WO2003044499A2 - Procede de detection optique de gaz a distance - Google Patents

Procede de detection optique de gaz a distance Download PDF

Info

Publication number
WO2003044499A2
WO2003044499A2 PCT/FR2002/003976 FR0203976W WO03044499A2 WO 2003044499 A2 WO2003044499 A2 WO 2003044499A2 FR 0203976 W FR0203976 W FR 0203976W WO 03044499 A2 WO03044499 A2 WO 03044499A2
Authority
WO
WIPO (PCT)
Prior art keywords
filters
gas
measurement
filter
aforementioned
Prior art date
Application number
PCT/FR2002/003976
Other languages
English (en)
Other versions
WO2003044499A3 (fr
Inventor
Aymeric Alazarine
Philippe Bernascolle
Pierrick Leblay
Gérard Pelous
Original Assignee
Bertin Technologies S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bertin Technologies S.A. filed Critical Bertin Technologies S.A.
Priority to AU2002360183A priority Critical patent/AU2002360183A1/en
Publication of WO2003044499A2 publication Critical patent/WO2003044499A2/fr
Priority to NO20033308A priority patent/NO20033308L/no
Publication of WO2003044499A3 publication Critical patent/WO2003044499A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/58Radiation pyrometry, e.g. infrared or optical thermometry using absorption; using extinction effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1793Remote sensing

Definitions

  • the invention relates to a method for the optical detection of gases, in particular polluting gases, and is particularly applicable to the monitoring of industrial sites such as factories, refineries, gas storage installations, etc.
  • This known method uses an infrared imager associated with a measurement filter which is sensitive to the presence of the desired gas (the transmission band of this filter comprises at least one specific absorption line for the gas) and a reference filter which is insensitive. to the presence of the gas (the transmission band of this filter is comparable to that of the measurement filter but does not include the specific absorption line (s) of the gas).
  • the contrasts in the image of the observed area seen through the measurement filter and in the image of this area seen through the reference filter are determined, the contrasts being provided by the differences in flux coming from points at different temperatures. of the area observed and passing through the desired gas.
  • the ratio of the contrasts in the measurement image (seen through the measurement filter) and in the reference image (seen through the reference filter) makes it possible to determine by calculation the quantity of gas present on the optical path between the bottom of the observed area and the observer.
  • the object of the present invention is in particular to eliminate these drawbacks. It also aims to significantly lower the minimum concentration values from which gas detection is possible.
  • an optical gas detection method by remote observation of a space area by means of a measurement filter, the transmission band of which comprises a line for specific absorption of a desired gas and d '' a reference filter whose transmission band corresponds to that of the measurement filter but does not include a specific absorption line for this gas, this process consisting in detecting the presence of the gas by determining the differences in the fluxes passing through the gas and coming from points at different temperatures of a calculation window and from the ratio of the differences of the fluxes seen through the measurement filter and the differences of the fluxes seen through the reference filter, and being characterized in that it consists in determining from this report a measurement variable independent of the temperatures in the calculation window, and to determine or calculate the gas concentration from this quantity, this This is determined by weighting the above-mentioned ratio by the average flow in the calculation window or by weighting of this ratio as a function of the difference between a predetermined temperature and the background temperatures detected in the calculation window.
  • said measurement quantity is equal to ( ⁇ . ⁇ ) / K, ⁇ being the aforementioned ratio, ⁇ the average flux in the calculation window, p a parameter depending on the measurement filters and reference, and K a normalization parameter equal to ⁇ for a predetermined temperature of calculation window equal for example to 20 ° C.
  • this method consists in determining beforehand, for different background temperatures, values of the derivative with respect to the temperature of the spectral luminance of a black body at a given average temperature. , to deduce therefrom the derivative with respect to the temperature of the abovementioned ratio for the same given average temperature and in the absence of gas, to record the values of this derivative in memory and to correct the values of the measured ratio according to the differences between background temperatures and a predetermined average temperature.
  • this method also consists, for the detection of several gases, in using a set of filters whose transmission bands are determined relative to each other as a function of the absorption lines of the gases to detecting so that a filter which can be used as a reference filter for detecting a gas can be used as a measurement filter for detecting another gas, or vice versa, associating the filters in pairs, each pair of filters being intended for the detection of one or more gases, to make the measurements of the aforementioned flux differences for each filter, to calculate the values of the aforementioned ratio for each pair of filters and to deduce therefrom the presence and the concentrations of the gases mentioned above in the observed area of space.
  • This process makes it possible to systematize and optimize the process described in the aforementioned European patent, by carrying out a global measurement of the flows through each of the filters used and then determining by calculation which gases are present in the observed area.
  • This method can then be applied to the detection of several gases whose specific absorption lines are distinct from each other or, on the contrary, partially overlap, which is a fairly common case in practice.
  • this method consists in forming an identification matrix whose lines correspond to the pairs of filters and the columns to the gases to be detected, an element i, j of this matrix being formed by a value calibration obtained for a pair i of filters in the presence of a known quantity of a gas j to be detected, to form a measurement vector whose lines correspond to the pairs of filters and whose element i represents the measurements carried out on the pair i of filters (this element being for example constituted by an average of the values of the abovementioned ratio obtained at different points of the image of the area observed), to calculate coefficients of correlation of the columns of the identification matrix with the vector and to compare these correlation coefficients to determined thresholds to deduce the presence and concentrations of the aforementioned gases in the observed area.
  • this method also consists in using, to form one or several pairs of measurement and reference filters, a series of filters having transmission bands, which are staggered over a band of observation wavelengths and which possibly overlap, to obtain an image of the area observed in each transmission band and summing the images obtained to reconstruct images seen through wideband measurement filters and images seen through wideband reference filters.
  • This reconstruction of images on a wide band of wavelengths, from images obtained on narrower bands of wavelengths, is advantageous when it is desired to adapt the method according to the invention to instruments having several observation routes or when you want to detect the presence of a large number of gases in the same area.
  • the reference filters are synthesis filters produced by stacking thin layers and having one or more narrow transmission blocking bands, corresponding to the specific absorption lines of the gas or gases to be detected .
  • These synthesis filters can have extremely precise transmission blocking bands, which improves the sensitivity and the precision of the measurements.
  • a continuously tunable filter can be used, the transmission band of which can be moved over a whole spectrum of wavelengths studied.
  • this method consists in comparing the images obtained through the various filters with each other to detect a relative movement between the observer and the observed area and / or a movement in the observed area, the method then consisting in registering the images relative to each other, before processing them, to eliminate the influence of the aforementioned relative movement and / or to eliminate from these images the parts corresponding to a movement in the observed area.
  • This allows, for example, to carry out measurements over large areas from an aerial observation (instrument on board an aircraft or satellite) or carried out on board a vehicle or by scanning a scene by a camera from a fixed point.
  • the difference is used between an image at time t and a "cumulative backdrop" at time t.
  • the background calculation is performed using a recursive filter of the ARMA (Auto Regressive Moving Average) type.
  • the background is updated at time t by injecting the measurement (or reference) image into it at time t-1, as well as the matrix of points moved at time t-1, to update the background only in places where there is no shake and get a real background with no moving object.
  • the "temporal" memory used for the calculation of the backdrop can also be used for the calculation of the noise, the pixel-to-pixel difference of the measurement (or reference) image at time t and of the backdrop at l 'instant t being injected into another recursive filter of the same type as above, to obtain a cumulative noise.
  • the noise accumulated at time t allows thresholding according to temporal noise criteria of the image (t) - background (t) difference in addition to thresholding according to spatial noise criteria, which reinforces the robustness of the algorithm.
  • FIG. 2 is a graph representing the variations as a function of the wavelength of the derivative with respect to the temperature of the spectral luminance of a black body, for several predetermined average temperatures;
  • FIG. 1 shows schematically means for implementing the invention, comprising a camera or a thermal imager 10 associated with a system 12 for processing information by the via an analog-digital converter 14 and intended for the observation of a space area 16 which includes, for example, a background 18, buildings 20 and possibly at least one cloud 22 of one or more gases whose presence is to be detected and the concentration determined.
  • the camera 10 used for the observation of the zone 16 comprises an optical system 24, at least one filter 26 and an element or a set of photosensitive elements 28 on which the optical system 24 forms, through the filter 26, an image of the observed area 16.
  • the camera 10 can be a CCD type television camera or the like for measurements in the visible spectrum or a thermography camera which is capable of directly providing measurements of the temperatures of the zones observed.
  • thermography camera we generally designate a device capable of providing an image of the temperatures of the observed area, that is to say an image whose colors or gray densities are a function of the temperatures of the points observed.
  • the method then consisting in making the report of these contrasts or differences in flux in the two images to obtain a magnitude which is independent of the flux emitted by the gas cloud 22, of the overall gain of the camera or of the thermal imager 10, of the temperatures of the points considered in the area observed, the difference in temperature of these points and the temperature of the gas to be detected.
  • an invariant measurement variable as a function of temperature, this measurement variable being of the form:
  • . ⁇ is the obj and average flow in the calculation window
  • . ⁇ is the aforementioned ratio of the contrasts or differences in flux in this window
  • p is a parameter depending on the measurement filter and the reference filter, and which is calculable or measurable
  • K is a normalization parameter, which is equal to ⁇ for a predetermined temperature (of 20 ° C for example).
  • f C.dl b (a - ⁇ )
  • a and b are parameters that can be measured by calibration (b expresses the sensitivity to a given gas and a depends on the filters chosen and the temperature of the scene observed).
  • the variation of the measurement variable ⁇ as a function of the average temperature of the calculation window, in a range of temperatures going from 25 to 35 ° C approximately, is approximately 7 times smaller than that of ⁇ .
  • the ratio of the contrasts or differences in flux in the measurement image and in the reference image can be written as follows:
  • ⁇ ref OR fdL ⁇ l is the derivative with respect to the temperature of
  • T L dTj T the spectral luminance of a black body at temperature T
  • Te is the relative spectral response of the camera 10
  • Tn is the transmission coefficient of the gas cloud
  • T is the average temperature of the observed scene
  • ⁇ T is the temperature contrast of the observed scene
  • ⁇ g is the difference in wavelength of the transmission bands of the measurement filter and of the reference filter
  • ⁇ ref corresponds to the transmission band of the reference filter.
  • the derivative with respect to the temperature of the spectral luminance of a black body at a temperature given average is not constant but varies according to the wavelength on the one hand and the average temperature on the other hand, as we can see on the curves of figure 2 which represents the variations of this function over a wavelength range of between 2 and 15 ⁇ m approximately for three average temperatures of 320, 300 and 280 ° K respectively.
  • the shape of this function changes with the average temperature and that its maximum moves towards the shorter wavelengths when the average temperature increases.
  • the invention intends to take these variations into account, by proceeding as follows: the theoretical values ⁇ 0 of the ratio ⁇ are evaluated or calculated in the absence of gas for different average background temperatures and for different ranges of background temperatures and these theoretical values are recorded,
  • the temperatures of the scene background points are recorded in a window for calculating the image of the area observed
  • each measurement is made on a set of 16 to 25 pixels for example and it is corrected by taking into account the temperatures of the surrounding pixels. It is thus possible to correct measurement errors which would result from the presence in the backdrop of a very hot element such as for example a chimney in operation.
  • the evaluated gain is between 2.2 and 10
  • the evaluated gain is between 3.4 and 18, the minimum value of the gain being that obtained for a gas whose absorption line is at the maximum background emission, the maximum value being that obtained for a gas whose absorption line is at the limit of sensitivity of the camera or of the thermal imager (8 ⁇ m in IR III band), the correction making it possible to reduce the detection threshold by a factor of around 10.
  • the non-knowledge of the emissivity induces an imprecision on the determination on the temperature.
  • infrared band III (8-12 ⁇ m)
  • the majority of materials have emissivities between 0.8 and 1, i.e. a value of 0.9 ⁇ 0.1 (with the exception of paints) and the precision on the determination of the background temperatures can then be ⁇ 5 °.
  • the gains resulting from taking into account the background temperatures on the minimum concentration values for detection are then the following:
  • FIG. 3 schematically represents the variations, over a certain interval of wavelengths, of the transmissions of three gases G1, G2 and G3 to be detected and which are each characterized by a specific absorption line, the gas absorption lines G2 and G3 being very close to each other and partially overlapping.
  • FIG. 3 also represents the transmission bands of three filters FI, F2 and F3 of the high-pass type and which, used in combination two by two, will make it possible to detect the presence or the absence of the three gases Gl, G2 and G3 in an area of observed space.
  • the transmission band of the filter FI covers the absorption lines of the three gases G1, G2 and G3, that of the filter F2 comprises the absorption line of the gas G3 and part of that of the gas G2, and the transmission band of the filter F3 does not include any of the absorption lines of the gases Gl, G2 and G3.
  • the IF filter can therefore be used as a measurement filter and the F2 filter as a reference filter for detecting G1 and G2 gases.
  • the F2 filter can be used as a measurement filter and the F3 filter as a reference filter for the detection of G2 and G3 gases.
  • a group of filters is determined for a group of gases to be detected, the transmission bands of which are defined with respect to the specific absorption lines of the gases in such a way that a filter serves as a reference filter for detecting one or more gases can be used as a measurement filter for the detection of another or more other gases, or vice versa, these filters are combined in pairs so that each pair of filters is intended for the detection of one or more of several gases, the contrasts or differences in flux coming from the area observed through each of the aforementioned filters are measured, the values of the aforementioned contrast ratio are determined for each pair of filters, and the presences and concentrations are deduced from these values of the different gases in the observed area of space.
  • a gas identification matrix is constructed, each column of which is associated with one of the gases to be detected and each row of which is associated with the aforementioned pair of filters, an element i, j of this matrix corresponding to the value of the ratio of the contrasts in the measurement image and contrasts in the reference image for a known quantity of gas j, the pair of filters used being called Ci.
  • the elements i, j of this identification matrix can be determined experimentally by calibration or theoretically by calculation.
  • a series of measurements consists in recording the responses of the various filters and, in the event of detection of one or more gases, in constructing a measurement vector whose element i is the value of the aforesaid ratio of the contrasts for the pair of filters This.
  • each correlation coefficient is determined using a known method (for example by calculating the ratio between, in the numerator, the covariance of the column of the identification matrix and the measurement vector and, in the denominator, the product of the variance of the column of the identification matrix and the variance of the measurement vector) and qualifies the correlation which exists between column j of the identification matrix (this column corresponding to one of the gases sought) and the vector of measurement which was constructed from measurements made on the different pairs of filters.
  • each element of this vector may correspond to an average of the values of the aforementioned ratio at different points of the image of the area observed.
  • the gas concentrations in the observed zone can be determined by resolution of the system constituted by the n measurements obtained from the n pairs of filters and by the concentrations of the p gases (the identification matrix comprising n rows and p columns). This system can be solved as soon as the number n of measurements is greater than or equal to the number p of gases to be detected.
  • the measurement and reference filters which are used for detecting gases in the method according to the invention are typically filters having a relatively wide transmission band compared to the absorption lines of the gases to be detected. These filters can be replaced by filters having narrower transmission bands which are staggered with respect to each other in wavelength as shown diagrammatically in FIG. 4, or by a tunable continuous filter which comprises a transmission band centered on a wavelength which can be varied continuously over the spectrum studied, for example from 8 to 12 ⁇ m.
  • This tunable filter can be a standard Fabry-Perot filter fitted with piezoelectric shims.
  • each reference 1, 2, 3, 4, 5, .... designates the transmission band of a different filter mounted for example on a different channel of an observation device.
  • these transmission bands are close to each other, that they can partially overlap (case of bands 1 and 2, 2 and 3, and 4 and 5) or be separated from each other (case of bands 3 and 4), these bands can also be uniformly staggered over a range of wavelengths.
  • the various filters provided in the different channels of the observation device make it possible to reconstruct measurement images and reference images with wide band, by summing up several channels of the observation device.
  • a measurement image can be obtained by summing the channels corresponding to the transmission bands.
  • the filtering mode represented in FIG. 4 is advantageous when an apparatus with several observation channels is used, or also when a large number of gases is to be detected. An imaging spectrometer of low spectral resolution is thus produced while retaining a high spatial resolution.
  • Filters having one or more transmission blocking bands can be produced with great precision by a technique of stacking thin layers, which allows synthesis filters adapted to the gases to be detected, with a significant improvement in the sensitivity of detection. It is also possible in this way to produce synthesis filters having several transmission blocking bands, for the detection of a gas having several absorption lines.
  • These filters are particularly suitable for the detection of gases having a spectrum with several absorption lines included in the sensitivity band of the camera or of the thermal imager, since the use of a synthesis filter faithfully reproduces the spectrum of the gas on the reference track allows you to work on the entire sensitivity band of the camera and to reduce by a factor of around 3 the minimum concentration value of the gas to from which a detection is possible, compared to what would allow the use of a conventional reference filter whose transmission band in wavelength would necessarily be very narrow.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Procédé de détection de gaz par observation à distance d'une zone d'espace (16), à partir du rapport des différences de flux provenant de points à températures différentes de la zone (16), passant à travers un nuage de gaz (22) et vus par une caméra (10) à travers un filtre dont la bande de transmission comprend une raie d'absorption spécifique du gaz à détecter et à travers un filtre dont la bande de transmission ne comprend pas cette raie d'absorption, le procédé consistant également à relever les températures de fond de scène dans la zone observée (16) pour corriger les valeurs du rapport précité en fonction de l'écart entre ces températures et une température moyenne prédéterminée. L'invention est notamment applicable à la surveillance de sites industriels.

Description

PROCEDE DE DETECTION OPTIQUE DE GAZ A DISTANCE.
L'invention concerne un procédé de détection optique de gaz, en particulier de gaz polluants, et est notamment applicable à la surveillance de sites industriels tels que des usines, des raffineries, des installations de stockage de gaz, etc.
On a déjà proposé, dans le brevet européen 0 544 962, un procédé de détection de gaz basé sur l'absorption sélective du rayonnement infrarouge du paysage par un gaz présent dans le champ d'observation.
Ce procédé connu utilise un imageur infrarouge associé à un filtre de mesure qui est sensible à la présence du gaz recherché (la bande de transmission de ce filtre comprend au moins une raie d'absorption spécifique du gaz) et un filtre de référence qui est insensible à la présence du gaz (la bande de transmission de ce filtre est comparable à celle du filtre de mesure mais ne comprend pas la ou les raies d'absorption spécifiques du gaz). On détermine les contrastes dans l'image de la zone observée vue à travers le filtre de mesure et dans l'image de cette zone vue à travers le filtre de référence, les contrastes étant fournis par les différences de flux provenant de points à températures différentes de la zone observée et passant à travers le gaz recherché. Le rapport des contrastes dans l'image de mesure (vue à travers le filtre de mesure) et dans l'image de référence (vue à travers le filtre de référence) permet de déterminer par calcul la quantité de gaz présente sur le trajet optique entre le fond de la zone observée et l'observateur.
Ce rapport des contrastes dans les images de mesure et de référence permet, dans certaines conditions et en première approximation, d'éliminer l'émission propre du gaz recherché et de s'affranchir des valeurs des températures des points de la zone observée et des écarts entre ces températures. On a cependant constaté que, lorsque la gamme des températures de fond de scène est relativement étendue, les mesures réalisées ne permettent pas d'obtenir des valeurs exactes de concentration du gaz détecté, et que l'erreur de mesure est de plus fonction de la position dans le spectre de la raie d'absorption du gaz recherché.
La présente invention a notamment pour but d'éliminer ces inconvénients. Elle a aussi pour but d'abaisser sensiblement les valeurs minimales de concentration à partir desquelles une détection de gaz est possible.
Elle a encore pour but de perfectionner le procédé précité, notamment pour systématiser et optimiser la détection de plusieurs gaz présents dans une zone d'espace observée.
Elle propose à cet effet un procédé de détection optique de gaz par observation à distance d'une zone d'espace au moyen d'un filtre de mesure dont la bande de transmission comprend une raie d'absorption spécifique d'un gaz recherché et d'un filtre de référence dont la bande de transmission correspond à celle du filtre de mesure mais ne comprend pas de raie d'absorption spécifique de ce gaz, ce procédé consistant à détecter la présence du gaz par détermination des différences des flux traversant le gaz et provenant de points à températures différentes d'une fenêtre de calcul et du rapport des différences des flux vus à travers le filtre de mesure et des différences des flux vus à travers le filtre de référence, et étant caractérisé en ce qu'il consiste à déterminer à partir de ce rapport une grandeur de mesure indépendante des températures dans la fenêtre de calcul, et à déterminer ou calculer la concentration du gaz à partir de cette grandeur, celle-ci étant déterminée par pondération du rapport précité par le flux moyen dans la fenêtre de calcul ou par pondération de ce rapport en fonction de la différence entre une température prédéterminée et les températures de fond de scène détectées dans la fenêtre de calcul.
Dans une première forme de réalisation de l'invention, ladite grandeur de mesure est égale à (η.Φ ) /K, η étant le rapport précité, Φ le flux moyen dans la fenêtre de calcul, p un paramètre dépendant des filtres de mesure et de référence, et K un paramètre de normalisation égal à Φ pour une température prédéterminée de fenêtre de calcul égale par exemple à 20°C.
Dans une variante de réalisation de l'invention, ce procédé consiste à déterminer au préalable, pour différentes températures de fond de scène, des valeurs de la dérivée par rapport à la température de la luminance spectrale d'un corps noir à une température moyenne donnée, à en déduire la dérivée par rapport à la température du rapport précité pour la même température moyenne donnée et en l'absence de gaz, à enregistrer les valeurs de cette dérivée en mémoire et à corriger les valeurs du rapport mesuré en fonction des écarts entre les températures de fond de scène et une température moyenne prédéterminée.
Oh peut ainsi corriger les effets des températures, de fond de scène sur les mesures de concentration de gaz.
Selon une autre caractéristique de l'invention, ce procédé consiste également, pour la détection de plusieurs gaz, à utiliser un ensemble de filtres dont les bandes de transmission sont déterminées les unes par rapport aux autres en fonction des raies d'absorption des gaz à détecter de façon à ce qu'un filtre utilisable comme filtre de référence pour la détection d'un gaz soit utilisable comme filtre de mesure pour la détection d'un autre gaz, ou inversement, à associer les filtres par couples, chaque couple de filtres étant destiné à la détection d'un ou de plusieurs gaz, à faire les mesures des différences de flux précitées pour chaque filtre, à calculer les valeurs du rapport précité pour chaque couple de filtres et à en déduire les présences et les concentrations des gaz précités dans la zone d'espace observée.
Ce procédé permet de systématiser et d'optimiser le procédé décrit dans le brevet européen précité, en réalisant une mesure globale des flux à travers chacun des filtres utilisés et en déterminant ensuite par le calcul quels sont les gaz présents dans la zone observée. On peut alors appliquer ce procédé à la détection de plusieurs gaz dont les raies d'absorption spécifiques sont distinctes les unes des autres ou, au contraire, se chevauchent partiellement, ce qui est un cas assez courant en pratique.
Dans un mode de réalisation préféré de l'invention, ce procédé consiste à former une matrice d'identification dont les lignes correspondent aux couples de filtres et les colonnes aux gaz à détecter, un élément i, j de cette matrice étant formé par une valeur de calibration obtenue pour un couple i de filtres en présence d'une quantité connue d'un gaz j à détecter, à former un vecteur de mesure dont les lignes correspondent aux couples de filtres et dont l'élément i représente les mesures réalisées sur le couple i de filtres (cet élément étant par exemple constitué par une moyenne des valeurs du rapport précité obtenues en différents points de l'image de la zone observée), à calculer des coefficients de corrélation des colonnes de la matrice d'identification avec le vecteur de mesure et à comparer ces coefficients de corrélation à des seuils déterminés pour en déduire les présences et les concentrations des gaz précités dans la zone observée. Selon un autre aspect de l'invention, ce procédé consiste également à utiliser, pour former un ou plusieurs couples de filtres de mesure et de référence, une série de filtres ayant des bandes de transmission, qui sont échelonnées sur une bande de longueurs d'onde d'observation et qui se chevauchent éventuellement, à obtenir une image de la zone observée dans chaque bande de transmission et à sommer les images obtenues pour reconstituer des images vues à travers des filtres de mesure à bande large et des images vues à travers des filtres de référence à bande large. Cette reconstitution d'images sur une bande large de longueurs d'onde, à partir d'images obtenues sur des bandes plus étroites de longueurs d'onde, est intéressante lorsque l'on souhaite adapter le procédé selon l'invention à des instruments possédant plusieurs voies d'observation ou lorsque l'on souhaite détecter les présences d'un grand nombre de gaz dans la même zone.
Selon encore une autre caractéristique de l'invention, les filtres de référence sont des filtres de synthèse réalisés par empilement de couches minces et ayant une ou plusieurs bandes étroites de blocage de transmission, correspondant aux raies d'absorption spécifiques du ou des gaz à détecter.
Ces filtres de synthèse peuvent avoir des bandes de blocage de transmission déterminées de façon extrêmement précise, ce qui améliore la sensibilité et la précision des mesures.
En variante, on peut utiliser un filtre accordable en continu dont la bande de transmission est déplaçable sur tout un spectre de longueurs d'onde étudié.
Selon encore une autre caractéristique de l'invention, ce procédé consiste à comparer entre elles les images obtenues à travers les différents filtres pour détecter un mouvement relatif entre l'observateur et la zone observée et/ou un mouvement dans la zone observée, le procédé consistant ensuite à recaler les images les unes par rapport aux autres, avant de les traiter, pour éliminer l'influence du mouvement relatif précité et/ou à éliminer de ces images les parties correspondant à un mouvement dans la zone observée. Cela permet, par exemple, de réaliser des mesures sur des zones étendues à partir d'une observation aérienne (instrument embarqué à bord d'un aéronef ou d'un satellite) ou réalisée à bord d'un véhicule ou par balayage d'une scène par une caméra à partir d'un point fixe.
On peut pour cela utiliser un algorithme de détection d'objets en mouvement dans la zone observée, consistant à :
- calculer la différence pixel à pixel de deux images de mesure obtenues à l'instant t-1 et à l'instant t, respectivement, calculer un écart-type de l'image de différence, qui donne le bruit spatial global de l'image, faire un seuillage à (seuill . écart-type) pour obtenir une image binaire de points suspects,
- étiqueter les points en régions de points connexes,
- faire un seuillage sur le nombre de points dans ces régions et retenir comme régions en mouvement celles contenant plus de (seuil2) points, réitérer ces étapes sur les images de référence obtenues à t-1 et t.
L'application d'un "ET" binaire aux deux cartographies de régions en mouvement dans les images de mesure et les images de référence donne une matrice de points valides de "bougé" que l'on applique à la cartographie du rapport précité des différences de flux à l'instant t.
Selon une variante, on utilise la différence entre une image à l'instant t et un "fond de scène cumulé" à l'instant t. Le calcul du fond de scène est réalisé au moyen d'un filtre récursif du type ARMA (Auto Régressive Moving Average) . Le fond de scène est mis à jour à l'instant t en y injectant l'image de mesure (ou de référence) à l'instant t-1, ainsi que la matrice de points bougés à l'instant t-1, pour mettre à jour le fond seulement aux endroits où il n'y a pas de bougé et obtenir un véritable fond de scène sans objet en mouvement .
La mémoire "temporelle" utilisée pour le calcul du fond de scène est exploitable également pour le calcul du bruit, la différence pixel à pixel de l'image de mesure (ou de référence) à l'instant t et du fond de scène à l'instant t étant injectée dans un autre filtre récursif du même type que précité, pour obtenir un bruit cumulé. Le bruit cumulé à l'instant t permet un seuillage suivant des critères de bruit temporel de la différence image (t) - fond(t) en plus du seuillage suivant des critères de bruit spatial, ce qui renforce la robustesse de l'algorithme. L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement à la lecture de la description qui suit, faite à titre d'exemple en référence aux dessins annexés dans lesquels : - la figure 1 représente schématiquement des moyens de mise en oeuvre de l'invention;
- la figure 2 est un graphe représentant les variations en fonction de la longueur d'onde de la dérivée par rapport à la température de la luminance spectrale d'un corps noir, pour plusieurs températures moyennes prédéterminées;
- la figure 3 est un graphe représentant des raies d'absorption spécifiques de trois gaz à détecter et les bandes de transmission de trois filtres utilisés pour leur détection; la figure 4 est un graphe représentant l'échelonnement en longueur d'onde d'une série de filtres, utilisables comme filtres de mesure et comme filtres de référence. On se réfère d'abord à la figure 1 où l'on a représenté schématiquement des moyens de mise en oeuvre de l'invention, comprenant une caméra ou un imageur thermique 10 associé à un système 12 de traitement de l'information par l'intermédiaire d'un convertisseur analogique-numérique 14 et destiné à l'observation d'une zone d'espace 16 qui comprend, par exemple, un fond 18, des bâtiments 20 et éventuellement au moins un nuage 22 d'un ou de plusieurs gaz dont on veut détecter la présence et déterminer la concentration. La caméra 10 utilisée pour l'observation de la zone 16 comprend un système optique 24, au moins un filtre 26 et un élément ou un ensemble d'éléments photosensibles 28 sur lesquels le système optique 24 forme à travers le filtre 26 une image de la zone observée 16.
La caméra 10 peut être une caméra de télévision du type CCD ou analogue pour des mesures dans le spectre visible ou une caméra de thermographie qui est capable de fournir directement des mesures des températures des zones observées. Par "imageur thermique", on désigne en général un appareil capable de fournir une image des températures de la zone observée, c'est-à-dire une image dont les couleurs ou les densités de gris sont fonction des températures des points observés.
Comme déjà indiqué dans le brevet européen 0 544 962 précité, il faut utiliser, pour la détection d'un gaz donné, deux filtres 26 qui ont des bandes de transmission en longueur d'onde globalement semblables, mais dont l'une (celle du filtre de mesure) comprend au moins une raie d'absorption spécifique du gaz à détecter et dont l'autre (celle du filtre de référence) ne comprend pas cette ou ces raies d'absorption spécifiques. Le procédé décrit dans le brevet précité consiste à déterminer les contrastes dans l'image de référence et dans l'image de mesure, c'est-à-dire les différences des flux thermiques provenant de points à températures différentes de la zone observée et passant à travers le nuage 22 de gaz à détecter, l'image de mesure étant celle vue à travers le filtre de mesure et l'image de référence étant celle vue à travers le filtre de référence, le procédé consistant ensuite à faire le rapport de ces contrastes ou différences de flux dans les deux images pour obtenir une grandeur qui est indépendante du flux émis par le nuage de gaz 22, du gain global de la caméra ou de 1 ' imageur thermique 10, des températures des points considérés de la zone observée, de l'écart des températures de ces points et de la température du gaz à détecter.
Cette approximation est légitime lorsque la gamme des températures de fond de scène est peu étendue (quelques degrés) et quand la raie d'absorption du gaz recherché est à la longueur d'onde du maximum d'émission du fond de scène. Si ce n'est pas le cas, en particulier dans un environnement industriel, il faut prendre en compte les températures de fond de scène pour déterminer de façon précise la concentration du gaz dans le nuage 22.
Pour cela, on peut dans une première forme de réalisation de l'invention, utiliser une grandeur de mesure invariante en fonction de la température, cette grandeur de mesure étant de la forme :
Ψ = (η x ΦP)/K
où : . Φ est le flux obj et moyen dans la fenêtre de calcul , . η est le rapport précité des contrastes ou différences de flux dans cette fenêtre, p est un paramètre dépendant du filtre de mesure et du filtre de référence, et qui est calculable ou mesurable,
. K est un paramètre de normalisation, qui est égal à Φ pour une température prédéterminée (de 20 °C par exemple) .
On détermine la concentration intégrée de gaz dans la ligne de visée par la relation : f C.dl = b(a - ψ) où : . 1 est la ligne de visée, a et b sont des paramètres mesurables par calibration (b exprime la sensibilité à un gaz donné et a dépend des filtres choisis et de la température de la scène observée) .
On a par exemple vérifié que la variation de la grandeur de mesure Ψ en fonction de la température moyenne de la fenêtre de calcul, dans une gamme de températures allant de 25 à 35°C environ, est approximativement 7 fois plus faible que celle de η.
On peut également, dans une variante de l'invention, procéder comme indiqué ci-dessous.
Le rapport des contrastes ou différences de flux dans l'image de mesure et dans l'image de référence peut s'écrire de la façon suivante :
Figure imgf000012_0001
Δλg η = 1 +
Figure imgf000012_0002
Δλref OU fdLλl est la dérivée par rapport à la température de
L dTj T la luminance spectrale d'un corps noir à la température T, Te est la réponse spectrale relative de la caméra 10, Tn est le coefficient de transmission du nuage de gaz, T est la température moyenne de la scène observée ΔT est le contraste de température de la scène observée, Δλg est la différence en longueur d'onde des bandes de transmission du filtre de mesure et du filtre de référence, Δλref correspond à la bande de transmission en longueur d'onde du filtre de référence.
Contrairement à ce que l'on peut admettre en première approximation pour certaines bandes de transmission et lorsque la gamme des températures de la scène observée est peu étendue, la dérivée par rapport à la température de la luminance spectrale d'un corps noir à une température moyenne donnée n'est pas constante mais varie en fonction de la longueur d'onde d'une part et de la température moyenne d'autre part, comme on peut le voir sur les courbes de la figure 2 qui représente les variations de cette fonction sur un intervalle de longueurs d'onde compris entre 2 et 15 μm environ pour trois températures moyennes de 320, 300 et 280°K respectivement . On voit sur ces courbes que la forme de cette fonction change avec la température moyenne et que son maximum se déplace vers les longueurs d'onde plus courtes lorsque la température moyenne augmente.
L'invention prévoit de prendre en compte ces variations, en procédant de la façon suivante : on évalue ou on calcule des valeurs théoriques η0 du rapport η en l'absence de gaz pour différentes températures moyennes de fond de scène et pour différentes gammes de températures de fond de scène et on enregistre ces valeurs théoriques,
- au moyen de la caméra 10, on relève les températures des points de fond de scène dans une fenêtre de calcul de l'image de la zone observée,
- on détermine la température moyenne et la gamme de températures du fond de scène dans cette fenêtre,
- on mesure le rapport des différences de flux précitées pour ce fond de scène,
- et on corrige les valeurs du rapport précité à l'aide des valeurs théoriques enregistrées en mémoire.
Les corrections des valeurs du rapport précité sont "locales" : on fait chaque mesure sur un ensemble de 16 à 25 pixels par exemple et on corrige en prenant en compte les températures des pixels environnants. On peut ainsi corriger des erreurs de mesure qui résulteraient de la présence dans le fond de scène d'un élément très chaud tel par exemple qu'une cheminée en fonctionnement.
On peut évaluer comme indiqué ci-dessous les gains résultant des corrections selon l'invention sur les valeurs minimales de concentration à partir desquelles la détection de gaz est possible :
- lorsque la gamme des températures de fond de scène est de ± 1°K par rapport à la température moyenne, le gain évalué est compris entre 1,1 et 1,4,
- lorsque cette gamme est de ± 5°K, le gain évalué est compris entre 1,3 et 3,1,
- lorsque cette gamme est de ± 20°K, le gain évalué est compris entre 2,2 et 10, - lorsque cette gamme est de ± 40°K, le gain évalué est compris entre 3,4 et 18, la valeur minimale du gain étant celle obtenue pour un gaz dont la raie d'absorption est au maximum d'émission du fond, la valeur maximale étant celle obtenue pour un gaz dont la raie d'absorption est en limite de sensibilité de la caméra ou de l' imageur thermique (8 μm en bande IR III), la correction permettant de réduire le seuil de détection d'un facteur 10 environ.
Cela suppose que les températures du fond de scène soient déterminées de façon exacte. Cette détermination est liée à la connaissance de l'émissivité du fond de scène. Lorsque la zone observée est fixe, il est possible de connaître ou d'évaluer les émissivités des différentes parties du fond de scène, ce qui permet d'obtenir une précision de quelques dixièmes de degré sur les températures de fond de scène.
Dans les autres cas, la non-connaissance de l'émissivité induit une imprécision sur la détermination sur la température. En bande III infra-rouge (8-12 μm) , la majorité des matériaux ont des émissivités comprise entre 0,8 et 1, soit une valeur de 0,9 ± 0,1 (à l'exception des peintures) et la précision sur la détermination des températures de fond de scène peut alors être de ± 5°. Les gains résultant de la prise en compte des températures de fond de scène sur les valeurs minimales de concentration pour la détection sont alors les suivants :
- gamme de températures de ± 20 °K = gain compris entre 1,7 et 3,2,
- gamme de températures de ± 40 ° = gain compris entre 2,6 et 5,8.
On se réfère maintenant à la figure 3, qui représente schématiquement les variations, sur un certain intervalle de longueurs d'onde, des transmissions de trois gaz Gl, G2 et G3 à détecter et qui sont caractérisés chacun par une raie d'absorption spécifique, les raies d'absorption des gaz G2 et G3 étant très proches l'une de l'autre et se chevauchant partiellement. La figure 3 représente également les bandes de transmission de trois filtres FI, F2 et F3 du type passe- haut et qui, utilisés en combinaison deux à deux, vont permettre de détecter la présence ou l'absence des trois gaz Gl, G2 et G3 dans une zone d'espace observée.
Comme on le voit sur la figure 3, la bande de transmission du filtre FI recouvre les raies d'absorption des trois gaz Gl, G2 et G3, celle du filtre F2 comprend la raie d'absorption du gaz G3 et une partie de celle du gaz G2, et la bande de transmission du filtre F3 ne comprend aucune des raies d'absorption des gaz Gl, G2 et G3.
Le filtre FI peut donc être utilisé comme filtre de mesure et le filtre F2 comme filtre de référence pour la détection des gaz Gl et G2.
Le filtre F2 peut être utilisé comme filtre de mesure et le filtre F3 comme filtre de référence pour la détection des gaz G2 et G3.
Dans ces conditions, si une détection de gaz est réalisée avec le couple de filtres FI, F2 et aucune détection de gaz n'est réalisée avec le couple de filtres F2, F3, le gaz présent dans la zone observée est Gl.
Si une détection de gaz est réalisée avec les deux couples de filtres FI, F2 et F2, F3, le gaz présent dans la zone observée est G2.
Si aucune détection de gaz n'est réalisée avec le couple de filtres FI, F2, et une détection de gaz est réalisée avec le couple de filtres F2, F3, le gaz présent dans la zone observée est G3.
On comprend que le groupe de filtres FI, F2 et
F3 dont les bandes de transmission ont été déterminées en fonction des raies d'absorption spécifiques des gaz recherchés, permet de détecter la présence d'un ou de plusieurs de ces gaz même si leurs raies d'absorption spécifique sont très proches ou se chevauchent partiellement .
On peut généraliser ce procédé de la façon suivante :
On détermine, pour un groupe de gaz à détecter, un groupe de filtres dont les bandes de transmission sont définies par rapport aux raies d'absorption spécifique des gaz de façon telle qu'un filtre qui sert de filtre de référence pour la détection d'un ou de plusieurs gaz puisse être utilisé comme filtre de mesure pour la détection d'un autre ou de plusieurs autres gaz, ou inversement, on associe ces filtres par couples de sorte que chaque couple de filtres est destiné à la détection d'un ou de plusieurs gaz, on mesure les contrastes ou différences de flux provenant de la zone observée à travers chacun des filtres précités, on détermine les valeurs du rapport précité des contrastes pour chaque couple de filtres, et on déduit de ces valeurs les présences et les concentrations des différents gaz dans la zone d'espace observée.
On peut mettre en oeuvre ce procédé de la façon suivante :
On construit une matrice d'identification de gaz dont chaque colonne est associée à l'un des gaz à détecter et dont chaque ligne est associée à un couple précité de filtres, un élément i, j de cette matrice correspondant à la valeur du rapport des contrastes dans 1 ' image de mesure et des contrastes dans 1 ' image de référence pour une quantité connue du gaz j, le couple de filtres utilisé étant appelé Ci.
Les éléments i, j de cette matrice d'identification peuvent être déterminés expérimentalement par calibration ou théoriquement par calcul. Une série de mesures consiste à relever les réponses des différents filtres et, en cas de détection d'un ou de plusieurs gaz, à construire un vecteur de mesure dont l'élément i est la valeur du rapport précité des contrastes pour le couple de filtres Ci.
On calcule ensuite des coefficients de corrélation entre les différentes colonnes de la matrice d'identification et le vecteur de mesure. Chaque coefficient de corrélation est déterminé à partir d'une méthode connue (par exemple en calculant le rapport entre, au numérateur, la covariance de la colonne de la matrice d'identification et du vecteur de mesure et, au dénominateur, le produit de la variance de la colonne de la matrice d'identification et la variance du vecteur de mesure) et qualifie la corrélation qui existe entre la colonne j de la matrice d'identification (cette colonne correspondant à l'un des gaz recherchés) et le vecteur de mesure qui a été construit à partir des mesures réalisées sur les différents couples de filtres. Par exemple, chaque élément de ce vecteur peut correspondre à une moyenne des valeurs du rapport précité en différents points de l'image de la zone observée.
Lorsqu'un de ces coefficients de corrélation dépasse un seuil de valeur prédéterminée, le gaz correspondant à ce coefficient de corrélation est déclaré identifié.
On peut bien entendu définir plusieurs niveaux de seuil qui correspondent à plusieurs niveaux de fiabilité de l'identification des gaz recherchés. Les concentrations de gaz dans la zone observée peuvent être déterminées par résolution du système constitué par les n mesures obtenues à partir des n couples de filtres et par les concentrations des p gaz (la matrice d'identification comportant n lignes et p colonnes) . Ce système peut être résolu dès que le nombre n de mesures est supérieur ou égal au nombre p de gaz à détecter.
Les filtres de mesure et de référence qui sont utilisés pour la détection des gaz dans le procédé selon l'invention sont typiquement des filtres ayant une bande de transmission relativement large par rapport aux raies d'absorption des gaz à détecter. Ces filtres peuvent être remplacés par des filtres ayant des bandes plus étroites de transmission qui sont échelonnées les unes par rapport aux autres en longueur d'onde comme représenté schématiquement en figure 4, ou par un filtre continu accordable qui comprend une bande de transmission centrée sur une longueur d'onde que l'on peut faire varier de façon continue sur le spectre étudié, par exemple de 8 à 12 μm. Ce filtre accordable peut être un filtre étalon de Fabry-Perot équipé de cales piézoélectriques.
En figure 4, chaque référence 1, 2, 3, 4, 5, .... désigne la bande de transmission d'un filtre différent monté par exemple sur une voie différente d'un appareil d'observation. On voit que ces bandes de transmission sont proches les unes des autres, qu'elles peuvent se chevaucher partiellement (cas des bandes 1 et 2, 2 et 3, et 4 et 5) ou être séparées les unes des autres (cas des bandes 3 et 4), ces bandes pouvant également être uniformément échelonnées sur un intervalle de longueurs d'onde.
Les différents filtres prévus dans les différentes voies de l'appareil d'observation permettent de reconstruire des images de mesure et des images de référence à bande large, par sommation de plusieurs voies de l'appareil d'observation.
Par exemple, si le gaz à détecter présente une raie d'absorption spécifique comprise dans la bande de transmission n° 2, une image de mesure peut être obtenue par sommation des voies correspondant aux bandes de transmission 1, 2, 3, 4 et 5 et une image de référence est obtenue par sommation des voies correspondant aux bandes de transmission 1, 3, 4, 5.
Lorsque les bandes de transmission des filtres sont contiguës, leur combinaison permet de reconstituer une bande large de transmission. Si elles sont discontinues, leur sommation permet de s'affranchir de la présence de gaz gênants en éliminant les longueurs d'onde où ces gaz sont absorbants. Le mode de filtrage représenté en figure 4, est avantageux lorsqu'on utilise un appareillage à plusieurs voies d'observation, ou également lorsque l'on veut détecter un nombre important de gaz. On réalise ainsi un spectromètre imageur de faible résolution spectrale tout en conservant une forte résolution spatiale .
Des filtres présentant une ou plusieurs bandes de blocage de transmission, comme celle comprise entre les bandes de transmission 3 et 4 de la figure 4, peuvent être réalisés avec une grande précision par une technique d'empilement de couches minces, ce qui permet la synthèse de filtres adaptés aux gaz à détecter, avec une amélioration importante de la sensibilité de la détection . On peut également réaliser de cette façon des filtres de synthèse présentant plusieurs bandes bloquantes de transmission, pour la détection d'un gaz présentant plusieurs raies d'absorption. Ces filtres sont particulièrement appropriés à la détection de gaz ayant un spectre à plusieurs raies d'absorption comprises dans la bande de sensibilité de la caméra ou de 1 ' imageur thermique, car l'utilisation d'un filtre de synthèse reproduisant fidèlement le spectre du gaz sur la voie de référence permet de travailler sur toute la bande de sensibilité de la caméra et de réduire par un facteur 3 environ la valeur minimale de concentration du gaz à partir de laquelle une détection est possible, par rapport à ce que permettrait l'utilisation d'un filtre classique de référence dont la bande de transmission en longueur d'onde serait nécessairement très étroite.

Claims

REVENDICATIONS 1) Procédé de détection optique de gaz par observation à distance d'une zone d'espace au moyen d'un filtre de mesure dont la bande de transmission comprend une raie d'absorption spécifique d'un gaz recherché et d'un filtre de référence dont la bande de transmission correspond à celle du filtre de mesure mais ne comprend pas de raie d'absorption spécifique de ce gaz, le procédé consistant à détecter la présence du gaz par détermination des différences des flux traversant le gaz (22) et provenant de points à températures différentes d'une fenêtre de calcul, et du rapport des différences des flux vus à travers le filtre de mesure et des différences des flux vus à travers le filtre de référence, caractérisé en ce qu'il consiste à déterminer à partir de ce rapport une grandeur de mesure indépendante des températures dans la fenêtre de calcul et à déterminer ou calculer la concentration du gaz à partir de cette grandeur, celle-ci étant déterminée par pondération du rapport précité par le flux moyen dans la fenêtre de calcul ou par pondération de ce rapport en fonction de la différence entre une température prédéterminée et les températures de fond de scène détectées dans la fenêtre de calcul. 2) Procédé selon la revendication 1, caractérisé en ce que ladite grandeur de mesure est égale à (η.Φ ) /K, η étant le rapport précité, Φ le flux moyen dans la fenêtre de calcul, p un paramètre dépendant des filtres de mesure et de référence, et K un paramètre de p normalisation égal à Φ pour une température prédéterminée de fenêtre de calcul, égale par exemple à
20°C.
3) Procédé selon la revendication 1, caractérisé en ce qu'il consiste à déterminer, pour différentes températures de fond de scène, des valeurs de la dérivée par rapport à la température de la luminance spectrale d'un corps noir à une température moyenne donnée, à en déduire la dérivée par rapport à la température du rapport précité pour la même température moyenne en l'absence de gaz, à enregistrer les valeurs de cette dérivée en mémoire et à pondérer les valeurs mesurées du rapport précité en fonction des écarts entre les températures de fond de scène et une température moyenne prédéterminée.
4) Procédé selon l'une des revendications 1 à 3, caractérisé en ce que, pour la détection de plusieurs gaz, il consiste à utiliser un ensemble de filtres (FI, F2, F3) dont les bandes de transmission sont déterminées les unes par rapport aux autres en fonction des raies d'absorption des gaz (Gl, G2, G3) à détecter de façon à ce qu'un filtre (F2) utilisable comme filtre de référence pour la détection d'un gaz (Gl) soit utilisable comme filtre de mesure pour la détection d'un autre gaz (G2, G3), ou inversement, à associer les filtres par couples, chaque couple de filtres étant destiné à la détection d'un ou de plusieurs gaz, à faire les mesures des différences de flux précitées pour chaque filtre, à calculer les valeurs du rapport précité pour chaque couple de filtres et à en déduire les présences et les concentrations des gaz précités dans la zone d'espace observée.
5) Procédé selon la revendication 4, caractérisé en ce qu'il consiste à déterminer au préalable des valeurs de calibration du rapport précité pour chaque couple de filtres en présence d'une quantité connue de chaque gaz précité, à calculer des coefficients de corrélation entre ces valeurs de calibration et les valeurs calculées à partir des mesures précitées, et à en déduire la présence d'un gaz dans la zone observée lorsqu'un coefficient de corrélation est supérieur à un seuil prédéterminé. 6) Procédé selon la revendication 5, caractérisé en ce qu'il consiste à former une matrice d'identification dont les lignes correspondent aux couples de filtres et les colonnes aux gaz à détecter, un élément i, j de cette matrice étant formé par la valeur de calibration obtenue pour un couple i de filtres en présence d'une quantité connue d'un gaz j à détecter, à former un vecteur de mesure dont les lignes correspondent aux couples de filtres et dont l'élément i représente les mesures réalisées sur le couple i de filtres (par exemple une moyenne des valeurs du rapport précité pour différents points de l'image de la zone observée), à calculer les coefficients de corrélation des colonnes de la matrice d'identification avec le vecteur de mesure et à comparer ces coefficients à des seuils déterminés pour en déduire les présences et les concentrations des gaz précités dans la zone observée.
7) Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à utiliser, pour former un ou plusieurs couples de filtres de mesure et de référence, une série de filtres ayant des bandes de transmission (1, 2, 3, 4, 5) qui sont échelonnées sur une bande de longueurs d'onde d'observation et qui se chevauchent éventuellement, à obtenir une image de la zone observée dans chaque bande de transmission et à sommer ces images pour reconstituer des images vues à travers des filtres de mesure à bande large et des images vues à travers des filtres de référence à bande large.
8) Procédé selon la revendication 7, caractérisé en ce que les images dans lesdites bandes étroites (1, 2, 3, 4, 5) sont obtenues simultanément sur des voies parallèles d'un appareil d'observation.
9) Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il consiste à comparer entre elles les images obtenues à travers les différents filtres pour détecter un mouvement relatif entre les moyens (10) d'observation et la zone observée (16) et/ou un mouvement dans la zone observée (16), puis à recaler les images les unes par rapport aux autres, avant de les traiter, pour éliminer l'influence du mouvement relatif précité, et/ou à éliminer de ces images les parties correspondant à un mouvement dans la zone observée (16) .
10) Procédé selon la revendication 9, caractérisé en ce qu'on détecte les mouvements par différence d'images aux instants t et (t-1), calcul d'un écart-type, comparaison à un seuil multiple de l'écart- type, comparaison du nombre de points retenus à un seuil pour obtenir une cartographie de bougé, et application d'un "ET" binaire aux cartographies de bougé à l'instant t des images de mesure et des images de référence. 11) Procédé selon la revendication 10, caractérisé en ce qu'on calcule une différence à l'instant t entre une image et un fond de scène cumulé mis à jour au moyen d'un filtre récursif du type ARMA à partir de l'image à l'instant t-1 et une cartographie de points bougés à l'instant t-1.
12) Procédé selon l'une des revendications précédentes, caractérisé en ce que les filtres de référence sont des filtres de synthèse réalisés par empilement de couches minces et ayant une ou plusieurs bandes étroites de blocage de transmission, correspondant aux raies d'absorption du ou des gaz à détecter.
PCT/FR2002/003976 2001-11-23 2002-11-20 Procede de detection optique de gaz a distance WO2003044499A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002360183A AU2002360183A1 (en) 2001-11-23 2002-11-20 Method for remote optical detection of gas
NO20033308A NO20033308L (no) 2001-11-23 2003-07-22 Fremgangsmåte for fjernoptisk påvisning av gass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/15220 2001-11-23
FR0115220A FR2832799B1 (fr) 2001-11-23 2001-11-23 Procedure de detection optique de gaz a distance

Publications (2)

Publication Number Publication Date
WO2003044499A2 true WO2003044499A2 (fr) 2003-05-30
WO2003044499A3 WO2003044499A3 (fr) 2004-03-04

Family

ID=8869752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003976 WO2003044499A2 (fr) 2001-11-23 2002-11-20 Procede de detection optique de gaz a distance

Country Status (4)

Country Link
AU (1) AU2002360183A1 (fr)
FR (1) FR2832799B1 (fr)
NO (1) NO20033308L (fr)
WO (1) WO2003044499A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151564A1 (fr) 2010-06-01 2011-12-08 Gaztransport Et Technigaz Epreuve d'etancheite d'un reservoir par rapport a un gaz presentant une signature infrarouge
FR2998371A1 (fr) * 2012-11-22 2014-05-23 Bertin Technologies Sa Dispositif de detection optique de gaz a distance
GB2526066A (en) * 2014-05-01 2015-11-18 Crowcon Detection Instr Ltd Self Correcting gas camera
WO2016092236A1 (fr) 2014-12-12 2016-06-16 Bertin Technologies Dispositif de filtrage optique pour la détection de gaz
WO2016139261A1 (fr) * 2015-03-02 2016-09-09 Flir Systems Ab Imagerie de gaz par infrarouge passif basée sur la bande de longueur d'onde
US10190975B2 (en) 2015-10-29 2019-01-29 Konica Minolta, Inc. Leaked gas detection device and leaked gas detection method
US10416076B2 (en) * 2015-03-02 2019-09-17 Flir Systems Ab Quantifying gas in passive optical gas imaging
US11249016B2 (en) 2015-03-02 2022-02-15 Flir Systems Ab Wavelength band based passive infrared gas imaging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390785A (en) * 1980-12-29 1983-06-28 E. I. Du Pont De Nemours & Co. Method and apparatus for remotely detecting gases in the atmosphere
EP0544962B1 (fr) * 1991-12-04 1997-03-05 Bertin & Cie Procédé et dispositif de détection optique à distance d'un gaz présent dans une zone d'espace observée
US5656813A (en) * 1995-04-04 1997-08-12 Gmd Systems, Inc. Apparatus for imaging gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390785A (en) * 1980-12-29 1983-06-28 E. I. Du Pont De Nemours & Co. Method and apparatus for remotely detecting gases in the atmosphere
EP0544962B1 (fr) * 1991-12-04 1997-03-05 Bertin & Cie Procédé et dispositif de détection optique à distance d'un gaz présent dans une zone d'espace observée
US5656813A (en) * 1995-04-04 1997-08-12 Gmd Systems, Inc. Apparatus for imaging gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERNASCOLLE P ET AL: "Remote detection of natural gas clouds in open field by IR imagery" PROCEEDING OF THE SPIE, vol. 3700, 1999, pages 409-416, XP008006368 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011151564A1 (fr) 2010-06-01 2011-12-08 Gaztransport Et Technigaz Epreuve d'etancheite d'un reservoir par rapport a un gaz presentant une signature infrarouge
CN104937394B (zh) * 2012-11-22 2018-02-02 贝尔坦技术有限公司 用于气体的远程光学检测的设备
FR2998371A1 (fr) * 2012-11-22 2014-05-23 Bertin Technologies Sa Dispositif de detection optique de gaz a distance
CN104937394A (zh) * 2012-11-22 2015-09-23 贝尔坦技术有限公司 用于气体的远程光学检测的设备
US9726600B2 (en) 2012-11-22 2017-08-08 Bertin Technologies Device for the remote optical detection of gas
WO2014080127A1 (fr) 2012-11-22 2014-05-30 Bertin Technologies Dispositif de detection optique de gaz a distance
GB2526066A (en) * 2014-05-01 2015-11-18 Crowcon Detection Instr Ltd Self Correcting gas camera
WO2016092236A1 (fr) 2014-12-12 2016-06-16 Bertin Technologies Dispositif de filtrage optique pour la détection de gaz
US10060848B2 (en) 2014-12-12 2018-08-28 Bertin Technologies Optical filtering device for detecting gas
CN107532999A (zh) * 2015-03-02 2018-01-02 前视红外系统股份公司 基于波长带的无源红外气体成像
WO2016139261A1 (fr) * 2015-03-02 2016-09-09 Flir Systems Ab Imagerie de gaz par infrarouge passif basée sur la bande de longueur d'onde
US10416076B2 (en) * 2015-03-02 2019-09-17 Flir Systems Ab Quantifying gas in passive optical gas imaging
US10422741B2 (en) 2015-03-02 2019-09-24 Flir Systems Ab Wavelength band based passive infrared gas imaging
US11249016B2 (en) 2015-03-02 2022-02-15 Flir Systems Ab Wavelength band based passive infrared gas imaging
US10190975B2 (en) 2015-10-29 2019-01-29 Konica Minolta, Inc. Leaked gas detection device and leaked gas detection method

Also Published As

Publication number Publication date
FR2832799A1 (fr) 2003-05-30
NO20033308L (no) 2003-09-15
FR2832799B1 (fr) 2006-11-03
WO2003044499A3 (fr) 2004-03-04
AU2002360183A1 (en) 2003-06-10
NO20033308D0 (no) 2003-07-22

Similar Documents

Publication Publication Date Title
EP0544962B1 (fr) Procédé et dispositif de détection optique à distance d'un gaz présent dans une zone d'espace observée
EP2955496B1 (fr) Imageur spectral infrarouge à ouverture divisée à double bande (daisi) pour la détection chimique
JP7540057B2 (ja) 表面における水を検出するための装置、および表面における水を検出するための方法
WO2007098123A2 (fr) Procédé de classification et de détection de données spectrales dans des conditions d'éclairage diverses
EP2427752A1 (fr) Procede d'identification d'une scene a partir d'images polarisees multi longueurs d'onde
CN111462254B (zh) 一种多光谱监测方法与系统
EP3314888B1 (fr) Correction de pixels parasites dans un capteur d'image infrarouge
WO2003044499A2 (fr) Procede de detection optique de gaz a distance
WO2019053232A1 (fr) Systeme de mesure des composantes du rayonnement solaire
EP3290891A1 (fr) Procédé et dispositif de caractérisation des aberrations d'un système optique
FR3048316B1 (fr) Dispositif de detection d'un spot laser
EP3953683B1 (fr) Detecteur de gaz
EP4103921A1 (fr) Procédé de calibration d'un dispositif optoélectronique
FR2974899A1 (fr) Telescope multispectral a balayage comportant des moyens d'analyses de front d'onde
WO2016207507A1 (fr) Detection de pixels parasites dans un capteur d'image infrarouge
WO2020221773A1 (fr) Procede et dispositif pour retirer la remanence dans une image infrarouge d'une scene changeante
EP3963540B1 (fr) Procede et dispositif pour retirer la remanence dans une image infrarouge d'une scene statique
FR2738630A1 (fr) Procede de classification de menaces par detection infrarouge bispectrale et dispositif de veille correspondant
EP4437299A1 (fr) Procede et dispositif de visualisation d'impacts d'impulsions laser sur une cible
FR3103940A1 (fr) Procédé et dispositif de traitement d’images
EP4254359A1 (fr) Procede d'obtention de la position d'une personne dans un espace, imageur thermique et detecteur domotique
Larrieux Performance evaluation of chemical plume detection and quantification algorithms
EP4217694A1 (fr) Systeme thermographique infrarouge et procede associe
FR3098903A1 (fr) Dispositif de detection d'impulsions optiques
FR2662282A1 (fr) Dispositif de detection d'objets dans une sequence d'images.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (1205A OF 19-10-04)

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP