WO2003046606A1 - Procede de trajectographie passive - Google Patents

Procede de trajectographie passive Download PDF

Info

Publication number
WO2003046606A1
WO2003046606A1 PCT/FR2002/004047 FR0204047W WO03046606A1 WO 2003046606 A1 WO2003046606 A1 WO 2003046606A1 FR 0204047 W FR0204047 W FR 0204047W WO 03046606 A1 WO03046606 A1 WO 03046606A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
bias
target
angular measurements
passive
Prior art date
Application number
PCT/FR2002/004047
Other languages
English (en)
Inventor
Michel Prenat
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2003046606A1 publication Critical patent/WO2003046606A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0294Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems

Definitions

  • the invention relates to the field of passive tracking methods based on angular measurements of a target.
  • the angular measurements of the target are carried out by an optronic sensor of a platform.
  • This platform is preferably aerial but it can also be terrestrial.
  • the passive trajectography method can determine the position and the speed of the target, in order then to be able for example to reconstruct the trajectory of the target, in a manner that is both precise and discreet.
  • the passive trajectography method also allows the reconstitution of trajectory for several targets if necessary.
  • the only source of error which is taken into account concerns the measurement noise.
  • the precision obtained with regard to the position and the speed of the target remains insufficient.
  • One of the problems to be solved in this prior art is therefore the improvement of this precision.
  • the solution of the invention is first based on a prior identification of the different sources of error.
  • One of the sources of error concerns the various errors of the inertial unit of the platform over time, in particular drift and noise, they are not considered here.
  • Another source of error concerns the measurement noise, which measurement noise is not the subject of the invention.
  • the measurement noise can be considered as a Gaussian type error, with zero mean, independent from one measurement to another, having a given standard deviation.
  • the measurement noise results in noise in the estimation of the target trajectory.
  • Another source of error not highlighted in said prior art, relates to measurement bias.
  • the measurement bias is reflected on the trajectory by a deterministic bias for a given platform and scenario.
  • the measurement bias can be broken down into three main components, a fixed and two variables.
  • the first component concerns a fixed bias of given value for a platform considered and completely independent of the scenario, a particular scenario corresponding to a couple particular trajectories of the platform and the target respectively.
  • the second component concerns a possible variable bias whose value is proportional to the load factor to which the platform is subjected, the proportionality coefficient depending on the platform considered, this type of bias being present in the case of a suspended optronic sensor, c 'That is to say in the case of a flexible mechanical connection between the optronic sensor and the structure of the platform, the flexible mechanical connection then being for example produced by means of elastic dampers.
  • the third component relates to a variable bias whose value is a function of the orientation of the line of sight of the optronic sensor relative to the structure of the platform, this function is erratic as a function of the orientation of the line of sight and dependent on the platform considered.
  • the order of magnitude of the different sources of error is as follows.
  • the standard deviation of the measurement noise is approximately 200 ⁇ rad for the visible channel and approximately 500 ⁇ rad for the infrared channel.
  • the order of magnitude can be set by the following upper bounds.
  • the fixed bias remains below 500 ⁇ rad.
  • the load factor bias has a coefficient which remains below 200 ⁇ rad per g of acceleration.
  • the bias depending on the orientation of the line of sight remains less than plus or minus 800 ⁇ rad over a range of orientation covering approximately plus or minus 60 degrees.
  • variable biases namely the load factor bias and the bias depending on the orientation of the line of sight
  • the fixed bias has an influence which is much less and which can be considered negligible compared to the other two.
  • the solution of the invention is based on the concealment of the angular measurements during the turn (s) of the platform and on the conservation of the angular measurements during at least certain rectilinear portions of the trajectory of the platform. In the following, unless otherwise stated, we will consider that there are several turns.
  • the possible bias of the load factor is eliminated, while, the biases depending on the orientation of the line of sight of the sensor relative to the platform varying little in the same direction of rectilinear portion of trajectory, it is then sufficient to correct the difference between said biases, from one direction to another, to largely compensate for the negative influence of the bias depending on the orientation of the line of sight; in the preferred numerical example, after compensation, the residual bias depending on the orientation of the line of sight leads to an error of approximately 300 m on the position of the target considered.
  • the determinations of direction and angular velocity of the target are acceptable in the prior art while the determinations of distance and radial speed which are insufficient in the prior art are markedly improved by the method according to the invention.
  • the method according to the invention avoids costly personalized error corrections requiring special measures in the factory for each platform.
  • a method of passive trajectography from angular measurements of a target carried out by an optronic sensor of a platform the platform performing a maneuver so that the trajectory of the platform comprises at least two portions rectilinear with different directions between them and at least one turn, the angular measurements having several errors among which, a measurement noise, a fixed bias, a possible load factor bias, a bias depending on the orientation of the line of sight of the sensor relative to the platform, the trajectography method comprising an error correction step, the error correction step obscuring the angular measurements during the turn (s), retaining the angular measurements for at least two rectilinear portions of different directions between them and compensating for the difference (s) existing between the different biases function of the orientation of the line of sight of the sensor corresponding respectively to said different directions of rectilinear portion.
  • FIG. 1 schematically shows an example of the trajectory of a platform performing a bayonet type maneuver
  • FIG. 2 schematically shows the variations in bias depending on the orientation of the line of sight as a function of the angle of the line of sight.
  • the target for which the optronic sensor of the platform performs angular measurements in the context of the passive trajectography process can for example be either a fixed or slow target of the ship type or preferably a mobile target of the aircraft type which is assumed to be in uniform rectilinear movement. , the risk of error in the determination of the position and the speed of the target considered being especially important in the case of a relatively fast moving target of the aircraft type.
  • a terrestrial target traveling at a speed comparable to that of the terrestrial platform could also be considered as relatively fast mobile.
  • the trajectory of the target becomes more or less estimable, that is to say can be reconstructed with sufficient precision or not, depending on several parameters including, the trajectory deviation during the bayonet type maneuver, the difference in direction between the different rectilinear portions of the trajectory during the bayonet-type maneuver, the number of angular measurements carried out and in particular the errors that these angular measurements comprise.
  • a bayonet type maneuver is in the broad sense a maneuver which corresponds to a trajectory comprising at least three rectilinear portions, two of which are different directions between them and at least two turns.
  • the number of said different directions of rectilinear portion retained by the correction step is preferably less than or equal to five, it is advantageously two. In the case where this number is equal to two, the two directions preferably make an angle between them of between 40 degrees and 50 degrees, for example 45 degrees.
  • FIG. 1 schematically represents an example of the trajectory of a platform performing a bayonet type maneuver.
  • FIG. 1 schematically represents an example of the trajectory of a platform performing a bayonet type maneuver.
  • the arrows indicate the direction of movement of the platform P and of the target considered C.
  • the target C is assumed to be in uniform rectilinear movement.
  • the trajectory of the platform P comprises five successive phases in time represented by five portions 1 to 5 of trajectory.
  • a first phase corresponding to the portion 1 during which the platform P is in uniform rectilinear movement and during which its trajectory is in a fixed direction D of space
  • the angle ⁇ 1 between the direction D of progression of the platform P and the direction ⁇ 1 in which the platform P sees the target C varies relatively little.
  • the angle ⁇ 1 varies over time during the first phase 1 and it is even this variation which contributes to the estimation of the trajectory of the target C, but the angle ⁇ 1 varies very little during the first phase 1 in which concerns the value of the bias as a function of the orientation of the line of sight of the sensor relative to the platform, this phenomenon will moreover be highlighted later in conjunction with FIG. 2.
  • a second phase corresponding to portion 2 during which the platform P makes a turn and during which its trajectory makes a very variable angle with a direction D fixed in space
  • the angle between the direction of progression of the platform and the direction in which the platform P sees the target C varies a lot.
  • a third phase corresponding to the portion 3 during which the platform P is in uniform rectilinear movement and during which its trajectory is in a fixed direction D ′ of space, the angle ⁇ 2 between the direction D ′ of progression of the platform P and the direction ⁇ 1 in which the platform P sees the target C varies relatively little.
  • a fourth phase corresponding to the portion 4 during which the platform P makes a turn and during which its trajectory makes a very variable angle with a direction D fixed in space
  • the angle between the direction of progression of the platform and the direction in which platform P sees target C varies a lot.
  • a fifth phase corresponding to the portion 5 during which the platform P is in uniform rectilinear movement and during which its trajectory is in a fixed direction D of space
  • the angle ⁇ 1 between the direction D of progression of the platform P and the direction ⁇ 3 in which the platform P sees the target C varies relatively little and moreover, this angle ⁇ 1 is close to the angle ⁇ 1 of the first phase.
  • the trajectory deviation ET corresponds to the distance separating the portions 1 and 5 from the trajectory of the platform P.
  • FIG. 1 is not to scale since the distance between the target C and the platform P is preferably large in front of the trajectory deviation ET for a better precision of the determination of the position and the speed of the target C.
  • the target C is located approximately 150km from the platform P while the deviation AND of trajectory is worth approximately 10 km.
  • the angular measurements are concealed during the turns, that is to say during the second and fourth phases. The angular measurements can for example either be not carried out by the sensor, or be carried out by the sensor but not taken into account in the determination of the position and the speed of the target C.
  • the really limiting parameter in terms of the precision obtained will be the difference in bias as a function of the orientation of the line of sight of the sensor relative to the platform between the direction ⁇ 1 and the direction ⁇ 2. It is this difference in bias that said correction step will largely compensate for, by compensating for example the difference between a value, for example the average, of the range of variation of the bias associated with the direction ⁇ 1 and / or the direction ⁇ 3 along portions 1 and / or 3, and a value, for example the average, of the range of variation of the bias associated with direction ⁇ 2 along portion 2.
  • the directions ⁇ 1 and ⁇ 3 remain close as well as the ranges of bias value depending on the orientation of the line of sight which are respectively associated with them.
  • FIG. 2 schematically represents the variations in bias as a function of the orientation of the line of sight as a function of the angle of the line of sight.
  • the bias b as a function of the orientation of the line of sight is represented on the ordinate, as a function of the angle ⁇ made by the line of sight of the sensor with respect to the structure of the platform, by means of a curve. bfo of erratic appearance and dependent on the platform considered.
  • the set of variations in bias as a function of the orientation of the line of sight corresponding to portions 1 and 5 of the trajectory of the platform corresponds to an angle ⁇ 1, the small variations of which are included in the small window f1 of length 11 and of height h1.
  • the small variations of this angle ⁇ 1 are the union of the small variations of the angle ⁇ 1 of the first phase and the neighboring angle ⁇ 1 of the fifth phase: all the angles ⁇ 1 are sufficiently close and their variations sufficiently small so that the we are only talking about an angle ⁇ 1 and its slight variations.
  • the value bm1 is representative of the bias in the window f 1, it is preferably the average of the variations of this bias, but it may for example be another value of bias belonging to the window f 1.
  • All the variations in bias as a function of the orientation of the line of sight corresponding to the portion 3 of the trajectory of the platform corresponds to an angle ⁇ 2, the slight variations of which are included in the small window f2 of length 12 and height. h2.
  • the value bm2 is representative of the bias in the window f2, it is preferably the average of the variations of this bias but it may for example be another value of bias belonging to the window f2.
  • the value ⁇ b which is equal to bm1 -bm2 represents the difference in bias between the angles ⁇ 1 and ⁇ 2. It is this difference in bias ⁇ b which is compensated for by the step of correcting the passive trajectography method according to the invention.
  • the compensation of this difference ⁇ b of bias results in a reduction of the error up to a residual error which is due to the small but not zero size of windows f1 and f2 and which is worth approximately 300 m; at this stage the error due to the measurement noise, which was around 1 km, has again become preponderant.
  • the compensation function in itself can take various known forms, this can be for example an extended Kalman filter in modified polar coordinates.
  • the optronic sensor is suspended, that is to say that the optronic sensor has a flexible mechanical connection with the structure of the platform.
  • the flexible mechanical connection is for example consisting of one or more shock absorbers.
  • the passive tracking method according to the invention has the additional advantage of eliminating the load factor bias present in the turns.
  • the optronic sensor can be an optical reception channel of the television type or an infrared reception channel.
  • the optronic sensor can also however be rigidly linked to the platform, that is to say have a rigid mechanical connection with the structure of the platform, of the ball joint type without damper for example.
  • One of the preferred applications of the passive tracking method according to the invention relates to a fire control system which has the advantage of being discreet.
  • the measurements of the optronic sensor are then often made at a high rate, which further increases the ratio between on the one hand the error due to bias of variable type and in particular to the difference in bias between the different orientations of the line of aiming of the sensor relative to the platform and on the other hand the error due to the measurement noise, which makes the passive trajectography method according to the invention particularly advantageous in this case.
  • the optronic sensor is then generally in a single-target or multi-target sequence environment.
  • Another application of the passive tracking method according to the invention relates to a system for the discrete establishment of a tactical situation.
  • the measurements of the optronic sensor are then often made at a low rate, the optronic sensor then generally being in wide field standby mode and in a multi-target environment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne le domaine des procédés de trajectographie passive à partir de mesures angulaires d'une cible. C'est un procédé de trajectographie passive à partir de mesures angulaires d'une cible (C) réalisées par un capteur optronique d'une plateforme (P), la plateforme effectuant une manoeuvre de sorte que la trajectoire de la plateforme comporte au moins deux portions rectilignes (1 et 3, ou 3 et 5) de directions (D, D') différentes entre elles et au moins un virage (2, 4), les mesures angulaires présentant plusieurs erreurs parmi lesquelles, un bruit de mesure, un biais fixe, un éventuel biais de facteur de charge, un biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme, le procédé de trajectographie comprenant une étape de correction d'erreur, l'étape de correction d'erreur occultant les mesures angulaires pendant le ou les virages, conservant les mesures angulaires pendant au moins deux portions rectilignes de directions différentes entre elles et compensant la ou les différences existant entre les différents biais (bm1, bm2) fonction de l'orientation de la ligne de visée du capteur correspondant respectivement aux dites différentes directions de portion rectiligne. L'invention peut notamment être appliquée à un système de conduite de tir.

Description

PROCEDE DE TRAJECTOGRAPHIE PASSIVE
L'invention concerne le domaine des procédés de trajectographie passive à partir de mesures angulaires d'une cible. Les mesures angulaires de la cible sont réalisées par un capteur optronique d'une plateforme. Cette plateforme est de préférence aérienne mais elle peut aussi être terrestre. A partir de ces mesures angulaires de la cible obtenues par un capteur optronique, le procédé de trajectographie passive peut déterminer la position et la vitesse de la cible, afin de pouvoir ensuite par exemple reconstituer la trajectoire de la cible, d'une manière qui soit à la fois précise et discrète. Le procédé de trajectographie passive permet également la reconstitution de trajectoire pour plusieurs cibles le cas échéant.
Selon un art antérieur, la seule source d'erreur dont il est tenu compte concerne le bruit de mesure. Cependant, même en atténuant par filtrage les effets de ce bruit de mesure, au moins de façon partielle, la précision obtenue en ce qui concerne la position et la vitesse de la cible reste insuffisante. Un des problèmes à résoudre dans cet art antérieur est donc l'amélioration de cette précision.
La solution de l'invention s'appuie d'abord sur une identification préalable des différentes sources d'erreur. L'une des sources d'erreur concerne les diverses erreurs de la centrale inertielle de la plateforme au cours du temps, notamment dérive et bruit, elles ne sont pas considérées ici. Une autre source d'erreur concerne le bruit de mesure, lequel bruit de mesure n'est pas l'objet de l'invention. Le bruit de mesure peut être considéré comme une erreur de type gaussien, à moyenne nulle, indépendante d'une mesure à l'autre, ayant un écart type donné. Le bruit de mesure se traduit par un bruit au niveau de l'estimation de la trajectoire de la cible. Une autre source d'erreur, non mise en évidence dans ledit art antérieur, concerne le biais de mesure. Le biais de mesure se traduit sur la trajectoire par un biais déterministe pour une plateforme et un scénario donnés.
Le biais de mesure peut se décomposer en trois composantes principales, une fixe et deux variables. La première composante concerne un biais fixe de valeur donnée pour une plateforme considérée et totalement indépendante du scénario, un scénario particulier correspondant à un couple particulier de trajectoires respectivement de la plateforme et de la cible considérées. La deuxième composante concerne un éventuel biais variable dont la valeur est proportionnelle au facteur de charge auquel est soumis la plateforme, le coefficient de proportionnalité dépendant de la plateforme considérée, ce type de biais étant présent dans le cas d'un capteur optronique suspendu, c'est-à-dire dans le cas d'une liaison mécanique souple entre le capteur optronique et la structure de la plateforme, la liaison mécanique souple étant alors par exemple réalisée par l'intermédiaire d'amortisseurs élastiques. La troisième composante concerne un biais variable dont la valeur est une fonction de l'orientation de la ligne de visée du capteur optronique par rapport à la structure de la plateforme, cette fonction est erratique en fonction de l'orientation de la ligne de visée et dépendante de la plateforme considérée.
Dans un exemple numérique préférentiel, l'ordre de grandeur des différentes sources d'erreur est le suivant. L'écart type du bruit de mesure vaut environ 200 μrad pour la voie visible et environ 500 μrad pour la voie infrarouge. Pour les différentes composantes de biais de mesure, dont les valeurs dépendent des plateformes, l'ordre de grandeur peut être fixé par les majorants suivants. Le biais fixe reste inférieur à 500 μrad. Le biais de facteur de charge a un coefficient qui reste inférieur à 200 μrad par g d'accélération. Le biais fonction de l'orientation de la ligne de visée reste inférieur à plus ou moins 800 μrad sur une plage d'orientation couvrant environ plus ou moins 60 degrés.
Dans bon nombre de configurations réelles, comme l'exemple numérique préférentiel ci-dessus, l'influence la plus importante sur les erreurs dont sera entachée l'estimation de position et de vitesse de la cible revient d'abord aux biais variables, à savoir le biais de facteur de charge et le biais fonction de l'orientation de la ligne de visée, qui peuvent pour une cible située à environ 150 km de la plateforme amener une erreur valant environ 10 km. Une influence moins importante revient ensuite au bruit de mesure lequel peut amener une erreur d'environ 1 km dans les mêmes conditions. Enfin, le biais fixe a une influence qui est nettement moindre et qui peut être considérée comme négligeable au regard des deux autres. Cette prédominance de l'influence des biais variables sur l'influence du bruit de mesure implique que la seule augmentation du nombre de mesures réalisées est loin d'être une solution suffisante dans la recherche d'amélioration substantielle de précision quant à la détermination de la position et de la vitesse de la cible considérée.
La solution de l'invention repose sur l'occultation des mesures angulaires pendant le ou les virages de la plateforme et sur la conservation des mesures angulaires pendant au moins certaines portions rectilignes de la trajectoire de la plateforme. Dans toute la suite sauf mention contraire on considérera qu'il y a plusieurs virages. Ainsi, l'éventuel biais de facteur de charge est supprimé, tandis que, les biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme variant peu sur une même direction de portion rectiligne de trajectoire, il suffit alors de corriger la différence entre lesdits biais, d'une direction à l'autre, pour compenser dans une grande mesure l'influence négative du biais fonction de l'orientation de la ligne de visée ; dans l'exemple numérique préférentiel, après compensation, le biais résiduel fonction de l'orientation de la ligne de visée amène une erreur d'environ 300 m sur la position de la cible considérée.
Les déterminations de direction et de vitesse angulaire de la cible sont acceptables dans l'art antérieur tandis que les déterminations de distance et de vitesse radiale qui sont insuffisantes dans l'art antérieur sont nettement améliorées par le procédé selon l'invention. Le procédé selon l'invention évite des corrections d'erreur personnalisées coûteuses nécessitant des mesures particulières en usine pour chaque plateforme.
Selon l'invention, il est prévu un procédé de trajectographie passive à partir de mesures angulaires d'une cible réalisées par un capteur optronique d'une plateforme, la plateforme effectuant une manœuvre de sorte que la trajectoire de la plateforme comporte au moins deux portions rectilignes de directions différentes entre elles et au moins un virage, les mesures angulaires présentant plusieurs erreurs parmi lesquelles, un bruit de mesure, un biais fixe, un éventuel biais de facteur de charge, un biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme, le procédé de trajectographie comprenant une étape de correction d'erreur, l'étape de correction d'erreur occultant les mesures angulaires pendant le ou les virages, conservant les mesures angulaires pendant au moins deux portions rectilignes de directions différentes entre elles et compensant la ou les différences existant entre les différents biais fonction de l'orientation de la ligne de visée du capteur correspondant respectivement aux dites différentes directions de portion rectiligne.
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à l'aide de la description ci-après et des dessins joints, donnés à titre d'exemples, où :
- la figure 1 représente schématiquement un exemple de trajectoire d'une plateforme effectuant une manœuvre de type baïonnette ;
- la figure 2 représente schématiquement les variations du biais fonction de l'orientation de la ligne de visée en fonction de l'angle de la ligne de visée.
La cible dont le capteur optronique de la plateforme réalise des mesures angulaires dans le cadre du procédé de trajectographie passive peut être par exemple soit une cible fixe ou lente de type navire soit de préférence une cible mobile de type aéronef qui est supposée en mouvement rectiligne uniforme, le risque d'erreur dans la détermination de la position et de la vitesse de la cible considérée étant surtout important dans le cas d'une cible mobile relativement rapide du type aéronef. Dans le cas d'une plateforme terrestre, une cible terrrestre roulant à vitesse comparable à celle de la plateforme terrestre pourra aussi être considérée comme mobile relativement rapide. Pour une cible mobile en mouvement rectiligne uniforme, si la plateforme est elle-même mobile en mouvement rectiligne uniforme, la trajectoire de la cible est non observable, c'est-à-dire que pour une trajectoire donnée de la plateforme et pour une trajectoire donnée de la cible donnant une séquence donnée de mesures angulaires au cours du temps, il existe une infinité d'autres trajectoires possibles de la cible considérée. C'est pour cela, afin de pouvoir déterminer la position et la vitesse de la cible considérée à partir des mesures angulaires réalisées par la plateforme, que ladite plateforme effectue une manœuvre de type préférentiellement baïonnette décrite en liaison avec la figure 1. Une fois observable, la trajectoire de la cible devient plus ou moins estimable, c'est-à- dire peut être reconstituée avec une précision suffisante ou pas, en fonction de plusieurs paramètres parmi lesquels, l'écart de trajectoire lors de la manœuvre de type baïonnette, l'écart de direction entre les différentes portions rectilignes de la trajectoire lors de la manœuvre de type baïonnette, le nombre de mesures angulaires réalisées et particulièrement les erreurs que comportent lesdites mesures angulaires.
Une manœuvre de type baïonnette est au sens large une manœuvre qui correspond à une trajectoire comportant au moins trois portions rectilignes dont deux de directions différentes entre elles et au moins deux virages. Le nombre des dites différentes directions de portion rectiligne conservées par l'étape de correction est de préférence inférieur ou égal à cinq, il vaut avantageusement deux. Dans le cas où ce nombre vaut deux, les deux directions font préférentiellement entre elles un angle compris entre 40 degrés et 50 degrés, par exemple 45 degrés.
La figure 1 représente schématiquement un exemple de trajectoire d'une plateforme effectuant une manœuvre de type baïonnette. Pour des raisons de clarté d'explication et de lisibilité de la figure 1 , tout se passe comme si la plateforme P et la cible C évoluaient dans le plan de la figure 1 , c'est-à-dire comme si leurs trajectoires étaient bidimensionnelles, mais la transposition à des trajectoires tridimensionnelles comme dans la réalité est automatique. Les flèches indiquent la direction des mouvements de la plateforme P et de la cible considérée C. La cible C est supposée en mouvement rectiligne uniforme.
La trajectoire de la plateforme P comporte cinq phases successives dans le temps représentées par cinq portions 1 à 5 de trajectoire. Dans une première phase correspondant à la portion 1 pendant laquelle la plateforme P est en mouvement rectiligne uniforme et pendant laquelle sa trajectoire est selon une direction D fixe de l'espace, l'angle Θ1 entre la direction D de progression de la plateforme P et la direction Δ1 dans laquelle la plateforme P voit la cible C varie relativement peu. L'angle Θ1 varie au cours du temps pendant la première phase 1 et c'est même cette variation qui contribue à l'estimation de la trajectoire de la cible C, mais l'angle Θ1 varie assez peu pendant la première phase 1 en ce qui concerne la valeur du biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme, ce phénomène sera d'ailleurs mis en évidence ultérieurement en liaison avec la figure 2. Dans une deuxième phase correspondant à la portion 2 pendant laquelle la plateforme P effectue un virage et pendant laquelle sa trajectoire fait un angle très variable avec une direction D fixe de l'espace, l'angle entre la direction de progression de la plateforme et la direction dans laquelle la plateforme P voit la cible C varie beaucoup. Dans une troisième phase correspondant à la portion 3 pendant laquelle la plateforme P est en mouvement rectiligne uniforme et pendant laquelle sa trajectoire est selon une direction D' fixe de l'espace, l'angle Θ2 entre la direction D' de progression de la plateforme P et la direction Δ1 dans laquelle la plateforme P voit la cible C varie relativement peu. Dans une quatrième phase correspondant à la portion 4 pendant laquelle la plateforme P effectue un virage et pendant laquelle sa trajectoire fait un angle très variable avec une direction D fixe de l'espace, l'angle entre la direction de progression de la plateforme et la direction dans laquelle la plateforme P voit la cible C varie beaucoup. Dans une cinquième phase correspondant à la portion 5 pendant laquelle la plateforme P est en mouvement rectiligne uniforme et pendant laquelle sa trajectoire est selon une direction D fixe de l'espace, l'angle Θ1 entre la direction D de progression de la plateforme P et la direction Δ3 dans laquelle la plateforme P voit la cible C varie relativement peu et de plus, cet angle Θ1 est voisin de l'angle Θ1 de la première phase.
L'écart de trajectoire ET correspond à la distance séparant les portions 1 et 5 de la trajectoire de la plateforme P. La figure 1 n'est pas à l'échelle dans la mesure où la distance entre la cible C et la plateforme P est préférentiellement grande devant l'écart de trajectoire ET pour une meilleure précision de la détermination de la position et de la vitesse de la cible C. Dans un exemple numérique préférentiel, la cible C est située à environ 150km de la plateforme P tandis que l'écart ET de trajectoire vaut environ 10 km. Dans l'étape de correction du procédé de trajectographie passive selon l'invention, les mesures angulaires sont occultées pendant les virages, c'est- à-dire pendant les deuxième et quatrième phases. Les mesures angulaires peuvent par exemple soit n'être pas réalisées par le capteur, soit être réalisées par le capteur mais non prises en compte dans la détermination de la position et de la vitesse de la cible C. Les mesures angulaires correspondant aux portions rectilignes de la trajectoire de la plateforme P, c'est-à-dire correspondant aux portions 1 , 3 et 5, sont réalisées par le capteur et prises en compte. Dans ce cas, le paramètre vraiment limitatif au niveau de la précision obtenue sera la différence de biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme entre la direction Δ1 et la direction Δ2. C'est cette différence de biais que ladite étape de correction va compenser en grande partie, en compensant par exemple la différence entre une valeur, par exemple la moyenne, de la plage de variation du biais associé à la direction Δ1 et/ou à la direction Δ3 le long des portions 1 et/ou 3, et une valeur, par exemple la moyenne, de la plage de variation du biais associée à la direction Δ2 le long de la portion 2. Comme la distance entre la cible C et la plateforme P est grande devant l'écart de la trajectoire ET, les directions Δ1 et Δ3 restent voisines ainsi que les plages de valeur de biais fonction de l'orientation de la ligne de visée qui leur sont respectivement associées.
La figure 2 représente schématiquement les variations du biais fonction de l'orientation de la ligne de visée en fonction de l'angle de la ligne de visée. Le biais b fonction de l'orientation de la ligne de visée est représenté en ordonnée, en fonction de l'angle θ que fait la ligne de visée du capteur par rapport à la structure de la plateforme, par l'intermédiaire d'une courbe bfo d'allure erratique et dépendante de la plateforme considérée.
L'ensemble des variations de biais fonction de l'orientation de la ligne de visée correspondant aux portions 1 et 5 de la trajectoire de la plateforme correspond à un angle Θ1 dont les faibles variations sont comprises dans la petite fenêtre f1 de longueur 11 et de hauteur h1. Les faibles variations de cet angle Θ1 sont la réunion des faibles variations de l'angle Θ1 de la première phase et de l'angle voisin Θ1 de la cinquième phase : tous les angles Θ1 sont suffisamment voisins et leurs variations suffisamment faibles pour que l'on parle seulement d'un angle Θ1 et de ses faibles variations. La valeur bm1 est représentative du biais dans la fenêtre f 1 , c'est de préférence la moyenne des variations de ce biais mais ce peut être par exemple une autre valeur de biais appartenant à la fenêtre f 1.
L'ensemble des variations de biais fonction de l'orientation de la ligne de visée correspondant à la portion 3 de la trajectoire de la plateforme correspond à un angle Θ2 dont les faibles variations sont comprises dans la petite fenêtre f2 de longueur 12 et de hauteur h2. La valeur bm2 est représentative du biais dans la fenêtre f2, c'est de préférence la moyenne des variations de ce biais mais ce peut être par exemple une autre valeur de biais appartenant à la fenêtre f2. La valeur Δb qui vaut bm1 -bm2 représente la différence de biais entre les angles Θ1 et Θ2. C'est cette différence de biais Δb qui est compensée par l'étape de correction du procédé de trajectographie passive selon l'invention. Dans l'exemple numérique préférentiel où la différence Δb de biais entraînerait une erreur de localisation d'environ 10 km pour une cible située à environ 150 km dans le cas où les virages ne seraient pas occultés ou bien dans le cas où ladite différence Δb de biais ne serait pas compensée, la compensation de cette différence Δb de biais, laquelle compensation ne peut pas être totale en raison de la taille non nulle des fenêtres f1 et f2, entraîne une diminution de l'erreur jusqu'à une erreur résiduelle qui est due à la taille petite mais non nulle des fenêtres f1 et f2 et qui vaut environ 300 m ; à ce stade l'erreur due au bruit de mesure, qui était d'environ 1 km est redevenue prépondérante. Cette compensation de la différence de biais entraîne une légère augmentation de l'erreur due au bruit de mesure laquelle erreur reste toutefois très inférieure à l'erreur due à la différence de biais qui est supprimée par l'étape de correction du procédé de trajectographie passive selon l'invention. Le procédé selon l'invention prend un grand intérêt parce que l'erreur due au type de biais variable et en particulier à la différence Δb de biais précédemment considérée est nettement supérieure à l'erreur due au bruit de mesure.
L'ensemble des variations de biais fonction de l'orientation de la ligne de visée correspondant aux portions 2 et 4, lesquelles portions ne sont pas prises en compte pour la détermination de la position et de la vitesse de la cible car elles correspondent à des mesures angulaires occultées, de la trajectoire de la plateforme correspond à un angle variant entre Θ1 et Θ2 dont les variations importantes sont de l'ordre de Δb. Le rapport entre Δb et h1 ou entre Δb et h2 est de préférence supérieur à dix, comme sur la figure 2.
Une fois les mesures angulaires pendant les virages occultées et la différence de biais entre les deux orientations Θ1 et Θ2 à compenser identifiée, la fonction de compensation en elle-même peut revêtir différentes formes connues, ce peut être par exemple un filtre de Kalman étendu en coordonnées polaires modifiées.
De préférence, le capteur optronique est suspendu, c'est-à-dire que le capteur optronique présente une liaison mécanique souple avec la structure de la plateforme. La liaison mécanique souple est par exemple constituée par un ou plusieurs amortisseurs. Dans ce cas le procédé de trajectographie passive selon l'invention a l'avantage supplémentaire d'éliminer le biais de facteur de charge présent dans les virages. Le capteur optronique peut être une voie de réception optique du type télévision ou bien une voie de réception infrarouge. Le capteur optronique peut aussi toutefois être rigidement lié à la plateforme, c'est-à-dire présenter une liaison mécanique rigide avec la structure de la plateforme, du type liaison rotule sans amortisseur par exemple.
Une des applications préférentielles du procédé de trajectographie passive selon l'invention concerne un système de conduite de tir qui a l'avantage d'être discret. Les mesures du capteur optronique se font alors souvent à une cadence élevée, ce qui augmente encore le rapport entre d'une part l'erreur due aux biais de type variable et en particulier à la différence de biais entre les différentes orientations de la ligne de visée du capteur par rapport à la plateforme et d'autre part l'erreur due au bruit de mesure, ce qui rend le procédé de trajectographie passive selon l'invention particulièrement intéressant dans ce cas. Le capteur optronique est alors généralement en environnement monocible ou multicible séquence.
Une autre application du procédé de trajectographie passive selon l'invention concerne un système d'établissement discret de situation tactique. Les mesures du capteur optronique se font alors souvent à une cadence faible, le capteur optronique se trouvant alors généralement en mode de veille grand champ et en environnement multicible.

Claims

REVENDICATIONS
1. Procédé de trajectographie passive à partir de mesures angulaires d'une cible (C) réalisées par un capteur optronique d'une plateforme (P), la plateforme effectuant une manœuvre de sorte que la trajectoire de la plateforme comporte au moins deux portions rectilignes (1 et 3, ou 3 et 5) de directions (D, D') différentes entre elles et au moins un virage (2, 4), les mesures angulaires présentant plusieurs erreurs parmi lesquelles, un bruit de mesure, un biais fixe, un éventuel biais de facteur de charge, un biais fonction de l'orientation de la ligne de visée du capteur par rapport à la plateforme, le procédé de trajectographie comprenant une étape de correction d'erreur, l'étape de correction d'erreur occultant les mesures angulaires pendant le ou les virages, conservant les mesures angulaires pendant au moins deux portions rectilignes de directions différentes entre elles et compensant la ou les différences (Δb) existant entre les différents biais (bm1 , bm2) fonction de l'orientation de la ligne de visée du capteur correspondant respectivement aux dites différentes directions de portion rectiligne.
2. Procédé de trajectographie passive selon la revendication 1 , caractérisé en ce que la plateforme est aérienne.
3. Procédé de trajectographie passive selon l'une quelconque des revendications précédentes, caractérisé en ce que la manœuvre est de type baïonnette, c'est-à-dire que la manœuvre correspond à une trajectoire comportant au moins trois portions rectilignes dont deux de directions différentes entre elles et au moins deux virages.
4. Procédé de trajectographie passive selon l'une queconque des revendications précédentes, caractérisé en ce que le nombre des dites différentes directions de portion rectiligne conservées par l'étape de correction est inférieur ou égal à cinq.
5. Procédé de trajectographie passive selon la revendication 4, caractérisé en ce que le nombre des dites différentes directions de portion rectiligne conservées par l'étape de correction vaut deux.
6. Procédé de trajectographie passive selon la revendication 5, caractérisé en ce que les deux directions (D, D') font entre elles un angle compris entre 40 degrés et 50 degrés.
7. Procédé de trajectographie passive selon l'une quelconque des revendications précédentes, caractérisé en ce que la cible est mobile et supposée en mouvement rectiligne uniforme.
8. Procédé de trajectographie passive selon l'une quelconque des revendications précédentes, caractérisé en ce que le capteur optronique est suspendu, c'est-à-dire que le capteur optronique présente une liaison mécanique souple avec la structure de la plateforme.
9. Système de conduite de tir caractérisé en ce qu'il utilise le procédé de trajectographie passive selon l'une quelconque des revendications précédentes.
PCT/FR2002/004047 2001-11-30 2002-11-26 Procede de trajectographie passive WO2003046606A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0115530A FR2833084B1 (fr) 2001-11-30 2001-11-30 Procede de trajectographie passive
FR01/15530 2001-11-30

Publications (1)

Publication Number Publication Date
WO2003046606A1 true WO2003046606A1 (fr) 2003-06-05

Family

ID=8869988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/004047 WO2003046606A1 (fr) 2001-11-30 2002-11-26 Procede de trajectographie passive

Country Status (2)

Country Link
FR (1) FR2833084B1 (fr)
WO (1) WO2003046606A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923300A1 (fr) * 2007-11-06 2009-05-08 Thales Sa Procede de trajectographie passive par mesures d'angles
US10330791B2 (en) * 2015-07-03 2019-06-25 Thales Method for locating a jamming source jamming signals of a satellite navigation system and associated system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2955930B1 (fr) * 2010-01-29 2016-12-30 Thales Sa Procede de determination de la trajectoire d'un missile balistique
FR3025030B1 (fr) 2014-08-25 2016-09-02 Thales Sa Procede et dispositif pour estimer la trajectoire d'un objet en mouvement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978731A1 (fr) * 1998-08-03 2000-02-09 Kawasaki Jukogyo Kabushiki Kaisha Procédé pour l'estimation de la trajectoire d'une fusée, procédé pour la prédiction de la position future d'une fusée, procédé pour l'identification d'une fusée, et procédé pour la détection de la situation d'une fusée

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0978731A1 (fr) * 1998-08-03 2000-02-09 Kawasaki Jukogyo Kabushiki Kaisha Procédé pour l'estimation de la trajectoire d'une fusée, procédé pour la prédiction de la position future d'une fusée, procédé pour l'identification d'une fusée, et procédé pour la détection de la situation d'une fusée

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUYNH HUU THANH: "Adaptive linear filtering in the presence of an evolution noise of poorly known variance", RECHERCHE AEROSPATIALE, ORGANISATION EUROPEENNE DE RECHERCHE SPATIALES, PARIS, FR, vol. 1, 1979, pages 11 - 22, XP002120086, ISSN: 0379-380X *
SOU-CHEN LEE ET AL: "Improved trajectory estimation of reentry vehicles from radar measurements using on-line adaptive input estimator", IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS, COMMUNICATIONS AND COMPUTER SCIENCES, INSTITUTE OF ELECTRONICS INFORMATION AND COMM. ENG. TOKYO, JP, vol. E81A, no. 9, 9 September 1998 (1998-09-09), pages 1867 - 1876, XP002120087, ISSN: 0916-8508 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923300A1 (fr) * 2007-11-06 2009-05-08 Thales Sa Procede de trajectographie passive par mesures d'angles
WO2009059929A1 (fr) * 2007-11-06 2009-05-14 Thales Procede de trajectographie passive par mesures d'angles
US10330791B2 (en) * 2015-07-03 2019-06-25 Thales Method for locating a jamming source jamming signals of a satellite navigation system and associated system

Also Published As

Publication number Publication date
FR2833084B1 (fr) 2004-02-13
FR2833084A1 (fr) 2003-06-06

Similar Documents

Publication Publication Date Title
FR2938072A1 (fr) Procede de traitement de signaux d'un radar aeroporte avec correction de l'erreur de l'angle de pointage du faisceau radar et dispositif correspondant
CA1188285A (fr) Procede et dispositif pour aligner l'axe de roulis d'un satellite avec une direction desiree
FR3006057A1 (fr) Procede et dispositif pour determiner le dereglage d'un capteur-radar de vehicule
FR2922300A1 (fr) PROCEDE DE DETERMINATION DE l'ATTITUDE, DE LA POSITION ET DE LA VITESSE D'UN ENGIN MOBILE
FR2936598A1 (fr) Systeme de guidage d'un projectile
FR2904870A1 (fr) Procede d'alignement d'une centrale inertielle a capteur vibrant axisymetrique et centrale inertielle correspondante
FR3071051A1 (fr) Procede de compensation d'un champ magnetique, dispositif et programme d'ordinateur associes
WO2003046606A1 (fr) Procede de trajectographie passive
US9841607B2 (en) Method and apparatus for stabilizing a line of sight of a radiant energy system
EP2050674A1 (fr) Système de visée absolue améliorée par combinaison d'un senseur d'étoiles et d'un capteur métrologique optique de vol en formation
EP0778958B1 (fr) Systeme de reperage d'orientation d'un instrument d'observation
FR2750214A1 (fr) Procede de calibration des erreurs de positionnement d'un radar et de la derive en vitesse sol d'une centrale inertielle embarques a bord d'un aeronef
EP2508836B1 (fr) Tête pour autodirecteur de missile, et autodirecteur correspondant
FR2998956A1 (fr) Procede de calibration d'une camera mise en place dans un vehicule automobile
EP1839009A2 (fr) Missile equipe d'un autodirecteur comportant une antenne de radar a synthese d'ouverture et procede de guidage associe
WO2012080492A1 (fr) Procédé et système de détection d'un train d'impulsions électromagnétiques, dispositif de guidage électromagnétique d'une munition vers une cible comprenant un tel système de détection
EP3374736B1 (fr) Procédé d'élaboration d'une navigation et procédé d'orientation d'un organe de visée à partir de cette navigation
Clemons III et al. Effect of sensor bias on space-based bearing-only tracker
EP4103958B1 (fr) Procédé de correction de données de positionnement entre deux plateformes et procédé d'inter-désignation de menace associé
WO2012146835A1 (fr) Procédé de gestion automatique d'un autodirecteur monté sur un engin volant, en particulier sur un missile
FR2986871A1 (fr) Procede de determination d'un indicateur de confiance relatif a la trajectoire empruntee par un mobile
FR2889300A1 (fr) Procede pour determiner la valeur reelle des parametres conditionnant la trajectoire balistique suivie par un projectile
FR2907231A1 (fr) Ensemble radar de poursuite angulaire
CN115542729A (zh) 一种精确制导光电导引平台自适应前馈稳定方法
CN115683112A (zh) 一种基于互补滤波器的光电跟踪系统量化误差抑制方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase