WO2003048367A1 - Genetic strain optimization for improving the production of riboflavin - Google Patents

Genetic strain optimization for improving the production of riboflavin Download PDF

Info

Publication number
WO2003048367A1
WO2003048367A1 PCT/EP2002/013660 EP0213660W WO03048367A1 WO 2003048367 A1 WO2003048367 A1 WO 2003048367A1 EP 0213660 W EP0213660 W EP 0213660W WO 03048367 A1 WO03048367 A1 WO 03048367A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
riboflavin
genes
rib
increased
Prior art date
Application number
PCT/EP2002/013660
Other languages
German (de)
French (fr)
Inventor
Henning ALTHÖFER
Jose L. Revuelta Doval
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU2002358083A priority Critical patent/AU2002358083A1/en
Priority to US10/497,526 priority patent/US20050239161A1/en
Priority to JP2003549544A priority patent/JP2005511053A/en
Priority to EP02791764A priority patent/EP1456388A1/en
Publication of WO2003048367A1 publication Critical patent/WO2003048367A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P25/00Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor

Definitions

  • the present invention relates to a genetic process for the production of riboflavin.
  • the riboflavin production in these organisms is increased by the special selection of riboflavin biosynthesis genes or their combination in organisms of the genus Ashbya and their expression.
  • Vitamin B2 also called riboflavin, is produced by all plants and a variety of microorganisms. It is essential for humans and animals as they are unable to synthesize it. Riboflavin plays an important role in metabolism. For example, it is involved in the utilization of carbohydrates. With vitamin B2 deficiency, inflammation of the mucous membranes of the mouth and throat, itching and inflammation in the skin folds and similar skin damage, conjunctivitis, decreased visual acuity and clouding of the cornea occur. Growth and weight loss may occur in infants and children. Vitamin B2 is therefore of great economic importance, for example as a vitamin preparation for vitamin deficiency and as a feed additive. Various foods are added. It is also used as a food coloring, for example in mayonnaise, ice cream, pudding etc. used.
  • Vitamin B2 is produced either chemically or microbially (see e.g. Kurth et al., 1996, Riboflavin, in: Ulimann's Encyclopedia of industrial chemistry, VCH Weinheim). In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, with relatively expensive starting products, e.g. D-Ribose, must be used.
  • riboflavin is the fermentative production of vitamin B2 by microorganisms. Renewable raw materials such as sugar or vegetable oils are used as starting materials.
  • the production of riboflavin by fermentation of fungi such as Eremothecium ashbyii or Ashbya gossypii is known (The Merck Index, Windholz et al., Eds. Merck & Co., page 1183, 1983), but also yeasts, e.g. Candida, Pichia and Saccharomyces or bacteria, e.g.
  • Bacillus, clostridia or corynebacteria are described as riboflavin producers.
  • EP-A-0 405 370 and EP-A-0 821 063 describes the production of riboflavin with recombinant bacterial strains, the strains being obtained by transformation with riboflavin biosynthetic genes from Bacillus subtilis.
  • WO 95/26406 and WO 94/11515 describe the cloning of the genes specific for riboflavin biosynthesis from the eukaryotic organisms Ashbya gossypii or Saccharomyces cerevisiae, as well as microorganisms which have been transformed with these genes, and the use of such microorganisms for riboflavin synthesis described.
  • WO 99/61623 describes the use of the selection of riboflavin biosynthesis genes (rib3, rib4, rib5) for increasing the riboflavin formation.
  • GTP guanosine triphosphate
  • ribulose-5-phosphate guanosine triphosphate
  • GTP guanosine triphosphate
  • the GTP cyclohydrolase II ribl gene product converts GTP to 2,5-diamino-6- (ribosylamino) -4- (3H) -pyrimidinone-5-phosphate. This compound is then replaced by the 2,5-diamino-6- (ribosylamino) -4-
  • 2,5-diamino-ribitylamino-2,4- (1H, 3H) -pyrimidine-5-phosphate reduced and then by a specific deaminase (rib2 gene product) to 5-amino-6-ribitylamino-2,4- (1H, 3H) -pyrimidinedione-5-phosphate deaminated.
  • the phosphate is then split off by an unspecific phosphatase.
  • Ribulose-5-phosphate in addition to GTP the second starting product of the last enzymatic steps in riboflavin biosynthesis, is converted to 3,4-dihydroxy by the 3,4-dihydroxy-2-butanone-4-phosphate synthase (rib3 gene product).
  • 2-butanone-4-phosphate (DBP) implemented.
  • DBP and 5-amino-6-ribitylamino-2,4- (1H, 3H) -pyrimidinedione are the educts of the enzymatic synthesis of 6, 7-dimethyl-8-ribityllumazine. This reaction is catalyzed by the rib4 gene product (DMRL synthase). DMRL is then converted to riboflavin by ribofavin synthase (rib5 gene product) (Bacher et al. (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag).
  • the process for the increased production of riboflavin is advantageously carried out with an organism which is capable of synthesizing riboflavin, in which, for example, the combination of the following rib gene products (the numbers indicate the corresponding rib gene product) have increased activity : 1 + 2, 1 + 4, 1 + 7, 2 + 4, 2 + 7, 4 + 7.
  • Organisms in which the combination of the following rib gene products (the numbers indicate the corresponding rib gene product) have an increased activity are particularly preferred: 1 + 2 + 4, 1 + 2 + 7, 1 + 4 + 7, 2 + 4 + 7.
  • the increased activity of the rib gene products is evaluated in comparison to the Ashbya gossypii strain ATCC 10895, which serves as a reference organism.
  • the corresponding methods for measuring the activity of the rib gene products, i.e. the enzyme activities are familiar to the person skilled in the art and are described in the literature.
  • Another advantage of increasing vitamin B2 productivity is the combination of increasing the natural enzyme activity and introducing the above-mentioned gene combination to increase gene expression.
  • Rib gene products are not only the polypeptide sequences described in the sequence listing in SEQ ID NO: 2, 4, 6, 8, but also those of these sequences by exchange, insertion or deletion of up to 5%, preferably up to 3%, particularly preferably up to 2% of the amino acid codons available polypeptide sequences. Such sequences occur, for example, as natural allele variations or can be treated by mutation of the parent strain, for example by mutagenic substances or electromagnetic radiation and subsequent selection for increased riboflavin productivity can be obtained.
  • the combination according to the invention of the rib genes ribl, rib2, rib4 and rib7 and / or the increase in activity of the genes and their gene products leads to a significantly increased riboflavin productivity.
  • the genes mentioned can in principle be introduced into the organisms used by all methods known to the person skilled in the art; they are advantageously introduced into the organisms or their cells via transformation, transfection, electroporation, with the so-called particle gun or via microinjection.
  • particle gun or via microinjection for microorganisms, the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al.
  • the REMI technique is based on the cotransformation of a linear DNA construct, which was cut at both ends with the same restriction endonuclease, together with the restriction endonuclease, which was used for this restriction of the DNA construct, into an organism.
  • the restriction endonuclease then cuts the genomic DNA of the organism into which the DNA construct was introduced together with the restriction enzyme. This leads to an activation of the cell's own repair mechanisms. These repair mechanisms repair caused by the endonuclease strand breaks' of the genomic DNA and build it at a certain frequency and the cotransformed DNA construct into the genome one. As a rule, the restriction sites at both ends of the DNA are preserved.
  • the REMI method can be used to integrate biosynthetic genes into the genome of the above-mentioned organisms and thus production processes for the production of metabolic products of primary or secondary metabolism, especially of biosynthetic pathways, for example of amino acids such as lysine, methionine, threonine or Tryptophan, vitamins such as vitamins A, B2, B6 B12, C, D, E, F, S-adenosylmethionine, biotin, pantothenic acid or folic acid,
  • Carotenoids such as ⁇ -carotene, lycopene, canthaxanthin, astaxanthin or zeaxanthin or proteins such as hydrolases such as lipases, esterases, amidases, nitrilases, proteases, mediators such as cytokines such as lymphokines such as MIF, MAF, TNF, interleukins such as interleukin 1, interferons such as interferons , tPA, hormones such as proteohormones, glycohormones, oligo or polypeptide hormones such as vassopressin, endorphins, endostatin, angiostatin, growth factors erythropoietin, transcription factors, integrins such as GPIIb / IIIa or oC v ßlll, receptors such as the various glutamate receptors are optimized can.
  • hydrolases such as lipases, esterases, amidases, nitrilases, proteases,
  • the nucleic acid fragments according to the invention or other of the genes mentioned above can be placed at transcriptionally active sites in the genome.
  • the nucleic acids are advantageously cloned together with at least one reporter gene into a DNA construct which is introduced into the genome.
  • This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement.
  • Examples include reporter genes, antibiotic resistance genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biosynthesis genes such as the riboflaving genes, the luciferase gene, ⁇ -galactosidase gene, gfp gene, lipase gene, esterase gene, acoxidase gene, peroxidase gene, peroxidase gene, peroxidase gene Called adenyltransferase gene. These genes enable the transcription activity and thus the expression of the genes to be measured and quantified easily. This enables genome sites to be identified which show a productivity difference of up to a factor of 2 (see FIG. 1).
  • an additional reporter gene can be dispensed with.
  • genes are to be introduced into the organism, all of them can be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene can be introduced into the organism, the different vectors being able to be introduced simultaneously or successively.
  • Gene fragments that code for the respective activities can also be used in REMI technology.
  • restriction enzymes are suitable for the method according to the invention for integrating biosynthesis genes into the genome of organisms. Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindl l, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes.
  • the enzymes used no longer have interfaces in the DNA to be introduced, this increases the efficiency of the integration.
  • 5 to 500 U, preferably 10 to 250, particularly preferably 10 to 100 U of the enzymes are used in the REMI approach.
  • the enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8, particularly preferably 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the
  • Nucleic acids contain such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo. If appropriate, other substances may also be present, such as EDTA, EDDA, DTT, ⁇ -mercaptoethanol or nuclease inhibitors. However, it is also possible to carry out REMI technology without these additives.
  • the process according to the invention is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C. All known methods for destabilizing cell membranes, such as electroporation, fusion with loaded vesicles or destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts, the lithium salts are preferred.
  • nucleic acids can be used for the reaction according to the invention directly or after purification.
  • the combination of the rib genes according to the invention can be introduced into plants by all methods known to the person skilled in the art.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are used. Suitable methods are protoplast transformation by polyethylene glycol-induced DNA uptake, the use of a gene cannon, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, published by S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium turne faciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711).
  • pBin19 Bevan et al., Nucl. Acids Res. 12 (1984) 8711.
  • the transformation of plants with Agrobacterium tumefaciens is described, for example, by Höfgen and Willuser in Nucl. Acid Res. (1988) 16, 9877.
  • Agrobacteria transformed with an expression vector according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • crop plants such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned writings by SD Kung and R. Wu, Potrykus or Höfgen and Willmitzer. There are a number of ways to increase the enzyme activity of the rib gene products in the cell.
  • One possibility is to change the endogenous rib genes 1, 2, 4 and 7 in such a way that they code for enzymes with increased rib 1,2,4 or 7 activity compared to the starting enzymes.
  • Another increase in enzyme activity can be achieved, for example, by changing the catalytic centers to increase substrate conversion or by canceling the action of enzyme inhibitors, ie they have an increased specific activity or their activity is not inhibited.
  • an increased enzyme activity can also take place by increasing the enzyme synthesis in the cell, for example by switching off factors which repress the enzyme synthesis or by increasing the activity of factors or regulatory elements which promote increased synthesis, or preferably by introducing further ones gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity.
  • a combination of these methods can also be used, ie increasing the specific activity and increasing the overall activity.
  • these changes can be introduced into the nucleic acid sequences of the genes, regulatory elements or their promoters by all methods known to the person skilled in the art.
  • the sequences can be subjected, for example, to a mutagenesis such as a "site directed mutagenesis" as described in D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9), Chapter 6, page 193 ff.
  • modified nucleic acid sequences are then brought back into the organisms via vectors.
  • modified promoter regions can also be placed in front of the natural genes, so that the expression of the genes is increased and thus the activity is ultimately increased.
  • Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity.
  • rib genes 1, 2, 7 and 4 are preferably introduced into the cell together. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or else regulatory sequences of foreign genes or even genes of other species can be used.
  • the gene expression of the rib genes 1, 2, 7 and 4 can advantageously be increased by increasing the ribl, 2, 7, 4 gene copy number and / or by strengthening regulatory factors which have a positive effect on the ribl, 2,7 and 4 gene expression become. So one can
  • Regulatory elements are strengthened preferably at the transcription level by using stronger transcription signals such as promoters and enhancers.
  • an increase in translation is also possible, for example, by improving the stability of the ribl, 2, 7 and 4 mRNA, or by increasing the reading efficiency of this mRNA on the ribosomes.
  • the rib genes 1, 2, 7 and 4, or homologous genes can be incorporated, for example, into a nucleic acid fragment or into a vector which preferably contains the regulatory gene sequences assigned to the respective rib genes or promoter activity acting in an analogous manner , In particular, those regulatory sequences are used which increase gene expression.
  • each of the genes described can be brought into a single vector and transformed into the respective production organism.
  • the rib gene sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 or to understand their functional equivalents which have been functionally linked with one or more regulation signals advantageously to increase gene expression.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also have a simpler structure, which means that no additional regulatory signals have been placed in front of the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 or SEQ ID No. 7 or their functional equivalents were inserted and the natural promoter with its regulation was not removed. Instead, the natural regulatory sequence was mutated in such a way that regulation no longer takes place and gene expression is increased. These modified promoters can also be placed in front of the natural genes to increase activity.
  • the gene construct may advantageously also comprise one or more "enhancer sequences" functionally linked to the promoter contain 0, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences.
  • the rib genes can be contained in one or more copies in the gene construct. 5
  • Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacl ⁇ - T7, T5, T3 -, gal-, trc-, ara-, SP6-, ⁇ -P R - or contain in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacl ⁇ - T7, T5, T3 -, gal-, trc-, ara-, SP6-, ⁇ -P R - or contain in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • Further advantageous regulatory sequences are, for example, in the gram-positive promoters ay and SP02, in the yeast or fungal promoters ADC1, MF ⁇ , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck 5 et al., Cell 21 (1980) 285-294], PRPl [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos or in the ubiquitin or phaseolin promoter.
  • promoters of pyruvate decarboxylase and methanol oxidase from, for example, Hansenula are also advantageous.
  • Further advantageous plant promoters are, for example, one that can be induced by benzenesulfonamide (EP 388186), one that can be induced by tetracycline (Gatz et al., (1992) Plant J. 2, 397-404), one that can be induced by abscisic acid (EP335528) or an ethanol or cyclohexanone inducible (W09321334) promoter.
  • Plant promoters which express in tissues or parts of plants are particularly advantageous
  • the promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max can also be used advantageously.
  • the nucleic acid fragment may also contain further genes which are to be introduced into the organisms. These genes can be under separate regulation or under the same regulatory region as the rib genes. These genes are for example
  • plasmid 35 for example a plasmid, a phage or other DNA, which enables an optimal expression of the genes in the host.
  • Suitable plasmids are, for example, in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, ⁇ gtll or pBdCI,
  • plasmids The plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book cloning Vectors (Eds. Pouwels PH et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, p.71-119.
  • the nucleic acid fragment for the expression of the other genes contained additionally contains 3 'and / or 5' terminal regulatory sequences for increasing expression, which are selected for optimal expression depending on the host organism selected and gene or genes.
  • regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is immediately expressed and / or overexpressed.
  • the regulatory sequences or factors can preferably influence the gene expression of the introduced genes positively and thereby increase.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • the gene construct according to the invention can also advantageously be introduced into the microorganisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA can consist of a linearized plasmid or only of the nucleic acid fragment as a vector.
  • Any plasmid in particular a plasmid which carries the origin of replication of the 2 ° em plasmid from S. cerevisiae
  • the vector which replicates autonomously in the cell, but also a linear DNA fragment as described above, that integrates into the genome of the host.
  • This integration can take place via hetero- or homologous recombination.
  • preferred via homologous recombination Stepiner et al., Genetics, Vol. 140, 1995: 973-987.
  • the genes ribl, rib2, rib4 and rib7 can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector.
  • the organisms used in the process according to the invention which contain the combination of the rib genes 1, 2, 7 and 4 or their functional equivalents show increased riboflavin production.
  • the organisms used for the production of riboflavin are grown in a medium which enables these organisms to grow.
  • This medium can be a synthetic or a natural medium.
  • media known to the person skilled in the art are used.
  • the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
  • Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose -1, 6-bis-phosphate, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as an amino acid mixture, for example so-called casamino acids (Difco ) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
  • sugars such as mono-,
  • Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds.
  • ammonium salts such as NH 4 CI or (NH 4 ) S ⁇ 4 , nitrates , urea, or complex nitrogen sources such as corn steep liquor, brewer's yeast autolysate, soybean meal, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which can often also serve as a nitrogen source at the same time.
  • inorganic salts are the salts of calcium, magnesium, sodium, cobalt, molybdenum, manganese, potassium, zinc, copper and iron.
  • the chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts.
  • An important factor in increasing the productivity in the process according to the invention is the control of the Fe 2 + _ or Fe 3+ ion concentration in the production medium.
  • growth factors are added to the nutrient medium, such as vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, Aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as citric acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol.
  • vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine
  • amino acids such as alanine, cysteine, proline, Aspartic acid, glutamine, serine, phenylalanine, ornithine or valine
  • carboxylic acids such as citric acid, formic acid, pimelic acid or lactic
  • the mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case.
  • the medium components can all be introduced at the beginning of the fermentation, after they have been sterilized separately if necessary or sterilized together, or else they can be added continuously or discontinuously during the fermentation as required.
  • the breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved.
  • Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous.
  • the pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous.
  • an incubation period of a few hours to a few days, preferably 8 hours to 21 days, particularly preferably 4 hours to 14 days, is sufficient. The maximum amount of product in the medium accumulates within this time.
  • the process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
  • the riboflavin productivity can be increased to different extents by the method according to the invention.
  • productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism.
  • Sequence 1 shows the DNA construct which, in addition to the selection marker required for the transformation, bears the gene fragments of ribl, rib2, rib4 and rib7.
  • the sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
  • the vector TefG418Tefrib3, 4, 5 is described in WO 99/61623. This vector was cut with Kpnl, felled and released again and then partially digested with Nhel. The larger fragment, once cut with Nhel and Kpnl, was purified from an agarose gel.
  • the rib7 gene was amplified from vector pJR765 (described in WO 95/26406) with the aid of PCR (primer: TCGAGGTACCGGGCCCCCCCTCGA; TCGAACTAGTAGACCAGTCAT). The specific PCR product was cut with Kpnl / Spel and ligated with the Kpnl / Nhel cut vector described above.
  • TefG418Tefrib7 4.
  • the rib2 gene was amplified from the vector pJR758 (WO 95/26406) with PCR and the resulting product was cut with Spei and Nhel (primer: CCCAACTAGTCTGCAGGACAATTTAAA; AGTGCTAGCCTACAATTCGCAGCAAAAT). This DNA fragment is with the Cut and phosphatase-treated vector TefG418Tefrib7.4 was ligated.
  • the result was vector TefG418Tef-rib7,4,2.
  • the ribl gene was amplified from vector pJR765 (WO95 / 26406) by PCR (primer: GTAGTCTAGAACTAGCTCGAAACGTG;
  • the resulting DNA construct represents the vector Tef-G418-ribl, 2,7,4.
  • Example 2 Transformation of the DNA construct into the Ashbya gossypii fungus
  • the DNA construct described in Example 1 (vector Tef-G418-ribl, 2,4,7) was completely cut with the restriction enzyme Xbal and the insert which carries the rib gene sequences purified by agarose gel separation.
  • MA2 medium (10 g / 1 Bacto-Peptone, 1 g / 1 yeast extract, 0.3 g / 1 myo-inositol and 10 g / 1 D-glucose) was inoculated with Ashbya gossypii spores. The culture was incubated for 12 h at 4 C and then with shaking for 13 h at 28 ° C.
  • Figure 1 shows the riboflavin yields of the different clones.

Abstract

The invention relates to the microbial production of riboflavin by culturing a microorganism of the genus Ashbya that is capable of producing riboflavin and that has at least in two of the genetic products from the group rib1, rib2, rib4 and rib7 higher activities than the wild type ATCC 10895, and subsequently isolating the riboflavin produced from the culture medium.

Description

Genetische Stammoptimierung zur verbesserten Herstellung von RiboflavinGenetic strain optimization for improved production of riboflavin
Beschreibungdescription
Die vorliegende Erfindung betrifft ein genetisches Verfahren zur Herstellung von Riboflavin. Durch die spezielle Auswahl von Genen der Riboflavinbiosynthese bzw. deren Kombination in Organismen der Gattung Ashbya und deren Expression wird die Riboflavin- produktion in diesen Organismen gesteigert.The present invention relates to a genetic process for the production of riboflavin. The riboflavin production in these organisms is increased by the special selection of riboflavin biosynthesis genes or their combination in organisms of the genus Ashbya and their expression.
Vitamin-B2, auch Riboflavin genannt, wird von allen Pflanzen und einer Vielzahl von Mikroorganismen hergestellt. Für Mensch und Tier ist es essentiell, da sie nicht in der Lage sind, es zu synthetisieren. Riboflavin spielt eine wichtige Rolle im Metabolismus . So ist es beispielsweise an der Verwertung von Kohlenhydraten beteiligt. Bei Vitamin B2-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Juckreiz und Ent- Zündungen in den Hautfalten und ähnliche Hautschäden, Bindehautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme auftreten. Vitamin-B2 hat deshalb eine große wirtschaftliche Bedeutung beispielsweise als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Es wird verschiedensten Lebensmitteln zugesetzt. Daneben wird es auch als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscreme, Pudding etc . verwendet .Vitamin B2, also called riboflavin, is produced by all plants and a variety of microorganisms. It is essential for humans and animals as they are unable to synthesize it. Riboflavin plays an important role in metabolism. For example, it is involved in the utilization of carbohydrates. With vitamin B2 deficiency, inflammation of the mucous membranes of the mouth and throat, itching and inflammation in the skin folds and similar skin damage, conjunctivitis, decreased visual acuity and clouding of the cornea occur. Growth and weight loss may occur in infants and children. Vitamin B2 is therefore of great economic importance, for example as a vitamin preparation for vitamin deficiency and as a feed additive. Various foods are added. It is also used as a food coloring, for example in mayonnaise, ice cream, pudding etc. used.
Die Herstellung von Vitamin B2 erfolgt entweder chemisch oder mikrobiell (siehe z.B. Kurth et al . , 1996, Riboflavin, in: Ulimann's Encyclopedia of industrial chemistry, VCH Weinheim). Bei den chemischen Herstellverfahren wird Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei relativ kostspielige Ausgangsprodukte, wie z.B. D-Ribose, eingesetzt werden müssen.Vitamin B2 is produced either chemically or microbially (see e.g. Kurth et al., 1996, Riboflavin, in: Ulimann's Encyclopedia of industrial chemistry, VCH Weinheim). In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, with relatively expensive starting products, e.g. D-Ribose, must be used.
Eine Alternative zur chemischen Synthese von Riboflavin ist die fermentative Herstellung des Vitamin B2 durch Mikroorganismen. Als Ausgangsstoffe dienen dabei nachwachsende Rohstoffe, wie Zucker oder pflanzliche Öle. Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al . , eds. Merck & Co., Seite 1183, 1983), aber auch Hefen, wie z.B. Candida, Pichia und Saccharomyces oder Bakterien, wie z.B.An alternative to the chemical synthesis of riboflavin is the fermentative production of vitamin B2 by microorganisms. Renewable raw materials such as sugar or vegetable oils are used as starting materials. The production of riboflavin by fermentation of fungi such as Eremothecium ashbyii or Ashbya gossypii is known (The Merck Index, Windholz et al., Eds. Merck & Co., page 1183, 1983), but also yeasts, e.g. Candida, Pichia and Saccharomyces or bacteria, e.g.
Bacillus, Clostridien oder Corynebakterien sind als Riboflavin- Produzenten beschrieben. In EP-A-0 405 370 und EP-A-0 821 063 wird die Herstellung von Riboflavin mit rekombinanten Bakterienstämmen beschrieben, wobei die Stämme durch Transformation mit Riboflavin-Biosynthesegenen aus Bacillus subtilis erhalten wurden.Bacillus, clostridia or corynebacteria are described as riboflavin producers. In EP-A-0 405 370 and EP-A-0 821 063 describes the production of riboflavin with recombinant bacterial strains, the strains being obtained by transformation with riboflavin biosynthetic genes from Bacillus subtilis.
In WO 95/26406 bzw. WO 94/11515 wird die Klonierung der für die Riboflavin-Biosynthese spezifischen Gene aus den eukaryontischen Organismen Ashbya gossypii bzw. Saccharomyces cerevisiae, sowie Mikroorganismen, die mit diesen Genen transformiert wurden, und die Verwendung solcher Mikroorganismen zur Riboflavinsynthese beschrieben.WO 95/26406 and WO 94/11515 describe the cloning of the genes specific for riboflavin biosynthesis from the eukaryotic organisms Ashbya gossypii or Saccharomyces cerevisiae, as well as microorganisms which have been transformed with these genes, and the use of such microorganisms for riboflavin synthesis described.
WO 99/61623 beschreibt die Nutzung der Auswahl von Riboflavin- Biosynthesegenen (rib3, rib4, rib5) zur Erhöhung der Riboflavin- bildung.WO 99/61623 describes the use of the selection of riboflavin biosynthesis genes (rib3, rib4, rib5) for increasing the riboflavin formation.
In beiden oben genannten Organismen katalysieren 6 Enzyme ausgehend von Guanosintriphosphat (GTP) und von Ribulose-5- Phosphat die Bildung von Riboflavin. Hierbei setzt die GTP-Cyclo- hydrolase-II (ribl-Genprodukt) GTP zu 2, 5-Diamino-6-(ribosyl- amino) -4-(3H)-pyrimidinon-5-phosphat um. Diese Verbindung wird anschließend durch die 2, 5-Diamino-6-(ribosylamino)-4-In both organisms mentioned above, 6 enzymes catalyze the formation of riboflavin starting from guanosine triphosphate (GTP) and from ribulose-5-phosphate. Here, the GTP cyclohydrolase II (ribl gene product) converts GTP to 2,5-diamino-6- (ribosylamino) -4- (3H) -pyrimidinone-5-phosphate. This compound is then replaced by the 2,5-diamino-6- (ribosylamino) -4-
(3H) -pyrimidinon-5-phosphat Reduktase (rib7 Genprodukt) zu(3H) -pyrimidinone-5-phosphate reductase (rib7 gene product)
2 , 5-Diamino-ribitylamino-2 , 4- (1H, 3H) - pyrimidin-5-phosphat reduziert und dann durch eine spezifische Deaminase (rib2-Gen- produkt) zu 5-Amino-6-ribitylamino-2,4-(lH, 3H) -pyrimidindion- 5-phosphat deaminiert. Durch eine unspezifische Phosphatase wird daraufhin das Phosphat abgespalten.2,5-diamino-ribitylamino-2,4- (1H, 3H) -pyrimidine-5-phosphate reduced and then by a specific deaminase (rib2 gene product) to 5-amino-6-ribitylamino-2,4- (1H, 3H) -pyrimidinedione-5-phosphate deaminated. The phosphate is then split off by an unspecific phosphatase.
Ribulose-5-phosphat, neben GTP das zweite Ausgangsprodukt der letzten enzymatischen Schritte der Riboflavinbiosynthese, wird durch die 3 , 4-Dihydroxy-2-butanon-4-phosphat-Synthase (rib3-Gen- produkt) zu 3 , 4-Dihydroxy-2-butanon-4-phosphat (DBP) umgesetzt.Ribulose-5-phosphate, in addition to GTP the second starting product of the last enzymatic steps in riboflavin biosynthesis, is converted to 3,4-dihydroxy by the 3,4-dihydroxy-2-butanone-4-phosphate synthase (rib3 gene product). 2-butanone-4-phosphate (DBP) implemented.
Sowohl DBP als auch 5-Amino-6-ribitylamino-2, 4-(lH, 3H) -Pyrimidin- dion sind die Edukte der enzymatischen Synthese von 6 , 7-Dimethyl- 8-ribityllumazin. Diese Reaktion wird durch das rib4-Genprodukt (DMRL-Synthase) katalysiert. DMRL wird daraufhin durch die Ribo- flavin-Synthase (rib5-Genprodukt) zu Riboflavin umgesetzt (Bacher et al. (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag) .Both DBP and 5-amino-6-ribitylamino-2,4- (1H, 3H) -pyrimidinedione are the educts of the enzymatic synthesis of 6, 7-dimethyl-8-ribityllumazine. This reaction is catalyzed by the rib4 gene product (DMRL synthase). DMRL is then converted to riboflavin by ribofavin synthase (rib5 gene product) (Bacher et al. (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag).
Trotz dieser Fortschritte in der Herstellung von Riboflavin besteht nach wie vor ein Bedarf zur Verbesserung und Steigerung der Vitamin B2-Produktivität um den steigenden Bedarf zu decken und die Herstellung von Riboflavin effizienter zu gestalten. Es bestand daher die Aufgabe die Vitamin B2-Produktivität weiter zu verbessern. Diese Aufgabe wurde gelöst durch ein Verfahren zur mikrobiellen Herstellung von Riboflavin, indem man einen zur fähigen Mikroorganismus der Gattung Ashbya, züchtet, der in mindestens zwei der Genprodukte aus der Gruppe ribl, rib2, rib4 und rib7 höhere Aktivitäten aufweist als der Wildtyp ATCC 10895, und anschließend das gebildete Riboflavin aus dem Kulturmedium isoliert .Despite these advances in the production of riboflavin, there is still a need to improve and increase vitamin B2 productivity to meet the increasing demand and to make the production of riboflavin more efficient. The task was therefore to further improve vitamin B2 productivity. This object was achieved by a process for the microbial production of riboflavin by cultivating a capable microorganism of the genus Ashbya which has higher activities than the wild type ATCC 10895 in at least two of the gene products from the group ribl, rib2, rib4 and rib7, and then the riboflavin formed is isolated from the culture medium.
Vorteilhaft wird das Verfahren zur gesteigerten Herstellung von Riboflavin mit einem Organismus, der in der Lage ist Riboflavin zu synthetisieren, durchgeführt, bei dem beispielsweise die Kombination der folgenden rib-Genprodukte (die Zahlen geben jeweils das entsprechende rib-Genprodukt an) eine erhöhte Aktivität aufweisen: 1+2, 1+4, 1+7, 2+4, 2+7, 4+7.The process for the increased production of riboflavin is advantageously carried out with an organism which is capable of synthesizing riboflavin, in which, for example, the combination of the following rib gene products (the numbers indicate the corresponding rib gene product) have increased activity : 1 + 2, 1 + 4, 1 + 7, 2 + 4, 2 + 7, 4 + 7.
Besonders bevorzugt sind solche Organismen bei denen die Kombination der folgenden rib-Genprodukte (die Zahlen geben jeweils das entsprechende rib-Genprodukt an) eine erhöhte Aktivität aufweisen: 1+2+4, 1+2+7, 1+4+7, 2+4+7.Organisms in which the combination of the following rib gene products (the numbers indicate the corresponding rib gene product) have an increased activity are particularly preferred: 1 + 2 + 4, 1 + 2 + 7, 1 + 4 + 7, 2 + 4 + 7.
Die erhöhte Aktivität der rib Genprodukte wird dabei im Vergleich zu dem Ashbya gossypii Stamm ATCC 10895 bewertet, der als Referenzorganismus dient. Die entsprechenden Verfahren zur Messung der Aktivität der rib-Genprodukte, d.h. die Enzymaktivitäten sind dem Fachmann geläufig und in der Literatur beschrieben.The increased activity of the rib gene products is evaluated in comparison to the Ashbya gossypii strain ATCC 10895, which serves as a reference organism. The corresponding methods for measuring the activity of the rib gene products, i.e. the enzyme activities are familiar to the person skilled in the art and are described in the literature.
Weiter vorteilhaft zur Steigerung der Vitamin-B2-Produktivität ist die Kombination von Steigerung der natürlichen Enzymaktivität und Einbringen der oben genannten Genkombination zur Erhöhung der Genexpression.Another advantage of increasing vitamin B2 productivity is the combination of increasing the natural enzyme activity and introducing the above-mentioned gene combination to increase gene expression.
Als Organismen bzw. Wirtsorganismen für das erfindungsgemäße Verfahren eignen sich prinzipiell alle Organismen der Gattung Ashbya, die in der Lage sind Riboflavin zu synthetisieren.In principle, all organisms of the genus Ashbya which are able to synthesize riboflavin are suitable as organisms or host organisms for the process according to the invention.
Als rib Genprodukte werden nicht nur die im Sequenzprotokoll in SEQ ID NO: 2, 4, 6, 8 beschriebenen Polypeptidsequenzen bezeichnet, sondern auch solche von diesen Sequenzen durch Austausch, Insertion oder Deletion von bis zu 5 % bevorzugt bis zu 3 %, besonders bevorzugt bis zu 2 % der A inosäurecodons erhältliche Polypeptidsequenzen bezeichnet. Solche Sequenzen kommen beispielsweise als natürliche Allelvariationen vor oder können durch Mutationsbehandlung des Ausgangsstammes beispielsweise durch mutagene Substanzen oder elektromagnetische Strahlung und anschließende Selektion auf erhöhte Riboflavinprod ktivität erhalten werden.Rib gene products are not only the polypeptide sequences described in the sequence listing in SEQ ID NO: 2, 4, 6, 8, but also those of these sequences by exchange, insertion or deletion of up to 5%, preferably up to 3%, particularly preferably up to 2% of the amino acid codons available polypeptide sequences. Such sequences occur, for example, as natural allele variations or can be treated by mutation of the parent strain, for example by mutagenic substances or electromagnetic radiation and subsequent selection for increased riboflavin productivity can be obtained.
Die erfindungsgemäße Kombination der rib-Gene ribl, rib2 , rib4 und rib7 und/oder die Aktivitätserhöhung der Gene und ihrer Genprodukte führt zu einer deutlich gesteigerten Riboflavinproduktivität. Die genannten Gene lassen sich prinzipiell über alle dem Fachmann bekannten Methoden in die verwendeten Organismen einführen, vorteilhaft werden sie über Transformation, Transfektion, Elektroporation, mit der sog. Partikelgun oder über Mikroinjektion in die Organismen bzw. deren Zellen eingebracht . Für Mikroorganismen kann der Fachmann entsprechende Methoden den Lehrbüchern von Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, von F.M. Ausubel et al . (1994) Current protocols in molecular biology, John Wiley and Sons, von D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9) , von Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press oder Guthrie et al . Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press entnehmen. Als vorteilhaft seien beispielhaft Methoden wie das Einbringen der DNA über homologe oder heterologe Rekombination beispielsweise mit Hilfe des ura-3-Gens, speziell des ura-3- Gens von Ashbya, wie in der deutschen Anmeldung DE 19801120.2 beschrieben und/oder über die im folgenden beschriebene REMI- Methode (= "Restriktion-Enzyme-Mediated-Integration"), genannt.The combination according to the invention of the rib genes ribl, rib2, rib4 and rib7 and / or the increase in activity of the genes and their gene products leads to a significantly increased riboflavin productivity. The genes mentioned can in principle be introduced into the organisms used by all methods known to the person skilled in the art; they are advantageously introduced into the organisms or their cells via transformation, transfection, electroporation, with the so-called particle gun or via microinjection. For microorganisms, the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons, by D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9), by Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press or Guthrie et al. See Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press. Methods such as the introduction of the DNA via homologous or heterologous recombination, for example with the aid of the ura-3 gene, specifically the ura-3 gene from Ashbya, as described in the German application DE 19801120.2 and / or via the following, are advantageous described REMI method (= "restriction-enzyme-mediated integration").
Die REMI-Technik basiert auf der Kotransformation eines linearen DNA-Konstruktes, das an beiden Enden mit derselben Restriktions- endonuklease geschnitten wurde, zusammen mit der Restriktions- endonuklease, die für diese Restriktion des DNA-Konstrukts verwendet wurde, in einen Organismus. Die Restriktionsendo- nuklease schneidet daraufhin die genomische DNA des Organismus, in den das DNA-Konstrukt zusammen mit dem Restriktionsenzym eingebracht wurde. Dies führt zu einer Aktivierung der zelleigenen Reparaturmechanismen. Diese Reparaturmechanismen reparieren die durch die Endonuklease hervorgerufene Strangbrüche' der genomischen DNA und bauen dabei mit einer gewissen Frequenz auch das kotransformierte DNA-Konstrukt mit ins Genom ein. In der Regel bleiben dabei die Restriktionsschnittstellen an beiden Enden der DNA erhalten.The REMI technique is based on the cotransformation of a linear DNA construct, which was cut at both ends with the same restriction endonuclease, together with the restriction endonuclease, which was used for this restriction of the DNA construct, into an organism. The restriction endonuclease then cuts the genomic DNA of the organism into which the DNA construct was introduced together with the restriction enzyme. This leads to an activation of the cell's own repair mechanisms. These repair mechanisms repair caused by the endonuclease strand breaks' of the genomic DNA and build it at a certain frequency and the cotransformed DNA construct into the genome one. As a rule, the restriction sites at both ends of the DNA are preserved.
Diese Technik wurde von Bölker et al . (Mol Gen Genet, 248, 1995: 547-552) für die Insertionsmutagenese von Pilzen beschrieben. Von Schiestl und Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 7585-7589) wurde die Methode zur Aufklärung, ob es bei Saccharo- myces eine heterologe Rekombination gibt, verwendet. Zur stabilen Transformation und regulierten Expression eines induzierbaren Reportergens wurde die Methode von Brown et al . (Mol. Gen. Genet. 251, 1996: 75-80) beschrieben. Das System wurde bisher noch nicht als gentechnisches Werkzeug zur Optimierung von Stoff- wechselwegen oder zur kommerzielle Überexpression von Proteinen eingesetzt.This technique was developed by Bölker et al. (Mol Gen Genet, 248, 1995: 547-552) for the insertion mutagenesis of fungi. Schiestl and Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 7585-7589) used the method to clarify whether there is heterologous recombination in saccharomyces. For stable Transformation and regulated expression of an inducible reporter gene was the method of Brown et al. (Mol. Gen. Genet. 251, 1996: 75-80). The system has not yet been used as a genetic engineering tool for optimizing metabolic pathways or for commercial overexpression of proteins.
Am Beispiel der Riboflavinsynthese wurde gezeigt, dass mit Hilfe der REMI-Methode Biosynthesegene in das Genom der oben ge- nannten Organismen integriert werden kann und damit Produktionsverfahren zur Herstellung von Stoffwechselprodukten des Primäroder Sekundärmetabolismus speziell von Biosynthesewegen beispielsweise von Aminosäuren wie Lysin, Methionin, Threonin oder Tryptophan, Vitaminen wie Vitamin A, B2, B6 B12, C, D, E, F, S-Adenosylmethionin, Biotin, Panthotensäure oder Folsäure,Using the example of riboflavin synthesis, it was shown that the REMI method can be used to integrate biosynthetic genes into the genome of the above-mentioned organisms and thus production processes for the production of metabolic products of primary or secondary metabolism, especially of biosynthetic pathways, for example of amino acids such as lysine, methionine, threonine or Tryptophan, vitamins such as vitamins A, B2, B6 B12, C, D, E, F, S-adenosylmethionine, biotin, pantothenic acid or folic acid,
Carotinoiden wie ß-Carotin, Lycopin, Canthaxanthin, Astaxanthin oder Zeaxanthin oder Proteinen wie Hydrolasen wie Lipasen, Esterasen, Amidasen, Nitrilasen, Proteasen, Mediatoren wie Cytokine z.B. Lymphokine wie MIF, MAF, TNF, Interleukine wie Interleukin 1, Interferone wie γ-Interferon, tPA, Hormone wie Proteohormone, Glykohormone, Oligo- oder Polypetidhormone wie Vassopressin, Endorphine, Endostatin, Angiostatin, Wachstumsfaktoren Erythropoietin, Transkriptionsfaktoren, Integrine wie GPIIb/IIIa oder oCvßlll, Rezeptoren wie die verschiedenen Glutamat- rezeptoren, Angiogenesefaktoren wie Angiotensin optimiert werden können.Carotenoids such as β-carotene, lycopene, canthaxanthin, astaxanthin or zeaxanthin or proteins such as hydrolases such as lipases, esterases, amidases, nitrilases, proteases, mediators such as cytokines such as lymphokines such as MIF, MAF, TNF, interleukins such as interleukin 1, interferons such as interferons , tPA, hormones such as proteohormones, glycohormones, oligo or polypeptide hormones such as vassopressin, endorphins, endostatin, angiostatin, growth factors erythropoietin, transcription factors, integrins such as GPIIb / IIIa or oC v ßlll, receptors such as the various glutamate receptors are optimized can.
Mit Hilfe der REMI-Methode können die erfindungsgemäßen Nukleinsäurefragmente oder andere der oben genannten Gene an transcriptionsaktive Stellen im Genom plaziert werden.Using the REMI method, the nucleic acid fragments according to the invention or other of the genes mentioned above can be placed at transcriptionally active sites in the genome.
Vorteilhafterweise werden die Nukleinsäuren zusammen mit einem mindestens einem Reportergen in ein DNA-Konstrukt kloniert, das in das Genom eingebracht wird. Dieses Reportergen sollte eine leichte Detektierbarkeit über einen Wachstums-, Fluoreszenz-, Chemo- oder Biolumineszenzassay oder über eine photometrische Messung ermöglichen. Beispielhaft seien als Reportergene Anti- biotikaresistenzgene, Hydrolasegene, Fluoreszenzproteingene, Biolumineszenzgene, Glucosidasegene, Peroxidasegen oder Biosynthesegene wie die Riboflavingene, das Luciferasegen, ß-Galactosidasegen, gfp-Gen, Lipasegen, Esterasegen, Peroxidasegen, ß-Lactamasegen, Acetyl-, Phospo- oder Adenyltransferasegen genannt. Diese Gene ermöglichen eine leichte Messbarkeit und Quantifizierbarkeit der Transcriptionsaktivität und damit der Expression der Gene. Damit lassen sich Genomstellen identifizieren, die eine bis zu Faktor 2 unterschiedliche Produktivität zeigen (siehe Figur 1) . Figur 1 zeigt die Klone Lu21#l und LU21#2, die nach Integration erhalten wurden, mit ihren unterschiedlichen Vitamin B2- (= Riboflavin) Produktivitäten.The nucleic acids are advantageously cloned together with at least one reporter gene into a DNA construct which is introduced into the genome. This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement. Examples include reporter genes, antibiotic resistance genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biosynthesis genes such as the riboflaving genes, the luciferase gene, β-galactosidase gene, gfp gene, lipase gene, esterase gene, acoxidase gene, peroxidase gene, peroxidase gene, peroxidase gene Called adenyltransferase gene. These genes enable the transcription activity and thus the expression of the genes to be measured and quantified easily. This enables genome sites to be identified which show a productivity difference of up to a factor of 2 (see FIG. 1). Figure 1 shows the clones Lu21 # 1 and LU21 # 2, which were obtained after integration, with their different vitamin B2 (= riboflavin) productivities.
Im Falle, dass die Biosynthesegene selber eine leichte Detektier- barkeit ermöglichen, kann wie beispielsweise im Falle des Ribo- flavins auf ein zusätzliches Reportergen verzichtet werden.In the event that the biosynthetic genes themselves enable easy detection, as in the case of the riboflavin, for example, an additional reporter gene can be dispensed with.
Sollen mehrere Gene in den Organismus eingeführt werden, so können alle zusammen mit einem Reportergen in einem einzigen Vektor oder jedes einzelne Gen mit einem Reportergen in je einem Vektor in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können. Auch Genfragmente, die für die jeweiligen Aktivitäten kodieren können in der REMI-Technik eingesetzt werden.If several genes are to be introduced into the organism, all of them can be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene can be introduced into the organism, the different vectors being able to be introduced simultaneously or successively. Gene fragments that code for the respective activities can also be used in REMI technology.
Für das erfindungsgemäße Verfahren zur Integration von Biosynthesegenen in das Genom von Organismen eignen sich prinzipiell alle bekannten Restriktionsenzyme. Restriktionsenzyme, die nur 4 Basenpaare als Restriktionsschnittstelle erkennen, sind weniger bevorzugt, da sie zu häufig im Genom oder im zu integrierenden Vektor schneiden, bevorzugt sind Enzyme die 6, 7, 8 oder mehr Basenpaare als Schnittstelle erkennen wie BamHI, EcoRI, Bglll, SphI, Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindl l, Sacl, PstI, Bpnl, Notl, Srfl oder Sfil um nur einige der möglichen Enzyme zu nennen. Von Vorteil ist, wenn die verwendeten Enzyme keine Schnittstellen mehr in der einzuführenden DNA haben, dies erhöht die Effizienz der Integration. In der Regel werden 5 bis 500 U, bevorzugt 10 bis 250, besonders bevorzugt 10 bis 100 U der Enzyme im REMI-Ansatz verwendet. Die Enzyme werden vorteilhaft in einer wässrigen Lösung eingesetzt, die Substanzen zur osmotischen Stabilisierung wie Zucker wie Saccharose, Trehalose oder Glucose, Polyole wie Glycerin oder Polyethylenglycol , eine Puffer mit einer vorteilhaften Pufferung im Bereich von pH 5 bis 9, bevorzugt 6 bis 8, besonders bevorzugt 7 bis 8 wie Tris, MOPS, HEPES, MES oder PIPES und/oder Substanzen zur Stabilisierung derIn principle, all known restriction enzymes are suitable for the method according to the invention for integrating biosynthesis genes into the genome of organisms. Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindl l, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes. It is advantageous if the enzymes used no longer have interfaces in the DNA to be introduced, this increases the efficiency of the integration. As a rule, 5 to 500 U, preferably 10 to 250, particularly preferably 10 to 100 U of the enzymes are used in the REMI approach. The enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8, particularly preferably 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the
Nukleinsäuren enthalten wie anorganische oder organische Salze von Mg, Cu, Co, Fe, Mn oder Mo. Es können gegebenenfalls noch weitere Stoffe enthalten sein wie EDTA, EDDA, DTT, ß-Mercapto- ethanol oder Nukleasehemmstoffe. Es ist aber auch möglich die REMI-Technik ohne diese Zusätze durchzuführen.Nucleic acids contain such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo. If appropriate, other substances may also be present, such as EDTA, EDDA, DTT, β-mercaptoethanol or nuclease inhibitors. However, it is also possible to carry out REMI technology without these additives.
Das erfindungsgemäße Verfahren wird in einem Temperaturbereich von 5 bis 80°C, bevorzugt von 10 bis 60°C, besonders bevorzugt von 20 bis 40°C durchgeführt. Für das Verfahren eignen sich alle bekannten Methoden zur DeStabilisierung von Zellmembranen wie beispielsweise die Elektroporation, die Fusion mit beladenen Vesikeln oder die Destabilisierung über verschiedene Alkali- oder Erdalkalisalze wie Lithium, Rubidium- oder Calziumsalze bevorzugt sind die Lithiumsalze.The process according to the invention is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C. All known methods for destabilizing cell membranes, such as electroporation, fusion with loaded vesicles or destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts, the lithium salts are preferred.
Die Nukleinsäuren können nach dem Isolieren direkt oder nach Aufreinigung für die erfindungsgemäße Reaktion verwendet werden.After isolation, the nucleic acids can be used for the reaction according to the invention directly or after purification.
Das Einbringen der erfindungsgemäßen Kombination der rib-Gene in Pflanzen kann prinzipiell nach allen dem Fachmann bekannten Methoden erfolgen.In principle, the combination of the rib genes according to the invention can be introduced into plants by all methods known to the person skilled in the art.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnahme, die Verwendung einer Genkanone, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikro- injektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993) 128-143 sowie in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium turne faciens zu transformieren, beispielsweise pBinl9 (Bevan et al . , Nucl. Acids Res. 12 (1984) 8711). Die Transformation von Pflanzen mit Agrobacterium tumefaciens wird beispielsweise von Höfgen und Will- nutzer in Nucl. Acid Res. (1988) 16, 9877 beschrieben.The transfer of foreign genes into the genome of a plant is called transformation. The methods described for the transformation and regeneration of plants from plant tissues or plant cells for transient or stable transformation are used. Suitable methods are protoplast transformation by polyethylene glycol-induced DNA uptake, the use of a gene cannon, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium. The methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, published by S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium turne faciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). The transformation of plants with Agrobacterium tumefaciens is described, for example, by Höfgen and Willuser in Nucl. Acid Res. (1988) 16, 9877.
Mit einem erfindungsgemäßen Expressionsvektor transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuss- und Weinspezies sowie Leguminosen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.Agrobacteria transformed with an expression vector according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, e.g. by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
Die genetisch veränderten Pflanzenzellen können über alle dem Fachmann bekannten Methoden regeneriert werden. Entsprechende Methoden können den oben genannten Schriften von S.D. Kung und R. Wu, Potrykus oder Höfgen und Willmitzer entnommen werden. Es gibt eine Vielzahl von Möglichkeiten die Enzymaktivität der rib-Genprodukte in der Zelle zu erhöhen.The genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned writings by SD Kung and R. Wu, Potrykus or Höfgen and Willmitzer. There are a number of ways to increase the enzyme activity of the rib gene products in the cell.
Eine Möglichkeit besteht darin, die endogenen rib-Gene 1,2,4 und 7 so zu verändern, dass sie für Enzyme mit gegenüber den Ausgangsenzymen erhöhter rib 1,2,4 bzw. 7-Aktivität kodieren. Eine andere Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, indem durch Veränderung der katalytischen Zentren ein erhöhter Substratumsatz erfolgt oder indem die Wirkung von Enzym- inhibitoren aufgehoben wird, das heißt sie weisen eine erhöhte spezifische Aktivität auf oder ihre Aktivität wird nicht gehemmt. Auch kann eine erhöhte Enzymaktivität in einer weiteren vorteilhaften Ausführungsform durch Erhöhung der Enzymsynthese in der Zelle erfolgen, beispielsweise durch Ausschaltung von Faktoren, die die Enzymsynthese reprimieren oder durch Erhöhung der Aktivität von Faktoren oder Regulatorelementen, die eine verstärkte Synthese fördern, oder bevorzugt durch Einbringen weiterer Genkopien. Durch diese Maßnahmen wird die Gesamtaktivität der Genprodukte in der Zelle erhöht, ohne die spezifische Aktivität zu verändern. Es kann auch eine Kombination dieser Methoden verwendet werden, das heißt Erhöhung der spezifischen Aktivität sowie Erhöhung der Gesamtaktivität. Diese Änderungen können prinzipiell über alle dem Fachmann bekannten Methoden in die Nukleinsäuresequenzen der Gene, Regulationselemente oder deren Promotoren eingebracht werden. Hierzu können die Sequenzen beispielsweise einer Mutageneses wie einer "site directed muta- genesis" unterzogen werden wie sie in D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9), Kapitel 6, Seite 193 ff beschrieben wird.One possibility is to change the endogenous rib genes 1, 2, 4 and 7 in such a way that they code for enzymes with increased rib 1,2,4 or 7 activity compared to the starting enzymes. Another increase in enzyme activity can be achieved, for example, by changing the catalytic centers to increase substrate conversion or by canceling the action of enzyme inhibitors, ie they have an increased specific activity or their activity is not inhibited. In a further advantageous embodiment, an increased enzyme activity can also take place by increasing the enzyme synthesis in the cell, for example by switching off factors which repress the enzyme synthesis or by increasing the activity of factors or regulatory elements which promote increased synthesis, or preferably by introducing further ones gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity. A combination of these methods can also be used, ie increasing the specific activity and increasing the overall activity. In principle, these changes can be introduced into the nucleic acid sequences of the genes, regulatory elements or their promoters by all methods known to the person skilled in the art. For this purpose, the sequences can be subjected, for example, to a mutagenesis such as a "site directed mutagenesis" as described in D.M. Glover et al., DNA Cloning Vol. 1, (1995), IRL Press (ISBN 019-963476-9), Chapter 6, page 193 ff.
Von Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777-778) wird eine PCR-Methode unter Verwendung von dITP zur zufälligen Mutagenese beschrieben.By Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777-778) describes a PCR method using dITP for random mutagenesis.
Die Verwendung einer "in vitro" Rekombinationstechnik für die molekulare Evolution wird von Stemmer (Proc. Natl . Acad. Sei. USA, Vol. 91, 1994: 10747-10751) beschrieben.The use of an "in vitro" recombination technique for molecular evolution is described by Stemmer (Proc. Natl. Acad. Sei. USA, Vol. 91, 1994: 10747-10751).
Von Moore et al . (Nature Biotechnology Vol. 14, 1996: 458-467) wird die Kombination der PCR- und Rekombinationsmethode beschrieben.By Moore et al. (Nature Biotechnology Vol. 14, 1996: 458-467) describes the combination of the PCR and recombination method.
Die veränderten Nukleinsäuresequenzen werden anschließend wieder über Vektoren in die Organismen zurückgebracht. Es können zur Erhöhung der Enzymaktivitäten auch veränderte Promotorbereiche vor die natürlichen Gene gebracht werden, so dass die Expression der Gene gesteigert wird und damit die Aktivität letztlich angehoben wird. Auch am 3 '-Ende können Sequenzen eingebracht werden, die beispielsweise die Stabilität der mRNA erhöhen und dadurch eine erhöhte Translation ermöglichen. Dies führt ebenfalls zu einer höheren Enzymaktivität.The modified nucleic acid sequences are then brought back into the organisms via vectors. To increase the enzyme activities, modified promoter regions can also be placed in front of the natural genes, so that the expression of the genes is increased and thus the activity is ultimately increased. Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity.
Vorzugsweise werden weitere Genkopien der rib-Gene 1,2,7 und 4 gemeinsam in die Zelle eingebracht. Diese Genkopien können der natürlichen Regulation unterliegen, einer veränderten Regulation, wobei die natürlichen Regulationsregionen derart verändert wurden, das sie eine erhöhte Expression der Gene ermöglicht oder aber es können Regulationssequenzen fremder Gene oder sogar artfremder Gene verwendet werden.Further gene copies of the rib genes 1, 2, 7 and 4 are preferably introduced into the cell together. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or else regulatory sequences of foreign genes or even genes of other species can be used.
Besonders vorteilhaft ist eine Kombination der oben genannten Methoden.A combination of the above methods is particularly advantageous.
Vorteilhaft im erfindungsgemäßen Verfahren ist die Kombination der Gene mit den Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No. 7 oder deren funktionelle Äquivalente .The combination of the genes with the sequences SEQ ID no. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 or their functional equivalents.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsäuresequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage" zu verändern. Der "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.For optimal expression of heterologous genes in organisms, it is advantageous to change the nucleic acid sequences in accordance with the specific "codon usage" used in the organism. The "codon usage" can easily be determined on the basis of computer evaluations of other known genes of the organism in question.
Die Genexpression der rib-Gene 1, 2, 7 und 4 kann vorteilhaft durch Erhöhen der ribl, 2, 7, 4 Genkopienzahl und/oder durch Verstärkung regulatorischer Faktoren, die die ribl, 2,7 und 4 Gen- expression positiv beeinflussen, erhöht werden. So kann eineThe gene expression of the rib genes 1, 2, 7 and 4 can advantageously be increased by increasing the ribl, 2, 7, 4 gene copy number and / or by strengthening regulatory factors which have a positive effect on the ribl, 2,7 and 4 gene expression become. So one can
Verstärkung regulatorischer Elemente vorzugsweise auf der Transkriptionsebene erfolgen, indem stärkere Transkriptionssignale wie Promotoren und Enhancer verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispiels- weise die Stabilität der ribl, 2, 7 und 4 mRNA verbessert, oder die Ableseeffizienz dieser mRNA an den Ribosomen erhöht wird.Regulatory elements are strengthened preferably at the transcription level by using stronger transcription signals such as promoters and enhancers. In addition, an increase in translation is also possible, for example, by improving the stability of the ribl, 2, 7 and 4 mRNA, or by increasing the reading efficiency of this mRNA on the ribosomes.
Zur Erhöhung der Genkopienzahl können die rib-Gene 1,2,7 und 4, oder homologer Gene, beispielsweise in ein Nukleinsäurefragment bzw. in einen Vektor eingebaut werden, der vorzugsweise die den jeweiligen rib-Genen zugeordnete, regulatorische Gensequenzen oder analog wirkende Promotoraktivität enthält . Insbesondere werden solche regulatorische Sequenzen verwendet, die die Genexpression verstärken. Alternativ kann auch jedes der beschriebenen Gene in einen einzelnen Vektor gebracht und in den jeweiligen Produktionsorganismus transformiert werden.To increase the number of gene copies, the rib genes 1, 2, 7 and 4, or homologous genes, can be incorporated, for example, into a nucleic acid fragment or into a vector which preferably contains the regulatory gene sequences assigned to the respective rib genes or promoter activity acting in an analogous manner , In particular, those regulatory sequences are used which increase gene expression. Alternatively, each of the genes described can be brought into a single vector and transformed into the respective production organism.
55
Unter dem erfindungsgemäßen Nukleinsäurefrag ent sind die rib-Gensequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 und SEQ ID No. 7 oder deren funktioneile Äquivalente zu verstehen, die mit einem oder mehreren Regulationssignalen vorteilhafter- ° weise zur Erhöhung der Genexpression funktionell verknüpft wurden. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nucleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen 5 kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das 0 heißt es wurden keine zusätzlichen Regulationssignale vor die Sequenzen SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 oder SEQ ID No. 7 oder deren funktioneile Äquivalente inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt . Stattdessen wurde die natürliche Regulationssequenz so 5 mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert wird. Diese veränderten Promotoren können auch allein vor die natürlichen Gene zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktioneil 0 verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nucleinsäuresequenz ermöglichen. Auch am 3' -Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die rib-Gene können in einer oder mehreren Kopien im Genkonstrukt enthalten sein. 5Under the nucleic acid question according to the invention, the rib gene sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 and SEQ ID No. 7 or to understand their functional equivalents which have been functionally linked with one or more regulation signals advantageously to increase gene expression. For example, these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid. In addition to these new regulatory sequences or instead of these sequences 5, the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased. However, the gene construct can also have a simpler structure, which means that no additional regulatory signals have been placed in front of the sequences SEQ ID No. 1, SEQ ID No. 3, SEQ ID No. 5 or SEQ ID No. 7 or their functional equivalents were inserted and the natural promoter with its regulation was not removed. Instead, the natural regulatory sequence was mutated in such a way that regulation no longer takes place and gene expression is increased. These modified promoters can also be placed in front of the natural genes to increase activity. The gene construct may advantageously also comprise one or more "enhancer sequences" functionally linked to the promoter contain 0, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences. The rib genes can be contained in one or more copies in the gene construct. 5
Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacl^-- T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor en0 thalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren a y und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpro otoren CaMV/35S [Franck 5 et al., Cell 21 (1980) 285-294], PRPl [Ward et al., Plant. Mol. Biol. 22(1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos oder im Ubiquitin- oder Phaseolin-Promotor enthalten. In diesem Zusammenhang sind auch die Promotoren der Pyruvatdecarboxylase und der Methanoloxidase aus beispielsweise Hansenula vorteilhaft. Weitere vorteilhafte Pflanzenpromotoren sind beispielsweise ein durch Benzensulfonamid-induzierbarer (EP 388186), ein 5 durch Tetrazyklin-induzierbarer (Gatz et al . , (1992) Plant J. 2, 397-404) , ein durch Abscisinsäure-induzierbarer (EP335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (W09321334) Promotor. Vorteilhaft sind insbesonders solche pflanzliche Promotoren, die die Expression in Geweben oder PflanzenteilenAdvantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacl ^ - T7, T5, T3 -, gal-, trc-, ara-, SP6-, λ-P R - or contain in the λ-P L promoter, which are advantageously used in gram-negative bacteria. Further advantageous regulatory sequences are, for example, in the gram-positive promoters ay and SP02, in the yeast or fungal promoters ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck 5 et al., Cell 21 (1980) 285-294], PRPl [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos or in the ubiquitin or phaseolin promoter. In this The promoters of pyruvate decarboxylase and methanol oxidase from, for example, Hansenula are also advantageous. Further advantageous plant promoters are, for example, one that can be induced by benzenesulfonamide (EP 388186), one that can be induced by tetracycline (Gatz et al., (1992) Plant J. 2, 397-404), one that can be induced by abscisic acid (EP335528) or an ethanol or cyclohexanone inducible (W09321334) promoter. Plant promoters which express in tissues or parts of plants are particularly advantageous
10 sicherstellen, in denen die Biosynthese von Purinen bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989)10 ensure in which the biosynthesis of purines or their precursors takes place. Promoters that ensure leaf-specific expression should be mentioned in particular. Worth mentioning are the promoter of the cytosolic FBPase from potato or the ST-LSI promoter from potato (Stockhaus et al., EMBO J. 8 (1989)
152445-245) . Auch der Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder einen anderen Nodien-spezifischen Promotor wie in EP 249676 können vorteilhaft verwandt werden.152445-245). The promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max (see also Genbank Accession number U87999) or another node-specific promoter as in EP 249676 can also be used advantageously.
20 Prinzipiell können alle natürlichen Promotoren mit ihren20 In principle, all natural promoters can use their
RegulationsSequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.Regulatory sequences such as those mentioned above can be used for the method according to the invention. In addition, synthetic promoters can also be used advantageously.
25 Im Nukleinsäurefragment (= Genkonstrukt) können wie oben beschrieben noch weitere Gene, die in die Organismen eingebracht werden sollen, enthalten sein. Diese Gene können unter getrennter Regulation oder unter der gleichen Regulationsregion wie die rib-Gene liegen. Bei diesen Genen handelt es sich beispiels-25 As described above, the nucleic acid fragment (= gene construct) may also contain further genes which are to be introduced into the organisms. These genes can be under separate regulation or under the same regulatory region as the rib genes. These genes are for example
30 weise um weitere Biosynthesegene, die eine gesteigerte Synthese ermöglichen.30 for additional biosynthetic genes that enable increased synthesis.
Das Nukleinsäurefragment wird zur Expression in den oben genannten Wirtsorganismus vorteilhafterweise in einen Vektor wieThe nucleic acid fragment is advantageously expressed in a vector such as for expression in the host organism mentioned above
35 beispielsweise einem Plasmid, einem Phagen oder sonstiger DNA inseriert, das eine optimale Expression der Gene im Wirt ermöglicht. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2 , pPLc236, pMBL24, pLG200, pUR290, pIN-III113-Bl, λgtll oder pBdCI,35 for example a plasmid, a phage or other DNA, which enables an optimal expression of the genes in the host. Suitable plasmids are, for example, in E. coli pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, λgtll or pBdCI,
40 in Streptomyces pIJlOl, pIJ364, pIJ702 oder pIJ361, in Bacillus pUBHO, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALSl, pIL2 oder pBB116, in Hefen 2«=M, pAG-1, YEp6, YEpl3 oder pEMBLYe23 oder in Pflanzen pLGV23, pGHlac+, pBIN19, pAK2004 oder pDH51 oder Derivate der vorstehend genannten40 in Streptomyces pIJlOl, pIJ364, pIJ702 or pIJ361, in Bacillus pUBHO, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667, in mushrooms pALSl, pIL2 or pBB116, in yeasts 2 «= Y, PE3 or PBB116 in plants pLGV23, pGHlac +, pBIN19, pAK2004 or pDH51 or derivatives of the above
45 Plasmide. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P.H. et al . Elsevier, Amsterdam-New York- Oxford, 1985, ISBN 0 444 904018) entnommen werden. Geeignete pflanzliche Vektoren werden unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S.71-119 beschrieben.45 plasmids. The plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book cloning Vectors (Eds. Pouwels PH et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, p.71-119.
Vorteilhafterweise enthält das Nukleinsäurefragment zur Expression der weiteren enthaltenen Gene zusätzlich noch 3 ' und/oder 5' Terminale regulatorische Sequenzen zur Steigerung der Expression, die je nach ausgewähltem Wirtsorganismus und Gen oder Gene für eine optimale Expression ausgewählt werden.Advantageously, the nucleic acid fragment for the expression of the other genes contained additionally contains 3 'and / or 5' terminal regulatory sequences for increasing expression, which are selected for optimal expression depending on the host organism selected and gene or genes.
Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder üb rexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is immediately expressed and / or overexpressed.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptions- signale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can preferably influence the gene expression of the introduced genes positively and thereby increase. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA.
In einer weiteren Ausgestaltungsform des Vektors kann das erfindungsgemäße Genkonstrukt auch vorteilhafterweise in Form einer linearen DNA in die Mikroorganismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Plasmid oder nur aus dem Nukleinsäurefragment als Vektor bestehen.In a further embodiment of the vector, the gene construct according to the invention can also advantageously be introduced into the microorganisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination. This linear DNA can consist of a linearized plasmid or only of the nucleic acid fragment as a vector.
Als Vektor kann auch ein beliebiges Plasmid (insbesondere aber ein Plasmid, das den Replikationsursprung des 2°em Plasmids aus S. cerevisiae trägt) verwendet werden, das in der Zelle autonom repliziert, aber auch wie oben beschrieben ein lineares DNA-Frag- ment, das in das Genom des Wirtes integriert. Diese Integration kann über hetero- oder homologe Rekombination erfolgen. Bevorzugt wie erwähnt jedoch über homologe Rekombination (Steiner et al . , Genetics, Vol. 140, 1995: 973 - 987). Dabei können die Gene ribl, rib2, rib4 und rib7 einzeln im Genom an verschiedenen Orten oder auf verschiedenen Vektoren vorliegen oder gemeinsam im Genom oder auf einem Vektor vorliegen. Die im erfindungsgemäßen Verfahren verwendeten Organismen, die die Kombination der rib-Gene 1,2,7 und 4 oder deren funktioneile Äquivalente enthalten, zeigen eine erhöhte Riboflavin-Produktion.Any plasmid (in particular a plasmid which carries the origin of replication of the 2 ° em plasmid from S. cerevisiae) can also be used as the vector, which replicates autonomously in the cell, but also a linear DNA fragment as described above, that integrates into the genome of the host. This integration can take place via hetero- or homologous recombination. However, as mentioned above, preferred via homologous recombination (Steiner et al., Genetics, Vol. 140, 1995: 973-987). The genes ribl, rib2, rib4 and rib7 can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector. The organisms used in the process according to the invention which contain the combination of the rib genes 1, 2, 7 and 4 or their functional equivalents show increased riboflavin production.
Im erfindungsgemäßen Verfahren werden die für die Herstellung von Riboflavin verwendeten Organismen in einem Medium, das das Wachstum dieser Organismen ermöglicht, angezüchtet. Dieses Medium kann ein synthetisches oder ein natürliches Medium sein. Je nach Organismus werden dem Fachmann bekannte Medien verwendet . Für das Wachstum der Mikroorganismen enthalten die verwendeten Medien eine Kohlenstoffquelle, eine Stickstoffquelle, anorganische Salze und gegebenenfalls geringe Mengen an Vitamine und Spurenelemente.In the process according to the invention, the organisms used for the production of riboflavin are grown in a medium which enables these organisms to grow. This medium can be a synthetic or a natural medium. Depending on the organism, media known to the person skilled in the art are used. For the growth of the microorganisms, the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
Vorteilhafte Kohlenstoffquellen sind beispielsweise Zucker wie Mono-, Di- oder Polysaccharide wie Glucose, Fructose, Mannose, Xylose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose, komplexe Zuckerquellen wie Melasse, Zuckerphosphate wie Fructose-1, 6-bis- phosphat, Zuckeralkohole wie Mannit, Polyole wie Glycerin, Alkohole wie Methanol oder Ethanol, Carbonsäuren wie Citronen- säure, Milchsäure oder Essigsäure, Fette wie Sojaöl oder Rapsöl, Aminosäuren wie ein Aminosäurengemisch beispielsweise sog. Casamino acids (Difco) oder einzelne Aminosäuren wie Glycin oder Asparaginsäure oder Aminozucker, die letztgenannten können auch gleichzeitig als Stickstoffquelle verwendet werden.Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose -1, 6-bis-phosphate, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as an amino acid mixture, for example so-called casamino acids (Difco ) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
Vorteilhafte Stickstoffquellen sind organische oder anorganische StickstoffVerbindungen oder Materialien, die diese Verbindungen enthalten. Beispiele sind Ammoniumsalze wie NH4CI oder (NH4) Sθ4, Nitrate, Harnstoff, oder komplexe Stickstoffquellen wie Maisquellwasser, Bierhefeautolysat , Sojabohnenmehl, Weizengluten, Hefeextrakt, Fleischextrakt, Caseinhydrolysat, Hefe oder Kartoffelprotein, die häufig auch gleichzeitig als Stickstoffquelle dienen können.Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds. Examples are ammonium salts such as NH 4 CI or (NH 4 ) Sθ 4 , nitrates , urea, or complex nitrogen sources such as corn steep liquor, brewer's yeast autolysate, soybean meal, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which can often also serve as a nitrogen source at the same time.
Beispiele für anorganische Salze sind die Salze von Calcium, Magnesium, Natrium, Cobalt, Molybdän, Mangan, Kalium, Zink, Kupfer und Eisen. Als Anion dieser Salze sind besonders das Chlor-, Sulfat- und Phosphation zu nennen. Ein wichtiger Faktor zur Steigerung der Produktivität im erfindungsgemäßen Verfahren ist die Kontrolle der Fe2+_ oder Fe3+-Ionenkonzentration im Produktionsmedium.Examples of inorganic salts are the salts of calcium, magnesium, sodium, cobalt, molybdenum, manganese, potassium, zinc, copper and iron. The chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts. An important factor in increasing the productivity in the process according to the invention is the control of the Fe 2 + _ or Fe 3+ ion concentration in the production medium.
Gegebenenfalls werden dem Nährmedium weitere Wachstumsfaktoren zugesetzt, wie beispielsweise Vitamine oder Wachstumsförderer wie Biotin, Riboflavin, Thiamin, Folsäure, Nicotinsäure, Panto- thenat oder Pyridoxin, Aminosäuren wie Alanin, Cystein, Prolin, Asparaginsäure, Glutamin, Serin, Phenylalanin, Ornithin oder Valin, Carbonsäuren wie Citronensäure, Ameisensäure, Pimelin- säure oder Milchsäure, oder Substanzen wie Dithiothreitol .If necessary, further growth factors are added to the nutrient medium, such as vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, Aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as citric acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol.
Das Mischungsverhältnis der genannten Nährstoffe hängt von der Art der Fermentation ab und wird im Einzelfall festgelegt. Die Mediumkomponenten können alle zu Beginn der Fermentation vorgelegt werden, nachdem sie falls erforderlich getrennt sterilisiert oder gemeinsam sterilisiert wurden, oder aber je nach Bedarf während der Fermentation kontinuierlich oder diskontinuierlich nachgegeben werden.The mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case. The medium components can all be introduced at the beginning of the fermentation, after they have been sterilized separately if necessary or sterilized together, or else they can be added continuously or discontinuously during the fermentation as required.
Die Züchtungsbedingungen werden so festgelegt, dass die Organismen optimal wachsen und dass die bestmöglichen Ausbeuten erreicht werden. Bevorzugte Züchtungstemperaturen liegen bei 15°C bis 40°C. Besonders vorteilhaft sind Temperaturen zwischen 25°C und 37°C. Vorzugsweise wird der pH-Wert in einem Bereich von 3 bis 9 festgehalten. Besonders vorteilhaft sind pH-Werte zwischen 5 und 8. Im allgemeinen ist eine Inkubationsdauer von wenigen Stunden bis zu einigen Tagen bevorzugt von 8 Stunden bis zu 21 Tagen, besonders bevorzugt von 4 Stunden bis 14 Tagen ausreichend. Innerhalb dieser Zeit reichert sich die maximale Menge an Produkt im Medium an.The breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved. Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous. The pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous. In general, an incubation period of a few hours to a few days, preferably 8 hours to 21 days, particularly preferably 4 hours to 14 days, is sufficient. The maximum amount of product in the medium accumulates within this time.
Wie Medien vorteilhaft optimiert werden können, kann derHow can media be optimized advantageously?
Fachmann beispielsweise dem Lehrbuch Applied Microbiol Physio- logy, "A Practical Approach (Eds. P.M. Rhodes, P.F. Stanbury, IRL-Press, 1997, Seiten 53-73, ISBN 0 19 963577 3) entnehmen. Vorteilhafte Medien und Anzuchtbedingungen sind für Bacillus und weitere Organismen beispielsweise der Schrift EP-A-0 405 370 speziell dem Beispiel 9, für Candida der Schrift WO 88/09822 speziell Tabelle 3 und für Ashbya der Schrift von Schmidt et al . (Microbiology, 142, 1996: 419-426) zu entnehmen.For example, see the textbook Applied Microbiol Physics, "A Practical Approach (Eds. PM Rhodes, PF Stanbury, IRL-Press, 1997, pages 53-73, ISBN 0 19 963577 3). Advantageous media and cultivation conditions are for Bacillus and Further organisms, for example the document EP-A-0 405 370 specifically example 9, for Candida the document WO 88/09822 specifically table 3 and for Ashbya the document by Schmidt et al. (Microbiology, 142, 1996: 419-426) remove.
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich in batch- oder fed-batch-weise durchgeführt werden.The process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
Abhängig davon wie hoch die Ausgangsproduktivität des verwendeten Organismus ist, lässt sich die Riboflavin-Produktivität durch das erfindungsgemäße Verfahren unterschiedlich stark steigern. In der Regel lässt sich die Produktivität vorteilhaft um mindestens 5 %, bevorzugt um mindestens 10 %, besonders bevorzugt um 20 %, ganz besonders bevorzugt um mindestens 100 % jeweils gegenüber dem Ausgangsorganismus steigern. BeispieleDepending on how high the initial productivity of the organism used is, the riboflavin productivity can be increased to different extents by the method according to the invention. As a rule, productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism. Examples
Die Isolierung der rib-Gene 1,2,3,4,5 und 7 aus Ashbya gossypii und Saccharomyces cerevisiae wird in den Patenten WO 95/26406 und WO 93/03183 und speziell in den Beispielen beschrieben und wurde entsprechend durchgeführt. Auf diese Schriften wird hier ausdrücklich Bezug genommen.The isolation of the rib genes 1, 2, 3, 4, 5 and 7 from Ashbya gossypii and Saccharomyces cerevisiae is described in the patents WO 95/26406 and WO 93/03183 and specifically in the examples and was carried out accordingly. Reference is expressly made to these writings here.
Sequenz 1 zeigt das DNA-Konstrukt, das neben dem zur Trans- formation notwendigen Selektionsmarker die Genfragmente von ribl , rib2 , rib4 und rib7 trägt .Sequence 1 shows the DNA construct which, in addition to the selection marker required for the transformation, bears the gene fragments of ribl, rib2, rib4 and rib7.
Allgemeine Nukleinsäureverfahren wie z.B. Klonierunc», Restrikti- onsSpaltungen, Agarose-Gelelektrophorese , Verknüpfen von DNA- Fragmenten, Transformation von Mikroorganismen, Anzucht vonGeneral nucleic acid methods such as Cloning, »restriction cleavage, agarose gel electrophoresis, linking of DNA fragments, transformation of microorganisms, cultivation of
Bakterien und Sequenzanalyse rekombinanter DNA wurden wenn nichts anderes beschrieben wurde wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt .Bacteria and sequence analysis of recombinant DNA were, unless otherwise described, as described by Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sei. USA74, 5463-5467) . Fragmente resultierend aus einer Polymerase Ketten- reaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft.The sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed.
Beispiel 1example 1
Klonierung des DNA-Konstruktes, das die ribl, rib2 , rib4 und rib7 Genkopien enthält (Vektor Tef-G418-Tef ribl, 2, 7, 4)Cloning of the DNA construct containing the ribl, rib2, rib4 and rib7 gene copies (vector Tef-G418-Tef ribl, 2, 7, 4)
Expressionskonstrukte der rib-Gene: Der Vektor TefG418Tefrib3 , 4, 5 ist in WO 99/61623 beschrieben. Dieser Vektor wurde mit Kpnl geschnitten, gefällt und wieder gelöst und anschließend partiell mit Nhel verdaut. Das größere, einmal mit Nhel und Kpnl geschnittene Fragment ist aus einem Agarosegel aufgereinigt worden. Das rib7 Gen wurde aus Vektor pJR765 (beschrieben in WO 95/26406) mit Hilfe der PCR amplifiziert (Primer: TCGAGGTACCGGGCCCCCCCTCGA; TCGAACTAGTAGACCAGTCAT) . Das spezifische PCR Produkt wurde mit Kpnl/Spel geschnitten und mit dem oben beschriebenen Kpnl/Nhel geschnittenen Vektor ligiert. Es entstand Vektor TefG418Tefrib7, 4. Das rib2-Gen ist aus dem Vektor pJR758 (WO 95/26406) mit PCR amplifiziert worden und das resultierende Produkt mit Spei und Nhel geschnitten worden (Primer: CCCAACTAGTCTGCAGGACAATTTAAA; AGTGCTAGCCTACAATTCGCAGCAAAAT) . Dieses DNA-Fragment ist mit dem Nhel geschnittenen und mit Phosphatase behandelten Vektor TefG418Tefrib7,4 ligiert worden. Es entstand Vektor TefG418Tef- rib7,4,2.Expression constructs of the rib genes: The vector TefG418Tefrib3, 4, 5 is described in WO 99/61623. This vector was cut with Kpnl, felled and released again and then partially digested with Nhel. The larger fragment, once cut with Nhel and Kpnl, was purified from an agarose gel. The rib7 gene was amplified from vector pJR765 (described in WO 95/26406) with the aid of PCR (primer: TCGAGGTACCGGGCCCCCCCTCGA; TCGAACTAGTAGACCAGTCAT). The specific PCR product was cut with Kpnl / Spel and ligated with the Kpnl / Nhel cut vector described above. The result was vector TefG418Tefrib7, 4. The rib2 gene was amplified from the vector pJR758 (WO 95/26406) with PCR and the resulting product was cut with Spei and Nhel (primer: CCCAACTAGTCTGCAGGACAATTTAAA; AGTGCTAGCCTACAATTCGCAGCAAAAT). This DNA fragment is with the Cut and phosphatase-treated vector TefG418Tefrib7.4 was ligated. The result was vector TefG418Tef-rib7,4,2.
Das ribl-Gen ist aus Vektor pJR765 (WO95/26406) durch PCR amplifiziert worden (Primer: GTAGTCTAGAACTAGCTCGAAACGTG;The ribl gene was amplified from vector pJR765 (WO95 / 26406) by PCR (primer: GTAGTCTAGAACTAGCTCGAAACGTG;
GATTCTAGAACTAGAACTAGTGGATCCG) und wurde mit Xbal geschnitten. Dieses DNA-Fragment ist mit dem mit Nhel geschnittenen und Phosphatase behandelten Vektor TefG418Tefrib7, 4,2 ligiert worden.GATTCTAGAACTAGAACTAGTGGATCCG) and was cut with Xbal. This DNA fragment has been ligated with the Nhel cut and phosphatase treated vector TefG418Tefrib7, 4.2.
Das resultierende DNA-Konstrukt stellt den Vektor Tef-G418- ribl,2,7,4 dar.The resulting DNA construct represents the vector Tef-G418-ribl, 2,7,4.
Beispiel 2Example 2
Transformation des DNA-Konstruktes in den Pilz Ashbya gossypii Das in Beispiel 1 beschriebene DNA-Konstrukt (Vektor Tef-G418- ribl,2,4,7) wurde mit dem Restriktionsenzym Xbal vollständig geschnitten und das Insert, das die rib-Gen Sequenzen trägt durch Agarosegelauftrennung aufgereinigt . MA2-Medium (10 g/1 Bacto-Peptone, 1 g/1 Hefeextrakt, 0,3 g/1 myo- Inositol und 10 g/1 D-Glucose) wurde mit Ashbya gossypii Sporen o angeimpft. Die Kultur wurde 12 h bei 4 C und anschließend unter Schütteln für 13 h bei 28°C inkubiert. Die Zellsuspension wurde abzentrifugiert und das Zellpellet in 5 ml 50 mM Kaliumphosphat- puffer pH 7,5, 25 mM DTT aufgenommen. Nach einer 30minütigen Wärmebehandlung bei 28°C wurden die Zellen wiederum abzentrifugiert und in 25 ml STM-Puffer (270 mM Saccharose, 10 mM TRIS- HC1 pH 7,5, 1 mM MgCl2) aufgenommen. 0,5 ml dieser Suspension wurden dann mit ca. 3°cg des oben aufgereinigten Inserts und 40 U Spei Enzym versetzt und in einem Biorad Gene Pulser (100Ω, 20 »=F, l,5kV) elektroporiert . Nach der Elektroporation sind die Zellen mit 1 ml MA2-Medium versetzt und auf MA2-Agarkulturplatten ausgestrichen worden. Zur Antibiotikaselektion überschichtet man die Platten nach 5h Inkubation bei 28°C mit 5 ml "Low-Melting"- Agarose, die das Antibiotikum G418 (200°eg/ml) enthält. Die Trans- formanten wurden durch Mikromanipulation klonal aufgereinigt (Steiner und Philipsen (1995) Genetics, 140; 973-987). Die erfolgreiche Integration des Konstrukts wurde durch PCR-Analyse der genomischen DNA der Transformanten verifiziert. Die Isolation der genomischen DNA wurde wie von Carle und Olson (Proc. Natl. Acad. Sei, 1985, 82, 3756-3760) und Wright und Philipsen (Gene, 1991, 109, 99-105) beschrieben durchgeführt. Die PCR mit für das Konstrukt spezifischen Primern ist nach R. Saiki (PCR Protocols, 1990, Academic Press, 13-20) durchgeführt worden. Die Analyse der PCR-Fragmente geschieht durch Auftrennung über ein Agarosegel . Bei allen Transformanten konnte eine erfolgreiche Integration ins Genom durch PCR nachgewiesen werden.Transformation of the DNA construct into the Ashbya gossypii fungus The DNA construct described in Example 1 (vector Tef-G418-ribl, 2,4,7) was completely cut with the restriction enzyme Xbal and the insert which carries the rib gene sequences purified by agarose gel separation. MA2 medium (10 g / 1 Bacto-Peptone, 1 g / 1 yeast extract, 0.3 g / 1 myo-inositol and 10 g / 1 D-glucose) was inoculated with Ashbya gossypii spores. The culture was incubated for 12 h at 4 C and then with shaking for 13 h at 28 ° C. The cell suspension was centrifuged off and the cell pellet was taken up in 5 ml of 50 mM potassium phosphate buffer pH 7.5, 25 mM DTT. After a 30-minute heat treatment at 28 ° C., the cells were again centrifuged off and taken up in 25 ml of STM buffer (270 mM sucrose, 10 mM TRIS-HC1 pH 7.5, 1 mM MgCl 2 ). Approx. 3 ° cg of the above-purified insert and 40 U Spei enzyme were then added to 0.5 ml of this suspension and electroporated in a Biorad gene pulser (100Ω, 20 »= F, 1.5kV). After electroporation, 1 ml of MA2 medium was added to the cells and spread on MA2 agar culture plates. For antibiotic selection, the plates are overlaid after 5 hours of incubation at 28 ° C. with 5 ml of “low-melting” agarose, which contains the antibiotic G418 (200 ° eg / ml). The transformants were clonally purified by micromanipulation (Steiner and Philipsen (1995) Genetics, 140; 973-987). The successful integration of the construct was verified by PCR analysis of the genomic DNA of the transformants. The isolation of the genomic DNA was carried out as described by Carle and Olson (Proc. Natl. Acad. Sei, 1985, 82, 3756-3760) and Wright and Philipsen (Gene, 1991, 109, 99-105). The PCR with primers specific for the construct was carried out according to R. Saiki (PCR Protocols, 1990, Academic Press, 13-20). The PCR fragments are analyzed by separation using an agarose gel. Successful integration into the genome by PCR was demonstrated for all transformants.
Beispiel 3Example 3
RiboflavinbeStimmung im rekombinanten Ashbya gossypii Klon Ashbya gossypii LU21 (Wildtypstamm, ATCC 10895) und die daraus durch Transformation mit dem in Beispiel 1 beschriebenen Konstrukt hervorgegangenen Stämme LU21#1 und #2 wurden auf Agarmedium bei 28°C 4 Tage lang angezogen. Von dieser Platte wurden drei 100 ml Erlenmeyerkolben mit 10 ml Medium (27,5 g/1 Hefeextrakt, 0,5 g/1 MgS0 , 50 ml/1 Sojaöl, pH 7,0) beimpft. Nach 40 h Stunden Inkubation bei 28°C, 180 rp auf dem Schüttler wurde je 1 ml der Kulturbrühe in 250 ml Erlenmeyerkolben mit 20 ml YPD- Medium überführt (10 g/1 Hefeextrakt, 20 g/1 Baetopepton, 20 g/1 Glucose) . Inkubation 28°C, 300 rpm. Nach 190 h wurde aus jedem Kolben eine 1 ml Probe entnommen und mit 1 ml 1 M Perchlorsäure versetzt. Die Probe wurde filtriert und der Riboflavingehalt mit HPLC-Analytik bestimmt. Dabei wurde eine Eichung mit Riboflavin- Standards (10 mg/1, 20 mg/1, 30 mg/1, 40 mg/1, 50 mg/1) vorgenommen.Riboflavin determination in the recombinant Ashbya gossypii clone Ashbya gossypii LU21 (wild-type strain, ATCC 10895) and the strains LU21 # 1 and # 2 resulting therefrom by transformation with the construct described in Example 1 were grown on agar medium at 28 ° C. for 4 days. From this plate, three 100 ml Erlenmeyer flasks were inoculated with 10 ml medium (27.5 g / 1 yeast extract, 0.5 g / 1 MgSO, 50 ml / 1 soybean oil, pH 7.0). After 40 hours of incubation at 28 ° C., 180 rp on the shaker, 1 ml of the culture broth was transferred to 250 ml Erlenmeyer flasks with 20 ml of YPD medium (10 g / 1 yeast extract, 20 g / 1 baetopeptone, 20 g / 1 glucose ). Incubation 28 ° C, 300 rpm. After 190 h, a 1 ml sample was taken from each flask and 1 ml of 1 M perchloric acid was added. The sample was filtered and the riboflavin content determined using HPLC analysis. A calibration with riboflavin standards (10 mg / 1, 20 mg / 1, 30 mg / 1, 40 mg / 1, 50 mg / 1) was carried out.
Parameter der HPLC-Methode zur Riboflavinbestimmung:Parameters of the HPLC method for riboflavin determination:
Säule ODS Hypersil 5 mm 200 X 2,1 mm (HP)Column ODS Hypersil 5 mm 200 X 2.1 mm (HP)
Eluent A Wasser mit 340 ml H3PO4 (89 %) auf pH 2 , 3Eluent A water with 340 ml H 3 PO 4 (89%) to pH 2.3
Eluent B 100 % AcetonitrilEluent B 100% acetonitrile
Gradientgradient
Stopzeit 0 bis 6 min.: 2 % B auf 50 % B 6 bis 6,5 min: 50 % B auf 2 % BStop time 0 to 6 min .: 2% B to 50% B 6 to 6.5 min: 50% B to 2% B
Fluss 0,5 ml/minFlow 0.5 ml / min
Detektion 280 nmDetection 280 nm
Temperatur 40°CTemperature 40 ° C
Injektion 2 bis 10 «1Injection 2 to 10 «1
Die Ansätze mit Klon#l und #2, die eine zusätzliche Genkopie der rib-Gene 1, 2, 4 und 7 enthalten, zeigen im Vergleich zum Ausgangsstamm eine deutlich erhöhte Riboflavinproduktivität (Figur 1) .The approaches with clone # 1 and # 2, which contain an additional gene copy of the rib genes 1, 2, 4 and 7, show a significantly increased riboflavin productivity compared to the starting strain (FIG. 1).
Figur 1 zeigt die Riboflavinausbeuten der verschiedenen Klone. Durch Einbringen der ribl, 2, 4 und 7 Gene konnten Steigerungen der Riboflavinausbeuten von bis zu 135 % im Vergleich zum unmodifizierten Stamm erreicht werden. Figure 1 shows the riboflavin yields of the different clones. By introducing the ribl, 2, 4 and 7 genes, riboflavin yields could be increased by up to 135% compared to the unmodified strain.

Claims

Patentansprüche claims
1. Verfahren zur mikrobiellen Herstellung von Riboflavin indem man einen zur Ribo lavinproduktion fähigen Mikroorganismus der Gattung Ashbya, züchtet, der in mindestens zwei der Genprodukte aus der Gruppe ribl, rib2, rib4 und rib7 höhere Aktivitäten aufweist als der Wildtyp ATCC 10895, und anschließend das gebildete Riboflavin aus dem Kulturmedium isoliert.1. A process for the microbial production of riboflavin by cultivating a microorganism of the genus Ashbya capable of producing ribolavin which has higher activities than the wild type ATCC 10895 in at least two of the gene products from the group ribl, rib2, rib4 and rib7, and then that Riboflavin formed isolated from the culture medium.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß drei Genprodukte aus der Gruppe ribl, rib2 , rib4 und rib7 höhere Aktivitäten aufweisen.2. The method according to claim 1, characterized in that three gene products from the group ribl, rib2, rib4 and rib7 have higher activities.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vier Genprodukte aus der Gruppe ribl, rib2, rib4 und rib7 höhere Aktivitäten aufweisen.3. The method according to claim 1, characterized in that four gene products from the group ribl, rib2, rib4 and rib7 have higher activities.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die höhere Genaktivität der rib Genprodukte durch eine erhöhte Genexpression bewirkt wird.4. The method according to any one of claims 1 to 3, characterized in that the higher gene activity of the rib gene products is caused by an increased gene expression.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die erhöhte Genexpression durch eine erhöhte Genkopienzahl bewirkt wird.5. The method according to claim 4, characterized in that the increased gene expression is caused by an increased number of gene copies.
6. Verfahren nach einem der o.g. Ansprüche, dadurch gekennzeichnet, daß das rib-Genprodukt eine Polypeptidsequenz wie in SEQ ID NO: 2,4,6,8 dargestellt, oder eine von diesen6.Procedure according to one of the above Claims, characterized in that the rib gene product is a polypeptide sequence as shown in SEQ ID NO: 2,4,6,8, or one of these
Sequenzen durch Austausch, Insertion oder Deletion von bis zu 5 % der Aminosäurecodons erhältliche Polypeptidsequenz besitzt. Has sequences by exchange, insertion or deletion of up to 5% of the amino acid codons available polypeptide sequence.
PCT/EP2002/013660 2001-12-04 2002-12-03 Genetic strain optimization for improving the production of riboflavin WO2003048367A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002358083A AU2002358083A1 (en) 2001-12-04 2002-12-03 Genetic strain optimization for improving the production of riboflavin
US10/497,526 US20050239161A1 (en) 2001-12-04 2002-12-03 Genetic strain optimization for improving the production of riboflavin
JP2003549544A JP2005511053A (en) 2001-12-04 2002-12-03 Optimization of genetic lines for improved riboflavin production
EP02791764A EP1456388A1 (en) 2001-12-04 2002-12-03 Genetic strain optimization for improving the production of riboflavin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10159396.1 2001-12-04
DE10159396A DE10159396A1 (en) 2001-12-04 2001-12-04 Genetic strain optimization for improved production of riboflavin

Publications (1)

Publication Number Publication Date
WO2003048367A1 true WO2003048367A1 (en) 2003-06-12

Family

ID=7707902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/013660 WO2003048367A1 (en) 2001-12-04 2002-12-03 Genetic strain optimization for improving the production of riboflavin

Country Status (7)

Country Link
EP (1) EP1456388A1 (en)
JP (1) JP2005511053A (en)
KR (1) KR20050044861A (en)
CN (1) CN1599796A (en)
AU (1) AU2002358083A1 (en)
DE (1) DE10159396A1 (en)
WO (1) WO2003048367A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455438B2 (en) 2004-05-14 2008-11-25 C.R.F. Societa Consortile Per Azioni Module for projecting a light beam, an optical device for the module, and a vehicle front light assembly
EP3227430B1 (en) * 2014-12-01 2021-05-19 Danisco US Inc. Fungal host strains, dna constructs, and methods of use

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430471C (en) * 2006-05-17 2008-11-05 天津大学 Riboflavin-produced engineered strain and its method for producing riboflavin
US8138876B2 (en) * 2008-01-29 2012-03-20 International Business Machines Corporation On-chip integrated voltage-controlled variable inductor, methods of making and tuning such variable inductors, and design structures integrating such variable inductors
CN102809658A (en) * 2012-09-03 2012-12-05 南开大学 Enzyme-linked immunosorbent assay kit of vitamin B2
KR102561864B1 (en) * 2014-11-19 2023-08-01 바스프 에스이 Genetic modification of eremothecium to downregulate gene expression by using the rib7 promoter
CN114592000B (en) * 2020-12-03 2023-07-21 上海市农业科学院 Application of six-gene combination in improving VB2 content in rice seeds and method
CN113817654B (en) * 2021-11-08 2023-06-20 通辽梅花生物科技有限公司 Fermentation medium and fermentation method for producing riboflavin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405370A1 (en) * 1989-06-22 1991-01-02 F. Hoffmann-La Roche Ag Riboflavinoverproducing strains of bacteria
WO1995026406A2 (en) * 1994-03-25 1995-10-05 Basf Aktiengesellschaft Riboflavin synthesis in fungi
WO1999061623A2 (en) * 1998-05-28 1999-12-02 Basf Aktiengesellschaft Genetic method for producing riboflavin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405370A1 (en) * 1989-06-22 1991-01-02 F. Hoffmann-La Roche Ag Riboflavinoverproducing strains of bacteria
WO1995026406A2 (en) * 1994-03-25 1995-10-05 Basf Aktiengesellschaft Riboflavin synthesis in fungi
WO1999061623A2 (en) * 1998-05-28 1999-12-02 Basf Aktiengesellschaft Genetic method for producing riboflavin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455438B2 (en) 2004-05-14 2008-11-25 C.R.F. Societa Consortile Per Azioni Module for projecting a light beam, an optical device for the module, and a vehicle front light assembly
EP3227430B1 (en) * 2014-12-01 2021-05-19 Danisco US Inc. Fungal host strains, dna constructs, and methods of use

Also Published As

Publication number Publication date
JP2005511053A (en) 2005-04-28
KR20050044861A (en) 2005-05-13
CN1599796A (en) 2005-03-23
DE10159396A1 (en) 2003-06-12
AU2002358083A1 (en) 2003-06-17
EP1456388A1 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
EP1082438A2 (en) Genetic method for producing riboflavin
Averianova et al. Production of vitamin B2 (riboflavin) by microorganisms: an overview
CN105658801A (en) Microorganisms engineered to use unconventional sources of phosphorus or sulfur
DE69931162T2 (en) METABOLICALLY MODIFIED MICROBIAL CELL WITH CHANGED METABOLITE GENERATION
DE102005056669A1 (en) Fermentative preparation of organic compounds, useful for making, e.g. amino acids or enzymes, using a starch source from which non-starch solids have not been removed, hydrolyzed and enzymatically converted to monosaccharides
WO2003048367A1 (en) Genetic strain optimization for improving the production of riboflavin
EP1208216B1 (en) Fatty acid desaturase gene from plants
EP0909821A2 (en) Engineering enzymes having altered substrate specificity
EP1173579A1 (en) Carotene hydroxylase and method for producing xanthophyll derivatives
WO2003074721A2 (en) Method for producing riboflavin
DE10134660A1 (en) New isolated nucleic acid encoding desaturase enzymes from pomegranate, useful for recombinant production of unsaturated fatty acids, for e.g. the production of food, animal feeds and pharmaceuticals
JP2005511053A6 (en) Optimization of genetic lines for improved riboflavin production
Böer et al. Arxula adeninivorans
WO1999036432A2 (en) Orotidine 5'-phosphate decarboxylase-gene, gene construct containing said gene and the utilization thereof
EP1918379B1 (en) Expression vectors for multiple gene integration and Overexpression of homologous and heterologous proteins in yeasts of the species Arxula
WO2000077182A9 (en) Nucleic acid fragment and vector containing halogenase and method for the halogenation of chemical compounds
US20050239161A1 (en) Genetic strain optimization for improving the production of riboflavin
EP2456880B1 (en) Fermentation additive based on hops and fermentation process
WO1999050420A1 (en) Method for increasing the phenoxy propionic acid hydroxylation rate
DE19937548A1 (en) Single or multicellular organisms for the production of riboflavin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002791764

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003549544

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10497526

Country of ref document: US

Ref document number: 1020047008485

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002824270X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002791764

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002791764

Country of ref document: EP