WO1999061623A2 - Genetic method for producing riboflavin - Google Patents

Genetic method for producing riboflavin Download PDF

Info

Publication number
WO1999061623A2
WO1999061623A2 PCT/EP1999/003196 EP9903196W WO9961623A2 WO 1999061623 A2 WO1999061623 A2 WO 1999061623A2 EP 9903196 W EP9903196 W EP 9903196W WO 9961623 A2 WO9961623 A2 WO 9961623A2
Authority
WO
WIPO (PCT)
Prior art keywords
genes
riboflavin
seq
synthase
organisms
Prior art date
Application number
PCT/EP1999/003196
Other languages
German (de)
French (fr)
Other versions
WO1999061623A3 (en
Inventor
Henning ALTHÖFER
Harald Seulberger
Oskar Zelder
Jose Luis Revuelta Doval
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to KR1020007013352A priority Critical patent/KR20010043867A/en
Priority to AU41409/99A priority patent/AU4140999A/en
Priority to JP2000551007A priority patent/JP2002516108A/en
Priority to EP99924924A priority patent/EP1082438A2/en
Publication of WO1999061623A2 publication Critical patent/WO1999061623A2/en
Publication of WO1999061623A3 publication Critical patent/WO1999061623A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P25/00Preparation of compounds containing alloxazine or isoalloxazine nucleus, e.g. riboflavin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi

Definitions

  • the present invention relates to a genetic process for the production of riboflavin.
  • the invention further relates to nucleic acid fragments containing genes with the sequences SEQ ID NO. 1, SEQ ID No. 3 or SEQ ID No. 5 or their functional equivalents, expression vectors containing the nucleic acid fragments and organisms containing at least one nucleic acid fragment or at least one vector.
  • Vitamin B2 also called riboflavin, is produced by all plants and a variety of microorganisms. It is essential for humans and animals as they are unable to synthesize it. Riboflavin plays an important role in metabolism. For example, it is involved in the utilization of carbohydrates. With vitamin B2 deficiency, inflammation of the mucous membranes of the mouth and throat, itching and inflammation in the skin folds and similar skin damage, conjunctivitis, reduced visual acuity and clouding of the cornea occur. Growth and weight loss may occur in infants and children. Vitamin B2 is therefore of great economic importance, for example as a vitamin preparation for vitamin deficiency and as a feed additive. Various foods are added. It is also used as a food coloring, for example in mayonnaise, ice cream, pudding, etc.
  • Vitamin B2 is produced either chemically or microbially (see e.g. Kurth et al., 1996, Riboflavin, in: Ullmann's Encyclopedia of industrial chemistry, VCH Weinheim). In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, with relatively expensive starting products, e.g. D-Ribose, must be used.
  • GTP guanosine triphosphate
  • ribulose-5-phosphate guanosine triphosphate
  • GTP-cyclohydrolase-II ribl gene product
  • This compound is then converted to 2,5-diamino-ribitylamino-2,4- by the 2,5-diamino-6- (ribosylamino) -4- (3H) -pyrimidinone-5-phosphate reductase (rib7 gene product).
  • IH, 3H) - pyrimidine-5-phosphate reduced and then deaminated by a specific deaminase (rib2 gene product) to 5-amino-6-ribitylamino-2, 4- (IH, 3H) -pyrimidinedione-5-phosphate.
  • the phosphate is then split off by an unspecific phosphatase.
  • Ribulose-5-phosphate in addition to GTP the second starting product of the last enzymatic steps in riboflavin biosynthesis, is converted to 3,4-dihydroxy by the 3,4-dihydroxy-2-butanone-4-phosphate synthase (rib3 gene product).
  • 2-butanone-4-phosphate (DBP) implemented.
  • DBP and 5-amino-6-ribitylamino-2,4- (IH, 3H) -pyrimidinedione are the educts of the enzymatic synthesis of 6,7-dimethyl-8-ribityllumazine. This reaction is catalyzed by the rib4 gene product (DMRL synthase). DMRL is then converted to riboflavin by riboflavin synthase (rib5 gene product) (Bacher et al. (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag).
  • This object was characterized by a process for the increased production of riboflavin with an organism which is capable of synthesizing riboflavin, characterized in that the activity of the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate synthase , Dimethyl-8-ribityllumazin synthase and riboflavin synthase or their functional analogs increased in the organism, solved.
  • Another advantage of increasing vitamin B2 productivity is the combination of increasing the natural enzyme activity and introducing the above-mentioned gene combination to increase gene expression.
  • organisms which are able to synthesize riboflavin are suitable as organisms or host organisms for the process according to the invention.
  • Organisms that can synthesize riboflavin naturally are preferred.
  • organisms which are able to synthesize riboflavin due to the introduction of the complete vitamin B2 synthesis genes are also suitable for the process according to the invention.
  • Organisms such as bacteria, yeast, fungi or plants are suitable for the process according to the invention. Examples include eukaryotic organisms such as fungi, which are described in Indian Chem Engr. Section B.
  • Organisms are preferably selected from the group of the genera Corynebacterium, Brevibacterium, Bacillus, Escherichia, Ashbya, Eremothecium, Candida or Saccharomyces or plants such as corn, soybeans, rape, barley, wheat, potatoes or tomatoes.
  • Organisms of the genus and species Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata, Corynebacterium ammoniagenes or Bacillus are particularly preferred subtilis.
  • Maize, soybean, rapeseed, barley, wheat, potato and tomato are particularly preferred as plants.
  • the combination according to the invention of the rib genes rib3, rib4 and rib5 5 and / or the increase in activity of the genes and their gene products leads to a significantly increased riboflavin productivity.
  • the genes mentioned can in principle be introduced into the organisms used by all methods known to the person skilled in the art; they are advantageously introduced into the organisms or their cells via transformation, transfection, electroporation, with the so-called particle gun or via microinjection.
  • particle gun or via microinjection.
  • the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel 5 et al.
  • the REMI technique is based on the co-transformation of a linear DNA construct that has the same restriction at both ends.
  • the REMI method can be used to integrate biosynthesis genes into the genome of the above-mentioned organisms and thus production processes for the production of metabolic products of primary or secondary metabolism, especially of biosynthetic pathways, for example of amino acids such as lysine, methionine, Threonine or tryptophan, vitamins such as vitamins A, B2, B6 B12, C, D, E, F, S-adenosylmethionine, biotin, pantothenic acid or folic acid, carotenoids such as ß-carotene, lycopene, canthaxanthin, astaxanthin or zeaxanthin or proteins like Hydrolases such as lipases, esterases, amidases, nitrilases, proteases, mediators such as cytokines, for example lymphokines such as MIF, MAP, TNF, interleukins such as interleukin 1, interferons such as
  • the nucleic acid fragments according to the invention or other of the genes mentioned above can be placed at transcriptionally active sites in the genome.
  • the nucleic acids are advantageously cloned together with at least one reporter gene into a DNA construct which is introduced into the genome.
  • This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement.
  • reporter genes are antibiotic resistance genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biosynthesis genes such as the riboflaving genes, the luciferase gene, .beta.-galactosidase gene, gfp gene, lipase gene, esterase gene, acoxidase gene, peroxidase gene, peroxidase gene, peroxidase gene Called adenyltransferase gene. These genes enable the transcription activity and thus the expression of the genes to be measured and quantified easily. This enables genome sites to be identified which show a different productivity up to a factor of 2 (see FIG. 1).
  • biosynthesis genes themselves enable easy detection, as in the case of the riboflavin, for example, an additional reporter gene can be dispensed with.
  • genes are to be introduced into the organism, all of them can be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene can be introduced into the organism, the different vectors being able to be introduced simultaneously or successively.
  • Gene fragments that code for the respective activities can also be used in REMI technology.
  • restriction enzymes are suitable for the method according to the invention for integrating biosynthesis genes into the genome of organisms. Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes.
  • the enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8, particularly preferably contain 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the nucleic acids such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo. If appropriate, further substances may also be present, such as EDTA, EDDA, DTT, ß-mercaptoethanol or nuclease inhibitors. However, it is also possible to carry out REMI technology without these additives.
  • sugar such as sucrose, trehalose or glucose
  • polyols such as glycerol or polyethylene glycol
  • the process according to the invention is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C. All known methods for the destabilization of cell membranes such as, for example, electroporation, fusion with loaded vesicles or the destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts are preferred for the method. The lithium salts are preferred.
  • the nucleic acids can be used for the reaction according to the invention directly or after purification.
  • FIGS. 2 and 3 show the method according to the invention in a schematic overview for the integration of the rib gene combination according to the invention.
  • the DNA was cut with the Spei enzyme and in its presence the DNA was introduced into the organisms.
  • a kanamycin resistance gene was incorporated in the fragment, which is flanked by TEF promoter sequences (so-called "direct repeat").
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of plants are used
  • Plant tissues or plant cells used for transient or stable transformation are protoplast transformation by polyethylene glycol-induced DNA uptake, the use of a gene gun, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al. , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec.Biol. 42 (1991) 205-225).
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711).
  • Agrobacterium tumefaciens for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711).
  • the transformation of plants with Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877.
  • Agrobacteria transformed with an expression vector according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, for example, by wounded leaves or pieces of leaf bathed in an agrobacterial solution and then cultivated in suitable media.
  • crop plants such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, for example, by wounded leaves or pieces of leaf bathed in an agrobacterial solution and then cultivated in suitable media.
  • the genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned writings by S.D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer can be found.
  • One possibility is to change the endogenous rib genes 3, 4 and 5 in such a way that they code for enzymes with increased rib 3, 4 or 5 activity compared to the starting enzymes.
  • Another increase in enzyme activity can be achieved, for example, by changing the catalytic centers to increase substrate conversion or by canceling the action of enzyme inhibitors, that is to say they have an increased specific activity or their activity is not inhibited.
  • an increased enzyme activity can also take place by increasing the enzyme synthesis in the cell, for example by switching off factors which repress the enzyme synthesis or by increasing the activity of factors or regulatory elements which promote increased synthesis, or preferably by introducing further ones Gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity.
  • a combination of these methods can also be used, ie increasing the specific activity and increasing the overall activity.
  • these changes can be introduced into the nucleic acid sequences of the genes, regulatory elements or their promoters by all methods known to the person skilled in the art.
  • the sequences can be subjected, for example, to a mutagenesis such as a "site directed mutagenesis" as described in D.M. Glover et al. , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), Chapter 6, page 193 ff.
  • the modified nucleic acid sequences are then brought back into the organisms via vectors.
  • modified promoter areas can also be placed in front of the natural genes, so that the expression of the genes is increased and the activity is ultimately increased. Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity.
  • rib genes 3, 4 and 5 are preferably introduced into the cell together. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or else regulatory sequences of foreign genes or even genes of other species can be used.
  • Functional analogs are understood to mean, for example, functional homologs of the rib genes or their enzymatic activities, that is to say enzymes which catalyze the same enzymatic reactions as the rib genes. These genes also lead to an advantageous increase in riboflavin formation. These functional analogues can also advantageously be mutagenized or modified in the manner mentioned above and their activity can thus be increased.
  • the functional analogs are advantageously genes or gene products which, for example, come from eukaryotic or prokaryotic organisms.
  • eukaryotic organisms are mushrooms which are described in Indian Chem Engr. Section B. Vol 37, No 1.2 (1995) on page 15, Table 6, such as eremothecium, yeasts such as Candida, Saccharomyces or Pichia or plants such as Arabidopsis, tomato, potato, corn, soybean, rape, barley, wheat , Rye, rice, millet, cotton, sugar beet, sunflower, flax, hemp, canola, oats, tobacco, alfalfa, lettuce or the various tree, nut and wine species.
  • prokaryotic organisms are Gram-positive or Gram-negative bacteria such as Corynebacterium, Brevibacterium, Bacillus, Clostri- called dium, Cyanobacter or Escherichia.
  • the functional analogs advantageously come from fungi such as Eremothecium, yeasts such as Saccharomyces or Candida, gram-positive bacteria such as Bacillus or Corynebacterium or gram-negative bacteria such as Escherichia 5 coli.
  • the functional analogs preferably originate from the organisms of the genus and species Eremothecium ashbyii, Saccharomyces differentiation iaia, Candida flaveri, Candida famata, Escherichia coli, Corynebacterium ammoniagenes or Bacillus subtilis.
  • Functional equivalents of the genes used in the combination according to the invention with the sequences SEQ ID No. 1, SEQ ID No. 3 and SEQ ID No. 5 are understood to mean, for example, allele variants which have at least 35% homology at the derived amino acid level, preferably at least 40 % Homology, particularly preferably at least 45% homology, very particularly preferably 20 50% homology.
  • the amino acid sequence derived from the nucleic acids mentioned can be found in the sequences SEQ ID No.2, SEQ ID No.4 and SEQ ID No.6.
  • Allelic variants particularly include functional variants which can be obtained by deleting, inserting or substituting nucleotides from the sequence shown in SEQ ID No. 1, SEQ ID 25 No.3 and SEQ ID No.5, the enzymatic activity of the derived synthesized proteins being retained remains.
  • DNA sequences can be prepared starting from the in SEQ ID _ 0 No.l, SEQ ID No.3 and SEQ ID No .5 described DNA sequences or parts of these sequences, for example by conventional dleitersvon Hybri- or the PCR technique from Isolate eukaryotes or prokaryotes other than Ashbya gossypii as mentioned above. These DNA sequences hybridize to the sequences mentioned under standard conditions. For hybridization be advantageous
  • 35 short oligonucleotides of the conserved region which can be determined in a manner known to the person skilled in the art by comparison with the corresponding genes from E. coli and B. subtilis.
  • homologs of the sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 are to be understood as, for example, eukaryotic or prokaryotic homologs, shortened sequences or single-stranded DNA.
  • homologs of the sequences SEQ ID No. 1, SEQ ID No. 3 and SEQ ID No. 5 are to be understood as derivatives such as promoter variants.
  • the promoters which are upstream of the specified nucleotide sequences together or individually can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without impairing the functionality or effectiveness of the promoters are.
  • the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
  • Derivatives are also advantageously to be understood as variants whose nucleotide sequence has been changed before the start codon in such a way that the gene expression and / or the protein expression is changed, preferably increased.
  • Sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 or their functional equivalents can be preferably obtained from microorganisms of the genera Clostridium, Corynebacterium, Brevibacterium Cyanobacter, Bacillus, Eremothecium, Escherichia, Pichia, Ashbya or Candida or from plants , particularly preferably from microorganisms of the genus and type Bacillus subtilis, Corynebacterium ammoniagenes, Escherichia coli, Candida flaveri, Candida famata or fungi, which are described in Indian Chem Engr. Section B., Vol. 37, No. 1,2 (1995) on page 15, table 6, e.g.
  • Isolate Eremothecium ashbyii or Ashbya gossypii particularly preferably from microorganisms of the genus and species Eremothecium ashbyii or Ashbya gossypii.
  • the rib 3, 4, 5 homologous genes rib A, ribH and ribB, or gene fragments from these, from Bacillus subtilis or the rib3, 4, 5 homologous genes rib B, rib E and rib C, or gene fragments these from E. coli can be used advantageously in prokaryotic systems to increase the riboflavin yield in the process according to the invention.
  • the gene expression of the rib genes 3, 4 and 5 can advantageously be increased by increasing the rib3,4,5 gene copy number and / or by strengthening regulatory factors which have a positive effect on the rib3, 4 and 5 gene expression.
  • regulatory elements can preferably be amplified at the transcription level by using stronger transcription signals such as promoters and enhancers.
  • an increase in translation is also possible, for example, by improving the stability of the rib3, 4 and 5 mRNA, or by increasing the reading efficiency of this mRNA on the ribosomes.
  • the rib genes 3, 4 and 5, or homologous genes can be incorporated, for example, into a nucleic acid fragment or into a vector which preferably contains the regulatory gene sequences assigned to the respective rib genes or promoter activity acting in an analogous manner.
  • each of the genes described can be brought into a single vector and transformed into the respective production organism.
  • the rib gene sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 or their functional equivalents which have been functionally linked to one or more regulatory signals to increase the gene expression.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also have a simpler structure, that is to say no additional regulation signals have been inserted in front of the sequences SEQ ID No.
  • the gene construct can also advantageously functionally function one or more so-called “enhancer sequences" linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences.
  • the rib genes can be contained in one or more copies in the gene construct.
  • Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacI ⁇ - ⁇ T7-, T5-, Contain T3, gal, trc, ara, SP6, ⁇ -P R - or in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacI ⁇ - ⁇ T7-, T5-, Contain T3, gal, trc, ara, SP6, ⁇ -P R - or in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • Further advantageous regulatory sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MF ⁇ , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck et al., 1980, Cell 21: 285-294], PRPl [Ward et l., Plant Mol.
  • promoters of pyruvate decarboxylase and methanol oxidase from, for example, Hansenula advantageous.
  • Further advantageous plant promoters are, for example, one that can be induced by benzenesulfonamide (EP 388186), one that can be induced by tetracycline (Gatz et al., (1992) Plant J. 2,397-404), one that can be induced by abscisic acid (EP335528) or one by
  • Ethanol or cyclohexanone-inducible (W09321334) promoter Ethanol or cyclohexanone-inducible (W09321334) promoter.
  • Plant promoters which ensure expression in tissues or parts of plants in which the biosynthesis of purines or its precursors takes place are particularly advantageous. Promoters which ensure leaf-specific expression are to be mentioned in particular.
  • the promoter of the cytosolic FBPase from potatoes or the ST-LSI promoter from potatoes should be mentioned (Stockhaus et al., EMBO J. 8 (1989) 2445-245).
  • the promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max see also Genbank Accession number U87999
  • another node-specific promoter as in EP 249676 can also be used advantageously.
  • the nucleic acid fragment is advantageously inserted into a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host.
  • a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host.
  • Suitable plasmids are, for example, in E.
  • Plasmids The plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al. Elsevier, A sterdam-New York-Oxford, 1985, ISBN 0 444 904018). Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, p.71-119.
  • the nucleic acid fragment for the expression of the other genes contained additionally contains 3 'and / or 5' terminal regulatory sequences for increasing expression, which are selected for optimal expression depending on the host organism selected and gene or genes.
  • regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably influence the gene expression of the introduced genes positively and thereby increase.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • the gene construct according to the invention can also advantageously be introduced into the microorganisms in the form of a linear DNA and via heterologous or homologous recombination can be integrated into the genome of the host organism.
  • This linear DNA can consist of a linearized plasmid or only of the nucleic acid fragment as a vector.
  • Any plasmid in particular a plasmid that carries the origin of replication of the 2 ⁇ m plasmid from S. cerevisiae
  • a linear DNA fragment that enters the genome of the host integrated.
  • This integration can take place via hetero- or homologous recombination.
  • preferred via homologous recombination Stepiner et al., Genetics, Vol. 140, 1995: 973-987.
  • the genes rib3, rib4 and rib5 can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector.
  • the organisms used in the process according to the invention which contain the combination of the rib genes 3, 4 and 5 or their functional equivalents show increased riboflavin production.
  • the organisms used for the production of riboflavin are grown in a medium which enables these organisms to grow.
  • This medium can be a synthetic or a natural medium.
  • media known to the person skilled in the art are used.
  • the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
  • Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose-1, 6-bis-phosphate, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as an amino acid mixture, for example so-called casamino acids (Difco) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
  • sugars such as mono-, di-
  • Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds.
  • ammonium salts such as NH 4 C1 or (NH 4 ) 2 S0 4 , nitrates urea, or complex nitrogen sources such as corn swell water, beer yeast autolysate, soybean flour, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which can often also serve as a nitrogen source at the same time.
  • inorganic salts are the salts of calcium, magnesium, sodium, cobalt, molybdenum, manganese, potassium, zinc, copper and iron.
  • the chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts.
  • An important factor for increasing productivity in the process according to the invention is the control of the Fe 2 + ⁇ or Fe 3+ ion concentration in the production medium.
  • growth factors are added to the nutrient medium, such as vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as Citric acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol.
  • vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine
  • amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine
  • carboxylic acids such as Citric acid, formic acid, pimelic acid or lactic
  • the mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case.
  • the medium components can all be introduced at the beginning of the fermentation, after they have been separately sterilized or sterilized together, if necessary, or they can be added continuously or discontinuously during the fermentation as required.
  • the breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved.
  • Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous.
  • the pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous.
  • an incubation period of a few hours to a few days, preferably 8 hours to 21 days, particularly preferably 4 hours to 14 days, is sufficient. The maximum amount of product in the medium accumulates within this time.
  • the process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
  • the riboflavin productivity can be increased by the method according to the invention to different extents.
  • the productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism.
  • Sequence 1 shows the DNA construct which carries the gene fragments of rib3, rib4 and rib5 in addition to the selection marker necessary for the transformation.
  • rib3 vector pJR874
  • rib4 vector pJR762
  • rib5 vector pJR739
  • the vector pAG-110 (Steiner and Philipsen (1994) Mol. Gen. Genet., 242; 263-271) was cut with drain, incubated with Klenow polymerase and deoxy nucleotides (filling in the ends), precipitated and then cut with Sall.
  • the DNA fragment containing the Tef promoter and the kanamycin resistance gene was ligated with the Hindlll and Sall cut vector Bluescript KS- (Stratagene), the Hindlll ends of which were filled in by Klenow polymerase.
  • the vector pBS Tef-G418 was created.
  • pJR874 was cut in the second cloning step with PvuII and Sall.
  • the rib3 gene fragment was then ligated to a Sall cut and dephosphorilated vector pBS Tef-G418. Since only the Sall ends of the fragment and vector could be ligated, the incompatible PvuII and Sall ends were filled in with Klenow polymerase and then ligated.
  • the resulting vector is called Tef-G418-rib3 in the following.
  • the vector pJR739 was cut with Neol and Notl. The ends were filled in with Klenow polymerase. The rib5 gene fragment was then subcloned into the Sall-cut vector Tef-G418-rib3, the ends of which were also filled. The result was vector Tef-G418-Rib3,5.
  • the rib4 gene fragment from vector pJR762 was PCR by means of the primer
  • the PCR fragment was cut with Nhel and subcloned into a Nhel cut vector and treated with alkaline phosphatase Tef-G418rib3,5.
  • the resulting DNA construct is the vector Tef-G418-rib3, 4, 5.
  • MA2 medium (10g / l Bacto-Peptone, 1g / 1 yeast extract, 0.3g / l myo-inositol and 10g / l D-glucose) was inoculated with Ashbya gossypii spores. The culture was incubated at 4 ° C for 12 h and then at 28 ° C with shaking for 13 h. The cell suspension was centrifuged off and the cell pellet was taken up in 5 ml of 50 mM potassium phosphate buffer pH 7.5, 25 mM DTT.
  • the cells were again centrifuged off and taken up in 25 ml of STM buffer (270 mM sucrose, 10 mM TRIS-HC1 pH 7.5, ImM MgCl). 0.5 ml of this suspension was then mixed with about 3 ⁇ g of the above-purified insert and 40 U Spei enzyme and electroporated in a Biorad Gene Pulser (100 ⁇ , 20 ⁇ F, 1.5 kV). After electroporation, 1 ml of MA2 medium was added to the cells and spread on MA2 agar culture plates. For antibiotic selection, the plates are overlaid after 5 hours of incubation at 28 ° C.
  • STM buffer 270 mM sucrose, 10 mM TRIS-HC1 pH 7.5, ImM MgCl
  • Figure 4 shows the riboflavin yields of the different clones.
  • riboflavin yields could be increased by up to 150% compared to the unmodified strain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to a genetic method for producing riboflavin. The production of riboflavin in organisms is increased by specially selecting genes of the riboflavin biosynthesis or of the combination thereof in organisms, especially in bacteria, fungi, yeasts and plants, and of the expression thereof. The invention also relates to a nucleic acid fragment containing genes with the sequences SEQ ID No. 1, SEQ ID No. 3 or SEQ ID No. 5 or the functional equivalents thereof, to expression vectors containing the nucleic acid fragments, and to organisms containing at least one nucleic acid fragment or at least one vector.

Description

Genetisches Verfahren zur Herstellung von RiboflavinGenetic process for the production of riboflavin
Beschreibungdescription
Die vorliegende Erfindung betrifft ein genetisches Verfahren zur Herstellung von Riboflavin. Durch die spezielle Auswahl von Genen der Riboflavinbiosynthese bzw. deren Kombination in Organismen speziell in Bakterien, Pilzen, Hefen und Pflanzen und deren Expression wird die Ribofiavinproduktion in diesen Organismen gesteigert.The present invention relates to a genetic process for the production of riboflavin. The special selection of genes of riboflavin biosynthesis or their combination in organisms, especially in bacteria, fungi, yeasts and plants and their expression, increases the ribofiavin production in these organisms.
Die Erfindung betrifft weiterhin Nukleinsäurefragment enthaltend Gene mit den Sequenzen SEQ ID NO. 1, SEQ ID No. 3 oder SEQ ID No. 5 oder deren funktioneilen Äquivalente, Expressionsvektoren enthaltend die Nukleinsäurefragmente und Organismen enthaltend mindestens ein Nukleinsäurefragment oder mindestens einen Vektor.The invention further relates to nucleic acid fragments containing genes with the sequences SEQ ID NO. 1, SEQ ID No. 3 or SEQ ID No. 5 or their functional equivalents, expression vectors containing the nucleic acid fragments and organisms containing at least one nucleic acid fragment or at least one vector.
Vitamin-B2, auch Riboflavin genannt, wird von allen Pflanzen und einer Vielzahl von Mikroorganismen hergestellt. Für Mensch und Tier ist es essentiell, da sie nicht in der Lage sind, es zu synthetisieren. Riboflavin spielt eine wichtige Rolle im Metabolismus. So ist es beispielsweise an der Verwertung von Kohlenhydraten beteiligt. Bei Vitamin B2-Mangel treten Entzündungen der Mund- und Rachenschleimhäute, Juckreiz und Entzündungen in den Hautfalten und ähnliche Hautschäden, Bindehautentzündungen, verminderte Sehschärfe und Trübung der Hornhaut auf. Bei Säuglingen und Kindern können Wachstumsstillstand und Gewichtsabnahme auftreten. Vitamin-B2 hat deshalb eine große wirtschaftliche Bedeu- tung beispielsweise als Vitaminpräparat bei Vitaminmangel sowie als Futtermittelzusatz. Es wird verschiedensten Lebensmitteln zugesetzt. Daneben wird es auch als Lebensmittelfarbstoff, beispielsweise in Mayonnaise, Eiscreme, Pudding etc. verwendet.Vitamin B2, also called riboflavin, is produced by all plants and a variety of microorganisms. It is essential for humans and animals as they are unable to synthesize it. Riboflavin plays an important role in metabolism. For example, it is involved in the utilization of carbohydrates. With vitamin B2 deficiency, inflammation of the mucous membranes of the mouth and throat, itching and inflammation in the skin folds and similar skin damage, conjunctivitis, reduced visual acuity and clouding of the cornea occur. Growth and weight loss may occur in infants and children. Vitamin B2 is therefore of great economic importance, for example as a vitamin preparation for vitamin deficiency and as a feed additive. Various foods are added. It is also used as a food coloring, for example in mayonnaise, ice cream, pudding, etc.
Die Herstellung von Vitamin B2 erfolgt entweder chemisch oder mikrobiell (siehe z.B. Kurth et al . , 1996, Riboflavin, in: Ull- mann's Encyclopedia of industrial chemistry, VCH Weinheim). Bei den chemischen Herstellverfahren wird Riboflavin in der Regel in mehrstufigen Prozessen als reines Endprodukt gewonnen, wobei relativ kostspielige Ausgangsprodukte, wie z.B. D-Ribose, eingesetzt werden müssen.Vitamin B2 is produced either chemically or microbially (see e.g. Kurth et al., 1996, Riboflavin, in: Ullmann's Encyclopedia of industrial chemistry, VCH Weinheim). In the chemical production process, riboflavin is usually obtained as a pure end product in multi-stage processes, with relatively expensive starting products, e.g. D-Ribose, must be used.
Eine Alternative zur chemischen Synthese von Riboflavin ist die fermentative Herstellung des Vitamin B2 durch Mikroorganismen. Als Ausgangsstoffe dienen dabei nachwachsende Rohstoffe, wieAn alternative to the chemical synthesis of riboflavin is the fermentative production of vitamin B2 by microorganisms. Renewable raw materials such as
Zucker oder pflanzliche Öle. Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983), aber auch Hefen, wie z.B. Can- dida, Pichia und Saccharomyces oder Bakterien, wie z.B. Bacillus, Clostridien oder Corynebakterien sind als Riboflavin-Produzenten beschrieben. In EP-A-0 405 370 und EP-A-0 821 063 wird die Herstellung von Riboflavin mit rekombinanten Bakterienstämmen beschrieben, wobei die Stämme durch Transformation mit Riboflavin- Biosynthesegenen aus Bacillus subtilis erhalten wurden.Sugar or vegetable oils. The production of riboflavin by fermentation of mushrooms such as Eremothecium ashbyii or Ashbya gossypii is known (The Merck Index, Windholz et al., eds. Merck & Co., page 1183, 1983), but also yeasts such as Candida, Pichia and Saccharomyces or bacteria such as Bacillus, Clostridien or Corynebacteria described as a riboflavin producer. EP-A-0 405 370 and EP-A-0 821 063 describe the production of riboflavin with recombinant bacterial strains, the strains being obtained from Bacillus subtilis by transformation with riboflavin biosynthetic genes.
In Patent WO 95/26406 bzw. WO 93/03183 sowie in DE 44 20 785 wird die Klonierung der für die Riboflavin-Biosynthese spezifischen Gene aus den eukaryontischen Organismen Ashbya gossypii bzw. Saccharomyces cerevisiae, sowie Mikroorganismen, die mit diesen Genen transformiert wurden, und die Verwendung solcher Mikro- Organismen zur Riboflavinsynthese beschrieben.In patent WO 95/26406 or WO 93/03183 and in DE 44 20 785 the cloning of the genes specific for riboflavin biosynthesis from the eukaryotic organisms Ashbya gossypii or Saccharomyces cerevisiae, as well as microorganisms that have been transformed with these genes, and the use of such microorganisms for riboflavin synthesis.
In beiden Organismen katalysieren 6 Enzyme ausgehend von Guano- sintriphosphat (GTP) und von Ribulose-5-Phosphat die Bildung von Riboflavin. Hierbei setzt die GTP-Cyclohydrolase-II (ribl-Gen- produkt) GTP zu 2, 5-Diamino-6- (ribosylamino) -4- (3H)-pyrimidi- non-5-phosphat um. Diese Verbindung wird anschließend durch die 2 , 5-Diamino-6- (ribosylamino) -4- (3H)-pyrimidinon-5-phosphat Reduk- tase (rib7 Genprodukt) zu 2 , 5-Diamino-ribitylamino-2 , 4- (IH, 3H) - pyrimidin-5-phosphat reduziert und dann durch eine spezifische Deaminase (rib2-Genprodukt) zu 5-Amino-6-ribitylamino-2 , 4- ( IH, 3H) -pyrimidindion-5-phosphat deaminiert. Durch eine unspezifische Phosphatase wird daraufhin das Phosphat abgespalten.In both organisms, 6 enzymes catalyze the formation of riboflavin based on guanosine triphosphate (GTP) and ribulose-5-phosphate. Here, the GTP-cyclohydrolase-II (ribl gene product) converts GTP to 2,5-diamino-6- (ribosylamino) -4- (3H) -pyrimidi- non-5-phosphate. This compound is then converted to 2,5-diamino-ribitylamino-2,4- by the 2,5-diamino-6- (ribosylamino) -4- (3H) -pyrimidinone-5-phosphate reductase (rib7 gene product). IH, 3H) - pyrimidine-5-phosphate reduced and then deaminated by a specific deaminase (rib2 gene product) to 5-amino-6-ribitylamino-2, 4- (IH, 3H) -pyrimidinedione-5-phosphate. The phosphate is then split off by an unspecific phosphatase.
Ribulose-5-phosphat, neben GTP das zweite Ausgangsprodukt der letzten enzymatischen Schritte der Riboflavinbiosynthese, wird durch die 3 , 4-Dihydroxy-2-butanon-4-phosphat-Synthase (rib3-Gen- produkt) zu 3 , 4-Dihydroxy-2-butanon-4-phosphat (DBP) umgesetzt.Ribulose-5-phosphate, in addition to GTP the second starting product of the last enzymatic steps in riboflavin biosynthesis, is converted to 3,4-dihydroxy by the 3,4-dihydroxy-2-butanone-4-phosphate synthase (rib3 gene product). 2-butanone-4-phosphate (DBP) implemented.
Sowohl DBP als auch 5-Amino-6-ribitylamino-2 , 4- (IH, 3H) -Pyrimidin- dion sind die Edukte der enzymatischen Synthese von 6,7-Dime- thyl-8-ribityllumazin. Diese Reaktion wird durch das rib4-Gen- produkt (DMRL-Synthase) katalysiert. DMRL wird daraufhin durch die Riboflavin-Synthase (rib5-Genprodukt) zu Riboflavin umgesetzt (Bacher et al . (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag) .Both DBP and 5-amino-6-ribitylamino-2,4- (IH, 3H) -pyrimidinedione are the educts of the enzymatic synthesis of 6,7-dimethyl-8-ribityllumazine. This reaction is catalyzed by the rib4 gene product (DMRL synthase). DMRL is then converted to riboflavin by riboflavin synthase (rib5 gene product) (Bacher et al. (1993), Bioorg. Chem. Front. Vol. 3, Springer Verlag).
Trotz dieser Fortschritte in der Herstellung von Riboflavin besteht nach wie vor ein Bedarf zur Verbesserung und Steigerung der Vitamin B2-Produktivität um den steigenden Bedarf zu decken und die Herstellung von Riboflavin effizienter zu gestalten. Es bestand daher die Aufgabe die Vitamin B2-Produktivität weiter zu verbessern. Diese Aufgabe wurde durch ein Verfahren zur gesteigerten Herstellung von Riboflavin mit einem Organismus, der in der Lage ist Riboflavin zu synthetisieren, dadurch gekenn- zeichnet, daß man die Aktivität der Enzyme 3 , 4-Dihydroxy-2- butanon-4-phosphat-Synthase, Dimethyl-8-ribityllumazin-Synthase und Riboflavin-Synthase oder deren Funktionsanalogen im Organismus erhöht, gelöst. Vorteilhaft wird das Verfahren zur gesteigerten Herstellung von Riboflavin mit einem Organismus, der in der Lage ist Riboflavin zu synthetisieren, durchgeführt, der zusätzlich die Kombination der Gene, die für die Enzyme 3, 4-Dihydroxy-2-butanon-4-phosphat-Synthase (= rib3-Genprodukt) , Dimethyl-8-ribityllumazin-Synthase (= rib4-Genprodukt) und Ribo- flavin-Synthase (= rib5-Genprodukt) oder deren Funktionsanalogen kodieren, enthält.Despite these advances in the production of riboflavin, there is still a need to improve and increase vitamin B2 productivity to meet the increasing demand and to make the production of riboflavin more efficient. The task was therefore to further improve vitamin B2 productivity. This object was characterized by a process for the increased production of riboflavin with an organism which is capable of synthesizing riboflavin, characterized in that the activity of the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate synthase , Dimethyl-8-ribityllumazin synthase and riboflavin synthase or their functional analogs increased in the organism, solved. The process for the increased production of riboflavin is advantageously carried out with an organism which is capable of synthesizing riboflavin and which additionally combines the genes which are responsible for the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate synthase (= rib3 gene product), dimethyl-8-ribityllumazine synthase (= rib4 gene product) and riboflavin synthase (= rib5 gene product) or their functional analogues.
Weiter vorteilhaft zur Steigerung der Vitamin-B2-Produktivität ist die Kombination von Steigerung der natürlichen Enzymaktivität und Einbringen der oben genannten Genkombination zur Erhöhung der Genexpression.Another advantage of increasing vitamin B2 productivity is the combination of increasing the natural enzyme activity and introducing the above-mentioned gene combination to increase gene expression.
Als Organismen bzw. Wirtsorganismen für das erfindungsgemäße Verfahren eignen sich prinzipiell alle Organismen, die in der Lage sind Riboflavin zu synthetisieren. Bevorzugt werden Organismen, die natürlicherweise Riboflavin synthetisieren können. Aber auch Organismen, die aufgrund des Einbringens der kompletten Vitamin B2-Synthesegene in der Lage sind Riboflavin zu synthetisieren, sind für das erfindungsgemäße Verfahren geeignet. Für das erfindungsgemäße Verfahren sind Organismen wie Bakterien, Hefen, Pilze oder Pflanzen geeignet. Beispielhaft seien eukaryontische Organismen wie Pilze, die in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschrieben werden, wie Ashbya oder Eremothecium, Hefen wie Candida, Saccharomyces oder Pichia oder Pflanzen wie Arabidopsis, Tomate, Kartoffel, Mais, Soja, Raps, Gerste, Weizen, Roggen, Reis, Hirse, Baumwolle, Zuckerrübe, Sonnenblume, Flachs, Hanf, Canola, Hafer, Tabak, Alfalfa, Salat oder die verschiedenen Baum-, Nuß- und Weinspezies oder proka- ryontische Organismen wie gram-positive oder gram-negative Bakterien wie Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacter, Escherichia oder Klebsiella genannt. Bevorzugt werden Organismen ausgewählt aus der Gruppe der Gattungen Corynebacterium, Brevibacterium, Bacillus, Escherichia, Ashbya, Eremothecium, Candida oder Saccharomyces oder Pflanzen wie Mais, Soja, Raps, Gerste, Weizen, Kartoffel oder Tomate. Besonders bevorzugt werden Organismen der Gattung und Art Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata, Corynebakterium ammoniagenes oder Bacillus subtilis. Als Pflanzen werden besonders bevorzugt Mais, Soja, Raps, Gerste, Weizen, Kartoffel und Tomate.In principle, all organisms which are able to synthesize riboflavin are suitable as organisms or host organisms for the process according to the invention. Organisms that can synthesize riboflavin naturally are preferred. However, organisms which are able to synthesize riboflavin due to the introduction of the complete vitamin B2 synthesis genes are also suitable for the process according to the invention. Organisms such as bacteria, yeast, fungi or plants are suitable for the process according to the invention. Examples include eukaryotic organisms such as fungi, which are described in Indian Chem Engr. Section B. Vol 37, No 1.2 (1995) on page 15, Table 6, such as Ashbya or Eremothecium, yeasts such as Candida, Saccharomyces or Pichia or plants such as Arabidopsis, tomato, potato, corn, soybean, rape, barley , Wheat, rye, rice, millet, cotton, sugar beet, sunflower, flax, hemp, canola, oats, tobacco, alfalfa, lettuce or the various tree, nut and wine species or prokaryotic organisms such as gram-positive or gram- negative bacteria such as Corynebacterium, Brevibacterium, Bacillus, Clostridium, Cyanobacter, Escherichia or Klebsiella. Organisms are preferably selected from the group of the genera Corynebacterium, Brevibacterium, Bacillus, Escherichia, Ashbya, Eremothecium, Candida or Saccharomyces or plants such as corn, soybeans, rape, barley, wheat, potatoes or tomatoes. Organisms of the genus and species Ashbya gossypii, Eremothecium ashbyii, Saccharomyces cerevisiae, Candida flaveri, Candida famata, Corynebacterium ammoniagenes or Bacillus are particularly preferred subtilis. Maize, soybean, rapeseed, barley, wheat, potato and tomato are particularly preferred as plants.
Die erfindungsgemäße Kombination der rib-Gene rib3 , rib4 und rib5 5 und/oder die Aktivitätserhöhung der Gene und ihrer Genprodukte führt zu einer deutlich gesteigerten Riboflavin-Produktivität. Die genannten Gene lassen sich prinzipiell über alle dem Fachmann bekannten Methoden in die verwendeten Organismen einführen, vorteilhaft werden sie über Transformation, Transfektion, Elektro- 0 poration, mit der sog. Partikelgun oder über Mikroinjektion in die Organismen bzw. deren Zellen eingebracht. Für Mikroorganismen kann der Fachmann entsprechende Methoden den Lehrbüchern von Sambrook, J. et al . (1989) Molecular cloning: A laboratory manual , Cold Spring Harbor Laboratory Press, von F.M. Ausubel 5 et al . (1994) Current protocols in molecular biology, John Wiley and Sons, von D.M. Glover et al . , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), von Kaiser et al . (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press oder Guthrie et al . Guide to Yeast Genetics and Molecular Biology, Methods in 0 Enzymology, 1994, Academic Press entnehmen. Als vorteilhaft seien beispielhaft Methoden wie das Einbringen der DNA über homologe oder heterologe Rekombination beispielsweise mit Hilfe des ura-3-Gens, speziell des ura-3-Gens von Ashbya, wie in der deutschen Anmeldung DE 19801120.2 beschrieben und/oder über dieThe combination according to the invention of the rib genes rib3, rib4 and rib5 5 and / or the increase in activity of the genes and their gene products leads to a significantly increased riboflavin productivity. The genes mentioned can in principle be introduced into the organisms used by all methods known to the person skilled in the art; they are advantageously introduced into the organisms or their cells via transformation, transfection, electroporation, with the so-called particle gun or via microinjection. For microorganisms, the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel 5 et al. (1994) Current protocols in molecular biology, John Wiley and Sons, by D.M. Glover et al. , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), by Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press or Guthrie et al. See Guide to Yeast Genetics and Molecular Biology, Methods in 0 Enzymology, 1994, Academic Press. Methods such as the introduction of the DNA via homologous or heterologous recombination, for example with the aid of the ura-3 gene, especially the ura-3 gene from Ashbya, as described in the German application DE 19801120.2 and / or via the are advantageous
25 im folgenden beschriebene REMI-Methode (= "Restriktion-Enzyme- Mediated-Integration") , genannt.25 REMI method described below (= "Restriction Enzyme-Mediated Integration").
Die REMI-Technik basiert auf der Kotransformation eines linearen DNA-Konstruktes, das an beiden Enden mit derselben Restriktions-The REMI technique is based on the co-transformation of a linear DNA construct that has the same restriction at both ends.
30 endonuklease geschnitten wurde, zusammen mit der Restriktions- endonuklease, die für diese Restriktion des DNA-Konstrukts verwendet wurde, in einen Organismus. Die Restriktionsendonuklease schneidet daraufhin die genomische DNA des Organismus, in den das DNA-Konstrukt zusammen mit dem Restriktionsenzym eingebracht30 endonuclease was cut into an organism together with the restriction endonuclease used for this restriction of the DNA construct. The restriction endonuclease then cuts the genomic DNA of the organism into which the DNA construct has been introduced together with the restriction enzyme
35 wurde. Dies führt zu einer Aktivierung der zelleigenen Reparaturmechanismen. Diese Reparaturmechanismen reparieren die durch die Endonuklease hervorgerufene Strangbrüche der genomischen DNA und bauen dabei mit einer gewissen Frequenz auch das kotransformierte DNA-Konstrukt mit ins Genom ein. In der Regel bleiben dabei dieWas 35. This leads to an activation of the cell's own repair mechanisms. These repair mechanisms repair the strand breaks in the genomic DNA caused by the endonuclease and thereby also incorporate the co-transformed DNA construct into the genome at a certain frequency. As a rule, they remain
40 Restriktionsschnittstellen an beiden Enden der DNA erhalten.40 restriction sites were obtained at both ends of the DNA.
Diese Technik wurde von Bölker et al. (Mol Gen Genet, 248, 1995: 547-552) für die Insertionsmutagenese von Pilzen beschrieben. Von Schiestl und Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 45 7585-7589) wurde die Methode zur Aufklärung, ob es bei Saccharomyces eine heterologe Rekombination gibt, verwendet. Zur stabilen Transformation und regulierten Expression eines induzierbaren Reportergens wurde die Methode von Brown et al. (Mol. Gen. Genet. 251, 1996: 75-80) beschrieben. Das System wurde bisher noch nicht als gentechnisches Werkzeug zur Optimierung von StoffWechselwegen oder zur kommerzielle Überexpression von Proteinen eingesetzt.This technique was developed by Bölker et al. (Mol Gen Genet, 248, 1995: 547-552) for the insertion mutagenesis of fungi. Schiestl and Petes (Proc. Natl. Acad. Sei. USA, 88, 1991: 45 7585-7589) used the method to clarify whether there is heterologous recombination in Saccharomyces. For stable transformation and regulated expression of an inducible Reporter gene was the method of Brown et al. (Mol. Gen. Genet. 251, 1996: 75-80). The system has not yet been used as a genetic engineering tool for optimizing metabolic pathways or for commercial overexpression of proteins.
Am Beispiel der Riboflavinsynthese wurde gezeigt, daß mit Hilfe der REMI-Methode Biosynthesegene in das Genom der oben genannten Organismen integriert werden kann und damit Produktionsverfahren zur Herstellung von Stoffwechselprodukten des Primär- oder Sekun- därmetabolismus speziell von Biosynthesewegen beispielsweise von Aminosäuren wie Lysin, Methionin, Threonin oder Tryptophan, Vitaminen wie Vitamin A, B2 , B6 B12 , C, D, E, F, S-Adenosylmethionin, Biotin, Panthotensäure oder Folsäure, Carotinoiden wie ß-Carotin, Lycopin, Canthaxanthin, Astaxanthin oder Zeaxanthin oder Prote- inen wie Hydrolasen wie Lipasen, Esterasen, Amidasen, Nitrilasen, Proteasen, Mediatoren wie Cytokine z.B. Lymphokine wie MIF, MAP, TNF, Interleukine wie Interleukin 1, Interferone wie γ-Interferon, tPA, Hormone wie Proteohormone, Glykohormone, Oligo- oder Poly- petidhormone wie Vassopressin, Endorphine, Endostatin, Angio- statin, Wachstumsfaktoren Erythropoietin, Transkriptionsfaktoren, Integrine wie GPHb/Illa oder OvßlH/ Rezeptoren wie die verschiedenen Glutamatrezeptoren, Angiogenesefaktoren wie Angio- tensin optimiert werden können.Using the example of riboflavin synthesis, it was shown that the REMI method can be used to integrate biosynthesis genes into the genome of the above-mentioned organisms and thus production processes for the production of metabolic products of primary or secondary metabolism, especially of biosynthetic pathways, for example of amino acids such as lysine, methionine, Threonine or tryptophan, vitamins such as vitamins A, B2, B6 B12, C, D, E, F, S-adenosylmethionine, biotin, pantothenic acid or folic acid, carotenoids such as ß-carotene, lycopene, canthaxanthin, astaxanthin or zeaxanthin or proteins like Hydrolases such as lipases, esterases, amidases, nitrilases, proteases, mediators such as cytokines, for example lymphokines such as MIF, MAP, TNF, interleukins such as interleukin 1, interferons such as γ-interferon, tPA, hormones such as proteohormones, glycohormones, oligo- or polypetid hormones Vassopressin, endorphins, endostatin, angiostatin, growth factors erythropoietin, transcription factors, integrins such as GPH b / Illa or O v ßlH / receptors such as the various glutamate receptors, angiogenesis factors such as angiotensin can be optimized.
Mit Hilfe der REMI-Methode können die erfindungsgemäßen Nuklein- säurefragmente oder andere der oben genannten Gene an trans- criptionsaktive Stellen im Genom plaziert werden.Using the REMI method, the nucleic acid fragments according to the invention or other of the genes mentioned above can be placed at transcriptionally active sites in the genome.
Vorteilhafterweise werden die Nukleinsäuren zusammen mit einem mindestens einem Reportergen in ein DNA-Konstrukt kloniert, das in das Genom eingebracht wird. Dieses Reportergen sollte eine leichte Detektierbarkeit über einen Wachstums-, Fluoreszenz-, Chemo- oder Biolumineszenzassay oder über eine photometrische Messung ermöglichen. Beispielhaft seien als Reportergene Anti- biotikaresistenzgene, Hydrolasegene, Fluoreszenzproteingene, Biolumineszenzgene, Glucosidasegene, Peroxidasegen oder Biosynthesegene wie die Riboflavingene, das Luciferasegen, ß-Galactosidasegen, gfp-Gen, Lipasegen, Esterasegen, Peroxidasegen, ß-Lactamasegen, Acetyl-, Phospo- oder Adenyltransferasegen genannt. Diese Gene ermöglichen eine leichte Messbarkeit und Quantifizierbarkeit der Transcriptionsaktivität und damit der Expression der Gene. Damit lassen sich Genomstellen identifizieren, die eine bis zu Faktor 2 unterschiedliche Produktivität zeigen (siehe Figur 1). Figur 1 zeigt die Klone ITA-GS-15.2, ITA-GS-17.1 und ITA-GS-01, die nach Integration erhalten wurden, mit ihren unterschiedlichen Vitamin B2- (= Riboflavin) Produktivitäten. Im Falle, daß die Biosynthesegene selber eine leichte Detektier- barkeit ermöglichen, kann wie beispielsweise im Falle des Ribo- flavins auf ein zusätzliches Reportergen verzichtet werden.The nucleic acids are advantageously cloned together with at least one reporter gene into a DNA construct which is introduced into the genome. This reporter gene should allow easy detection via a growth, fluorescence, chemo- or bioluminescence assay or via a photometric measurement. Examples of reporter genes are antibiotic resistance genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, glucosidase genes, peroxidase genes or biosynthesis genes such as the riboflaving genes, the luciferase gene, .beta.-galactosidase gene, gfp gene, lipase gene, esterase gene, acoxidase gene, peroxidase gene, peroxidase gene, peroxidase gene Called adenyltransferase gene. These genes enable the transcription activity and thus the expression of the genes to be measured and quantified easily. This enables genome sites to be identified which show a different productivity up to a factor of 2 (see FIG. 1). Figure 1 shows the clones ITA-GS-15.2, ITA-GS-17.1 and ITA-GS-01, which were obtained after integration, with their different vitamin B2 (= riboflavin) productivities. In the event that the biosynthesis genes themselves enable easy detection, as in the case of the riboflavin, for example, an additional reporter gene can be dispensed with.
Sollen mehrere Gene in den Organismus eingeführt werden, so können alle zusammen mit einem Reportergen in einem einzigen Vektor oder jedes einzelne Gen mit einem Reportergen in je einem Vektor in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können. Auch Genfragmente, die für die jeweiligen Aktivitäten kodieren können in der REMI-Technik eingesetzt werden.If several genes are to be introduced into the organism, all of them can be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene can be introduced into the organism, the different vectors being able to be introduced simultaneously or successively. Gene fragments that code for the respective activities can also be used in REMI technology.
Für das erfindungsgemäße Verfahren zur Integration von Biosynthesegenen in das Genom von Organismen eignen sich prinzipiell alle bekannten Restriktionsenzyme. Restriktionsenzyme, die nur 4 Basenpaare als Restriktionsschnittstelle erkennen, sind weniger bevorzugt, da sie zu häufig im Genom oder im zu integrierenden Vektor schneiden, bevorzugt sind Enzyme die 6, 7, 8 oder mehr Basenpaare als Schnittstelle erkennen wie BamHI, EcoRI, Bglll, SphI, Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl oder Sfil um nur einige der möglichen Enzyme zu nennen. Von Vorteil ist, wenn die verwendeten Enzyme keine Schnittstellen mehr in der einzuführenden DNA haben, dies erhöht die Effizienz der Integration. In der Regel werden 5 bis 500 U, bevorzugt 10 bis 250, besonders bevorzugt 10 bis 100 U der Enzyme im REMI-Ansatz verwendet. Die Enzyme werden vorteilhaft in einer wäßrigen Lösung eingesetzt, die Substanzen zur osmotischen Stabilisierung wie Zucker wie Saccharose, Trehalose oder Glucose, Polyole wie Glycerin oder Polyethylenglycol, eine Puffer mit einer vorteilhaften Pufferung im Bereich von pH 5 bis 9, bevorzugt 6 bis 8, besonders bevorzugt 7 bis 8 wie Tris, MOPS, HEPES, MES oder PIPES und/oder Substanzen zur Stabilisierung der Nukleinsäuren enthalten wie anorganische oder organische Salze von Mg, Cu, Co, Fe, Mn oder Mo. Es können gegebenenfalls noch weitere Stoffe enthalten sein wie EDTA, EDDA, DTT, ß-Mercapto- ethanol oder Nukleasehemmstoffe. Es ist aber auch möglich die REMI-Technik ohne diese Zusätze durchzuführen.In principle, all known restriction enzymes are suitable for the method according to the invention for integrating biosynthesis genes into the genome of organisms. Restriction enzymes that only recognize 4 base pairs as a restriction site are less preferred because they cut too frequently in the genome or in the vector to be integrated; preference is given to enzymes that recognize 6, 7, 8 or more base pairs as an interface, such as BamHI, EcoRI, Bglll, SphI , Spei, Xbal, Xhol, Ncol, Sall, Clal, Kpnl, Hindlll, Sacl, PstI, Bpnl, Notl, Srfl or Sfil to name just a few of the possible enzymes. It is advantageous if the enzymes used no longer have interfaces in the DNA to be introduced, this increases the efficiency of the integration. As a rule, 5 to 500 U, preferably 10 to 250, particularly preferably 10 to 100 U of the enzymes are used in the REMI approach. The enzymes are advantageously used in an aqueous solution, the substances for osmotic stabilization such as sugar such as sucrose, trehalose or glucose, polyols such as glycerol or polyethylene glycol, a buffer with an advantageous buffering in the range from pH 5 to 9, preferably 6 to 8, particularly preferably contain 7 to 8 such as Tris, MOPS, HEPES, MES or PIPES and / or substances for stabilizing the nucleic acids such as inorganic or organic salts of Mg, Cu, Co, Fe, Mn or Mo. If appropriate, further substances may also be present, such as EDTA, EDDA, DTT, ß-mercaptoethanol or nuclease inhibitors. However, it is also possible to carry out REMI technology without these additives.
Das erfindungsgemäße Verfahren wird in einem Temperaturbereich von 5 bis 80°C, bevorzugt von 10 bis 60°C, besonders bevorzugt von 20 bis 40°C durchgeführt. Für das Verfahren eignen sich alle bekannten Methoden zur DeStabilisierung von Zellmembranen wie beispielsweise die Elektroporation, die Fusion mit beladenen Vesikeln oder die DeStabilisierung über verschiedene Alkali- oder Erdalkalisalze wie Lithium, Rubidium- oder Calziumsalze bevorzugt sind die Lithiumsalze. Die Nukleinsäuren können nach dem Isolieren direkt oder nach Aufreinigung für die erfindungsgemäße Reaktion verwendet werden.The process according to the invention is carried out in a temperature range from 5 to 80 ° C., preferably from 10 to 60 ° C., particularly preferably from 20 to 40 ° C. All known methods for the destabilization of cell membranes such as, for example, electroporation, fusion with loaded vesicles or the destabilization via various alkali or alkaline earth metal salts such as lithium, rubidium or calcium salts are preferred for the method. The lithium salts are preferred. After isolation, the nucleic acids can be used for the reaction according to the invention directly or after purification.
Die Figuren 2 und 3 geben das erfindungsgemäße Verfahren in einem schematischen Überblick für die Integration der erfindungsgemäßen rib-Genkombination wieder. Die DNA wurde mit dem Enzym Spei geschnitten und in seiner Gegenwart wurde die DNA in die Organismen eingeführt. Zur leichteren Selektion wurde ein Kanamycin-Resi- stenzgen im Fragment mit eingebaut, das von TEF-Promotoren- Sequenzen flankiert ist (sog. "direct repeat"). Über dieseFIGS. 2 and 3 show the method according to the invention in a schematic overview for the integration of the rib gene combination according to the invention. The DNA was cut with the Spei enzyme and in its presence the DNA was introduced into the organisms. For easier selection, a kanamycin resistance gene was incorporated in the fragment, which is flanked by TEF promoter sequences (so-called "direct repeat"). About these
Sequenzen wird das Resistenzgen über eine Rekombination wieder entfernt (siehe Figur 3).Sequences, the resistance gene is removed by recombination (see Figure 3).
Das Einbringen der erfindungsgemäßen Kombination der rib-Gene in Pflanzen kann prinzipiell nach allen dem Fachmann bekannten Methoden erfolgen.In principle, the combination of the rib genes according to the invention can be introduced into plants by all methods known to those skilled in the art.
Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen ausThe transfer of foreign genes into the genome of a plant is called transformation. The methods described for the transformation and regeneration of plants are used
Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnähme, die Verwendung einer Genkanone, die Elektroporation, die Inküba- tion trockener Embryonen in DNA-haltiger Lösung, die Mikro- injektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al . , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993) 128-143 sowie in Potrykus Annu. Rev. Plant Physiol. Plant Molec.Biol. 42 (1991) 205-225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBinl9 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Die Transformation von Pflanzen mit Agrobacterium tumefaciens wird beispielsweise von Höfgen und Will- mitzer in Nucl. Acid Res. (1988) 16, 9877 beschrieben.Plant tissues or plant cells used for transient or stable transformation. Suitable methods are protoplast transformation by polyethylene glycol-induced DNA uptake, the use of a gene gun, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium. The methods mentioned are described, for example, in B. Jenes et al. , Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by S.D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec.Biol. 42 (1991) 205-225). The construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). The transformation of plants with Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877.
Mit einem erfindungsgemäßen Expressionsvektor transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies sowie Leguminosen verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden.Agrobacteria transformed with an expression vector according to the invention can also be used in a known manner to transform plants, in particular crop plants, such as cereals, corn, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, alfalfa , Lettuce and the various tree, nut and wine species and legumes can be used, for example, by wounded leaves or pieces of leaf bathed in an agrobacterial solution and then cultivated in suitable media.
Die genetisch veränderten Pflanzenzellen können über alle dem Fachmann bekannten Methoden regeneriert werden. Entsprechende Methoden können den oben genannten Schriften von S.D. Kung und R. Wu, Potrykus oder Höfgen und Willmitzer entnommen werden.The genetically modified plant cells can be regenerated using all methods known to the person skilled in the art. Appropriate methods can be found in the above-mentioned writings by S.D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer can be found.
Es gibt eine Vielzahl von Möglichkeiten die Enzymaktivität der rib-Genprodukte in der Zelle zu erhöhen.There are a number of ways to increase the enzyme activity of the rib gene products in the cell.
Eine Möglichkeit besteht darin, die endogenen rib-Gene 3,4 und 5 so zu verändern, daß sie für Enzyme mit gegenüber den Ausgangsenzymen erhöhter rib 3,4 bzw.5-Aktivität kodieren. Eine andere Erhöhung der Enzymaktivität kann beispielsweise erreicht werden, indem durch Veränderung der katalytischen Zentren ein erhöhter Substratumsatz erfolgt oder indem die Wirkung von Enzyminhibitoren aufgehoben wird, das heißt sie weisen eine erhöhte spezifische Aktivität auf oder ihre Aktivität wird nicht gehemmt. Auch kann eine erhöhte Enzymaktivität in einer weiteren vorteilhaften Ausführungsform durch Erhöhung der Enzymsynthese in der Zelle erfolgen, beispielsweise durch Ausschaltung von Faktoren, die die Enzymsynthese reprimieren oder durch Erhöhung der Aktivität von Faktoren oder Regulatorelementen, die eine verstärkte Synthese fördern, oder bevorzugt durch Einbringen weiterer Genkopien. Durch diese Maßnahmen wird die Gesamtaktivität der Genprodukte in der Zelle erhöht, ohne die spezifische Aktivität zu verändern. Es kann auch eine Kombination dieser Methoden verwendet werden, das heißt Erhöhung der spezifischen Aktivität sowie Erhöhung der Gesamtaktivität. Diese Änderungen können prinzipiell über alle dem Fachmann bekannten Methoden in die Nukleinsäure- sequenzen der Gene, Regulationselemente oder deren Promotoren eingebracht werden. Hierzu können die Sequenzen beispielsweise einer Mutageneses wie einer "site directed mutagenesis" unter- zogen werden wie sie in D.M. Glover et al . , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), Kapitel 6, Seite 193 ff beschrieben wird.One possibility is to change the endogenous rib genes 3, 4 and 5 in such a way that they code for enzymes with increased rib 3, 4 or 5 activity compared to the starting enzymes. Another increase in enzyme activity can be achieved, for example, by changing the catalytic centers to increase substrate conversion or by canceling the action of enzyme inhibitors, that is to say they have an increased specific activity or their activity is not inhibited. In a further advantageous embodiment, an increased enzyme activity can also take place by increasing the enzyme synthesis in the cell, for example by switching off factors which repress the enzyme synthesis or by increasing the activity of factors or regulatory elements which promote increased synthesis, or preferably by introducing further ones Gene copies. These measures increase the overall activity of the gene products in the cell without changing the specific activity. A combination of these methods can also be used, ie increasing the specific activity and increasing the overall activity. In principle, these changes can be introduced into the nucleic acid sequences of the genes, regulatory elements or their promoters by all methods known to the person skilled in the art. For this purpose, the sequences can be subjected, for example, to a mutagenesis such as a "site directed mutagenesis" as described in D.M. Glover et al. , DNA Cloning Vol.l, (1995), IRL Press (ISBN 019-963476-9), Chapter 6, page 193 ff.
Von Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777 - 778) wird eine PCR-Methode unter Verwendung von dITP zur zufälligen Mutagenese beschrieben.By Spee et al. (Nucleic Acids Research, Vol. 21, No. 3, 1993: 777-778) describes a PCR method using dITP for random mutagenesis.
Die Verwendung einer "in vitro" Rekombinationstechnik für die molekulare Evolution wird von Stemmer (Proc. Natl . Acad. Sei. USA, Vol. 91, 1994: 10747 - 10751) beschrieben. Von Moore et al . (Nature Biotechnology Vol. 14, 1996: 458 - 467) wird die Kombination der PCR- und Rekombinationsmethode beschrieben.The use of an "in vitro" recombination technique for molecular evolution is described by Stemmer (Proc. Natl. Acad. Sei. USA, Vol. 91, 1994: 10747-10751). By Moore et al. (Nature Biotechnology Vol. 14, 1996: 458-467) describes the combination of the PCR and recombination method.
Die veränderten Nukleinsäuresequenzen werden anschließend wieder über Vektoren in die Organismen zurückgebracht.The modified nucleic acid sequences are then brought back into the organisms via vectors.
Es können zur Erhöhung der Enzymaktivitäten auch veränderte Promotorbereiche vor die natürlichen Gene gebracht werden, so daß die Expression der Gene gesteigert wird und damit die Aktivität letztlich angehoben wird. Auch am 3 '-Ende können Sequenzen eingebracht werden, die beispielsweise die Stabilität der mRNA erhöhen und dadurch eine erhöhte Translation ermöglichen. Dies führt ebenfalls zu einer höheren Enzymaktivität.To increase the enzyme activities, modified promoter areas can also be placed in front of the natural genes, so that the expression of the genes is increased and the activity is ultimately increased. Sequences can also be introduced at the 3 'end which, for example, increase the stability of the mRNA and thereby enable increased translation. This also leads to higher enzyme activity.
Vorzugsweise werden weitere Genkopien der rib-Gene 3,4 und 5 gemeinsam in die Zelle eingebracht. Diese Genkopien können der natürlichen Regulation unterliegen, einer veränderten Regulation, wobei die natürlichen Regulationsregionen derart verändert wurden, das sie eine erhöhte Expression der Gene ermöglicht oder aber es können Regulationssequenzen fremder Gene oder sogar artfremder Gene verwendet werden.Further gene copies of the rib genes 3, 4 and 5 are preferably introduced into the cell together. These gene copies can be subject to natural regulation, a changed regulation, the natural regulatory regions being changed in such a way that they enable increased expression of the genes, or else regulatory sequences of foreign genes or even genes of other species can be used.
Besonders vorteilhaft ist eine Kombination der oben genannten Methoden.A combination of the above methods is particularly advantageous.
Unter Funktionsanalogen sind beispielsweise funktioneile Homologe der rib-Gene oder deren enzymatischen Aktivitäten, das heißt Enzyme, die dieselben enzymatischen Reaktionen wie die rib-Gene katalysieren, zu verstehen. Diese Gene führen ebenfalls zu einer vorteilhaften Erhöhung der Riboflavinbildung. Auch diese Funktionsanalogen können in der oben genannten Art vorteilhaft muta- genisiert bzw. verändert und damit ihre Aktivität gesteigert werden .Functional analogs are understood to mean, for example, functional homologs of the rib genes or their enzymatic activities, that is to say enzymes which catalyze the same enzymatic reactions as the rib genes. These genes also lead to an advantageous increase in riboflavin formation. These functional analogues can also advantageously be mutagenized or modified in the manner mentioned above and their activity can thus be increased.
Die Funktionsanalogen sind vorteilhaft Gene oder Genprodukte, die beispielsweise aus eukaryontischen oder prokaryontischen Organismen stammen. Als eukaryontische Organismen seien beispielhaft Pilze, die in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschrieben werden, wie Eremothecium, Hefen wie Candida, Saccharomyces oder Pichia oder Pflanzen wie Arabidopsis, Tomate, Kartoffel, Mais, Soja, Raps, Gerste, Weizen, Roggen, Reis, Hirse, Baumwolle, Zuckerrübe, Sonnenblume, Flachs, Hanf, Canola, Hafer, Tabak, Alfalfa, Salat oder die verschiedenen Baum-, Nuß- und Weinspezies genannt. Als prokaryontische Organismen seien beispielhaft gram-positive oder gram-negative Bakterien genannt wie Corynebacterium, Brevibacterium, Bacillus, Clostri- dium, Cyanobacter oder Escherichia genannt. Vorteilhaft stammen die Funktionsanalogen aus Pilzen wie Eremothecium, Hefen wie Saccharomyces oder Candida, gram-positiven Bakterien wie Bacillus oder Corynebacterium oder gram-negative Bakterien wie Escherichia 5 coli. Bevorzugt stammen die Funktionsanalogen aus den Organismen der Gattung und Art Eremothecium ashbyii, Saccharomyces cere- visiae, Candida flaveri, Candida famata, Escherichia coli, Corynebacterium ammoniagenes oder Bacillus subtilis.The functional analogs are advantageously genes or gene products which, for example, come from eukaryotic or prokaryotic organisms. Examples of eukaryotic organisms are mushrooms which are described in Indian Chem Engr. Section B. Vol 37, No 1.2 (1995) on page 15, Table 6, such as eremothecium, yeasts such as Candida, Saccharomyces or Pichia or plants such as Arabidopsis, tomato, potato, corn, soybean, rape, barley, wheat , Rye, rice, millet, cotton, sugar beet, sunflower, flax, hemp, canola, oats, tobacco, alfalfa, lettuce or the various tree, nut and wine species. Examples of prokaryotic organisms are Gram-positive or Gram-negative bacteria such as Corynebacterium, Brevibacterium, Bacillus, Clostri- called dium, Cyanobacter or Escherichia. The functional analogs advantageously come from fungi such as Eremothecium, yeasts such as Saccharomyces or Candida, gram-positive bacteria such as Bacillus or Corynebacterium or gram-negative bacteria such as Escherichia 5 coli. The functional analogs preferably originate from the organisms of the genus and species Eremothecium ashbyii, Saccharomyces cerereiaia, Candida flaveri, Candida famata, Escherichia coli, Corynebacterium ammoniagenes or Bacillus subtilis.
10 Vorteilhaft im erfindungsgemäßen Verfahren ist die Kombination der Gene mit den Sequenzen SEQ ID No.l, SEQ ID No.3 und SEQ ID No.5 oder deren funktioneile Äquivalente.The combination of the genes with the sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 or their functional equivalents is advantageous in the method according to the invention.
Unter funktionellen Äquivalenten der in der erfindungsgemäßen 15 Kombination verwendeten Gene mit den Sequenzen SEQ ID No.l, SEQ ID No.3 und SEQ ID No .5 sind beispielsweise Allelvarianten zu verstehen, die mindestens 35 % Homologie auf der abgeleiteten Aminosäureebene, bevorzugt mindestens 40 % Homologie, besonders bevorzugt mindestens 45 % Homologie, ganz besonders bevorzugt 20 50 % Homologie aufweisen. Die von den genannten Nukleinsäuren abgeleitete Aminosäuresequenz ist den Sequenzen SEQ ID No.2, SEQ ID No.4 und SEQ ID No.6 zu entnehmen. Allelvarianten umfassen insbesondere funktioneile Varianten, die durch Deletion, Insertion oder Substitution von Nukleotiden aus den in SEQ ID No.l, SEQ ID 25 No.3 und SEQ ID No.5 dargestellten Sequenz erhältlich sind, wobei die enzymatische Aktivität der abgeleiteten synthetisierten Proteine erhalten bleibt.Functional equivalents of the genes used in the combination according to the invention with the sequences SEQ ID No. 1, SEQ ID No. 3 and SEQ ID No. 5 are understood to mean, for example, allele variants which have at least 35% homology at the derived amino acid level, preferably at least 40 % Homology, particularly preferably at least 45% homology, very particularly preferably 20 50% homology. The amino acid sequence derived from the nucleic acids mentioned can be found in the sequences SEQ ID No.2, SEQ ID No.4 and SEQ ID No.6. Allelic variants particularly include functional variants which can be obtained by deleting, inserting or substituting nucleotides from the sequence shown in SEQ ID No. 1, SEQ ID 25 No.3 and SEQ ID No.5, the enzymatic activity of the derived synthesized proteins being retained remains.
Solche DNA-Sequenzen lassen sich ausgehend von den in SEQ ID _0 No.l, SEQ ID No.3 und SEQ ID No .5 beschriebenen DNA-Sequenzen oder Teilen dieser Sequenzen, beispielsweise mit üblichen Hybri- disierungsverfahren oder der PCR-Technik aus anderen Eukaryonten oder Prokaryonten als Ashbya gossypii wie oben genannt isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den genannten Sequenzen. Zur Hybrisierung werden vorteilhaftSuch DNA sequences can be prepared starting from the in SEQ ID _ 0 No.l, SEQ ID No.3 and SEQ ID No .5 described DNA sequences or parts of these sequences, for example by conventional disierungsverfahren Hybri- or the PCR technique from Isolate eukaryotes or prokaryotes other than Ashbya gossypii as mentioned above. These DNA sequences hybridize to the sequences mentioned under standard conditions. For hybridization be advantageous
35 kurze Oligonukleotide der konservierten Bereich, die über Vergleiche mit den entsprechenden Genen aus E. coli und B. subtilis in dem Fachmann bekannterweise ermittelt werden können, verwendet .35 short oligonucleotides of the conserved region, which can be determined in a manner known to the person skilled in the art by comparison with the corresponding genes from E. coli and B. subtilis.
40 Unter Standardbedi.ngungen si.nd bei.spielsweise Temperaturen zwischen 42 und 58 °C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 bis 5 x SSC (1 X SSC = 0,15 M NaCl, 15 mM Natriumeitrat, pH 7,2) oder zusätzlich in Gegenwart von 50% Formamid wie beispielsweise 42 °C in 5 x SSC und in Gegenwart von 50% Formamid zu verstehen. Die experimentellen Bedingungen für die DNA-Hybridisierung sind einschlägigen Lehrbüchern der Genetik wie beispielsweise Sambrook et al . , "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben.40 Under standard conditions, for example, temperatures between 42 and 58 ° C in an aqueous buffer solution with a concentration between 0.1 to 5 x SSC (1 X SSC = 0.15 M NaCl, 15 mM sodium citrate, pH 7 , 2) or additionally in the presence of 50% formamide such as 42 ° C. in 5 x SSC and in the presence of 50% formamide. The experimental conditions for DNA hybridization are relevant textbooks of genetics such as Sambrook et al. , "Molecular Cloning", Cold Spring Harbor Laboratory, 1989.
Weiterhin sind unter Homologe der Sequenzen SEQ ID No.l, SEQ ID No.3 und SEQ ID No.5 beispielsweise eukaryontische oder proka- ryontische Homologe, verkürzte Sequenzen oder Einzelstrang-DNA zu verstehen.Furthermore, homologs of the sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 are to be understood as, for example, eukaryotic or prokaryotic homologs, shortened sequences or single-stranded DNA.
Außerdem sind unter Homologe der Sequenzen SEQ ID No.l, SEQ ID No.3 und SEQ ID No .5 Derivate wie beispielsweise Promotorvarianten zu verstehen. Die Promotoren, die den angegebenen Nukleotid- sequenzen gemeinsam oder einzeln vorgeschalten sind, können durch ein oder mehrere Nukleotidaustausche, durch Insertion(en) und/ oder Deletion(en) verändert sein, ohne daß aber die Funktionali- tat bzw. Wirksamkeit der Promotoren beeinträchtigt sind. Des weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.In addition, homologs of the sequences SEQ ID No. 1, SEQ ID No. 3 and SEQ ID No. 5 are to be understood as derivatives such as promoter variants. The promoters which are upstream of the specified nucleotide sequences together or individually can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without impairing the functionality or effectiveness of the promoters are. Furthermore, the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
Unter Derivaten sind auch vorteilhaft Varianten zu verstehen, deren Nukleotidsequenz vor dem Startkodon so verändert wurden, daß die Genexpression und/oder die Proteinexpression verändert, bevorzugt erhöht wird.Derivatives are also advantageously to be understood as variants whose nucleotide sequence has been changed before the start codon in such a way that the gene expression and / or the protein expression is changed, preferably increased.
Bevorzugt lassen sich Sequenzen SEQ ID No.l, SEQ ID No.3 und SEQ ID No.5 oder ihre funktionellen Äquivalente aus Mikroorganismen der Gattungen Clostridium, Corynebacterium, Brevibacterium Cyanobacter, Bacillus, Eremothecium, Escherichia, Pichia, Ashbya oder Candida oder aus Pflanzen, besonders bevorzugt aus Mikroorganis- men der Gattung und Art Bacillus subtilis, Corynebakterium ammoniagenes, Escherichia coli, Candida flaveri, Candida famata oder Pilzen, die in Indian Chem Engr. Section B., Vol.37, No. 1,2 (1995) auf Seite 15, Tabelle 6 beschrieben werden, wie z.B. Eremothecium ashbyii oder Ashbya gossypii, ganz besonders bevor- zugt aus Mikroorganismen der Gattung und Art Eremothecium ashbyii oder Ashbya gossypii isolieren. So können beispielsweise die zu rib 3, 4 ,5 homologen Gene rib A, ribH und ribB, oder Genfragmenten aus diesen, aus Bacillus subtilis oder die zu rib3, 4, 5 homologen Genen rib B, rib E und rib C, oder Genfragmenten aus diesen aus E. coli in prokaryotischen Systemen zur Steigerung der Riboflavin-Ausbeute im erfindungsgemäßen Verfahren vorteilhaft verwendet werden.Sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 or their functional equivalents can be preferably obtained from microorganisms of the genera Clostridium, Corynebacterium, Brevibacterium Cyanobacter, Bacillus, Eremothecium, Escherichia, Pichia, Ashbya or Candida or from plants , particularly preferably from microorganisms of the genus and type Bacillus subtilis, Corynebacterium ammoniagenes, Escherichia coli, Candida flaveri, Candida famata or fungi, which are described in Indian Chem Engr. Section B., Vol. 37, No. 1,2 (1995) on page 15, table 6, e.g. Isolate Eremothecium ashbyii or Ashbya gossypii, particularly preferably from microorganisms of the genus and species Eremothecium ashbyii or Ashbya gossypii. For example, the rib 3, 4, 5 homologous genes rib A, ribH and ribB, or gene fragments from these, from Bacillus subtilis or the rib3, 4, 5 homologous genes rib B, rib E and rib C, or gene fragments these from E. coli can be used advantageously in prokaryotic systems to increase the riboflavin yield in the process according to the invention.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsäuresequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage" zu verändern. Der "codon usage" läßt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln.For optimal expression of heterologous genes in organisms, it is advantageous to change the nucleic acid sequences in accordance with the specific "codon usage" used in the organism. The "codon usage" can be based on computer evaluations easily identify other known genes of the organism in question.
Die Genexpression der rib-Gene 3, 4 und 5 kann vorteilhaft durch Erhöhen der rib3,4,5 Genkopienzahl und/oder durch Verstärkung regulatorischer Faktoren, die die rib3 , 4 und 5 Genexpression positiv beeinflussen, erhöht werden. So kann eine Verstärkung regulatorischer Elemente vorzugsweise auf der Transkriptionsebene erfolgen, indem stärkere Transkriptionssignale wie Promotoren und Enhancer verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der rib3 , 4 und 5 mRNA verbessert, oder die Ableseeffizienz dieser mRNA an den Ribosomen erhöht wird.The gene expression of the rib genes 3, 4 and 5 can advantageously be increased by increasing the rib3,4,5 gene copy number and / or by strengthening regulatory factors which have a positive effect on the rib3, 4 and 5 gene expression. For example, regulatory elements can preferably be amplified at the transcription level by using stronger transcription signals such as promoters and enhancers. In addition, an increase in translation is also possible, for example, by improving the stability of the rib3, 4 and 5 mRNA, or by increasing the reading efficiency of this mRNA on the ribosomes.
Zur Erhöhung der Genkopienzahl können die rib-Gene 3,4 und 5, oder homologer Gene, beispielsweise in ein Nukleinsäurefragment bzw. in einen Vektor eingebaut werden, der vorzugsweise die den jeweiligen rib-Genen zugeordnete, regulatorische Gensequenzen oder analog wirkende Promotoraktivität enthält.To increase the number of gene copies, the rib genes 3, 4 and 5, or homologous genes, can be incorporated, for example, into a nucleic acid fragment or into a vector which preferably contains the regulatory gene sequences assigned to the respective rib genes or promoter activity acting in an analogous manner.
Insbesondere werden solche regulatorische Sequenzen verwendet, die die Genexpression verstärken. Alternativ kann auch jedes der beschriebenen Gene in einen einzelnen Vektor gebracht und in den jeweiligen Produktionsorganismus transformiert werden.In particular, those regulatory sequences are used which increase gene expression. Alternatively, each of the genes described can be brought into a single vector and transformed into the respective production organism.
Unter dem erfindungsgemäßen Nukleinsäurefragment sind die rib- Gensequenzen SEQ ID No. 1, SEQ ID No.3 und SEQ ID No.5 oder deren funktionelle Äquivalente zu verstehen, die mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Gen- expression funktioneil verknüpft wurden. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nucleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so daß die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Sequenzen SEQ ID No.l, SEQ ID No.3 oder SEQ ID No .5 oder deren funktioneile Äquivalente inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, daß keine Regulation mehr erfolgt und die Genexpression gesteigert wird. Diese veränderten Promotoren können auch allein vor die natürlichen Gene zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nucleinsäuresequenz ermöglichen. Auch am 3 '-Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die rib-Gene können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.Under the nucleic acid fragment according to the invention, the rib gene sequences SEQ ID No. 1, SEQ ID No.3 and SEQ ID No.5 or their functional equivalents, which have been functionally linked to one or more regulatory signals to increase the gene expression. For example, these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid. In addition to these new regulatory sequences or instead of these sequences, the natural regulation of these sequences may still be present before the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased. However, the gene construct can also have a simpler structure, that is to say no additional regulation signals have been inserted in front of the sequences SEQ ID No. 1, SEQ ID No.3 or SEQ ID No .5 or their functional equivalents, and the natural promoter with its regulation has not been inserted away. Instead, the natural regulatory sequence was mutated in such a way that regulation no longer takes place and gene expression is increased. These modified promoters can also be placed in front of the natural genes to increase activity. The gene construct can also advantageously functionally function one or more so-called "enhancer sequences" linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the DNA sequences. The rib genes can be contained in one or more copies in the gene construct.
Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI<ϊ-< T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFα , AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21(1980) 285-294], PRPl [Ward et l., Plant.Mol. Biol .22 (1993 ) ] , SSU, OCS, lib4, usp, STLS1, B33, LEB4 , nos oder im Ubiquitin- oder Phaseolin-Promotor enthalten, in diesem Zusammenhang sind auch die Promotoren der Pyruvatdecarboxylase und der Methanol- oxidase aus beispielsweise Hansenula vorteilhaft. Weitere vorteilhafte Pflanzenpromotoren sind beispielsweise ein durch Benzensulfonamid-induzierbarer (EP 388186), ein durch Tetra- zyklin-induzierbarer (Gatz et al., (1992) Plant J. 2,397-404), ein durch Abscisinsäure-induzierbarer (EP335528) bzw. ein durchAdvantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, lacI <ϊ- <T7-, T5-, Contain T3, gal, trc, ara, SP6, λ-P R - or in the λ-P L promoter, which are advantageously used in gram-negative bacteria. Further advantageous regulatory sequences are, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV / 35S [Franck et al., 1980, Cell 21: 285-294], PRPl [Ward et l., Plant Mol. Biol .22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, LEB4, nos or in the ubiquitin or phaseolin promoter, in this connection are also the promoters of pyruvate decarboxylase and methanol oxidase from, for example, Hansenula advantageous. Further advantageous plant promoters are, for example, one that can be induced by benzenesulfonamide (EP 388186), one that can be induced by tetracycline (Gatz et al., (1992) Plant J. 2,397-404), one that can be induced by abscisic acid (EP335528) or one by
Ethanol- oder Cyclohexanon-mduzierbarer (W09321334) Promotor.Ethanol or cyclohexanone-inducible (W09321334) promoter.
Vorteilhaft sind insbesondere solche pflanzliche Promotoren, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen die Biosynthese von Purinen bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blatt- spezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al . , EMBO J. 8 (1989) 2445-245). Auch der Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder einen anderen Nodien-spezifischen Promotor wie in EP 249676 können vorteilhaft verwandt werden.Plant promoters which ensure expression in tissues or parts of plants in which the biosynthesis of purines or its precursors takes place are particularly advantageous. Promoters which ensure leaf-specific expression are to be mentioned in particular. The promoter of the cytosolic FBPase from potatoes or the ST-LSI promoter from potatoes should be mentioned (Stockhaus et al., EMBO J. 8 (1989) 2445-245). The promoter of the phosphoribosyl pyrophosphate amidotransferase from Glycine max (see also Genbank Accession number U87999) or another node-specific promoter as in EP 249676 can also be used advantageously.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungsgemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.In principle, all natural promoters with their regulatory sequences such as those mentioned above can be used for the method according to the invention. In addition, synthetic promoters can also be used advantageously.
Im Nukleinsäurefragment (= Genkonstrukt) können wie oben beschrieben noch weitere Gene, die in die Organismen eingebracht werden sollen, enthalten sein. Diese Gene können unter getrennter Regulation oder unter der gleichen Regulationsregion wie die rib- Gene liegen. Bei diesen Genen handelt es sich beispielsweise um weitere Biosynthesegene, die eine gesteigerte Synthese ermöglichen.As described above, other genes which are to be introduced into the organisms may also be present in the nucleic acid fragment (= gene construct). These genes can be under separate regulation or under the same regulatory region as the rib genes. These genes are, for example other biosynthetic genes that enable increased synthesis.
Das Nukleinsäurefragment wird zur Expression in den oben genann- ten Wirtsorganismus vorteilhafterweise in einen Vektor wie beispielsweise einem Plasmid, einem Phagen oder sonstiger DNA inseriert, das eine optimale Expression der Gene im Wirt ermöglicht. Geeignete Plasmide sind beispielsweise in E. coli pLG338, PACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2 , PPLC236, pMBL24, pLG200, pUR290, pIN-III113-Bl , λgtll oder pBdCI, in Streptomyces pIJlOl, pIJ364, pIJ702 oder pIJ361, in Bacillus pUBHO, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALSl, pIL2 oder pBBH6, in Hefen 2μM, pAG-1, YEp6, YEpl3 oder pEMBLYe23 oder in Pflanzen pLGV23, pGHlac+, pBINl9, pAK2004 oder pDH51 oder Derivate der vorstehend genanntenFor expression in the host organism mentioned above, the nucleic acid fragment is advantageously inserted into a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host. Suitable plasmids are, for example, in E. coli pLG338, PACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHSl, pHS2, PPLC236, pMBL24, pLG200, pUR290, pIN-III 113 -Bl, λgtll or pBdCIIJJl36OlIJJL36OlIJJL36OlPIIJJL36OlIJJL36OlIJJL36OlIJJL36OlIJJL36OlIlJL36OlIlJJ366lPIlJL36OlPIlJJL36OlIJJLL36OlIJJL36OlIJJLL36OlIJJL36364 , pIJ702 or plJ361, in Bacillus pUBHO, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667, in fungi pALSl, pIL2 or pBBH6, in yeasts 2 microns, pAG-1, YEp6, YEpl3 pEMBLYe23 or in or plants pLGV23, pGHlac +, pBinl9, pAK2004 or pDH51 or derivatives of the above
Plasmide. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, A sterdam-New York-Oxford, 1985 , ISBN 0 444 904018) entnommen werden. Geeignete pflanzliche Vektoren werden unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S.71-119 beschrieben.Plasmids. The plasmids mentioned represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al. Elsevier, A sterdam-New York-Oxford, 1985, ISBN 0 444 904018). Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Chap. 6/7, p.71-119.
Vorteilhafterweise enthält das Nukleinsäurefragment zur Expression der weiteren enthaltenen Gene zusätzlich noch 3' und/oder 5' Terminale regulatorische Sequenzen zur Steigerung der Expression, die je nach ausgewähltem Wirtorganismus und Gen oder Gene für eine optimale Expression ausgewählt werden.Advantageously, the nucleic acid fragment for the expression of the other genes contained additionally contains 3 'and / or 5' terminal regulatory sequences for increasing expression, which are selected for optimal expression depending on the host organism selected and gene or genes.
Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, daß das Gen erst nach Induktion exprimiert und/oder uberexprimiert wird, oder daß es sofort exprimiert und/oder uberexprimiert wird.These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can preferably influence the gene expression of the introduced genes positively and thereby increase. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA.
In einer weiteren Ausgestaltungsform des Vektors kann das erfindungsgemäße Genkonstrukt auch vorteilhafterweise in Form einer linearen DNA in die Mikroorganismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Plasmid oder nur aus dem Nukleinsäurefragment als Vektor bestehen.In a further embodiment of the vector, the gene construct according to the invention can also advantageously be introduced into the microorganisms in the form of a linear DNA and via heterologous or homologous recombination can be integrated into the genome of the host organism. This linear DNA can consist of a linearized plasmid or only of the nucleic acid fragment as a vector.
Als Vektor kann auch ein beliebiges Plasmid (insbesondere aber ein Plasmid, das den Replikationsursprung des 2μm Plasmids aus S. cerevisiae trägt) verwendet werden, das in der Zelle autonom repliziert, aber auch wie oben beschrieben ein lineares DNA- Fragment, das in das Genom des Wirtes integriert. Diese Integration kann über hetero- oder homologe Rekombination erfolgen. Bevorzugt wie erwähnt jedoch über homologe Rekombination (Steiner et al., Genetics, Vol. 140, 1995: 973 - 987). Dabei können die Gene rib3 , rib4 und rib5 einzeln im Genom an verschiedenen Orten oder auf verschiedenen Vektoren vorliegen oder gemeinsam im Genom oder auf einem Vektor vorliegen.Any plasmid (in particular a plasmid that carries the origin of replication of the 2 μm plasmid from S. cerevisiae) that autonomously replicates in the cell, but also, as described above, a linear DNA fragment that enters the genome of the host integrated. This integration can take place via hetero- or homologous recombination. However, as mentioned above, preferred via homologous recombination (Steiner et al., Genetics, Vol. 140, 1995: 973-987). The genes rib3, rib4 and rib5 can be present individually in the genome at different locations or on different vectors or together in the genome or on one vector.
Die im erfindungsgemäßen Verfahren verwendeten Organismen, die die Kombination der rib-Gene 3,4 und 5 oder deren funktioneile Äquivalente enthalten, zeigen eine erhöhte Riboflavin-Produktion.The organisms used in the process according to the invention which contain the combination of the rib genes 3, 4 and 5 or their functional equivalents show increased riboflavin production.
Im erfindungsgemäßen Verfahren werden die für die Herstellung von Riboflavin verwendeten Organismen in einem Medium, das das Wachstum dieser Organismen ermöglicht, angezüchtet. Dieses Medium kann ein synthetisches oder ein natürliches Medium sein. Je nach Organismus werden dem Fachmann bekannte Medien verwendet. Für das Wachstum der Mikroorganismen enthalten die verwendeten Medien eine Kohlenstoffquelle, eine Stickstoffquelle, anorganische Salze und gegebenenfalls geringe Mengen an Vitamine und Spurenelemente.In the process according to the invention, the organisms used for the production of riboflavin are grown in a medium which enables these organisms to grow. This medium can be a synthetic or a natural medium. Depending on the organism, media known to the person skilled in the art are used. For the growth of the microorganisms, the media used contain a carbon source, a nitrogen source, inorganic salts and possibly small amounts of vitamins and trace elements.
Vorteilhafte Kohlenstoffquellen sind beispielsweise Zucker wie Mono-, Di- oder Polysaccharide wie Glucose, Fructose, Mannose, Xylose, Galactose, Ribose, Sorbose, Ribulose, Lactose, Maltose, Saccharose, Raffinose, Stärke oder Cellulose, komplexe Zucker- quellen wie Melasse, Zuckerphosphate wie Fructose-1, 6-bis- phosphat, Zuckeralkohole wie Mannit, Polyole wie Glycerin, Alkohole wie Methanol oder Ethanol, Carbonsäuren wie Citronen- säure, Milchsäure oder Essigsäure, Fette wie Sojaöl oder Rapsöl, Aminosäuren wie ein Aminosäurengemisch beispielsweise sog. Casamino acids (Difco) oder einzelne Aminosäuren wie Glycin oder Asparaginsäure oder Aminozucker, die letztgenannten können auch gleichzeitig als Stickstoffquelle verwendet werden.Advantageous carbon sources are, for example, sugars such as mono-, di- or polysaccharides such as glucose, fructose, mannose, xylose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose, complex sugar sources such as molasses, sugar phosphates such as fructose-1, 6-bis-phosphate, sugar alcohols such as mannitol, polyols such as glycerol, alcohols such as methanol or ethanol, carboxylic acids such as citric acid, lactic acid or acetic acid, fats such as soybean oil or rapeseed oil, amino acids such as an amino acid mixture, for example so-called casamino acids (Difco) or individual amino acids such as glycine or aspartic acid or aminosugar, the latter can also be used simultaneously as a nitrogen source.
Vorteilhafte Stickstoffquellen sind organische oder anorganische Stickstoffverbindungen oder Materialien, die diese Verbindungen enthalten. Beispiele sind Ammoniumsalze wie NH4C1 oder (NH4)2S04, Nitrate Harnstoff, oder komplexe Stickstoffquellen wie Maisquell- wasser, Bierhefeautolysat, Sojabohnenmehl, Weizengluten, Hefeextrakt, Fleischextrakt, Caseinhydrolysat, Hefe oder Kartoffelprotein, die häufig auch gleichzeitig als Stickstoffquelle dienen können.Advantageous nitrogen sources are organic or inorganic nitrogen compounds or materials that contain these compounds. Examples are ammonium salts such as NH 4 C1 or (NH 4 ) 2 S0 4 , nitrates urea, or complex nitrogen sources such as corn swell water, beer yeast autolysate, soybean flour, wheat gluten, yeast extract, meat extract, casein hydrolyzate, yeast or potato protein, which can often also serve as a nitrogen source at the same time.
Beispiele für anorganische Salze sind die Salze von Calcium, Magnesium, Natrium, Cobalt, Molybdän, Mangan, Kalium, Zink, Kupfer und Eisen. Als Anion dieser Salze sind besonders das Chlor-, Sulfat- und Phosphation zu nennen. Ein wichtiger Faktor zur Steigerung der Produktivität im erfindungsgemäßen Verfahren ist die Kontrolle der Fe2+~ oder Fe3+-lonenkonzentration im Produktionsmedium.Examples of inorganic salts are the salts of calcium, magnesium, sodium, cobalt, molybdenum, manganese, potassium, zinc, copper and iron. The chlorine, sulfate and phosphate ions are particularly worth mentioning as the anion of these salts. An important factor for increasing productivity in the process according to the invention is the control of the Fe 2 + ~ or Fe 3+ ion concentration in the production medium.
Gegebenenfalls werden dem Nährmedium weitere Wachstumsfaktoren zugesetzt, wie beispielsweise Vitamine oder Wachstumsförderer wie Biotin, Riboflavin, Thiamin, Folsäure, Nicotinsäure, Pantothenat oder Pyridoxin, Aminosäuren wie Alanin, Cystein, Prolin, Asparaginsäure, Glutamin, Serin, Phenylalanin, Ornithin oder Valin, Carbonsäuren wie Citronensäure, Ameisensäure, Pimelinsäure oder Milchsäure, oder Substanzen wie Dithiothreitol.If necessary, further growth factors are added to the nutrient medium, such as vitamins or growth promoters such as biotin, riboflavin, thiamine, folic acid, nicotinic acid, pantothenate or pyridoxine, amino acids such as alanine, cysteine, proline, aspartic acid, glutamine, serine, phenylalanine, ornithine or valine, carboxylic acids such as Citric acid, formic acid, pimelic acid or lactic acid, or substances such as dithiothreitol.
Das Mischungsverhältnis der genannten Nährstoffe hängt von der Art der Fermentation ab und wird im Einzelfall festgelegt. Die Mediumkomponenten können alle zu Beginn der Fermentation vorge- legt werden, nachdem sie falls erforderlich getrennt sterilisiert oder gemeinsam sterilisiert wurden, oder aber je nach Bedarf während der Fermentation kontinuierlich oder diskontinuierlich nachgegeben werden.The mixing ratio of the nutrients mentioned depends on the type of fermentation and is determined in each individual case. The medium components can all be introduced at the beginning of the fermentation, after they have been separately sterilized or sterilized together, if necessary, or they can be added continuously or discontinuously during the fermentation as required.
Die Züchtungsbedingungen werden so festgelegt, daß die Organismen optimal wachsen und daß die bestmöglichen Ausbeuten erreicht werden. Bevorzugte Züchtungstemperaturen liegen bei 15 °C bis 40 °C. Besonders vorteilhaft sind Temperaturen zwischen 25 °C und 37 °C. Vorzugsweise wird der pH-Wert in einem Bereich von 3 bis 9 fest- gehalten. Besonders vorteilhaft sind pH-Werte zwischen 5 und 8. Im allgemeinen ist eine Inkubationsdauer von wenigen Stunden bis zu einigen Tagen bevorzugt von 8 Stunden bis zu 21 Tagen, besonders bevorzugt von 4 Stunden bis 14 Tagen ausreichend. Innerhalb dieser Zeit reichert sich die maximale Menge an Produkt im Medium an.The breeding conditions are determined in such a way that the organisms grow optimally and that the best possible yields are achieved. Preferred cultivation temperatures are 15 ° C to 40 ° C. Temperatures between 25 ° C and 37 ° C are particularly advantageous. The pH is preferably held in a range from 3 to 9. PH values between 5 and 8 are particularly advantageous. In general, an incubation period of a few hours to a few days, preferably 8 hours to 21 days, particularly preferably 4 hours to 14 days, is sufficient. The maximum amount of product in the medium accumulates within this time.
Wie Medien vorteilhaft optimiert werden können, kann der Fachmann beispielsweise dem Lehrbuch Applied Microbiol Physiology, "A Practical Approach (Eds. P.M. Rhodes, P.F. Stanbury, IRL-Press, 1997, Seiten 53 - 73, ISBN 0 19 963577 3) entnehmen. Vorteilhafte Medien und Anzuchtsbedingungen sind für Bacillus und weitere Organismen beispielsweise der Schrift EP-A-0 405 370 speziell dem Beispiel 9, für Candida der Schrift WO 88/09822 speziell Tabelle 3 und für Ashbya der Schrift von Schmidt et al. (Micro- biology, 142, 1996: 419-426) zu entnehmen.A person skilled in the art can see, for example, how media can be optimized advantageously from the textbook Applied Microbiol Physiology, "A Practical Approach (Eds. PM Rhodes, PF Stanbury, IRL-Press, 1997, pages 53-73, ISBN 0 19 963577 3). Advantageous Media and growing conditions are special for Bacillus and other organisms, for example the document EP-A-0 405 370 Example 9, for Candida in WO 88/09822 specifically Table 3 and for Ashbya in Schmidt et al. (Microbiology, 142, 1996: 419-426).
Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich in batch- oder fed-batch-weise durchgeführt werden.The process according to the invention can be carried out continuously or batchwise in batch or fed-batch fashion.
Abhängig davon wie hoch die Ausgangsproduktivität des verwendeten Organismus ist, läßt sich die Riboflavin-Produktivität durch das erfindungsgemäße Verfahren unterschiedlich stark steigern. In der Regel läßt sich die Produktivität vorteilhaft um mindestens 5% , bevorzugt um mindestens 10%, besonders bevorzugt um 20%, ganz besonders bevorzugt um mindestens 100% jeweils gegenüber dem AusgangsOrganismus steigern.Depending on how high the initial productivity of the organism used is, the riboflavin productivity can be increased by the method according to the invention to different extents. As a rule, the productivity can advantageously be increased by at least 5%, preferably by at least 10%, particularly preferably by 20%, very particularly preferably by at least 100% in each case compared to the starting organism.
Beispiele:Examples:
Die Isolierung der rib-Gene 1,2,3,4,5 und 7 aus Ashbya gossypii und Saccharomyces cerevisiae wird in den Patenten WO 95/26406 und O 93/03183 und speziell in den Beispielen beschrieben und wurde entsprechend durchgeführt. Auf diese Schriften wird hier ausdrücklich Bezug genommen.The isolation of the rib genes 1, 2, 3, 4, 5 and 7 from Ashbya gossypii and Saccharomyces cerevisiae is described in the patents WO 95/26406 and O 93/03183 and specifically in the examples and was carried out accordingly. Reference is expressly made to these writings here.
Sequenz 1 zeigt das DNA-Konstrukt, das neben dem zur Trans- formation notwendigen Selektionsmarker die Genfragmente von rib3 , rib4 und rib5 trägt.Sequence 1 shows the DNA construct which carries the gene fragments of rib3, rib4 and rib5 in addition to the selection marker necessary for the transformation.
Allgemeine Nukleinsäureverfahren wie z.B. Klonierung, Restriktionsspaltungen, Agarose-Gelelektrophorese, Verknüpfen von DNA- Fragmenten, Transformation von Mikroorganismen, Anzucht vonGeneral nucleic acid methods such as Cloning, restriction cleavage, agarose gel electrophoresis, linking of DNA fragments, transformation of microorganisms, cultivation of
Bakterien und Sequenzanalyse rekombinanter DNA wurden wenn nichts anderes beschrieben wurde wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) beschrieben durchgeführt .Bacteria and sequence analysis of recombinant DNA were, unless otherwise described, as described by Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al . (1977) Proc. Natl. Acad. Sei. USA74, 5463-5467). Fragmente resultierend aus einer Polymerase Ketten- reaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimierenden Konstrukten sequenziert und überprüft. Beispiel 1The sequencing of recombinant DNA molecules was carried out with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in constructs to be expressed. example 1
Klonierung des DNA-Konstruktes, das die rib3 , rib4 und rib5 Genkopien enthält (Vektor Tef-G418 rib3,4,5)Cloning of the DNA construct containing the rib3, rib4 and rib5 gene copies (vector Tef-G418 rib3,4,5)
Expressionskonstrukte der rib-Gene: rib3 (Vektor pJR874) , rib4 (Vektor pJR762) und rib5 (Vektor pJR739) werden in WO95/26406 beschrieben. Der Vektor pAG-110 (Steiner und Philipsen (1994) Mol. Gen. Genet., 242; 263-271) wurde mit Drain geschnitten, mit Klenowpolymerase und Desoxy-Nukleotiden inkubiert (Auffüllen der Enden) , gefällt und anschließend mit Sall geschnitten. Das DNA- Fragment, das den Tef-Promotor und das Kanamycin-Resistenzgen enthält wurde mit dem Hindlll und Sall geschnittenem Vektor Bluescript KS- (Stratagene) , dessen Hindlll Enden durch Klenow- polymerase aufgefüllt waren ligiert. Es entstand der Vektor pBS Tef-G418.Expression constructs of the rib genes: rib3 (vector pJR874), rib4 (vector pJR762) and rib5 (vector pJR739) are described in WO95 / 26406. The vector pAG-110 (Steiner and Philipsen (1994) Mol. Gen. Genet., 242; 263-271) was cut with drain, incubated with Klenow polymerase and deoxy nucleotides (filling in the ends), precipitated and then cut with Sall. The DNA fragment containing the Tef promoter and the kanamycin resistance gene was ligated with the Hindlll and Sall cut vector Bluescript KS- (Stratagene), the Hindlll ends of which were filled in by Klenow polymerase. The vector pBS Tef-G418 was created.
pJR874 wurde im zweiten Klonierungsschritt mit PvuII und Sall geschnitten worden. Das rib3-Genfragment wurde daraufhin mit einem Sall geschnittenen und dephosphorilierten Vektor pBS Tef-G418 ligiert. Da nur die Sall Enden des Fragments und Vektors ligiert werden konnten, sind die nicht-kompatiblen PvuII und Sall Enden mit Klenowpolymerase aufgefüllt und anschließend ligiert worden. Der entstandene Vektor wird im folgenden Tef-G418-rib3 genannt.pJR874 was cut in the second cloning step with PvuII and Sall. The rib3 gene fragment was then ligated to a Sall cut and dephosphorilated vector pBS Tef-G418. Since only the Sall ends of the fragment and vector could be ligated, the incompatible PvuII and Sall ends were filled in with Klenow polymerase and then ligated. The resulting vector is called Tef-G418-rib3 in the following.
Zur Subklonierung des rib5-Gens in den Vektor Tef-G418-rib3 wurde der Vektor pJR739 mit Neol und Notl geschnitten. Die Enden wurden mit Klenowpolymerase aufgefüllt. Das rib5-Genfragment wurde dann in den mit Sall geschnittenen Vektor Tef-G418-rib3 , dessen Enden ebenfalls aufgefüllt waren subkloniert. Es entstand Vektor Tef-G418-Rib3, 5.To subclone the rib5 gene into the vector Tef-G418-rib3, the vector pJR739 was cut with Neol and Notl. The ends were filled in with Klenow polymerase. The rib5 gene fragment was then subcloned into the Sall-cut vector Tef-G418-rib3, the ends of which were also filled. The result was vector Tef-G418-Rib3,5.
Im letzten Klonierungsschritt wurde das rib4-Genfragment aus Vektor pJR762 durch PCR mit Hilfe der PrimerIn the last cloning step, the rib4 gene fragment from vector pJR762 was PCR by means of the primer
5 ' GATCGATCGATCGCTAGCTGGGAGGATATGTTCTGGG 3 '5 'GATCGATCGATCGCTAGCTGGGAGGATATGTTCTGGG 3'
5 ' TCCAAGCTTGCTAGCATCTCAAATAAGTGATTAGAAGGACAAGCTGCAAG 3 '5 'TCCAAGCTTGCTAGCATCTCAAATAAGTGATTAGAAGGACAAGCTGCAAG 3'
gewonnen. Das PCR-Fragmente wurde mit Nhel geschnitten und in einen Nhel geschnittenen und mit alkalischer Phosphatase behandelten Vektor Tef-G418rib3 , 5 subkloniert.won. The PCR fragment was cut with Nhel and subcloned into a Nhel cut vector and treated with alkaline phosphatase Tef-G418rib3,5.
Das resultierende DNA-Konstrukt stellt den Vektor Tef-G418-rib3 , 4, 5 dar. Beispiel 2The resulting DNA construct is the vector Tef-G418-rib3, 4, 5. Example 2
Transformation des DNA-Konstruktes in den Pilz Ashbya gossypii Das in Beispiel 1 beschriebene DNA-Konstrukt (Vektor Tef- G418-rib3, 4, 5) wurde mit dem Restriktionsenzym Spei vollständig geschnitten und das Insert, das die rib-Gen Sequenzen trägt durch Agarosegelauftrennung aufgereinigt . Das für die Transformation benutzte Insert wird in SEQ ID No.7 wiedergegeben. Die abgeleiteten Aminosäurensequenzen der im Insert vorhandenen rib-Gene 3,4 und 5 sind den Sequenzen SEQ ID No.8 (= rib3), SEQ ID No.9 (= rib5) und SEQ ID No.10 (= rib4) zu entnehmen.Transformation of the DNA construct into the Ashbya gossypii fungus The DNA construct described in Example 1 (vector Tef-G418-rib3, 4, 5) was cut completely with the restriction enzyme Spei and the insert which carries the rib gene sequences by agarose gel separation cleaned up. The insert used for the transformation is shown in SEQ ID No.7. The derived amino acid sequences of the rib genes 3, 4 and 5 present in the insert can be found in the sequences SEQ ID No.8 (= rib3), SEQ ID No.9 (= rib5) and SEQ ID No.10 (= rib4).
MA2-Medium (10g/l Bacto-Peptone, lg/1 Hefeextrakt, 0,3g/l myo- Inositol und 10g/l D-Glucose) wurde mit Ashbya gossypii Sporen angeimpft. Die Kultur wurde 12 h bei 4°C und anschließend unter Schütteln für 13 h bei 28°C inkubiert. Die Zellsuspension wurde abzentrifugiert und das Zellpellet in 5ml 50mM Kaliumphosphat- puffer pH 7,5, 25 mM DTT aufgenommen. Nach einer 30-minütigen Wärmebehandlung bei 28°C wurden die Zellen wiederum abzentri- fugiert und in 25 ml STM-Puffer (270 mM Saccharose, 10 mM TRIS- HC1 pH 7,5, ImM MgCl ) aufgenommen. 0,5 ml dieser Suspension wurden dann mit ca. 3μg des oben aufgereinigten Inserts und 40 U Spei Enzym versetzt und in einem Biorad Gene Pulser (100Ω, 20 μF, l,5kV) elektroporiert . Nach der Elektroporation sind die Zellen mit 1 ml MA2-Medium versetzt und auf MA2-Agarkulturplatten ausgestrichen worden. Zur Antibiotikaselektion überschichtet man die Platten nach 5h Inkubation bei 28°C mit 5ml "Low-Melting"-Agarose, die das Antibiotikum G418 (200μg/ml) enthält. Die Transformanten wurden durch Mikromanipulation klonal aufgereinigt (Steiner und Philipsen (1995) Genetics, 140; 973-987). Die erfolgreiche Integration des Konstrukts wurde durch PCR-Analyse der genomischen DNA der Transformanten verifiziert. Die Isolation der genomischen DNA wurde wie von Carle und 01son(Proc.Natl .Acad. Sei, 1985, 82, 3756-3760) und Wright und Philipsen (Gene, 1991, 109,99-105) beschrieben durchgeführt. Die PCR mit für das Konstrukt spezifischen Primern ist nach R. Saiki (PCR Protocols, 1990, Academic Press, 13-20) durchgeführt worden. Die Analyse der PCR-Fragmente geschieht durch Auftrennung über ein Agarosegel . Die erfolgreiche Integration der DNA in des Genom der Transformanten wurde mit Hilfe der folgenden Primer durchgeführt:MA2 medium (10g / l Bacto-Peptone, 1g / 1 yeast extract, 0.3g / l myo-inositol and 10g / l D-glucose) was inoculated with Ashbya gossypii spores. The culture was incubated at 4 ° C for 12 h and then at 28 ° C with shaking for 13 h. The cell suspension was centrifuged off and the cell pellet was taken up in 5 ml of 50 mM potassium phosphate buffer pH 7.5, 25 mM DTT. After a 30-minute heat treatment at 28 ° C., the cells were again centrifuged off and taken up in 25 ml of STM buffer (270 mM sucrose, 10 mM TRIS-HC1 pH 7.5, ImM MgCl). 0.5 ml of this suspension was then mixed with about 3 μg of the above-purified insert and 40 U Spei enzyme and electroporated in a Biorad Gene Pulser (100Ω, 20 μF, 1.5 kV). After electroporation, 1 ml of MA2 medium was added to the cells and spread on MA2 agar culture plates. For antibiotic selection, the plates are overlaid after 5 hours of incubation at 28 ° C. with 5 ml of “low-melting” agarose, which contains the antibiotic G418 (200 μg / ml). The transformants were clonally purified by micromanipulation (Steiner and Philipsen (1995) Genetics, 140; 973-987). The successful integration of the construct was verified by PCR analysis of the genomic DNA of the transformants. The isolation of the genomic DNA was carried out as described by Carle and 01son (Proc.Natl. Acad. Sei, 1985, 82, 3756-3760) and Wright and Philipsen (Gene, 1991, 109.99-105). The PCR with primers specific for the construct was carried out according to R. Saiki (PCR Protocols, 1990, Academic Press, 13-20). The PCR fragments are analyzed by separation using an agarose gel. The successful integration of the DNA into the genome of the transformants was carried out using the following primers:
Primer A 5 '-TCCCTTAATCATTGTCACTGC-3 ' , Primer B 5 ' -CCAAGCTTGCTAGCATCTC-3 ' , Primer C 5 ' -CTGCCTGAGAAGCTGGAAAGC-3 ' , Primer D 5 ' -TGTGAATTAGTAAGCGAAAGG-3 ' , Primer E 5 '-TAAGGGATTAGGCGAAGTTGA-3 ' , Primer F 5 ' -GCTGCCACCCCTCTGATTCAC-3 ' , Primer G : 5 ' -ATAAGCTTTTGCCATTCTCAC-3 ' , Primer H : 5 ' -CTTTTGCTTTGCCACGGAACG-3 ' .Primer A 5 '-TCCCTTAATCATTGTCACTGC-3', Primer B 5 '-CCAAGCTTGCTAGCATCTC-3', Primer C 5 '-CTGCCTGAGAAGCTGGAAAGC-3', Primer D 5 '-TGTGAATTAGTAAGCGAAAGG-3', Primer E 5 '-TACAGAGGT Primer F 5 '-GCTGCCACCCCTCTGATTCAC-3', Primer G: 5 '-ATAAGCTTTTGCCATTCTCAC-3', Primer H: 5 '-CTTTTGCTTTGCCACGGAACG-3'.
Bei allen Transformanten konnte eine erfolgreiche Integration ins 5 Genom nachgewiesen werden.Successful integration into the 5 genome was demonstrated for all transformants.
Beispiel 3Example 3
RiboflavinbeStimmung im rekombinanten Ashbya gossypii KlonRiboflavin determination in the recombinant Ashbya gossypii clone
10 Ashbya gossypii lta-GS-01 (Schmidt, G., Stahmann, K.-P., Kaesler, B., & Sahm, H. (1996) Microbiology 142,419-426) und die daraus durch Transformation mit dem in Beispiel 1 beschriebenen Kon- strukt hervorgegangenen Stamm Ita-GS-01#17.1 wurde auf Agarmedium bei 28°C 4 Tage lang angezogen. Von dieser Platte wurden drei10 Ashbya gossypii lta-GS-01 (Schmidt, G., Stahmann, K.-P., Kaesler, B., & Sahm, H. (1996) Microbiology 142, 419-426) and the results thereof by transformation with that in Example 1 The resulting strain Ita-GS-01 # 17.1 described was grown on agar medium at 28 ° C for 4 days. There were three of this plate
15 100 ml Erlenmeyerkolben mit 10 ml Medium (27,5 g/1 Hefeextrakt, 0,5 g/1 MgS04, 50 ml/1 Sojaöl, pH 7,0) beimpft (17.1-1, 17.1-2, 17.1-3). Nach 40 h Stunden Inkubation bei 28°C, 180 rpm auf dem Schüttler wurde je 1 ml der Kulturbrühe in 250 ml Erlenmeyerkolben mit 20 ml YPD-Medium überführt (10 g/1 Hefeextrakt, 20 g/1Inoculated 15 100 ml Erlenmeyer flasks with 10 ml medium (27.5 g / 1 yeast extract, 0.5 g / 1 MgSO 4 , 50 ml / 1 soybean oil, pH 7.0) (17.1-1, 17.1-2, 17.1-3 ). After 40 hours of incubation at 28 ° C, 180 rpm on the shaker, 1 ml of the culture broth was transferred to 250 ml Erlenmeyer flasks with 20 ml of YPD medium (10 g / 1 yeast extract, 20 g / 1
20 Bactopepton, 20 g/1 Glucose) . Inkubation 28°C, 300 rpm. Nach 190 h wurde aus jedem Kolben eine 1 ml Probe entnommen und mit 1 ml 1 M Perchlorsäure versetzt. Die Probe wurde filtriert und der Ribo- flavingehalt mit HPLC-Analytik bestimmt. Dabei wurde eine Eichung mit Riboflavinstandards (10 mg/1, 20 mg/1, 30 mg/1, 40 mg/1,20 bactopeptone, 20 g / 1 glucose). Incubation 28 ° C, 300 rpm. After 190 h, a 1 ml sample was taken from each flask and 1 ml of 1 M perchloric acid was added. The sample was filtered and the riboflavin content was determined using HPLC analysis. A calibration with riboflavin standards (10 mg / 1, 20 mg / 1, 30 mg / 1, 40 mg / 1,
25 50 mg/1) vorgenommen.25 50 mg / 1).
Parameter der HPLC-Methode zur Riboflavinbestimmung:Parameters of the HPLC method for riboflavin determination:
Säule ODS Hypersil 5mm 200X 2,1mm (HP)Column ODS Hypersil 5mm 200X 2.1mm (HP)
30 Eluent A Wasser mit 340ml H3P04 (89%) auf pH 2,330 eluent A water with 340 ml H 3 P0 4 (89%) to pH 2.3
Eluent B 100% AcetonitrilEluent B 100% acetonitrile
Gradientgradient
Stopzeit 10 0 - 6 min . : 2% B auf 50% BStop time 10 0 - 6 min. : 2% B to 50% B
35 6 - 6 , 5 min : 50 % B auf 2% BITlin35 6-6, 5 min: 50% B to 2% BITlin
Fluß 0 , 5 ml /minFlow 0.5 ml / min
Detektion 280 nmDetection 280 nm
Temperatur 40°CTemperature 40 ° C
Injektion 2 - 10 μlInjection 2 - 10 μl
4040
Alle drei Ansätze des Klon 17, der eine zusätzliche Genkopie der rib-Gene 3, 4 und 5 enthalten, zeigen im Vergleich zum Ausgangsstamm eine deutlich erhöhte Riboflavinproduktivität (Figur 4).All three approaches of clone 17, which contain an additional gene copy of rib genes 3, 4 and 5, show a significantly increased riboflavin productivity compared to the parent strain (FIG. 4).
Figur 4 zeigt die Riboflavinausbeuten der verschiedenen Klone.Figure 4 shows the riboflavin yields of the different clones.
45 Durch Einbringen der rib3,4 und 5 Gene konnten Steigerungen der Riboflavinausbeuten von bis zu 150% im Vergleich zum unmodifi- zierten Stamm erreicht werden. 45 By introducing the rib3,4 and 5 genes, riboflavin yields could be increased by up to 150% compared to the unmodified strain.

Claims

Patentansprüche claims
1. Verfahren zur gesteigerten Herstellung von Riboflavin mit einem Organismus, der in der Lage ist Riboflavin zu synthetisieren, dadurch gekennzeichnet, daß man die Aktivität der Enzyme 3 , 4-Dih.ydroxy-2-butanon-4-phosphat-Synth.ase, Dimethyl-8-ribityllumazin-Synthase und Riboflavin-Synthase oder deren Funktionsanalogen im Organismus erhöht.1. A process for the increased production of riboflavin with an organism which is capable of synthesizing riboflavin, characterized in that the activity of the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate-Synth.ase, Dimethyl-8-ribityllumazine synthase and riboflavin synthase or their functional analogs increased in the organism.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Kombination der Gene, die für die Enzyme 3,4-Di- hydroxy-2-butanon-4-phosphat-Synthase, Dirnethyl-8-ribityl- lumazin-Synthase und Riboflavin-Synthase oder deren Funktionsanalogen kodieren, zur Aktivitätssteigerung der Enzyme in den Organismus einbringt.2. The method according to claim 1, characterized in that the combination of the genes for the enzymes 3,4-di-hydroxy-2-butanone-4-phosphate synthase, Dirnethyl-8-ribityl-lumazine synthase and riboflavin Encode synthase or its functional analogs, to increase the activity of the enzymes in the organism.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man als Organismus ein Bakterium, eine Hefe, einen Pilz oder eine Pflanze verwendet.3. The method according to claim 1 or 2, characterized in that a bacterium, a yeast, a fungus or a plant is used as the organism.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man Organismen ausgewählt aus der Gruppe der Gattungen Bacillus, Clostridium, Escherichia, Pichia, Candida, Cyanobacter, Corynebacterium, Brevibacterium,4. Process according to claims 1 to 3, characterized in that organisms selected from the group of the genera Bacillus, Clostridium, Escherichia, Pichia, Candida, Cyanobacter, Corynebacterium, Brevibacterium,
Saccharomyces, Eremothecium oder Ashbya oder Pflanzen wie Arabidopsis, Tomate, Kartoffeln, Mais, Raps, Weizen, Gerste, Sonnenblumen, Hirse, Roggen, Hafer, Zuckerrübe, Bohnengewächse oder Soja verwendet.Saccharomyces, Eremothecium or Ashbya or plants such as Arabidopsis, tomato, potatoes, corn, rapeseed, wheat, barley, sunflowers, millet, rye, oats, sugar beet, bean crops or soybeans are used.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man Organismen ausgewählt aus der Gruppe der Gattungen Bacillus, Corynebacterium, Brevibacterium, Escherichia, Candida, Eremothecium oder Ashbya verwendet.5. Process according to claims 1 to 4, characterized in that organisms selected from the group of the genera Bacillus, Corynebacterium, Brevibacterium, Escherichia, Candida, Eremothecium or Ashbya are used.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß Gene mit den Sequenzen SEQ ID NO. 1, SEQ ID No. 3 und SEQ ID No. 5 oder deren funktionellen Äquivalente verwendet werden.6. The method according to claims 1 to 5, characterized in that genes with the sequences SEQ ID NO. 1, SEQ ID No. 3 and SEQ ID No. 5 or their functional equivalents can be used.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die Äquivalente eine Homologie auf der durch die Sequenzen kodierten und abgeleiteten Aminosäureebene von 35 % haben.7. The method according to claims 1 to 6, characterized in that the equivalents have a homology on the amino acid level coded and derived by the sequences of 35%.
Zeichn. Sign.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Gene, die für die Enzyme 3 , 4-Dihydroxy-2- butanon-4-phosphat-Synthase, Dirnethy1-8-ribityllumazin- Synthase und Riboflavin-Synthase oder deren Funktionsanaloge8. The method according to claims 1 to 7, characterized in that the genes for the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate synthase, Dirnethy1-8-ribityllumazine synthase and riboflavin synthase or their Functional analogs
5 kodieren, aus eukaryontischen oder prokaryontischen Organismen stammen.5 encode, originate from eukaryotic or prokaryotic organisms.
9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Gene oder deren Äquivalente aus Organismen 0 ausgewählt aus der Gruppe Bacillus, Escherichia, Clostridium, Saccharomyces, Candida, Eremothecium oder Ashbya stammen.9. The method according to claims 1 to 8, characterized in that the genes or their equivalents from organisms 0 selected from the group Bacillus, Escherichia, Clostridium, Saccharomyces, Candida, Eremothecium or Ashbya.
10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, daß die Gene oder deren Äquivalente zusammen 5 oder getrennt auf mindestens einem Vektor oder chromosomal lokalisiert sind.10. The method according to claims 1 to 9, characterized in that the genes or their equivalents are located together 5 or separately on at least one vector or chromosomally.
11. Nukleinsäurefragment enthaltend Gene mit den Sequenzen SEQ ID NO. 1, SEQ ID No. 3 und SEQ ID No. 5 oder deren funktionellen 0 Äquivalente, wobei die Gene oder ihre Äquivalente funktionell mit einem oder mehreren Regulationssignalen verknüpft sind.11. Nucleic acid fragment containing genes with the sequences SEQ ID NO. 1, SEQ ID No. 3 and SEQ ID No. 5 or their functional 0 equivalents, the genes or their equivalents being functionally linked to one or more regulation signals.
12. Expressionsvektor enthaltend das Nukleinsäurefragment gemäß Anspruch 11.12. Expression vector containing the nucleic acid fragment according to claim 11.
2525
13. Expressionsvektor nach Anspruch 11, dadurch gekennzeichnet, daß es sich um eine lineare Nukleinsäure handelt.13. Expression vector according to claim 11, characterized in that it is a linear nucleic acid.
14. Organismus enthaltend mindestens ein Nukleinsäurefragment 30 gemäß Anspruch 11 oder mindestens einen Vektor gemäß14. Organism containing at least one nucleic acid fragment 30 according to claim 11 or at least one vector according to
Anspruch 12.Claim 12.
15. Verwendung einer Kombination der Gene, die für die Enzyme 3 , 4-Dihydroxy-2-butanon-4-phosphat-Synthase, Dimethyl-8-15. Use of a combination of the genes necessary for the enzymes 3, 4-dihydroxy-2-butanone-4-phosphate synthase, dimethyl-8-
35 ribityllumazin-Synthase und Riboflavin-Synthase oder deren Funktionsanalogen kodieren, in einen Organismus, der in der Lage ist Riboflavin zu synthetisieren, zur gesteigerten Herstellung von Riboflavin.35 encode ribityllumazine synthase and riboflavin synthase or their functional analogs into an organism that is able to synthesize riboflavin for the increased production of riboflavin.
40 16. Verwendung nach Anspruch 15 in Ashbya gossypii.40 16. Use according to claim 15 in Ashbya gossypii.
17. Verfahren zur Integration von Nukleinsäuren in das Genom von Organismen, dadurch gekennzeichnet, daß man mindestens ein Riboflavinsynthesegen über eine Restriktionsenzym vermittelte 45 Integration ins Genom des Organismus einführt. 17. A method for integrating nucleic acids into the genome of organisms, characterized in that at least one riboflavin synthesis gene is introduced into the genome of the organism via a restriction enzyme.
PCT/EP1999/003196 1998-05-28 1999-05-10 Genetic method for producing riboflavin WO1999061623A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020007013352A KR20010043867A (en) 1998-05-28 1999-05-10 Genetic Method for Producing Riboflavin
AU41409/99A AU4140999A (en) 1998-05-28 1999-05-10 Genetic method for producing riboflavin
JP2000551007A JP2002516108A (en) 1998-05-28 1999-05-10 Genetic production of riboflavin
EP99924924A EP1082438A2 (en) 1998-05-28 1999-05-10 Genetic method for producing riboflavin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823834A DE19823834A1 (en) 1998-05-28 1998-05-28 Genetic process for the production of riboflavin
DE19823834.7 1998-05-28

Publications (2)

Publication Number Publication Date
WO1999061623A2 true WO1999061623A2 (en) 1999-12-02
WO1999061623A3 WO1999061623A3 (en) 2000-01-27

Family

ID=7869161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003196 WO1999061623A2 (en) 1998-05-28 1999-05-10 Genetic method for producing riboflavin

Country Status (9)

Country Link
EP (1) EP1082438A2 (en)
JP (1) JP2002516108A (en)
KR (1) KR20010043867A (en)
CN (1) CN1303434A (en)
AU (1) AU4140999A (en)
DE (1) DE19823834A1 (en)
ID (1) ID27073A (en)
RU (1) RU2000133310A (en)
WO (1) WO1999061623A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006448A2 (en) * 2000-07-14 2002-01-24 Archer-Daniels-Midland Company Transformation systems for flavinogenic yeast
WO2003012101A1 (en) * 2001-07-27 2003-02-13 Basf Aktiengesellschaft Novel genetic products of ashbya gossypii, associated with the mechanisms of signal transduction and especially with the improvement of vitamin b2 production
WO2003018813A2 (en) * 2001-08-23 2003-03-06 Basf Aktiengesellschaft Ashbya gossypii enzymes
WO2003048367A1 (en) * 2001-12-04 2003-06-12 Basf Aktiengesellschaft Genetic strain optimization for improving the production of riboflavin
WO2003074721A2 (en) * 2002-03-02 2003-09-12 Basf Aktiengesellschaft Method for producing riboflavin
US7009045B2 (en) 2000-07-14 2006-03-07 Archer-Daniels-Midland Company Transformation systems for flavinogenic yeast
US7033804B2 (en) 2001-04-04 2006-04-25 Genencor International, Inc. Methods for the production of products in host cells
US7241587B2 (en) 2001-04-04 2007-07-10 Genencor International, Inc. Method of uncoupling the catabolic pathway of glycolysis from the oxidative membrane bound pathway of glucose conversion

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01012842A (en) 1999-06-25 2002-07-09 Basf Ag Corynebacterium glutamicum.
CA2377378A1 (en) 1999-07-01 2001-01-11 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding phosphoenolpyruvate:sugar phosphotransferase system proteins
DE1246922T1 (en) 1999-07-01 2003-03-20 Basf Ag FOR PROTEINS OF THE PHOSPHOENOL PYRUVATE: SUGAR PHOSPHOTRANSFERASE SYSTEMS-GENES CODING FROM CORYNEBACTERIUM GLUTAMICUM
DE10046870A1 (en) 2000-09-20 2002-03-28 Basf Ag Genetic manipulation of corynebacteria, useful for preparing fine chemicals, using a non-replicable vector that is not recognized as foreign
JP5565992B2 (en) * 2005-09-28 2014-08-06 興人ライフサイエンス株式会社 Transformation method of yeast Candida utilis
JP5498651B2 (en) * 2006-07-28 2014-05-21 花王株式会社 Method for producing dipicolinic acid or a salt thereof
CN104531745B (en) * 2014-12-09 2018-05-04 江南大学 A kind of structure of new r plasmid and its utilization in riboflavin produces bacterium
CN113755551A (en) * 2021-09-30 2021-12-07 天津科技大学 Fermentation method for increasing yield of riboflavin
CN114317557B (en) * 2022-01-06 2023-07-07 河南农业大学 Application of corn ZmRIBA1 gene in high-lysine corn breeding
CN116463305B (en) * 2023-06-15 2023-10-17 北京易醒生物科技有限公司 Method for improving expression level of alcohol oxidase for ethanol oxidation and optimized riboflavin biosynthesis gene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405370A1 (en) * 1989-06-22 1991-01-02 F. Hoffmann-La Roche Ag Riboflavinoverproducing strains of bacteria
WO1993004180A1 (en) * 1991-08-22 1993-03-04 Basf Aktiengesellschaft Process for purposefully modifying the genetic characteristics of ashbya gossypii
EP0569806A2 (en) * 1992-05-11 1993-11-18 BASF Aktiengesellschaft DNA-compounds and recombinant DNA expression vectors coding for S. cerevisiae riboflavine synthetase activity
DE4420785A1 (en) * 1994-03-25 1995-10-05 Basf Ag Riboflavin biosynthesis in fungi
WO1997003208A1 (en) * 1995-07-13 1997-01-30 Basf Aktiengesellschaft Riboflavin-production process by means of micro-organisms with modified isocitratlyase activity
EP0821063A2 (en) * 1996-07-24 1998-01-28 F. Hoffmann-La Roche Ag Improved riboflavin production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0405370A1 (en) * 1989-06-22 1991-01-02 F. Hoffmann-La Roche Ag Riboflavinoverproducing strains of bacteria
WO1993004180A1 (en) * 1991-08-22 1993-03-04 Basf Aktiengesellschaft Process for purposefully modifying the genetic characteristics of ashbya gossypii
EP0569806A2 (en) * 1992-05-11 1993-11-18 BASF Aktiengesellschaft DNA-compounds and recombinant DNA expression vectors coding for S. cerevisiae riboflavine synthetase activity
DE4420785A1 (en) * 1994-03-25 1995-10-05 Basf Ag Riboflavin biosynthesis in fungi
WO1997003208A1 (en) * 1995-07-13 1997-01-30 Basf Aktiengesellschaft Riboflavin-production process by means of micro-organisms with modified isocitratlyase activity
EP0821063A2 (en) * 1996-07-24 1998-01-28 F. Hoffmann-La Roche Ag Improved riboflavin production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROWN D H JR ET AL: "Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme - mediated integration." MOLECULAR AND GENERAL GENETICS, (1996 APR 24) 251 (1) 75-80. , XP002123511 in der Anmeldung erw{hnt *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002006448A3 (en) * 2000-07-14 2003-05-15 Charles Abbas Transformation systems for flavinogenic yeast
WO2002006448A2 (en) * 2000-07-14 2002-01-24 Archer-Daniels-Midland Company Transformation systems for flavinogenic yeast
US7009045B2 (en) 2000-07-14 2006-03-07 Archer-Daniels-Midland Company Transformation systems for flavinogenic yeast
US7033804B2 (en) 2001-04-04 2006-04-25 Genencor International, Inc. Methods for the production of products in host cells
US7241587B2 (en) 2001-04-04 2007-07-10 Genencor International, Inc. Method of uncoupling the catabolic pathway of glycolysis from the oxidative membrane bound pathway of glucose conversion
US7407780B2 (en) 2001-04-04 2008-08-05 Genencor International, Inc. Process for producing glycerol in recombinant bacterial host cells
EP2055773A1 (en) 2001-04-04 2009-05-06 Genencor International, Inc. Uncoupled productive and catabolic host cell pathways
WO2003012101A1 (en) * 2001-07-27 2003-02-13 Basf Aktiengesellschaft Novel genetic products of ashbya gossypii, associated with the mechanisms of signal transduction and especially with the improvement of vitamin b2 production
WO2003018813A3 (en) * 2001-08-23 2003-11-13 Basf Ag Ashbya gossypii enzymes
WO2003018813A2 (en) * 2001-08-23 2003-03-06 Basf Aktiengesellschaft Ashbya gossypii enzymes
WO2003048367A1 (en) * 2001-12-04 2003-06-12 Basf Aktiengesellschaft Genetic strain optimization for improving the production of riboflavin
WO2003074721A2 (en) * 2002-03-02 2003-09-12 Basf Aktiengesellschaft Method for producing riboflavin
WO2003074721A3 (en) * 2002-03-02 2003-12-24 Basf Ag Method for producing riboflavin

Also Published As

Publication number Publication date
WO1999061623A3 (en) 2000-01-27
KR20010043867A (en) 2001-05-25
AU4140999A (en) 1999-12-13
EP1082438A2 (en) 2001-03-14
DE19823834A1 (en) 1999-12-02
ID27073A (en) 2001-02-22
CN1303434A (en) 2001-07-11
RU2000133310A (en) 2002-12-27
JP2002516108A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
WO1999061623A2 (en) Genetic method for producing riboflavin
EP2181195B1 (en) Fermentative production of acetone from renewable resources by means of novel metabolic pathway
DE102005056669A1 (en) Fermentative preparation of organic compounds, useful for making, e.g. amino acids or enzymes, using a starch source from which non-starch solids have not been removed, hydrolyzed and enzymatically converted to monosaccharides
EP1208216B1 (en) Fatty acid desaturase gene from plants
DE69931162T2 (en) METABOLICALLY MODIFIED MICROBIAL CELL WITH CHANGED METABOLITE GENERATION
EP1456388A1 (en) Genetic strain optimization for improving the production of riboflavin
EP1483398A2 (en) Method for producing riboflavin
WO2000061764A1 (en) Carotene hydroxylase and method for producing xanthophyll derivatives
DE10134660A1 (en) New isolated nucleic acid encoding desaturase enzymes from pomegranate, useful for recombinant production of unsaturated fatty acids, for e.g. the production of food, animal feeds and pharmaceuticals
EP1015597A1 (en) Method for producing ergosterol and intermediate products thereof by means of recombinant yeasts
JP2005511053A6 (en) Optimization of genetic lines for improved riboflavin production
EP1918379B1 (en) Expression vectors for multiple gene integration and Overexpression of homologous and heterologous proteins in yeasts of the species Arxula
WO1999036432A2 (en) Orotidine 5&#39;-phosphate decarboxylase-gene, gene construct containing said gene and the utilization thereof
WO2000077182A9 (en) Nucleic acid fragment and vector containing halogenase and method for the halogenation of chemical compounds
WO1999042591A1 (en) Method for producing biotin
US20050239161A1 (en) Genetic strain optimization for improving the production of riboflavin
DE19937548A1 (en) Single or multicellular organisms for the production of riboflavin
WO1999050420A1 (en) Method for increasing the phenoxy propionic acid hydroxylation rate
EP1133570A1 (en) Organisms for the extracellular production of riboflavin

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806749.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AL AU BG BR BY CA CN CZ GE HU ID IL IN JP KR KZ LT LV MK MX NO NZ PL RO RU SG SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1999924924

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09700454

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020007013352

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/843/CHE

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 1999924924

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007013352

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1999924924

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020007013352

Country of ref document: KR