスは、 インナーケ一シング 9内の流路 9 aに流入し、 ノズル 9 bを通過する際に整流されて排気口 9 cから導出され、 再生熱交換器に導かれるようになつている。 なお、 本実施の形態において、 ノズ ル 9 bは、 インナーケ一シング 9に例えばピン等で固定されている。 Inside the split casing 6, there is provided a flow path 6c for drawing outside air sucked through the intake port 6b, and the outside air drawn from the flow path 6c is supplied to the regenerative heat exchanger (see FIG. (Not shown) and sent to a combustor (not shown). The flow passage 6c is a passage for the compressed air compressed by the compressor 3, and although not particularly shown, a vane or the like may be provided in consideration of the pressure recovery of the passing compressed air. Although not particularly shown for the purpose of preventing complication, a filter is provided at the intake port 6b to prevent dust from being sucked into the casing 2 together with the outside air. The combustor mixes fuel with the outside air supplied through the flow path 6 c and burns the fuel. The combustion gas from the combustor flows into the flow path 9 a in the inner casing 9. When the gas flows in and passes through the nozzle 9b, it is rectified and discharged from the exhaust port 9c, and is guided to the regenerative heat exchanger. In the present embodiment, the nozzle 9 b is fixed to the inner casing 9 with, for example, a pin.
このとき、 ケーシング 2内の吸気側の流路 6 cは、 上記スぺーサ 8により排気 側の流路 9 aと隔てられている。 従って、 流路からの作動流体の漏れ防止への配 慮として、 スぺーサ 8には、 例えばラビリンスシールゃハニカムシール、 ブラシ シール等を設けることが望ましい。  At this time, the passage 6 c on the intake side in the casing 2 is separated from the passage 9 a on the exhaust side by the spacer 8. Therefore, it is preferable that the spacer 8 be provided with, for example, a labyrinth seal / honeycomb seal, a brush seal, etc., in order to prevent leakage of the working fluid from the flow path.
図 2は、 図 1に示したガスタービン発電装置内のロータ 1 6を抽出して表す一 部断面図である。 この図 2に示すように、 それぞれ詳細は後述するが、 口一夕 FIG. 2 is a partial cross-sectional view illustrating a rotor 16 in the gas turbine power generator shown in FIG. As shown in Fig. 2, although details are described later,
(回転体) 1 6は、 上記圧縮機 3、 ターピン 4及びタイボルト 5と、 後述の口一 夕シャフト 1 1及び回転子 1 4とで概略構成されている。 The (rotating body) 16 is roughly composed of the compressor 3, the tarpin 4, and the tie bolt 5, and a mouth shaft 11 and a rotor 14, which will be described later.
上記圧縮機 3は、 遠心圧縮機であり、 ディスク 3 aと、 このディスク 3 aに複 数設けられた翼部 3 bとで構成され、 精密铸造ゃ鍛造、 機械加工等により例えば チタン合金やアルミニウム合金等で成形されている。 また、 ディスク 3 aの回転 中心には、 上記タイポルト 5を揷通する軸穴 3 cが設けられている。  The compressor 3 is a centrifugal compressor, and is composed of a disk 3a and a plurality of wings 3b provided on the disk 3a. For example, titanium alloy or aluminum is formed by precision manufacturing, forging, machining, or the like. It is formed of an alloy or the like. Further, a shaft hole 3c passing through the tie port 5 is provided at the rotation center of the disk 3a.
上記ターピン 4は半径流タービンであり、 ディスク 4 aと、 このディスク 4 a に複数設けられた翼部 4 bと、 ディスク 4 aに突設した接合ボス部 4 c及びつか み部 4 dとで構成されている。 接合ボス部 4 cは、 タイボルト 5との接合部であ つて、 ディスク部 4 aに向かって拡径するよう、 外周部が R面形状に形成されて いる。 なお、 タービン 4は、 高温燃焼ガスにさらされるため、 精密铸造ゃ鍛造、 機械加工により、 例えばニッケル基超合金等で成形される。 また、 夕一ビン 4と タイボルト 5との接合方法としては、 摩擦圧接、 電子ビーム溶接、 拡散接合等が 好ましい。 つかみ部 4 dは、 例えばナット等のように平行面を有し、 所定の治ェ 具でつかみ易いような形状をしている。 このつかみ部 4 dは、 タービン 4とタイ ボルト 5の接合の際や、 タイボルト 5にプリテンションを加え、 ネジ部 5 b eに ナット 1 7を締め込む時 (後述) 等のために、 タービン 4を確実に固定できるよ う配慮されたものである。 The turpin 4 is a radial turbine, and includes a disk 4a, a plurality of blades 4b provided on the disk 4a, a joining boss 4c protruding from the disk 4a, and a grip 4d. It is configured. The joining boss portion 4c is a joining portion with the tie bolt 5, and the outer peripheral portion is formed into an R-shaped shape so that the diameter increases toward the disk portion 4a. Since the turbine 4 is exposed to the high-temperature combustion gas, the turbine 4 is formed by, for example, precision forging, forging, or machining with a nickel-based superalloy or the like. Further, as a joining method of the evening bin 4 and the tie bolt 5, friction welding, electron beam welding, diffusion joining, or the like is preferable. The grip portion 4d has a parallel surface such as a nut, and It has a shape that makes it easy to grasp with tools. The grip portion 4 d is used to connect the turbine 4 to the tie bolt 5, to apply pretension to the tie bolt 5, and to tighten the nut 17 into the screw portion 5 be (described later). It is designed to ensure that it can be fixed securely.
上記タイボルト 5は、 口一夕 1 6の回転中心であって、 大径部 5 aと、 この大 径部 5 aの他端 (図 2中右端) から延在した小径部 5 bとを有している。 大径部 5 aは、 一端 (図 2中左端) がタービン 4の接合ボス部 4 cに接合しており、 ま た他端 (図 2中右側) が圧縮機 3の上記軸穴 3 cに勘合している。 このとき、 こ の軸穴 3 cと大径部 5 aとの互いの接触面は、 一方側 (図 2中左側) に向かって 拡径するテーパ面となっている。  The tie bolt 5 is a rotation center of the mouth 16 and has a large diameter portion 5a and a small diameter portion 5b extending from the other end (the right end in FIG. 2) of the large diameter portion 5a. are doing. One end (the left end in FIG. 2) of the large diameter portion 5 a is joined to the joining boss 4 c of the turbine 4, and the other end (the right side in FIG. 2) is fitted to the shaft hole 3 c of the compressor 3. I'm fitting. At this time, the contact surface between the shaft hole 3c and the large-diameter portion 5a is a tapered surface that increases in diameter toward one side (the left side in FIG. 2).
また、 タイボルト 5の小径部 5 bは、 一端 (図 2中左端) 側の大径部 5 aとの 接続部 5 b aと、 この接続部 5 b aに接続した長軸部 5 b bと、 この長軸部 5 b bの他端 (図 2中右端) に設けたネジ部 5 b cとで構成されている。 接続部 5 b aは、 高温環境下にある夕一ビン 4に比較的近い場所に位置しており、 例えば二 ッケル基超合金等、 高温強度の高い材質で大径部 5 aと一体的に成形されている。 そして、 この接続部 5 b aは、 摩擦圧接等の手法により接合された長軸部 5 b b と共に小径部 5 bを構成している。 また、 本実施の形態において、 長軸部 5 b b は、 鉄系の廉価な材料を用いている。 このように、 本実施の形態において、 夕ィ ボルト 5の小径部 5 bは、 材質の異なる 2つの部分で構成されている。  The small-diameter portion 5b of the tie bolt 5 has a connection portion 5ba with the large-diameter portion 5a on one end (the left end in FIG. 2), a long-axis portion 5bb connected to the connection portion 5ba, and It consists of a screw 5bc provided at the other end (right end in Fig. 2) of the shaft 5bb. The connecting portion 5 ba is located relatively close to the bin 4 in a high-temperature environment, and is formed integrally with the large-diameter portion 5 a using a material having high high-temperature strength, such as a nickel-base superalloy. Have been. The connecting portion 5ba forms a small diameter portion 5b together with the long shaft portion 5bb joined by a method such as friction welding. In the present embodiment, the long shaft portion 5bb is made of an inexpensive iron-based material. As described above, in the present embodiment, the small-diameter portion 5b of the evening bolt 5 is composed of two portions having different materials.
また、 このタイボルト 5は、 前述のように、 タービン 4に接合されている。 接 合の際には、 タービン 4の上記つかみ部 4 dを把持し、 タイボルト 5の大径部 5 aをターピン 4の接合ボス部 4 cに例えば摩擦圧接等により接合する。 次に、 大 径部 5 aの他端 (図 2中右端) に位置する小径部 5 bの接続部 5 b aに、 上記長 軸部 5 b bを摩擦圧接する。 そして、 圧接後、 熱処理を行って残留応力の除去を 行い、 場合によっては、 合金の強度を向上させるための熱処理を行う。 なお、 最 終的には機械加工を行い、 タービン 4及びタイボルト 5のバランスを取る。  The tie bolt 5 is joined to the turbine 4 as described above. At the time of joining, the grip portion 4d of the turbine 4 is gripped, and the large-diameter portion 5a of the tie bolt 5 is joined to the joining boss portion 4c of the tarpin 4 by, for example, friction welding. Next, the long shaft portion 5bb is friction-welded to the connection portion 5ba of the small diameter portion 5b located at the other end (the right end in FIG. 2) of the large diameter portion 5a. After the pressure welding, heat treatment is performed to remove residual stress, and in some cases, heat treatment for improving the strength of the alloy is performed. Finally, machining will be performed to balance turbine 4 and tie bolts 5.
また、 図 2に示すように、 タービン 5の小径部 5 bには、 上記圧縮機 3に当接 するよう口一夕シャフト 1 1が嵌合 (緩嵌) されている。 このロータシャフト 1 1と圧縮機 3との互いの接触面は、 タービン 4に向かって (図 2中左方向に向か つて) 縮径するテーパ面となっている。 また、 口一夕シャフト 1 1の外周部には、 ラジアル方向及びスラスト方向の荷重を支えるベアリングカラー 1 2が嵌合され ている。 Further, as shown in FIG. 2, a small-diameter portion 5 b of the turbine 5 is fitted (loosely fitted) with a mouth shaft 11 so as to be in contact with the compressor 3. The contact surface between the rotor shaft 11 and the compressor 3 faces the turbine 4 (to the left in FIG. 2). The tapered surface has a reduced diameter. A bearing collar 12 for supporting loads in the radial and thrust directions is fitted to the outer peripheral portion of the mouth shaft 11.
また、 タイボルト 5の小径部 5 bには、 上記口一夕シャフト 1 1の他端 (図 2 中右端) に当接するよう発電機 1 3 (図 1参照) の回転子 1 4が嵌合 (緩嵌) さ れている。 この回転子 1 4は、 発電機コア 1 4 aと、 この発電機コア 1 4 aの外 周に設けられた永久磁石 1 4 bと、 この永久磁石 1 4 bの外周に設けたカバ一 1 4 cと、 軸方向一端 (図 2中左端) 側の端部カバ一 1 4 dとで構成されている。 発電機コア 1 4 aは、 磁性材料により略円筒形状に成形され、 回転中心に軸穴 1 4 eを有しており、 端部カバー 1 4 dを介してこの軸穴 1 4 eにタイポルト 5 の小径部 5 bが揷通されている。 永久磁石 1 4 bは、 複数のパーツで略円筒形状 に形成され (一体成形でも構わない) 、 発電機コア 1 4 aの外周に嵌合している。 回転子 1 4の最外周に位置するカバ一 1 4 cは、 回転の際、 永久磁石 1 4 bの飛 散や、 発電機コア 1 4 a及び永久磁石 1 4 b間のスリップを防止するものである。 また、 このカバー 1 4 cは、 永久磁石 1 4 bに対して締まり嵌めの嵌合構造とし、 永久磁石 1 4 bを発電機コア 1 4 aに対して径方向内側に押し付けるようにする と良い。 更に、 カバー 1 4 cの材質としては、 ニッケル基合金といった高強度な 非磁性金属や F R Pが好ましい。 上記端部カバ一 1 4 dは、 上記口一夕シャフト 1 1の他端 (図 2中右端) に嵌合しており、 この端部カバー 1 4 dとロータシャ フト 1 1との互いの接触面は、 タービン 4に向かって (図 2中左方向に) 拡開す るテ一パ面となっている。 そして、 ロータ 1 6は、 タ一ビン 4に接合した夕イボ ル卜 5に、 口一夕シャフト 1 1、 回転子 1 4、 抑えカバー 1 5を組込み、 夕イボ ルト 5の先端のネジ部 5 b cにナット 1 7を締め込み、 締結されている。  The rotor 14 of the generator 13 (see Fig. 1) is fitted to the small diameter portion 5b of the tie bolt 5 so as to abut the other end of the shaft 11 (the right end in Fig. 2) (see Fig. 1). (Loose fitting). The rotor 14 includes a generator core 14a, a permanent magnet 14b provided on an outer periphery of the generator core 14a, and a cover 1 provided on an outer periphery of the permanent magnet 14b. 4c and an end cover 14d at one end (the left end in FIG. 2) in the axial direction. The generator core 14a is formed of a magnetic material into a substantially cylindrical shape, has a shaft hole 14e at the center of rotation, and is connected to the shaft hole 14e via an end cover 14d. The small-diameter portion 5b is passed through. The permanent magnet 14b is formed into a substantially cylindrical shape by a plurality of parts (although it may be formed integrally), and is fitted on the outer periphery of the generator core 14a. The cover 14c located at the outermost periphery of the rotor 14 prevents the permanent magnets 14b from scattering or slipping between the generator core 14a and the permanent magnets 14b during rotation. It is. The cover 14c has a fitting structure of interference fit with the permanent magnet 14b, and the permanent magnet 14b is preferably pressed radially inward against the generator core 14a. . Further, as the material of the cover 14c, a high-strength non-magnetic metal such as a nickel-based alloy or FRP is preferable. The end cover 14 d is fitted to the other end of the shaft 11 (the right end in FIG. 2), and the end cover 14 d and the rotor shaft 11 are in contact with each other. The surface is a tapered surface that expands toward turbine 4 (to the left in FIG. 2). The rotor 16 incorporates the mouth shaft 5, the rotor 14, and the holding cover 15 into the evening bolt 5 joined to the vial 4, and the screw section 5 at the tip of the evening bolt 5 is assembled. Tighten nut 17 to bc.
なお、 抑えカバー 1 5には、 ラジアル方向の荷重を支えるベアリングカラ一 1 8が嵌合されている。 また、 前述したタイボルト 5及び圧縮機 3、 圧縮機 3及び 口一夕シャフト 1 1、 ロー夕シャフト 1 1及び回転子 1 4の各接触面には、 例え ばサンドブラストゃワイヤブラストといった手法により、 粗面加工が施されてい る。  Note that a bearing collar 18 that supports a load in the radial direction is fitted to the holding cover 15. In addition, the contact surfaces of the tie bolts 5 and the compressor 3, the compressor 3, the opening shaft 11, the shaft 11 and the rotor 14 described above are roughened by, for example, sand blasting and wire blasting. Surface processing is applied.
図 1に戻り、 上記分割ケ一シング 6の吸気口 6 bには、 ストラット 1 9が設け られ、 このストラット 1 9を介し、 ケーシング 2と発電機ケ一シング 2 0とが連 結されている。 この発電機ケ一シング 2 0は、 軸線方向両端の端部ケ一シング 2 0 a , 2 O bと、 これら端部ケ一シング 2 0 a, 2 0 bの間に位置するコイルケ 一シング 2 0 cと、 このコイルケーシング 2 0 cと上記端部ケ一シング 2 0 a , 2 0 bとのそれぞれの間に介設されたスぺ一サ 2 0 d, 2 0 eとで構成されてい る。 そして、 これらは、 その外周側において所定の間隔でタイボルト 5と略平行 なボルト穴 2 0 f に通しボルト 2 1 aを通し、 ナット 2 1 bにより締結されてい る。 Returning to FIG. 1, struts 19 are provided at the inlet 6b of the split casing 6 described above. The casing 2 and the generator casing 20 are connected via the strut 19. This generator casing 20 is composed of end casings 20a, 20b at both ends in the axial direction, and a coil casing 2 located between these end casings 20a, 20b. 0c, and spacers 20d, 20e interposed between the coil casing 20c and the end casings 20a, 20b, respectively. You. These are passed through bolt holes 21f substantially parallel to the tie bolts 5 at predetermined intervals on the outer peripheral side thereof, through bolts 21a, and fastened by nuts 21b.
発電機 1 3の端部ケーシング 2 0 aの内周側にはラジアルベアリング 2 2 a、 スラストベアリング 2 2 bが、 上記スぺ一サ 2 0 dの内周側にはスラストベアリ ング 2 2 cが嵌合しており、 これらベアリング 2 2 a〜2 2 cは、 前述のベアリ ングカラ一 1 2と共に口一夕 1 6の軸受を構成している。 また、 上記スぺーサ 2 0 eの内周側にはラジアルベアリング 2 3が嵌合しており、 このラジアルベアリ ング 2 3も、 前述のベアリングカラ一 1 8と共に口一夕 1 6の軸受を構成してい る。 このような軸受構造により、 上記ロータ 1 6は、 上記ケ一シング 2及び発電 機ケ一シング 2 0内で回転可能に支持されている。 なお、 この軸受構造は、 空気 軸受ゃ水軸受、 油軸受等の作動流体を用いた滑り軸受ゃ転がり軸受、 磁気軸受等 とする。 このとき、 軸受の作動流体として空気や水等を用いた場合、 作動流体内 には酸素や塩、 塩素等の腐食性物質が混入していることがあり、 この作動流体に 触れる位置にある上記口一夕シャフト 1 1や抑えカバ一 1 5の材質としては、 例 えば 1 2 C r鋼や 1 5 C r鋼、 アルミニウム合金、 或いはチタン合金等といった 耐食性合金が望ましい。  Radial bearings 22a and thrust bearings 22b are provided on the inner peripheral side of the end casing 20a of the generator 13 and thrust bearings 22c are provided on the inner peripheral side of the spacer 20d. These bearings 22 a to 22 c constitute the bearing of the opening 16 together with the above-mentioned bearing collars 12. A radial bearing 23 is fitted on the inner peripheral side of the spacer 20 e, and the radial bearing 23 also has the same bearing 16 as the above-mentioned bearing collar 18. Configured. With such a bearing structure, the rotor 16 is rotatably supported in the casing 2 and the generator casing 20. Note that this bearing structure shall be a sliding bearing using a working fluid such as an air bearing, a water bearing, or an oil bearing, a rolling bearing, or a magnetic bearing. At this time, if air or water is used as the working fluid of the bearing, corrosive substances such as oxygen, salt, and chlorine may be mixed in the working fluid. The material of the shaft 11 and the cover 15 is preferably a corrosion-resistant alloy such as 12Cr steel, 15Cr steel, an aluminum alloy, or a titanium alloy.
上記コイルケ一シング 2 0 cの内周には、 円筒状の内ケ一シング 2 4が嵌合さ れ、 更にこの内ケーシング 2 4の内周には、 巻線にて円筒状に形成されたコイル 2 5が嵌合されている。 このコイル 2 5の内周面は、 上記回転子 1 4の外周面と 所定の間隙を介して対向しており、 回転子 1 4が、 コイル 2 5の内周側で回転す ることにより発電するようになっている。 従って、 ロー夕 1 6の上記端部カバ一 1 4 dや抑えカバー 1 5の材質としては、 永久磁石 1 4 bからの磁束漏れを防止 するため、 非磁性合金が好ましい。 ここで、 繁雑防止のために図 1では図示省略しているが、 本実施の形態におい ては、 図 3に示すように、 圧縮機 3の洗浄装置 2 6及び冷却装置 2 7が備えられ ている。 A cylindrical inner casing 24 was fitted on the inner periphery of the coil casing 20 c, and further formed on the inner periphery of the inner casing 24 by winding with a winding. Coil 25 is fitted. The inner peripheral surface of the coil 25 is opposed to the outer peripheral surface of the rotor 14 via a predetermined gap, and the rotor 14 rotates on the inner peripheral side of the coil 25 to generate power. It is supposed to. Therefore, the material of the end cover 14 d of the rotor 16 and the holding cover 15 is preferably a non-magnetic alloy in order to prevent magnetic flux leakage from the permanent magnet 14 b. Here, although not shown in FIG. 1 for the purpose of preventing complexity, in the present embodiment, as shown in FIG. 3, a washing device 26 and a cooling device 27 of the compressor 3 are provided. I have.
図 3は、 これら洗浄装置 2 6及び冷却装置 2 7の構造を模式的に表す図である。 この図 3において、 洗浄装置 2 6は、 上記分割ケーシング 6に複数設けられた噴 射孔 2 6 aと、 洗浄液タンク 2 6 b及び貯水タンク 2 6 cと、 これら洗浄液タン ク 2 6 b及び貯水タンク 2 6 cと噴射孔 2 6 aとを接続する供給管 2 6 d〜2 6 f と、 これら供給管 2 6 d〜2 6 Πこそれぞれ設けたバルブ 2 6 g〜2 6 iとで 構成されるている。 そして、 洗浄液タンク 2 6 b及び貯水タンク 2 6 c内にそれ ぞれ貯留された洗浄液及び水は、 例えばポンプ (図示せず) 等により、 それぞれ 供給管路 2 6 e , 2 6 f に吐出されるようになっている。 従って、 バルブ 2 6 g , 2 6 hを開き、 バルブ 2 6 iを閉じると、 洗浄液タンク 2 6 b内の洗浄液が、 供 給管 2 6 e, 2 6 dを介して噴射孔 2 6 aへ導かれ、 圧縮機 3に噴射されるよう になっている。 また、 洗浄液を圧縮機 3に噴射した後は、 バルブ 2 6 gとバルブ 2 6 iを開き、 バルブ 2 6 hを閉じると、 貯水タンク 2 6 cから、 水が供給管 2 FIG. 3 is a diagram schematically illustrating the structures of the cleaning device 26 and the cooling device 27. In FIG. 3, the cleaning device 26 includes a plurality of spray holes 26a provided in the divided casing 6, a cleaning liquid tank 26b and a water storage tank 26c, a cleaning liquid tank 26b and a water storage tank 26c. It is composed of supply pipes 26 d to 26 f connecting the tank 26 c and the injection holes 26 a, and valves 26 g to 26 i provided respectively for these supply pipes 26 d to 26 p. Have been. The cleaning liquid and water stored in the cleaning liquid tank 26b and the water storage tank 26c, respectively, are discharged to the supply pipes 26e and 26f by, for example, a pump (not shown). It has become so. Therefore, when the valves 26 g and 26 h are opened and the valve 26 i is closed, the cleaning liquid in the cleaning liquid tank 26 b flows into the injection port 26 a through the supply pipes 26 e and 26 d. It is guided and injected into the compressor 3. After the cleaning liquid is injected into the compressor 3, the valve 26g and the valve 26i are opened, and when the valve 26h is closed, water is supplied from the water storage tank 26c to the supply pipe 2.
6 f、 2 6 dを介して噴射孔 2 6 aへ導かれ、 圧縮機 3に噴射されるようになつ ている。 これにより、 圧縮機 3に付着した粉塵や洗浄液を水洗し除去するように なっている。 このとき、 圧縮機 3を発電機 1 3をモータとして、 低速回転させる と効率的である。 It is guided to the injection hole 26 a through 6 f and 26 d and is injected into the compressor 3. As a result, dust and cleaning liquid adhering to the compressor 3 are washed out with water and removed. At this time, it is efficient to rotate the compressor 3 at a low speed using the generator 13 as a motor.
なお、 繁雑防止のため特に図示しないが、 分割ケーシング 6の下部 (この場合、 先の図 1中下側部分) には、 水抜き用の配管を設けられており、 洗浄液及び水が 排水されるようになっている。 また、 本実施の形態において、 洗浄装置 2 6は、 圧縮機 3を洗浄するものとしたが、 タービン 4の洗浄に用いても良いし、 圧縮機 3及び夕一ビン 4の双方の洗浄に用いる構成としても良い。  Although not particularly shown to prevent complication, a drain pipe is provided at the lower part of the split casing 6 (in this case, the lower part in FIG. 1) to drain the cleaning liquid and water. It has become. In the present embodiment, the cleaning device 26 is for cleaning the compressor 3, but may be used for cleaning the turbine 4 or for cleaning both the compressor 3 and the evening bin 4. It is good also as composition.
また図 3に示すように、 上記冷却装置 2 7は、 上記貯水タンク 2 6 c、 供給管 2 6 f及びバルブ 2 6 iと、 ケ一シング 2の吸気口 6 b近傍に位置するノズル 2 As shown in FIG. 3, the cooling device 27 includes the water storage tank 26 c, the supply pipe 26 f, the valve 26 i, and the nozzle 2 located near the intake port 6 b of the casing 2.
7 aと、 このノズル 2 7 aと供給管 2 6 ίとを接続する供給管 2 7 bと、 この供 給管 2 7 bに設けたバルブ 2 7 cとで構成されている。 これにより、 ガス夕一ビ ン発電装置の運転時に、 上記バルブ 2 6 g , 2 6 hを閉じ、 バルブ 2 6 i , 2 7 cを開けると、 貯水タンク 2 6 c内の水が、 供給管 2 6 f, 2 7 bを介しノズル 2 7 aから吸気口 6 b近傍に噴霧されるようになっている。 7a, a supply pipe 27b connecting the nozzle 27a and the supply pipe 26 #, and a valve 27c provided in the supply pipe 27b. As a result, during operation of the gas evening bin power generator, the valves 26 g and 26 h are closed and the valves 26 i and 27 When c is opened, water in the water storage tank 26c is sprayed from the nozzle 27a through the supply pipes 26f and 27b to the vicinity of the intake port 6b.
再び図 1に戻り、 本実施の形態のガスタービン発電装置には、 上記タイポルト 5の軸線方向が水平方向に対して回動するよう、 ケ一シング 2を支持する支持部 材 2 8が設けられている。 この支持部材 2 8は、 ピン 2 9を介して分割ケーシン グ 7に設けたボス 3 0に対して回動可能に支持されており、 複数 (この例では 4 本) のストッパ 3 1により、 分割ケ一シング 2に対して所定角度 (この例では略 9 0 ° ) づっ順次傾斜させた状態で固定可能になっている。 従って、 ガス夕一ビ ン発電装置の重量は、 上記ピン 2 9により支持され、 上記 4本のストッパ 3 1に よりモーメントが受けられている。 また、 支持部材 2 8の下端 (この場合、 図 1 中の下端) は、 ボルト締結や溶接等により基礎となるフレームに固定されている。 なお、 図 1のガス夕一ビン発電装置は、 このように支持部材 2 8による片持ち支 持構造であるが、 例えば発電機ケーシング 2 0の適宜の箇所に、 別途支持部材を 設け、 複数箇所で支持する構造としても良い。  Returning to FIG. 1 again, the gas turbine power generating device of the present embodiment is provided with a support member 28 that supports the casing 2 so that the axial direction of the tie port 5 rotates in the horizontal direction. ing. The support member 28 is rotatably supported by a boss 30 provided on the divided casing 7 via a pin 29, and is divided by a plurality of (four in this example) stoppers 31. The casing 2 can be fixed in a state in which the casing 2 is sequentially inclined at a predetermined angle (approximately 90 ° in this example). Therefore, the weight of the gas turbine is supported by the pins 29 and the moment is received by the four stoppers 31. The lower end of the support member 28 (in this case, the lower end in FIG. 1) is fixed to a base frame by bolting or welding. In addition, the gas evening bin power generation device in FIG. 1 has a cantilever support structure using the support member 28 as described above. For example, a support member is separately provided at an appropriate position of the generator casing 20 and a plurality of support members are provided. It is good also as a structure supported by.
ここで、 以下に本実施の形態のガスタービン発電装置の組立手順を図 4〜図 6 を用いて説明する。  Here, the procedure of assembling the gas turbine power generator according to the present embodiment will be described below with reference to FIGS.
本実施の形態のガスタービン発電装置を組立てる際には、 まず、 図 4に示すよ うに、 予めインナ一ケ一シング 9及びノズル 9 bを組込んだ分割ケ一シング 7を 支持部材 2 8に対して回動させ、 軸線方向が重力に対して略平行となるよう、 略 鉛直に倒立させた状態でストッパ 3 1により固定する。 次に、 夕一ビン 4及びこ れに接合したタイボルト 5をィンナ一ケーシング 9に組み込む。 このとき、 例え ばスぺーサ等の治具を用い、 夕一ビン 4がィンナーケ一シング 9やタービンノズ ル 9 bに対して所定の間隙を保つようにする。  When assembling the gas turbine power generator of the present embodiment, first, as shown in FIG. 4, a divided casing 7 incorporating an inner casing 9 and a nozzle 9b in advance is provided on a support member 28. Then, it is fixed by the stopper 31 in a state of being substantially vertically inverted so that the axial direction becomes substantially parallel to the gravity. Next, the evening bin 4 and the tie bolts 5 joined to the bin 4 are assembled into the inner casing 9. At this time, for example, a jig such as a spacer is used to keep a predetermined gap between the evening bin 4 and the inner casing 9 or the turbine nozzle 9b.
次に、 図 5に示したように、 スぺ一サ 8をタイボルト 5を通して分割ケ一シン グ 7のフランジ 7 aに重ね合わせ、 圧縮機 3をタイボルト 5の大径部 5 aに嵌合 させる。  Next, as shown in FIG. 5, the spacer 8 is overlapped with the flange 7a of the split casing 7 through the tie bolt 5, and the compressor 3 is fitted to the large diameter portion 5a of the tie bolt 5. .
その後、 図 6に示すように、 タイボルト 5を通して分割ケーシング 6をスぺー サ 8に重ね合わせ、 上記ボルト 1 0 a及びナツト 1 0 bによりケーシング 2の締 結を行う。 このとき、 分割ケーシング 6には、 予め上記ストラット 1 9を介して 発電機 1 3の端部ケーシング 2 0 aが連結されている。 この状態で、 端部ケーシ ング 2 0 aに上記ラジアルベアリング 2 2 a及びスラストベアリング 2 2 bを嵌 合する。 Thereafter, as shown in FIG. 6, the divided casing 6 is overlapped on the spacer 8 through the tie bolts 5, and the casing 2 is fastened by the bolts 10a and the nuts 10b. At this time, the split casing 6 is pre- The end casing 20a of the generator 13 is connected. In this state, the radial bearing 22a and the thrust bearing 22b are fitted to the end casing 20a.
次に、 予め上記ベアリングカラ一 1 2を嵌合したロー夕シャフト 1 1を夕イボ ルト 5に通し、 圧縮機 3に当接させる。 次に、 予め上記スラストベアリング 2 2 cを組込んだスぺ一サ 2 0 dを端部ケ一シング 2 0 aに重ね合わせる。 次に、 予 めコイル 2 5及び内ケーシング 2 4を組込んだコイルケーシング 2 0 cをスぺ一 サ 2 0 dに重ね合わせ、 予め組立てた上記回転子 1 4をタイボルト 5に組込んで ロー夕シャフト 1 1に当接させる。 そして、 上記抑えカバ一 1 5をタイボルト 5 に組込み、 予めラジアルベアリング 2 3を取り付けたスぺ一サ 2 0 eをコイルケ 一シング 2 0 cに重ね合わせた状態で、 抑えカバー 1 5に上記べァリングカラー 1 8を取り付ける。  Next, the rotor shaft 11 into which the bearing collars 12 are fitted in advance is passed through the evening elongate 5 and is brought into contact with the compressor 3. Next, a spacer 20d in which the above-mentioned thrust bearing 22c is previously assembled is superimposed on the end casing 20a. Next, a coil casing 20c in which the coil 25 and the inner casing 24 are assembled is superimposed on a spacer 20d, and the rotor 14 assembled in advance is assembled in a tie bolt 5, and Evening shaft 1 1 Then, the retaining cover 15 is assembled into the tie bolt 5, and the spacer 20e having the radial bearing 23 attached thereto is superimposed on the coil casing 20c. Mounting collar 1 8.
次に、 タイボルト 5のネジ部 5 b cにナット 1 7を締め込む。 このとき、 タイ ボルト 5にプリテンションを負荷するよう、 予め設定された伸び量をタイボルト 5に加えてナツト 1 7を締め込んだり、 予め設定された締め付けトルクでナツト 1 7を締結する。 また、 タイポルト 5にプリテンションを加えるときには、 前述 のように、 タービン 4のっかみ端 4 d (図 2参照) を治具で把持し、 タイボルト 5のネジ部 5 b cを引っ張れば良い。 そして、 発電機 1 3の端部ケーシング 2 0 bをスぺーサ 2 0 eに重ね合わせ、 上記通しボルト 2 1 a及びナツト 2 1 bによ り発電機ケ一シング' 2 0を締結する。 最後に、 分割ケーシング 7を支持部材 2 8 に対して回動させ、 先に図 1のように、 軸線方向が略水平となるよう、 ガス夕一 ビン発電装置を地面に対して略平行な状態とし、 この状態でストッパ 3 1により 分割ケ一シング 7を支持部材 2 8に対して固定する。  Next, the nut 17 is screwed into the screw portion 5 b c of the tie bolt 5. At this time, a predetermined amount of elongation is applied to the tie bolt 5 so that the tie bolt 5 is loaded with pretension, and the nut 17 is tightened, or the nut 17 is fastened with a predetermined tightening torque. When pretension is applied to the tie port 5, as described above, the grip end 4d (see FIG. 2) of the turbine 4 may be gripped with a jig and the screw portion 5bc of the tie bolt 5 may be pulled. Then, the end casing 20b of the generator 13 is overlapped with the spacer 20e, and the generator casing 20 is fastened by the through bolt 21a and the nut 21b. Finally, the split casing 7 is rotated with respect to the support member 28, and the gas turbine is set in a state substantially parallel to the ground so that the axial direction is substantially horizontal as shown in FIG. In this state, the split casing 7 is fixed to the support member 28 by the stopper 31.
なお、 この組立て手順では特に説明しないが、 図 3で説明した上記洗浄装置 2 6や冷却装置 2 7、 また図示しない燃焼器、 再生熱交換器等の他の機器は別途組 込む。 また、 分解の際には、 以上と逆の手順で行えば足りる。 この場合、 夕イボ ルト 5に締め付けられたナツト 1 7を緩める際には、 例えばパーナ等でタイボル ト 5に熱を加え、 タイポルト 5を伸長させれば容易となる。  Although not particularly described in this assembling procedure, the cleaning device 26 and the cooling device 27 described with reference to FIG. 3, and other devices such as a combustor and a regenerative heat exchanger (not shown) are separately incorporated. In the case of disassembly, the reverse procedure is sufficient. In this case, it is easy to loosen the nut 17 fastened to the evening bolt 5, for example, by applying heat to the tie bolt 5 with a wrench or the like to extend the tie bolt 5.
以下に、 以上のように構成され、 組立てられるガスタービン発電装置の基本動 作を説明する。 The basic operation of the gas turbine power generator constructed and assembled as described above is described below. Explain the work.
先の図 1において、 回転する圧縮機 3により、 吸気口 6 bを介して吸入された 外気が翼部 3 bで圧縮され、 ケーシング 2内の流路 6 cを介して再生熱交換器 (図示せず) に送り込まれる。 圧縮空気は、 再生熱交換器内で予熱され、 燃焼器 (図示せず) 内で燃料と共に燃焼される。 この燃焼器からの燃焼ガスは、 ケーシ ング 2内の流路 9 aに流入し、 ノズル 9 bで整流され、 翼部 4 bで膨張しタービ ン 4を回転させて排気口 9 cから導出される。 導出された燃焼ガスは、 再生熱交 換器に導かれる。  In FIG. 1 described above, the outside air sucked in through the intake port 6 b is compressed by the rotating blades 3 b by the rotating compressor 3, and the regenerative heat exchanger (FIG. (Not shown). The compressed air is preheated in a regenerative heat exchanger and burned with fuel in a combustor (not shown). The combustion gas from this combustor flows into the flow passage 9a in the casing 2, is rectified by the nozzle 9b, expands in the wing 4b, rotates the turbine 4, and is drawn out from the exhaust 9c. You. The derived combustion gas is led to the regenerative heat exchanger.
このようにタービン 4に与えられた回転力により、 発電機 1 3において、 回転 子 1 4がコイル 2 5内で高速回転して発電する。 コイル 2 5に誘起された交流電 流は、 別途設けた整流器により直流電流に変換され、 最終的にインバ一夕により 交流電流に変換される。  As described above, in the generator 13, the rotor 14 rotates at high speed in the coil 25 by the rotational force given to the turbine 4 to generate power. The AC current induced in the coil 25 is converted into a DC current by a rectifier separately provided, and finally converted into an AC current by an inverter.
以下に、 本実施の形態で得られる効果を順次説明する。  Hereinafter, effects obtained by the present embodiment will be sequentially described.
( 1 ) 回転軸の信頼性の向上  (1) Improved reliability of the rotating shaft
本実施の形態において、 ロータ 1 6の回転軸となるタイボルト 5は、 大径部 5 a及び小径部 5 bを有している。 そして、 タービン 4に接合した大径部 5 aに圧 縮機 3を組込み、 口一夕シャフト 1 1、 発電機 1 3の回転子 1 4等を、 タイボル ト 5の小径部 5 bに順次組み込む構成としている。 これにより、 タイボルト 5の 夕一ビン 4や圧縮機 3近傍部分は高温環境にさらされる可能性があるが、 この部 分の径を大きくすることにより、 高温環境下においても高速回転に十分耐えられ る強度を確保することができる。 また、 比較的低い温度環境下にあるロータシャ フト 1 1や回転子 1 4等は、 タイボルト 5の小径部 5 bに組込まれるため、 この 小径部 5 bを挿通する軸穴径を小さくすることができ、 軸穴内径付近に作用する フープ応力を低減することができる。 従って、 タイポルト 5を高速回転に十分耐 えられる構成とすることができるので、 回転軸の信頼性を十分に確保することが できる。  In the present embodiment, the tie bolt 5 serving as the rotating shaft of the rotor 16 has a large diameter portion 5a and a small diameter portion 5b. The compressor 3 is assembled into the large-diameter portion 5a joined to the turbine 4, and the shaft 11 and the rotor 14 of the generator 13 are sequentially assembled into the small-diameter portion 5b of the tie bolt 5. It has a configuration. As a result, the part near the evening bin 4 and the compressor 3 of the tie bolt 5 may be exposed to a high-temperature environment, but by increasing the diameter of this part, it can withstand high-speed rotation even in a high-temperature environment. Strength can be secured. In addition, since the rotor shaft 11 and the rotor 14 in a relatively low temperature environment are incorporated into the small diameter portion 5b of the tie bolt 5, the diameter of the shaft hole through which the small diameter portion 5b is inserted can be reduced. As a result, hoop stress acting near the inner diameter of the shaft hole can be reduced. Therefore, since the tie port 5 can be configured to be sufficiently resistant to high-speed rotation, the reliability of the rotating shaft can be sufficiently ensured.
( 2 ) タービン及びタイボルトの接合強度向上  (2) Improvement of joint strength between turbine and tie bolts
本実施の形態では、 夕一ビン 4にはタイボルト 5を挿通する軸穴を設けず、 夕 ィボルト 5の大径部 5 aの一端がタービン 4に接合する構成であるため、 タービ ン 4に作用するフープ応力の問題は生じない。 また、 本実施の形態においては、 夕一ビン 4にタイボルト 5との接合ボス部 4 cを設けているので、 タービン 4と タイボルト 5との接合部には、 実質的に周辺部位と断面積の変化はなく、 接合部 への応力集中を防止することができる。 従って、 タービン 4とタイボルト 5との 接合強度を向上することができる。 In the present embodiment, the evening bin 4 is not provided with a shaft hole through which the tie bolt 5 is inserted, and one end of the large diameter portion 5 a of the evening bolt 5 is joined to the turbine 4. The problem of hoop stress acting on pin 4 does not arise. Further, in the present embodiment, since the connecting boss portion 4c for the tie bolt 5 is provided in the evening bin 4, the connecting portion between the turbine 4 and the tie bolt 5 has substantially the same cross-sectional area as the peripheral portion. There is no change and stress concentration on the joint can be prevented. Therefore, the joining strength between the turbine 4 and the tie bolt 5 can be improved.
また、 接合ボス部 4 cの外周部は、 タービン 4のディスク 4 aに向かって拡径 するよう、 R面形状としているので、 接合ボス部 4 cとディスク部 4 aとの境界 部分への応力集中を低減することができる。  Also, since the outer peripheral portion of the joining boss 4c is formed into an R-shaped surface so as to expand toward the disk 4a of the turbine 4, stress on the boundary between the joining boss 4c and the disk 4a is obtained. Concentration can be reduced.
( 3 ) 組立 .分解の作業性向上及び口一夕の芯出し精度向上  (3) Improvement of disassembly workability and improvement of centering accuracy
本実施の形態においては、 分割ケ一シング 7に対して回動可能な支持部材 2 8 を設け、 組立 ·分解時、 支持部材 2 8に対し分割ケーシング 7を回動させ、 軸線 方向 (つまりタイボルト 5の長手方向) を略鉛直方向にすることができる。 これ により、 ガスタービン発電装置の組立 ·分解の作業性を向上させることができる と共に、 口一夕 1 6の芯出し精度を向上させることが可能となる。 つまり組立の 際、 軸線方向が略鉛直方向となるため、 タイボルト 5に圧縮機 3、 ロータシャフ ト 1 1、 回転子 1 4等を順次組入れてロータ 1 6を組立てていく場合、 口一夕 1 6の径方向への重力の影響がなく、 作業性が向上すると共に、 ロータ 1 6の芯ず れ、 またこのロータ 1 6を含めた各機器の径方向への位置ずれを防止することが できる。 また、 分解の際も同様である。  In the present embodiment, a support member 28 that is rotatable with respect to the split casing 7 is provided, and during assembly and disassembly, the split casing 7 is turned with respect to the support member 28 so that the split casing 7 is rotated in the axial direction (that is, the tie bolts). 5 in the longitudinal direction) can be substantially vertical. As a result, the workability of assembling and disassembling the gas turbine power generator can be improved, and the centering accuracy of the mouth 16 can be improved. In other words, since the axial direction is substantially vertical during assembly, when assembling the rotor 16 with the compressor 3, the rotor shaft 11, the rotor 14 and the like sequentially incorporated in the tie bolt 5, the opening 16 There is no influence of gravity in the radial direction, and workability is improved, and the center of the rotor 16 can be prevented from being displaced, and the displacement of each device including the rotor 16 in the radial direction can be prevented. The same applies to disassembly.
なお、 本実施の形態においては、 軸線方向を略鉛直方向とした状態で分割ケー シング 7を固定するために、 回動可能な支持部材 2 8を用いたが、 同様の効果を 得る限りにおいては必ずしもこのような構成に限られない。 例えば、 分割ケ一シ ング 7の排気口 9 c側の端面を平滑にし、 例えば定盤上にその端面を着座させる 形で分割ケ一シング 7を固定しても良い。 また、 同様に、 別途架台を設け、 この 架台で上記分割ケーシング 7のフランジ 7 aを水平に受け、 固定しても良い。 更 に、 軸線方向を略鉛直とした姿勢で分割ケーシング 7をクレーンやワイヤ一等で 吊り、 この状態で固定する方法等も考えられる。 伹し、 いずれにしても、 作業中 に装置が転倒したりしないよう、 例えば適宜補助の支持部材等を設けることが望 ましい。 ( 4 ) ロータ芯出し精度の更なる向上 In the present embodiment, the rotatable support member 28 is used in order to fix the divided casing 7 in a state where the axial direction is substantially vertical, but as long as the same effect is obtained, It is not necessarily limited to such a configuration. For example, the end surface of the split casing 7 on the exhaust port 9c side may be smoothed, and the split casing 7 may be fixed in such a manner that the end face is seated on a surface plate, for example. Similarly, a stand may be provided separately, and the flange 7a of the divided casing 7 may be horizontally received and fixed by the stand. Furthermore, a method of suspending the divided casing 7 with a crane, a wire, or the like in a posture in which the axial direction is substantially vertical, and fixing the divided casing 7 in this state is also conceivable. However, in any case, it is desirable to provide, for example, an auxiliary support member appropriately so that the device does not fall down during the work. (4) Further improvement of rotor centering accuracy
本実施の形態において、 ロータ 1 6は、 圧縮機 3、 タービン 4、 タイボルト 5、 ロータシャフト 1 1、 回転子 1 4等、 多数の構成要素から組立てられるため、 こ れら各構成要素の重心とロータ 1 6の回転中心とのずれ量を全くなくすことは難 しい。 しかしながら、 通常、 マイクロガス夕一ビンの口一夕 (回転体) は、 約 4 0 0 0 0〜 1 3 0 0 0 0 [ r p m] といった高速回転で運転されるため、 各構成 要素の芯ずれが大きくなると、 ロー夕の残留アンバランスが大きくなり、 危険速 度での振動が大きくなる恐れがあった。 従って、 マイクロガスタービンにおいて、 回転体ロー夕の芯出し精度の向上は特に重要な課題となる。  In the present embodiment, the rotor 16 is assembled from a number of components such as the compressor 3, the turbine 4, the tie bolts 5, the rotor shaft 11, the rotor 14, and the like. It is difficult to completely eliminate the amount of deviation from the rotation center of the rotor 16. However, usually, the mouth (rotator) of the micro gas bottle is operated at a high speed of about 400 to 1300 [rpm], and the misalignment of each component When the wind speed became large, the residual unbalance in the sunset was large, and there was a risk that vibration at dangerous speeds would increase. Therefore, it is particularly important to improve the centering accuracy of the rotor in a micro gas turbine.
そこで、 本実施の形態では、 圧縮機 4及びタイボルト 5、 圧縮機 4及びロー夕 シャフト 1 1、 ロータシャフト 1 1及び回転子 1 4において、 それぞれ互いの接 触面をテ一パ面としている。 このように、 互いの接触面をテ一パ面とすることに より、 このテ一パ面が案内面となり、 圧縮機 3、 タイボルト 5、 口一夕シャフト 1 1、 回転子 1 4の芯づれを抑制し、 ロー夕 1 6の製作時の残留アンバランス量 を低減することができる。 このとき、 タービン 4及びタイボルト 5は、 接合後、 最終的に機械加工でバランスが取られている。 従って、 本実施の形態によれば、 口一夕 1 6の芯出し精度を更に向上することができる。  Therefore, in the present embodiment, the compressor 4 and the tie bolt 5, the compressor 4, the rotor shaft 11, the rotor shaft 11 and the rotor 14 have their respective contact surfaces as tapered surfaces. In this way, by making the contact surfaces of each other tapered surfaces, the tapered surfaces serve as guide surfaces, and the compressor 3, the tie bolts 5, the mouth shafts 11, and the rotors 14 are aligned. , And the amount of residual unbalance during the production of the Rho-Yu 16 can be reduced. At this time, after joining, the turbine 4 and the tie bolt 5 are finally balanced by machining. Therefore, according to the present embodiment, the centering accuracy of the mouth 16 can be further improved.
また、 本実施の形態では、 圧縮機 3及びタイボルト 5の接触面を全体的にテ一 パ面とする構成としたが、 必ずしも接触面全部をテ一パにする必要はなく、 適宜 部分的にテ一パ面で接触する構成とすれば足りる。  Further, in the present embodiment, the contact surfaces of the compressor 3 and the tie bolts 5 are configured as tapered surfaces as a whole. However, it is not always necessary that the entire contact surfaces be tapered, It suffices to have a configuration in which the taper surface makes contact.
また、 口一夕 1 6の芯出し精度を向上させる限りにおいては、 必ずしも各構成 要素の接触面をテーパ面とする構成に限られず、 図 7に示したロータ 1 6 Aのよ うに、 各構成要素の互いの接触面をラベット面とする構成等も考えられる。 この 場合も同様の効果を得ることができる。 なお、 図 7に示した口一夕 1 6 Aと図 2 のロータ 1 6との異なる点は、 圧縮機 4及びタイボルト 5、 圧縮機 4及びロータ シャフト 1 1、 ロータシャフト 1 1及び回転子 1 4における互いの接触面を、 そ れぞれラベット面としている点で、 その他の構成は同様である。  In addition, as long as the centering accuracy of the mouth 16 is improved, the configuration is not necessarily limited to the configuration in which the contact surface of each component is a tapered surface. It is also conceivable to employ a configuration in which the contact surfaces of the elements are set as a lavette surface. In this case, the same effect can be obtained. The difference between the mouth 16A shown in Fig. 7 and the rotor 16 in Fig. 2 is that the compressor 4 and tie bolts 5, the compressor 4 and the rotor shaft 11, the rotor shaft 11 and the rotor 1 The other configurations are the same in that the contact surfaces in 4 are each a lavette surface.
また、 本実施の形態において、 圧縮機 4及びタイポルト 5、 圧縮機 4及びロー 夕シャフト 1 1、 ロータシャフト 1 1及び回転子 1 4の各接触面を全てテーパ面 (又はラベット面) としたが、 必す'しも全ての接触面をテ一パ面 (又はラベット 面) としなくとも、 これら 3箇所の接触面のうち、 少なくとも 1箇所をテーパ面 (又はラベット面) とすれば、 その分、 芯出し精度を向上させることはできる。 In the present embodiment, the contact surfaces of the compressor 4 and the tie port 5, the compressor 4 and the rotor shaft 11, the rotor shaft 11 and the rotor 14 are all tapered. (Or lavet surface), but it is essential that at least one of these three contact surfaces be a tapered surface (or lavet surface) even if all the contact surfaces are not tapered surfaces (or lavet surfaces). Surface), the centering accuracy can be improved accordingly.
( 5 ) 口一夕の各構成要素間の摩擦伝達効率向上  (5) Improve friction transfer efficiency between components in the mouth
本実施の形態において、 口一夕 1 6は、 前述のように、 タービン 4にタイボル ト 5を圧接し、 このタイポルト 5に圧縮機 3、 ロータシャフト 1 1、 回転子 1 4 を組込んで締結した構造である。 この構造において、 圧縮機 3、 ロータシャフト 1 1、 回転子 1 4には、 タイボルト 5及び圧縮機 3、 圧縮機 3及び口一タシャフ ト 1 1、 ロータシャフト 1 1及び回転子 1 4の各接触面に作用する摩擦力により、 回転力が付与される。 そして、 この摩擦力は、 タイボルト 5の張力による押付力 により付与されるものである。  In the present embodiment, as described above, tie bolt 16 presses tie bolt 5 against turbine 4 and incorporates compressor 3, rotor shaft 11, and rotor 14 into tie port 5 for fastening. It is the structure which did. In this structure, the compressor 3, the rotor shaft 11 and the rotor 14 are in contact with the tie bolt 5 and the compressor 3, the compressor 3 and the mouthshaft 11 and the rotor shaft 11 and the rotor 14 respectively. Rotational force is applied by the frictional force acting on the surface. This frictional force is applied by the pressing force due to the tension of the tie bolt 5.
従って、 稼動中、 タイポルト 5が熱せられ伸長した場合には、 タイボルト 5の 張力が低下し、 上記各接触面における摩擦伝達効率が低下する可能性がある。 ま た、 口一夕 1 6は高速回転するため、 圧縮機 3、 ロータシャフト 1 1、 回転子 1 4等には遠心力により径方向に引張応力が作用し、 その結果、 軸線方向に圧縮応 力が作用する。 これによつても上記各接触面における押付力が低下し、 摩擦伝達 効率が低下してしまう可能性がある。  Therefore, when the tie port 5 is heated and extended during operation, the tension of the tie bolt 5 is reduced, and the friction transfer efficiency at each of the contact surfaces may be reduced. In addition, since the mouth 16 rotates at high speed, the compressor 3, the rotor shaft 11, the rotor 14 and the like are subjected to a tensile stress in the radial direction due to centrifugal force. Force acts. Also according to this, the pressing force on each of the contact surfaces may be reduced, and the friction transfer efficiency may be reduced.
本実施の形態においては、 上記各接触面において、 粗面加工を施すことにより、 タイボルト 6の張力が低下した場合等においても、 ロー夕 1 6の各構成要素間の 摩擦伝達効率の低下を抑制することができる。 なお、 このように摩擦伝達効率の 低下を防止する限りにおいては、 このような構成に限る必要はなく、 タイボルト 5及び口一夕シャフト 1 1、 圧縮機 3及びロータシャフト 1 1、 口一夕シャフト 1 1及び回転子 1 4のそれぞれの対向端部を、 例えばスプライン等、 歯車状に成 形し、 互いに嵌合する構成としても良い。  In the present embodiment, the above-described contact surfaces are roughened to suppress a decrease in frictional transfer efficiency between the components of the louver 16 even when the tension of the tie bolts 6 is reduced. can do. It should be noted that, as long as the friction transmission efficiency is prevented from lowering in this way, it is not necessary to limit to such a configuration. The tie bolt 5 and the mouth shaft 11, the compressor 3 and the rotor shaft 11, the mouth shaft The opposing end portions of the rotor 11 and the rotor 14 may be formed in a gear shape such as a spline, for example, and may be configured to be fitted to each other.
( 6 ) ロータの腐食防止  (6) Prevention of rotor corrosion
本実施の形態においては、 それぞれベアリングカラー 1 2, 1 8を嵌合した口 一夕シャフト 1 1及び抑えカバ一 1 5を、 耐食性合金を用いて成形したことによ り、 軸受の作動流体との接触による腐食、 腐食ピットを防止することができる。 その結果、 ロータ 1 6の信頼性を向上させることができる。 ( 7 ) タイポルトの信頼性向上及びコスト低減 In the present embodiment, the opening shaft 11 and the holding cover 15 into which the bearing collars 12 and 18 are fitted, respectively, are molded using a corrosion-resistant alloy, so that the working fluid of the bearing and Corrosion and corrosion pits due to contact with the surface can be prevented. As a result, the reliability of the rotor 16 can be improved. (7) Improved reliability and cost reduction of tieport
本実施の形態において、 タイポルト 5は夕一ビン 4に接合されるため、 この接 合面は高温環境下にある。 通常、 このような高温にさらされる部品の材質として は、 ニッケル基超合金等、 高温での強度が高い材質が用いられる。 しかしながら、 タイボルト 5は比較的長尺な部品であり、 夕一ビン 4との距離が遠い部分では、 比較的低い温度環境下にあり、 全長に渡って高温環境下にあるわけではない。 そ のため、 タイポルト 5の全ての部分を高価なニッケル基超合金で形成した場合、 タイポルト 5は過剰品質となり、 製作コストも上がってしまう。  In the present embodiment, since the tie port 5 is joined to the bin 4 at night, this joining surface is under a high temperature environment. Usually, materials having high strength at high temperatures, such as nickel-base superalloys, are used as materials for components exposed to such high temperatures. However, the tie bolt 5 is a relatively long part, and the part far from the evening bin 4 is in a relatively low temperature environment, not in a high temperature environment over the entire length. Therefore, if all parts of Typo 5 were formed from expensive nickel-base superalloys, Typo 5 would be of excessive quality and production costs would increase.
そこで、 本実施の形態において、 タイボルト 5は、 前述のように、 大径部 5 a 及び小径部 5 bの接続部 5 b aのみをニッケル基超合金で構成し、 それ以外の部 分を鉄系の材質で構成している。 このように、 各部の周辺の温度環境を考慮し、 タイボルト 5を材質の異なる複数の部分を接合して構成したことにより、 夕イボ ルト 5の信頼性を確保しつつも、 製作コストを低減することができる。  Therefore, in the present embodiment, as described above, the tie bolt 5 is configured such that only the connecting portion 5 ba of the large diameter portion 5 a and the small diameter portion 5 b is made of a nickel-based superalloy, and the other portions are iron-based. It consists of the material of. In this way, by taking into account the temperature environment around each part, the tie bolt 5 is formed by joining a plurality of parts made of different materials, thereby reducing the manufacturing cost while securing the reliability of the evening bolt 5. be able to.
( 8 ) 圧縮機の効率低下及び腐食の防止  (8) Compressor efficiency reduction and corrosion prevention
吸気口 6 bから外気を吸い込む際、 前述のフィル夕 (図示せず) では吸気に含 まれる微細な粉塵を完全に除去することは難しい。 そのた.め、 粉塵がケ一シング 2内に入り込み、 圧縮機 3やタービン 4に付着し圧縮機 3やタービン 4が腐食し てしまい、 圧縮機効率が低下してしまう場合がある。 その結果、 発電効率の低下 につながる恐れがある。  When sucking outside air from the intake port 6b, it is difficult to completely remove fine dust contained in the intake air at the above-mentioned filter (not shown). For this reason, dust may enter the casing 2 and adhere to the compressor 3 and the turbine 4 to corrode the compressor 3 and the turbine 4 and reduce the compressor efficiency. As a result, power generation efficiency may be reduced.
本実施の形態においては、 洗浄装置 2 6を設け、 圧縮機 3に付着した粉塵を適 宜洗い落とす構成としている。 また、 勿論、 この洗浄装置 2 6は、 タ一ビン 4の 洗浄にも適用可能である。 これにより、 圧縮機 3及びタービン 4の腐食を防止し、 圧縮機効率の低下を防止することができる。 その結果、 発電効率の低下を抑制す ることができる。  In the present embodiment, a cleaning device 26 is provided to appropriately remove dust adhering to the compressor 3. Also, of course, the cleaning device 26 is applicable to cleaning of the vials 4. Thereby, corrosion of the compressor 3 and the turbine 4 can be prevented, and a decrease in compressor efficiency can be prevented. As a result, a decrease in power generation efficiency can be suppressed.
( 9 ) 発電効率向上  (9) Improving power generation efficiency
本実施の形態のガスタービン発電装置は、 圧縮機 3とタービン 4を 1段づっ備 えた単純サイクルであるため、 このままでは、 圧縮比やタービン入口温度を上昇 させることは難しく、 発電効率の向上は困難である。  Since the gas turbine power generation device of the present embodiment is a simple cycle having one stage of the compressor 3 and the turbine 4, it is difficult to increase the compression ratio and the turbine inlet temperature, and the power generation efficiency cannot be improved. Have difficulty.
そこで本実施の形態においては、 冷却装置 2 7を設け、 この冷却装置 2 7によ りケ一シング 2の吸気口 6 b近傍に水を噴霧する構成とし、 ケ一シング 2内に吸 入される外気の温度を低下させるようにしている。 これにより、 吸入される外気 を濃密にし、 また圧縮過程における熱の損失を抑制することができるので、 熱効 率を向上させることができ、 発電効率を向上させることができる。 Therefore, in the present embodiment, a cooling device 27 is provided. Water is sprayed in the vicinity of the intake port 6b of the casing 2 so as to lower the temperature of the outside air taken into the casing 2. As a result, the outside air to be taken in is made denser, and the heat loss in the compression process can be suppressed, so that the heat efficiency can be improved and the power generation efficiency can be improved.
また、 本実施の形態においては、 永久磁石 1 4 bの軸方向両端に位置する上記 端部カバー 1 4 d及び抑えカバー 1 5を非磁性合金で構成することにより、 発電 機 1 3における磁束漏れを抑制しているので、 これによつても発電効率を向上さ せることができる。  Also, in the present embodiment, the end cover 14 d and the holding cover 15 located at both ends in the axial direction of the permanent magnet 14 b are made of a non-magnetic alloy, so that the magnetic flux leakage in the generator 13 is reduced. As a result, the power generation efficiency can be improved.
なお、 冷却装置 2 7により吸気口 6 b付近に水を噴霧することにより、 燃焼用 空気を高湿分空気とすることもできる。  In addition, by spraying water near the intake port 6b with the cooling device 27, the combustion air can be made into high humidity air.
( 1 0 ) ロータの過熱防止  (10) Prevent rotor overheating
タービン 4は、 稼動中、 常時燃焼ガスに触れるため、 稼動時間が長時間になる と、 '口一夕 1 6全体の温度が徐々に上昇してしまい、 クリープ変形や熱疲労等に よる損傷を招き、 これによりロー夕 1 6の信頼性が低下する場合がある。 また、 このように温度が上昇すると、 回転子 1 4内の永久磁石 1 4 bの温度がキューリ 一点を越え、 発電効率が低下してしまう可能性がある。 また、 永久磁石 1 4 の 温度上昇の要因としては、 発電機 1 3の損失によるジュール熱もある。  Since the turbine 4 is constantly in contact with the combustion gas during operation, if the operation time is long, the temperature of the entire mouth 16 gradually rises, causing damage due to creep deformation, thermal fatigue, etc. In some cases, this may reduce the reliability of Law 16. Also, when the temperature rises in this way, the temperature of the permanent magnet 14b in the rotor 14 may exceed one Curie point, and the power generation efficiency may be reduced. The temperature rise of the permanent magnets 14 also includes Joule heat due to the loss of the generator 13.
本実施の形態においては、 上記冷却装置 2 7より供給する水を、 例えば、 ケ一 シング 2や発電機ケ一シング 2 0、 コイル 2 5、 或いは図示しない燃焼器や再生 熱交換器、 インバー夕等の冷 ¾Hこ適宜用いれば、 ロータ 1 6の過熱を防止するこ とができる。 その結果、 ロータ 1 6の信頼性の低下を防止することができると共 に、 発電効率低下を防止することができる。 産業上の利用可能性  In the present embodiment, the water supplied from the cooling device 27 is supplied to, for example, the casing 2, the generator casing 20, the coil 25, or a combustor, a regenerative heat exchanger (not shown), or an inverter. By appropriately using cooling water such as the above, overheating of the rotor 16 can be prevented. As a result, a reduction in the reliability of the rotor 16 can be prevented, and a reduction in the power generation efficiency can be prevented. Industrial applicability
本発明によれば、 タービン及び圧縮機の回転中心となる回転軸は、 大径部及び 小径部を有している。 そして、 回転軸におけるタービン及び圧縮機と係合する部 分を大径部とし、 発電機の回転子等は、 回転軸の小径部に組み込む構成としてい る。 つまり、 回転軸は、 タービンと比較的近い部分において径が大きく、 高温環 境下での高速回転に十分耐えられる強度を確保することができる。 また、 発電機 の回転子等は、 回転軸の小径部に組込まれるため、 この回転軸を挿通する軸穴の 径を小さくすることができるので、 前述のフープ応力を低減することができ、 短 命化を防止することができる。 従って、 回転軸の信頼性を十分に確保することが できる。 According to the present invention, the rotating shaft serving as the rotation center of the turbine and the compressor has a large diameter portion and a small diameter portion. The portion of the rotating shaft that engages with the turbine and the compressor is a large-diameter portion, and the rotor of the generator is incorporated in the small-diameter portion of the rotating shaft. In other words, the rotating shaft has a large diameter in a portion relatively close to the turbine, and can secure sufficient strength to withstand high-speed rotation in a high-temperature environment. Also, the generator Since the rotor, etc., is incorporated in the small-diameter portion of the rotating shaft, the diameter of the shaft hole through which the rotating shaft is inserted can be reduced, so that the hoop stress described above can be reduced and the lifespan can be prevented. can do. Therefore, the reliability of the rotating shaft can be sufficiently ensured.

Claims

請求の範囲 The scope of the claims
1 . ケーシングに圧縮機及びタービンを内包し、 上記圧縮機により吸気口から吸 入した外気を圧縮して燃焼器に送り込み、 この燃焼器から排出される燃焼ガスに より上記タービンを回転させ発電するガス夕一ビン発電装置において、 1. A compressor and a turbine are contained in a casing, the compressor compresses the outside air taken in from an intake port and sends it to a combustor. The combustion gas discharged from the combustor rotates the turbine to generate power. In the gas evening bin power generator,
上記夕一ビン及び圧縮機の回転中心であって、 両端が上記タービン及び圧縮機 に係合する大径部と、 この大径部に連設する小径部とを有する回転軸を備えたこ とを特徴とするガスタービン発電装置。  A rotating shaft having a large diameter portion, both ends of which are engaged with the turbine and the compressor, and a small diameter portion connected to the large diameter portion. Characteristic gas turbine power generator.
2 . ケ一シングに圧縮機及び夕一ビンを内包し、 上記圧縮機により吸気口から吸 入した外気を圧縮して燃焼器に送り込み、 この燃焼器から排出される燃焼ガスに より上記タービンを回転させ発電するガスタービン発電装置において、 2. Casing includes a compressor and an evening bottle, compresses the outside air taken in from the intake port by the compressor, sends it to the combustor, and uses the combustion gas discharged from the combustor to operate the turbine. In a gas turbine power generator that rotates and generates power,
上記タービン及び圧縮機の回転中心であって、 両端が上記タービン及び圧縮機 に係合する大径部と、 この大径部に連設する小径部とを有する回転軸と、  A rotating shaft having a large-diameter portion, both ends of which are engaged with the turbine and the compressor, and a small-diameter portion connected to the large-diameter portion;
この回転軸の軸線方向が水平方向に対して回動するよう、 上記ケ一シングを支 持する支持部材とを設けたことを特徴とするガスタービン発電装置。  A gas turbine power generator, comprising: a support member that supports the casing so that an axial direction of the rotation shaft rotates in a horizontal direction.
3 . 請求項 1又は 2記載のガスタービン発電装置において、 上記タービンは、 上 記回転軸を接合する接合ボス部を備えることを特徴とするガスタービン発電装置。 3. The gas turbine power generator according to claim 1 or 2, wherein the turbine includes a joining boss for joining the rotating shaft.
4 . 請求項 1〜3のいずれか 1項記載のガス夕一ビン発電装置において、 上記圧 縮機は、 上記回転軸の大径部に嵌合する軸穴を有し、 この圧縮機の軸穴及び上記 大径部の互いの接触面の少なくとも一部をテ一パ面又はラベット面としたことを 特徴とするガスタービン発電装置。 4. The gas bin generator according to any one of claims 1 to 3, wherein the compressor has a shaft hole that fits into a large-diameter portion of the rotating shaft, and the shaft of the compressor. A gas turbine power generator, wherein at least a part of a contact surface between the hole and the large-diameter portion is a tapered surface or a rubbed surface.
5 . 請求項 1〜4のいずれか 1項記載のガスタービン発電装置において、 上記圧 縮機に当接するよう上記回転軸の小径部に嵌合されたロータシャフトを備え、 こ の口一夕シャフト及び上記圧縮機の互いの接触面の少なくとも一部をテ一パ面又 はラベット面としたことを特徴とするガス夕一ピン発電装置。 5. The gas turbine power generator according to any one of claims 1 to 4, further comprising a rotor shaft fitted to a small-diameter portion of the rotating shaft so as to abut on the compressor, wherein the opening and closing shaft is provided. And a gas or pin pin generator, wherein at least a part of the mutual contact surfaces of the compressors is a taper surface or a lavette surface.
6 . 請求項 5記載のガスタービン発電装置において、 上記ロータシャフトに当接 するよう上記回転軸の小径部に嵌合された発電機の回転子を備え、 この回転子及 び上記ロータシャフトの互いの接触面の少なくとも一部をテーパ面又はラベット 面としたことを特徴とするガスタービン発電装置。 6. The gas turbine power generator according to claim 5, further comprising a generator rotor fitted to a small-diameter portion of the rotary shaft so as to abut on the rotor shaft, wherein the rotor and the rotor shaft are mutually connected. A gas turbine power generator, characterized in that at least a part of the contact surface is a tapered surface or a rubbed surface.
7 . 請求項 4〜 6のいずれか 1項記載のガスタービン発電装置において、 上記接 触面に粗面加工を施したことを特徴とするガスタ一ビン発電装置。 7. The gas turbine power generator according to any one of claims 4 to 6, wherein the contact surface is roughened.
8 . 請求項 1〜7のいずれか 1項記載のガスタービン発電装置において、 上記回 転軸の小径部は、 材質の異なる複数の部分からなることを特徴とするガスタービ 8. The gas turbine power generator according to any one of claims 1 to 7, wherein the small-diameter portion of the rotating shaft comprises a plurality of portions made of different materials.
9 . 請求項 1〜8のいずれか 1項記載のガスタービン発電装置において、 上記口 トを耐食性合金で形成したことを特徴とするガスタービン発電装置。 9. The gas turbine power generator according to any one of claims 1 to 8, wherein the port is formed of a corrosion resistant alloy.
1 0 . 請求項 1〜 9のいずれか 1項記載のガスタービン発電装置において、 上記 圧縮機又は夕一ビンを洗浄する洗浄装置をさらに備えたことを特徴とするガス夕 一ビン発電装置。 10. The gas turbine bin generator according to any one of claims 1 to 9, further comprising a washing device for washing the compressor or the bin.
1 1 . 請求項 1〜1 0のいずれか 1項記載のガスタービン発電装置において、 上 記ケーシングの吸気口近傍に冷却水を噴霧する冷却装置をさらに備えたことを特 徴とするガス夕一ビン発電装置。 11. The gas turbine power generator according to any one of claims 1 to 10, further comprising a cooling device that sprays cooling water near an intake port of the casing. Bin power generator.
1 2 . 請求項 1 1記載のガスタービン発電装置において、 上記冷却装置に用いる 冷却水を冷媒として利用することを特徴とするガスタービン発電装置。 12. The gas turbine power generator according to claim 11, wherein the cooling water used for the cooling device is used as a refrigerant.
1 3 . ケ一シングに圧縮機及びタービンを内包し、 上記圧縮機により吸気口から 吸入した外気を圧縮して燃焼器に送り込み、 この燃焼器から排出される燃焼ガス により上記タービンを回転させ発電するガスタービン発電装置の組立方法におい て、 1 3. Casing contains a compressor and a turbine. The compressor compresses the outside air sucked from the intake port and sends it to the combustor. The combustion gas discharged from the combustor In the method of assembling the gas turbine power generation device for generating electric power by rotating the above turbine,
上記夕一ビンの軸方向が略鉛直となるように上記ケ一シングを固定し、 このケ一シング内に、 上記タービンと、 大径部がタービンに接合し小径部が上 記大径部に連設した回転軸を略鉛直方向に組み込み、  The casing is fixed so that the axial direction of the evening bin is substantially vertical. Within the casing, the turbine and the large diameter portion are joined to the turbine, and the small diameter portion is attached to the large diameter portion. Incorporate the rotating shafts installed in a substantially vertical direction,
略鉛直上向きの上記回転軸の小径部上端から圧縮機を組入れ、 上記回転軸の大 径部上端に嵌合させ、  A compressor is assembled from the upper end of the small-diameter portion of the rotary shaft, which is substantially vertically upward, and fitted to the upper end of the large-diameter portion of the rotary shaft,
この圧縮機に積み重ねるよう、 上記回転軸の小径部にロータシャフト及び発電 機の回転子を順次組み入れることを特徴とするガスタービン発電装置の組立方法。  A method for assembling a gas turbine power generation device, comprising sequentially incorporating a rotor shaft and a rotor of a generator into a small-diameter portion of the rotating shaft so as to be stacked on the compressor.
PCT/JP2001/010483 2001-11-30 2001-11-30 Gas turbine power generator and its assembling method WO2003048527A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003549693A JP4283114B2 (en) 2001-11-30 2001-11-30 Gas turbine power generator and method of assembling the same
PCT/JP2001/010483 WO2003048527A1 (en) 2001-11-30 2001-11-30 Gas turbine power generator and its assembling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/010483 WO2003048527A1 (en) 2001-11-30 2001-11-30 Gas turbine power generator and its assembling method

Publications (1)

Publication Number Publication Date
WO2003048527A1 true WO2003048527A1 (en) 2003-06-12

Family

ID=11737987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010483 WO2003048527A1 (en) 2001-11-30 2001-11-30 Gas turbine power generator and its assembling method

Country Status (2)

Country Link
JP (1) JP4283114B2 (en)
WO (1) WO2003048527A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084551A2 (en) * 2009-12-17 2011-07-14 Topline Automotive Engineering, Inc. Gas turbine generator
JP2013053585A (en) * 2011-09-05 2013-03-21 Panasonic Corp Gas turbine power generation device
JP2015513044A (en) * 2012-04-09 2015-04-30 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbomachine shaft mechanism
WO2019067465A1 (en) * 2017-09-27 2019-04-04 Johnson Controls Technology Company Keyless impeller system and method
CN112360577A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Rotor structure and process of combined impeller power generation system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481733B1 (en) * 1966-03-22 1973-01-19
JPH0274598U (en) * 1988-11-28 1990-06-07
JPH03246305A (en) * 1990-02-26 1991-11-01 Nissan Motor Co Ltd Shaft construction for turbomachinery
WO1995019495A1 (en) * 1994-03-21 1995-07-20 Nomac Energy Systems, Inc. Gas turbine generator set
JPH0828202A (en) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd Assembling method for shaft structure
JPH0976079A (en) * 1995-09-12 1997-03-25 Ishikawajima Harima Heavy Ind Co Ltd Method for joining low alloy steel shaft or steel shaft with rotary body made of titanium aluminide
JP2001173459A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Deicing operation method for gas turbine
US6250064B1 (en) * 1999-05-07 2001-06-26 General Electric Co. Gas turbine inlet air integrated water saturation and supersaturation system and related process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS481733B1 (en) * 1966-03-22 1973-01-19
JPH0274598U (en) * 1988-11-28 1990-06-07
JPH03246305A (en) * 1990-02-26 1991-11-01 Nissan Motor Co Ltd Shaft construction for turbomachinery
WO1995019495A1 (en) * 1994-03-21 1995-07-20 Nomac Energy Systems, Inc. Gas turbine generator set
JPH0828202A (en) * 1994-07-12 1996-01-30 Nissan Motor Co Ltd Assembling method for shaft structure
JPH0976079A (en) * 1995-09-12 1997-03-25 Ishikawajima Harima Heavy Ind Co Ltd Method for joining low alloy steel shaft or steel shaft with rotary body made of titanium aluminide
US6250064B1 (en) * 1999-05-07 2001-06-26 General Electric Co. Gas turbine inlet air integrated water saturation and supersaturation system and related process
JP2001173459A (en) * 1999-12-15 2001-06-26 Hitachi Ltd Deicing operation method for gas turbine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011084551A2 (en) * 2009-12-17 2011-07-14 Topline Automotive Engineering, Inc. Gas turbine generator
WO2011084551A3 (en) * 2009-12-17 2011-10-27 Topline Automotive Engineering, Inc. Gas turbine generator
JP2013053585A (en) * 2011-09-05 2013-03-21 Panasonic Corp Gas turbine power generation device
JP2015513044A (en) * 2012-04-09 2015-04-30 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Turbomachine shaft mechanism
WO2019067465A1 (en) * 2017-09-27 2019-04-04 Johnson Controls Technology Company Keyless impeller system and method
CN111386400A (en) * 2017-09-27 2020-07-07 江森自控科技公司 Keyless impeller system and method
KR20220042238A (en) * 2017-09-27 2022-04-04 존슨 컨트롤스 테크놀러지 컴퍼니 Keyless impeller system and method
US11371526B2 (en) 2017-09-27 2022-06-28 Johnson Controls Tyco IP Holdings LLP Keyless impeller system and method
KR102545186B1 (en) 2017-09-27 2023-06-20 존슨 컨트롤스 테크놀러지 컴퍼니 Keyless impeller system and method
CN112360577A (en) * 2020-10-26 2021-02-12 北京动力机械研究所 Rotor structure and process of combined impeller power generation system
CN112360577B (en) * 2020-10-26 2023-05-12 北京动力机械研究所 Rotor structure and process of combined impeller power generation system

Also Published As

Publication number Publication date
JPWO2003048527A1 (en) 2005-04-14
JP4283114B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4734112B2 (en) Balancing system and balanced assembly
JP4800717B2 (en) Method and apparatus for correcting gas turbine engine balance
JP2006097585A (en) Mounting structure for air separator and gas turbine provided with the same
JPH02305325A (en) Turbocharger device and assembly method thereof
CN110344890B (en) High-reliability turbine power generation system rotor structure and manufacturing process
US6874324B2 (en) Gas turbine and gas turbine power generator
WO2003048527A1 (en) Gas turbine power generator and its assembling method
JP2010265896A (en) Joint for rotary component
JP4685801B2 (en) Gas turbine balance correction method
EP2446142A2 (en) External rotor generator of vertical axis wind turbine
JP2009079592A (en) Bolt assembly for steam turbine engine and method of assembling the same
JP2004232532A (en) Micro gas turbine
JP6249499B2 (en) Multi-piece frame for turbine exhaust case
CN103671845B (en) Wind turbine gearbox test bench connecting device and wind turbine gearbox testing stand
EP2644825B1 (en) Rotor assembly and method for aligning rotor components
US20100209256A1 (en) Element which Generates a Magnetic Field
AU2020256485B2 (en) Motor rotor and maintenance method therefor, motor, and wind turbine
JP4969688B2 (en) Rotating machine
JP6430286B2 (en) Fluid machine and manufacturing method thereof
CN104373155A (en) Cylindrical impeller type power device
JP5039676B2 (en) Rotating body bolt fastening structure and rotating machine
JP4287341B2 (en) Gas turbine power generator and method for manufacturing the same
CN110374684B (en) Closed circulation turbine power generation system rotor based on electromagnetic bearing
TW201604398A (en) Wind power generator
CN102762869B (en) Vacuum pump

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003549693

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase